Sample records for s6 kinase p90rsk

  1. BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo

    PubMed Central

    Sapkota, Gopal P.; Cummings, Lorna; Newell, Felicity S.; Armstrong, Christopher; Bain, Jennifer; Frodin, Morten; Grauert, Matthias; Hoffmann, Matthias; Schnapp, Gisela; Steegmaier, Martin; Cohen, Philip; Alessi, Dario R.

    2006-01-01

    Hormones and growth factors induce the activation of a number of protein kinases that belong to the AGC subfamily, including isoforms of PKA, protein kinase B (also known as Akt), PKC, S6K p70 (ribosomal S6 kinase), RSK (p90 ribosomal S6 kinase) and MSK (mitogen- and stress-activated protein kinase), which then mediate many of the physiological processes that are regulated by these extracellular agonists. It can be difficult to assess the individual functions of each AGC kinase because their substrate specificities are similar. Here we describe the small molecule BI-D1870, which inhibits RSK1, RSK2, RSK3 and RSK4 in vitro with an IC50 of 10–30 nM, but does not signi-ficantly inhibit ten other AGC kinase members and over 40 other protein kinases tested at 100-fold higher concentrations. BI-D1870 is cell permeant and prevents the RSK-mediated phorbol ester- and EGF (epidermal growth factor)-induced phosphoryl-ation of glycogen synthase kinase-3β and LKB1 in human embry-onic kidney 293 cells and Rat-2 cells. In contrast, BI-D1870 does not affect the agonist-triggered phosphorylation of substrates for six other AGC kinases. Moreover, BI-D1870 does not suppress the phorbol ester- or EGF-induced phosphorylation of CREB (cAMP-response-element-binding protein), consistent with the genetic evidence indicating that MSK, and not RSK, isoforms mediate the mitogen-induced phosphorylation of this transcription factor. PMID:17040210

  2. Insulin Activates RSK (p90 Ribosomal S6 Kinase) to Trigger a New Negative Feedback Loop That Regulates Insulin Signaling for Glucose Metabolism*

    PubMed Central

    Smadja-Lamère, Nicolas; Shum, Michael; Déléris, Paul; Roux, Philippe P.; Abe, Jun-Ichi; Marette, André

    2013-01-01

    We previously demonstrated that the mTORC1/S6K1 pathway is activated by insulin and nutrient overload (e.g. amino acids (AA)), which leads to the inhibition of the PI3K/Akt pathway via the inhibitory serine phosphorylation of IRS-1, notably on serine 1101 (Ser-1101). However, even in the absence of AA, insulin can still promote IRS-1 Ser-1101 phosphorylation by other kinases that remain to be fully characterized. Here, we describe a new negative regulator of IRS-1, the p90 ribosomal S6 kinase (RSK). Computational analyses revealed that Ser-1101 within IRS-1 falls into the consensus motif of RSK. Moreover, recombinant RSK phosphorylated IRS-1 C-terminal fragment on Ser-1101, which was prevented by mutations of this site or when a kinase-inactive mutant of RSK was used. Using antibodies directed toward the phosphorylation sites located in the activation segment of RSK (Ser-221 or Ser-380), we found that insulin activates RSK in L6 myocytes in the absence of AA overload. Inhibition of RSK using either the pharmacological inhibitor BI-D1870 or after adenoviral expression of a dominant negative RSK1 mutant (RSK1-DN) showed that RSK selectively phosphorylates IRS-1 on Ser-1101. Accordingly, expression of the RSK1-DN mutant in L6 myocytes and FAO hepatic cells improved insulin action on glucose uptake and glucose production, respectively. Furthermore, RSK1 inhibition prevented insulin resistance in L6 myocytes chronically exposed to high glucose and high insulin. These results show that RSK is a novel regulator of insulin signaling and glucose metabolism and a potential mediator of insulin resistance, notably through the negative phosphorylation of IRS-1 on Ser-1101. PMID:24036112

  3. Ribosomal S6 kinase (RSK) modulators: a patent review.

    PubMed

    Ludwik, Katarzyna A; Lannigan, Deborah A

    2016-09-01

    The p90 ribosomal S6 kinases (RSK) are a family of Ser/Thr protein kinases that are downstream effectors of MEK1/2-ERK1/2. Increased RSK activation is implicated in the etiology of multiple pathologies, including numerous types of cancers, cardiovascular disease, liver and lung fibrosis, and infections. The review summarizes the patent and scientific literature on small molecule modulators of RSK and their potential use as therapeutics. The patents were identified using World Intellectual Property Organization and United States Patent and Trademark Office databases. The compounds described are predominantly RSK inhibitors, but a RSK activator is also described. The majority of the inhibitors are not RSK-specific. Based on the overwhelming evidence that RSK is involved in a number of diseases that have high mortalities it seems surprising that there are no RSK modulators that have pharmacokinetic properties suitable for in vivo use. MEK1/2 inhibitors are in the clinic, but the efficacy of these compounds appears to be limited by their side effects. We hypothesize that targeting the downstream effectors of MEK1/2, like RSK, are an untapped source of drug targets and that they will generate less side effects than MEK1/2 inhibitors because they regulate fewer effectors.

  4. Akt-RSK-S6-kinase Signaling Networks Activated by Oncogenic Receptor Tyrosine Kinases

    PubMed Central

    Moritz, Albrecht; Li, Yu; Guo, Ailan; Villén, Judit; Wang, Yi; MacNeill, Joan; Kornhauser, Jon; Sprott, Kam; Zhou, Jing; Possemato, Anthony; Ren, Jian Min; Hornbeck, Peter; Cantley, Lewis C.; Gygi, Steven P.; Rush, John; Comb, Michael J.

    2011-01-01

    Receptor tyrosine kinases (RTKs) activate pathways mediated by serine/threonine (Ser/Thr) kinases such as the PI3K (phosphatidylinositol 3-kinase)-Akt pathway, the Ras-MAPK (mitogen-activated protein kinase)-RSK pathway, and the mTOR (mammalian target of rapamycin)-p70 S6 pathway that control important aspects of cell growth, proliferation, and survival. The Akt, RSK, and p70 S6 family of protein kinases transmit signals by phosphorylating substrates on a RxRxxS/T motif. Here, we developed a large-scale proteomic approach to identify over 200 substrates of this kinase family in cancer cell lines driven by the c-Met, epidermal growth factor receptor (EGFR), or platelet-derived growth factor receptor a (PDGFRα) RTKs. We identified a subset of proteins with RxRxxS/T sites for which phosphorylation was decreased by RTKIs as well as by inhibitors of the PI3K, mTOR, and MAPK pathways and determined the effects of siRNA directed against these substrates on cell viability. We found that phosphorylation of the protein chaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) at Ser305 is essential for PDGFRα stabilization and cell survival in PDGFRα-dependent cancer cells. Our approach provides a new view of RTK and Akt-RSK-S6 kinase signaling, revealing many previously unidentified Akt-RSK-S6 kinase substrates that merit further consideration as targets for combination therapy with RTKIs. PMID:20736484

  5. Insights into the inhibition of the p90 ribosomal S6 kinase (RSK) by the flavonol glycoside SL010 from the 1.5 Å crystal structure of the N-terminal domain of RSK2 with bound inhibitor

    PubMed Central

    Utepbergenov, Darkhan; Derewenda, Urszula; Olekhnovich, Natalya; Szukalska, Gabriela; Banerjee, Budhaditya; Hilinski, Michael K.; Lannigan, Deborah A.; Stukenberg, P. Todd; Derewenda, Zygmunt S.

    2012-01-01

    The p90 ribosomal S6 family of kinases (RSK) are potential drug targets, due to their involvement in cancer and other pathologies. There are currently only two known selective inhibitors of RSK, but the basis for selectivity is not known. One of these inhibitors is a naturally occurring kaempferol-α-L-diacetylrhamnoside, SL0101. Here, we report the crystal structure of the complex of the N-terminal kinase domain of the RSK2 isoform with SL0101 at 1.5 Å resolution. The refined atomic model reveals unprecedented structural reorganization of the protein moiety, as compared to the nucleotide-bound form. The entire N-lobe, the hinge region and the αD-helix undergo dramatic conformational changes resulting in a rearrangement of the nucleotide binding site with concomitant formation of a highly hydrophobic pocket spatially suited to accommodate SL0101. These unexpected results will be invaluable in further optimization of the SL0101 scaffold as a promising lead for a novel class of kinase inhibitors. PMID:22846040

  6. Elevated ERK/p90 ribosomal S6 kinase activity underlies audiogenic seizure susceptibility in fragile X mice.

    PubMed

    Sawicka, Kirsty; Pyronneau, Alexander; Chao, Miranda; Bennett, Michael V L; Zukin, R Suzanne

    2016-10-11

    Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and a leading genetic form of autism. The Fmr1 KO mouse, a model of FXS, exhibits elevated translation in the hippocampus and the cortex. ERK (extracellular signal-regulated kinase) and mTOR (mechanistic target of rapamycin) signaling regulate protein synthesis by activating downstream targets critical to translation initiation and elongation and are known to contribute to hippocampal defects in fragile X. Here we show that the effect of loss of fragile X mental retardation protein (FMRP) on these pathways is brain region specific. In contrast to the hippocampus, ERK (but not mTOR) signaling is elevated in the neocortex of fragile X mice. Phosphorylation of ribosomal protein S6, typically a downstream target of mTOR, is elevated in the neocortex, despite normal mTOR activity. This is significant in that S6 phosphorylation facilitates translation, correlates with neuronal activation, and is altered in neurodevelopmental disorders. We show that in fragile X mice, S6 is regulated by ERK via the "alternative" S6 kinase p90-ribosomal S6 kinase (RSK), as evidenced by the site of elevated phosphorylation and the finding that ERK inhibition corrects elevated RSK and S6 activity. These findings indicate that signaling networks are altered in the neocortex of fragile X mice such that S6 phosphorylation receives aberrant input from ERK/RSK. Importantly, an RSK inhibitor reduces susceptibility to audiogenic seizures in fragile X mice. Our findings identify RSK as a therapeutic target for fragile X and suggest the therapeutic potential of drugs for the treatment of FXS may vary in a brain-region-specific manner.

  7. Basic anatomy and tumor biology of the RPS6KA6 gene that encodes the p90 ribosomal S6 kinase-4

    PubMed Central

    Sun, Yuan; Cao, Shousong; Yang, Min; Wu, Sihong; Wang, Zhe; Lin, Xiukun; Song, Xiangrang; Liao, D.J.

    2012-01-01

    The RPS6KA6 gene encodes the p90 ribosomal S6 kinase-4 (RSK4) that is still largely uncharacterized. In this study we identified a new RSK4 transcription initiation site and several alternative splice sites with a 5’RACE approach. The resulting mRNA variants encompass four possible first start codons. The first 15 nucleotides (nt) of exon 22 in mouse and the penultimate exon in both human (exon 21) and mouse (exon 24) RSK4 underwent alternative splicing, although the penultimate exon deleted variant appeared mainly in cell clines, but not in most normal tissues. Demethylation agent 5-azacytidine inhibited the deletion of the penultimate exon whereas two indolocarbazole-derived inhibitors of cyclin dependent kinase 4 or 6 induced deletion of the first 39 nt from exon 21 of human RSK4. In all human cancer cell lines studied, the 90-kD wild type RSK4 was sparse but, surprisingly, several isoforms at or smaller than 72-kD were expressed as detected by seven different antibodies. On immunoblots, each of these smaller isoforms often appeared as a duplet or triplet and the levels of these isoforms varied greatly among different cell lines and culture conditions. Cyclin D1 inhibited RSK4 expression and serum starvation enhanced the inhibition, whereas c-Myc and RSK4 inhibited cyclin D1. The effects of RSK4 on cell growth, cell death and chemoresponse depended on the mRNA variant or the protein isoform expressed, on the specificity of the cell lines, as well as on the anchorage-dependent or -independent growth conditions and the in vivo situation. Moreover, we also observed that even a given cDNA might be expressed to multiple proteins; therefore, when using a cDNA, one needs to exclude this possibility before attribution of the biological results from the cDNA to the anticipated protein. Collectively, our results suggest that whether RSK4 is oncogenic or tumor suppressive depends on many factors. PMID:22614021

  8. The Protein Kinase, RSK2, A Novel Drug Target for Breast Cancer

    DTIC Science & Technology

    2005-05-01

    kaempferol, the flavonoid constituent of SL010l, forming the ATP-binding pocket of RSK with that of p70 S6K, was determined to be 15 iumol/L for RSK (Fig...and RSK2 Supplemental Fig. 2). Kaempferol, the flavonoid constituent of A. B. MCF-7 MCF-10A 180 PM 50 pM SLO101 U0126 Vehicle SLO101 U0126 vehicle...refracta. This flavonoid glycoside is specific inhibitor of p90 ribosomal S6 kinase (RSK) with a dissociation constant, Ki, of 1 [AM. In intact cells

  9. p90 ribosomal S6 kinase: a potential therapeutic target in lung cancer.

    PubMed

    Poomakkoth, Noufira; Issa, Aya; Abdulrahman, Nabeel; Abdelaziz, Somaia Gamal; Mraiche, Fatima

    2016-01-14

    A global survey of cancer has shown that lung cancer is the most common cause of the new cancer cases and cancer deaths in men worldwide. The mortality from lung cancer is more than the combined mortality from breast, prostate and colorectal cancers. The two major histological types of lung cancer are non-small cell lung cancer (NSCLC) accounting for about 85 % of cases and small cell lung cancer accounting for 15 % of cases. NSCLC, the more prevalent form of lung cancer, is often diagnosed at an advanced stage and has a very poor prognosis. Many factors have been shown to contribute to the development of lung cancer in humans including tobacco smoking, exposure to environmental carcinogens (asbestos, or radon) and genetic factors. Despite the advances in treatment, lung cancer remains one of the leading causes of cancer death worldwide. Interestingly, the overall 5 year survival from lung cancer has not changed appreciably in the past 25 years. For this reason, novel and more effective treatments and strategies for NSCLC are critically needed. p90 ribosomal S6 kinase (RSK), a serine threonine kinase that lies downstream of the Ras-MAPK (mitogen activated protein kinase) cascade, has been demonstrated to be involved in the regulation of cell proliferation in various malignancies through indirect (e.g., modulation of transcription factors) or direct effects on the cell-cycle machinery. Increased expression of RSK has been demonstrated in various cancers, including lung cancer. This review focuses on the role of RSK in lung cancer and its potential therapeutic application.

  10. Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK.

    PubMed

    Rawashdeh, Oliver; Jilg, Antje; Maronde, Erik; Fahrenkrug, Jan; Stehle, Jörg H

    2016-09-01

    Memory performance varies over a 24-h day/night cycle. While the detailed underlying mechanisms are yet unknown, recent evidence suggests that in the mouse hippocampus, rhythmic phosphorylation of mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element-binding protein (CREB) are central to the circadian (~ 24 h) regulation of learning and memory. We recently identified the clock protein PERIOD1 (PER1) as a vehicle that translates information encoding time of day to hippocampal plasticity. We here elaborate how PER1 may gate the sensitivity of memory-relevant hippocampal signaling pathways. We found that in wild-type mice (WT), spatial learning triggers CREB phosphorylation only during the daytime, and that this effect depends on the presence of PER1. The time-of-day-dependent induction of CREB phosphorylation can be reproduced pharmacologically in acute hippocampal slices prepared from WT mice, but is absent in preparations made from Per1-knockout (Per1(-/-) ) mice. We showed that the PER1-dependent CREB phosphorylation is regulated downstream of MAPK. Stimulation of WT hippocampal neurons triggered the co-translocation of PER1 and the CREB kinase pP90RSK (pMAPK-activated ribosomal S6 kinase) into the nucleus. In hippocampal neurons from Per1(-/-) mice, however, pP90RSK remained perinuclear. A co-immunoprecipitation assay confirmed a high-affinity interaction between PER1 and pP90RSK. Knocking down endogenous PER1 in hippocampal cells inhibited adenylyl cyclase-dependent CREB activation. Taken together, the PER1-dependent modulation of cytoplasmic-to-nuclear signaling in the murine hippocampus provides a molecular explanation for how the circadian system potentially shapes a temporal framework for daytime-dependent memory performance, and adds a novel facet to the versatility of the clock gene protein PER1. We provide evidence that the circadian clock gene Period1 (Per1) regulates CREB phosphorylation in the mouse hippocampus

  11. Y-box binding protein-1 serine 102 is a downstream target of p90 ribosomal S6 kinase in basal-like breast cancer cells

    PubMed Central

    Stratford, Anna L; Fry, Christopher J; Desilets, Curtis; Davies, Alastair H; Cho, Yong Y; Li, Yvonne; Dong, Zigang; Berquin, Isabelle M; Roux, Philippe P; Dunn, Sandra E

    2008-01-01

    Introduction Basal-like breast cancers (BLBC) frequently overexpress the epidermal growth factor receptor (EGFR) and subsequently have high levels of signaling through the MAP kinase pathway, which is thought to contribute to their aggressive behavior. While we have previously reported the expression of Y-box binding protein-1 (YB-1) in 73% of BLBC, it is unclear whether it can be regulated by a component of the MAP kinase signaling pathway. Phosphorylation of YB-1 at the serine 102 residue is required for transcriptional activation of growth-enhancing genes, such as EGFR. Using Motifscan we identified p90 ribosomal S6 kinase (RSK) as a potential candidate for activating YB-1. Methods Inhibition of RSK1 and RSK2 was achieved using siRNA and the small molecule SL0101. RSK1, RSK2, activated RSK and kinase-dead RSK were expressed in HCC1937 cells. Kinase assays were performed to illustrate direct phosphorylation of YB-1 by RSK. The impact of inhibiting RSK on YB-1 function was measured by luciferase assays and chromatin immunoprecipitation. Results Using an in vitro kinase assay, RSK1 and RSK2 were shown to directly phosphorylate YB-1. Interestingly, they were more effective activators of YB-1 than AKT or another novel YB-1 kinase, PKCα. Phosphorylation of YB-1 (serine 102 residue) is blocked by inhibition of the MAP kinase pathway or by perturbing RSK1/RSK2 with siRNA or SL0101. In immortalized breast epithelial cells where RSK is active yet AKT is not, YB-1 is phosphorylated. Supporting this observation, RSK2-/- mouse embryo fibroblasts lose the ability to phosphorylate YB-1 in response to epidermal growth factor. This subsequently interfered with the ability of YB-1 to regulate the expression of EGFR. The RSK inhibitor SL0101 decreased the ability of YB-1 to bind the promoter, transactivate and ultimately reduce EGFR expression. In concordance with these results the expression of constitutively active RSK1 increased YB-1 phosphorylation, yet the kinase-dead RSK

  12. Ferulic acid attenuates the down-regulation of MEK/ERK/p90RSK signaling pathway in focal cerebral ischemic injury.

    PubMed

    Koh, Phil-Ok

    2015-02-19

    Ferulic acid provides neuroprotective effects against a middle cerebral artery occlusion (MCAO)-induced cerebral ischemia. Mitogen-activated protein kinases can regulate extensive intracellular processes including cell differentiation, growth, and death. This study further investigated whether ferulic acid modulates a protective mechanism through the activation of Raf-MEK-ERK and its downstream targets, including 90 ribosomal S6 kinase (p90RSK) and Bad during cerebral ischemic injury. Male Sprague-Dawley rats were treated with ferulic acid (100mg/kg) or vehicle after the onset of MCAO and brain tissues were collected 24h after MCAO. These results indicated that ferulic acid decreases the volume of the infarct area and the number of cells positive in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Although MCAO injury induces a decrease in the phosphorylation of Raf-1, MEK1/2, and ERK1/2, ferulic acid treatment prevents the injury-induced decrease in these phosphorylation levels. Ferulic acid also attenuates the injury-induced decrease in p90RSK and Bad phosphorylation levels. These findings suggest that ferulic acid prevents MCAO-induced neuronal cell death and that the MEK-ERK-p90RSK-Bad signaling pathway is involved in these neuroprotective effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The p90 ribosomal S6 kinase 2 specifically affects mitotic progression by regulating the basal level, distribution and stability of mitotic spindles

    PubMed Central

    Park, Yun Yeon; Nam, Hyun-Ja; Do, Mihyang; Lee, Jae-Ho

    2016-01-01

    RSK2, also known as RPS6KA3 (ribosomal protein S6 kinase, 90 kDa, polypeptide 3), is a downstream kinase of the mitogen-activated protein kinase (MAPK) pathway, which is important in regulating survival, transcription, growth and proliferation. However, its biological role in mitotic progression is not well understood. In this study, we examined the potential involvement of RSK2 in the regulation of mitotic progression. Interestingly, depletion of RSK2, but not RSK1, caused the accumulation of mitotic cells. Time-lapse analysis revealed that mitotic duration, particularly the duration for metaphase-to-anaphase transition was prolonged in RSK2-depleted cells, suggesting activation of spindle assembly checkpoint (SAC). Indeed, more BubR1 (Bub1-related kinase) was present on metaphase plate kinetochores in RSK2-depleted cells, and depletion of BubR1 abolished the mitotic accumulation caused by RSK2 depletion, confirming BubR1-dependent SAC activation. Along with the shortening of inter-kinetochore distance, these data suggested that weakening of the tension across sister kinetochores by RSK2 depletion led to the activation of SAC. To test this, we analyzed the RSK2 effects on the stability of kinetochore–microtubule interactions, and found that RSK2-depleted cells formed less kinetochore–microtubule fibers. Moreover, RSK2 depletion resulted in the decrease of basal level of microtubule as well as an irregular distribution of mitotic spindles, which might lead to observed several mitotic progression defects such as increase in unaligned chromosomes, defects in chromosome congression and a decrease in pole-to-pole distance in these cells. Taken together, our data reveal that RSK2 affects mitotic progression by regulating the distribution, basal level and the stability of mitotic spindles. PMID:27491410

  14. Human melanoma cells resistant to MAPK inhibitors can be effectively targeted by inhibition of the p90 ribosomal S6 kinase

    PubMed Central

    Kosnopfel, Corinna; Sinnberg, Tobias; Sauer, Birgit; Niessner, Heike; Schmitt, Anja; Makino, Elena; Forschner, Andrea; Hailfinger, Stephan; Garbe, Claus; Schittek, Birgit

    2017-01-01

    The clinical availability of small molecule inhibitors specifically targeting mutated BRAF marked a significant breakthrough in melanoma therapy. Despite a dramatic anti-tumour activity and improved patient survival, rapidly emerging resistance, however, greatly limits the clinical benefit. The majority of the already described resistance mechanisms involve a reactivation of the MAPK signalling pathway. The p90 ribosomal S6 kinase (RSK), a downstream effector of the MAPK signalling cascade, has been reported to enhance survival of melanoma cells in response to chemotherapy. Here, we can show that RSK activity is significantly increased in human melanoma cells with acquired resistance to the BRAFV600E/K inhibitor vemurafenib. Interestingly, inhibition of RSK signalling markedly impairs the viability of vemurafenib resistant melanoma cells and is effective both in two-dimensional and in three-dimensional culture systems, especially in a chronic, long-term application. The effect of RSK inhibition can be partly replicated by downregulation of the well-known RSK target, Y-box binding protein 1 (YB-1). Intriguingly, RSK inhibition also retains its efficacy in melanoma cells with combined resistance to vemurafenib and the MEK inhibitor trametinib. These data suggest that active RSK signalling might be an attractive novel therapeutic target in melanoma with acquired resistance to MAPK pathway inhibitors. PMID:28415756

  15. Identification of quercitrin as an inhibitor of the p90 S6 ribosomal kinase (RSK): structure of its complex with the N-terminal domain of RSK2 at 1.8 Å resolution

    PubMed Central

    Derewenda, Urszula; Artamonov, Mykhaylo; Szukalska, Gabriela; Utepbergenov, Darkhan; Olekhnovich, Natalya; Parikh, Hardik I.; Kellogg, Glen E.; Somlyo, Avril V.; Derewenda, Zygmunt S.

    2013-01-01

    Members of the RSK family of kinases constitute attractive targets for drug design, but a lack of structural information regarding the mechanism of selective inhibitors impedes progress in this field. The crystal structure of the N-terminal kinase domain (residues 45–346) of mouse RSK2, or RSK2NTKD, has recently been described in complex with one of only two known selective inhibitors, a rare naturally occurring flavonol glycoside, kaempferol 3-O-(3′′,4′′-di-O-acetyl-α-l-rhamnopyranoside), known as SL0101. Based on this structure, it was hypothesized that quercitrin (quercetin 3-­O-α-l-rhamnopyranoside), a related but ubiquitous and inexpensive compound, might also act as an RSK inhibitor. Here, it is demonstrated that quercitrin binds to RSK2NTKD with a dissociation constant (K d) of 5.8 µM as determined by isothermal titration calorimetry, and a crystal structure of the binary complex at 1.8 Å resolution is reported. The crystal structure reveals a very similar mode of binding to that recently reported for SL0101. Closer inspection shows a number of small but significant differences that explain the slightly higher K d for quercitrin compared with SL0101. It is also shown that quercitrin can effectively substitute for SL0101 in a biological assay, in which it significantly suppresses the contractile force in rabbit pulmonary artery smooth muscle in response to Ca2+. PMID:23385462

  16. Peritoneal and hematogenous metastases of ovarian cancer cells are both controlled by the p90RSK through a self-reinforcing cell autonomous mechanism.

    PubMed

    Torchiaro, Erica; Lorenzato, Annalisa; Olivero, Martina; Valdembri, Donatella; Gagliardi, Paolo Armando; Gai, Marta; Erriquez, Jessica; Serini, Guido; Di Renzo, Maria Flavia

    2016-01-05

    The molecular mechanisms orchestrating peritoneal and hematogenous metastases of ovarian cancer cells are assumed to be distinct. We studied the p90RSK family of serine/threonine kinases that lie downstream the RAS-ERK/MAPK pathway and modulate a variety of cellular processes including cell proliferation, survival, motility and invasiveness. We found the RSK1 and RSK2 isoforms expressed in a number of human ovarian cancer cell lines, where they played redundant roles in sustaining in vitro motility and invasiveness. In vivo, silencing of both RSK1 and RSK2 almost abrogated short-term and long-term metastatic engraftment of ovarian cancer cells in the peritoneum. In addition, RSK1/RSK2 silenced cells failed to colonize the lungs after intravenous injection and to form hematogenous metastasis from subcutaneous xenografts. RSK1/RSK2 suppression resulted in lessened ovarian cancer cell spreading on endogenous fibronectin (FN). Mechanistically, RSK1/RSK2 knockdown diminished FN transcription, α5β1 integrin activation and TGF-β1 translation. Reduced endogenous FN deposition and TGF-β1 secretion depended on the lack of activating phosphorylation of the transcription/translation factor YB-1 by p90RSK. Altogether data show how p90RSK activates a self-reinforcing cell autonomous pro-adhesive circuit necessary for metastatic seeding of ovarian cancer cells. Thus, p90RSK inhibitors might hinder both the hematogenous and the peritoneal metastatic spread of human ovarian cancer.

  17. Salicylic acid and aspirin inhibit the activity of RSK2 kinase and repress RSK2-dependent transcription of cyclic AMP response element binding protein- and NF-kappa B-responsive genes.

    PubMed

    Stevenson, M A; Zhao, M J; Asea, A; Coleman, C N; Calderwood, S K

    1999-11-15

    Sodium salicylate (NaSal) and other nonsteroidal anti-inflammatory drugs (NSAIDs) coordinately inhibit the activity of NF-kappa B, activate heat shock transcription factor 1 and suppress cytokine gene expression in activated monocytes and macrophages. Because our preliminary studies indicated that these effects could be mimicked by inhibitors of signal transduction, we have studied the effects of NSAIDs on signaling molecules potentially downstream of LPS receptors in activated macrophages. Our findings indicate that ribosomal S6 kinase 2 (RSK2), a 90-kDa ribosomal S6 kinase with a critical role as an effector of the RAS-mitogen-activated protein kinase pathway and a regulator of immediate early gene transcription is a target for inhibition by the NSAIDs. NSAIDs inhibited the activity of purified RSK2 kinase in vitro and of RSK2 in mammalian cells and suppressed the phosphorylation of RSK2 substrates cAMP response element binding protein (CREB) and I-kappa B alpha in vivo. Additionally, NaSal inhibited the phosphorylation by RSK2 of CREB and I-kappa B alpha on residues crucial for their transcriptional activity in vivo and thus repressed CREB and NF-kappa B-dependent transcription. These experiments suggest that RSK2 is a target for NSAIDs in the inhibition of monocyte-specific gene expression and indicate the importance of RSK2 and related kinases in cell regulation, indicating a new area for anti-inflammatory drug discovery.

  18. Identification of p90 Ribosomal S6 Kinase 2 as a Novel Host Protein in HBx Augmenting HBV Replication by iTRAQ-Based Quantitative Comparative Proteomics.

    PubMed

    Yan, Li-Bo; Yu, You-Jia; Zhang, Qing-Bo; Tang, Xiao-Qiong; Bai, Lang; Huang, FeiJun; Tang, Hong

    2018-05-01

    The aim of this study was to screen for novel host proteins that play a role in HBx augmenting Hepatitis B virus (HBV) replication. Three HepG2 cell lines stably harboring different functional domains of HBx (HBx, HBx-Cm6, and HBx-Cm16) were cultured. ITRAQ technology integrated with LC-MS/MS analysis was applied to identify the proteome differences among these three cell lines. In brief, a total of 70 different proteins were identified among HepG2-HBx, HepG2-HBx-Cm6, and HepG2-HBx-Cm16 by double repetition. Several differentially expressed proteins, including p90 ribosomal S6 kinase 2 (RSK2), were further validated. RSK2 was expressed at higher levels in HepG2-HBx and HepG2-HBx-Cm6 compared with HepG2-HBx-Cm16. Furthermore, levels of HBV replication intermediates were decreased after silencing RSK2 in HepG2.2.15. An HBx-minus HBV mutant genome led to decreased levels of HBV replication intermediates and these decreases were restored to levels similar to wild-type HBV by transient ectopic expression of HBx. After silencing RSK2 expression, the levels of HBV replication intermediates synthesized from the HBx-minus HBV mutant genome were not restored to levels that were observed with wild-type HBV by transient HBx expression. Based on iTRAQ quantitative comparative proteomics, RSK2 was identified as a novel host protein that plays a role in HBx augmenting HBV replication. © 2018 The Authors. Proteomics - Clinical Application Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Na+/H+ exchanger isoform 1-induced osteopontin expression facilitates cardiac hypertrophy through p90 ribosomal S6 kinase.

    PubMed

    Abdulrahman, Nabeel; Jaspard-Vinassa, Beatrice; Fliegel, Larry; Jabeen, Aayesha; Riaz, Sadaf; Gadeau, Alain-Pierre; Mraiche, Fatima

    2018-05-01

    Cardiovascular diseases are the leading cause of death worldwide. One in three cases of heart failure is due to dilated cardiomyopathy. The Na + /H + exchanger isoform 1 (NHE1), a multifunctional protein and the key pH regulator in the heart, has been demonstrated to be increased in this condition. We have previously demonstrated that elevated NHE1 activity induced cardiac hypertrophy in vivo. Furthermore, the overexpression of active NHE1 elicited modulation of gene expression in cardiomyocytes including an upregulation of myocardial osteopontin (OPN) expression. To determine the role of OPN in inducing NHE1-mediated cardiomyocyte hypertrophy, double transgenic mice expressing active NHE1 and OPN knockout were generated and assessed by echocardiography and the cardiac phenotype. Our studies showed that hearts expressing active NHE1 exhibited cardiac remodeling indicated by increased systolic and diastolic left ventricular internal diameter and increased ventricular volume. Moreover, these hearts demonstrated impaired function with decreased fractional shortening and ejection fraction. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNA was upregulated, and there was an increase in heart cell cross-sectional area confirming the cardiac hypertrophic effect. Moreover, NHE1 transgenic mice also showed increased collagen deposition, upregulation of CD44 and phosphorylation of p90 ribosomal s6 kinase (RSK), effects that were regressed in OPN knockout mice. In conclusion, we developed an interesting comparative model of active NHE1 transgenic mouse lines which express a dilated hypertrophic phenotype expressing CD44 and phosphorylated RSK, effects which were regressed in absence of OPN.

  20. Combination Kinase Inhibitor Treatment Suppresses Rift Valley Fever Virus Replication.

    PubMed

    Bell, Todd M; Espina, Virginia; Lundberg, Lindsay; Pinkham, Chelsea; Brahms, Ashwini; Carey, Brian D; Lin, Shih-Chao; Dahal, Bibha; Woodson, Caitlin; de la Fuente, Cynthia; Liotta, Lance A; Bailey, Charles L; Kehn-Hall, Kylene

    2018-04-13

    Viruses must parasitize host cell translational machinery in order to make proteins for viral progeny. In this study, we sought to use this signal transduction conduit against them by inhibiting multiple kinases that influence translation. Previous work indicated that several kinases involved in translation, including p70 S6K, p90RSK, ERK, and p38 MAPK, are phosphorylated following Rift Valley fever virus (RVFV) infection. Furthermore, inhibiting p70 S6K through treatment with the FDA approved drug rapamycin prevents RVFV pathogenesis in a mouse model of infection. We hypothesized that inhibiting either p70 S6K, p90RSK, or p90RSK’s upstream kinases, ERK and p38 MAPK, would decrease translation and subsequent viral replication. Treatment with the p70 S6K inhibitor PF-4708671 resulted in decreased phosphorylation of translational proteins and reduced RVFV titers. In contrast, treatment with the p90RSK inhibitor BI-D1870, p38MAPK inhibitor SB203580, or the ERK inhibitor PD0325901 alone had minimal influence on RVFV titers. The combination of PF-4708671 and BI-D1870 treatment resulted in robust inhibition of RVFV replication. Likewise, a synergistic inhibition of RVFV replication was observed with p38MAPK inhibitor SB203580 or the ERK inhibitor PD0325901 combined with rapamycin treatment. These findings serve as a proof of concept regarding combination kinase inhibitor treatment for RVFV infection.

  1. Indole RSK inhibitors. Part 1: discovery and initial SAR.

    PubMed

    Boyer, Stephen J; Burke, Jennifer; Guo, Xin; Kirrane, Thomas M; Snow, Roger J; Zhang, Yunlong; Sarko, Chris; Soleymanzadeh, Lida; Swinamer, Alan; Westbrook, John; Dicapua, Frank; Padyana, Anil; Cogan, Derek; Gao, Amy; Xiong, Zhaoming; Madwed, Jeffrey B; Kashem, Mohammed; Kugler, Stanley; O'Neill, Margaret M

    2012-01-01

    A series of inhibitors for the 90 kDa ribosomal S6 kinase (RSK) based on an 1-oxo-2,3,4,5-tetrahydro-1H-[1,4]diazepino[1,2-a]indole-8-carboxamide scaffold were identified through high throughput screening. An RSK crystal structure and exploratory SAR were used to define the series pharmacophore. Compounds with good cell potency, such as compounds 43, 44, and 55 were identified, and form the basis for subsequent kinase selectivity optimization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Rsk2, the Kinase Mutated in Coffin-Lowry Syndrome, Controls Cementum Formation.

    PubMed

    Koehne, T; Jeschke, A; Petermann, F; Seitz, S; Neven, M; Peters, S; Luther, J; Schweizer, M; Schinke, T; Kahl-Nieke, B; Amling, M; David, J-P

    2016-07-01

    The ribosomal S6 kinase RSK2 is essential for osteoblast function, and inactivating mutations of RSK2 cause osteopenia in humans with Coffin-Lowry syndrome (CLS). Alveolar bone loss and premature tooth exfoliation are also consistently reported symptoms in CLS patients; however, the pathophysiologic mechanisms are unclear. Therefore, aiming to identify the functional relevance of Rsk2 for tooth development, we analyzed Rsk2-deficient mice. Here, we show that Rsk2 is a critical regulator of cementoblast function. Immunohistochemistry, histology, micro-computed tomography imaging, quantitative backscattered electron imaging, and in vitro assays revealed that Rsk2 is activated in cementoblasts and is necessary for proper acellular cementum formation. Cementum hypoplasia that is observed in Rsk2-deficient mice causes detachment and disorganization of the periodontal ligament and was associated with significant alveolar bone loss with age. Moreover, Rsk2-deficient mice display hypomineralization of cellular cementum with accumulation of nonmineralized cementoid. In agreement, treatment of the cementoblast cell line OCCM-30 with a Rsk inhibitor reduces formation of mineralization nodules and decreases the expression of cementum markers. Western blot analyses based on antibodies against Rsk1, Rsk2, and an activated form of the 2 kinases confirmed that Rsk2 is expressed and activated in differentiating OCCM-30 cells. To discriminate between periodontal bone loss and systemic bone loss, we additionally crossed Rsk2-deficient mice with transgenic mice overexpressing the osteoanabolic transcription factor Fra1. Fra1 overexpression clearly increases systemic bone volume in Rsk2-deficient mice but does not protect from alveolar bone loss. Our results indicate that cell autonomous cementum defects are causing early tooth loss in CLS patients. Moreover, we identify Rsk2 as a nonredundant regulator of cementum homeostasis, alveolar bone maintenance, and periodontal health, with

  3. Structural assembly of the signaling competent ERK2–RSK1 heterodimeric protein kinase complex

    PubMed Central

    Alexa, Anita; Gógl, Gergő; Glatz, Gábor; Garai, Ágnes; Zeke, András; Varga, János; Dudás, Erika; Jeszenői, Norbert; Bodor, Andrea; Hetényi, Csaba; Reményi, Attila

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) bind and activate their downstream kinase substrates, MAPK-activated protein kinases (MAPKAPKs). Notably, extracellular signal regulated kinase 2 (ERK2) phosphorylates ribosomal S6 kinase 1 (RSK1), which promotes cellular growth. Here, we determined the crystal structure of an RSK1 construct in complex with its activator kinase. The structure captures the kinase–kinase complex in a precatalytic state where the activation loop of the downstream kinase (RSK1) faces the enzyme's (ERK2) catalytic site. Molecular dynamics simulation was used to show how this heterodimer could shift into a signaling-competent state. This structural analysis combined with biochemical and cellular studies on MAPK→MAPKAPK signaling showed that the interaction between the MAPK binding linear motif (residing in a disordered kinase domain extension) and the ERK2 “docking” groove plays the major role in making an encounter complex. This interaction holds kinase domains proximal as they “readjust,” whereas generic kinase domain surface contacts bring them into a catalytically competent state. PMID:25730857

  4. RSK2 signals through stathmin to promote microtubule dynamics and tumor metastasis

    PubMed Central

    Alesi, GN; Jin, L; Li, D; Magliocca, KR; Kang, Y; Chen, ZG; Shin, DM; Khuri, FR; Kang, S

    2017-01-01

    Metastasis is responsible for >90% of cancer-related deaths. Complex signaling in cancer cells orchestrates the progression from a primary to a metastatic cancer. However, the mechanisms of these cellular changes remain elusive. We previously demonstrated that p90 ribosomal S6 kinase 2 (RSK2) promotes tumor metastasis. Here we investigated the role of RSK2 in the regulation of microtubule dynamics and its potential implication in cancer cell invasion and tumor metastasis. Stable knockdown of RSK2 disrupted microtubule stability and decreased phosphorylation of stathmin, a microtubule-destabilizing protein, at serine 16 in metastatic human cancer cells. We found that RSK2 directly binds and phosphorylates stathmin at the leading edge of cancer cells. Phosphorylation of stathmin by RSK2 reduced stathmin-mediated microtubule depolymerization. Moreover, overexpression of phospho-mimetic mutant stathmin S16D significantly rescued the decreased invasive and metastatic potential mediated by RSK2 knockdown in vitro and in vivo. Furthermore, stathmin phosphorylation positively correlated with RSK2 expression and metastatic cancer progression in primary patient tumor samples. Our finding demonstrates that RSK2 directly phosphorylates stathmin and regulates microtubule polymerization to provide a pro-invasive and pro-metastatic advantage to cancer cells. Therefore, the RSK2–stathmin pathway represents a promising therapeutic target and a prognostic marker for metastatic human cancers. PMID:27041561

  5. Ferulic Acid Administered at Various Time Points Protects against Cerebral Infarction by Activating p38 MAPK/p90RSK/CREB/Bcl-2 Anti-Apoptotic Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion Injury in Rats.

    PubMed

    Cheng, Chin-Yi; Tang, Nou-Ying; Kao, Shung-Te; Hsieh, Ching-Liang

    2016-01-01

    This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to inhibition of the cytochrome c

  6. Ferulic Acid Administered at Various Time Points Protects against Cerebral Infarction by Activating p38 MAPK/p90RSK/CREB/Bcl-2 Anti-Apoptotic Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion Injury in Rats

    PubMed Central

    Cheng, Chin-Yi; Tang, Nou-Ying; Kao, Shung-Te; Hsieh, Ching-Liang

    2016-01-01

    Objectives This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. Methods FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Results Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Conclusions Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to

  7. Combination Kinase Inhibitor Treatment Suppresses Rift Valley Fever Virus Replication

    PubMed Central

    Bell, Todd M.; Espina, Virginia; Lundberg, Lindsay; Pinkham, Chelsea; Brahms, Ashwini; Dahal, Bibha; Woodson, Caitlin; de la Fuente, Cynthia; Liotta, Lance A.; Bailey, Charles L.

    2018-01-01

    Viruses must parasitize host cell translational machinery in order to make proteins for viral progeny. In this study, we sought to use this signal transduction conduit against them by inhibiting multiple kinases that influence translation. Previous work indicated that several kinases involved in translation, including p70 S6K, p90RSK, ERK, and p38 MAPK, are phosphorylated following Rift Valley fever virus (RVFV) infection. Furthermore, inhibiting p70 S6K through treatment with the FDA approved drug rapamycin prevents RVFV pathogenesis in a mouse model of infection. We hypothesized that inhibiting either p70 S6K, p90RSK, or p90RSK’s upstream kinases, ERK and p38 MAPK, would decrease translation and subsequent viral replication. Treatment with the p70 S6K inhibitor PF-4708671 resulted in decreased phosphorylation of translational proteins and reduced RVFV titers. In contrast, treatment with the p90RSK inhibitor BI-D1870, p38MAPK inhibitor SB203580, or the ERK inhibitor PD0325901 alone had minimal influence on RVFV titers. The combination of PF-4708671 and BI-D1870 treatment resulted in robust inhibition of RVFV replication. Likewise, a synergistic inhibition of RVFV replication was observed with p38MAPK inhibitor SB203580 or the ERK inhibitor PD0325901 combined with rapamycin treatment. These findings serve as a proof of concept regarding combination kinase inhibitor treatment for RVFV infection. PMID:29652799

  8. Acquired resistance to the Hsp90 inhibitor, ganetespib in KRAS mutant NSCLC is mediated via reactivation of the ERK–p90RSK–mTOR signaling network

    PubMed Central

    Chatterjee, Suman; Huang, Eric H.-B.; Christie, Ian; Kurland, Brenda F.; Burns, Timothy F.

    2017-01-01

    Approximately 25% of non-small cell lung cancer (NSCLC) patients have KRAS mutations and no effective therapeutic strategy exists for these patients. The use of Heat shock protein 90 (Hsp90) inhibitors in KRAS mutant NSCLC appeared to be a promising approach since these inhibitors target many KRAS downstream effectors, however, limited clinical efficacy has been observed due to resistance. Here, we examined the mechanism(s) of acquired resistance to the Hsp90 inhibitor, ganetespib, and identified novel and rationally devised Hsp90 inhibitor combinations which may prevent and overcome resistance to Hsp90 inhibitors. We derived KRAS mutant NSCLC ganetespib resistant (GR) cell lines to identify the resistance mechanism(s) and identified hyperactivation of RAF/MEK/ERK/RSK and PI3K/AKT/mTOR pathways as key resistance mechanisms. Furthermore, we found that GR cells are “addicted” to these pathways as ganetespib resistance lead to synthetic lethality to a dual PI3K/mTOR, a PI3K, or an ERK inhibitor. Interestingly, the levels and activity of a key activator of the mTOR pathway and an ERK downstream target, p90 ribosomal S6 kinase (RSK) were also increased in the GR cells. Genetic or pharmacologic inhibition of p90RSK in GR cells restored sensitivity to ganetespib, whereas p90RSK overexpression induced ganetespib resistance in naïve cells, validating p90RSK as a mediator of resistance and a novel therapeutic target. Our studies offer a way forward for Hsp90 inhibitors through the rational design of Hsp90 inhibitor combinations that may prevent and/or overcome resistance to Hsp90 inhibitors providing an effective therapeutic strategy for KRAS mutant NSCLC. PMID:28167505

  9. RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth

    PubMed Central

    Zindy, Pierre-Joachim; Saba-El-Leil, Marc; Lavoie, Geneviève; Dandachi, Farah; Baptissart, Marine; Borden, Katherine L. B.; Meloche, Sylvain; Roux, Philippe P.

    2015-01-01

    The Ras/mitogen-activated protein kinase (MAPK) signalling cascade regulates various biological functions, including cell growth, proliferation and survival. As such, this pathway is often deregulated in cancer, including melanomas, which frequently harbour activating mutations in the NRAS and BRAF oncogenes. Hyperactive MAPK signalling is known to promote protein synthesis, but the mechanisms by which this occurs remain poorly understood. Here, we show that expression of oncogenic forms of Ras and Raf promotes the constitutive activation of the mammalian target of rapamycin (mTOR). Using pharmacological inhibitors and RNA interference we find that the MAPK-activated protein kinase RSK (p90 ribosomal S6 kinase) is partly required for these effects. Using melanoma cell lines carrying activating BRAF mutations we show that ERK/RSK signalling regulates assembly of the translation initiation complex and polysome formation, as well as the translation of growth-related mRNAs containing a 5’ terminal oligopyrimidine (TOP) motif. Accordingly, we find that RSK inhibition abrogates tumour growth in mice. Our findings indicate that RSK may be a valuable therapeutic target for the treatment of tumours characterized by deregulated MAPK signalling, such as melanoma. PMID:22797077

  10. Computational and Biochemical Discovery of RSK2 as a Novel Target for Epigallocatechin Gallate (EGCG).

    PubMed

    Chen, Hanyong; Yao, Ke; Chang, Xiaoyu; Shim, Jung-Hyun; Kim, Hong-Gyum; Malakhova, Margarita; Kim, Dong-Joon; Bode, Ann M; Dong, Zigang

    2015-01-01

    The most active anticancer component in green tea is epigallocatechin-3-gallate (EGCG). Protein interaction with EGCG is a critical step for mediating the effects of EGCG on the regulation of various key molecules involved in signal transduction. By using computational docking screening methods for protein identification, we identified a serine/threonine kinase, 90-kDa ribosomal S6 kinase (RSK2), as a novel molecular target of EGCG. RSK2 includes two kinase catalytic domains in the N-terminal (NTD) and the C-terminal (CTD) and RSK2 full activation requires phosphorylation of both terminals. The computer prediction was confirmed by an in vitro kinase assay in which EGCG inhibited RSK2 activity in a dose-dependent manner. Pull-down assay results showed that EGCG could bind with RSK2 at both kinase catalytic domains in vitro and ex vivo. Furthermore, results of an ATP competition assay and a computer-docking model showed that EGCG binds with RSK2 in an ATP-dependent manner. In RSK2+/+ and RSK2-/- murine embryonic fibroblasts, EGCG decreased viability only in the presence of RSK2. EGCG also suppressed epidermal growth factor-induced neoplastic cell transformation by inhibiting phosphorylation of histone H3 at Ser10. Overall, these results indicate that RSK2 is a novel molecular target of EGCG.

  11. RSK3 is required for concentric myocyte hypertrophy in an activated Raf1 model for Noonan syndrome.

    PubMed

    Passariello, Catherine L; Martinez, Eliana C; Thakur, Hrishikesh; Cesareo, Maria; Li, Jinliang; Kapiloff, Michael S

    2016-04-01

    Noonan syndrome (NS) is a congenital disorder resulting from mutations of the Ras-Raf signaling pathway. Hypertrophic cardiomyopathy associated with RAF1 "RASopathy" mutations is a major risk factor for heart failure and death in NS and has been attributed to activation of MEK1/2-ERK1/2 mitogen-activated protein kinases. We recently discovered that type 3 p90 ribosomal S6 kinase (RSK3) is an ERK effector that is required, like ERK1/2, for concentric myocyte hypertrophy in response to pathological stress such as pressure overload. In order to test whether RSK3 also contributes to NS-associated hypertrophic cardiomyopathy, RSK3 knock-out mice were crossed with mice bearing the Raf1(L613V) human NS mutation. We confirmed that Raf1(L613V) knock-in confers a NS-like phenotype, including cardiac hypertrophy. Active RSK3 was increased in Raf1(L613V) mice. Constitutive RSK3 gene deletion prevented the Raf1(L613V)-dependent concentric growth in width of the cardiac myocyte and attenuated cardiac hypertrophy in female mice. These results are consistent with RSK3 being an important mediator of ERK1/2-dependent growth in RASopathy. In conjunction with previously published data showing that RSK3 is important for pathological remodeling of the heart, these data suggest that targeting of this downstream MAP-kinase pathway effector should be considered in the treatment of RASopathy-associated hypertrophic cardiomyopathy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A combination of SILAC and nucleotide acyl phosphate labelling reveals unexpected targets of the Rsk inhibitor BI-D1870.

    PubMed

    Edgar, Alexander J; Trost, Matthias; Watts, Colin; Zaru, Rossana

    2014-02-01

    Protein kinase inhibitors frequently have interesting effects that cannot be fully ascribed to the intended target kinase(s) but identifying additional targets that might explain the effects is not straightforward. By comparing two different inhibitors of the Rsk (p90 ribosomal S6 kinase) kinases, we found that the increasingly used compound BI-D1870 had biological effects in murine DCs (dendritic cells) that could not be solely ascribed to Rsk or other documented targets. We assessed the ability of BI-D1870 and a second Rsk inhibitor, BIX 02565 to protect enzyme active sites from reaction with biotinylated nucleotide acyl phosphates. Using SILAC (stable isotope labelling by amino acids in cell culture)-labelled DC lysates as a source of enzyme targets, we identify several kinases that interact with BI-D1870 but not with BIX 02565. We confirmed that these kinases, including Slk, Lok and Mst1, are inhibited by BI-D1870 but to a much lesser extent by BIX 02565 and that phosphorylation of some of their substrates is blocked by BI-D1870 in living cells. Our results suggest that the BI-D1870 inhibitor should be used with caution. The SILAC-based methodology we used should be useful for further comparative unbiased profiling of the target spectrum of kinase inhibitors with interesting biological effects under conditions that closely mimic those found in cells. © 2014 The author(s).

  13. Quetiapine and aripiprazole signal differently to ERK, p90RSK and c-Fos in mouse frontal cortex and striatum: role of the EGF receptor

    PubMed Central

    2014-01-01

    Background Signaling pathways outside dopamine D2 receptor antagonism may govern the variable clinical profile of antipsychotic drugs (APD) in schizophrenia. One postulated mechanism causal to APD action may regulate synaptic plasticity and neuronal connectivity via the extracellular signal-regulated kinase (ERK) cascade that links G-protein coupled receptors (GPCR) and ErbB growth factor signaling, systems disturbed in schizophrenia. This was based upon our finding that the low D2 receptor affinity APD clozapine induced initial down-regulation and delayed epidermal growth factor receptor (EGFR or ErbB1) mediated activation of the cortical and striatal ERK response in vivo distinct from olanzapine or haloperidol. Here we map whether the second generation atypical APDs aripiprazole and quetiapine affect the EGFR-ERK pathway and its substrates p90RSK and c-Fos in mouse brain, given their divergent agonist and antagonist properties on dopaminergic transmission, respectively. Results In prefrontal cortex, aripiprazole triggered triphasic ERK phosphorylation that was EGFR-independent but had no significant effect in striatum. Conversely quetiapine did not alter cortical ERK signaling but elevated striatal ERK levels in an EGFR-dependent manner. Induction of ERK by aripiprazole did not affect p90RSK signaling but quetiapine decreased RSK phosphorylation within 1-hour of administration. The transcription factor c-Fos by comparison was a direct target of ERK phosphorylation induced by aripiprazole in cortex and quetiapine in striatum with protein levels in temporal alignment with that of ERK. Conclusions These data indicate that aripiprazole and quetiapine signal to specific nuclear targets of ERK, which for quetiapine occurs via an EGFR-linked mechanism, possibly indicating involvement of this system in its action. PMID:24552586

  14. Gab2 Phosphorylation by RSK Inhibits Shp2 Recruitment and Cell Motility

    PubMed Central

    Zhang, Xiaocui; Lavoie, Genevieve; Fort, Loic; Huttlin, Edward L.; Tcherkezian, Joseph; Galan, Jacob A.; Gu, Haihua; Gygi, Steven P.; Carreno, Sebastien

    2013-01-01

    The scaffolding adapter protein Gab2 (Grb2-associated binder) participates in the signaling response evoked by various growth factors and cytokines. Gab2 is overexpressed in several human malignancies, including breast cancer, and was shown to promote mammary epithelial cell migration. The role of Gab2 in the activation of different signaling pathways is well documented, but less is known regarding the feedback mechanisms responsible for its inactivation. We now demonstrate that activation of the Ras/mitogen-activated protein kinase (MAPK) pathway promotes Gab2 phosphorylation on basic consensus motifs. More specifically, we show that RSK (p90 ribosomal S6 kinase) phosphorylates Gab2 on three conserved residues, both in vivo and in vitro. Mutation of these phosphorylation sites does not alter Gab2 binding to Grb2, but instead, we show that Gab2 phosphorylation inhibits the recruitment of the tyrosine phosphatase Shp2 in response to growth factors. Expression of an unphosphorylatable Gab2 mutant in mammary epithelial cells promotes an invasion-like phenotype and increases cell motility. Taken together, these results suggest that RSK is part of a negative-feedback loop that restricts Gab2-dependent epithelial cell motility. On the basis of the widespread role of Gab2 in receptor signaling, these findings also suggest that RSK plays a regulatory function in diverse receptor systems. PMID:23401857

  15. RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia.

    PubMed

    Hospital, M-A; Jacquel, A; Mazed, F; Saland, E; Larrue, C; Mondesir, J; Birsen, R; Green, A S; Lambert, M; Sujobert, P; Gautier, E-F; Salnot, V; Le Gall, M; Decroocq, J; Poulain, L; Jacque, N; Fontenay, M; Kosmider, O; Récher, C; Auberger, P; Mayeux, P; Bouscary, D; Sarry, J-E; Tamburini, J

    2018-03-01

    Acute myeloid leukemia (AML) with the FLT3 internal tandem duplication (FLT3-ITD AML) accounts for 20-30% of AML cases. This subtype usually responds poorly to conventional therapies, and might become resistant to FLT3 tyrosine kinase inhibitors (TKIs) due to molecular bypass mechanisms. New therapeutic strategies focusing on resistance mechanisms are therefore urgently needed. Pim kinases are FLT3-ITD oncogenic targets that have been implicated in FLT3 TKI resistance. However, their precise biological function downstream of FLT3-ITD requires further investigation. We performed high-throughput transcriptomic and proteomic analyses in Pim2-depleted FLT3-ITD AML cells and found that Pim2 predominantly controlled apoptosis through Bax expression and mitochondria disruption. We identified ribosomal protein S6 kinase A3 (RSK2), a 90 kDa serine/threonine kinase involved in the mitogen-activated protein kinase cascade encoded by the RPS6KA3 gene, as a novel Pim2 target. Ectopic expression of an RPS6KA3 allele rescued the viability of Pim2-depleted cells, supporting the involvement of RSK2 in AML cell survival downstream of Pim2. Finally, we showed that RPS6KA3 knockdown reduced the propagation of human AML cells in vivo in mice. Our results point to RSK2 as a novel Pim2 target with translational therapeutic potential in FLT3-ITD AML.

  16. Ferulic acid attenuates focal cerebral ischemia-induced decreases in p70S6 kinase and S6 phosphorylation.

    PubMed

    Koh, Phil-Ok

    2013-10-25

    Ferulic acid exhibits neuroprotective effects against focal cerebral ischemia. PI3/K and Akt signaling pathways play an essential role in protecting against cerebral ischemia. Mammalian target of rapamycin (mTOR), a major downstream target of Akt, regulates p70S6 kinase and S6, both of which are involved in ribosomal biogenesis and protein synthesis. I investigated whether ferulic acid regulates mTOR, p70S6 kinase, and S6 phosphorylation during brain ischemic injury. Rats were treated immediately with vehicle or ferulic acid (100mg/kg, i.v.) after middle cerebral artery occlusion (MCAO). Brains tissues were removed at 24h after the onset of MCAO and the cerebral cortex regions were collected. Ferulic acid reduced the MCAO-induced infarct volume. I showed previously that ferulic acid prevents the MCAO injury-induced decrease of Akt phosphorylation. In this study, MCAO injury induced decreases in mTOR, p70S6 kinase, and S6 phosphorylation levels, while ferulic acid attenuated the injury-induced decreases. Immunohistochemical staining demonstrated that ferulic acid prevented the MCAO-induced reduction in the number of positive cells for phosphorylated p70S6 kinase and phosphorylated S6. These findings suggest that ferulic acid has a neuroprotective function against focal cerebral ischemia by modulating p70S6 kinase expression and S6 phosphorylation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Attenuation of ERK/RSK2-driven NFκB gene expression and cancer cell proliferation by kurarinone, a lavandulyl flavanone isolated from Sophora flavescens ait. roots.

    PubMed

    Berghe, Wim Vanden; De Naeyer, An; Dijsselbloem, Nathalie; David, Jean-Pierre; De Keukeleire, Denis; Haegeman, Guy

    2011-09-01

    We have analyzed in molecular detail how kurarinone, a lavandulyl flavanone isolated from Sophora flavescens, suppresses nuclear factor-κB (NFκB)-driven interleukin-6 (IL6) expression and cancer cell growth. Interleukin-6 (IL6), involved in cancer-related inflammation, acts as an autocrine and paracrine growth factor, which promotes angiogenesis, metastasis, and subversion of immunity, and changes responsivity to hormones and to chemotherapeutics. Our results in estrogen-unresponsive fibroblasts, ribosomal S6 kinase 2 kinase (RSK2) knockout cells, and estrogen receptor (ER)-deficient breast tumor cells show that kurarinone can inhibit tumor cell proliferation and selectively block nuclear NFκB transactivation of specific target genes such as IL6, cyclin D1, SOD2 but not TNFAIP2. This occurs via attenuation of extracellular signal-regulated protein (ERK) and RSK2 kinase pathways and inhibition of S6 kinase ribosomal protein (S6RP) and histone H3 S10 phosphorylation. As constitutive NFκB and RSK2 activity are important hallmarks of human cancers, including hematopoietic malignancies and solid tumors, prenylated flavanones represent an attractive class of natural inhibitors of the ERK/RSK2 signaling pathway for cancer therapy.

  18. IL-3 Maintains Activation of the p90S6K/RPS6 Pathway and Increases Translation in Human Eosinophils.

    PubMed

    Esnault, Stephane; Kelly, Elizabeth A B; Shen, Zhong-Jian; Johansson, Mats W; Malter, James S; Jarjour, Nizar N

    2015-09-15

    IL-5 is a major therapeutic target to reduce eosinophilia. However, all of the eosinophil-activating cytokines, such as IL-5, IL-3, and GM-CSF, are typically present in atopic diseases, including allergic asthma. As a result of the functional redundancy of these three cytokines on eosinophils and the loss of IL-5R on airway eosinophils, it is important to take IL-3 and GM-CSF into account to efficiently reduce tissue eosinophil functions. Moreover, these three cytokines signal through a common β-chain receptor but yet differentially affect protein production in eosinophils. Notably, the increased ability of IL-3 to induce the production of proteins, such as semaphorin-7A, without affecting mRNA levels suggests a unique influence of IL-3 on translation. The purpose of this study was to identify the mechanisms by which IL-3 distinctively affects eosinophil function compared with IL-5 and GM-CSF, with a focus on protein translation. Peripheral blood eosinophils were used to study intracellular signaling and protein translation in cells activated with IL-3, GM-CSF, or IL-5. We establish that, unlike GM-CSF or IL-5, IL-3 triggers prolonged signaling through activation of ribosomal protein S6 (RPS6) and the upstream kinase 90-kDa ribosomal S6 kinase (p90S6K). Blockade of p90S6K activation inhibited phosphorylation of RPS6 and IL-3-enhanced semaphorin-7A translation. Furthermore, in an allergen-challenged environment, in vivo phosphorylation of RPS6 and p90S6K was enhanced in human airway compared with circulating eosinophils. Our findings provide new insights into the mechanisms underlying differential activation of eosinophils by IL-3, GM-CSF, and IL-5. These observations identify IL-3 and its downstream intracellular signals as novel targets that should be considered to modulate eosinophil functions. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. p70S6K1 (S6K1)-mediated Phosphorylation Regulates Phosphatidylinositol 4-Phosphate 5-Kinase Type I γ Degradation and Cell Invasion.

    PubMed

    Jafari, Naser; Zheng, Qiaodan; Li, Liqing; Li, Wei; Qi, Lei; Xiao, Jianyong; Gao, Tianyan; Huang, Cai

    2016-12-02

    Phosphatidylinositol 4-phosphate 5-kinase type I γ (PIPKIγ90) ubiquitination and subsequent degradation regulate focal adhesion assembly, cell migration, and invasion. However, it is unknown how upstream signals control PIPKIγ90 ubiquitination or degradation. Here we show that p70S6K1 (S6K1), a downstream target of mechanistic target of rapamycin (mTOR), phosphorylates PIPKIγ90 at Thr-553 and Ser-555 and that S6K1-mediated PIPKIγ90 phosphorylation is essential for cell migration and invasion. Moreover, PIPKIγ90 phosphorylation is required for the development of focal adhesions and invadopodia, key machineries for cell migration and invasion. Surprisingly, substitution of Thr-553 and Ser-555 with Ala promoted PIPKIγ90 ubiquitination but enhanced the stability of PIPKIγ90, and depletion of S6K1 also enhanced the stability of PIPKIγ90, indicating that PIPKIγ90 ubiquitination alone is insufficient for its degradation. These data suggest that S6K1-mediated PIPKIγ90 phosphorylation regulates cell migration and invasion by controlling PIPKIγ90 degradation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Differential activation of p70 and p85 S6 kinase isoforms during cardiac hypertrophy in the adult mammal.

    PubMed

    Laser, M; Kasi, V S; Hamawaki, M; Cooper, G; Kerr, C M; Kuppuswamy, D

    1998-09-18

    An adult feline right ventricular pressure overload (RVPO) model was used to examine the two S6 kinase (S6K) isoforms, p70(S6K) and p85(S6K), that are involved in translational and transcriptional activation. Biochemical and confocal microscopy analyses at the level of the cardiocyte revealed that p70(S6K) is present predominantly in the cytosol, substantially activated in 1-h RVPO (>12 fold), and phosphorylated in the pseudosubstrate domain at the Ser-411, Thr-421, and Ser-424 sites. p85(S6K), which was localized exclusively in the nucleus, showed activation subsequent to p70(S6K), with a sustained increase in phosphorylation for up to 48 h of RVPO at equivalent sites of p70(S6K), Thr-421 and Ser-424, but not at Ser-411. Neither isoform translocated between the cytosol and the nucleus. Further studies to determine potential upstream elements of S6K activation revealed: (i) similar time course of activation for protein kinase C isoforms (alpha, gamma, and epsilon) and c-Raf, (ii) absence of accompanying phosphatidylinositol 3-kinase activation, (iii) activation of c-Src subsequent to p70(S6K), and (iv) similar changes in adult cardiocytes after treatment with 12-O-tetradecanoylphorbol-13-acetate. Thus, these studies suggest that a protein kinase C-mediated pathway couples pressure overload to growth induction via differential activation of S6K isoforms in cardiac hypertrophy.

  1. Direct targeting of MEK1/2 and RSK2 by silybin induces cell cycle arrest and inhibits melanoma cell growth

    PubMed Central

    Lee, Mee-Hyun; Huang, Zunnan; Kim, Dong Joon; Kim, Sung-Hyun; Kim, Myoung Ok; Lee, Sung-Young; Xie, Hua; Park, Si Jun; Kim, Jae Young; Kundu, Joydeb Kumar; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2013-01-01

    Abnormal functioning of multiple gene products underlies the neoplastic transformation of cells. Thus, chemopreventive and/or chemotherapeutic agents with multigene targets hold promise in the development of effective anticancer drugs. Silybin, a component of milk thistle, is a natural anticancer agent. In the present study, we investigated the effect of silybin on melanoma cell growth and elucidated its molecular targets. Our study revealed that silybin attenuated the growth of melanoma xenograft tumors in nude mice. Silybin inhibited the kinase activity of mitogen-activated protein kinase kinase (MEK)-1/2 and ribosomal S6 kinase (RSK)-2 in melanoma cells. The direct binding of silybin with MEK1/2 and RSK2 was explored using a computational docking model. Treatment of melanoma cells with silybin attenuated the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and RSK2, which are regulated by the upstream kinases MEK1/2. The blockade of MEK1/2-ERK1/2-RSK2 signaling by silybin resulted in a reduced activation of nuclear factor-kappaB, activator protein-1 and signal transducer and activator of transcription-3, which are transcriptional regulators of a variety of proliferative genes in melanomas. Silybin, by blocking the activation of these transcription factors, induced cell cycle arrest at the G1 phase and inhibited melanoma cell growth in vitro and in vivo. Taken together, silybin suppresses melanoma growth by directly targeting MEK- and RSK-mediated signaling pathways. PMID:23447564

  2. Rapamycin modulation of p70 S6 kinase signaling inhibits Rift Valley fever virus pathogenesis.

    PubMed

    Bell, Todd M; Espina, Virginia; Senina, Svetlana; Woodson, Caitlin; Brahms, Ashwini; Carey, Brian; Lin, Shih-Chao; Lundberg, Lindsay; Pinkham, Chelsea; Baer, Alan; Mueller, Claudius; Chlipala, Elizabeth A; Sharman, Faye; de la Fuente, Cynthia; Liotta, Lance; Kehn-Hall, Kylene

    2017-07-01

    Despite over 60 years of research on antiviral drugs, very few are FDA approved to treat acute viral infections. Rift Valley fever virus (RVFV), an arthropod borne virus that causes hemorrhagic fever in severe cases, currently lacks effective treatments. Existing as obligate intracellular parasites, viruses have evolved to manipulate host cell signaling pathways to meet their replication needs. Specifically, translation modulation is often necessary for viruses to establish infection in their host. Here we demonstrated phosphorylation of p70 S6 kinase, S6 ribosomal protein, and eIF4G following RVFV infection in vitro through western blot analysis and in a mouse model of infection through reverse phase protein microarrays (RPPA). Inhibition of p70 S6 kinase through rapamycin treatment reduced viral titers in vitro and increased survival and mitigated clinical disease in RVFV challenged mice. Additionally, the phosphorylation of p70 S6 kinase was decreased following rapamycin treatment in vivo. Collectively these data demonstrate modulating p70 S6 kinase can be an effective antiviral strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Negative feedback via RSK modulates Erk-dependent progression from naïve pluripotency.

    PubMed

    Nett, Isabelle Re; Mulas, Carla; Gatto, Laurent; Lilley, Kathryn S; Smith, Austin

    2018-06-12

    Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling is implicated in initiation of embryonic stem (ES) cell differentiation. The pathway is subject to complex feedback regulation. Here, we examined the ERK-responsive phosphoproteome in ES cells and identified the negative regulator RSK1 as a prominent target. We used CRISPR/Cas9 to create combinatorial mutations in RSK family genes. Genotypes that included homozygous null mutations in Rps6ka1, encoding RSK1, resulted in elevated ERK phosphorylation. These RSK-depleted ES cells exhibit altered kinetics of transition into differentiation, with accelerated downregulation of naïve pluripotency factors, precocious expression of transitional epiblast markers and early onset of lineage specification. We further show that chemical inhibition of RSK increases ERK phosphorylation and expedites ES cell transition without compromising multilineage potential. These findings demonstrate that the ERK activation profile influences the dynamics of pluripotency progression and highlight the role of signalling feedback in temporal control of cell state transitions. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  4. Carbachol induces p70S6K1 activation through an ERK-dependent but Akt-independent pathway in human colonic epithelial cells.

    PubMed

    Jiang, Xiaohua; Sinnett-Smith, James; Rozengurt, Enrique

    2009-09-25

    Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser(473) induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr(389) in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells.

  5. Carbachol induces p70S6K1 activation through an ERK-dependent but Akt-independent pathway in human colonic epithelial cells

    PubMed Central

    Jiang, Xiaohua; Sinnett-Smith, James; Rozengurt, Enrique

    2009-01-01

    Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser473 induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr389 in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells. PMID:19615971

  6. IL-3 maintains activation of the P90S6K/RPS6 pathway and increases translation in human eosinophils1

    PubMed Central

    Esnault, Stephane; Kelly, Elizabeth A.B.; Shen, Zhong-Jian; Johansson, Mats W.; Malter, James S.; Jarjour, Nizar N.

    2015-01-01

    IL-5 is a major therapeutic target to reduce eosinophilia. However, all of the eosinophil-activating cytokines IL-5, IL-3, and GM-CSF are typically present in atopic diseases including allergic asthma. Due to the functional redundancy of these 3 cytokines on eosinophils and the loss of IL-5 receptor on airway eosinophils, it is important to take IL-3 and GM-CSF into account to efficiently reduce tissue eosinophil functions. Moreover, these 3 cytokines signal through a common β-chain receptor, and yet differentially affect protein production in eosinophils. Notably, the increased ability of IL-3 to induce production of proteins such as semaphorin-7A without affecting mRNA level suggests a unique influence by IL-3 on translation. The purpose of this study is to identify the mechanisms by which IL-3 distinctively affects eosinophil function compared to IL-5 and GM-CSF, with a focus on protein translation. Peripheral blood eosinophils were used to study intracellular signaling and protein translation in cells activated with IL-3, GM-CSF or IL-5. We establish that, unlike GM-CSF or IL-5, IL-3 triggers prolonged signaling through activation of ribosomal protein (RP) S6 and the upstream kinase, p90S6K. Blockade of p90S6K activation inhibited phosphorylation of RPS6 and IL-3-enhanced semaphorin-7A translation. Furthermore, in an allergen-challenged environment, in vivo phosphorylation of RPS6 and p90S6K was enhanced in human airway compared to circulating eosinophils. Our findings provide new insights into the mechanisms underlying differential activation of eosinophils by IL-3, GM-CSF, and IL-5. These observations place IL-3 and its downstream intracellular signals as novel targets that should be considered to modulate eosinophil functions. PMID:26276876

  7. PRAK, a novel protein kinase regulated by the p38 MAP kinase.

    PubMed Central

    New, L; Jiang, Y; Zhao, M; Liu, K; Zhu, W; Flood, L J; Kato, Y; Parry, G C; Han, J

    1998-01-01

    We have identified and cloned a novel serine/ threonine kinase, p38-regulated/activated protein kinase (PRAK). PRAK is a 471 amino acid protein with 20-30% sequence identity to the known MAP kinase-regulated protein kinases RSK1/2/3, MNK1/2 and MAPKAP-K2/3. PRAK was found to be expressed in all human tissues and cell lines examined. In HeLa cells, PRAK was activated in response to cellular stress and proinflammatory cytokines. PRAK activity was regulated by p38alpha and p38beta both in vitro and in vivo and Thr182 was shown to be the regulatory phosphorylation site. Activated PRAK in turn phosphorylated small heat shock protein 27 (HSP27) at the physiologically relevant sites. An in-gel kinase assay demonstrated that PRAK is a major stress-activated kinase that can phosphorylate small heat shock protein, suggesting a potential role for PRAK in mediating stress-induced HSP27 phosphorylation in vivo. PMID:9628874

  8. RSK2 represses HSF1 activation during heat shock

    PubMed Central

    Wang, Xiaozhe; Asea, Alexzander; Xie, Yue; Kabingu, Edith; Stevenson, Mary Ann; Calderwood, Stuart K.

    2000-01-01

    Heat shock transcription factor 1(HSF1) activation is a multistep process. The conversion of a latent cytoplasmic form to a nuclear, DNA binding state appears to be activated by nonsteroidal anti-inflammatory drugs. In previous studies, we showed that HSF 1 is phosphorylated by the protein kinase RSK2 in vitro and that this effect is inhibited by nonsteroidal anti-inflammatory drugs at the concentration that leads to the activation of HSF1 in vivo (Stevenson et al 1999). In the present study, using cells from a patient with Coffin-Lowry syndrome (deficient in RSK2), we demonstrate that RSK2 slightly represses activation of HSF1 in vivo at 37°C. In Coffin-Lowry syndrome cells, HSF1-HSE DNA binding activity after treatment with sodium salicylate was slightly higher than that in untreated cells, indicating that although RSK2 is involved in HSF1 regulation, it is not the unique protein kinase that suppresses HSF1-HSE binding activity at 37°C. However, heat shock treatment resulted in significantly higher HSF1-HSE binding activity in Coffin-Lowry syndrome cells as compared with normal controls, suggesting that RSK2 represses HSF1-HSE binding activity during heat shock. PMID:11189448

  9. RSK2 represses HSF1 activation during heat shock.

    PubMed

    Wang, X; Asea, A; Xie, Y; Kabingu, E; Stevenson, M A; Calderwood, S K

    2000-11-01

    Heat shock transcription factor 1(HSF1) activation is a multistep process. The conversion of a latent cytoplasmic form to a nuclear, DNA binding state appears to be activated by nonsteroidal anti-inflammatory drugs. In previous studies, we showed that HSF 1 is phosphorylated by the protein kinase RSK2 in vitro and that this effect is inhibited by nonsteroidal anti-inflammatory drugs at the concentration that leads to the activation of HSF1 in vivo (Stevenson et al 1999). In the present study, using cells from a patient with Coffin-Lowry syndrome (deficient in RSK2), we demonstrate that RSK2 slightly represses activation of HSF1 in vivo at 37 degrees C. In Coffin-Lowry syndrome cells, HSF1-HSE DNA binding activity after treatment with sodium salicylate was slightly higher than that in untreated cells, indicating that although RSK2 is involved in HSF1 regulation, it is not the unique protein kinase that suppresses HSF1-HSE binding activity at 37 degrees C. However, heat shock treatment resulted in significantly higher HSF1-HSE binding activity in Coffin-Lowry syndrome cells as compared with normal controls, suggesting that RSK2 represses HSF1-HSE binding activity during heat shock.

  10. EphA2 is a key effector of the MEK/ERK/RSK pathway regulating glioblastoma cell proliferation.

    PubMed

    Hamaoka, Yuho; Negishi, Manabu; Katoh, Hironori

    2016-08-01

    EphA2, a member of the Eph receptor tyrosine kinases, is frequently overexpressed in a variety of malignancies, including glioblastoma, and its expression is correlated with poor prognosis. EphA2 acts as a tumor promoter through a ligand ephrin-independent mechanism, which requires phosphorylation of EphA2 on serine 897 (S897), leading to increased cell migration and invasion. In this study, we show that ligand-independent EphA2 signaling occurs downstream of the MEK/ERK/RSK pathway and mediates epidermal growth factor (EGF)-induced cell proliferation in glioblastoma cells. Suppression of EphA2 expression by long-term exposure to ligand ephrinA1 or EphA2-targeted shRNA inhibited EGF-induced cell proliferation. Stimulation of the cells with EGF induced EphA2 S897 phosphorylation, which was suppressed by MEK and RSK inhibitors, but not by phosphatidylinositol 3-kinase (PI3K) and Akt inhibitors. The RSK inhibitor or RSK2-targeted shRNA also suppressed EGF-induced cell proliferation. Furthermore, overexpression of wild-type EphA2 promoted cell proliferation without EGF stimulation, whereas overexpression of EphA2-S897A mutant suppressed EGF- or RSK2-induced proliferation. Taken together, these results suggest that EphA2 is a key downstream target of the MEK/ERK/RSK signaling pathway in the regulation of glioblastoma cell proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Luteolin, a novel natural inhibitor of tumor progression locus 2 serine/threonine kinase, inhibits tumor necrosis factor-alpha-induced cyclooxygenase-2 expression in JB6 mouse epidermis cells.

    PubMed

    Kim, Jong-Eun; Son, Joe Eun; Jang, Young Jin; Lee, Dong Eun; Kang, Nam Joo; Jung, Sung Keun; Heo, Yong-Seok; Lee, Ki Won; Lee, Hyong Joo

    2011-09-01

    Targeting tumor necrosis factor (TNF)-α-mediated signal pathways may be a promising strategy for developing chemopreventive agents, because TNF-α-mediated cyclooxygenase (COX)-2 expression plays a key role in inflammation and carcinogenesis. Luteolin [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-chromenone] exerts anticarcinogenic effects, although little is known about the underlying molecular mechanisms and specific targets of this compound. In the present study, we found that luteolin inhibited TNF-α-induced COX-2 expression by down-regulating the transactivation of nuclear factor-κB and activator protein-1. Furthermore, luteolin inhibited TNF-α-induced phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase 1/ERK/p90(RSK), mitogen-activated protein kinase kinase 4/c-Jun N-terminal kinase/c-Jun, and Akt/p70(S6K). However, it had no effect on the phosphorylation of p38. These effects of luteolin on TNF-α-mediated signaling pathways and COX-2 expression are similar to those achieved by blocking tumor progression locus 2 serine/threonine kinase (TPL2) using pharmacologic inhibitors and small interfering RNAs. Luteolin inhibited TPL2 activity in vitro and in TPL2 immunoprecipitation kinase assays by binding directly in an ATP-competitive manner. Overall, these results indicate that luteolin exerts potent chemopreventive activities, which primarily target TPL2.

  12. Hsp90 Promotes Kinase Evolution

    PubMed Central

    Lachowiec, Jennifer; Lemus, Tzitziki; Borenstein, Elhanan; Queitsch, Christine

    2015-01-01

    Heat-shock protein 90 (Hsp90) promotes the maturation and stability of its client proteins, including many kinases. In doing so, Hsp90 may allow its clients to accumulate mutations as previously proposed by the capacitor hypothesis. If true, Hsp90 clients should show increased evolutionary rate compared with nonclients; however, other factors, such as gene expression and protein connectivity, may confound or obscure the chaperone’s putative contribution. Here, we compared the evolutionary rates of many Hsp90 clients and nonclients in the human protein kinase superfamily. We show that Hsp90 client status promotes evolutionary rate independently of, but in a small magnitude similar to that of gene expression and protein connectivity. Hsp90s effect on kinase evolutionary rate was detected across mammals, specifically relaxing purifying selection. Hsp90 clients also showed increased nucleotide diversity and harbored more damaging variation than nonclient kinases across humans. These results are consistent with the central argument of the capacitor hypothesis that interaction with the chaperone allows its clients to harbor genetic variation. Hsp90 client status is thought to be highly dynamic with as few as one amino acid change rendering a protein dependent on the chaperone. Contrary to this expectation, we found that across protein kinase phylogeny Hsp90 client status tends to be gained, maintained, and shared among closely related kinases. We also infer that the ancestral protein kinase was not an Hsp90 client. Taken together, our results suggest that Hsp90 played an important role in shaping the kinase superfamily. PMID:25246701

  13. RSK2 Signaling in Brain Habenula Contributes to Place Aversion Learning

    ERIC Educational Resources Information Center

    Darcq, Emmanuel; Koebel, Pascale; Del Boca, Carolina; Pannetier, Solange; Kirstetter, Anne-Sophie; Garnier, Jean-Marie; Hanauer, Andre; Befort, Katia; Kieffer, Brigitte L.

    2011-01-01

    RSK2 is a Ser/Thr kinase acting in the Ras/MAPK pathway. "Rsk2" gene deficiency leads to the Coffin-Lowry Syndrome, notably characterized by cognitive deficits. We found that "mrsk2" knockout mice are unable to associate an aversive stimulus with context in a lithium-induced conditioned place aversion task requiring both high-order cognition and…

  14. GAS6-expressing and self-sustaining cancer cells in 3D spheroids activate the PDK-RSK-mTOR pathway for survival and drug resistance.

    PubMed

    Baumann, Christine; Ullrich, Axel; Torka, Robert

    2017-10-01

    AXL receptor tyrosine kinase (RTK) inhibition presents a promising therapeutic strategy for aggressive tumor subtypes, as AXL signaling is upregulated in many cancers resistant to first-line treatments. Furthermore, the AXL ligand growth arrest-specific gene 6 (GAS6) has recently been linked to cancer drug resistance. Here, we established that challenging conditions, such as serum deprivation, divide AXL-overexpressing tumor cell lines into non-self-sustaining and self-sustaining subtypes in 3D spheroid culture. Self-sustaining cells are characterized by excessive GAS6 secretion and TAM-PDK-RSK-mTOR pathway activation. In 3D spheroid culture, the activation of the TAM-PDK-RSK-mTOR pathway proves crucial following treatment with AXL/MET inhibitor BMS777607, when the self-sustaining tumor cells react with TAM-RSK hyperactivation and enhanced SRC-AKT-mTOR signaling. Thus, bidirectional activated mTOR leads to enhanced proliferation and counteracts the drug effect. mTOR activation is accompanied by an enhanced AXL expression and hyperphosphorylation following 24 h of treatment with BMS777607. Therefore, we elucidate a double role of AXL that can be assigned to RSK-mTOR as well as SRC-AKT-mTOR pathway activation, specifically through AXL Y779 phosphorylation. This phosphosite fuels the resistance mechanism in 3D spheroids, alongside further SRC-dependent EGFR Y1173 and/or MET Y1349 phosphorylation which is defined by the cell-specific addiction. In conclusion, self-sustenance in cancer cells is based on a signaling synergy, individually balanced between GAS6 TAM-dependent PDK-RSK-mTOR survival pathway and the AXLY779/EGFR/MET-driven SRC-mTOR pathway. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  15. Immunosuppressive Yersinia Effector YopM Binds DEAD Box Helicase DDX3 to Control Ribosomal S6 Kinase in the Nucleus of Host Cells.

    PubMed

    Berneking, Laura; Schnapp, Marie; Rumm, Andreas; Trasak, Claudia; Ruckdeschel, Klaus; Alawi, Malik; Grundhoff, Adam; Kikhney, Alexey G; Koch-Nolte, Friedrich; Buck, Friedrich; Perbandt, Markus; Betzel, Christian; Svergun, Dmitri I; Hentschke, Moritz; Aepfelbacher, Martin

    2016-06-01

    Yersinia outer protein M (YopM) is a crucial immunosuppressive effector of the plaque agent Yersinia pestis and other pathogenic Yersinia species. YopM enters the nucleus of host cells but neither the mechanisms governing its nucleocytoplasmic shuttling nor its intranuclear activities are known. Here we identify the DEAD-box helicase 3 (DDX3) as a novel interaction partner of Y. enterocolitica YopM and present the three-dimensional structure of a YopM:DDX3 complex. Knockdown of DDX3 or inhibition of the exportin chromosomal maintenance 1 (CRM1) increased the nuclear level of YopM suggesting that YopM exploits DDX3 to exit the nucleus via the CRM1 export pathway. Increased nuclear YopM levels caused enhanced phosphorylation of Ribosomal S6 Kinase 1 (RSK1) in the nucleus. In Y. enterocolitica infected primary human macrophages YopM increased the level of Interleukin-10 (IL-10) mRNA and this effect required interaction of YopM with RSK and was enhanced by blocking YopM's nuclear export. We propose that the DDX3/CRM1 mediated nucleocytoplasmic shuttling of YopM determines the extent of phosphorylation of RSK in the nucleus to control transcription of immunosuppressive cytokines.

  16. Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2.

    PubMed

    Zhou, Yue; Yamada, Naoki; Tanaka, Tomohiro; Hori, Takashi; Yokoyama, Satoru; Hayakawa, Yoshihiro; Yano, Seiji; Fukuoka, Junya; Koizumi, Keiichi; Saiki, Ikuo; Sakurai, Hiroaki

    2015-07-09

    Crosstalk between inflammatory signalling pathways and receptor tyrosine kinases has been revealed as an indicator of cancer malignant progression. In the present study, we focus on EphA2 receptor tyrosine kinase, which is overexpressed in many human cancers. It has been reported that ligand-independent phosphorylation of EphA2 at Ser-897 is induced by Akt. We show that inflammatory cytokines promote RSK-, not Akt-, dependent phosphorylation of EphA2 at Ser-897. In addition, the RSK-EphA2 signalling pathway controls cell migration and invasion of metastatic breast cancer cells. Moreover, Ser-897-phosphorylated EphA2 co-localizes with phosphorylated active form of RSK in various human tumour specimens, and this double positivity is related to poor survival in lung cancer patients, especially those with a smoking history. Taken together, these results indicate that the phosphorylation of EphA2 at Ser-897 is controlled by RSK and the RSK-EphA2 axis might contribute to cell motility and promote tumour malignant progression.

  17. c-Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells.

    PubMed

    Iijima, Yoshihiro; Laser, Martin; Shiraishi, Hirokazu; Willey, Christopher D; Sundaravadivel, Balasubramanian; Xu, Lin; McDermott, Paul J; Kuppuswamy, Dhandapani

    2002-06-21

    p70S6 kinase (S6K1) plays a pivotal role in hypertrophic cardiac growth via ribosomal biogenesis. In pressure-overloaded myocardium, we show S6K1 activation accompanied by activation of protein kinase C (PKC), c-Raf, and mitogen-activated protein kinases (MAPKs). To explore the importance of the c-Raf/MAPK kinase (MEK)/MAPK pathway, we stimulated adult feline cardiomyocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA), insulin, or forskolin to activate PKC, phosphatidylinositol-3-OH kinase, or protein kinase A (PKA), respectively. These treatments resulted in S6K1 activation with Thr-389 phosphorylation as well as mammalian target of rapamycin (mTOR) and S6 protein phosphorylation. Thr-421/Ser-424 phosphorylation of S6K1 was observed predominantly in TPA-treated cells. Dominant negative c-Raf expression or a MEK1/2 inhibitor (U0126) treatment showed a profound blocking effect only on the TPA-stimulated phosphorylation of S6K1 and mTOR. Whereas p38 MAPK inhibitors exhibited only partial effect, MAPK-phosphatase-3 expression significantly blocked the TPA-stimulated S6K1 and mTOR phosphorylation. Inhibition of mTOR with rapamycin blocked the Thr-389 but not the Thr-421/Ser-424 phosphorylation of S6K1. Therefore, during PKC activation, the c-Raf/MEK/extracellular signal-regulated kinase-1/2 (ERK1/2) pathway mediates both the Thr-421/Ser-424 and the Thr-389 phosphorylation in an mTOR-independent and -dependent manner, respectively. Together, our in vivo and in vitro studies indicate that the PKC/c-Raf/MEK/ERK pathway plays a major role in the S6K1 activation in hypertrophic cardiac growth.

  18. RSK2 activity mediates glioblastoma invasiveness and is a potential target for new therapeutics.

    PubMed

    Sulzmaier, Florian J; Young-Robbins, Shirley; Jiang, Pengfei; Geerts, Dirk; Prechtl, Amanda M; Matter, Michelle L; Kesari, Santosh; Ramos, Joe W

    2016-11-29

    In glioblastoma (GBM), infiltration of primary tumor cells into the normal tissue and dispersal throughout the brain is a central challenge to successful treatment that remains unmet. Indeed, patients respond poorly to the current therapies of tumor resection followed by chemotherapy with radiotherapy and have only a 16-month median survival. It is therefore imperative to develop novel therapies. RSK2 is a kinase that regulates proliferation and adhesion and can promote metastasis. We demonstrate that active RSK2 regulates GBM cell adhesion and is essential for cell motility and invasion of patient-derived GBM neurospheres. RSK2 control of adhesion and migration is mediated in part by its effects on integrin-Filamin A complexes. Importantly, inhibition of RSK2 by either RSK inhibitors or shRNA silencing impairs invasion and combining RSK2 inhibitors with temozolomide improves efficacy in vitro. In agreement with the in vitro data, using public datasets, we find that RSK2 is significantly upregulated in vivo in human GBM patient tumors, and that high RSK2 expression significantly correlates with advanced tumor stage and poor patient survival. Together, our data provide strong evidence that RSK inhibitors could enhance the effectiveness of existing GBM treatment, and support RSK2 targeting as a promising approach for novel GBM therapy.

  19. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases

    PubMed Central

    Cargnello, Marie; Roux, Philippe P.

    2011-01-01

    Summary: The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries. PMID:21372320

  20. Differential 14-3-3 affinity capture reveals new downstream targets of phosphatidylinositol 3-kinase signaling.

    PubMed

    Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M; Morrice, Nick A; MacKintosh, Carol

    2009-11-01

    We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d(0)/d(4)) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d(0)/d(4) values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d(0)/d(4) scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser(19) of ZNRF2 (RTRAYpS(19)GS), phospho-Ser(90) of SASH1 (RKRRVpS(90)QD), and phospho- Ser(493) of lipolysis-stimulated lipoprotein receptor (RPRARpS(493)LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.

  1. Cholecystokinin (CCK) stimulates S6 phosphorylation and induced activation of S6 protein kinase in rat pancreatic acini

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, C.; Okabayashi, Y.; Williams, J.

    CCK and insulin stimulate pancreatic protein synthesis at a post transcriptional step. To better understand this regulation the authors evaluated the phosphorylation state of ribosomal protein S6 and the presence of a specific S6 protein kinase in pancreatic acini from diabetic rats. Both CCK and insulin increased S6 phosphorylation by up to 400% in intact TSP-labelled acini. The phorbol ester 12-0-tetradecanoylphorbol 13-acetate also stimulated both protein synthesis and S6 phosphorlyation suggesting a role for protein kinase C in mediating the effect of CCK. By contrast, the CaS ionophore ionomycin had no effect on either parameter. Recently, insulin has been shownmore » to activate a unique S6 kinase in various cells. To test for its presence, cytosolic extracts were prepared from acini stimulated with CCK and insulin by homogenization in US -glycerophosphate buffer and assayed for the kinase using el-TSP ATP and rat pancreatic ribosomes followed by SDS-polyacrylamide gel electrophoresis. CCK and insulin both increased S6 kinase activity which required neither CaS or phospholipid. The dose response for CCk was similar to S6 phosphorlyation in the intact acini. TPA did not stimulate the S6 kinase. Thus, CCK may induce S6 phosphorylation both via C kinase and by activation of a unique S6 kinase.« less

  2. Differential 14-3-3 Affinity Capture Reveals New Downstream Targets of Phosphatidylinositol 3-Kinase Signaling*

    PubMed Central

    Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M.; Morrice, Nick A.; MacKintosh, Carol

    2009-01-01

    We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d0/d4) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d0/d4 values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d0/d4 scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser19 of ZNRF2 (RTRAYpS19GS), phospho-Ser90 of SASH1 (RKRRVpS90QD), and phospho- Ser493 of lipolysis-stimulated lipoprotein receptor (RPRARpS493LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways. PMID:19648646

  3. Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2

    PubMed Central

    Zhou, Yue; Yamada, Naoki; Tanaka, Tomohiro; Hori, Takashi; Yokoyama, Satoru; Hayakawa, Yoshihiro; Yano, Seiji; Fukuoka, Junya; Koizumi, Keiichi; Saiki, Ikuo; Sakurai, Hiroaki

    2015-01-01

    Crosstalk between inflammatory signalling pathways and receptor tyrosine kinases has been revealed as an indicator of cancer malignant progression. In the present study, we focus on EphA2 receptor tyrosine kinase, which is overexpressed in many human cancers. It has been reported that ligand-independent phosphorylation of EphA2 at Ser-897 is induced by Akt. We show that inflammatory cytokines promote RSK-, not Akt-, dependent phosphorylation of EphA2 at Ser-897. In addition, the RSK–EphA2 signalling pathway controls cell migration and invasion of metastatic breast cancer cells. Moreover, Ser-897-phosphorylated EphA2 co-localizes with phosphorylated active form of RSK in various human tumour specimens, and this double positivity is related to poor survival in lung cancer patients, especially those with a smoking history. Taken together, these results indicate that the phosphorylation of EphA2 at Ser-897 is controlled by RSK and the RSK–EphA2 axis might contribute to cell motility and promote tumour malignant progression. PMID:26158630

  4. Phospholipase Cϵ Activates Nuclear Factor-κB Signaling by Causing Cytoplasmic Localization of Ribosomal S6 Kinase and Facilitating Its Phosphorylation of Inhibitor κB in Colon Epithelial Cells*

    PubMed Central

    Wakita, Masahiro; Edamatsu, Hironori; Li, Mingzhen; Emi, Aki; Kitazawa, Sohei; Kataoka, Tohru

    2016-01-01

    Phospholipase Cϵ (PLCϵ), an effector of Ras and Rap small GTPases, plays a crucial role in inflammation by augmenting proinflammatory cytokine expression. This proinflammatory function of PLCϵ is implicated in its facilitative role in tumor promotion and progression during skin and colorectal carcinogenesis, although their direct link remains to be established. Moreover, the molecular mechanism underlying these functions of PLCϵ remains unknown except that PKD works downstream of PLCϵ. Here we show by employing the colitis-induced colorectal carcinogenesis model, where ApcMin/+ mice are administered with dextran sulfate sodium, that PLCϵ knock-out alleviates the colitis and suppresses the following tumorigenesis concomitant with marked attenuation of proinflammatory cytokine expression. In human colon epithelial Caco2 cells, TNF-α induces sustained expression of proinflammatory molecules and sustained activation of nuclear factor-κB (NF-κB) and PKD, the late phases of which are suppressed by not only siRNA-mediated PLCϵ knockdown but also treatment with a lysophosphatidic acid (LPA) receptor antagonist. Also, LPA stimulation induces these events in an early time course, suggesting that LPA mediates TNF-α signaling in an autocrine manner. Moreover, PLCϵ knockdown results in inhibition of phosphorylation of IκB by ribosomal S6 kinase (RSK) but not by IκB kinases. Subcellular fractionation suggests that enhanced phosphorylation of a scaffolding protein, PEA15 (phosphoprotein enriched in astrocytes 15), downstream of the PLCϵ-PKD axis causes sustained cytoplasmic localization of phosphorylated RSK, thereby facilitating IκB phosphorylation in the cytoplasm. These results suggest the crucial role of the TNF-α-LPA-LPA receptor-PLCϵ-PKD-PEA15-RSK-IκB-NF-κB pathway in facilitating inflammation and inflammation-associated carcinogenesis in the colon. PMID:27053111

  5. By activating Fas/ceramide synthase 6/p38 kinase in lipid rafts, Stichoposide D inhibits growth of leukemia xenografts

    PubMed Central

    Yun, Seong-Hoon; Park, Eun-Seon; Shin, Sung-Won; Ju, Mi-Ha; Han, Jin-Yeong; Jeong, Jin-Sook; Kim, Sung-Hyun; Stonik, Valentin A.; Kwak, Jong-Young; Park, Joo-In

    2015-01-01

    Stichoposide D (STD) is a marine triterpene glycoside isolated from sea cucumbers. We examined the molecular mechanisms underlying the antitumor activity of STD in human leukemia cells. The role of Fas (CD95), ceramide synthase 6 (CerS6) and p38 kinase during STD-induced apoptosis was examined in human leukemia cells. In addition, the antitumor effects of STD in K562 and HL-60 leukemia xenograft models were investigated. We found that STD induces Fas translocation to lipid rafts, and thus mediates cell apoptosis. We also observed the activation of CerS6 and p38 kinase during STD-induced apoptosis. The use of methyl-β-cyclodextrin and nystatin to disrupt lipid rafts prevents the clustering of Fas and the activation of CerS6 and p38 kinase, and also inhibits STD-induced apoptosis. Specific inhibition by Fas, CerS6, and p38 kinase siRNA transfection partially blocked STD-induced apoptosis. In addition, STD has antitumor activity through the activation of CerS6 and p38 kinase without displaying any toxicity in HL-60 and K562 xenograft models. We observed that the anti-tumor effect of STD is partially prevented in CerS6 shRNA-silenced xenograft models. We first report that Fas/CerS6/p38 kinase activation in lipid rafts by STD is involved in its anti-leukemic activity. We also established that STD is able to enhance the chemosensitivity of K562 cells to etoposide or Ara-C. These data suggest that STD may be used alone or in combination with other chemotherapeutic agents to treat leukemia. PMID:26318294

  6. Male hormones activate EphA2 to facilitate Kaposi’s sarcoma-associated herpesvirus infection: Implications for gender disparity in Kaposi’s sarcoma

    PubMed Central

    Deng, Zhaohui; Liang, Deguang; Zhou, Xin; Sun, Rui

    2017-01-01

    There is increasing consensus that males are more vulnerable than females to infection by several pathogens. However, the underlying mechanism needs further investigation. Here, it was showed that knockdown of androgen receptor (AR) expression or pre-treatment with 5α-dihydrotestosterone, the AR agonist, led to a considerably dysregulated Kaposi’s sarcoma-associated herpesvirus (KSHV) infection. In endothelial cells, membrane-localized AR promoted the endocytosis and nuclear trafficking of KSHV. The AR interacted with ephrin receptor A2 (EphA2) and increased its phosphorylation at residue Ser897, which was specifically upregulated upon KSHV infection. This phosphorylation resulted from the AR-mediated recruitment of Src, which resulted in the activation of p90 ribosomal S6 kinase 1 (RSK1), which directly phosphorylates EphA2 at Ser897. Finally, the EphA2-mediated entry of KSHV was abolished in a Ser897Asn EphA2 mutant. Taken together, membrane-localized AR was identified as a KSHV entry factor that cooperatively activates Src/RSK1/EphA2 signaling, which subsequently promotes KSHV infection of both endothelial and epithelial cells. PMID:28957431

  7. The historical Coffin-Lowry syndrome family revisited: identification of two novel mutations of RPS6KA3 in three male patients.

    PubMed

    Nishimoto, Hiromi Koso; Ha, Kyungsoo; Jones, Julie R; Dwivedi, Alka; Cho, Hyun-Min; Layman, Lawrence C; Kim, Hyung-Goo

    2014-09-01

    Coffin-Lowry syndrome (CLS) is a rare X-linked dominant disorder characterized by intellectual disability, craniofacial abnormalities, short stature, tapering fingers, hypotonia, and skeletal malformations. CLS is caused by mutations in the Ribosomal Protein S6 Kinase, 90 kDa, Polypeptide 3 (RPS6KA3) gene located at Xp22.12, which encodes Ribosomal S6 Kinase 2 (RSK2). Here we analyzed RPS6KA3 in three unrelated CLS patients including one from the historical Coffin-Lowry syndrome family and found two novel mutations. To date, over 140 mutations in RPS6KA3 have been reported. However, the etiology of the very first familial case, which was described in 1971 by Lowry with detailed phenotype and coined the term CLS, has remained unknown. More than 40 years after the report, we succeeded in identifying deposited fibroblast cells from one patient of this historic family and found a novel heterozygous 216 bp in-frame deletion, encompassing exons 15 and 16 of RPS6KA3. Drop episodes in CLS patients were reported to be associated with truncating mutations deleting the C-terminal kinase domain (KD), and only one missense mutation and one single basepair duplication involving the C-terminal KD of RSK2 in the patients with drop episode have been reported thus far. Here we report the first in-frame deletion in C-terminal KD of RPS6KA3 in a CLS patient with drop episodes. © 2014 Wiley Periodicals, Inc.

  8. ERK1/2 and p38 MAP kinases control prion protein fragment 90-231-induced astrocyte proliferation and microglia activation.

    PubMed

    Thellung, Stefano; Villa, Valentina; Corsaro, Alessandro; Pellistri, Francesca; Venezia, Valentina; Russo, Claudio; Aceto, Antonio; Robello, Mauro; Florio, Tullio

    2007-11-01

    Astrogliosis and microglial activation are a common feature during prion diseases, causing the release of chemoattractant and proinflammatory factors as well as reactive free radicals, involved in neuronal degeneration. The recombinant protease-resistant domain of the prion protein (PrP90-231) displays in vitro neurotoxic properties when refolded in a beta-sheet-rich conformer. Here, we report that PrP90-231 induces the secretion of several cytokines, chemokines, and nitric oxide (NO) release, in both type I astrocytes and microglial cells. PrP90-231 elicited in both cell types the activation of ERK1/2 MAP kinase that displays, in astrocytes, a rapid kinetics and a proliferative response. Conversely, in microglia, PrP90-231-dependent MAP kinase activation was delayed and long lasting, inducing functional activation and growth arrest. In microglial cells, NO release, dependent on the expression of the inducible NO synthase (iNOS), and the secretion of the chemokine CCL5 were Ca(2+) dependent and under the control of the MAP kinases ERK1/2 and p38: ERK1/2 inhibition, using PD98059, reduced iNOS expression, while p38 blockade by PD169316 inhibited CCL5 release. In summary, we demonstrate that glial cells are activated by extracellular misfolded PrP90-231 resulting in a proliferative/secretive response of astrocytes and functional activation of microglia, both dependent on MAP kinase activation. In particular, in microglia, PrP90-231 activated a complex signalling cascade involved in the regulation of NO and chemokine release. These data argue in favor of a causal role for misfolded prion protein in sustaining glial activation and, possibly, glia-mediated neuronal death.

  9. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy

    PubMed Central

    Armour, Sean M.; Baur, Joseph A.; Hsieh, Sherry N.; Land-Bracha, Abigail; Thomas, Sheila M.; Sinclair, David A.

    2009-01-01

    Resveratrol is a plant-derived polyphenol that promotes health and disease resistance in rodent models, and extends lifespan in lower organisms. A major challenge is to understand the biological processes and molecular pathways by which resveratrol induces these beneficial effects. Autophagy is a critical process by which cells turn over damaged components and maintain bioenergetic requirements. Disruption of the normal balance between pro- and anti-autophagic signals is linked to cancer, liver disease, and neurodegenerative disorders. Here we show that resveratrol attenuates autophagy in response to nutrient limitation or rapamycin in multiple cell lines through a pathway independent of a known target, SIRT1. In a large-scalein vitro kinase screen we identified p70 S6 kinase (S6K1) as a target of resveratrol. Blocking S6K1 activity by expression of a dominant-negative mutant or RNA interference is sufficient to disrupt autophagy to a similar extent as resveratrol. Furthermore, co-administration of resveratrol with S6K1 knockdown does not produce an additive effect. These data indicate that S6K1 is important for the full induction of autophagy in mammals and raise the possibility that some of the beneficial effects of resveratrol are due to modulation of S6K1 activity. PMID:20157535

  10. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy.

    PubMed

    Armour, Sean M; Baur, Joseph A; Hsieh, Sherry N; Land-Bracha, Abigail; Thomas, Sheila M; Sinclair, David A

    2009-06-03

    Resveratrol is a plant-derived polyphenol that promotes health and disease resistance in rodent models, and extends lifespan in lower organisms. A major challenge is to understand the biological processes and molecular pathways by which resveratrol induces these beneficial effects. Autophagy is a critical process by which cells turn over damaged components and maintain bioenergetic requirements. Disruption of the normal balance between pro- and anti-autophagic signals is linked to cancer, liver disease, and neurodegenerative disorders. Here we show that resveratrol attenuates autophagy in response to nutrient limitation or rapamycin in multiple cell lines through a pathway independent of a known target, SIRT1. In a large-scalein vitro kinase screen we identified p70 S6 kinase (S6K1) as a target of resveratrol. Blocking S6K1 activity by expression of a dominant-negative mutant or RNA interference is sufficient to disrupt autophagy to a similar extent as resveratrol. Furthermore, co-administration of resveratrol with S6K1 knockdown does not produce an additive effect. These data indicate that S6K1 is important for the full induction of autophagy in mammals and raise the possibility that some of the beneficial effects of resveratrol are due to modulation of S6K1 activity.

  11. AT13148, a first-in-class multi-AGC kinase inhibitor, potently inhibits gastric cancer cells both in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Yu; Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008; Niu, Jianhua

    The AGC kinase family is important cell proliferation and survival. Dysregulation of this family contributes to gastric cancer progression. Here, we evaluated the potential activity of AT13148, a first-in-class multi-AGC kinase inhibitor, against gastric cancer cells. Our results showed that AT13148 exerted potent cytotoxic and anti-proliferative activities against a panel human gastric cancer cell lines (HGC-27, AGS, SNU-601, N87 and MKN-28), possibly via inducing cancer cell apoptotic death. Apoptosis inhibition by the Caspase blockers dramatically attenuated AT13148-caused cytotoxicity against gastric cancer cells. Intriguingly, same AT13148 treatment was not cytotoxic/pro-apoptotic to the non-cancerous human gastric epithelial GEC-1 cells. At the signaling level,more » AT13148 treatment in gastric cancer cells dramatically suppressed activation of multiple AGC kinases, including Akt (at p-Thr-308), p70S6 kinase (p70S6K), glycogen synthase kinase 3β (GSK-3β) and p90 ribosomal S6 kinase (RSK). Our in vivo studies demonstrated that daily oral gavage of AT13148 at well-tolerated doses significantly inhibited HGC27 xenograft tumor growth in nude mice. AGC activity was also dramatically decreased in AT13148-administrated HGC27 tumors. Therefore, targeting AGC kinases by AT13148 demonstrates superior anti-gastric cancer activity both in vitro and in vivo. The preclinical results of this study support the progression of this molecule into future evaluation as a valuable anti-gastric cancer candidate. - Highlights: • AT13148 is cytotoxic and anti-proliferative to human gastric cancer cells. • AT13148 induces gastric cancer cell apoptotic death, inhibited by Caspase inhibitors. • AT13148 inactivates multiple AGC kinases in human gastric cancer cells. • AT13148 oral administration suppresses HGC27 xenograft growth in nude mice. • AT13148 oral administration inhibits multiple AGC kinases in HGC27 xenograft tumors.« less

  12. Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice.

    PubMed

    Welle, Stephen; Burgess, Kerri; Mehta, Sangeeta

    2009-03-01

    Knocking out myostatin activity during development increases the rate of muscle protein synthesis. The present study was done to determine whether postdevelopmental loss of myostatin activity stimulates myofibrillar protein synthesis and the phosphorylation of some of the proteins involved in regulation of protein synthesis rate. Myostatin activity was inhibited for 4 days, in 4- to 5-mo-old male mice, with injections of an anti-myostatin antibody (JA16). The mean myofibrillar synthesis rate increased 19% (P < 0.01) relative to the mean rate in saline-treated mice, as determined by incorporation of deuterium-labeled phenylalanine. JA16 increased phosphorylation of p70 S6 kinase (S6K) and ribosomal protein S6 (rpS6) 1.9-fold (P < 0.05). It did not affect phosphorylation of eukaryotic initiation factor 4E-binding protein-1 or Akt. Microarrays and real-time PCR analyses indicated that JA16 administration did not selectively enrich levels of mRNAs encoding myofibrillar proteins, ribosomal proteins, or translation initiation and elongation factors. Rapamycin treatment did not affect the rate of myofibrillar protein synthesis whether or not the mice received JA16 injections, although it eliminated the phosphorylation of S6K and rpS6. We conclude that the normal level of myostatin activity in mature muscle is sufficient to inhibit myofibrillar synthesis rate and phosphorylation of S6K and rpS6. Reversal of the inhibition of myofibrillar synthesis with an anti-myostatin antibody is not dependent on mTOR activation.

  13. Activation of p70S6 Kinase-1 in Mesenchymal Stem Cells Is Essential to Lung Tissue Repair.

    PubMed

    Takeda, Katsuyuki; Ning, Fangkun; Domenico, Joanne; Okamoto, Masakazu; Ashino, Shigeru; Kim, Sang-Ha; Jeong, Yi Yeong; Shiraishi, Yoshiki; Terada, Naohiro; Sutherland, Everett Rand; Gelfand, Erwin W

    2018-05-05

    All-trans retinoic acid (ATRA) or mesenchymal stem cells (MSCs) have been shown to promote lung tissue regeneration in animal models of emphysema. However, the reparative effects of the combination of the two and the role of p70S6 kinase-1 (p70S6k1) activation in the repair process have not been defined. Twenty-one days after intratracheal instillation of porcine pancreatic elastase (PPE), MSC and/or 10 days of ATRA treatment was initiated. Thirty-two days later, static lung compliance (Cst), mean linear intercepts (MLIs), and alveolar surface area (S) were measured. After PPE, mice demonstrated increased values of Cst and MLI, and decreased S values. Both ATRA and MSC transfer were individually effective in improving these outcomes while the combination of ATRA and MSCs was even more effective. The combination of p70S6k1 -/- MSCs transfer followed by ATRA demonstrated only modest effects, and rapamycin treatment of recipients with wild-type (WT) MSCs and ATRA failed to show any effect. However, transfer of p70S6k1 over-expressing-MSCs together with ATRA resulted in further improvements over those seen following WT MSCs together with ATRA. ATRA activated p70S6k1 in MSCs in vitro, which was completely inhibited by rapamycin. Tracking of transferred MSCs following ATRA revealed enhanced accumulation and extended survival of MSCs in recipient lungs following PPE but not vehicle instillation. These data suggest that in MSCs, p70S6k1 activation plays a critical role in ATRA-enhanced lung tissue repair, mediated in part by prolonged survival of transferred MSCs. p70S6k1-activated MSCs may represent a novel therapeutic approach to reverse the lung damage seen in emphysema. Stem Cells Translational Medicine 2018. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  14. Characterization of a phorbol ester-stimulated S6 kinase from MDCK renal epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, K.E.; Krebs, E.G.

    Increased phosphorylation of S6, a 40S ribosomal subunit protein, is observed in mammalian cells in response to growth factors and phorbol esters. The goal of this study was to identify the S6 kinase that is stimulated by phorbol ester treatment of MDCK cells. MDCK clone D1 cells express high levels of protein kinase C(PKC). PKC and S6 kinase activities were measured following DEAE-Sephacel fractionation of cytosol; this procedure separated the two kinase activities. When confluent MDCK-D1 cells were exposed to 100 nM phorbol 12-myristate 13-acetate (PMA), 95% of the total cellular PKC activity became associated with the particulate fraction withinmore » 1 hour. Cytosolic S6 kinase activity was maximal by 1 hour and then declined thereafter, preceding any detectable loss of total cellular PKC. The PMA-responsive S6 kinase was partially purified from MDCK-D1 cytosol by consecutive steps of DEAE-Sephacel, ammonium sulfate precipitation, Ultrogel AcA 34, heparin-agarose, and Ultrogel AcA 34. The partially-purified enzyme had an apparent molecular size of approximately 80 kDa. In addition to S6, the enzyme phosphorylated synthetic peptides based on the carboxyl terminal sequence of S6. S6 kinase activity utilized ATP but not GTP, and was inhibited by heparin, NaCl, and ..beta..-glycerophosphate. In conclusion, a phorbol ester-stimulated S6 kinase has been partially purified from an epithelial cell line. This kinase is distinct from PKC.« less

  15. Arrestin-dependent angiotensin AT1 receptor signaling regulates Akt and mTor-mediated protein synthesis.

    PubMed

    Kendall, Ryan T; Lee, Mi-Hye; Pleasant, Dorea L; Robinson, Katherine; Kuppuswamy, Dhandapani; McDermott, Paul J; Luttrell, Louis M

    2014-09-19

    Control of protein synthesis is critical to both cell growth and proliferation. The mammalian target of rapamycin (mTOR) integrates upstream growth, proliferation, and survival signals, including those transmitted via ERK1/2 and Akt, to regulate the rate of protein translation. The angiotensin AT1 receptor has been shown to activate both ERK1/2 and Akt in arrestin-based signalsomes. Here, we examine the role of arrestin-dependent regulation of ERK1/2 and Akt in the stimulation of mTOR-dependent protein translation by the AT1 receptor using HEK293 and primary vascular smooth muscle cell models. Nascent protein synthesis stimulated by both the canonical AT1 receptor agonist angiotensin II (AngII), and the arrestin pathway-selective agonist [Sar(1)-Ile(4)-Ile(8)]AngII (SII), is blocked by shRNA silencing of βarrestin1/2 or pharmacological inhibition of Akt, ERK1/2, or mTORC1. In HEK293 cells, SII activates a discrete arrestin-bound pool of Akt and promotes Akt-dependent phosphorylation of mTOR and its downstream effector p70/p85 ribosomal S6 kinase (p70/85S6K). In parallel, SII-activated ERK1/2 helps promote mTOR and p70/85S6K phosphorylation, and is required for phosphorylation of the known ERK1/2 substrate p90 ribosomal S6 kinase (p90RSK). Thus, arrestins coordinate AT1 receptor regulation of ERK1/2 and Akt activity and stimulate protein translation via both Akt-mTOR-p70/85S6K and ERK1/2-p90RSK pathways. These results suggest that in vivo, arrestin pathway-selective AT1 receptor agonists may promote cell growth or hypertrophy through arrestin-mediated mechanisms despite their antagonism of G protein signaling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. S6 Kinase Inhibits Intrinsic Axon Regeneration Capacity via AMP Kinase in Caenorhabditis elegans

    PubMed Central

    Hubert, Thomas; Wu, Zilu; Chisholm, Andrew D.

    2014-01-01

    The ability of axons to regrow after injury is determined by the complex interplay of intrinsic growth programs and external cues. In Caenorhabditis elegans mechanosensory neuron, axons exhibit robust regenerative regrowth following laser axotomy. By surveying conserved metabolic signaling pathways, we have identified the ribosomal S6 kinase RSKS-1 as a new cell-autonomous inhibitor of axon regeneration. RSKS-1 is not required for axonal development but inhibits axon regrowth after injury in multiple neuron types. Loss of function in rsks-1 results in more rapid growth cone formation after injury and accelerates subsequent axon extension. The enhanced regrowth of rsks-1 mutants is partly dependent on the DLK-1 MAPK cascade. An essential output of RSKS-1 in axon regrowth is the metabolic sensor AMP kinase, AAK-2. We further show that the antidiabetic drug phenformin, which activates AMP kinase, can promote axon regrowth. Our data reveal a new function for an S6 kinase acting through an AMP kinase in regenerative growth of injured axons. PMID:24431434

  17. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate, pro-motile/invasive gene program and phenotype in epithelial cells

    PubMed Central

    Doehn, Ulrik; Hauge, Camilla; Frank, Scott R.; Jensen, Claus J.; Duda, Katarzyna; Nielsen, Jakob V.; Cohen, Michael S.; Johansen, Jens V.; Winther, Benny R.; Lund, Leif R.; Winther, Ole; Taunton, Jack; Hansen, Steen H.; Frödin, Morten

    2013-01-01

    SUMMARY The RAS-stimulated RAF-MEK-ERK pathway confers epithelial cells with critical motile and invasive capacities during embryonic development, tissue regeneration and carcinoma progression. Yet many mechanisms by which ERK exerts this control remain elusive. Here, we demonstrate that the ERK-activated kinase RSK is necessary to induce motility and invasive capacities in non-transformed epithelial cells and carcinoma cells. RSK is moreover sufficient to induce certain motile responses. Expression profiling analysis revealed that a primary role of RSK is to induce transcription of potent pro-motile/invasive gene program by FRA1-dependent and independent mechanisms. Strikingly, the program enables RSK to coordinately modulate the extracellular environment, the intracellular motility apparatus, and receptors mediating communication between these compartments to stimulate motility and invasion. These findings uncover a general mechanism whereby the RAS-ERK pathway controls epithelial cell motility by identifying RSK as a key effector, from which emanates multiple highly coordinate transcription-dependent mechanisms for stimulation of motility and invasive properties. PMID:19716794

  18. Influence of supplementation with branched-chain amino acids in combination with resistance exercise on p70S6 kinase phosphorylation in resting and exercising human skeletal muscle.

    PubMed

    Apró, W; Blomstrand, E

    2010-11-01

    Skeletal muscle growth is thought to be regulated by the mammalian target of rapamycin (mTOR) pathway, which can be activated by resistance exercise and branched-chain amino acids (BCAA). The major aim of the present study was to distinguish between the influence of resistance exercise and BCAA on key enzymes considered to be involved in the regulation of protein synthesis, including p70(S6) kinase (p70(S6k)). Nine healthy subjects (four men and five women) performed unilateral resistance exercise on two occasions separated by 1 month. Subjects were randomly supplied either a mixture of BCAA or flavoured water. Muscle biopsies were taken from both resting and exercising muscle before, after and 1 h after exercise. Phosphorylation of Akt was unaltered by either resistance exercise and/or BCAA supplementation whereas mTOR phosphorylation was enhanced (P<0.05) to a similar extent in both exercising and resting muscle following exercise in the absence (70-90%) and presence of BCAA supplementation (80-130%). Phosphorylation of p70(S6k) was unaffected by resistance exercise alone; however, BCAA intake increased (P<0.05) this phosphorylation in both legs following exercise. In resting muscle, a 5- and 16-fold increase in p70(S6k) was observed immediately after and 1 h after exercise, respectively, as compared to 11- and 30-fold increases in the exercising muscle. Phosphorylation of eukaryotic elongation factor 2 was attenuated 1 h after exercise (P<0.05) in both resting (10-40%) and exercising muscle (30-50%) under both conditions. The present findings indicate that resistance exercise and BCAA exert both separate and combined effects on the p70(S6k) phosphorylation in an Akt-independent manner. © 2010 The Authors. Journal compilation © 2010 Scandinavian Physiological Society.

  19. Ribosomal protein S6 kinase 1 signaling regulates mammalian lifespan

    PubMed Central

    Selman, Colin; Tullet, Jennifer M.A.; Wieser, Daniela; Irvine, Elaine; Lingard, Steven J.; Choudhury, Agharul I.; Claret, Marc; Al-Qassab, Hind; Carmignac, Danielle; Ramadani, Faruk; Woods, Angela; Robinson, Iain C.A.; Schuster, Eugene; Batterham, Rachel L.; Kozma, Sara C.; Thomas, George; Carling, David; Okkenhaug, Klaus; Thornton, Janet M.; Partridge, Linda; Gems, David; Withers, Dominic J.

    2016-01-01

    Caloric restriction (CR) protects against aging and disease but the mechanisms by which this affects mammalian lifespan are unclear. We show in mice that deletion of the nutrient-responsive mTOR (mammalian target of rapamycin) signaling pathway component ribosomal S6 protein kinase 1 (S6K1) led to increased lifespan and resistance to age-related pathologies such as bone, immune and motor dysfunction and loss of insulin sensitivity. Deletion of S6K1 induced gene expression patterns similar to those seen in CR or with pharmacological activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), a conserved regulator of the metabolic response to CR. Our results demonstrate that S6K1 influences healthy mammalian lifespan, and suggest therapeutic manipulation of S6K1 and AMPK might mimic CR and provide broad protection against diseases of aging. PMID:19797661

  20. The discovery of potent ribosomal S6 kinase inhibitors by high-throughput screening and structure-guided drug design

    PubMed Central

    Kalusa, Andrew; Cano, Celine; Travers, Jon; Boxall, Kathy; Chow, Chiau Ling; Burns, Sam; Schmitt, Jessica; Pickard, Lisa; Barillari, Caterina; McAndrew, P. Craig; Clarke, Paul A.; Linardopoulos, Spiros; Griffin, Roger J.; Aherne, G. Wynne; Raynaud, Florence I.; Workman, Paul; Jones, Keith; van Montfort, Rob L.M.

    2013-01-01

    The ribosomal P70 S6 kinases play a crucial role in PI3K/mTOR regulated signalling pathways and are therefore potential targets for the treatment of a variety of diseases including diabetes and cancer. In this study we describe the identification of three series of chemically distinct S6K1 inhibitors. In addition, we report a novel PKA-S6K1 chimeric protein with five mutations in or near its ATP-binding site, which was used to determine the binding mode of two of the three inhibitor series, and provided a robust system to aid the optimisation of the oxadiazole-substituted benzimidazole inhibitor series. We show that the resulting oxadiazole-substituted aza-benzimidazole is a potent and ligand efficient S6 kinase inhibitor, which blocks the phosphorylation of RPS6 at Ser235/236 in TSC negative HCV29 human bladder cancer cells by inhibiting S6 kinase activity and thus provides a useful tool compound to investigate the function of S6 kinases. PMID:24072592

  1. Inhibition of miR-128-3p by Tongxinluo Protects Human Cardiomyocytes from Ischemia/reperfusion Injury via Upregulation of p70s6k1/p-p70s6k1

    PubMed Central

    Chen, Gui-hao; Xu, Chuan-sheng; Zhang, Jie; Li, Qing; Cui, He-he; Li, Xiang-dong; Chang, Li-ping; Tang, Rui-jie; Xu, Jun-yan; Tian, Xia-qiu; Huang, Pei-sen; Xu, Jun; Jin, Chen; Yang, Yue-jin

    2017-01-01

    Background and Aims: Tongxinluo (TXL) is a multifunctional traditional Chinese medicine that has been widely used to treat cardiovascular and cerebrovascular diseases. However, no studies have explored whether TXL can protect human cardiomyocytes (HCMs) from ischemia/reperfusion (I/R) injury. Reperfusion Injury Salvage Kinase (RISK) pathway activation was previously demonstrated to protect the hearts against I/R injury and it is generally activated via Akt or (and) Erk 1/2, and their common downstream protein, ribosomal protein S6 kinase (p70s6k). In addition, prior studies proved that TXL treatment of cells promoted secretion of VEGF, which could be stimulated by the increased phosphorylation of one p70s6k subtype, p70s6k1. Consequently, we hypothesized TXL could protect HCMs from I/R injury by activating p70s6k1 and investigated the underlying mechanism. Methods and Results: HCMs were exposed to hypoxia (18 h) and reoxygenation (2 h) (H/R), with or without TXL pretreatment. H/R reduced mitochondrial membrane potential, increased bax/bcl-2 ratios and cytochrome C levels and induced HCM apoptosis. TXL preconditioning reversed these H/R-induced changes in a dose-dependent manner and was most effective at 400 μg/mL. The anti-apoptotic effect of TXL was abrogated by rapamycin, an inhibitor of p70s6k. However, inhibitors of Erk1/2 (U0126) or Akt (LY294002) failed to inhibit the protective effect of TXL. TXL increased p70s6k1 expression and, thus, enhanced its phosphorylation. Furthermore, transfection of cardiomyocytes with siRNA to p70s6k1 abolished the protective effects of TXL. Among the micro-RNAs (miR-145-5p, miR-128-3p and miR-497-5p) previously reported to target p70s6k1, TXL downregulated miR-128-3p in HCMs during H/R, but had no effects on miR-145-5p and miR-497-5p. An in vivo study confirmed the role of the p70s6k1 pathway in the infarct-sparing effect of TXL, demonstrating that TXL decreased miR-128-3p levels in the rat myocardium during I/R. Transfection

  2. Mitogenic signals and transforming potential of Nyk, a newly identified neural cell adhesion molecule-related receptor tyrosine kinase.

    PubMed Central

    Ling, L; Kung, H J

    1995-01-01

    Nyk/Mer is a recently identified receptor tyrosine kinase with neural cell adhesion molecule-like structure (two immunoglobulin G-like domains and two fibronectin III-like domains) in its extracellular region and belongs to the Ufo/Axl family of receptors. The ligand for Nyk/Mer is presently unknown, as are the signal transduction pathways mediated by this receptor. We constructed and expressed a chimeric receptor (Fms-Nyk) composed of the extracellular domain of the human colony-stimulating factor 1 receptor (Fms) and the transmembrane and cytoplasmic domains of human Nyk/Mer in NIH 3T3 fibroblasts in order to investigate the mitogenic signaling and biochemical properties of Nyk/Mer. Colony-stimulating factor 1 stimulation of the Fms-Nyk chimeric receptor in transfected NIH 3T3 fibroblasts leads to a transformed phenotype and generates a proliferative response in the absence of other growth factors. We show that phospholipase C gamma, phosphatidylinositol 3-kinase/p70 S6 kinase, Shc, Grb2, Raf-1, and mitogen-activated protein kinase are downstream components of the Nyk/Mer signal transduction pathways. In addition, Nyk/Mer weakly activates p90rsk, while stress-activated protein kinase, Ras GTPase-activating protein (GAP), and GAP-associated p62 and p190 proteins are not activated or tyrosine phosphorylated by Nyk/Mer. An analysis comparing the Nyk/Mer signal cascade with that of the epidermal growth factor receptor indicates substrate preferences by these two receptors. Our results provide a detailed description of the Nyk/Mer signaling pathways. Given the structural similarity between the Ufo/Axl family receptors, some of the information may also be applied to other members of this receptor tyrosine kinase family. PMID:8524223

  3. Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions.

    PubMed

    Wang, Meining; Shen, Aijun; Zhang, Chi; Song, Zilan; Ai, Jing; Liu, Hongchun; Sun, Liping; Ding, Jian; Geng, Meiyu; Zhang, Ao

    2016-06-23

    Heat shock protein 90 (Hsp90) is a ubiquitous chaperone of all of the oncogenic tyrosine kinases. Many Hsp90 inhibitors, alone or in combination, have shown significant antitumor efficacy against the kinase-positive naïve and mutant models. However, clinical trials of these inhibitors are unsuccessful due to insufficient clinical benefits and nonoptimal safety profiles. Recently, much progress has been reported on the Hsp90-cochaperone-client complex, which will undoubtedly assist in the understanding of the interactions between Hsp90 and its clients. Meanwhile, Hsp90 inhibitors have shown promise against patients' resistance caused by early generation tyrosine kinase inhibitors (TKIs), and at least 13 Hsp90 inhibitors are being reevaluated in the clinic. In this regard, the objectives of the current perspective are to summarize the structure and function of the Hsp90-cochaperone-client complex, to analyze the structural and functional insights into the Hsp90-client interactions to address several existing unresolved problems with Hsp90 inhibitors, and to highlight the preclinical and clinical studies of Hsp90 inhibitors as an effective treatment against resistance to tyrosine kinase inhibitors.

  4. p70 ribosomal S6 kinase regulates subpleural fibrosis following transforming growth factor-α expression in the lung

    PubMed Central

    Madala, Satish K.; Thomas, George; Edukulla, Ramakrishna; Davidson, Cynthia; Schmidt, Stephanie; Schehr, Angelica

    2015-01-01

    The p70 ribosomal S6 kinase (S6K) is a downstream substrate that is phosphorylated and activated by the mammalian target of rapamycin complex and regulates multiple cellular processes associated with fibrogenesis. Recent studies demonstrate that aberrant mTORC1-S6K signaling contributes to various pathological conditions, but a direct role in pulmonary fibroproliferation has not been established. Increased phosphorylation of the S6K pathway is detected immediately following transforming growth factor-α (TGF-α) expression in a transgenic model of progressive lung fibrosis. To test the hypothesis that the S6K directly regulates pulmonary fibroproliferative disease we determined the cellular sites of S6K phosphorylation during the induction of fibrosis in the TGF-α model and tested the efficacy of specific pharmacological inhibition of the S6K pathway to prevent and reverse fibrotic disease. Following TGF-α expression increased phosphorylation of the S6K was detected in the airway and alveolar epithelium and the mesenchyme of advanced subpleural fibrotic regions. Specific inhibition of the S6K with the small molecule inhibitor LY-2584702 decreased TGF-α and platelet-derived growth factor-β-induced proliferation of lung fibroblasts in vitro. Administration of S6K inhibitors to TGF-α mice prevented the development of extensive subpleural fibrosis and alterations in lung mechanics, and attenuated the increase in total lung hydroxyproline. S6K inhibition after fibrosis was established attenuated the progression of subpleural fibrosis. Together these studies demonstrate targeting the S6K pathway selectively modifies the progression of pulmonary fibrosis in the subpleural compartment of the lung. PMID:26566903

  5. Heat shock protein 90 functions to stabilize and activate the testis-specific serine/threonine kinases, a family of kinases essential for male fertility.

    PubMed

    Jha, Kula N; Coleman, Alyssa R; Wong, Lily; Salicioni, Ana M; Howcroft, Elizabeth; Johnson, Gibbes R

    2013-06-07

    Spermiogenesis is characterized by a profound morphological differentiation of the haploid spermatid into spermatozoa. The testis-specific serine/threonine kinases (TSSKs) comprise a family of post-meiotic kinases expressed in spermatids, are critical to spermiogenesis, and are required for male fertility in mammals. To explore the role of heat shock protein 90 (HSP90) in regulation of TSSKs, the stability and catalytic activity of epitope-tagged murine TSSKs were assessed in 293T and COS-7 cells. TSSK1, -2, -4, and -6 (small serine/threonine kinase) were all found to associate with HSP90, and pharmacological inhibition of HSP90 function using the highly specific drugs 17-AAG, SNX-5422, or NVP-AUY922 reduced TSSK protein levels in cells. The attenuation of HSP90 function abolished the catalytic activities of TSSK4 and -6 but did not significantly alter the specific activities of TSSK1 and -2. Inhibition of HSP90 resulted in increased TSSK ubiquitination and proteasomal degradation, indicating that HSP90 acts to control ubiquitin-mediated catabolism of the TSSKs. To study HSP90 and TSSKs in germ cells, a mouse primary spermatid culture model was developed and characterized. Using specific antibodies against murine TSSK2 and -6, it was demonstrated that HSP90 inhibition resulted in a marked decrease of the endogenous kinases in spermatids. Together, our findings demonstrate that HSP90 plays a broad and critical role in stabilization and activation of the TSSK family of protein kinases.

  6. Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice.

    PubMed

    Bhattacharya, Aditi; Kaphzan, Hanoch; Alvarez-Dieppa, Amanda C; Murphy, Jaclyn P; Pierre, Philippe; Klann, Eric

    2012-10-18

    Fragile X syndrome (FXS) is the leading inherited cause of autism and intellectual disability. Aberrant synaptic translation has been implicated in the etiology of FXS, but most lines of research on therapeutic strategies have targeted protein synthesis indirectly, far upstream of the translation machinery. We sought to perturb p70 ribosomal S6 kinase 1 (S6K1), a key translation initiation and elongation regulator, in FXS model mice. We found that genetic reduction of S6K1 prevented elevated phosphorylation of translational control molecules, exaggerated protein synthesis, enhanced mGluR-dependent long-term depression (LTD), weight gain, and macro-orchidism in FXS model mice. In addition, S6K1 deletion prevented immature dendritic spine morphology and multiple behavioral phenotypes, including social interaction deficits, impaired novel object recognition, and behavioral inflexibility. Our results support the model that dysregulated protein synthesis is the key causal factor in FXS and that restoration of normal translation can stabilize peripheral and neurological function in FXS. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Ionizing radiation induces EphA2 S897 phosphorylation in a MEK/ERK/RSK-dependent manner.

    PubMed

    Graves, Paul R; Din, Shaun U; Ashamalla, Mark; Ashamalla, Hani; Gilbert, Thomas S K; Graves, Lee M

    2017-09-01

    The EphA2 tyrosine kinase is frequently overexpressed in human tumors that are also treated with radiation. However, few studies have examined the effect of radiation on the EphA2 receptor itself. The purpose of this project was to investigate the impact of radiation on EphA2 to better understand mechanisms of radioresistance. Cell lines were exposed to X-rays and assayed for changes in EphA2 protein levels and phosphorylation over time by Western blotting. HEK293 cells stably expressing wild-type EphA2 or the S897A mutant were analyzed for cell survival from X-rays. Treatment of different cancer cell lines with 2 Gy of X-rays induced the phosphorylation of EphA2 on S897 but no changes were found in EphA2 total levels or its tyrosine phosphorylation. Radiation-induced S897 phosphorylation was unaffected by an AKT inhibitor but blocked by a MEK or RSK inhibitor. HEK293 cells expressing the EphA2 S897A mutant had a nearly 2-fold lower level of cell survival from X-rays than cells expressing wild-type EphA2. These findings show that radiation induces S897 EphA2 phosphorylation, an event associated with increased cell survival. Therefore, targeting pathways that mediate EphA2 S897 phosphorylation may be a beneficial strategy to reduce radioresistance.

  8. Effect of bombesin receptor subtype-3 and its synthetic agonist on signaling, glucose transport and metabolism in myocytes from patients with obesity and type 2 diabetes

    PubMed Central

    GONZÁLEZ, NIEVES; MARTÍN-DUCE, ANTONIO; MARTÍNEZ-ARRIETA, FÉLIX; MORENO-VILLEGAS, ZAIDA; PORTAL-NÚÑEZ, SERGIO; SANZ, RAÚL; EGIDO, JESÚS

    2015-01-01

    Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein-coupled receptor (GPCR) member of the bombesin receptor family. Several studies have suggested an association between obesity, alterations in glucose metabolism, diabetes and the BRS-3 receptor. In this study, we focused on patients simultaneously diagnosed with obesity and type 2 diabetes (OB/T2D). The analysis of BRS-3 expression in the skeletal muscle of these patients revealed a marked decrease in the expression of BRS-3 at the mRNA (23.6±1.3-fold downregulation, p<0.0001) and protein level (49±7% decrease, p<0.05) compared to the normal patients (no obesity and diabetes). Moreover, in cultured primary myocytes from patients with OB/T2D, the synthetic BRS-3 agonist, [D-Try6,β-Ala11,Phe13,Nle14]bombesin6–14, significantly increased the phosphorylation levels of mitogen-activated protein kinase (MAPK), p90RSK1, protein kinase B (PKB) and p70s6K. Specifically, the ligand at 10−11 M induced the maximal phosphorylation of MAPKs (p42, 159±15% of the control; p44, 166±11% of the control; p<0.0001) and p90RSK1 (148±2% of the control, p<0.0001). The basal phosphorylation levels of all kinases were reduced (p<0.05) in the patients with OB/T2D compared to the normal patients. Furthermore, the BRS-3 agonist stimulated glucose transport, which was already detected at 10−12 M (133±9% of the control), reached maximal levels at 10−11 M (160±9%, p<0.0001) and was maintained at up to 10−8 M (overall mean, 153±7%; p<0.007). This effect was less promiment than that attained with 10−8 M insulin (202±9%, p=0.009). The effect of the agonist on glycogen synthase a activity achieved the maximum effect at 10−11 M (165±16% of the control; p<0.0001), which did not differ from that observed with higher concentrations of the agonist. These results suggest that muscle cells isolated from patients with OB/T2D have extremely high sensitivity to the synthetic ligand, and the effects are particularly observed on

  9. A Hexane Fraction of Guava Leaves (Psidium guajava L.) Induces Anticancer Activity by Suppressing AKT/Mammalian Target of Rapamycin/Ribosomal p70 S6 Kinase in Human Prostate Cancer Cells

    PubMed Central

    Ryu, Nae Hyung; Park, Kyung-Ran; Kim, Sung-Moo; Yun, Hyung-Mun; Nam, Dongwoo; Lee, Seok-Geun; Jang, Hyeung-Jin; Ahn, Kyoo Seok; Kim, Sung-Hoon; Shim, Bum Sang; Choi, Seung-Hoon; Mosaddik, Ashik

    2012-01-01

    Abstract This study was carried out to evaluate the anticancer effects of guava leaf extracts and its fractions. The chemical compositions of the active extracts were also determined. In the present study, we set out to determine whether the anticancer effects of guava leaves are linked with their ability to suppress constitutive AKT/mammalian target of rapamycin (mTOR)/ribosomal p70 S6 kinase (S6K1) and mitogen-activated protein kinase (MAPK) activation pathways in human prostate cancer cells. We found that guava leaf hexane fraction (GHF) was the most potent inducer of cytotoxic and apoptotic effects in PC-3 cells. The molecular mechanism or mechanisms of GHF apoptotic potential were correlated with the suppression of AKT/mTOR/S6K1 and MAPK signaling pathways. This effect of GHF correlated with down-regulation of various proteins that mediate cell proliferation, cell survival, metastasis, and angiogenesis. Analysis of GHF by gas chromatography and gas chromatography–mass spectrometry tentatively identified 60 compounds, including β-eudesmol (11.98%), α-copaene (7.97%), phytol (7.95%), α-patchoulene (3.76%), β-caryophyllene oxide (CPO) (3.63%), caryophylla-3(15),7(14)-dien-6-ol (2.68%), (E)-methyl isoeugenol (1.90%), α-terpineol (1.76%), and octadecane (1.23%). Besides GHF, CPO, but not phytol, also inhibited the AKT/mTOR/S6K1 signaling pathway and induced apoptosis in prostate cancer cells. Overall, these findings suggest that guava leaves can interfere with multiple signaling cascades linked with tumorigenesis and provide a source of potential therapeutic compounds for both the prevention and treatment of cancer. PMID:22280146

  10. A hexane fraction of guava Leaves (Psidium guajava L.) induces anticancer activity by suppressing AKT/mammalian target of rapamycin/ribosomal p70 S6 kinase in human prostate cancer cells.

    PubMed

    Ryu, Nae Hyung; Park, Kyung-Ran; Kim, Sung-Moo; Yun, Hyung-Mun; Nam, Dongwoo; Lee, Seok-Geun; Jang, Hyeung-Jin; Ahn, Kyoo Seok; Kim, Sung-Hoon; Shim, Bum Sang; Choi, Seung-Hoon; Mosaddik, Ashik; Cho, Somi K; Ahn, Kwang Seok

    2012-03-01

    This study was carried out to evaluate the anticancer effects of guava leaf extracts and its fractions. The chemical compositions of the active extracts were also determined. In the present study, we set out to determine whether the anticancer effects of guava leaves are linked with their ability to suppress constitutive AKT/mammalian target of rapamycin (mTOR)/ribosomal p70 S6 kinase (S6K1) and mitogen-activated protein kinase (MAPK) activation pathways in human prostate cancer cells. We found that guava leaf hexane fraction (GHF) was the most potent inducer of cytotoxic and apoptotic effects in PC-3 cells. The molecular mechanism or mechanisms of GHF apoptotic potential were correlated with the suppression of AKT/mTOR/S6K1 and MAPK signaling pathways. This effect of GHF correlated with down-regulation of various proteins that mediate cell proliferation, cell survival, metastasis, and angiogenesis. Analysis of GHF by gas chromatography and gas chromatography-mass spectrometry tentatively identified 60 compounds, including β-eudesmol (11.98%), α-copaene (7.97%), phytol (7.95%), α-patchoulene (3.76%), β-caryophyllene oxide (CPO) (3.63%), caryophylla-3(15),7(14)-dien-6-ol (2.68%), (E)-methyl isoeugenol (1.90%), α-terpineol (1.76%), and octadecane (1.23%). Besides GHF, CPO, but not phytol, also inhibited the AKT/mTOR/S6K1 signaling pathway and induced apoptosis in prostate cancer cells. Overall, these findings suggest that guava leaves can interfere with multiple signaling cascades linked with tumorigenesis and provide a source of potential therapeutic compounds for both the prevention and treatment of cancer.

  11. [Effect of bufalin on proliferation and apoptosis through ERK/RSK2 pathway in human esophageal carcinoma cell line xenografts in nude mice].

    PubMed

    Yue, M; Liu, X J; Ding, Y; Wang, X L; Yang, H C; Liu, Y P

    2016-05-23

    To investigate the effect of bufalin on proliferation and apoptosis through ERK/RSK2 pathway in esophageal squamous cell carcinoma xenografts in nude mice. The subcutaneous xenograft model of esophageal cancer ECA109 cells in nude mice was established. The mice were divided into the model group, low-dose bufalin group, medium-dose bufalin group, high-dose bufalin group, PD98059 group and combination group to evaluate the effect of bufalin on the xenografts. The morphology of xenografts was observed by microscopy. The cell apoptosis index of xenografts was detected by TUNEL assay. The expression of ERK and RSK2 mRNA of human ECA109 cell transplantation tumor in nude mice was examined by real-time quantitative PCR. The protein levels of ERK, p-ERK, RSK2, p-RSK2, GSK3β, p-GSK3β, Bad and p-Bad in the xenografts were examined by Western blot and Immunohistochemistry. The tumor size of nude mice in the model group, low-dose bufalin group (BL), medium -dose bufalin group (BM), high-dose bufalin group (BH), PD98059 group and combined therapy group (BP) was (1.758±0.181) cm(3,) (1.680±0.150) cm(3,) (1.285±0.134) cm(3,) (0.873±0.095) cm(3,) (0.815±0.108) cm(3) and (0.530±0.104) cm(3,) respectively. Histological examination showed that the xenografts of each group had varying degrees of necrosis, and the most extensive necrosis was observed in the BP group. The TUNEL assay showed that the cell apoptosis index of xenografts in the model, BL, BM, BH, PD98059 and BP groups was (6.0±0.6)%, (11.0±0.7)%, (19.1±0.9)%, (25.1±1.4)%, (20.0±1.2)% and (17.1±0.7)%, respectively, which is highest in the BH group. The real-time quantitative PCR results showed that the ΔCT values of ERK mRNA in the model, BL, BM, BH, PD98059 and BP groups were 0.270±0.084, 0.293±0.081, 0.596±0.224, 0.857±0.183, 0.868±0.187 and 1.313±0.282, respectively. The ΔCT values of RSK2 mRNA in the model, BL, BM, BH, PD98059 and BP groups were 0.340±0.062, 0.337±0.071, 0.642±0.226, 0.915±0

  12. Impact of Glutathione Peroxidase-1 Deficiency on Macrophage Foam Cell Formation and Proliferation: Implications for Atherogenesis

    PubMed Central

    Degreif, Adriana; Rossmann, Heidi; Canisius, Antje; Lackner, Karl J.

    2013-01-01

    Clinical and experimental evidence suggests a protective role for the antioxidant enzyme glutathione peroxidase-1 (GPx-1) in the atherogenic process. GPx-1 deficiency accelerates atherosclerosis and increases lesion cellularity in ApoE−/− mice. However, the distribution of GPx-1 within the atherosclerotic lesion as well as the mechanisms leading to increased macrophage numbers in lesions is still unknown. Accordingly, the aims of the present study were (1) to analyze which cells express GPx-1 within atherosclerotic lesions and (2) to determine whether a lack of GPx-1 affects macrophage foam cell formation and cellular proliferation. Both in situ-hybridization and immunohistochemistry of lesions of the aortic sinus of ApoE−/− mice after 12 weeks on a Western type diet revealed that both macrophages and – even though to a less extent – smooth muscle cells contribute to GPx-1 expression within atherosclerotic lesions. In isolated mouse peritoneal macrophages differentiated for 3 days with macrophage-colony-stimulating factor (MCSF), GPx-1 deficiency increased oxidized low density-lipoprotein (oxLDL) induced foam cell formation and led to increased proliferative activity of peritoneal macrophages. The MCSF- and oxLDL-induced proliferation of peritoneal macrophages from GPx-1−/−ApoE−/− mice was mediated by the p44/42 MAPK (p44/42 mitogen-activated protein kinase), namely ERK1/2 (extracellular-signal regulated kinase 1/2), signaling pathway as demonstrated by ERK1/2 signaling pathways inhibitors, Western blots on cell lysates with primary antibodies against total and phosphorylated ERK1/2, MEK1/2 (mitogen-activated protein kinase kinase 1/2), p90RSK (p90 ribosomal s6 kinase), p38 MAPK and SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase), and immunohistochemistry of mice atherosclerotic lesions with antibodies against phosphorylated ERK1/2, MEK1/2 and p90RSK. Representative effects of GPx-1 deficiency on both macrophage proliferation

  13. [Protein kinase A inhibitor H-89 blocks polyploidization of SP600125-induced CMK cells by regulating phosphorylation of ribosomal protein S6 kinase 1].

    PubMed

    Zhao, Song; Yang, Jingang; Li, Changling; Xing, Sining; Yu, Ying; Liu, Shuo; Pu, Feifei; Ma, Dongchu

    2016-10-01

    Objective To investigate the regulatory effect of post-translation modification of ribosomal protein S6 kinase 1 (S6K1) on the polyploidization of megakaryocytes. Methods SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and H-89, a cAMP-dependent protein kinase (PKA) inhibitor, were used to treat CMK cells separately or in combination. With propidium iodide (PI) to dye DNA in the treated cells, the relative DNA content was detected by flow cytometry, and then the DNA polyploidy was analyzed. The change of expression and phosphorylation of ribosomal protein S6 kinase 1 (S6K1), an important mammalian target of rapamycin (mTOR) downstream target molecule, was analyzed by Western blotting. Molecular docking study and kinase activity assay were performed to analyze the combination of H-89 with S6K1 and the effect of H-89 on the activity of S6K1 kinase. Results SP600125 induced CMK cell polyploidization in a time-dependent and dose-dependent manner. At the same time, it increased the phosphorylation of S6K1 at Thr421/Ser424 and decreased the phosphorylation of S6K1 at Thr389. H-89 not only blocked polyploidization, but also decreased the phosphorylation of S6K1 at Thr421/Ser424 and increased the phosphorylation of S6K1 at Thr389. Molecular docking and kinase activity assay showed that H-89 occupied the ATP binding sites of S6K1 and inhibited its activity. Noticeably, both H-89 and SP600125 inhibited the activity of PKA. Moreover, the two drugs further inhibited the activity of PKA when used together. Therefore, these data indicated that H-89 blocked the SP600125-induced polyploidization of CMK cells mainly by changing S6K1 phosphorylation state, rather than its inhibitory effect on PKA. Conclusion H-89 can block the polyploidization of SP600125-induced CMK cells by regulating S6K1 phosphorylation state.

  14. HSP90 regulates cell survival via inositol hexakisphosphate kinase-2

    PubMed Central

    Chakraborty, Anutosh; Koldobskiy, Michael A.; Sixt, Katherine M.; Juluri, Krishna R.; Mustafa, Asif K.; Snowman, Adele M.; van Rossum, Damian B.; Patterson, Randen L.; Snyder, Solomon H.

    2008-01-01

    Heat-shock proteins (HSPs) are abundant, inducible proteins best known for their ability to maintain the conformation of proteins and to refold damaged proteins. Some HSPs, especially HSP90, can be antiapoptotic and the targets of anticancer drugs. Inositol hexakisphosphate kinase-2 (IP6K2), one of a family of enzymes generating the inositol pyrophosphate IP7 [diphosphoinositol pentakisphosphate (5-PP-IP5)], mediates apoptosis. Increased IP6K2 activity sensitizes cancer cells to stressors, whereas its depletion blocks cell death. We now show that HSP90 physiologically binds IP6K2 and inhibits its catalytic activity. Drugs and selective mutations that abolish HSP90–IP6K2 binding elicit activation of IP6K2, leading to cell death. Thus, the prosurvival actions of HSP90 reflect the inhibition of IP6K2, suggesting that selectively blocking this interaction could provide effective and safer modes of chemotherapy. PMID:18195352

  15. Magic wavelengths for the 6{s}^{2}{}^{1}{S}_{0}{--}6s6p{}^{3}{P}_{1}^{o} transition in ytterbium atom

    NASA Astrophysics Data System (ADS)

    Tang, Zhi-Ming; Yu, Yan-Mei; Jiang, Jun; Dong, Chen-Zhong

    2018-06-01

    The static and dynamic electric dipole polarizabilities of the 6{s}2{}1{S}0 and 6s6p{}3{P}1o states of Yb are calculated by using the relativistic ab initio method. Focusing on the red detuning region to the 6{s}2{}1{S}0{--}6s6p{}3{P}1o transition, we find two magic wavelengths at 1035.7(2) and 612.9(2) nm for the 6{s}2{}1{S}0{--}6s6p{}3{P}1o,{M}J=0 transition and three magic wavelengths at 1517.68(6), 1036.0(3) and 858(12) nm for the 6{s}2{}1{S}0{--}6s6p{}3{P}1o,{M}J=+/- 1 transitions. Such magic wavelengths are of particular interest for attaining the state-insensitive cooling, trapping, and quantum manipulation of neutral Yb atom.

  16. Dual modulation of ERK1/2 and p38 MAP kinase activities induced by minocycline reverses the neurotoxic effects of the prion protein fragment 90-231.

    PubMed

    Corsaro, Alessandro; Thellung, Stefano; Chiovitti, Katia; Villa, Valentina; Simi, Alessandro; Raggi, Federica; Paludi, Domenico; Russo, Claudio; Aceto, Antonio; Florio, Tullio

    2009-02-01

    Several in vitro and in vivo studies addressed the identification of molecular determinants of the neuronal death induced by PrP(Sc) or related peptides. We developed an experimental model to assess PrP(Sc) neurotoxicity using a recombinant polypeptide encompassing amino acids 90-231 of human PrP (hPrP90-231) that corresponds to the protease-resistant core of PrP(Sc) identified in prion-infected brains. By means of mild thermal denaturation, we can convert hPrP90-231 from a PrP(C)-like conformation into a PrP(Sc)-like structure. In virtue of these structural changes, hPrP90-231 powerfully affected the survival of SH-SY5Y cells, inducing caspase 3 and p38-dependent apoptosis, while in the native alpha-helix-rich conformation, hPrP90-231 did not induce cell toxicity. The aim of this study was to identify drugs able to block hPrP90-231 neurotoxic effects, focusing on minocycline, a tetracycline with known neuroprotective activity. hPrP90-231 caused a caspase 3-dependent apoptosis via the blockade of ERK1/2 activation and the subsequent activation of p38 MAP kinase. We propose that hPrP90-231-induced apoptosis is dependent on the inhibition of ERK1/2 responsiveness to neurotrophic factors, removing a tonic inhibition of p38 activity and resulting in caspase 3 activation. Minocycline prevented hPrP90-231-induced toxicity interfering with this mechanism: the pretreatment with this tetracycline restored ERK1/2 activity and reverted p38 and caspase 3 activities. The effects of minocycline were not mediated by the prevention of hPrP90-231 structural changes or cell internalization (differently from Congo Red). In conclusion, minocycline elicits anti-apoptotic effects against the neurotoxic activity of hPrP90-231 and these effects are mediated by opposite modulation of ERK1/2 and p38 MAP kinase activities.

  17. Defective synaptic transmission and structure in the dentate gyrus and selective fear memory impairment in the Rsk2 mutant mouse model of Coffin-Lowry syndrome.

    PubMed

    Morice, Elise; Farley, Séverine; Poirier, Roseline; Dallerac, Glenn; Chagneau, Carine; Pannetier, Solange; Hanauer, André; Davis, Sabrina; Vaillend, Cyrille; Laroche, Serge

    2013-10-01

    The Coffin-Lowry syndrome (CLS) is a syndromic form of intellectual disability caused by loss-of-function of the RSK2 serine/threonine kinase encoded by the rsk2 gene. Rsk2 knockout mice, a murine model of CLS, exhibit spatial learning and memory impairments, yet the underlying neural mechanisms are unknown. In the current study, we examined the performance of Rsk2 knockout mice in cued, trace and contextual fear memory paradigms and identified selective deficits in the consolidation and reconsolidation of hippocampal-dependent fear memories as task difficulty and hippocampal demand increase. Electrophysiological, biochemical and electron microscopy analyses were carried out in the dentate gyrus of the hippocampus to explore potential alterations in neuronal functions and structure. In vivo and in vitro electrophysiology revealed impaired synaptic transmission, decreased network excitability and reduced AMPA and NMDA conductance in Rsk2 knockout mice. In the absence of RSK2, standard measures of short-term and long-term potentiation (LTP) were normal, however LTP-induced CREB phosphorylation and expression of the transcription factors EGR1/ZIF268 were reduced and that of the scaffolding protein SHANK3 was blocked, indicating impaired activity-dependent gene regulation. At the structural level, the density of perforated and non-perforated synapses and of multiple spine boutons was not altered, however, a clear enlargement of spine neck width and post-synaptic densities indicates altered synapse ultrastructure. These findings show that RSK2 loss-of-function is associated in the dentate gyrus with multi-level alterations that encompass modifications of glutamate receptor channel properties, synaptic transmission, plasticity-associated gene expression and spine morphology, providing novel insights into the mechanisms contributing to cognitive impairments in CLS. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Vegetable peptones increase production of type I collagen in human fibroblasts by inducing the RSK-CCAAT/enhancer binding protein-β phosphorylation pathway.

    PubMed

    Jung, Eunsun; Cho, Jae Youl; Park, Deokhoon; Kim, Min Hee; Park, Beomseok; Lee, Sang Yeol; Lee, Jongsung

    2015-02-01

    Skin aging appears to be principally attributed to a decrease in type I collagen level and the regeneration ability of dermal fibroblasts. We hypothesized that vegetable peptones promote cell proliferation and production of type I collagen in human dermal fibroblasts. Therefore, we investigated the effects of vegetable peptones on cell proliferation and type I collagen production and their possible mechanisms in human dermal fibroblasts. Vegetable peptones significantly promoted cell proliferation in a concentration-dependent manner. In addition, the human luciferase type I collagen α2 promoter and type I procollagen synthesis assays showed that the vegetable peptones induced type I procollagen production by activating the type I collagen α2 promoter. Moreover, the vegetable peptones activated p90 ribosomal s6 kinase, which was mediated by activating the Raf-p44/42 mitogen-activated protein kinase signaling pathway. Furthermore, the vegetable peptone-induced increase in cell proliferation and type I collagen production decreased upon treatment with the ERK inhibitor PD98059. Taken together, these findings suggest that increased proliferation of human dermal fibroblasts and enhanced production of type I collagen by vegetable peptones occur primarily by inducing the p90 ribosomal s6 kinase-CCAAT/enhancer binding protein β phosphorylation pathway, which is mediated by activating Raf-ERK signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Substituted N-aryl-6-pyrimidinones: A new class of potent, selective, and orally active p38 MAP kinase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devadas, Balekudru; Selness, Shaun R.; Xing, Li

    2012-02-28

    A novel series of highly potent and selective p38 MAP kinase inhibitors was developed originating from a substituted N-aryl-6-pyrimidinone scaffold. SAR studies coupled with in vivo evaluations in rat arthritis model culminated in the identification of 10 with excellent oral efficacy. Compound 10 exhibited a significantly enhanced dissolution rate compared to 1, translating to a high oral bioavailability (>90%) in rat. In animal studies 10 inhibited LPS-stimulated production of tumor necrosis factor-{alpha} in a dose-dependent manner and demonstrated robust efficacy comparable to dexamethasone in a rat streptococcal cell wall-induced arthritis model.

  20. Tuberous sclerosis complex tumor suppressor–mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent

    PubMed Central

    Jaeschke, Anja; Hartkamp, Joerg; Saitoh, Masao; Roworth, Wendy; Nobukuni, Takahiro; Hodges, Angela; Sampson, Julian; Thomas, George; Lamb, Richard

    2002-01-01

    The evolution of mitogenic pathways has led to the parallel requirement for negative control mechanisms, which prevent aberrant growth and the development of cancer. Principally, such negative control mechanisms are represented by tumor suppressor genes, which normally act to constrain cell proliferation (Macleod, K. 2000. Curr. Opin. Genet. Dev. 10:81–93). Tuberous sclerosis complex (TSC) is an autosomal-dominant genetic disorder, characterized by mutations in either TSC1 or TSC2, whose gene products hamartin (TSC1) and tuberin (TSC2) constitute a putative tumor suppressor complex (TSC1-2; van Slegtenhorst, M., M. Nellist, B. Nagelkerken, J. Cheadle, R. Snell, A. van den Ouweland, A. Reuser, J. Sampson, D. Halley, and P. van der Sluijs. 1998. Hum. Mol. Genet. 7:1053–1057). Little is known with regard to the oncogenic target of TSC1-2, however recent genetic studies in Drosophila have shown that S6 kinase (S6K) is epistatically dominant to TSC1-2 (Tapon, N., N. Ito, B.J. Dickson, J.E. Treisman, and I.K. Hariharan. 2001. Cell. 105:345–355; Potter, C.J., H. Huang, and T. Xu. 2001. Cell. 105:357–368). Here we show that loss of TSC2 function in mammalian cells leads to constitutive S6K1 activation, whereas ectopic expression of TSC1-2 blocks this response. Although activation of wild-type S6K1 and cell proliferation in TSC2-deficient cells is dependent on the mammalian target of rapamycin (mTOR), by using an S6K1 variant (GST-ΔC-S6K1), which is uncoupled from mTOR signaling, we demonstrate that TSC1-2 does not inhibit S6K1 via mTOR. Instead, we show by using wortmannin and dominant interfering alleles of phosphatidylinositide-3-OH kinase (PI3K) that increased S6K1 activation is contingent upon the suppression of TSC2 function by PI3K in normal cells and is PI3K independent in TSC2-deficient cells. PMID:12403809

  1. Growth Inhibition by Bupivacaine Is Associated with Inactivation of Ribosomal Protein S6 Kinase 1

    PubMed Central

    Beigh, Mushtaq Ahmad; Showkat, Mehvish; Bashir, Basharat; Bashir, Asma; Hussain, Mahboob ul; Andrabi, Khurshid Iqbal

    2014-01-01

    Bupivacaine is an amide type long acting local anesthetic used for epidural anesthesia and nerve blockade in patients. Use of bupivacaine is associated with severe cytotoxicity and apoptosis along with inhibition of cell growth and proliferation. Although inhibition of Erk, Akt, and AMPK seemingly appears to mediate some of the bupivacaine effects, potential downstream targets that mediate its effect remain unknown. S6 kinase 1 is a common downstream effector of several growth regulatory pathways involved in cell growth and proliferation known to be affected by bupivacaine. We have accordingly attempted to relate the growth inhibitory effects of bupivacaine with the status of S6K1 activity and we present evidence that decrease in cell growth and proliferation by bupivacaine is mediated through inactivation of S6 kinase 1 in a concentration and time dependent manner. We also show that ectopic expression of constitutively active S6 kinase 1 imparts substantial protection from bupivacaine induced cytotoxicity. Inactivation of S6K1 though associated with loss of putative mTOR mediated phosphorylation did not correspond with loss of similar phosphorylations in 4EBP1 indicating that S6K1 inhibition was not mediated through inactivation of mTORC1 signaling pathway or its down regulation. PMID:24605337

  2. GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cells.

    PubMed

    Quoyer, Julie; Longuet, Christine; Broca, Christophe; Linck, Nathalie; Costes, Safia; Varin, Elodie; Bockaert, Joël; Bertrand, Gyslaine; Dalle, Stéphane

    2010-01-15

    Strategies based on activating GLP-1 receptor (GLP-1R) are intensively developed for the treatment of type 2 diabetes. The exhaustive knowledge of the signaling pathways linked to activated GLP-1R within the beta-cells is of major importance. In beta-cells, GLP-1 activates the ERK1/2 cascade by diverse pathways dependent on either Galpha(s)/cAMP/cAMP-dependent protein kinase (PKA) or beta-arrestin 1, a scaffold protein. Using pharmacological inhibitors, beta-arrestin 1 small interfering RNA, and islets isolated from beta-arrestin 1 knock-out mice, we demonstrate that GLP-1 stimulates ERK1/2 by two temporally distinct pathways. The PKA-dependent pathway mediates rapid and transient ERK1/2 phosphorylation that leads to nuclear translocation of the activated kinases. In contrast, the beta-arrestin 1-dependent pathway produces a late ERK1/2 activity that is restricted to the beta-cell cytoplasm. We further observe that GLP-1 phosphorylates the cytoplasmic proapoptotic protein Bad at Ser-112 but not at Ser-155. We find that the beta-arrestin 1-dependent ERK1/2 activation engaged by GLP-1 mediates the Ser-112 phosphorylation of Bad, through p90RSK activation, allowing the association of Bad with the scaffold protein 14-3-3, leading to its inactivation. beta-Arrestin 1 is further found to mediate the antiapoptotic effect of GLP-1 in beta-cells through the ERK1/2-p90RSK-phosphorylation of Bad. This new regulatory mechanism engaged by activated GLP-1R involving a beta-arrestin 1-dependent spatiotemporal regulation of the ERK1/2-p90RSK activity is now suspected to participate in the protection of beta-cells against apoptosis. Such signaling mechanism may serve as a prototype to generate new therapeutic GLP-1R ligands.

  3. The selectivity of protein kinase inhibitors: a further update

    PubMed Central

    Bain, Jenny; Plater, Lorna; Elliott, Matt; Shpiro, Natalia; Hastie, C. James; Mclauchlan, Hilary; Klevernic, Iva; Arthur, J. Simon C.; Alessi, Dario R.; Cohen, Philip

    2007-01-01

    The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70–80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)–raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes. PMID:17850214

  4. N-acetylcysteine attenuates TNF-alpha-induced p38 MAP kinase activation and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells.

    PubMed

    Hashimoto, S; Gon, Y; Matsumoto, K; Takeshita, I; Horie, T

    2001-01-01

    1. We have previously shown that tumour necrosis factor-alpha (TNF-alpha) activates p38 mitogen-activated protein (MAP) kinase to produce interleukin-8 (IL-8) by human pulmonary vascular endothelial cells. Reactive oxygen species (ROS) including H(2)O(2) generated by TNF-alpha can act as signalling intermediates for cytokine induction; therefore, scavenging ROS by anti-oxidants is important for the regulation of cytokine production. However, the effect of N-acetylcysteine (NAC), which acts as a precursor of glutathione (GSH) synthesis, on TNF-alpha-induced activation of p38 MAP kinase pathway and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells has not been determined. To clarify these issues, we examined the effect of NAC on TNF-alpha-induced activation of p38 MAP kinase, MAP kinase kinase (MKK) 3 and MKK6 which are upstream regulators of p38 MAP kinase, and p38 MAP kinase-mediated IL-8 production. 2. Human pulmonary vascular endothelial cells that had been preincubated with NAC were stimulated with TNF-alpha and then the activation of p38 MAP kinase and MKK3/MKK6 in the cells and IL-8 concentrations in the culture supernatants were determined. 3. Intracellular GSH levels increased in NAC-treated cells. 4. NAC attenuated TNF-alpha-induced activation of p38 MAP kinase and MKK3/MKK6. 5. NAC attenuated p38 MAP kinase-mediated IL-8 production by TNF-alpha-stimulated cells. 6. These results indicate that the cellular reduction and oxidation (redox) regulated by intracellular GSH is critical for TNF-alpha-induced activation of p38 MAP kinase pathway and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells, and we emphasize that anti-oxidant therapy is an important strategy for the treatment of acute lung injury.

  5. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    NASA Astrophysics Data System (ADS)

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-03-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent.

  6. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    PubMed Central

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-01-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent. PMID:28272488

  7. Predictive value of EGFR-PI3K-pAKT-mTOR-pS6 pathway in sinonasal squamous cell carcinomas.

    PubMed

    Muñoz-Cordero, María Gabriela; López, Fernando; García-Inclán, Cristina; López-Hernández, Alejandro; Potes-Ares, Sira; Fernández-Vañes, Laura; Llorente, José Luis; Hermsen, Mario

    2018-03-21

    We have previously indicated that EGFR has a role in carcinogenesis in a subgroup of sinonasal squamous cell carcinomas (SNSCC). In addition, EGFR activates 2 of the most important intracellular signalling pathways: PI3K/pAKT/mTOR/pS6 and MAP pathway kinases. The objective of this study was to evaluate the involvement of the EGFR/PI3K/pAKT/mTOR/pS6 pathway and its relationship with clinical-pathological parameters and follow-up of sinonasal squamous cell carcinoma. The immunohistochemical expression of different components of the PI3K/AKT/mTOR/pS6 pathway and its relationship with various clinical-pathological parameters was studied in a series of 54 patients with SNSCC. Loss of PTEN expression was observed in 33/54 cases (61%) and pAKT, mTOR and pS6 pre-expression was observed in 19/54 cases (35%), 8/54 cases (15%), and 47/54 cases (87%), respectively. Loss of PTEN expression was related to intracranial invasion and development of regional metastases (p=0.005). Overexpression of pS6 was associated with a decrease in survival (p=0.008), presence of local recurrences (p=0.055), and worsening of overall prognosis (p=0.007). No significant relationships were observed between pAKT and mTOR expression and the clinicopathological parameters studied. Alterations in the expression of EGFR/PI3K/pAKT/mTOR/pS6 pathway components are common in a subgroup of SNSCC. This study reveals that the absence of pS6 overexpression is associated with better clinical outcomes. Therefore, pS6 expression could be considered as an unfavourable prognostic marker. Copyright © 2018. Publicado por Elsevier España, S.L.U.

  8. N-acetylcysteine attenuates TNF-α-induced p38 MAP kinase activation and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells

    PubMed Central

    Hashimoto, Shu; Gon, Yasuhiro; Matsumoto, Ken; Takeshita, Ikuko; Horie, Takashi

    2001-01-01

    We have previously shown that tumour necrosis factor-α (TNF-α) activates p38 mitogen-activated protein (MAP) kinase to produce interleukin-8 (IL-8) by human pulmonary vascular endothelial cells. Reactive oxygen species (ROS) including H2O2 generated by TNF-α can act as signalling intermediates for cytokine induction; therefore, scavenging ROS by anti-oxidants is important for the regulation of cytokine production. However, the effect of N-acetylcysteine (NAC), which acts as a precursor of glutathione (GSH) synthesis, on TNF-α-induced activation of p38 MAP kinase pathway and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells has not been determined. To clarify these issues, we examined the effect of NAC on TNF-α-induced activation of p38 MAP kinase, MAP kinase kinase (MKK) 3 and MKK6 which are upstream regulators of p38 MAP kinase, and p38 MAP kinase-mediated IL-8 production. Human pulmonary vascular endothelial cells that had been preincubated with NAC were stimulated with TNF-α and then the activation of p38 MAP kinase and MKK3/MKK6 in the cells and IL-8 concentrations in the culture supernatants were determined. Intracellular GSH levels increased in NAC-treated cells. NAC attenuated TNF-α-induced activation of p38 MAP kinase and MKK3/MKK6. NAC attenuated p38 MAP kinase-mediated IL-8 production by TNF-α-stimulated cells. These results indicate that the cellular reduction and oxidation (redox) regulated by intracellular GSH is critical for TNF-α-induced activation of p38 MAP kinase pathway and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells, and we emphasize that anti-oxidant therapy is an important strategy for the treatment of acute lung injury. PMID:11156586

  9. Mechanistic elucidation of the antitumor properties of withaferin A in breast cancer

    PubMed Central

    Nagalingam, Arumugam; Kuppusamy, Panjamurthy; Singh, Shivendra V.; Sharma, Dipali; Saxena, Neeraj K.

    2014-01-01

    Withaferin A (WFA) is a steroidal lactone with antitumor effects manifested at multiple levels which are mechanistically obscure. Using a phospho-kinase screening array, we discovered that WFA activated phosphorylation of the S6 kinase RSK in breast cancer cells. Pursuing this observation, we defined activation of ERK-RSK and Elk1-CHOP kinase pathways in upregulating transcription of the death receptor DR5. Through this route, WFA acted as an effective DR5 activator capable of potentiating the biological effects of celecoxib, etoposide and TRAIL. Accordingly, WFA treatment inhibited breast tumor formation in xenograft and MMTV-neu mouse models in a manner associated with activation of the ERK/RSK axis, DR5 upregulation and elevated nuclear accumulation of Elk1 and CHOP. Together, our results offer mechanistic insight into how WFA inhibits breast tumor growth. PMID:24732433

  10. Protein kinase A can block EphA2 receptor–mediated cell repulsion by increasing EphA2 S897 phosphorylation

    PubMed Central

    Barquilla, Antonio; Lamberto, Ilaria; Noberini, Roberta; Heynen-Genel, Susanne; Brill, Laurence M.; Pasquale, Elena B.

    2016-01-01

    The EphA2 receptor tyrosine kinase plays key roles in tissue homeostasis and disease processes such as cancer, pathological angiogenesis, and inflammation through two distinct signaling mechanisms. EphA2 “canonical” signaling involves ephrin-A ligand binding, tyrosine autophosphorylation, and kinase activity; EphA2 “noncanonical” signaling involves phosphorylation of serine 897 (S897) by AKT and RSK kinases. To identify small molecules counteracting EphA2 canonical signaling, we developed a high-content screening platform measuring inhibition of ephrin-A1–induced PC3 prostate cancer cell retraction. Surprisingly, most hits from a screened collection of pharmacologically active compounds are agents that elevate intracellular cAMP by activating G protein–coupled receptors such as the β2-adrenoceptor. We found that cAMP promotes phosphorylation of S897 by protein kinase A (PKA) as well as increases the phosphorylation of several nearby serine/threonine residues, which constitute a phosphorylation hotspot. Whereas EphA2 canonical and noncanonical signaling have been viewed as mutually exclusive, we show that S897 phosphorylation by PKA can coexist with EphA2 tyrosine phosphorylation and block cell retraction induced by EphA2 kinase activity. Our findings reveal a novel paradigm in EphA2 function involving the interplay of canonical and noncanonical signaling and highlight the ability of the β2-adrenoceptor/cAMP/PKA axis to rewire EphA2 signaling in a subset of cancer cells. PMID:27385333

  11. Hsp90 dependence of a kinase is determined by its conformational landscape

    PubMed Central

    Luo, Qi; Boczek, Edgar E.; Wang, Qi; Buchner, Johannes; Kaila, Ville R. I.

    2017-01-01

    Heat shock protein 90 (Hsp90) is an abundant molecular chaperone, involved in the folding and activation of 60% of the human kinome. The oncogenic tyrosine kinase v-Src is one of the most stringent client proteins of Hsp90, whereas its almost identical homolog c-Src is only weakly affected by the chaperone. Here, we perform atomistic molecular simulations and in vitro kinase assays to explore the mechanistic differences in the activation of v-Src and c-Src. While activation in c-Src is strictly controlled by ATP-binding and phosphorylation, we find that activating conformational transitions are spontaneously sampled in Hsp90-dependent Src mutants. Phosphorylation results in an enrichment of the active conformation and in an increased affinity for Hsp90. Thus, the conformational landscape of the mutated kinase is reshaped by a broken “control switch”, resulting in perturbations of long-range electrostatics, higher activity and increased Hsp90-dependence. PMID:28290541

  12. Genistein promotes insulin action through adenosine monophosphate-activated protein kinase activation and p70 ribosomal protein S6 kinase 1 inhibition in the skeletal muscle of mice fed a high energy diet.

    PubMed

    Arunkumar, Elumalai; Anuradha, Carani Venkatraman

    2012-08-01

    Genistein (GEN), a soy isoflavone, exerts insulin-sensitizing actions in animals; however, the underlying mechanisms have not been determined. Because GEN is a known activator of adenosine monophosphate-activated protein kinase (AMPK), we hypothesize that GEN activates insulin signaling through AMPK activation. To test this hypothesis, a high fat-high fructose diet (HFFD)-fed mice model of insulin resistance was administered GEN, and the insulin signaling pathway proteins in the skeletal muscle were examined. Hyperglycemia and hyperinsulinemia observed in HFFD-fed mice were significantly lowered by GEN. GEN increased insulin-stimulated tyrosine phosphorylation of insulin receptor-β and insulin receptor substrate (IRS) 1 but down-regulated IRS-1 serine phosphorylation in the skeletal muscle of HFFD-fed mice. Furthermore, GEN treatment improved muscle IRS-1-associated phospatidylinositol-3 kinase expression, phosphorylation of Akt at Ser(473), and translocation of glucose transporter subtype 4. Phosphorylation of AMPK at Thr(172) and acetyl coenzyme A carboxylase (ACC) at Ser(79) was augmented, whereas phosphorylation of p70 ribosomal protein S6 kinase 1 at Thr(389) was significantly decreased after GEN treatment in the skeletal muscle of HFFD-fed mice. These results suggest that GEN might improve insulin action in the skeletal muscle by targeting AMPK. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase.

    PubMed

    Van Raemdonck, Katrien; Gouwy, Mieke; Lepers, Stefanie Antoinette; Van Damme, Jo; Struyf, Sofie

    2014-07-01

    CXC chemokines influence a variety of biological processes, such as angiogenesis, both in a physiological and pathological context. Platelet factor-4 (PF-4)/CXCL4 and its variant PF-4var/CXCL4L1 are known to favor angiostasis by inhibiting endothelial cell proliferation and chemotaxis. CXCL4L1 in particular is a potent inhibitor of angiogenesis with anti-tumoral characteristics, both through regulation of neovascularization and through attraction of activated lymphocytes. However, its underlying signaling pathways remain to be elucidated. Here, we have identified various intracellular pathways activated by CXCL4L1 in comparison with other CXCR3 ligands, including CXCL4 and interferon-γ-induced protein 10/CXCL10. Signaling experiments show involvement of the mitogen-activated protein kinase (MAPK) family in CXCR3A-transfected cells, activated lymphocytes and human microvascular endothelial cells (HMVEC). In CXCR3A transfectants, CXCL4 and CXCL4L1 activated p38 MAPK, as well as Src kinase within 30 and 5 min, respectively. Extracellular signal-regulated kinase (ERK) phosphorylation occurred in activated lymphocytes, yet was inhibited in microvascular and lymphatic endothelial cells. CXCL4L1 and CXCL4 counterbalanced the angiogenic chemokine stromal cell-derived factor-1/CXCL12 in both endothelial cell types. Notably, inhibition of ERK signaling by CXCL4L1 and CXCL4 in lymphatic endothelial cells implies that these chemokines might also regulate lymphangiogenesis. Furthermore, CXCL4, CXCL4L1 and CXCL10 slightly enhanced forskolin-stimulated cAMP production in HMVEC. Finally, CXCL4, but not CXCL4L1, induced activation of p70S6 kinase within 5 min in HMVEC. Our findings confirm that the angiostatic chemokines CXCL4L1 and CXCL4 activate both CXCR3A and CXCR3B and bring new insights into the complexity of their signaling cascades.

  14. Prevention of TGF-beta-induced apoptosis by interlukin-4 through Akt activation and p70S6K survival signaling pathways.

    PubMed

    Lin, Sue-Jane; Chang, Chungming; Ng, Ah-Kau; Wang, Shu-Han; Li, Jia-Je; Hu, Cheng-po

    2007-09-01

    In this study, we demonstrate that interleukin-4 (IL-4) protects human hepatocellular carcinoma (HCC) cell line Hep3B from apoptosis induced by transforming growth factor-beta (TGF-beta). Further investigation of IL-4-transduced signaling pathways revealed that both insulin response substrate 1 and 2 (IRS-1/-2) and extracellular signal-regulated kinase (ERK) pathways were activated after IL-4 stimulation. The IRS-1/-2 activation was accompanied by the activation of phosphotidylinositol-3-kinase (PI3K), leading to Akt and p70 ribosomal protein S6 kinase (p70S6K). Interestingly, a protein kinase C (PKC) inhibitor, Gö6976, inhibited the phosphorylation of Akt, suggesting that the Akt activation was PKC-dependent. Using specific inhibitors for PI3K or ERK, we demonstrated that the PI3K pathway, but not the ERK pathway, was required for protection. The constitutively active form of PI3K almost completely rescued TGF-beta-induced apoptosis, further supporting the importance of the PI3K pathway in the protective effect of IL-4. Furthermore, a dominant negative Akt and/or Gö6976 only partially blocked the anti-apoptotic effect of IL-4. Similarly, rapamycin, which interrupted the activation of p70S6K, also only partially blocked the protective effect of IL-4. However, in the presence of both rapamycin and dominant negative Akt with or without Gö6976, IL-4 almost completely lost the anti-apoptotic effect, suggesting that both Akt and p70S6K pathways were required for the protective effect of IL-4 against TGF-beta-induced apoptosis.

  15. Emodin inhibits coxsackievirus B3 replication via multiple signalling cascades leading to suppression of translation.

    PubMed

    Zhang, Huifang M; Wang, Fengping; Qiu, Ye; Ye, Xin; Hanson, Paul; Shen, Hongxing; Yang, Decheng

    2016-02-15

    CVB3 (coxsackievirus 3) is a primary causal agent of viral myocarditis. Emodin is a natural compound isolated from certain plant roots. In the present study, we found that emodin inhibited CVB3 replication in vitro and in mice, and now we report an unrecognized mechanism by which emodin inhibits CVB3 replication through suppression of viral protein translation via multiple pathways. On one hand, emodin treatment inhibited Akt/mTOR (mammalian target of rapamycin) signalling and activated 4EBP1 (eukaryotic initiation factor 4R-binding protein 1), leading to suppression of translation initiation of ribosomal protein L32 encoded by a 5'-TOP (terminal oligopyrimidine) mRNA. On the other hand, emodin treatment differentially regulated multiple signal cascades, including Akt/mTORC1/p70(S6K) (p70 S6 kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2)/p90(RSK) (p90 ribosomal S6 kinase) and Ca(2+)/calmodulin, leading to activation of eEF2K (eukaryotic elongation factor 2 kinase) and subsequent inactivation of eEF2 (eukaryotic elongation factor 2), resulting in inhibition of CVB3 VP1 (viral protein 1) synthesis. These data imply that eEF2K is a major factor mediating cross-talk of different arms of signalling cascades in this signal network. This notion was verified by either overexpressing eEF2K or treating the cells with siRNAs or eEF2K inhibitor A484954. We showed further that the emodin-induced decrease in p70(S6K) phosphorylation plays a dominant positive role in activation of eEF2K and in turn in conferring the antiviral effect of emodin. This finding was further solidified by expressing constitutively active and dominant-negative Akt. Collectively, our data reveal that emodin inhibits viral replication through impairing translational machinery and suppression of viral translation elongation. © 2016 Authors; published by Portland Press Limited.

  16. Elevated levels of p-Mnk1, p-eIF4E and p-p70S6K proteins are associated with tumor recurrence and poor prognosis in astrocytomas.

    PubMed

    Fan, Weibing; Wang, Weiyuan; Mao, Xinfa; Chu, Shuzhou; Feng, Juan; Xiao, Desheng; Zhou, Jianhua; Fan, Songqing

    2017-02-01

    Malignant astrocytomas are able to invade neighboring and distant areas of the normal brain. Signaling pathway alterations play important role in the development of astrocytomas. Deregulation of eukaryotic translation initiation factor 4E (eIF4E) by MAP kinase-interacting kinases (Mnk) on Ser-209 directly or PI3K/mTOR/S6K pathway indirectly has a critical effect on promoting cellular proliferation, malignant transformation and metastasis. We examined and analyzed the correlation between expression of p-Mnk1, p-eIF4E and p-p70S6K proteins and clinicopathological features in 103 astrocytomas and 54 non-tumorous brain tissues. The results indicated that positive percentage of overexpression of p-Mnk1 and p-eIF4E proteins in astrocytomas were significantly higher than that of in the non-tumorous brain tissues (P < 0.05). Elevated p-Mnk1 and p-eIF4E and co-overexpressed three proteins were associated with tumor recurrence (P = 0.003, P = 0.006, P = 0.007, respectively). Overexpressed p-eIF4E significantly correlated with the tumor size (P = 0.019). In addition, overexpression of p-eIF4E and three proteins common expression were related to the WHO grade of astrocytomas (P = 0.001, P = 0.044 respectively). Spearman's rank correlation test further showed that the expression of p-Mnk1 was strongly positive correlated with the expression of p-eIF4E in astrocytomas (r = 0.294, P = 0.003). Besides, overexpression of p-eIF4E and co-expression of p-Mnk1, p-eIF4E and p-p70S6K proteins were inversely correlated with overall survival rates of astrocytomas. Multivariate Cox regression analysis further identified that the elevated p-eIF4E expression, three proteins common expression were correlated with unfavorable prognosis of astrocytomas regardless of ages and WHO grades. Taken together, overexpression of p-eIF4E and co-expression of p-Mnk1, p-eIF4E and p-p70S6K proteins could be used as novel independent poor prognostic biomarkers for patients

  17. Tungsten phosphanylarylthiolato complexes [W{PhP(2-SC6H4)2-kappa3S,S',P} 2] and [W{P(2-SC6H4)3-kappa4S,S',S",P}2]: synthesis, structures and redox chemistry.

    PubMed

    Hildebrand, Alexandra; Lönnecke, Peter; Silaghi-Dumitrescu, Luminita; Hey-Hawkins, Evamarie

    2008-09-14

    PhP(2-SHC6H4)2 (PS2H2) reacts with WCl6 with reduction of tungsten to give the air-sensitive tungsten(IV) complex [W{PhP(2-SC6H4)2-kappa(3)S,S',P}2] (1). 1 is oxidised in air to [WO{PhPO(2-SC6H4)2-kappa(3)S,S',O}{PhP(2-SC6H4)2-kappa(3)S,S',P}] (2). The attempted synthesis of 2 by reaction of 1 with iodosobenzene as oxidising agent was unsuccessful. [W{P(2-SC6H4)3-kappa(4)S,S',S",P}2] (3) was formed in the reaction of P(2-SHC6H4)3 (PS3H3) with WCl6. The W(VI) complex 3 contains two PS3(3-) ligands, each coordinated in a tetradentate fashion resulting in a tungsten coordination number of eight. The reaction of 3 with AgBF4 yields the dinuclear tungsten complex [W2{P(2-SC6H4)3-kappa(4)S,S',S",P}3]BF4 (4). Complexes 1-4 were characterised by spectral methods and X-ray structure determination.

  18. First Principles Investigation of the Geometrical and Electrochemical Properties of Na4P6 and Li4P2S6

    NASA Astrophysics Data System (ADS)

    Rush, Larry E., Jr.; Holzwarth, N. A. W.

    First principles simulations are used to examine the structural and physical properties of Na4P2S6 in comparison with its Li4P2S6 analog. Four model structures are considered including the C 2 / m structure recently reported by Kuhn and co-workers from their analysis of single crystals of Na4P2S6, and three structures related to the P63 / mcm structure with P site disorder found in 1982 by Mercier and co-workers from their analysis of single crystals of Li4P2S6. The computational results indicate that both Na4P2S6 and Li4P2S6 have the same disordered ground state structures consistent with the P63 / mcm space group, while the optimized C 2 / m structures have higher energies by 0.1 eV and 0.4 eV per formula unit for Na4P2S6 and Li4P2S6, respectively. Simulations of ion migration suggest that Na4P2S6 may have more favorable ionic conductivity compared to Li4P2S6. Supported by NSF Grant DMR-1105485 and DMR-1507942.

  19. Targeting Aberrant p70S6K Activation for Estrogen Receptor-Negative Breast Cancer Prevention.

    PubMed

    Wang, Xiao; Yao, Jun; Wang, Jinyang; Zhang, Qingling; Brady, Samuel W; Arun, Banu; Seewaldt, Victoria L; Yu, Dihua

    2017-11-01

    The prevention of estrogen receptor-negative (ER-) breast cancer remains a major challenge in the cancer prevention field, although antiestrogen and aromatase inhibitors have shown adequate efficacy in preventing estrogen receptor-positive (ER + ) breast cancer. Lack of commonly expressed, druggable targets is a major obstacle for meeting this challenge. Previously, we detected the activation of Akt signaling pathway in atypical hyperplasic early-stage lesions of patients. In the current study, we found that Akt and the downstream 70 kDa ribosomal protein S6 kinase (p70S6K) signaling pathway was highly activated in ER - premalignant breast lesions and ER - breast cancer. In addition, p70S6K activation induced transformation of ER - human mammary epithelial cells (hMEC). Therefore, we explored the potential of targeting Akt/p70S6K in the p70S6K activated, ER - hMEC models and mouse mammary tumor models for the prevention of ER - breast cancer. We found that a clinically applicable Akt/p70S6K dual inhibitor, LY2780301, drastically decreased proliferation of hMECs with ErbB2-induced p70S6K activation via Cyclin B1 inhibition and cell-cycle blockade at G 0 -G 1 phase, while it did not significantly reverse the abnormal acinar morphology of these hMECs. In addition, a brief treatment of LY2780301 in MMTV- neu mice that developed atypical hyperplasia (ADH) and mammary intraepithelial neoplasia (MIN) lesions with activated p70S6K was sufficient to suppress S6 phosphorylation and decrease cell proliferation in hyperplasic MECs. In summary, targeting the aberrant Akt/p70S6K activation in ER - hMEC models in vitro and in the MMTV- neu transgenic mouse model in vivo effectively inhibited Akt/S6K signaling and reduced proliferation of hMECs in vitro and ADH/MIN lesions in vivo , indicating its potential in prevention of p70S6K activated ER - breast cancer. Cancer Prev Res; 10(11); 641-50. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Crystal structure of the kinase domain of human protein tyrosine kinase 6 (PTK6) at 2.33 Å resolution.

    PubMed

    Thakur, Manish Kumar; Kumar, Amit; Birudukota, Swarnakumari; Swaminathan, Srinivasan; Tyagi, Rajiv; Gosu, Ramachandraiah

    2016-09-16

    Human Protein tyrosine kinase 6 (PTK6) (EC:2.7.10.2), also known as the breast tumor kinase (BRK), is an intracellular non-receptor Src-related tyrosine kinase expressed in a majority of human breast tumors and breast cancer cell lines, but its expression is low or completely absent in normal mammary glands. In the recent past, several studies have suggested that PTK6 is a potential therapeutic target in cancer. To understand its structural and functional properties, the PTK6 kinase domain (PTK6-KD) gene was cloned, overexpressed in a baculo-insect cell system, purified and crystallized at room temperature. X-ray diffraction data to 2.33 Å resolution was collected on a single PTK6-KD crystal, which belonged to the triclinic space group P1. The Matthews coefficient calculation suggested the presence of four protein molecules per asymmetric unit, with a solvent content of ∼50%.The structure has been solved by molecular replacement and crystal structure data submitted to the protein data bank under the accession number 5D7V. This is the first report of apo PTK6-KD structure crystallized in DFG-in and αC-helix-out conformation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. p21-activated kinase inhibitors.

    PubMed

    Rudolph, Joachim; Crawford, James J; Hoeflich, Klaus P; Chernoff, Jonathan

    2013-01-01

    The p21-activated kinases (PAKs) are Ser/Thr kinases in the STE20 kinase family with important roles in regulating cytoskeletal organization, cell migration, and signaling. The PAK enzyme family comprises six members subdivided into two groups: Group I, represented by PAK1, 2, and 3, and Group II, represented by PAK 4, 5, and 6, based on sequence and structural homology. Individual PAK isoforms were found to be overexpressed and amplified in a variety of human cancers, and in vitro and in vivo studies using genetically engineered systems as well as small-molecule tool compounds have suggested therapeutic utility of PAKs as oncology targets. The identification of potent and kinome-selective ATP-competitive PAK inhibitors has proven challenging, likely caused by the openness and unique plasticity of the ATP-binding site of PAK enzymes. Progress in achieving increased kinase selectivity has been achieved with certain inhibitors but at the expense of increased molecular weight. Allosteric inhibitors, such as IPA-3, leverage the unique Group I PAK autoregulatory domain for selective inhibition, and this approach might provide an outlet to evade the kinase selectivity challenges observed with ATP-competitive PAK inhibitors. © 2013 Elsevier Inc. All rights reserved.

  2. Cigarette smoke inhibits efferocytosis via deregulation of sphingosine kinase signaling: reversal with exogenous S1P and the S1P analogue FTY720.

    PubMed

    Tran, Hai B; Barnawi, Jameel; Ween, Miranda; Hamon, Rhys; Roscioli, Eugene; Hodge, Greg; Reynolds, Paul N; Pitson, Stuart M; Davies, Lorena T; Haberberger, Rainer; Hodge, Sandra

    2016-07-01

    Alveolar macrophages from chronic obstructive pulmonary disease patients and cigarette smokers are deficient in their ability to phagocytose apoptotic bronchial epithelial cells (efferocytosis). We hypothesized that the defect is mediated via inhibition of sphingosine kinases and/or their subcellular mislocalization in response to cigarette smoke and can be normalized with exogenous sphingosine-1-phosphate or FTY720 (fingolimod), a modulator of sphingosine-1-phosphate signaling, which has been shown to be clinically useful in multiple sclerosis. Measurement of sphingosine kinase 1/2 activities by [(32)P]-labeled sphingosine-1-phosphate revealed a 30% reduction of sphingosine kinase 1 (P < 0.05) and a nonsignificant decrease of sphingosine kinase 2 in THP-1 macrophages after 1 h cigarette smoke extract exposure. By confocal analysis macrophage sphingosine kinase 1 protein was normally localized to the plasma membrane and cytoplasm and sphingosine kinase 2 to the nucleus and cytoplasm but absent at the cell surface. Cigarette smoke extract exposure (24 h) led to a retraction of sphingosine kinase 1 from the plasma membrane and sphingosine kinase 1/2 clumping in the Golgi domain. Selective inhibition of sphingosine kinase 2 with 25 µM ABC294640 led to 36% inhibition of efferocytosis (P < 0.05); 10 µM sphingosine kinase inhibitor/5C (sphingosine kinase 1-selective inhibitor) induced a nonsignificant inhibition of efferocytosis, but its combination with ABC294640 led to 56% inhibition (P < 0.01 vs. control and < 0.05 vs. single inhibitors). Cigarette smoke-inhibited efferocytosis was significantly (P < 0.05) reversed to near-control levels in the presence of 10-100 nM exogenous sphingosine-1-phosphate or FTY720, and FTY720 reduced cigarette smoke-induced clumping of sphingosine kinase 1/2 in the Golgi domain. These data strongly support a role of sphingosine kinase 1/2 in efferocytosis and as novel therapeutic targets in chronic obstructive pulmonary disease.

  3. Synthesis and Evaluation of Novel RSK Inhibitors in a Living Human Breast Model

    DTIC Science & Technology

    2015-09-01

    the n- propyl carbamate analogue 9, and the sec-butyl carbamate analogue 10. The modified synthetic route could also be applied to the synthesis of...AWARD NUMBER: W81XWH-11-1-0068 TITLE: Synthesis and Evaluation of Novel RSK Inhibitors in a Living Human Breast Model PRINCIPAL INVESTIGATOR...DATES COVERED 01 Jul 2011 – 30 Jun 2015 4. TITLE AND SUBTITLE Synthesis and Evaluation of Novel RSK Inhibitors in a Living Human Breast Model 5a

  4. Protein kinase A can block EphA2 receptor-mediated cell repulsion by increasing EphA2 S897 phosphorylation.

    PubMed

    Barquilla, Antonio; Lamberto, Ilaria; Noberini, Roberta; Heynen-Genel, Susanne; Brill, Laurence M; Pasquale, Elena B

    2016-09-01

    The EphA2 receptor tyrosine kinase plays key roles in tissue homeostasis and disease processes such as cancer, pathological angiogenesis, and inflammation through two distinct signaling mechanisms. EphA2 "canonical" signaling involves ephrin-A ligand binding, tyrosine autophosphorylation, and kinase activity; EphA2 "noncanonical" signaling involves phosphorylation of serine 897 (S897) by AKT and RSK kinases. To identify small molecules counteracting EphA2 canonical signaling, we developed a high-content screening platform measuring inhibition of ephrin-A1-induced PC3 prostate cancer cell retraction. Surprisingly, most hits from a screened collection of pharmacologically active compounds are agents that elevate intracellular cAMP by activating G protein-coupled receptors such as the β2-adrenoceptor. We found that cAMP promotes phosphorylation of S897 by protein kinase A (PKA) as well as increases the phosphorylation of several nearby serine/threonine residues, which constitute a phosphorylation hotspot. Whereas EphA2 canonical and noncanonical signaling have been viewed as mutually exclusive, we show that S897 phosphorylation by PKA can coexist with EphA2 tyrosine phosphorylation and block cell retraction induced by EphA2 kinase activity. Our findings reveal a novel paradigm in EphA2 function involving the interplay of canonical and noncanonical signaling and highlight the ability of the β2-adrenoceptor/cAMP/PKA axis to rewire EphA2 signaling in a subset of cancer cells. © 2016 Barquilla et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions

    PubMed Central

    Roux, Philippe P.; Blenis, John

    2004-01-01

    Conserved signaling pathways that activate the mitogen-activated protein kinases (MAPKs) are involved in relaying extracellular stimulations to intracellular responses. The MAPKs coordinately regulate cell proliferation, differentiation, motility, and survival, which are functions also known to be mediated by members of a growing family of MAPK-activated protein kinases (MKs; formerly known as MAPKAP kinases). The MKs are related serine/threonine kinases that respond to mitogenic and stress stimuli through proline-directed phosphorylation and activation of the kinase domain by extracellular signal-regulated kinases 1 and 2 and p38 MAPKs. There are currently 11 vertebrate MKs in five subfamilies based on primary sequence homology: the ribosomal S6 kinases, the mitogen- and stress-activated kinases, the MAPK-interacting kinases, MAPK-activated protein kinases 2 and 3, and MK5. In the last 5 years, several MK substrates have been identified, which has helped tremendously to identify the biological role of the members of this family. Together with data from the study of MK-knockout mice, the identities of the MK substrates indicate that they play important roles in diverse biological processes, including mRNA translation, cell proliferation and survival, and the nuclear genomic response to mitogens and cellular stresses. In this article, we review the existing data on the MKs and discuss their physiological functions based on recent discoveries. PMID:15187187

  6. Effects of phorbol ester on mitogen-activated protein kinase kinase activity in wild-type and phorbol ester-resistant EL4 thymoma cells.

    PubMed

    Gause, K C; Homma, M K; Licciardi, K A; Seger, R; Ahn, N G; Peterson, M J; Krebs, E G; Meier, K E

    1993-08-05

    Phorbol ester-sensitive and -resistant EL4 thymoma cell lines differ in their ability to activate mitogen-activated protein kinase (MAPK) in response to phorbol ester. Treatment of wild-type EL4 cells with phorbol ester results in the rapid activations of MAPK and pp90rsk kinase, a substrate for MAPK, while neither kinase is activated in response to phorbol ester in variant EL4 cells. This study examines the activation of MAPK kinase (MAPKK), an activator of MAPK, in wild-type and variant EL4 cells. Phosphorylation of a 40-kDa substrate, identified as MAPK, was observed following in vitro phosphorylation reactions using cytosolic extracts or Mono Q column fractions prepared from phorbol ester-treated wild-type EL4 cells. MAPKK activity coeluted with a portion of the inactive MAPK upon Mono Q anion-exchange chromatography, permitting detection of the MAPKK activity in fractions containing both kinases. This MAPKK activity was present in phorbol ester-treated wild-type cells, but not in phorbol ester-treated variant cells or in untreated wild-type or variant cells. The MAPKK from wild-type cells was able to activate MAPK prepared from either wild-type or variant cells. MAPKK activity could be stimulated in both wildtype and variant EL4 cells in response to treatment of cells with okadaic acid. These results indicate that the failure of variant EL4 cells to activate MAP kinase in response to phorbol ester is due to a failure to activate MAPKK. Therefore, the step that confers phorbol ester resistance to variant EL4 cells lies between the activation of protein kinase C and the activation of MAPKK.

  7. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Cheol-Hee; Department of Pharmacology, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759; Lee, Byung-Hoon

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy andmore » apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken

  8. Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli.

    PubMed

    Eguchi, Yoko; Utsumi, Ryutaro

    2014-09-01

    Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes. We searched for signals activating EvgS and found that a high concentration of alkali metals (Na(+), K(+)) in addition to low pH was essential for the activation. EvgS is a histidine kinase, with a large periplasmic sensor region consisting of two tandem PBPb (bacterial periplasmic solute-binding protein) domains at its N terminus. The periplasmic sensor region of EvgS was necessary for EvgS activation, and Leu152, located within the first PBPb domain, was involved in the activation. Furthermore, chimeras of EvgS and PhoQ histidine kinases suggested that alkali metals were perceived at the periplasmic sensor region, whereas the cytoplasmic linker domain, connecting the transmembrane region and the histidine kinase domain, was required for low-pH perception. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Autophagy is involved in regulating influenza A virus RNA and protein synthesis associated with both modulation of Hsp90 induction and mTOR/p70S6K signaling pathway.

    PubMed

    Liu, Ge; Zhong, Meigong; Guo, Chaowan; Komatsu, Masaaki; Xu, Jun; Wang, Yifei; Kitazato, Kaio

    2016-03-01

    Influenza A virus (IAV) infection triggers autophagosome formation, but inhibits the fusion of autophagosomes with lysosomes. However, the role of autophagy in IAV replication is still largely unclarified. In this study, we aim to reveal the role of autophagy in IAV replication and the molecular mechanisms underlying the regulation. By using autophagy-deficient (Atg7(-/-)) MEFs, we demonstrated that autophagy deficiency significantly reduced the levels of viral proteins, mRNA and genomic RNAs (vRNAs) without affecting viral entry. We further found that autophagy deficiency lead to a transient increase in phosphorylation of mTOR and its downstream targets including 4E-BP1 and S6 at a very early stage of IAV infection, and markedly suppressed p70S6K phosphorylation at the late stage of IAV infection. Furthermore, autophagy deficiency resulted in impairment of Hsp90 induction in response to IAV infection. These results indicate that IAV regulates autophagy to benefit the accumulation of viral elements (synthesis of viral proteins and genomic RNA) during IAV replication. This regulation is associated with modulation of Hsp90 induction and mTOR/p70S6K signaling pathway. Our results provide important evidence for the role of autophagy in IAV replication and the mechanisms underlying the regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. p21-Activated kinase 5: a pleiotropic kinase.

    PubMed

    Wen, Yi-Yang; Wang, Xiao-Xia; Pei, Dong-Sheng; Zheng, Jun-Nian

    2013-12-15

    The PAKs (p21-activated kinases) are highly conserved serine/threonine protein kinases which comprise six mammalian PAKs. PAK5 (p21-activated kinase 5) is the least understood member of PAKs that regulate many intracellular processes when they are stimulated by activated forms of the small GTPases Cdc42 and Rac. PAK5 takes an important part in multiple signal pathways in mammalian cells and controls a variety of cellular functions including cytoskeleton organization, cell motility and apoptosis. The main goal of this review is to describe the structure, mechanisms underlying its activity regulation, its role in apoptosis and the likely directions of further research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Sphingosine 1-Phosphate (S1P) Receptors 1 and 2 Coordinately Induce Mesenchymal Cell Migration through S1P Activation of Complementary Kinase Pathways*

    PubMed Central

    Quint, Patrick; Ruan, Ming; Pederson, Larry; Kassem, Moustapha; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo

    2013-01-01

    Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways. PMID:23300082

  12. Bi-functional, substrate mimicking RNA inhibits MSK1-mediated cAMP-response element-binding protein phosphorylation and reveals magnesium ion-dependent conformational changes of the kinase.

    PubMed

    Hamm, Jorg; Alessi, Dario R; Biondi, Ricardo M

    2002-11-29

    The design of specific inhibitors for protein kinases is an important step toward elucidation of intracellular signal transduction pathways and to guide drug discovery programs. We devised a model approach to generate specific, competitive kinase inhibitors by isolating substrate mimics containing two independent binding sites with an anti-idiotype strategy from combinatorial RNA libraries. As a general test for the ability to generate highly specific kinase inhibitors, we selected the transcription factor cAMP-response element-binding protein (CREB) that is phosphorylated on the same serine residue by the protein kinase MSK1 as well as by RSK1. The sequences and structures of these kinases are very similar, about 60% of their amino acids are identical. Nevertheless, we can demonstrate that the selected RNA inhibitors inhibit specifically CREB phosphorylation by MSK1 but do not affect CREB phosphorylation by RSK1. The inhibitors interact preferentially with the inactive form of MSK1. Furthermore, we demonstrate that RNA ligands can be conformation-specific probes, and this feature allowed us to describe magnesium ion-dependent conformational changes of MSK1 upon activation.

  13. Discovery of phosphoinositide 3-kinases (PI3K) p110β isoform inhibitor 4-[2-hydroxyethyl(1-naphthylmethyl)amino]-6-[(2S)-2-methylmorpholin-4-yl]-1H-pyrimidin-2-one, an effective antithrombotic agent without associated bleeding and insulin resistance.

    PubMed

    Giordanetto, Fabrizio; Wållberg, Andreas; Ghosal, Saswati; Iliefski, Tommy; Cassel, Johan; Yuan, Zhong-Qing; von Wachenfeldt, Henrik; Andersen, Søren M; Inghardt, Tord; Tunek, Anders; Nylander, Sven

    2012-11-01

    Structure-based evolution of the original fragment leads resulted in the identification of 4-[2-hydroxyethyl(1-naphthylmethyl)amino]-6-[(2S)-2-methylmorpholin-4-yl]-1H-pyrimidin-2-one, (S)-21, a potent, selective phosphoinositide 3-kinases (PI3K) p110β isoform inhibitor with favourable in vivo antiplatelet effect. Despite its antiplatelet action, (S)-21 did not significantly increase bleeding time in dogs. Additionally, due to its enhanced selectivity over p110α, (S)-21 did not induce any insulin resistance in rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. 27 CFR 6.89-6.90 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false [Reserved] 6.89-6.90 Section 6.89-6.90 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS âTIED-HOUSEâ Exceptions §§ 6.89-6.90 [Reserved...

  15. 27 CFR 6.89-6.90 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false [Reserved] 6.89-6.90 Section 6.89-6.90 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS âTIED-HOUSEâ Exceptions §§ 6.89-6.90 [Reserved...

  16. Selective alteration of adult hippocampal neurogenesis and impaired spatial pattern separation performance in the RSK2-deficient mouse model of Coffin-Lowry syndrome.

    PubMed

    Castillon, Charlotte; Lunion, Steeve; Desvignes, Nathalie; Hanauer, André; Laroche, Serge; Poirier, Roseline

    2018-07-01

    Adult neurogenesis is involved in certain hippocampus-dependent cognitive functions and is linked to psychiatric diseases including intellectual disabilities. The Coffin-Lowry syndrome (CLS) is a developmental disorder caused by mutations in the Rsk2 gene and characterized by intellectual disabilities associated with growth retardation. How RSK2-deficiency leads to cognitive dysfunctions in CLS is however poorly understood. Here, using Rsk2 Knock-Out mice, we characterized the impact of RSK2 deficiency on adult hippocampal neurogenesis in vivo. We report that the absence of RSK2 does not affect basal proliferation, differentiation and survival of dentate gyrus adult-born neurons but alters the maturation progression of young immature newborn neurons. Moreover, when RSK2-deficient mice were submitted to spatial learning, in contrast to wild-type mice, proliferation of adult generated neurons was decreased and no pro-survival effect of learning was observed. Thus, learning failed to recruit a selective population of young newborn neurons in association with deficient long-term memory recall. Given the proposed role of the dentate gyrus and of adult-generated newborn neurons in hippocampal-dependent pattern separation function, we explored this function in a delayed non-matching to place task and in an object-place pattern separation task and report severe deficits in spatial pattern separation in Rsk2-KO mice. Together, this study reveals a previously unknown role for RSK2 in the early stages of maturation and learning-dependent involvement of adult-born dentate gyrus neurons. These alterations associated with a deficit in the ability of RSK2-deficient mice to finely discriminate relatively similar spatial configurations, may contribute to cognitive dysfunction in CLS. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Quasimolecular emission near the Xe(5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance lines induced by collisions with He atoms

    NASA Astrophysics Data System (ADS)

    Alekseeva, O. S.; Devdariani, A. Z.; Grigorian, G. M.; Lednev, M. G.; Zagrebin, A. L.

    2017-02-01

    This study is devoted to the theoretical investigation of the quasimolecular emission of Xe*-He and Kr*-He collision pairs near the Xe (5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance atomic lines. The potential curves of the quasimolecules Xe(5p 56s) + He and Kr(4p 55s) + He have been obtained with the use of the effective Hamiltonian and pseudopotential methods. Based on these potential curves the processes of quasimolecular emission of Xe*+He and Kr*+He mixtures have been considered and the spectral distributions I(ħΔω) of photons emitted have been obtained in the framework of quasistatic approximation.

  18. Cannabidiol Counteracts Amphetamine-Induced Neuronal and Behavioral Sensitization of the Mesolimbic Dopamine Pathway through a Novel mTOR/p70S6 Kinase Signaling Pathway

    PubMed Central

    Renard, Justine; Loureiro, Michael; Rosen, Laura G.; Zunder, Jordan; de Oliveira, Cleusa; Schmid, Susanne; Rushlow, Walter J.

    2016-01-01

    Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses. However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphetamine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neuronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology. SIGNIFICANCE STATEMENT The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia. However, the mechanisms by which

  19. Cannabidiol Counteracts Amphetamine-Induced Neuronal and Behavioral Sensitization of the Mesolimbic Dopamine Pathway through a Novel mTOR/p70S6 Kinase Signaling Pathway.

    PubMed

    Renard, Justine; Loureiro, Michael; Rosen, Laura G; Zunder, Jordan; de Oliveira, Cleusa; Schmid, Susanne; Rushlow, Walter J; Laviolette, Steven R

    2016-05-04

    Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses. However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphetamine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neuronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology. The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia. However, the mechanisms by which CBD may produce

  20. ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK-RSK pathway.

    PubMed

    Adachi, Shungo; Homoto, Masae; Tanaka, Rikou; Hioki, Yusaku; Murakami, Hiroshi; Suga, Hiroaki; Matsumoto, Masaki; Nakayama, Keiichi I; Hatta, Tomohisa; Iemura, Shun-ichiro; Natsume, Tohru

    2014-09-01

    Low-density lipoprotein receptor (LDLR) mRNA is unstable, but is stabilized upon extracellular signal-regulated kinase (ERK) activation, possibly through the binding of certain proteins to the LDLR mRNA 3'-untranslated region (UTR), although the detailed mechanism underlying this stability control is unclear. Here, using a proteomic approach, we show that proteins ZFP36L1 and ZFP36L2 specifically bind to the 3'-UTR of LDLR mRNA and recruit the CCR4-NOT-deadenylase complex, resulting in mRNA destabilization. We also show that the C-terminal regions of ZFP36L1 and ZFP36L2 are directly phosphorylated by p90 ribosomal S6 kinase, a kinase downstream of ERK, resulting in dissociation of the CCR4-NOT-deadenylase complex and stabilization of LDLR mRNA. We further demonstrate that targeted disruption of the interaction between LDLR mRNA and ZFP36L1 and ZFP36L2 using antisense oligonucleotides results in upregulation of LDLR mRNA and protein. These results indicate that ZFP36L1 and ZFP36L2 regulate LDLR protein levels downstream of ERK. Our results also show the usefulness of our method for identifying critical regulators of specific RNAs and the potency of antisense oligonucleotide-based therapeutics. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Proteomics reveal energy metabolism and mitogen-activated protein kinase signal transduction perturbation in human Borna disease virus Hu-H1-infected oligodendroglial cells.

    PubMed

    Liu, X; Yang, Y; Zhao, M; Bode, L; Zhang, L; Pan, J; Lv, L; Zhan, Y; Liu, S; Zhang, L; Wang, X; Huang, R; Zhou, J; Xie, P

    2014-05-30

    Borna disease virus (BDV) is a neurotropic, non-cytolytic RNA virus which replicates in the cell nucleus targeting mainly hippocampal neurons, but also astroglial and oligodendroglial cells in the brain. BDV is associated with a large spectrum of neuropsychiatric pathologies in animals. Its relationship to human neuropsychiatric illness still remains controversial. We could recently demonstrate that human BDV strain Hu-H1 promoted apoptosis and inhibited cell proliferation in a human oligodendroglial cell line (OL cells) whereas laboratory BDV strain V acted contrariwise. Here, differential protein expression between BDV Hu-H1-infected OL cells and non-infected OL cells was assessed through a proteomics approach, using two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry. A total of 63 differential host proteins were identified in BDV Hu-H1-infected OL cells compared to non-infected OL cells. We found that most changes referred to alterations related to the pentose phosphate pathway, glyoxylate and dicarboxylate metabolism, the tricarboxylic acid (TCA) cycle, and glycolysis /gluconeogenesis. By manual querying, two differential proteins were found to be associated with mitogen-activated protein kinase (MAPK) signal transduction. Five key signaling proteins of this pathway (i.e., p-Raf, p-MEK, p-ERK1/2, p-RSK, and p-MSK) were selected for Western blotting validation. p-ERK1/2 and p-RSK were found to be significantly up-regulated, and p-MSK was found to be significantly down-regulated in BDV Hu-H1-infected OL cells compared to non-infected OL cell. Although BDV Hu-H1 constitutively activated the ERK-RSK pathway, host cell proliferation and nuclear translocation of activated pERK in BDV Hu-H1-infected OL cells were impaired. These findings indicate that BDV Hu-H1 infection of human oligodendroglial cells significantly perturbs host energy metabolism, activates the downstream ERK-RSK complex of

  2. Reducing Ribosomal Protein S6 Kinase 1 Expression Improves Spatial Memory and Synaptic Plasticity in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Caccamo, Antonella; Branca, Caterina; Talboom, Joshua S.; Shaw, Darren M.; Turner, Dharshaun; Ma, Luyao; Messina, Angela; Huang, Zebing; Wu, Jie

    2015-01-01

    Aging is the most important risk factor associated with Alzheimer's disease (AD); however, the molecular mechanisms linking aging to AD remain unclear. Suppression of the ribosomal protein S6 kinase 1 (S6K1) increases healthspan and lifespan in several organisms, from nematodes to mammals. Here we show that S6K1 expression is upregulated in the brains of AD patients. Using a mouse model of AD, we found that genetic reduction of S6K1 improved synaptic plasticity and spatial memory deficits, and reduced the accumulation of amyloid-β and tau, the two neuropathological hallmarks of AD. Mechanistically, these changes were linked to reduced translation of tau and the β-site amyloid precursor protein cleaving enzyme 1, a key enzyme in the generation of amyloid-β. Our results implicate S6K1 dysregulation as a previously unidentified molecular mechanism underlying synaptic and memory deficits in AD. These findings further suggest that therapeutic manipulation of S6K1 could be a valid approach to mitigate AD pathology. SIGNIFICANCE STATEMENT Aging is the most important risk factor for Alzheimer's disease (AD). However, little is known about how it contributes to AD pathogenesis. S6 kinase 1 (S6K1) is a protein kinase involved in regulation of protein translation. Reducing S6K1 activity increases lifespan and healthspan. We report the novel finding that reducing S6K1 activity in 3xTg-AD mice ameliorates synaptic and cognitive deficits. These improvement were associated with a reduction in amyloid-β and tau pathology. Mechanistically, lowering S6K1 levels reduced translation of β-site amyloid precursor protein cleaving enzyme 1 and tau, two key proteins involved in AD pathogenesis. These data suggest that S6K1 may represent a molecular link between aging and AD. Given that aging is the most important risk factor for most neurodegenerative diseases, our results may have far-reaching implications into other diseases. PMID:26468204

  3. Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway.

    PubMed

    Wang, Wei; Peng, Yizhi; Wang, Yuanyuan; Zhao, Xiaohui; Yuan, Zhiqiang

    2009-09-01

    1. Hypoxia-induced cardiomyocyte apoptosis contributes significantly to cardiac dysfunction following trauma, shock and burn injury. There is evidence that heat shock protein (HSP) 90 is anti-apoptotic in cardiomyocytes subjected to a variety of apoptotic stimuli. Because HSP90 acts as an upstream regulator of the serine/threonine protein kinase Akt survival pathway during cellular stress, we hypothesized that HSP90 exerts a cardioprotective effect via the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. 2. Neonatal rat cardiomyocytes were subjected to normoxia or hypoxia in the absence or presence of the HSP90 inhibitor geldanamycin (1 μg/mL). Cardiomyocyte apoptosis was assessed by release of lactate dehydrogenase (LDH), terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) staining and caspase 3 activity. Expression of HSP90, Akt, Bad and cytochrome c release was determined by western blot analysis. 3. Following exposure of cells to hypoxia, HSP90 was markedly elevated in a time-dependent manner, reaching a peak at 6 h (eightfold increase). Geldanamycin significantly increased hypoxia-induced release of LDH by 114%, the percentage of apoptotic cardiomyocytes by 102% and caspase 3 activity by 78%. Pretreatment of cells with geldanamycin also suppressed phosphorylation of both Akt and its downstream target Bad, but promoted the mitochondrial release of cytochrome c. 4. In conclusion, HSP90 activity is enhanced in cardiomyocytes following hypoxic insult. The anti-apoptotic effect of HSP90 on cardiomyocytes subjected to hypoxia is mediated, at least in part, by the PI3-K/Akt pathway. Key words: apoptosis, cardiomyocyte, heart failure, heat shock protein 90, hypoxia, phosphatidylinositol 3-kinase/Akt signalling pathway, serine/threonine protein kinase Akt.

  4. The mTOR Substrate S6 Kinase 1 (S6K1) Is a Negative Regulator of Axon Regeneration and a Potential Drug Target for Central Nervous System Injury

    PubMed Central

    Ding, Ying; Slepak, Tatiana; Sun, Yan; Martinez, Yania; Xu, Xiao-Ming

    2017-01-01

    The mammalian target of rapamycin (mTOR) positively regulates axon growth in the mammalian central nervous system (CNS). Although axon regeneration and functional recovery from CNS injuries are typically limited, knockdown or deletion of PTEN, a negative regulator of mTOR, increases mTOR activity and induces robust axon growth and regeneration. It has been suggested that inhibition of S6 kinase 1 (S6K1, gene symbol: RPS6KB1), a prominent mTOR target, would blunt mTOR's positive effect on axon growth. In contrast to this expectation, we demonstrate that inhibition of S6K1 in CNS neurons promotes neurite outgrowth in vitro by twofold to threefold. Biochemical analysis revealed that an mTOR-dependent induction of PI3K signaling is involved in mediating this effect of S6K1 inhibition. Importantly, treating female mice in vivo with PF-4708671, a selective S6K1 inhibitor, stimulated corticospinal tract regeneration across a dorsal spinal hemisection between the cervical 5 and 6 cord segments (C5/C6), increasing axon counts for at least 3 mm beyond the injury site at 8 weeks after injury. Concomitantly, treatment with PF-4708671 produced significant locomotor recovery. Pharmacological targeting of S6K1 may therefore constitute an attractive strategy for promoting axon regeneration following CNS injury, especially given that S6K1 inhibitors are being assessed in clinical trials for nononcological indications. SIGNIFICANCE STATEMENT Despite mTOR's well-established function in promoting axon regeneration, the role of its downstream target, S6 kinase 1 (S6K1), has been unclear. We used cellular assays with primary neurons to demonstrate that S6K1 is a negative regulator of neurite outgrowth, and a spinal cord injury model to show that it is a viable pharmacological target for inducing axon regeneration. We provide mechanistic evidence that S6K1's negative feedback to PI3K signaling is involved in axon growth inhibition, and show that phosphorylation of S6K1 is a more

  5. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling

    PubMed Central

    Syed, Deeba N.; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K.; Adhami, Vaqar M.; Mukhtar, Hasan

    2014-01-01

    The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways. PMID:24675012

  6. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling.

    PubMed

    Syed, Deeba N; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K; Adhami, Vaqar M; Mukhtar, Hasan

    2014-06-01

    The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways. Published by Elsevier Inc.

  7. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia.

    PubMed

    Tang, Chih-Hsin; Lu, Da-Yuu; Yang, Rong-Sen; Tsai, Huei-Yann; Kao, Ming-Ching; Fu, Wen-Mei; Chen, Yuh-Fung

    2007-07-15

    Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.

  8. Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets.

    PubMed

    Moore, S F; Hunter, R W; Hers, I

    2014-05-01

    Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)-stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y(12). PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y(12) antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y(12), in a manner largely independent of the canonical PI3

  9. Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets

    PubMed Central

    Moore, S F; Hunter, R W; Hers, I

    2014-01-01

    Background Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Methods Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Results Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)–stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y12. PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y12 antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. Conclusion These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y12, in a manner

  10. Akt-dependent Activation of the Heart 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase (PFKFB2) Isoenzyme by Amino Acids*

    PubMed Central

    Novellasdemunt, Laura; Tato, Irantzu; Navarro-Sabate, Aurea; Ruiz-Meana, Marisol; Méndez-Lucas, Andrés; Perales, Jose Carlos; Garcia-Dorado, David; Ventura, Francesc; Bartrons, Ramon; Rosa, Jose Luis

    2013-01-01

    Reciprocal regulation of metabolism and signaling allows cells to modulate their activity in accordance with their metabolic resources. Thus, amino acids could activate signal transduction pathways that control cell metabolism. To test this hypothesis, we analyzed the effect of amino acids on fructose-2,6-bisphosphate (Fru-2,6-P2) metabolism. We demonstrate that amino acids increase Fru-2,6-P2 concentration in HeLa and in MCF7 human cells. In conjunction with this, 6-phosphofructo-2-kinase activity, glucose uptake, and lactate concentration were increased. These data correlate with the specific phosphorylation of heart 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB2) isoenzyme at Ser-483. This activation was mediated by the PI3K and p38 signaling pathways. Furthermore, Akt inactivation blocked PFKFB2 phosphorylation and Fru-2,6-P2 production, thereby suggesting that the above signaling pathways converge at Akt kinase. In accordance with these results, kinase assays showed that amino acid-activated Akt phosphorylated PFKFB2 at Ser-483 and that knockdown experiments confirmed that the increase in Fru-2,6-P2 concentration induced by amino acids was due to PFKFB2. In addition, similar effects on Fru-2,6-P2 metabolism were observed in freshly isolated rat cardiomyocytes treated with amino acids, which indicates that these effects are not restricted to human cancer cells. In these cardiomyocytes, the glucose consumption and the production of lactate and ATP suggest an increase of glycolytic flux. Taken together, these results demonstrate that amino acids stimulate Fru-2,6-P2 synthesis by Akt-dependent PFKFB2 phosphorylation and activation and show how signaling and metabolism are inextricably linked. PMID:23457334

  11. TGF-beta1 modulates matrix metalloproteinase-13 expression in hepatic stellate cells by complex mechanisms involving p38MAPK, PI3-kinase, AKT, and p70S6k.

    PubMed

    Lechuga, Carmen G; Hernández-Nazara, Zamira H; Domínguez Rosales, José-Alfredo; Morris, Elena R; Rincón, Ana Rosa; Rivas-Estilla, Ana María; Esteban-Gamboa, Andrés; Rojkind, Marcos

    2004-11-01

    Transforming growth factor-beta1 (TGF-beta1), the main cytokine involved in liver fibrogenesis, induces expression of the type I collagen genes in hepatic stellate cells by a transcriptional mechanism, which is hydrogen peroxide and de novo protein synthesis dependent. Our recent studies have revealed that expression of type I collagen and matrix metalloproteinase-13 (MMP-13) mRNAs in hepatic stellate cells is reciprocally modulated. Because TGF-beta1 induces a transient elevation of alpha1(I) collagen mRNA, we investigated whether this cytokine was able to induce the expression of MMP-13 mRNA during the downfall of the alpha1(I) collagen mRNA. In the present study, we report that TGF-beta1 induces a rapid decline in steady-state levels of MMP-13 mRNA at the time that it induces the expression of alpha1(I) collagen mRNA. This change in MMP-13 mRNA expression occurs within the first 6 h postcytokine administration and is accompanied by a twofold increase in gene transcription and a fivefold decrease in mRNA half-life. This is followed by increased expression of MMP-13 mRNA, which reaches maximal values by 48 h. Our results also show that this TGF-beta1-mediated effect is de novo protein synthesis-dependent and requires the activity of p38MAPK, phosphatidylinositol 3-kinase, AKT, and p70(S6k). Altogether, our data suggest that regulation of MMP-13 by TGF-beta1 is a complex process involving transcriptional and posttranscriptional mechanisms.

  12. Hsp90 interaction with Cdc2 and Plo1 kinases contributes to actomyosin ring condensation in fission yeast.

    PubMed

    Santino, Andrea; Tallada, Victor A; Jimenez, Juan; Garzón, Andrés

    2012-08-01

    In Schizosaccharomyces pombe, cytokinesis occurs by ordered recruitment of actomyosin components at the division site, followed by lateral condensation to produce a ring-like structure early in anaphase, which eventually matures and contracts at the end of mitosis. We found that in temperature-sensitive hsp90-w1 mutant cells, encoding an Hsp90 mutant protein, ring components were recruited to form a cortical network at the division site, but this network failed to condense into a compact ring, suggesting a role for Hsp90 in this particular step. hsp90-w1 mutant shows strong genetic interaction with specific mutant alleles of the fission yeast cdc2, such as cdc2-33. Interestingly, actomyosin ring defects in hsp90-w1 cdc2-33 mutant cells resembled that of hsp90-w1 single mutant at restrictive temperature. Noteworthy, similar genetic interaction was found with a mutant allele of polo-like kinase, plo1-ts4, suggesting that Hsp90 collaborates with Cdc2 and Plo1 cell cycle kinases to condense medial ring components. In vitro analyses suggested that Cdc2 and Plo1 physically interact with Hsp90. Association of Cdc2 to Hsp90 was ATP independent, while Plo1 binds to this chaperone in an ATP-dependent manner, indicating that these two kinases interact with different Hsp90 complexes. Overall, our analyses of hsp90-w1 reveal a possible role for this chaperone in medial ring condensation in association with Cdc2 and Plo1 kinases.

  13. Targeting RhoA/Rho kinase and p21-activated kinase signaling to prevent cancer development and progression.

    PubMed

    Chang, Yu-Wen E; Bean, Ronald R; Jakobi, Rolf

    2009-06-01

    Elevated RhoA/Rho kinase and p21-activated kinase signaling have been shown to promote cancer development and metastasis and have drawn much attention as potential targets of anti-cancer therapy. Elevated RhoA and Rho kinase activity promote cancer cell invasion and eventually lead to metastasis by disrupting E-cadherin-mediated adherens junctions and degradation of the extracellular matrix. Elevated p21-activated kinase activity promotes invasion by stimulating cell motility but also promotes cancer cell survival and growth. In this review we describe normal functions of RhoA/Rho kinase and p21-activated kinase signaling, mechanisms that lead to constitutive activation of RhoA/Rho kinase and p21-activated kinase pathways, and processes by which constitutive RhoA/Rho kinase and p21-activated kinase activity promote cancer development and progression to more aggressive and metastatic phenotypes. In addition, we summarize relevant patents on RhoA/Rho kinase and p21-activated kinase as targets of anti-cancer therapy and discuss the clinical potential of different approaches to modulate RhoA/Rho kinase and p21-activated kinase signaling.

  14. Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing

    PubMed Central

    Laranjeiro, Ricardo; Tamai, T. Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David

    2013-01-01

    Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors. PMID:23569261

  15. Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing.

    PubMed

    Laranjeiro, Ricardo; Tamai, T Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David

    2013-04-23

    Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors.

  16. Targeting HSF1 disrupts HSP90 chaperone function in chronic lymphocytic leukemia.

    PubMed

    Ganguly, Siddhartha; Home, Trisha; Yacoub, Abdulraheem; Kambhampati, Suman; Shi, Huidong; Dandawate, Prasad; Padhye, Subhash; Saluja, Ashok K; McGuirk, Joseph; Rao, Rekha

    2015-10-13

    CLL is a disease characterized by chromosomal deletions, acquired copy number changes and aneuploidy. Recent studies have shown that overexpression of Heat Shock Factor (HSF) 1 in aneuploid tumor cells can overcome deficiencies in heat shock protein (HSP) 90-mediated protein folding and restore protein homeostasis. Interestingly, several independent studies have demonstrated that HSF1 expression and activity also affects the chaperoning of HSP90 kinase clients, although the mechanism underlying this observation is unclear. Here, we determined how HSF1 regulates HSP90 function using CLL as a model system. We report that HSF1 is overexpressed in CLL and treatment with triptolide (a small molecule inhibitor of HSF1) induces apoptosis in cultured and primary CLL B-cells. We demonstrate that knockdown of HSF1 or its inhibition with triptolide results in the reduced association of HSP90 with its kinase co-chaperone cell division cycle 37 (CDC37), leading to the partial depletion of HSP90 client kinases, Bruton's Tyrosine Kinase (BTK), c-RAF and cyclin-dependent kinase 4 (CDK4). Treatment with triptolide or HSF1 knockdown disrupts the cytosolic complex between HSF1, p97, HSP90 and the HSP90 deacetylase- Histone deacetylase 6 (HDAC6). Consequently, HSF1 inhibition results in HSP90 acetylation and abrogation of its chaperone function. Finally, tail vein injection of Mec-1 cells into Rag2-/-IL2Rγc-/- mice followed by treatment with minnelide (a pro-drug of triptolide), reduced leukemia, increased survival and attenuated HSP90-dependent survival signaling in vivo. In conclusion, our study provides a strong rationale to target HSF1 and test the activity of minnelide against human CLL.

  17. Identification of the regulatory autophosphorylation site of autophosphorylation-dependent protein kinase (auto-kinase). Evidence that auto-kinase belongs to a member of the p21-activated kinase family.

    PubMed

    Yu, J S; Chen, W J; Ni, M H; Chan, W H; Yang, S D

    1998-08-15

    Autophosphorylation-dependent protein kinase (auto-kinase) was identified from pig brain and liver on the basis of its unique autophosphorylation/activation property [Yang, Fong, Yu and Liu (1987) J. Biol. Chem. 262, 7034-7040; Yang, Chang and Soderling (1987) J. Biol. Chem. 262, 9421-9427]. Its substrate consensus sequence motif was determined as being -R-X-(X)-S*/T*-X3-S/T-. To characterize auto-kinase further, we partly sequenced the kinase purified from pig liver. The N-terminal sequence (VDGGAKTSDKQKKKAXMTDE) and two internal peptide sequences (EKLRTIV and LQNPEK/ILTP/FI) of auto-kinase were obtained. These sequences identify auto-kinase as a C-terminal catalytic fragment of p21-activated protein kinase 2 (PAK2 or gamma-PAK) lacking its N-terminal regulatory region. Auto-kinase can be recognized by an antibody raised against the C-terminal peptide of human PAK2 by immunoblotting. Furthermore the autophosphorylation site sequence of auto-kinase was successfully predicted on the basis of its substrate consensus sequence motif and the known PAK2 sequence, and was further demonstrated to be RST(P)MVGTPYWMAPEVVTR by phosphoamino acid analysis, manual Edman degradation and phosphopeptide mapping via the help of phosphorylation site analysis of a synthetic peptide corresponding to the sequence of PAK2 from residues 396 to 418. During the activation process, auto-kinase autophosphorylates mainly on a single threonine residue Thr402 (according to the sequence numbering of human PAK2). In addition, a phospho-specific antibody against a synthetic phosphopeptide containing this identified sequence was generated and shown to be able to differentially recognize the activated auto-kinase autophosphorylated at Thr402 but not the non-phosphorylated/inactive auto-kinase. Immunoblot analysis with this phospho-specific antibody further revealed that the change in phosphorylation level of Thr402 of auto-kinase was well correlated with the activity change of the kinase during both

  18. Identification of the regulatory autophosphorylation site of autophosphorylation-dependent protein kinase (auto-kinase). Evidence that auto-kinase belongs to a member of the p21-activated kinase family.

    PubMed Central

    Yu, J S; Chen, W J; Ni, M H; Chan, W H; Yang, S D

    1998-01-01

    Autophosphorylation-dependent protein kinase (auto-kinase) was identified from pig brain and liver on the basis of its unique autophosphorylation/activation property [Yang, Fong, Yu and Liu (1987) J. Biol. Chem. 262, 7034-7040; Yang, Chang and Soderling (1987) J. Biol. Chem. 262, 9421-9427]. Its substrate consensus sequence motif was determined as being -R-X-(X)-S*/T*-X3-S/T-. To characterize auto-kinase further, we partly sequenced the kinase purified from pig liver. The N-terminal sequence (VDGGAKTSDKQKKKAXMTDE) and two internal peptide sequences (EKLRTIV and LQNPEK/ILTP/FI) of auto-kinase were obtained. These sequences identify auto-kinase as a C-terminal catalytic fragment of p21-activated protein kinase 2 (PAK2 or gamma-PAK) lacking its N-terminal regulatory region. Auto-kinase can be recognized by an antibody raised against the C-terminal peptide of human PAK2 by immunoblotting. Furthermore the autophosphorylation site sequence of auto-kinase was successfully predicted on the basis of its substrate consensus sequence motif and the known PAK2 sequence, and was further demonstrated to be RST(P)MVGTPYWMAPEVVTR by phosphoamino acid analysis, manual Edman degradation and phosphopeptide mapping via the help of phosphorylation site analysis of a synthetic peptide corresponding to the sequence of PAK2 from residues 396 to 418. During the activation process, auto-kinase autophosphorylates mainly on a single threonine residue Thr402 (according to the sequence numbering of human PAK2). In addition, a phospho-specific antibody against a synthetic phosphopeptide containing this identified sequence was generated and shown to be able to differentially recognize the activated auto-kinase autophosphorylated at Thr402 but not the non-phosphorylated/inactive auto-kinase. Immunoblot analysis with this phospho-specific antibody further revealed that the change in phosphorylation level of Thr402 of auto-kinase was well correlated with the activity change of the kinase during both

  19. Corticosteroids inhibit sphingosine 1-phosphate-induced interleukin-6 secretion from human airway smooth muscle via mitogen-activated protein kinase phosphatase 1-mediated repression of mitogen and stress-activated protein kinase 1.

    PubMed

    Che, Wenchi; Parmentier, Johannes; Seidel, Petra; Manetsch, Melanie; Ramsay, Emma E; Alkhouri, Hatem; Ge, Qi; Armour, Carol L; Ammit, Alaina J

    2014-02-01

    Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that plays an important proinflammatory role in asthmatic airways. Corticosteroids are first-line antiinflammatories in asthma; however, their repressive effects on S1P-induced cytokine secretion have not been investigated. To address this, our in vitro study reveals the molecular mechanisms by which corticosteroids inhibit S1P-induced IL-6 expression in the pivotal immunomodulatory cell type, airway smooth muscle (ASM). We first uncover the cellular signaling pathways responsible: S1P activates a cyclic adenosine monophosphate/cAMP response-element-binding protein (CREB)/CRE-dependent pathway to induce IL-6 transcription, concomitant with stimulation of the mitogen-activated protein kinase (MAPK) superfamily and downstream mitogen and stress-activated protein kinase 1 (MSK1) and histone H3 phosphorylation. In this way, S1P stimulates parallel signaling pathways to induce IL-6 secretion via CRE-driven transcription of the IL-6 gene promoter in a relaxed chromatin environment achieved through histone H3 phosphorylation. Second, we investigated how corticosteroids mediate their repressive effects. The corticosteroid dexamethasone inhibits S1P-induced IL-6 protein secretion and mRNA expression, but CREB/CRE transrepression, inhibition of IL-6 mRNA stability, or subcellular relocation of MSK1 were not responsible for the repressive effects of dexamethasone. Rather, we show that dexamethasone rapidly induces up-regulation of the MAPK deactivator MAPK phosphatase 1 (MKP-1) and that MKP-1 blocks the MAPK-driven activation of MSK1 and phosphorylation of histone H3. This was confirmed by treatment with triptolide, an inhibitor of MKP-1 up-regulation, where repressive effects of corticosteroids were reversed. Our study reveals the molecular mechanism underlying the antiinflammatory capacity of corticosteroids to repress proinflammatory functions induced by the potent bioactive sphingolipid S1P in the lung.

  20. 6. COMPRESSOR CONTROL PANELS: AT LEFT, 6,000 P.S.I. PANEL, CIRCA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. COMPRESSOR CONTROL PANELS: AT LEFT, 6,000 P.S.I. PANEL, CIRCA 1957; AT RIGHT, FACING CAMERA, 10,000 P.S.I. PANEL. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  1. Agmatine potentiates neuroprotective effects of subthreshold concentrations of ketamine via mTOR/S6 kinase signaling pathway.

    PubMed

    Tavares, Mauren K; Dos Reis, Suellen; Platt, Nicolle; Heinrich, Isabella A; Wolin, Ingrid A V; Leal, Rodrigo B; Kaster, Manuella P; Rodrigues, Ana Lúcia S; Freitas, Andiara E

    2018-05-12

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is one of the most robust neurobiological findings in the pathophysiology of major depressive disorder (MDD) over the last 40 years. The persistent increase in glucocorticoids levels induces morphological and anatomical changes in the brain, especially in the hippocampus. Ketamine represents a major advance for the treatment of MDD, however the psychotomimetic effects of this compound limit its widespread use. Agmatine is a neuromodulator that has been shown to be a putative novel and well-tolerated antidepressant/augmenter drug. In this study, the exposure of HT22 hippocampal neuronal cell line to corticosterone (50 μM) induced a significant neuronal cell death. Interestingly, the incubation of HT22 cells with the fast-acting antidepressant drug ketamine (1 μM) prevented the corticosterone-induced toxicity. Similarly, agmatine caused a significant cytoprotection at the concentration of 0.1 μM against corticosterone (50 μM) cell damage. Notably, the incubation with a subthreshold concentration of ketamine (0.01 μM) in combination with a subthreshold concentration of agmatine (0.001 μM) prevented the neuronal damage elicited by corticosterone (50 μM). A 24 h co-incubation with subthreshold concentrations of ketamine (0.01 μM) and agmatine (0.001 μM) was able to cause a significant increase in the phosphorylation levels of Akt (Ser 473 ) and p70S6 kinase (Thr 389 ) as well as PSD95 immunocontent. Neither glycogen synthase kinase-3β (Ser 9 ) phosphorylation nor β catenin immunocontent were altered by a 24 h co-incubation period. Finally, the co-incubation of cells for 30 min did not produce any effect in the phosphorylation or immunocontent of any protein investigated. Taken together, our results support the notion that the combination of subthreshold concentrations of ketamine and agmatine has cytoprotective effects against corticosterone-induced cell death. This effect

  2. The pH dependence of the allosteric response of human liver pyruvate kinase to fructose-1,6-bisphosphate, ATP, and alanine

    PubMed Central

    Fenton, Aron W.; Hutchinson, Myra

    2009-01-01

    The allosteric regulation of human liver pyruvate kinase (hL-PYK) by fructose-1,6-bisphosphate (Fru-1,6-BP; activator), ATP (inhibitor) and alanine (Ala; inhibitor) was monitored over a pH range from 6.5 to 8.0 at 37°C. As a function of increasing pH, hL-PYK's affinity for the substrate phosphoenolpyruvate (PEP), and for Fru-1,6-BP decreases, while affinities for ATP and Ala slightly increases. At pH 6.5, Fru-1,6-BP and ATP elicit only small allosteric impacts on PEP affinity. As pH increases, Fru-1,6-BP and ATP elicit greater allosteric responses, but the response to Ala is relatively constant. Since the magnitudes of the allosteric coupling for ATP and for Ala inhibition are different and the pH dependences of these magnitudes are not similar, these inhibitors likely elicit their responses using different molecular mechanisms. In addition, our results fail to support a general correlation between pH dependent changes in effector affinity and pH dependent changes in the corresponding allosteric response. PMID:19467627

  3. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes.

    PubMed

    Schäfer, Thorsten; Strauss, Daniela; Petfalski, Elisabeth; Tollervey, David; Hurt, Ed

    2003-03-17

    Recent reports have increased our knowledge of the consecutive steps during 60S ribosome biogenesis substantially, but 40S subunit formation is less well understood. Here, we investigate the maturation of nucleolar 90S pre-ribosomes into cytoplasmic 40S pre-ribosomes. During the transition from 90S to 40S particles, the majority of non-ribosomal proteins (approximately 30 species) dissociate, and significantly fewer factors associate with 40S pre-ribosomes. Notably, some of these components are part of both early 90S and intermediate 40S pre-particles in the nucleolus (e.g. Enp1p, Dim1p and Rrp12p), whereas others (e.g. Rio2p and Nob1p) are found mainly on late cytoplasmic pre-40S subunits. Finally, temperature-sensitive mutants mapping either in earlier (enp1-1) or later (rio2-1) components exhibit defects in the formation and nuclear export of pre-40S subunits. Our data provide an initial biochemical map of the pre-40S ribosomal subunit on its path from the nucleolus to the cytoplasm. This pathway involves fewer changes in composition than seen during 60S biogenesis.

  4. 20(S)-Protopanaxadiol enhances angiogenesis via HIF-1α-mediated VEGF secretion by activating p70S6 kinase and benefits wound healing in genetically diabetic mice

    PubMed Central

    Zhang, Er-Yun; Gao, Bo; Shi, Hai-Lian; Huang, Ling-Fang; Yang, Li; Wu, Xiao-Jun; Wang, Zheng-Tao

    2017-01-01

    Impaired angiogenesis is one of the crucial factors that impede the wound healing process in diabetic foot ulcers (DFUs). In this study, we found that 20(S)-protopanaxadiol (PPD), an aglycone of ginsenosides in Panax notoginseng, stimulated angiogenesis and benefited wound healing in genetically diabetic mice. In HUVECs, PPD promoted cell proliferation, tube formation and VEGF secretion accompanied by increased nuclear translocalization of HIF-1α, which led to elevated VEGF mRNA expression. PPD activated both PI3K/Akt/mTOR and Raf/MEK/ERK signaling pathways in HUVECs, which were abrogated by LY294002 and PD98059. Furthermore, these two pathways had crosstalk through p70S6K, as LY294002, PD98059 and p70S6K siRNA abolished the angiogenic responses of PPD. In the excisional wound splinting model established in db/db diabetic mice, PPD (0.6, 6 and 60 mg ml−1) accelerated wound closure, which was reflected by a significantly reduced wound area and epithelial gaps, as well as elevated VEGF expression and capillary formation. In addition, PPD activated PI3K/Akt/ERK signaling pathways, as well as enhanced p70S6K activity and HIF-1α synthesis in the wounds. Overall, our results revealed that PPD stimulated angiogenesis via HIF-1α-mediated VEGF expression by activating p70S6K through PI3K/Akt/mTOR and Raf/MEK/ERK signaling cascades, which suggests that the compound has potential use in wound healing therapy in patients suffering from DFUs. PMID:29075038

  5. Synapses of Amphids Defective (SAD-A) Kinase Promotes Glucose-stimulated Insulin Secretion through Activation of p21-activated Kinase (PAK1) in Pancreatic β-Cells*

    PubMed Central

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-01-01

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis. PMID:22669945

  6. Synapses of amphids defective (SAD-A) kinase promotes glucose-stimulated insulin secretion through activation of p21-activated kinase (PAK1) in pancreatic β-Cells.

    PubMed

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-07-27

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.

  7. Involvement of Heterogeneous Ribonucleoprotein F in the Regulation of Cell Proliferation via the Mammalian Target of Rapamycin/S6 Kinase 2 Pathway

    PubMed Central

    Goh, Eddy T. H.; Pardo, Olivier E.; Michael, Nicholas; Niewiarowski, Andrew; Totty, Nick; Volkova, Dariya; Tsaneva, Irina R.; Seckl, Michael J.; Gout, Ivan

    2010-01-01

    The S6 kinases (S6Ks) have been linked to a number of cellular processes, including translation, insulin metabolism, cell survival, and RNA splicing. Signaling via the phosphotidylinositol 3-kinase and mammalian target of rapamycin (mTOR) pathways is critical in regulating the activity and subcellular localization of S6Ks. To date, nuclear functions of both S6K isoforms, S6K1 and S6K2, are not well understood. To better understand S6K nuclear roles, we employed affinity purification of S6Ks from nuclear preparations followed by mass spectrometry analysis for the identification of novel binding partners. In this study, we report that in contrast to S6K1, the S6K2 isoform specifically associates with a number of RNA-binding proteins, including heterogeneous ribonucleoproteins (hnRNPs). We focused on studying the mechanism and physiological relevance of the S6K2 interaction with hnRNP F/H. Interestingly, the S6K2-hnRNP F/H interaction was not affected by mitogenic stimulation, whereas mTOR binding to hnRNP F/H was induced by serum stimulation. In addition, we define a new role of hnRNP F in driving cell proliferation, which could be partially attenuated by rapamycin treatment. S6K2-driven cell proliferation, on the other hand, could be blocked by small interfering RNA-mediated down-regulation of hnRNP F. These results demonstrate that the specific interaction between mTOR and S6K2 with hnRNPs is implicated in the regulation of cell proliferation. PMID:20308064

  8. Omega-3 polyunsaturated fatty acids selectively inhibit growth in neoplastic oral keratinocytes by differentially activating ERK1/2

    PubMed Central

    Parkinson, Eric Kenneth

    2013-01-01

    The long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs)—eicosapentaenoic acid (EPA) and its metabolite docosahexaenoic acid (DHA)—inhibit cancer formation in vivo, but their mechanism of action is unclear. Extracellular signal-regulated kinase 1/2 (ERK1/2) activation and inhibition have both been associated with the induction of tumour cell apoptosis by n-3 PUFAs. We show here that low doses of EPA, in particular, inhibited the growth of premalignant and malignant keratinocytes more than the growth of normal counterparts by a combination of cell cycle arrest and apoptosis. The growth inhibition of the oral squamous cell carcinoma (SCC) lines, but not normal keratinocytes, by both n-3 PUFAs was associated with epidermal growth factor receptor (EGFR) autophosphorylation, a sustained phosphorylation of ERK1/2 and its downstream target p90RSK but not with phosphorylation of the PI3 kinase target Akt. Inhibition of EGFR with either the EGFR kinase inhibitor AG1478 or an EGFR-blocking antibody inhibited ERK1/2 phosphorylation, and the blocking antibody partially antagonized growth inhibition by EPA but not by DHA. DHA generated more reactive oxygen species and activated more c-jun N-terminal kinase than EPA, potentially explaining its increased toxicity to normal keratinocytes. Our results show that, in part, EPA specifically inhibits SCC growth and development by creating a sustained signalling imbalance to amplify the EGFR/ERK/p90RSK pathway in neoplastic keratinocytes to a supraoptimal level, supporting the chemopreventive potential of EPA, whose toxicity to normal cells might be reduced further by blocking its metabolism to DHA. Furthermore, ERK1/2 phosphorylation may have potential as a biomarker of n-3 PUFA function in vivo. PMID:23892603

  9. Fructose 2,6-bisphosphate and 6-phosphofructo-2-kinase during liver regeneration.

    PubMed Central

    Rosa, J L; Ventura, F; Carreras, J; Bartrons, R

    1990-01-01

    Glycogen and fructose 2,6-bisphosphate levels in rat liver decreased quickly after partial hepatectomy. After 7 days the glycogen level was normalized and fructose 2,6-bisphosphate concentration still remained low. The 'active' (non-phosphorylated) form of 6-phosphofructo-2-kinase varied in parallel with fructose 2,6-bisphosphate levels, whereas the 'total' activity of the enzyme decreased only after 24 h, similarly to glucokinase. The response of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from hepatectomized rats (96 h) to sn-glycerol 3-phosphate and to cyclic AMP-dependent protein kinase was different from that of the enzyme from control animals and similar to that of the foetal isoenzyme. PMID:2173548

  10. Spin differences in the Zr 90 compound nucleus induced by ( p , p ' ) , ( p , d ) , and ( p , t ) surrogate reactions

    DOE PAGES

    Ota, S.; Burke, J. T.; Casperson, R. J.; ...

    2015-11-04

    Here, the effect of the production mechanism on the decay of a compound nucleus is investigated. The nucleus 90Zr was produced by three different reactions, namely 90Zr (p,p') 90Zr, 91Zr (p,d) 90Zr, and 92Zr (p,t) 90Zr , which served as surrogate reactions for 89Zr (n,γ). The spin-parity (J π) distributions of the states populated by these reactions were studied to investigate the surrogate reaction approach, which aims at indirectly determining cross sections for compound-nuclear reactions involving unstable targets such as 89Zr. Discrete γ rays, associated with transitions in 90Zr and 89Zr, were measured in coincidence with light ions for scatteringmore » angles of 25°–60° and 90Zr excitation energies extending above the neutron separation energy. The measured transition systematics were used to gain insights into the J π distributions of 90Zr. The 90Zr (p,p') reaction was found to produce fewer γ rays associated with transitions involving high spin states (J = 6–8 ℏ) than the other two reactions, suggesting that inelastic scattering preferentially populates states in 90Zr that have lower spins than those populated in the transfer reactions investigated. The γ-ray production was also observed to vary by factors of 2–3 with the angle at which the outgoing particle was detected. These findings are relevant to the application of the surrogate reaction approach.« less

  11. Molecular Basis for Association of PIPKIγ-p90 with Clathrin Adaptor AP-2*

    PubMed Central

    Kahlfeldt, Nina; Vahedi-Faridi, Ardeschir; Koo, Seong Joo; Schäfer, Johannes G.; Krainer, Georg; Keller, Sandro; Saenger, Wolfram; Krauss, Michael; Haucke, Volker

    2010-01-01

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an essential determinant in clathrin-mediated endocytosis (CME). In mammals three type I phosphatidylinositol-4-phosphate 5-kinase (PIPK) enzymes are expressed, with the Iγ-p90 isoform being highly expressed in the brain where it regulates synaptic vesicle (SV) exo-/endocytosis at nerve terminals. How precisely PI(4,5)P2 metabolism is controlled spatially and temporally is still uncertain, but recent data indicate that direct interactions between type I PIPK and components of the endocytic machinery, in particular the AP-2 adaptor complex, are involved. Here we demonstrated that PIPKIγ-p90 associates with both the μ and β2 subunits of AP-2 via multiple sites. Crystallographic data show that a peptide derived from the splice insert of the human PIPKIγ-p90 tail binds to a cognate recognition site on the sandwich subdomain of the β2 appendage. Partly overlapping aromatic and hydrophobic residues within the same peptide also can engage the C-terminal sorting signal binding domain of AP-2μ, thereby potentially competing with the sorting of conventional YXXØ motif-containing cargo. Biochemical and structure-based mutagenesis analysis revealed that association of the tail domain of PIPKIγ-p90 with AP-2 involves both of these sites. Accordingly the ability of overexpressed PIPKIγ tail to impair endocytosis of SVs in primary neurons largely depends on its association with AP-2β and AP-2μ. Our data also suggest that interactions between AP-2 and the tail domain of PIPKIγ-p90 may serve to regulate complex formation and enzymatic activity. We postulate a model according to which multiple interactions between PIPKIγ-p90 and AP-2 lead to spatiotemporally controlled PI(4,5)P2 synthesis during clathrin-mediated SV endocytosis. PMID:19903820

  12. Cation–Eutectic Transition via Sublattice Melting in CuInP 2S 6/In 4/3P 2S 6 van der Waals Layered Crystals

    DOE PAGES

    Susner, Michael A.; Chyasnavichyus, Marius; Puretzky, Alexander A.; ...

    2017-07-07

    Single crystals of the van der Waals layered ferrielectric material CuInP 2S 6 spontaneously phase separate when synthesized with Cu deficiency. In this paper, we identify a route to form and tune intralayer heterostructures between the corresponding ferrielectric (CuInP 2S 6) and paraelectric (In 4/3P 2S 6) phases through control of chemical phase separation. We conclusively demonstrate that Cu-deficient Cu 1–xIn 1+x/3P 2S 6 forms a single phase at high temperature. We also identify the mechanism by which the phase separation proceeds upon cooling. Above 500 K both Cu + and In 3+ become mobile, while P 2S 6 4–more » anions maintain their structure. We therefore propose that this transition can be understood as eutectic melting on the cation sublattice. Such a model suggests that the transition temperature for the melting process is relatively low because it requires only a partial reorganization of the crystal lattice. As a result, varying the cooling rate through the phase transition controls the lateral extent of chemical domains over several decades in size. At the fastest cooling rate, the dimensional confinement of the ferrielectric CuInP 2S 6 phase to nanoscale dimensions suppresses ferrielectric ordering due to the intrinsic ferroelectric size effect. Finally, intralayer heterostructures can be formed, destroyed, and re-formed by thermal cycling, thus enabling the possibility of finely tuned ferroic structures that can potentially be optimized for specific device architectures.« less

  13. Cation–Eutectic Transition via Sublattice Melting in CuInP 2S 6/In 4/3P 2S 6 van der Waals Layered Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susner, Michael A.; Chyasnavichyus, Marius; Puretzky, Alexander A.

    Single crystals of the van der Waals layered ferrielectric material CuInP 2S 6 spontaneously phase separate when synthesized with Cu deficiency. In this paper, we identify a route to form and tune intralayer heterostructures between the corresponding ferrielectric (CuInP 2S 6) and paraelectric (In 4/3P 2S 6) phases through control of chemical phase separation. We conclusively demonstrate that Cu-deficient Cu 1–xIn 1+x/3P 2S 6 forms a single phase at high temperature. We also identify the mechanism by which the phase separation proceeds upon cooling. Above 500 K both Cu + and In 3+ become mobile, while P 2S 6 4–more » anions maintain their structure. We therefore propose that this transition can be understood as eutectic melting on the cation sublattice. Such a model suggests that the transition temperature for the melting process is relatively low because it requires only a partial reorganization of the crystal lattice. As a result, varying the cooling rate through the phase transition controls the lateral extent of chemical domains over several decades in size. At the fastest cooling rate, the dimensional confinement of the ferrielectric CuInP 2S 6 phase to nanoscale dimensions suppresses ferrielectric ordering due to the intrinsic ferroelectric size effect. Finally, intralayer heterostructures can be formed, destroyed, and re-formed by thermal cycling, thus enabling the possibility of finely tuned ferroic structures that can potentially be optimized for specific device architectures.« less

  14. In brain, Axl recruits Grb2 and the p85 regulatory subunit of Pl3 kinase; in vitro mutagenesis defines th requisite binding sites for downstream Akt activation

    PubMed Central

    Weinger, Jason G.; Gohari, Pouyan; Yan, Ying; Backer, Jonathan M.; Varnum, Brian; Shafit-Zagardo, Bridget

    2010-01-01

    Axl is a receptor tyrosine kinase implicated in cell survival following growth factor withdrawal and other stressors. The binding of Axl's ligand, growth arrest-specific protein 6 (Gas6), results in Axl autophosphorylation, recruitment of signaling molecules, and activation of downstream survival pathways. Pull-down assays and immunoprecipitations using wildtype and mutant Axl transfected cells determined that Axl directly binds growth factor receptor-bound protein 2 (Grb2) at pYVN and the p85 subunit of phosphatidylinositol-3 kinase (PI3 kinase) at two pYXXM sites (pY779 and pY821). Also, p85 can indirectly bind to Axl via an interaction between p85's second proline-rich region and the N-terminal SH3 domain of Grb2. Further, Grb2 and p85 can compete for binding at the pY821VNM site. Gas6-stimulation of Axl-transfected COS7 cells recruited activated PI3 kinase and phosphorylated Akt. An interaction between Axl, p85 and Grb2 was confirmed in brain homogenates, enriched populations of O4+ oligodendrocytes, and O4– flow-through prepared from day 10 mouse brain, indicating that cells with active Gas6/Axl signal through Grb2 and the PI3 kinase/Akt pathways. PMID:18346204

  15. TRAF6 and Src kinase activity regulates Cot activation by IL-1.

    PubMed

    Rodríguez, Cristina; Pozo, Maite; Nieto, Elvira; Fernández, Margarita; Alemany, Susana

    2006-09-01

    Cot is one of the MAP kinase kinase kinases that regulates the ERK1/ERK2 pathway under physiological conditions. Cot is activated by LPS, by inducing its dissociation from the inactive p105 NFkappaB-Cot complex in macrophages. Here, we show that IL-1 promotes a 10-fold increase in endogenous Cot activity and that Cot is the only MAP kinase kinase kinase that activates ERK1/ERK2 in response to this cytokine. Moreover, in cells where the expression of Cot is blocked, IL-1 fails to induce an increase in IL-8 and MIP-1betamRNA levels. The activation of Cot-MKK1-ERK1/ERK2 signalling pathway by IL-1 is dependent on the activity of the transducer protein TRAF6. Most important, IL-1-induced ERK1/ERK2 activation is inhibited by PP1, a known inhibitor of Src tyrosine kinases, but this tyrosine kinase activity is not required for IL-1 to activate other MAP kinases such as p38 and JNK. This Src kinases inhibitor does not block the dissociation and subsequently degradation of Cot in response to IL-1, indicating that other events besides Cot dissociation are required to activate Cot. All these data highlight the specific requirements for activation of the Cot-MKK1-ERK1/ERK2 pathway and provide evidence that Cot controls the functions of IL-1 that are mediated by ERK1/ERK2.

  16. Inhibition of Akt/mTOR/p70S6K Signaling Activity With Huangkui Capsule Alleviates the Early Glomerular Pathological Changes in Diabetic Nephropathy.

    PubMed

    Wu, Wei; Hu, Wei; Han, Wen-Bei; Liu, Ying-Lu; Tu, Yue; Yang, Hai-Ming; Fang, Qi-Jun; Zhou, Mo-Yi; Wan, Zi-Yue; Tang, Ren-Mao; Tang, Hai-Tao; Wan, Yi-Gang

    2018-01-01

    Huangkui capsule (HKC), a Chinese modern patent medicine extracted from Abelmoschus manihot (L.) medic, has been widely applied to clinical therapy in the early diabetic nephropathy (DN) patients. However, it remains elusive whether HKC can ameliorate the inchoate glomerular injuries in hyperglycemia. Recently the activation of phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of rapamycin (mTOR) signaling and its downstream regulator, 70-kDa ribosomal protein S6 kinase (p70S6K), play important roles in the early glomerular pathological changes of DN including glomerular hypertrophy, glomerular basement membrane (GBM) thickening and mild mesangial expansion. This study thereby aimed to clarify therapeutic effects of HKC during the initial phase of DN and its underlying mechanisms. Fifteen rats were randomly divided into 3 groups: the normal group, the model group and the HKC group. The early DN model rats were induced by unilateral nephrectomy combined with intraperitoneal injection of streptozotocin, and administered with either HKC suspension or vehicle after modeling and for a period of 4 weeks. Changes in the incipient glomerular lesions-related parameters in urine and blood were analyzed. Kidneys were isolated for histomorphometry, immunohistochemistry, immunofluorescence and Western blotting (WB) at sacrifice. In vitro , murine mesangial cells (MCs) were used to investigate inhibitory actions of hyperoside (HYP), a bioactive component of HKC, on cellular hypertrophy-associated signaling pathway by WB, compared with rapamycin (RAP). For the early DN model rats, HKC ameliorated micro-urinary albumin, body weight and serum albumin, but had no significant effects on renal function and liver enzymes; HKC improved renal shape, kidney weight and kidney hypertrophy index; HKC attenuated glomerular hypertrophy, GBM thickening and mild mesangial expansion; HKC inhibited the phosphorylation of Akt, mTOR and p70S6K, and the protein over

  17. The mechanistic target of rapamycin (mTOR) pathway and S6 Kinase mediate diazoxide preconditioning in primary rat cortical neurons.

    PubMed

    Dutta, Somhrita; Rutkai, Ibolya; Katakam, Prasad V G; Busija, David W

    2015-09-01

    We examined the role of the mechanistic target of rapamycin (mTOR) pathway in delayed diazoxide (DZ)-induced preconditioning of cultured rat primary cortical neurons. Neurons were treated for 3 days with 500 μM DZ or feeding medium and then exposed to 3 h of continuous normoxia in Dulbecco's modified eagle medium with glucose or with 3 h of oxygen-glucose deprivation (OGD) followed by normoxia and feeding medium. The OGD decreased viability by 50%, depolarized mitochondria, and reduced mitochondrial respiration, whereas DZ treatment improved viability and mitochondrial respiration, and suppressed reactive oxygen species production, but did not restore mitochondrial membrane potential after OGD. Neuroprotection by DZ was associated with increased phosphorylation of protein kinase B (Akt), mTOR, and the major mTOR downstream substrate, S6 Kinase (S6K). The mTOR inhibitors rapamycin and Torin-1, as well as S6K-targeted siRNA abolished the protective effects of DZ. The effects of DZ on mitochondrial membrane potential and reactive oxygen species production were not affected by rapamycin. Preconditioning with DZ also changed mitochondrial and non-mitochondrial oxygen consumption rates. We conclude that in addition to reducing reactive oxygen species (ROS) production and mitochondrial membrane depolarization, DZ protects against OGD by activation of the Akt-mTOR-S6K pathway and by changes in mitochondrial respiration. Ischemic strokes have limited therapeutic options. Diazoxide (DZ) preconditioning can reduce neuronal damage. Using oxygen-glucose deprivation (OGD), we studied Akt/mTOR/S6K signaling and mitochondrial respiration in neuronal preconditioning. We found DZ protects neurons against OGD via the Akt/mTOR/S6K pathway and alters the mitochondrial and non-mitochondrial oxygen consumption rate. This suggests that the Akt/mTOR/S6k pathway and mitochondria are novel stroke targets. © 2015 International Society for Neurochemistry.

  18. The death effector domain-containing DEDD forms a complex with Akt and Hsp90, and supports their stability

    PubMed Central

    Kurabe, Nobuya; Mori, Mayumi; Kurokawa, Jun; Taniguchi, Kaori; Aoyama, Hisatoshi; Atsuda, Kazuhiro; Nishijima, Akemi; Odawara, Nariaki; Harada, Saori; Nakashima, Katsuhiko; Arai, Satoko; Miyazaki, Toru

    2010-01-01

    Insulin secretion and glucose transport are the major mechanisms to balance glucose homeostasis. Recently, we found that the death effector domain-containing DEDD inhibits cyclin-dependent kinase 1 (Cdk1) function, thereby preventing Cdk1-dependent inhibitory phosphorylation of S6 kinase 1 (S6K1), downstream of phosphatidylinositol 3-kinase (PI3K), which overall results in maintenance of S6K1 activity. Here we newly show that DEDD forms a complex with Akt and heat-shock protein 90 (Hsp90), and supports the stability of both proteins. Hence, in DEDD−/− mice, Akt protein levels are diminished in skeletal muscles and adipose tissues, which interferes with the translocation of glucose transporter 4 (GLUT4) upon insulin stimulation, leading to inefficient incorporation of glucose in these organs. Interestingly, as for the activation of S6K1, suppression of Cdk1 is involved in the stabilization of Akt protein by DEDD, since diminishment of Cdk1 in DEDD−/− cells via siRNA expression or treatment with a Cdk1-inhibitor, increases both Akt and Hsp90 protein levels. Such multifaceted involvement of DEDD in glucose homeostasis by supporting both insulin secretion (via maintenance of S6K1 activity) and glucose uptake (via stabilizing Akt protein), may suggest an association of DEDD-deficiency with the pathogenesis of type 2 diabetes mellitus. PMID:20043882

  19. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains

    PubMed Central

    Czemeres, Josh; Buse, Kurt

    2017-01-01

    A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings suggested that this

  20. The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation.

    PubMed

    Martins, Telma S; Pereira, Clara; Canadell, David; Vilaça, Rita; Teixeira, Vítor; Moradas-Ferreira, Pedro; de Nadal, Eulàlia; Posas, Francesc; Costa, Vítor

    2018-01-01

    Iron acquisition systems have to be tightly regulated to assure a continuous supply of iron, since it is essential for survival, but simultaneously to prevent iron overload that is toxic to the cells. In budding yeast, the low‑iron sensing transcription factor Aft1p is a master regulator of the iron regulon. Our previous work revealed that bioactive sphingolipids modulate iron homeostasis as yeast cells lacking the sphingomyelinase Isc1p exhibit an upregulation of the iron regulon. In this study, we show that Isc1p impacts on iron accumulation and localization. Notably, Aft1p is activated in isc1Δ cells due to a decrease in its phosphorylation and an increase in its nuclear levels. Consistently, the expression of a phosphomimetic version of Aft1p-S210/S224 that favours its nuclear export abolished iron accumulation in isc1Δ cells. Notably, the Hog1p kinase, homologue of mammalian p38, interacts with and directly phosphorylates Aft1p at residues S210 and S224. However, Hog1p-Aft1p interaction decreases in isc1Δ cells, which likely contributes to Aft1p dephosphorylation and consequently to Aft1p activation and iron overload in isc1Δ cells. These results suggest that alterations in sphingolipid composition in isc1Δ cells may impact on iron homeostasis by disturbing the regulation of Aft1p by Hog1p. To our knowledge, Hog1p is the first kinase reported to directly regulate Aft1p, impacting on iron homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer’s Disease Pathology

    PubMed Central

    Rosenberger, Andrea F.N.; Hilhorst, Riet; Coart, Elisabeth; García Barrado, Leandro; Naji, Faris; Rozemuller, Annemieke J.M.; van der Flier, Wiesje M.; Scheltens, Philip; Hoozemans, Jeroen J.M.; van der Vies, Saskia M.

    2015-01-01

    Alzheimer’s disease (AD) is characterized by a long pre-clinical phase (20–30 years), during which significant brain pathology manifests itself. Disease mechanisms associated with pathological hallmarks remain elusive. Most processes associated with AD pathogenesis, such as inflammation, synaptic dysfunction, and hyper-phosphorylation of tau are dependent on protein kinase activity. The objective of this study was to determine the involvement of protein kinases in AD pathogenesis. Protein kinase activity was determined in postmortem hippocampal brain tissue of 60 patients at various stages of AD and 40 non-demented controls (Braak stages 0-VI) using a peptide-based microarray platform. We observed an overall decrease of protein kinase activity that correlated with disease progression. The phosphorylation of 96.7% of the serine/threonine peptides and 37.5% of the tyrosine peptides on the microarray decreased significantly with increased Braak stage (p-value <0.01). Decreased activity was evident at pre-clinical stages of AD pathology (Braak I-II). Increased phosphorylation was not observed for any peptide. STRING analysis in combination with pathway analysis and identification of kinases responsible for peptide phosphorylation showed the interactions between well-known proteins in AD pathology, including the Ephrin-receptor A1 (EphA1), a risk gene for AD, and sarcoma tyrosine kinase (Src), which is involved in memory formation. Additionally, kinases that have not previously been associated with AD were identified, e.g., protein tyrosine kinase 6 (PTK6/BRK), feline sarcoma oncogene kinase (FES), and fyn-associated tyrosine kinase (FRK). The identified protein kinases are new biomarkers and potential drug targets for early (pre-clinical) intervention. PMID:26519433

  2. RGD-containing peptides activate S6K1 through beta3 integrin in adult cardiac muscle cells.

    PubMed

    Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2003-10-24

    The enzyme p70S6 kinase (S6K1) is critical for cell growth, and we have reported its activation during cardiac hypertrophy. Because cardiac hypertrophy also involves integrin activation, we analyzed whether integrins could contribute to S6K1 activation. Using adult feline cardiomyocytes, here we report that integrin-interacting Arg-Gly-Asp (RGD) peptides activate S6K1 as observed by band shifting, kinase activity and phosphorylation at Thr-389 and Thr-421/Ser-424 of S6K1, and S6 protein phosphorylation. Perturbation of specific integrin function with blocking antibodies and by overexpressing the beta1A cytoplasmic tail revealed that beta3 but not beta1 integrin mediates the RGD-induced S6K1 activation. This activation is focal adhesion complex-independent and is accompanied by the activation of extracellular signal-regulated kinases 1/2 (ERK) and mammalian target of rapamycin (mTOR). Studies using specific inhibitors and dominant negative c-Raf expression in cardiomyocytes indicate that the S6K1 activation involves mTOR, MEK/ERK, and phosphatidylinositol 3-kinase pathways and is independent of protein kinase C and c-Raf. Finally, addition of fluorescent-labeled RGD peptide to cardiomyocytes exhibits its internalization and localization to the endocytic vesicles, and pretreatment of cardiomyocytes with endocytic inhibitors reduced the S6K1 activation. These data suggest that RGD interaction with beta3 integrin and its subsequent endocytosis trigger specific signaling pathway(s) for S6K1 activation in cardiomyocytes and that this process may contribute to hypertrophic growth and remodeling of myocardium.

  3. P21 activated kinase signaling in cancer.

    PubMed

    Rane, Chetan K; Minden, Audrey

    2018-01-09

    The p21 Activated Kinases (PAKs) are a family of serine threonine kinases, that consist of 6 members, PAKs 1-6, which are positioned at an intersection of multiple signaling pathways implicated in oncogenesis. The PAKs were originally identified as protein kinases that function downstream of the Ras related Rho GTPases Cdc42 and Rac. PAK1 and PAK4, which belong to Group I and Group II PAKs, respectively, are most often associated with tumorigenesis. On account of their well characterized roles in cancer, several small molecule inhibitors are being developed to inhibit the PAKs, and there is interest in investigating their efficacy as either first line or adjuvant treatments for cancer. Studies to delineate PAK regulated signaling pathways as well as the long term effects of PAK overexpression on gene expression are beginning to shed light on the mechanism by which PAK proteins may lead to cancer when they are overexpressed or activated. This review will describe the association between PAK expression in cancer, with a focus on PAK1 and PAK4, which are most often associated with the disease. The current understanding of the molecular mechanisms by which the PAKs operate in cancer will be discussed. We will also review some of the potential drug candidates, and discuss which of them are currently being tested for their efficacy in cancer treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Isothermal Damage and Fatigue Behavior of SCS-6/Timetal 21S [0/90](Sub S) Composite at 650 Deg C

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1994-01-01

    The isothermal fatigue damage and life behaviors of SCS-6/Timetal 21S (0/90)s were investigated at 650 C. Strain ratcheting and degradation of the composite's static elastic modulus were carefully monitored as functions of cycles to indicate damage progression. Extensive fractographic and metallographic analyses were conducted to determine damage/failure mechanisms. Resulting fatigue lives show considerable reductions in comparison to (0) reinforced titanium matrix composites subjected to comparable conditions. Notable stiffness degradations were found to occur after the first cycle of loading, even at relatively low maximum stress levels, where cyclic lives are greater than 25,000 cycles. This was attributed to the extremely weak fiber/matrix bond which fails under relatively low transverse loads. Stiffness degradations incurred on first cycle loadings and degradations thereafter were found to increase with increasing maximum stress. Environmental effects associated with oxidation of the (90) fiber interfaces clearly played a role in the damage mechanisms as fracture surfaces revealed environment assisted matrix cracking along the (90) fibers. Metallographic analysis indicated that all observable matrix fatigue cracks initiated at the (90) fiber/matrix interfaces. Global de-bonding in the loading direction was found along the (90) fibers. No surface initiated cracks were evident and minimal if any (0) fiber cracking was visible.

  5. p21-activated kinases in cancer.

    PubMed

    Kumar, Rakesh; Gururaj, Anupama E; Barnes, Christopher J

    2006-06-01

    The pivotal role of kinases in signal transduction and cellular regulation has lent them considerable appeal as pharmacological targets across a broad spectrum of cancers. p21-activated kinases (Paks) are serine/threonine kinases that function as downstream nodes for various oncogenic signalling pathways. Paks are well-known regulators of cytoskeletal remodelling and cell motility, but have recently also been shown to promote cell proliferation, regulate apoptosis and accelerate mitotic abnormalities, which results in tumour formation and cell invasiveness. Alterations in Pak expression have been detected in human tumours, which makes them an attractive new therapeutic target.

  6. The role of p21-activated kinases in pancreatic cancer.

    PubMed

    Yeo, Dannel; He, Hong; Baldwin, Graham S; Nikfarjam, Mehrdad

    2015-04-01

    Pancreatic cancer is an aggressive cancer with a poor prognosis and an overall 5-year survival rate of less than 5%. Management has not improved significantly over the last 30 years, and a better understanding of the genetic and molecular changes that occur is urgently required. Many of these changes appear to involve the p21-activated kinases (PAKs). The PAK family consists of 6 isoforms, 2 of which, PAK1 and PAK4, are up-regulated and/or hyperactivated in pancreatic cancer. p21-Activated kinases can mediate many different cellular processes especially those contributing to cancer development and progression. These processes include the regulation of cytoskeletal dynamics and cell adhesion, the evasion of apoptosis, and the promotion of cell survival, proliferation, migration, and invasion. p21-Activated kinases may also be involved in characteristics unique to pancreatic tumors, such as interplay with the pancreatic stroma, the re-emergence of embryonic pathways, and the involvement of a subset of microRNAs and heat shock proteins. This review highlights the potential role of PAKs in pancreatic cancer and provides a foundation for more effective therapeutics to improve our current treatment of pancreatic cancer.

  7. Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38.

    PubMed

    Yustein, Jason T; Xia, Liang; Kahlenburg, J Michelle; Robinson, Dan; Templeton, Dennis; Kung, Hsing-Jien

    2003-09-18

    The Sterile-20 or Ste20 family of serine/threonine kinases is a group of signaling molecules whose physiological roles within mammalian cells are just starting to be elucidated. Here, in this report we present the characterization of three human Ste20-like kinases with greater than 90% similarity within their catalytic domains that define a novel subfamily of Ste20s. Members of this kinase family include rat thousand and one (TAO1) and chicken KFC (kinase from chicken). For the lack of a consensus nomenclature in the literature, in this report, we shall call this family hKFC (for their homology to chicken KFC) and the three members hKFC-A, hKFC-B, and hKFC-C, respectively. These kinases have many similarities including an aminoterminal kinase domain, a serine-rich region, and a coiled-coil configuration within the C-terminus. All three kinases are able to activate the p38 MAP kinase pathway through the specific activation of the upstream MKK3 kinase. We also offer evidence, both theoretical and biochemical, showing that these kinases can undergo self-association. Despite these similarities, these kinases differ in tissue distribution, apparent subcellular localization, and feature structural differences largely within the carboxyl-terminal sequence.

  8. Targeting Human Central Nervous System Protein Kinases: An Isoform Selective p38αMAPK Inhibitor That Attenuates Disease Progression in Alzheimer’s Disease Mouse Models

    PubMed Central

    2015-01-01

    The first kinase inhibitor drug approval in 2001 initiated a remarkable decade of tyrosine kinase inhibitor drugs for oncology indications, but a void exists for serine/threonine protein kinase inhibitor drugs and central nervous system indications. Stress kinases are of special interest in neurological and neuropsychiatric disorders due to their involvement in synaptic dysfunction and complex disease susceptibility. Clinical and preclinical evidence implicates the stress related kinase p38αMAPK as a potential neurotherapeutic target, but isoform selective p38αMAPK inhibitor candidates are lacking and the mixed kinase inhibitor drugs that are promising in peripheral tissue disease indications have limitations for neurologic indications. Therefore, pursuit of the neurotherapeutic hypothesis requires kinase isoform selective inhibitors with appropriate neuropharmacology features. Synaptic dysfunction disorders offer a potential for enhanced pharmacological efficacy due to stress-induced activation of p38αMAPK in both neurons and glia, the interacting cellular components of the synaptic pathophysiological axis, to be modulated. We report a novel isoform selective p38αMAPK inhibitor, MW01-18-150SRM (=MW150), that is efficacious in suppression of hippocampal-dependent associative and spatial memory deficits in two distinct synaptic dysfunction mouse models. A synthetic scheme for biocompatible product and positive outcomes from pharmacological screens are presented. The high-resolution crystallographic structure of the p38αMAPK/MW150 complex documents active site binding, reveals a potential low energy conformation of the bound inhibitor, and suggests a structural explanation for MW150’s exquisite target selectivity. As far as we are aware, MW150 is without precedent as an isoform selective p38MAPK inhibitor or as a kinase inhibitor capable of modulating in vivo stress related behavior. PMID:25676389

  9. Design and synthesis of carbazole carboxamides as promising inhibitors of Bruton’s tyrosine kinase (BTK) and Janus kinase 2 (JAK2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qingjie; Batt, Douglas G.; Lippy, Jonathan S.

    Four series of disubstituted carbazole-1-carboxamides were designed and synthesised as inhibitors of Bruton’s tyrosine kinase (BTK). 4,7- and 4,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of BTK, while 3,7- and 3,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of Janus kinase 2 (JAK2).

  10. Herpes Simplex Virus 1 Inhibits TANK-Binding Kinase 1 through Formation of the Us11-Hsp90 Complex.

    PubMed

    Liu, Xing; Main, David; Ma, Yijie; He, Bin

    2018-05-09

    The Us11 protein of herpes simplex virus 1 (HSV-1) is an accessory factor with multiple functions. In virus-infected cells, it inhibits double-stranded RNA dependent protein kinase PKR, 2',5'-oligoadenylate synthetase, RIG-I and MDA-5. However, its precise role is incompletely defined. By screening human cDNA library, we show that the Us11 protein targets heat shock protein 90 (Hsp90), which inactivates TANK binding kinase 1 (TBK1) and antiviral immunity. When ectopically expressed, HSV-1 Us11 precludes the access of TBK1 to Hsp90 and IFN promoter activation. Consistently, upon HSV infection the Us11 protein suppresses the expression of IFN-β, RANTES, and interferon stimulated genes. This is mirrored by a blockade in the phosphorylation of interferon regulatory factor 3. Mechanistically, the Us11 protein associates with endogenous Hsp90 to disrupt the Hsp90-TBK1 complex. Furthermore, Us11 induces destabilization of TBK1 through a proteasome dependent pathway. Accordingly, Us11 expression facilitates HSV growth. Conversely, TBK1 expression restricts viral replication. These results suggest that control of TBK1 by Us11 promotes HSV-1 infection. IMPORTANCE TANK binding kinase 1 plays a key role in antiviral immunity. Although multiple factors are thought to participate in this process, the picture is obscure in herpes simplex virus infection. We demonstrate that the Us11 protein of HSV-1 forms a complex with heat shock protein 90, which inactivates TANK binding kinase 1 and IFN induction. As a result, expression of the Us11 protein promotes HSV replication. These experimental data provide a new insight into the molecular network of virus-host interactions. Copyright © 2018 American Society for Microbiology.

  11. Genetic and Pharmacological Inhibition of PDK1 in Cancer Cells: Characterization of a Selective Allosteric Kinase Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagashima, Kumiko; Shumway, Stuart D.; Sathyanarayanan, Sriram

    2013-11-20

    Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitivemore » kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.« less

  12. Phosphorylated ribosomal S6 (p-rpS6) as a post-treatment indicator of HER2 signalling targeted drug resistance.

    PubMed

    Yang-Kolodji, Gloria; Mumenthaler, Shannon M; Mehta, Arjun; Ji, Lingyun; Tripathy, Debu

    2015-01-01

    To identify clinically relevant predictive biomarkers of trastuzumab resistance. MTT, FACS assays, immunoblotting and immunocytochemistry were used to phenotypically characterize drug responses of two cell models BT474R and SKBR3R. Student's t-test and Spearman's correlation were applied for statistic analysis. The activity of a downstream effector of the HER2 pathway phosphorylated ribosomal protein S6 (p-rpS6), was suppressed by trastuzumab in the parental cell lines yet remained unchanged in the resistant cells following treatment. The level of p-rpS6 was inversely correlated to the drug induced growth inhibition of trastuzumab-resistant cells when they are treated with selected HER2 targeting drugs. p-rpS6 is a robust post-treatment indicator of HER2 pathway-targeted therapy resistance.

  13. CBX3 promotes colon cancer cell proliferation by CDK6 kinase-independent function during cell cycle

    PubMed Central

    Fan, Yao; Li, Haiping; Liang, Xiaolong; Xiang, Zheng

    2017-01-01

    Heterochromatin protein 1γ (CBX3) links histone methylation marks to transcriptional silence, DNA repair and RNA splicing, but a role for CBX3 in cancer remains largely unknown. In this study, we show that CBX3 in colon cancer cells promotes the progression of the cell cycle and proliferation in vitro and in vivo. Cell cycle (G1 phase to S phase) related gene CDK6 and p21 were further identified as targets of CBX3. In addition, we found that enhancing CDK6 suppresses cell proliferation by upregulating inhibitor p21 in the absence of CBX3, and this function is independent of the kinase activity of CDK6. Our results demonstrate a key role of CBX3 in colon carcinogenesis via suppressing the expression of CDK6/p21, which may disrupt the role of CDK6 in transcriptionally regulating p21, as part of a negative feedback loop to limit CDK6 excessive activation. PMID:28193906

  14. TAO kinases mediate activation of p38 in response to DNA damage

    PubMed Central

    Raman, Malavika; Earnest, Svetlana; Zhang, Kai; Zhao, Yingming; Cobb, Melanie H

    2007-01-01

    Thousand and one amino acid (TAO) kinases are Ste20p-related MAP kinase kinase kinases (MAP3Ks) that activate p38 MAPK. Here we show that the TAO kinases mediate the activation of p38 in response to various genotoxic stimuli. TAO kinases are activated acutely by ionizing radiation, ultraviolet radiation, and hydroxyurea. Full-length and truncated fragments of dominant negative TAOs inhibit the activation of p38 by DNA damage. Inhibition of TAO expression by siRNA also decreases p38 activation by these agents. Cells in which TAO kinases have been knocked down are less capable of engaging the DNA damage-induced G2/M checkpoint and display increased sensitivity to IR. The DNA damage kinase ataxia telangiectasia mutated (ATM) phosphorylates TAOs in vitro; radiation induces phosphorylation of TAO on a consensus site for phosphorylation by the ATM protein kinase in cells; and TAO and p38 activation is compromised in cells from a patient with ataxia telangiectasia that lack ATM. These findings indicate that TAO kinases are regulators of p38-mediated responses to DNA damage and are intermediates in the activation of p38 by ATM. PMID:17396146

  15. p21-activated kinase signaling in breast cancer.

    PubMed

    Gururaj, Anupama E; Rayala, Suresh K; Kumar, Rakesh

    2005-01-01

    The p21-activated kinases signal through a number of cellular pathways fundamental to growth, differentiation and apoptosis. A wealth of information has accumulated at an impressive pace in the recent past, both with regard to previously identified targets for p21-activated kinases that regulate the actin cytoskeleton and cellular stress pathways and with regard to newly identified targets and their role in cancer. Emerging data also provide new clues towards a previously unappreciated link between these various cellular processes. The present review attempts to provide a quick tutorial to the reader about the evolving significance of p21-activated kinases and small GTPases in breast cancer, using information from mouse models, tissue culture studies, and human materials.

  16. Fluorophore Labeled Kinase Detects Ligands That Bind within the MAPK Insert of p38α Kinase

    PubMed Central

    Termathe, Martin; Grütter, Christian; Rabiller, Matthias; van Otterlo, Willem A. L.; Rauh, Daniel

    2012-01-01

    The vast majority of small molecules known to modulate kinase activity, target the highly conserved ATP-pocket. Consequently, such ligands are often less specific and in case of inhibitors, this leads to the inhibition of multiple kinases. Thus, selective modulation of kinase function remains a major hurdle. One of the next great challenges in kinase research is the identification of ligands which bind to less conserved sites and target the non-catalytic functions of protein kinases. However, approaches that allow for the unambiguous identification of molecules that bind to these less conserved sites are few in number. We have previously reported the use of fluorescent labels in kinases (FLiK) to develop direct kinase binding assays that exclusively detect ligands which stabilize inactive (DFG-out) kinase conformations. Here, we present the successful application of the FLiK approach to develop a high-throughput binding assay capable of directly monitoring ligand binding to a remote site within the MAPK insert of p38α mitogen-activated protein kinase (MAPK). Guided by the crystal structure of an initially identified hit molecule in complex with p38α, we developed a tight binding ligand which may serve as an ideal starting point for further investigations of the biological function of the MAPK insert in regulating the p38α signaling pathway. PMID:22768308

  17. Thermomechanical Fatigue Damage/Failure Mechanisms in SCS-6/Timetal 21S [0/90](Sub S) Composite

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1994-01-01

    The thermomechanical fatigue (TMF) deformation, damage, and life behaviors of SCS6/Timetal 21S (0/90)s were investigated under zero-tension conditions. In-phase (IP) and out-of-phase (OP) loadings were investigated with a temperature cycle from 150 to 650 deg C. An advanced TMF test technique was used to quantify mechanically damage progression. The technique incorporated explicit measurements of the macroscopic (1) isothermal static moduli at the temperature extremes of the TMF cycle and (2) coefficient of thermal expansion (CTE) as functions of the TMF cycles. The importance of thermal property degradation and its relevance to accurate post-test data analysis and interpretation is briefly addressed. Extensive fractography and metallography were conducted on specimens from failed and interrupted tests to characterize the extent of damage at the microstructure level. Fatigue life results indicated trends analogous to those established for similar unidirectional(0) reinforced titanium matrix composite systems. High stress IP and mid to low stress OP loading conditions were life-limiting in comparison to maximum temperature isothermal conditions. Dominant damage mechanisms changed with cycle type. Damage resulting from IP TMF conditions produced measurable decreases in static moduli but only minimal changes in the CTE. Metallography on interrupted and failed specimens revealed extensive (0) fiber cracking with sparse matrix damage. No surface initiated matrix cracks were present. Comparable OP TMF conditions initiated environment enhanced surface cracking and matrix cracking initiated at (90) fiber/matrix (F/M) interfaces. Notable static moduli and CTE degradations were measured. Fractography and metallography revealed that the transverse cracks originating from the surface and (90) F/M interfaces tended to converge and coalesce at the (0) fibers.

  18. Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice.

    PubMed

    Sun, Linxiao; Yu, Yonghua; Hu, Weiqin; Min, Qiming; Kang, Huiling; Li, Yilu; Hong, Yue; Wang, Xuemin; Hong, Yueyun

    2016-07-01

    Ribosomal protein S6 kinase (S6K) functions as a key component in the target of rapamycin (TOR) pathway involved in multiple processes in eukaryotes. The role and regulation of TOR-S6K in lipid metabolism remained unknown in plants. Here we provide genetic and pharmacological evidence that TOR-Raptor2-S6K1 is important for thylakoid galactolipid biosynthesis and thylakoid grana modeling in rice (Oryza sativa L.). Genetic suppression of S6K1 caused pale yellow-green leaves, defective thylakoid grana architecture. S6K1 directly interacts with Raptor2, a core component in TOR signaling, and S6K1 activity is regulated by Raptor2 and TOR. Plants with suppressed Raptor2 expression or reduced TOR activity by inhibitors mimicked the S6K1-deficient phenotype. A significant reduction in galactolipid content was found in the s6k1, raptor2 mutant or TOR-inhibited plants, which was accompanied by decreased transcript levels of the set of genes such as lipid phosphate phosphatase α5 (LPPα5), MGDG synthase 1 (MGD1), and DGDG synthase 1 (DGD1) involved in galactolipid synthesis, compared to the control plants. Moreover, loss of LPPα5 exhibited a similar phenotype with pale yellow-green leaves. These results suggest that TOR-Raptor2-S6K1 is important for modulating thylakoid membrane lipid biosynthesis, homeostasis, thus enhancing thylakoid grana architecture and normal photosynthesis ability in rice. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of orthodontic force on the expression of PI3K, Akt, and P70S6 K in the human periodontal ligament during orthodontic loading.

    PubMed

    Xu, Yunhe; Shen, Jiayuan; Muhammed, Fenik Kaml; Zheng, Bowen; Zhang, Yuejiao; Liu, Yi

    2017-10-01

    The mammalian target of rapamycin (mTOR) is an atypical serine/threonine protein kinases involved in the regulation of cell growth, proliferation, and differentiation through the PI3K/Akt/mTOR/P70S6 K signalling pathway. P70S6 K as a downstream molecule of mTOR is activated by phosphorylation and subsequently promotes the synthesis of ribosomal and translational proteins. In this study, we investigated the role of PI3K, Akt, and P70S6 K in human periodontal tissue remodelling during orthodontic loading. The prepared tissue specimens taken from 4 extracted premolars were processed for immunolabelling. The changes in the expression of PI3K, Akt, and P70S6 K in the periodontal tissues were detected by real-time quantitative-polymerase chain reaction and Western blot analysis. The results from real-time quantitative-polymerase chain reaction and Western blot both showed that the expression of PI3K, Akt, and P70S6 K in the experimental group began to increase at 3 days and increased significantly at 10 days, then decreased approaching the control group level at 28 days. Our findings showed that the expression of PI3K, Akt, and P70S6 K in human periodontal ligament demonstrated a variability during the orthodontic loading, which suggested that the PI3K/Akt/mTOR/P70S6 K signal pathway was involved in orthodontic tooth movement and played a role in the process of periodontium remodelling. Copyright © 2017 John Wiley & Sons, Ltd.

  20. [SP600125-induced polyploidization of megakaryocytic leukemia cell lines by ribosomal protein S6 kinase 1 depends on the degree of cell differentiation].

    PubMed

    Wang, Lili; Yang, Jingang; Li, Changling; Xing, Sining; Yu, Ying; Liu, Shuo; Zhao, Song; Ma, Dongchu

    2016-10-01

    Objective To investigate regulatory role of ribosomal protein S6 kinase 1 (S6K1) in the polyploidization of different megakaryocytic leukemia cell lines at the different differentiation stages. Methods Megakaryocytic leukemia cell lines (Dami, Meg-01 and HEL cells) were induced towards polyploidization by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. The SP600125-inducing process was blocked by H-89, a cAMP-dependent protein kinase (PKA) inhibitor. The phenotype (CD41a, CD42a and CD42b) and DNA ploidy were detected by flow cytometry. The expression and phosphorylation of S6K1 and related proteins were detected by Western blotting. Results SP600125 induced polyploidization and increased the phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) in Dami, Meg-01 and HEL cells. However, the effect of SP600125 on polyploidization of the three cell lines was different, with the strongest effect on Dami cells and the weakest on Meg-01 cells. Moreover, SP600125 increased the phosphorylation of S6K1 Thr421/Ser424 and decreased the phosphorylation of Thr389 in Dami cells. However, it only increased the phosphorylation of Thr389 in HEL cells and had no effect on the phosphorylation of S6K1 in Meg-01 cells. Interestingly, H-89 only partially blocked the polyploidization of Dami cells, although it decreased the phosphorylation of 4E-BP1 in all SP600125-induced three cell lines. Noticeably, H-89 decreased the phosphorylation of S6K1 Thr421/Ser424 and increased the phosphorylation of Thr389 in Dami cells. However, H-89 had no effect on the phosphorylation of Thr421/Ser424, although it increased the phosphorylation of Thr389 in Meg-01 and HEL cells. Phenotypic analysis showed that the three cell lines were at different levels of differentiation in megakaryocytic lineage, with the highest differentiation in Dami and the lowest in Meg-01 cells. Conclusion SP600125-induced polyploidization of megakaryocytic leukemia cell lines is dependent on the effect

  1. Immunohistochemical analysis of S6K1 and S6K2 localization in human breast tumors.

    PubMed

    Filonenko, Valeriy V; Tytarenko, Ruslana; Azatjan, Sergey K; Savinska, Lilya O; Gaydar, Yuriy A; Gout, Ivan T; Usenko, Vasiliy S; Lyzogubov, Valeriy V

    2004-12-01

    To perform an immunohistochemical analysis of human breast adenomas and adenocarcinomas as well as normal breast tissues in respect of S6 ribosomal protein kinase (S6K) expression and localization in normal and transformed cells. The expression level and localization of S6K have been detected in formalin fixed, paraffin embedded sections of normal human breast tissues, adenomas and adenocarcinomas with different grade of differentiation. Immunohistochemical detection of S6K1 and S6K2 in normal human breast tissues and breast tumors were performed using specific monoclonal and polyclonal antibodies against S6K1 and S6K2 with following semiquantitative analysis. The increase of S6K content in the cytoplasm of epithelial cells in benign and malignant tumors has been detected. Nuclear accumulation of S6K1 and to a greater extend S6K2 have been found in breast adenocarcinomas. About 80% of breast adenocarcinomas cases revealed S6K2 nuclear staining comparing to normal tissues. In 31% of cases more then 50% of cancer cells had strong nuclear staining. Accumulation of S6K1 in the nucleus of neoplastic cells has been demonstrated in 25% of cases. Nuclear localization of S6K in the epithelial cells in normal breast tissues has not been detected. Immunohistochemical analysis of S6K1 and S6K2 expression in normal human breast tissues, benign and malignant breast tumors clearly indicates that both kinases are overexpressed in breast tumors. Semiquantitative analysis of peculiarities of S6K localization in normal tissues and tumors revealed that nucleoplasmic accumulation of S6K (especially S6K2) is a distinguishing feature of cancer cells.

  2. Kinetic, mechanistic, and structural modeling studies of truncated wild-type leucine-rich repeat kinase 2 and the G2019S mutant.

    PubMed

    Liu, Min; Kang, Stephanie; Ray, Soumya; Jackson, Justin; Zaitsev, Alexandra D; Gerber, Scott A; Cuny, Gregory D; Glicksman, Marcie A

    2011-11-01

    Leucine-rich repeat kinase 2 (LRRK2), a large and complex protein that possesses two enzymatic properties, kinase and GTPase, is one of the major genetic factors in Parkinson's disease (PD). Here, we characterize the kinetic and catalytic mechanisms of truncated wild-type (t-wt) LRRK2 and its most common mutant, G2019S (t-G2019S), with a structural interpretation of the kinase domain. First, the substitution of threonine with serine in the LRRKtide peptide results in a much less efficient substrate as demonstrated by a 26-fold decrease in k(cat) and a 6-fold decrease in binding affinity. The significant decrease in k(cat) is attributed to a slow chemical transfer step as evidenced by the inverse solvent kinetic isotope effect in the proton inventory and pL (pH or pD)-dependent studies. The shape of the proton inventory and pL profile clearly signals the involvement of a general base (pK(a) = 7.5) in the catalysis with a low fractionation factor in the ground state. We report for the first time that the increased kinase activity of the G2019S mutant is substrate-dependent. Homology modeling of the kinase domain (open and closed forms) and structural analysis of the docked peptide substrates suggest that electrostatic interactions play an important role in substrate recognition, which is affected by G2019S and may directly influence the kinetic properties of the enzyme. Finally, the GTPase activity of the t-G2019S mutant was characterized, and the mutation modestly decreases GTPase activity without significantly affecting GTP binding affinity.

  3. Endotoxicosis induced by Coxiella burnetii lipopolysaccharide stimulates a ribosomal protein S6 kinase: some properties of the partially purified enzyme.

    PubMed Central

    Picking, W D; Hackstadt, T; Paretsky, D

    1989-01-01

    Guinea pig endotoxicosis induced by lipopolysaccharide from Coxiella burnetii Nine Mile phase I stimulates phosphorylation of liver ribosomal protein S6, with a 50% increase at 12 h postinoculation. The responsible protein kinase (S6PK) has been partially purified from liver; its activity is independent of cyclic AMP and of Ca2+ plus phosphatidyl serine or diacylglycerol. The preparation has an apparent optimum concentration of 20 mM Mg2+, while Ca2+ and Mn2+ are each inhibitory at 2 mM. The apparent Km for ATP is 30 microM with intact ribosomes. Because of the central role of phosphorylation in metabolic regulation and a purported role of phosphorylated S6 in protein synthesis, the lipopolysaccharide-induced stimulation of S6PK suggests a significant regulatory role of such enzymes in the pathobiochemistry of Q fever infection and endotoxicosis. Images PMID:2807543

  4. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α throughmore » an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.« less

  5. Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone

    PubMed Central

    Stetz, Gabrielle; Tse, Amanda

    2017-01-01

    The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK family are of particular interest as functional diversification among these kinases may be related to variations in chaperone dependencies and can be exploited in drug discovery of personalized therapeutic agents. In this work, we report the results of a computational investigation of several members of CDK family (CDK5, CDK6, CDK9) that represented a broad repertoire of chaperone dependencies—from nonclient CDK5, to weak client CDK6, and strong client CDK9. By using molecular simulations of multiple crystal structures we characterized conformational ensembles and collective dynamics of CDK proteins. We found that the elevated dynamics of CDK9 can trigger imbalances in cooperative collective motions and reduce stability of the active fold, thus creating a cascade of favorable conditions for chaperone intervention. The ensemble-based modeling of residue interaction networks and community analysis determined how differences in modularity of allosteric networks and topography of communication pathways can be linked with the client status of CDK proteins. This analysis unveiled depleted modularity of the allosteric network in CDK9 that alters distribution of communication pathways and leads to impaired

  6. Pro-life role for c-Jun N-terminal kinase and p38 mitogen-activated protein kinase at rostral ventrolateral medulla in experimental brain stem death

    PubMed Central

    2012-01-01

    Background Based on an experimental brain stem death model, we demonstrated previously that activation of the mitogen-activated protein kinase kinase 1/2 (MEK1/2)/extracellular signal-regulated kinase 1/2 (ERK1/2)/ mitogen-activated protein kinase signal-interacting kinase 1/2 (MNK1/2) cascade plays a pro-life role in the rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from systemic arterial pressure, which sequentially increases (pro-life) and decreases (pro-death) to reflect progressive dysfunction of central cardiovascular regulation during the advancement towards brain stem death in critically ill patients. The present study assessed the hypothesis that, in addition to ERK1/2, c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK), the other two mammalian members of MAPKs that are originally identified as stress-activated protein kinases, are activated specifically by MAPK kinase 4 (MAP2K4) or MAP2K6 and play a pro-life role in RVLM during experimental brain stem death. We further delineated the participation of phosphorylating activating transcriptional factor-2 (ATF-2) and c-Jun, the classical transcription factor activated by JNK or p38MAPK, in this process. Results An experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos (Mev; 10 nmol) bilaterally into RVLM of Sprague–Dawley rats was used, alongside cardiovascular, pharmacological and biochemical evaluations. Results from ELISA showed that whereas the total JNK, p38MAPK, MAP2K4 and MAP2K6 were not affected, augmented phosphorylation of JNK at Thr183 and Tyr185 and p38MAPK at Thr180 and Tyr182, accompanied by phosphorylation of their upstream activators MAP2K4 at Ser257 and Thr261 and MAP2K6 at Ser207 and Thr211 in RVLM occurred preferentially during the pro-life phase of experimental brain stem death. Moreover, the activity of transcription factors ATF-2 at Thr71 and c-Jun at Ser73

  7. Pro-life role for c-Jun N-terminal kinase and p38 mitogen-activated protein kinase at rostral ventrolateral medulla in experimental brain stem death.

    PubMed

    Chang, Alice Y W

    2012-11-17

    Based on an experimental brain stem death model, we demonstrated previously that activation of the mitogen-activated protein kinase kinase 1/2 (MEK1/2)/extracellular signal-regulated kinase 1/2 (ERK1/2)/ mitogen-activated protein kinase signal-interacting kinase 1/2 (MNK1/2) cascade plays a pro-life role in the rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from systemic arterial pressure, which sequentially increases (pro-life) and decreases (pro-death) to reflect progressive dysfunction of central cardiovascular regulation during the advancement towards brain stem death in critically ill patients. The present study assessed the hypothesis that, in addition to ERK1/2, c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK), the other two mammalian members of MAPKs that are originally identified as stress-activated protein kinases, are activated specifically by MAPK kinase 4 (MAP2K4) or MAP2K6 and play a pro-life role in RVLM during experimental brain stem death. We further delineated the participation of phosphorylating activating transcriptional factor-2 (ATF-2) and c-Jun, the classical transcription factor activated by JNK or p38MAPK, in this process. An experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos (Mev; 10 nmol) bilaterally into RVLM of Sprague-Dawley rats was used, alongside cardiovascular, pharmacological and biochemical evaluations. Results from ELISA showed that whereas the total JNK, p38MAPK, MAP2K4 and MAP2K6 were not affected, augmented phosphorylation of JNK at Thr183 and Tyr185 and p38MAPK at Thr180 and Tyr182, accompanied by phosphorylation of their upstream activators MAP2K4 at Ser257 and Thr261 and MAP2K6 at Ser207 and Thr211 in RVLM occurred preferentially during the pro-life phase of experimental brain stem death. Moreover, the activity of transcription factors ATF-2 at Thr71 and c-Jun at Ser73, rather than Elk-1 at

  8. Analysis of the spectrum of the (5d6+5d56s) -(5d56p+5d46s6p) transitions of two times ionized osmium (Os III)

    NASA Astrophysics Data System (ADS)

    Azarov, Vladimir I.; Tchang-Brillet, W.-Ü. Lydia; Gayasov, Robert R.

    2018-05-01

    The spectrum of osmium was observed in the (225-2100) Å wavelength region. The (5d6 + 5d56s) - (5d56p + 5d46s6p) transition array of two times ionized osmium, Os III, has been investigated and 1039 spectral lines have been classified in the region. The analysis has led to the determination of the 5d6, 5d56s, 5d56p and 5d46s6p configurations. Fifty-eight levels of the 5d6 and 5d56s configurations in the even system and 142 levels of the 5d56p and 5d46s6p configurations in the odd system have been established. The orthogonal operators technique was used to calculate the level structure and transition probabilities. The energy parameters have been determined by the least squares fit to the observed levels. Calculated transition probability and energy values, as well as LS-compositions obtained from the fitted parameters are presented.

  9. Fructose-2,6-bisphosphatase and 6-phosphofructo-2-kinase are separable in yeast.

    PubMed Central

    Kretschmer, M; Schellenberger, W; Otto, A; Kessler, R; Hofmann, E

    1987-01-01

    Fructose-2,6-bisphosphatase was purified from yeast and separated from 6-phosphofructo-2-kinase and alkaline phosphatase. The enzyme released Pi from the 2-position of fructose 2,6-bisphosphate and formed fructose 6-phosphate in stoichiometric amounts. The enzyme displays hyperbolic kinetics towards fructose 2,6-bisphosphate, with a Km value of 0.3 microM. It is strongly inhibited by fructose 6-phosphate. The inhibition is counteracted by L-glycerol 3-phosphate. Phosphorylation of the enzyme by cyclic-AMP-dependent protein kinase causes inactivation, which is reversible by the action of protein phosphatase 2A. PMID:2825652

  10. Faraday effect in Sn2P2S6 crystals.

    PubMed

    Krupych, Oleh; Adamenko, Dmytro; Mys, Oksana; Grabar, Aleksandr; Vlokh, Rostyslav

    2008-11-10

    We have revealed a large Faraday rotation in tin thiohypodiphosphate (Sn(2)P(2)S(6)) crystals, which makes this material promising for magneto-optics. The effective Faraday tensor component and the Verdet constant for the direction of the optic axis have been determined by measuring the pure Faraday rotation in Sn(2)P(2)S(6) crystals with both the single-ray and small-angular polarimetric methods at the normal conditions and a wavelength of 632.8 nm. The effective Verdet constant is found to be equal to 115 rad/T x m.

  11. Role of p21-activated kinases in cardiovascular development and function.

    PubMed

    Kelly, Mollie L; Astsaturov, Artyom; Chernoff, Jonathan

    2013-11-01

    p21-activated kinases (Paks) are a group of six serine/threonine kinases (Pak1-6) that are involved in a variety of biological processes. Recently, Paks, more specifically Pak1, -2, and -4, have been shown to play important roles in cardiovascular development and function in a range of model organisms including zebrafish and mice. These functions include proper morphogenesis and conductance of the heart, cardiac contractility, and development and integrity of the vasculature. The mechanisms underlying these effects are not fully known, but they likely differ among the various Pak isoforms and include both kinase-dependent and -independent functions. In this review, we discuss aspects of Pak function relevant to cardiovascular biology as well as potential therapeutic implications of small-molecule Pak inhibitors in cardiovascular disease.

  12. Exploring the ϒ (4 S ,5 S ,6 S )→hb(1 P )η hidden-bottom hadronic transitions

    NASA Astrophysics Data System (ADS)

    Zhang, Yawei; Li, Gang

    2018-01-01

    Recently, the Belle Collaboration has reported the measurement of the spin-flipping transition ϒ (4 S )→hb(1 P )η with an unexpectedly large branching ratio: B (ϒ (4 S )→hb(1 P )η )=(2.18 ±0.11 ±0.18 )×10-3 . Such a large branching fraction contradicts with the anticipated suppression for the spin flip. In this work, we examine the effects induced by intermediate bottomed meson loops and point out that these effects are significantly important. Using the effective Lagrangian approach (ELA), we find the experimental data on ϒ (4 S )→hb(1 P )η can be accommodated with the reasonable inputs. We then explore the decays ϒ (5 S ,6 S )→hb(1 P )η and find that these two channels also have sizable branching fractions. We also calculate these processes in the framework of nonrelativistic effective field theory (NREFT). For the decays ϒ (4 S )→hb(1 P )η , the NREFT results are at the same order of magnitude but smaller than the ELA results by a factor of 2 to 5. For the decays ϒ (5 S ,6 S )→hb(1 P )η , the NREFT results are smaller than the ELA results by approximately 1 order of magnitude. We suggest a future experiment Belle-II to search for the ϒ (5 S ,6 S )→hb(1 P )η decays, which will be helpful for understanding the transition mechanism.

  13. α-santalol inhibits the angiogenesis and growth of human prostate tumor growth by targeting vascular endothelial growth factor receptor 2-mediated AKT/mTOR/P70S6K signaling pathway

    PubMed Central

    2013-01-01

    Background VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, recently, most of these anticancer drugs have some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. Methods We used α-santalol and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVECs) and Prostate tumor cells (PC-3 or LNCaP) in vitro. Tumor xenografts in nude mice were used to examine the in vivo activity of α-santalol. Results α-santalol significantly inhibits HUVEC proliferation, migration, invasion, and tube formation. Western blot analysis indicated that α-santalol inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including AKT, ERK, FAK, Src, mTOR, and pS6K in HUVEC, PC-3 and LNCaP cells. α-santalol treatment inhibited ex vivo and in vivo angiogenesis as evident by rat aortic and sponge implant angiogenesis assay. α-santalol significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model. The antiangiogenic effect by CD31 immunohistochemical staining indicated that α-santalol inhibited tumorigenesis by targeting angiogenesis. Furthermore, α-santalol reduced the cell viability and induced apoptosis in PC-3 cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Molecular docking simulation indicated that α-santalol form hydrogen bonds and aromatic interactions within the ATP-binding region of the VEGFR2 kinase unit. Conclusion α-santalol inhibits angiogenesis by targeting VEGFR2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy. PMID:24261856

  14. The Cak1p Protein Kinase Is Required at G(1)/S and G(2)/M in the Budding Yeast Cell Cycle

    PubMed Central

    Sutton, A.; Freiman, R.

    1997-01-01

    The CAK1 gene encodes the major CDK-activating kinase (CAK) in budding yeast and is required for activation of Cdc28p for cell cycle progression from G(2) to M phase. Here we describe the isolation of a mutant allele of CAK1 in a synthetic lethal screen with the Sit4 protein phosphatase. Analysis of several different cak1 mutants shows that although the G(2) to M transition appears most sensitive to loss of Cak1p function, Cak1p is also required for activation of Cdc28p for progression from G(1) into S phase. Further characterization of these mutants suggests that, unlike the CAK identified from higher eukaryotes, Cak1p of budding yeast may not play a role in general transcription. Finally, although Cak1 protein levels and in vitro protein kinase activity do not fluctuate during the cell cycle, at least a fraction of Cak1p associates with higher molecular weight proteins, which may be important for its in vivo function. PMID:9286668

  15. Radiation-induced interleukin-6 expression through MAPK/p38/NF-kappaB signaling pathway and the resultant antiapoptotic effect on endothelial cells through Mcl-1 expression with sIL6-Ralpha.

    PubMed

    Chou, Chia-Hung; Chen, Shee-Uan; Cheng, Jason Chia-Hsien

    2009-12-01

    To investigate the mechanism of interleukin-6 (IL-6) activity induced by ionizing radiation. Human umbilical vascular endothelial cells (HUVECs) were irradiated with different doses to induce IL-6. The IL-6 promoter assay and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to examine transcriptional regulation. Specific chemical inhibitors, decoy double-stranded oligodeoxynucleotides, and Western blotting were conducted to investigate the signal transduction pathway. Recombinant soluble human IL-6 receptor alpha-chain (sIL6-Ralpha) and specific small interfering RNA were used to evaluate the biologic function of radiation-induced IL-6. Four grays of radiation induced the highest level of IL-6 protein. The promoter assay and RT-PCR data revealed that the induction of IL-6 was mediated through transcriptional regulation. The p38 inhibitor SB203580, by blocking nuclear factor-kappaB (NF-kappaB) activation, prevented both the transcriptional and translational regulation of radiation-induced IL-6 expression. The addition of sIL6-Ralpha rescued HUVECs from radiation-induced death in an IL-6 concentratio-dependent manner. The antiapoptotic effect of combined sIL6-Ralpha and radiation-induced IL-6 was inhibited by mcl-1-specific small interfering RNA. Radiation transcriptionally induces IL-6 expression in endothelial cells through mitogen-activated protein kinase/p38-mediated NF-kappaB/IkappaB (inhibitor of NF-kappaB) complex activation. In the presence of sIL6-Ralpha, radiation-induced IL-6 expression acts through Mcl-1 expression to rescue endothelial cells from radiation-induced death.

  16. Structural Bioinformatics-Based Prediction of Exceptional Selectivity of p38 MAP Kinase Inhibitor PH-797804

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Li; Shieh, Huey S.; Selness, Shaun R.

    2009-07-24

    PH-797804 is a diarylpyridinone inhibitor of p38{alpha} mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. On the basis of structural comparison with a different biaryl pyrazole template and supported by dozens of high-resolution crystal structures of p38{alpha} inhibitor complexes, PH-797804 is predicted to possess a high level of specificity across the broad human kinase genome. We used a structural bioinformatics approach to identify two selectivity elements encoded by the TXXXG sequence motif on the p38{alpha} kinase hinge: (i) Thr106 that serves as themore » gatekeeper to the buried hydrophobic pocket occupied by 2,4-difluorophenyl of PH-797804 and (ii) the bidentate hydrogen bonds formed by the pyridinone moiety with the kinase hinge requiring an induced 180{sup o} rotation of the Met109-Gly110 peptide bond. The peptide flip occurs in p38{alpha} kinase due to the critical glycine residue marked by its conformational flexibility. Kinome-wide sequence mining revealed rare presentation of the selectivity motif. Corroboratively, PH-797804 exhibited exceptionally high specificity against MAP kinases and the related kinases. No cross-reactivity was observed in large panels of kinase screens (selectivity ratio of >500-fold). In cellular assays, PH-797804 demonstrated superior potency and selectivity consistent with the biochemical measurements. PH-797804 has met safety criteria in human phase I studies and is under clinical development for several inflammatory conditions. Understanding the rationale for selectivity at the molecular level helps elucidate the biological function and design of specific p38{alpha} kinase inhibitors.« less

  17. Removal of S6K1 and S6K2 Leads to Divergent Alterations in Learning, Memory, and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Antion, Marcia D.; Merhav, Maayan; Hoeffer, Charles A.; Reis, Gerald; Kozma, Sara C.; Thomas, George; Schuman Erin M.; Rosenblum, Kobi; Klann, Eric

    2008-01-01

    Protein synthesis is required for the expression of enduring memories and long-lasting synaptic plasticity. During cellular proliferation and growth, S6 kinases (S6Ks) are activated and coordinate the synthesis of de novo proteins. We hypothesized that protein synthesis mediated by S6Ks is critical for the manifestation of learning, memory, and…

  18. UnPAKing the class differences among p21-activated kinases.

    PubMed

    Eswaran, Jeyanthy; Soundararajan, Meera; Kumar, Rakesh; Knapp, Stefan

    2008-08-01

    The p21-activated kinases (PAKs) are signal transducers, central to many vital cellular processes, including cell morphology, motility, survival, gene transcription and hormone signalling. The mammalian PAK family contains six serine/threonine kinases divided into two subgroups, group I (PAK 1-3) and group II (PAK4-6), based on their domain architecture and regulation. PAKs functioning as dynamic signalling nodes present themselves as attractive therapeutic targets in tumours, neurological diseases and infection. The recent findings across all PAKs, including newly reported structures, shed light on the cellular functions of PAKs, highlighting molecular mechanisms of activation, catalysis and substrate specificity. We believe that a comprehensive understanding of the entire PAK family is essential for developing strategies towards PAK-targeted therapeutics.

  19. DA Negatively Regulates IGF-I Actions Implicated in Cognitive Function via Interaction of PSD95 and nNOS in Minimal Hepatic Encephalopathy

    PubMed Central

    Ding, Saidan; Zhuge, Weishan; Wang, Xuebao; Yang, Jianjing; Lin, Yuanshao; Wang, Chengde; Hu, Jiangnan; Zhuge, Qichuan

    2017-01-01

    Insulin-like growth factor I (IGF-I) has been positively correlated with cognitive ability. Cognitive decline in minimal hepatic encephalopathy (MHE) was shown to be induced by elevated intracranial dopamine (DA). The beneficial effect of IGF-I signaling in MHE remains unknown. In this study, we found that IGF-I content was reduced in MHE rats and that IGF-I administration mitigated cognitive decline of MHE rats. A protective effect of IGF-I on the DA-induced interaction between postsynaptic density protein 95 (PSD95) and neuronal nitric oxide synthase (nNOS) was found in neurons. Ribosomal S6 protein kinase (RSK) phosphorylated nNOS in response to IGF-I by recruiting extracellular signal-regulated kinase (ERK1/2). In turn, DA inactivated the ERK1/2/RSK pathway and stimulated the PSD95–nNOS interaction by downregulating IGF-I. Inhibition of the interaction between PSD95 and nNOS ameliorated DA-induced memory impairment. As DA induced deficits in the ERK1/2/RSK pathway and the interaction between PSD95 and nNOS in MHE brains, IGF-I administration exerted a protective effect via interruption of the interaction between PSD95 and nNOS. These results suggest that IGF-I antagonizes DA-induced cognitive loss by disrupting PSD95–nNOS interactions in MHE. PMID:28932186

  20. DA Negatively Regulates IGF-I Actions Implicated in Cognitive Function via Interaction of PSD95 and nNOS in Minimal Hepatic Encephalopathy.

    PubMed

    Ding, Saidan; Zhuge, Weishan; Wang, Xuebao; Yang, Jianjing; Lin, Yuanshao; Wang, Chengde; Hu, Jiangnan; Zhuge, Qichuan

    2017-01-01

    Insulin-like growth factor I (IGF-I) has been positively correlated with cognitive ability. Cognitive decline in minimal hepatic encephalopathy (MHE) was shown to be induced by elevated intracranial dopamine (DA). The beneficial effect of IGF-I signaling in MHE remains unknown. In this study, we found that IGF-I content was reduced in MHE rats and that IGF-I administration mitigated cognitive decline of MHE rats. A protective effect of IGF-I on the DA-induced interaction between postsynaptic density protein 95 (PSD95) and neuronal nitric oxide synthase (nNOS) was found in neurons. Ribosomal S6 protein kinase (RSK) phosphorylated nNOS in response to IGF-I by recruiting extracellular signal-regulated kinase (ERK1/2). In turn, DA inactivated the ERK1/2/RSK pathway and stimulated the PSD95-nNOS interaction by downregulating IGF-I. Inhibition of the interaction between PSD95 and nNOS ameliorated DA-induced memory impairment. As DA induced deficits in the ERK1/2/RSK pathway and the interaction between PSD95 and nNOS in MHE brains, IGF-I administration exerted a protective effect via interruption of the interaction between PSD95 and nNOS. These results suggest that IGF-I antagonizes DA-induced cognitive loss by disrupting PSD95-nNOS interactions in MHE.

  1. Ghrelin promotes human non-small cell lung cancer A549 cell proliferation through PI3K/Akt/mTOR/P70S6K and ERK signaling pathways.

    PubMed

    Zhu, Jianhua; Yao, Jianfeng; Huang, Rongfu; Wang, Yueqin; Jia, Min; Huang, Yan

    2018-04-06

    Ghrelin is a gastric acyl-peptide that plays an important role in cell proliferation. In the present study, we explored the role of ghrelin in A549 cell proliferation and the possible molecular mechanisms. We found that ghrelin promotes A549 cell proliferation, knockdown of the growth hormone secretagogue receptor (GHSR) attenuated A549 cell proliferation caused by ghrelin. Ghrelin induced the rapid phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, ERK, mammalian target of rapamycin (mTOR) and P70S6K. PI3K inhibitor (LY 294002), ERK inhibitor (PD98059) and mTOR inhibitor (Rapamycin) inhibited ghrelin-induced A549 cell proliferation. Moreover, GHSR siRNA inhibited phosphorylation of PI3K, Akt, ERK, mTOR and P70S6K induced by ghrelin. Akt and mTOR/P70S6K phosphorylation was inhibited by LY 294002 but not by PD98059. These results indicate that ghrelin promotes A549 cell proliferation via GHSR-dependent PI3K/Akt/mTOR/P70S6K and ERK signaling pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Purification, crystallization and preliminary X-ray diffraction analysis of the kinase domain of human tousled-like kinase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrote, Ana M.; Redondo, Pilar; Montoya, Guillermo, E-mail: gmontoya@cnio.es

    2014-02-19

    The C-terminal kinase domain of TLK2 (a human tousled-like kinase) has been cloned and overexpressed in Escherichia coli followed by purification to homogeneity. Crystallization experiments in the presence of ATP-γ-S yielded crystals suitable for X-ray diffraction analysis belonging to two different space groups: tetragonal I4{sub 1}22 and cubic P2{sub 1}3. Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine/threonine protein kinases involved in chromatin dynamics, including DNA replication and repair, transcription and chromosome segregation. The two members of the family reported in humans, namely TLK1 and TLK2, localize to the cell nucleus and are capable of forming homo- ormore » hetero-oligomers by themselves. To characterize the role of TLK2, its C-terminal kinase domain was cloned and overexpressed in Escherichia coli followed by purification to homogeneity. Crystallization experiments in the presence of ATP-γ-S yielded crystals suitable for X-ray diffraction analysis belonging to two different space groups: tetragonal I4{sub 1}22 and cubic P2{sub 1}3. The latter produced the best diffracting crystal (3.4 Å resolution using synchrotron radiation), with unit-cell parameters a = b = c = 126.05 Å, α = β = γ = 90°. The asymmetric unit contained one protein molecule, with a Matthews coefficient of 4.59 Å{sup 3} Da{sup −1} and a solvent content of 73.23%.« less

  3. Association of p21ras with phosphatidylinositol 3-kinase.

    PubMed Central

    Sjölander, A; Yamamoto, K; Huber, B E; Lapetina, E G

    1991-01-01

    In mammalian cells, ras genes code for 21-kDa GTP-binding proteins. Increased expression and mutations in specific amino acids have been closely linked to alterations of normal cell morphology, growth, and differentiation and, in particular, to neoplastic transformation. The signal transduction induced by these p21ras proteins is largely unknown; however, the signaling pathways of several growth factors have been reported to involve phosphatidylinositol (PtdIns) 3-kinase. In the present study of a Ha-ras-transformed epithelial cell line, we demonstrated increased PtdIns 3-kinase activity in anti-phosphotyrosine and anti-receptor (insulin and hybrid insulin-like growth factor I) immunoprecipitates of cells that had been stimulated with insulin or insulin-like growth factor I. The PtdIns 3-kinase activity was also immunoprecipitated in these experiments by the anti-Ras monoclonal antibody Y13-259. The specificity of this association with p21ras was ascertained by the neutralizing effect of the antigen peptide and the absence of PtdIns 3-kinase activity in Y13-259 immunoprecipitates from cells in which the ras gene was turned off. These data indicate that PtdIns 3-kinase activity is an important step in the cascade of reactions in p21ras signal transduction, suggesting that the alterations of the cytoskeleton and growth in ras-transformed cells could be mediated by PtdIns 3-kinase activity. Images PMID:1716764

  4. Overexpression of ubiquitous 6-phosphofructo-2-kinase in the liver of transgenic mice results in weight gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, Joan; Navarro-Sabate, Aurea; Pujol, Anna

    2008-01-11

    Fructose 2,6-bisphosphate (Fru-2,6-P{sub 2}) is an important metabolite that controls glycolytic and gluconeogenic pathways in several cell types. Its synthesis and degradation are catalyzed by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2). Four genes, designated Pfkfb1-4, codify the different PFK-2 isozymes. The Pfkfb3 gene product, ubiquitous PFK-2 (uPFK-2), has the highest kinase/bisphosphatase activity ratio and is associated with proliferation and tumor metabolism. A transgenic mouse model that overexpresses uPFK-2 under the control of the phosphoenolpyruvate carboxykinase promoter was designed to promote sustained and elevated Fru-2,6-P{sub 2} levels in the liver. Our results demonstrate that in diet-induced obesity, high Fru-2,6-P{sub 2} levelsmore » in transgenic livers caused changes in hepatic gene expression profiles for key gluconeogenic and lipogenic enzymes, as well as an accumulation of lipids in periportal cells, and weight gain.« less

  5. Clematichinenoside Serves as a Neuroprotective Agent Against Ischemic Stroke: The Synergistic Action of ERK1/2 and cPKC Pathways

    PubMed Central

    Liu, Chao; Du, Qianming; Zhang, Xu; Tang, Zhichao; Ji, Hui; Li, Yunman

    2016-01-01

    There are numerous evidences suggesting that inhibition of apoptosis of neurons play a critical role in preventing the damage and even death of neurons after brain ischemia/reperfusion, which shows therapeutic potential for clinical treatment of brain injury induced by stroke. In this study, we aimed to investigate the neuroprotective effect of Clematichinenoside (AR) and its underlying mechanisms. MCAO mode was performed in rats and OGD/R model in primary cortical neurons to investigate the neuroprotective effect of AR. The rate of apoptotic cells was measured using TUNEL assay in cerebral cortex and flow cytometric assay in cortical neurons. Apoptosis-related proteins such as bcl-2, bcl-xl, and bax and the phosphorylation of ERK1/2, cPKC, p90RSK, and CREB in ischemic penumbra were assayed by western blot. Furthermore, we made a thorough inquiry about how these proteins play roles in the anti-apoptotic mechanism using targets-associated inhibitors step by step. The results revealed that AR could activate both ERK1/2 and cPKC which resulted in p90RSK phosphorylation and translocation into the nucleus. Moreover, CREB, a downstream target of p90RSK, was phosphorylated and then bound to cAMP-regulated enhancer (CRE) to activate apoptosis-related genes, and finally ameliorate ischemic stroke through preventing neuron death. In conclusion, these data strongly suggest that AR could be used as an effective neuroprotective agent to protect against ischemic stroke after cerebral I/R injury through regulating both ERK1/2 and cPKC mediated p90RSK/CREB apoptotic pathways. PMID:26793066

  6. Rapamycin inhibits spermatogenesis by changing the autophagy status through suppressing mechanistic target of rapamycin-p70S6 kinase in male rats

    PubMed Central

    Liu, Shangjing; Huang, Longxian; Geng, Yanqing; He, Junlin; Chen, Xuemei; Xu, Hao; Li, Rong; Wang, Yingxiong; Ding, Yubin; Liu, Xueqing

    2017-01-01

    Rapamycin (sirolimus) is an antiproliferative drug that has been widely used in the clinic as an immunosuppressant and a potential anticancer agent. Certain reports have indicated that rapamycin may induce male infertility through impairing sperm quality. The present study investigated the mechanism of male infertility caused by rapamycin and examined whether withdrawal of rapamycin could recover the number of sperm in rats. Male Sprague-Dawley rats (n=100) were divided randomly into 5 groups: 3 rapamycin-treated groups (2, 4 and 6 mg/kg) and 2 control groups [Blank and dimethyl sulfoxide (DMSO)]. Organ coefficients of the testes, number of sperm and hematoxylin-eosin staining analyses demonstrated that rapamycin treatment markedly damaged the structure of the seminiferous tubule and reduced the number of sperm. Immunohistochemistry of mechanistic target of rapamycin (mTOR) and Ki67 in testes tissue, and western blotting of phosphorylated-p70S6K and p70S6K, supported the hypothesis that rapamycin causes sperm reduction through inhibiting proliferation of spermatogonia. Unfortunately, 24 weeks after cessation of rapamycin treatment, only the number of sperm in 2 mg/kg group was restored back to the normal level. In addition, to the best of our knowledge, the present study was the first to demonstrate that low doses rapamycin leads to activation of autophagy in rat testes. This may be a self-protective mechanism of the cell in response to external stress. Thus, spermatogenesis can be recovered in the testes from rats in the low dose group. High doses of rapamycin resulted in excessive consumption of autophagy proteins, and the damage could not be compensated. In addition, it was revealed that cell apoptosis increased after treatment with rapamycin. In conclusion, the present study demonstrated that rapamycin inhibits spermatogenesis through suppressing phosphorylation of p70S6K and changing the autophagy status, ultimately reducing the number of sperm. These findings

  7. Rapamycin inhibits spermatogenesis by changing the autophagy status through suppressing mechanistic target of rapamycin-p70S6 kinase in male rats.

    PubMed

    Liu, Shangjing; Huang, Longxian; Geng, Yanqing; He, Junlin; Chen, Xuemei; Xu, Hao; Li, Rong; Wang, Yingxiong; Ding, Yubin; Liu, Xueqing

    2017-10-01

    Rapamycin (sirolimus) is an antiproliferative drug that has been widely used in the clinic as an immunosuppressant and a potential anticancer agent. Certain reports have indicated that rapamycin may induce male infertility through impairing sperm quality. The present study investigated the mechanism of male infertility caused by rapamycin and examined whether withdrawal of rapamycin could recover the number of sperm in rats. Male Sprague‑Dawley rats (n=100) were divided randomly into 5 groups: 3 rapamycin‑treated groups (2, 4 and 6 mg/kg) and 2 control groups [Blank and dimethyl sulfoxide (DMSO)]. Organ coefficients of the testes, number of sperm and hematoxylin‑eosin staining analyses demonstrated that rapamycin treatment markedly damaged the structure of the seminiferous tubule and reduced the number of sperm. Immunohistochemistry of mechanistic target of rapamycin (mTOR) and Ki67 in testes tissue, and western blotting of phosphorylated‑p70S6K and p70S6K, supported the hypothesis that rapamycin causes sperm reduction through inhibiting proliferation of spermatogonia. Unfortunately, 24 weeks after cessation of rapamycin treatment, only the number of sperm in 2 mg/kg group was restored back to the normal level. In addition, to the best of our knowledge, the present study was the first to demonstrate that low doses rapamycin leads to activation of autophagy in rat testes. This may be a self‑protective mechanism of the cell in response to external stress. Thus, spermatogenesis can be recovered in the testes from rats in the low dose group. High doses of rapamycin resulted in excessive consumption of autophagy proteins, and the damage could not be compensated. In addition, it was revealed that cell apoptosis increased after treatment with rapamycin. In conclusion, the present study demonstrated that rapamycin inhibits spermatogenesis through suppressing phosphorylation of p70S6K and changing the autophagy status, ultimately reducing the number of sperm

  8. The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity.

    PubMed

    Ando, Maya; Fiesel, Fabienne C; Hudec, Roman; Caulfield, Thomas R; Ogaki, Kotaro; Górka-Skoczylas, Paulina; Koziorowski, Dariusz; Friedman, Andrzej; Chen, Li; Dawson, Valina L; Dawson, Ted M; Bu, Guojun; Ross, Owen A; Wszolek, Zbigniew K; Springer, Wolfdieter

    2017-04-24

    Mutations in PINK1 and PARKIN are the most common causes of recessive early-onset Parkinson's disease (EOPD). Together, the mitochondrial ubiquitin (Ub) kinase PINK1 and the cytosolic E3 Ub ligase PARKIN direct a complex regulated, sequential mitochondrial quality control. Thereby, damaged mitochondria are identified and targeted to degradation in order to prevent their accumulation and eventually cell death. Homozygous or compound heterozygous loss of either gene function disrupts this protective pathway, though at different steps and by distinct mechanisms. While structure and function of PARKIN variants have been well studied, PINK1 mutations remain poorly characterized, in particular under endogenous conditions. A better understanding of the exact molecular pathogenic mechanisms underlying the pathogenicity is crucial for rational drug design in the future. Here, we characterized the pathogenicity of the PINK1 p.I368N mutation on the clinical and genetic as well as on the structural and functional level in patients' fibroblasts and in cell-based, biochemical assays. Under endogenous conditions, PINK1 p.I368N is expressed, imported, and N-terminally processed in healthy mitochondria similar to PINK1 wild type (WT). Upon mitochondrial damage, however, full-length PINK1 p.I368N is not sufficiently stabilized on the outer mitochondrial membrane (OMM) resulting in loss of mitochondrial quality control. We found that binding of PINK1 p.I368N to the co-chaperone complex HSP90/CDC37 is reduced and stress-induced interaction with TOM40 of the mitochondrial protein import machinery is abolished. Analysis of a structural PINK1 p.I368N model additionally suggested impairments of Ub kinase activity as the ATP-binding pocket was found deformed and the substrate Ub was slightly misaligned within the active site of the kinase. Functional assays confirmed the lack of Ub kinase activity. Here we demonstrated that mutant PINK1 p.I368N can not be stabilized on the OMM upon

  9. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis.

    PubMed

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A; De Wever, Veerle; Morrice, Nick A; Meek, Katheryn; Lees-Miller, Susan P

    2014-06-25

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs' role in mitosis may be mechanistically distinct from its well-established role in NHEJ.

  10. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis

    PubMed Central

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A.; De Wever, Veerle; Morrice, Nick A.; Meek, Katheryn; Lees-Miller, Susan P.

    2014-01-01

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs’ role in mitosis may be mechanistically distinct from its well-established role in NHEJ. PMID:24844881

  11. P21 activated kinases: structure, regulation, and functions.

    PubMed

    Rane, Chetan K; Minden, Audrey

    2014-01-01

    The p21 activated kinases (Paks) are well known effector proteins for the Rho GTPases Cdc42 and Rac. The Paks contain 6 members, which fall into 2 families of proteins. The first family consists of Paks 1, 2, and 3, and the second consists of Paks 4, 5, and 6. While some of the Paks are ubiquitously expressed, others have more restrictive tissue specificity. All of them are found in the nervous system. Studies using cell culture, transgenic mice, and knockout mice, have revealed important roles for the Paks in cytoskeletal organization and in many aspects of cell growth and development. This review discusses the basic structures of the Paks, and their roles in cell growth, development, and in cancer.

  12. Coal-induced interleukin-6 gene expression is mediated through ERKs and p38 MAPK pathways.

    PubMed

    Huang, X; Zhang, Q

    2003-08-15

    In the present study, we have tested the ability of coal dust to stimulate kinase phosphorylation of activator protein-1 (AP-1) signal transduction pathways and production of interleukin-6 (IL-6) in both mouse epidermal JB6 and human lung epithelial A549 cells. Seven coal samples from three coalmine regions of Pennsylvania (PA), West Virginia (WV), and Utah (UT) with high, medium, and low prevalence of coal workers' pneumoconiosis (CWP), respectively, were investigated. Results from the present study indicate that three PA coals stimulated the mitogen-activated protein kinase (MAPK) family of extracellular signal-regulated kinases (ERKs) and p38 MAPK, but not c-Jun-NH2-terminal kinases (JNKs) in human lung A549 cells. The effects of three UT coals on the kinase phosphorylation were less as compared to those of the PA coals. Coal dusts from three coalmine regions induced IL-6 in a dose-dependent manner in both JB6 and A549 cells. Interestingly, levels of IL-6 in both cells treated with coals from three coalmine regions correlated well with CWP prevalence from that region. To assess the role of AP-1 pathways in coal-mediated transcriptional activation of IL-6, various inhibitors were used in cells treated with one PA coal, which induced a maximal response. It was found that the increase in IL-6 protein and mRNA by the PA coal was completely eliminated by the pretreatment of both cell types with PD98059, a specific MEK1 inhibitor, and SB202190, a p38 kinase inhibitor. Our results indicate that coal dust can stimulate IL-6 release from mouse epidermal JB6 cells and human lung epithelial A549 cells, and the coal-induced IL-6 increase may involve ERKs and p38 MAPK pathways.

  13. High resolution emission Fourier transform infrared spectra of the 4p-5s and 5p-6s bands of ArH.

    PubMed

    Baskakov, O I; Civis, S; Kawaguchi, K

    2005-03-15

    In the 2500-8500 cm(-1) region several strong emission bands of (40)ArH were observed by Fourier transform spectroscopy through a dc glow discharge in a mixture of argon and hydrogen. Rotational-electronic transitions of the two previously unstudied 4p-5s and 5p-6s,v = 0-0, bands of (40)ArH were measured and assigned in the 6060 and 3770 cm(-1) regions, respectively. A simultaneous fit of the emission transitions of the 4p-5s and 5p-6s bands and an extended set of transitions of the 6s-4p band observed by Dabrowski, Tokaryk, and Watson [J. Mol. Spectrosc. 189, 95 (1998)] and remeasured in the present work yielded consistent values of the spectroscopic parameters of the electronic states under investigation. In the branch of the 4p-5s band with transitions of type (Q)Q(f(3)e) we observed a narrowing in the linewidths with increasing rotational quantum number N. The rotational dependence of the linewidth is caused by predissociation of the 5s state by the repulsive ground 4s state through homogeneous coupling and changes in overlap integrals of the vibrational wave functions with the rotational level. Analysis was based on the Fermi's golden rule approximation model. In the 4p-5s band region a vibrational sequence ofv(')-v(")=1-1, 2-2, and 3-3 were recorded and a number of transitions belonging to the strongest (Q)Q(f(3)e) form branch of the 1-1 band were analyzed.

  14. Temporal quantitation of mutant Kit tyrosine kinase signaling attenuated by a novel thiophene kinase inhibitor OSI-930.

    PubMed

    Petti, Filippo; Thelemann, April; Kahler, Jen; McCormack, Siobhan; Castaldo, Linda; Hunt, Tony; Nuwaysir, Lydia; Zeiske, Lynn; Haack, Herbert; Sullivan, Laura; Garton, Andrew; Haley, John D

    2005-08-01

    OSI-930, a potent thiophene inhibitor of the Kit, KDR, and platelet-derived growth factor receptor tyrosine kinases, was used to selectively inhibit tyrosine phosphorylation downstream of juxtamembrane mutant Kit in the mast cell leukemia line HMC-1. Inhibition of Kit kinase activity resulted in a rapid dephosphorylation of Kit and inhibition of the downstream signaling pathways. Attenuation of Ras-Raf-Erk (phospho-Erk, phospho-p38), phosphatidyl inositol-3' kinase (phospho-p85, phospho-Akt, phospho-S6), and signal transducers and activators of transcription signaling pathways (phospho-STAT3/5/6) were measured by affinity liquid chromatography tandem mass spectrometry, by immunoblot, and by tissue microarrays of fixed cell pellets. To more globally define additional components of Kit signaling temporally altered by kinase inhibition, a novel multiplex quantitative isobaric peptide labeling approach was used. This approach allowed clustering of proteins by temporal expression patterns. Kit kinase, which dephosphorylates rapidly upon kinase inhibition, was shown to regulate both Shp-1 and BDP-1 tyrosine phosphatases and the phosphatase-interacting protein PSTPIP2. Interactions with SH2 domain adapters [growth factor receptor binding protein 2 (Grb2), Cbl, Slp-76] and SH3 domain adapters (HS1, cortactin, CD2BP3) were attenuated by inhibition of Kit kinase activity. Functional crosstalk between Kit and the non-receptor tyrosine kinases Fes/Fps, Fer, Btk, and Syk was observed. Inhibition of Kit modulated phosphorylation-dependent interactions with pathways controlling focal adhesion (paxillin, leupaxin, p130CAS, FAK1, the Src family kinase Lyn, Wasp, Fhl-3, G25K, Ack-1, Nap1, SH3P12/ponsin) and septin-actin complexes (NEDD5, cdc11, actin). The combined use of isobaric protein quantitation and expression clustering, immunoblot, and tissue microarray strategies allowed temporal measurement signaling pathways modulated by mutant Kit inhibition in a model of mast cell

  15. S632A3, a new glutarimide antibiotic, suppresses lipopolysaccharide-induced pro-inflammatory responses via inhibiting the activation of glycogen synthase kinase 3β.

    PubMed

    Deng, Hongbin; Zhang, Na; Wang, Yan; Chen, Jinjing; Shen, Jiajia; Wang, Zhen; Xu, Rong; Zhang, Jingpu; Song, Danqing; Li, Diandong

    2012-12-10

    Inflammatory mediators including inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) contribute to the course of a variety of inflammatory diseases. S632A3 is a new member of the glutarimide antibiotics isolated from a cultured broth of Streptomyces hygroscopicus S632 with a potent NF-κB inhibitory activity. In the present study, we investigated the anti-inflammatory effects and the underlying molecular mechanism of S632A3 on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. S632A3 concentration-dependently inhibited LPS-induced NO and prostaglandin E(2) (PGE(2)) production through the suppression of iNOS and COX-2 at gene transcription levels. In addition, S632A3 suppressed NF-κB-dependent inflammatory responses by inhibiting the activation of glycogen synthase kinase 3β (GSK-3β), while the activation of IκB kinase (IKK) complex was unaffected. S632A3 suppressed NF-κB activity by differentially affecting the CREB (cAMP response element-binding protein) and NF-κB p65 interacting with the coactivator CBP (CREB binding protein). S632A3 also inhibited GSK-3β-elicited iNOS and COX-2 expression. Moreover, S632A3 was shown to inhibit the activation of ASK1 (Apoptosis-signal regulating kinase 1) and p38 mitogen-activated protein kinase, therefore attenuated the LPS-induced NF-κB activity in macrophages. Furthermore, S632A3 significantly reduced the pro-inflammatory cytokines TNF-α and IL-6 production while increased the anti-inflammatory cytokine IL-10 production in LPS-stimulated RAW264.7 cells. Our study thus provides a molecular mechanism by which S632A3 inhibited LPS-induced pro-inflammatory response in macrophages through interfering with the activation of GSK-3β and ASK1-p38 signaling. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Crystal Structure of Heart 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase (PFKFB2) and the Inhibitory Influence of Citrate on Substrate Binding

    PubMed Central

    Crochet, Robert B.; Kim, Jeong-Do; Lee, Herie; Yim, Young-Sun; Kim, Song-Gun; Neau, David; Lee, Yong-Hwan

    2016-01-01

    The heart-specific isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) is an important regulator of glycolytic flux in cardiac cells. Here, we present the crystal structures of two PFKFB2 orthologues, human and bovine, at resolutions of 2.0 and 1.8Å, respectively. Citrate, a TCA cycle intermediate and well-known inhibitor of PFKFB2, co-crystallized in the 2-kinase domains of both orthologues, occupying the fructose-6-phosphate binding-site and extending into the γ-phosphate binding pocket of ATP. This steric and electrostatic occlusion of the γ-phosphate site by citrate proved highly consequential to the binding of co-complexed ATP analogues. The bovine structure, which co-crystallized with ADP, closely resembled the overall structure of other PFKFB isoforms, with ADP mimicking the catalytic binding mode of ATP. The human structure, on the other hand, co-complexed with AMPPNP, which, unlike ADP, contains a γ-phosphate. The presence of this γ-phosphate made adoption of the catalytic ATP binding mode impossible for AMPPNP, forcing the analogue to bind atypically with concomitant conformational changes to the ATP binding-pocket. Inhibition kinetics were used to validate the structural observations, confirming citrate’s inhibition mechanism as competitive for F6P and noncompetitive for ATP. Together, these structural and kinetic data establish a molecular basis for citrate’s negative feed-back loop of the glycolytic pathway via PFKFB2. PMID:27802586

  17. Haloperidol Regulates the State of Phosphorylation of Ribosomal Protein S6 via Activation of PKA and Phosphorylation of DARPP-32

    PubMed Central

    Valjent, Emmanuel; Bertran-Gonzalez, Jesus; Bowling, Heather; Lopez, Sébastien; Santini, Emanuela; Matamales, Miriam; Bonito-Oliva, Alessandra; Hervé, Denis; Hoeffer, Charles; Klann, Eric; Girault, Jean-Antoine; Fisone, Gilberto

    2011-01-01

    Administration of typical antipsychotic drugs, such as haloperidol, promotes cAMP-dependent signaling in the medium spiny neurons (MSNs) of the striatum. In this study, we have examined the effect of haloperidol on the state of phosphorylation of the ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. We found that haloperidol increases the phosphorylation of rpS6 at the dual site Ser235/236, which is involved in the regulation of mRNA translation. This effect was exerted in the MSNs of the indirect pathway, which express specifically dopamine D2 receptors (D2Rs) and adenosine A2 receptors (A2ARs). The effect of haloperidol was decreased by blockade of A2ARs or by genetic attenuation of the Gαolf protein, which couples A2ARs to activation of adenylyl cyclase. Moreover, stimulation of cAMP-dependent protein kinase A (PKA) increased Ser235/236 phosphorylation in cultured striatal neurons. The ability of haloperidol to promote rpS6 phosphorylation was abolished in knock-in mice deficient for PKA activation of the protein phosphatase-1 inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa. In contrast, pharmacological or genetic inactivation of p70 rpS6 kinase 1, or extracellular signal-regulated kinases did not affect haloperidol-induced rpS6 phosphorylation. These results identify PKA as a major rpS6 kinase in neuronal cells and suggest that regulation of protein synthesis through rpS6 may be a potential target of antipsychotic drugs. PMID:21814187

  18. The three-dimensional structure of MAP kinase p38[beta]: different features of the ATP-binding site in p38[beta] compared with p38[alpha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Sangita B.; Cameron, Patricia M.; O'Keefe, Stephen J.

    2010-10-18

    The p38 mitogen-activated protein kinases are activated in response to environmental stress and cytokines and play a significant role in transcriptional regulation and inflammatory responses. Of the four p38 isoforms known to date, two (p38{alpha} and p38{beta}) have been identified as targets for cytokine-suppressive anti-inflammatory drugs. Recently, it was reported that specific inhibition of the p38{alpha} isoform is necessary and sufficient for anti-inflammatory efficacy in vivo, while further inhibition of p38{beta} may not provide any additional benefit. In order to aid the development of p38{alpha}-selective compounds, the three-dimensional structure of p38{beta} was determined. To do so, the C162S and C119S,C162Smore » mutants of human MAP kinase p38{beta} were cloned, expressed in Escherichia coli and purified. Initial screening hits in crystallization trials in the presence of an inhibitor led upon optimization to crystals that diffracted to 2.05 {angstrom} resolution and allowed structure determination (PDB codes 3gc8 and 3gc9 for the single and double mutant, respectively). The structure of the p38{alpha} C162S mutant in complex with the same inhibitor is also reported (PDB code 3gc7). A comparison between the structures of the two kinases showed that they are highly similar overall but that there are differences in the relative orientation of the N- and C-terminal domains that causes a reduction in the size of the ATP-binding pocket in p38{beta}. This difference in size between the two pockets could be exploited in order to achieve selectivity.« less

  19. p21-Activated kinase inhibitors: a patent review.

    PubMed

    Crawford, James J; Hoeflich, Klaus P; Rudolph, Joachim

    2012-03-01

    The p21-activated kinase (PAK) family of serine/threonine protein kinases is activated by binding to the small (p21) GTP-binding proteins Cdc42 and Rac. The PAK family plays important roles in cytoskeletal organisation, cellular morphogenesis and survival, and members of this family have been implicated in a wide range of diseases including cancer, infectious diseases, neurological disorders and arthritis. The present review seeks to summarise recent (up to 2011) reports of small-molecule inhibitors of p21-activated kinases. Where patent applications describe activity against a broad range of kinases and no information was provided specifically on PAK inhibition, these are excluded from this review. In patents considered to be relevant, exemplary compounds were selected and highlighted based on their representation of the chemical matter claimed, potencies, structural features and subsequent disclosure of their properties. Selected information from non-patent literature was also included. A considerable amount of research has been devoted over the past 15 years to exploring the role of PAKs in a wide range of diseases, with a focus on oncology. Published PAK inhibitors are still comparatively rare and few exhibit satisfactory kinase selectivity and 'drug-like' properties. A key question is which profile, pan-PAK, group selective or isoform selective, holds the most promise from both therapeutic and safety standpoints. To investigate this question, isoform-selective, as well as kinome-selective, PAK inhibitor tool compounds will be needed. Pfizer was the first company to progress a PAK inhibitor (pan-PAK) to clinical development; it is expected that, despite the difficulties, other PAK inhibitors will soon follow.

  20. Signaling, Regulation, and Specificity of the Type II p21-activated Kinases.

    PubMed

    Ha, Byung Hak; Morse, Elizabeth M; Turk, Benjamin E; Boggon, Titus J

    2015-05-22

    The p21-activated kinases (PAKs) are a family of six serine/threonine kinases that act as key effectors of RHO family GTPases in mammalian cells. PAKs are subdivided into two groups: type I PAKs (PAK1, PAK2, and PAK3) and type II PAKs (PAK4, PAK5, and PAK6). Although these groups are involved in common signaling pathways, recent work indicates that the two groups have distinct modes of regulation and have both unique and common substrates. Here, we review recent insights into the molecular level details that govern regulation of type II PAK signaling. We also consider mechanisms by which signal transduction is regulated at the level of substrate specificity. Finally, we discuss the implications of these studies for clinical targeting of these kinases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Small molecule inhibitors reveal PTK6 kinase is not an oncogenic driver in breast cancers

    PubMed Central

    Gajiwala, Ketan S.; Cronin, Ciarán N.; Nagata, Asako; Johnson, Eric; Kraus, Michelle; Tatlock, John; Kania, Robert; Foley, Timothy

    2018-01-01

    Protein tyrosine kinase 6 (PTK6, or BRK) is aberrantly expressed in breast cancers, and emerging as an oncogene that promotes tumor cell proliferation, migration and evasion. Both kinase-dependent and -independent functions of PTK6 in driving tumor growth have been described, therefore targeting PTK6 kinase activity by small molecule inhibitors as a therapeutic approach to treat cancers remains to be validated. In this study, we identified novel, potent and selective PTK6 kinase inhibitors as a means to investigate the role of PTK6 kinase activity in breast tumorigenesis. We report here the crystal structures of apo-PTK6 and inhibitor-bound PTK6 complexes, providing the structural basis for small molecule interaction with PTK6. The kinase inhibitors moderately suppress tumor cell growth in 2D and 3D cell cultures. However, the tumor cell growth inhibition shows neither correlation with the PTK6 kinase activity inhibition, nor the total or activated PTK6 protein levels in tumor cells, suggesting that the tumor cell growth is independent of PTK6 kinase activity. Furthermore, in engineered breast tumor cells overexpressing PTK6, the inhibition of PTK6 kinase activity does not parallel the inhibition of tumor cell growth with a >500-fold shift in compound potencies (IC50 values). Overall, these findings suggest that the kinase activity of PTK6 does not play a significant role in tumorigenesis, thus providing important evidence against PTK6 kinase as a potential therapeutic target for breast cancer treatment. PMID:29879184

  2. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min

    It is well known that the reactive oxygen species, nitric oxide (NO), can trigger cell death in plants, but the underlying molecular mechanisms are not well understood. Here, we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicon) through inhibiting the phosphoinositide-dependent kinase 1 (PDK1) kinase activity via S-nitrosylation. Biotin-switch assays and LC-MS/MS analyses demonstrated that SlPDK1 was a target of S-nitrosylation modification, which primarily occurred on the cysteine residue at position 128 (Cys128). Accordingly, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione (GSNO) both in vitro and in vivo in a concentration-dependent manner, indicating thatmore » SlPDK1 activity is regulated by S-nitrosylation. The inhibition of SlPDK1 kinase activity by GSNO was reversible in the presence of a reducing agent but synergistically enhanced by hydrogen peroxide (H2O2). Mutation of Cys128 to serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys128 is responsible for the inhibition of the kinase activity of SlPDK1. In sum, our results established a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1, a conserved negative regulator of cell death in yeasts, mammals and plants. Nitric oxide (NO) potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen species (ROS) (1). However, the molecular mechanism of the NO-induced cell death remains an enigma. One potential mechanism is that the activity of proteins that control cell death may be altered by a post-translational modification, S-nitrosylation. S-nitrosylation is the addition of the NO moiety to thiol groups, including cysteine (Cys) residues in proteins, to form S-nitrosothiols (SNOs). S-nitrosylation is an enzyme-independent post-translational and labile modification that can function as an on/off switch of protein activity (2- 4). Thousands of

  3. Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas.

    PubMed

    Polte, T R; Hanks, S K

    1995-11-07

    The focal adhesion kinase (FAK) has been implicated in integrin-mediated signaling events and in the mechanism of cell transformation by the v-Src and v-Crk oncoproteins. To gain further insight into FAK signaling pathways, we used a two-hybrid screen to identify proteins that interact with mouse FAK. The screen identified two proteins that interact with FAK via their Src homology 3 (SH3) domains: a v-Crk-associated tyrosine kinase substrate (Cas), p130Cas, and a still uncharacterized protein, FIPSH3-2, which contains an SH3 domain closely related to that of p130Cas. These SH3 domains bind to the same proline-rich region of FAK (APPKPSR) encompassing residues 711-717. The mouse p130Cas amino acid sequence was deduced from cDNA clones, revealing an overall high degree of similarity to the recently reported rat sequence. Coimmunoprecipitation experiments confirmed that p130Cas and FAK are associated in mouse fibroblasts. The stable interaction between p130Cas and FAK emerges as a likely key element in integrin-mediated signal transduction and further represents a direct molecular link between the v-Src and v-Crk oncoproteins. The Src family kinase Fyn, whose Src homology 2 (SH2) domain binds to the major FAK autophosphorylation site (tyrosine 397), was also identified in the two-hybrid screen.

  4. S6K1 is involved in polyploidization through its phosphorylation at Thr421/Ser424.

    PubMed

    Ma, Dongchu; Yu, Huiying; Lin, Di; Sun, Yinghui; Liu, Liping; Liu, Yage; Dai, Bing; Chen, Wei; Cao, Jianping

    2009-04-01

    Studies on polyploidization of megakaryocytes have been hampered by the lack of synchronized polyploid megakaryocytes. In this study, a relatively synchronized polyploid cell model was successfully established by employing Dami cells treated with nocodazole. In nocodazole-induced cells, cyclin B expression oscillated normally as in diploid cells and polyploid megakaryocytes. By using the nocodazole-induced Dami cell model, we found that 4E-BP1 and Thr421/Ser424 of ribosomal S6 kinase 1(S6K1) were phosphorylated mostly at M-phase in cytoplasm and oscillated in nocodazole-induced polyploid Dami cells, concomitant with increased expression of p27 and cyclin D3. However, phosphorylation of 4E-BP1 and S6K1 on Thr421/Ser424 was significantly decreased in differentiated Dami cells induced by phorbol 12-myristate 13-acetate (PMA), concomitant with increased expression of cyclin D1 and p21 and cyclin D3. Overexpression of the kinase dead form of S6K1 containing the mutation Lys 100 --> Gln in PMA-induced Dami cells increased ploidy whereas overexpression of rapamycin-resistant form of S6K1 containing the mutations Thr421 --> Glu and Ser424 --> Asp significantly dephosphorylated 4E-BP1 and reduced expression of cyclin D1, cyclin D3, p21 and p27, and slightly decreased the ploidy of PMA-induced Dami cells, compared with treatment with PMA alone. Moreover, overexpression of rapamycin-resistant form of S6K1 significantly reversed polyploidization of nocodazole-induced Dami cells. Furthermore, MAP (a novel compound synthesized recently) partly blocked the phosphorylation of S6K1 on Thr421/Ser424 and decreased the expression of p27 and polyploidization in nocodazole-induced Dami cells. Taken together, these data suggested that S6K1/4E-BP1 pathway may play an important role in polyploidization of megakaryocytes. (c) 2008 Wiley-Liss, Inc.

  5. The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans.

    PubMed

    Li, Xichuan; Du, Wei; Zhao, Jingwen; Zhang, Lilin; Zhu, Zhiyan; Jiang, Linghuo

    2010-06-01

    Rck2p is the Hog1p-MAP kinase-activated protein kinase required for the attenuation of protein synthesis in response to an osmotic challenge in Saccharomyces cerevisiae. Rck2p also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. In this study, we demonstrate that the deletion of CaRCK2 renders C. albicans cells sensitive to, and CaRck2p translocates from the cytosol to the nucleus in response to, cell wall stresses caused by Congo red, Calcoflor White, elevated heat and zymolyase. However, the kinase activity of CaRck2p is not required for the cellular response to these cell wall stresses. Furthermore, transcripts of cell wall protein-encoding genes CaBGL2, CaHWP1 and CaXOG1 are reduced in C. albicans cells lacking CaRCK2. The deletion of CaRCK2 also reduces the in vitro filamentation of C. albicans and its virulence in a mouse model of systemic candidasis. The kinase activity of CaRck2p is required for the virulence, but not for the in vitro filamentation, in C. albicans. Therefore, Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen C. albicans.

  6. A Conserved p38 Mitogen-Activated Protein Kinase Pathway Regulates Drosophila Immunity Gene Expression

    PubMed Central

    Han, Zhiqiang Stanley; Enslen, Hervé; Hu, Xiaodi; Meng, Xiangjun; Wu, I-Huan; Barrett, Tamera; Davis, Roger J.; Ip, Y. Tony

    1998-01-01

    Accumulating evidence suggests that the insect and mammalian innate immune response is mediated by homologous regulatory components. Proinflammatory cytokines and bacterial lipopolysaccharide stimulate mammalian immunity by activating transcription factors such as NF-κB and AP-1. One of the responses evoked by these stimuli is the initiation of a kinase cascade that leads to the phosphorylation of p38 mitogen-activated protein (MAP) kinase on Thr and Tyr within the motif Thr-Gly-Tyr, which is located within subdomain VIII. We have investigated the possible involvement of the p38 MAP kinase pathway in the Drosophila immune response. Two genes that are highly homologous to the mammalian p38 MAP kinase were molecularly cloned and characterized. Furthermore, genes that encode two novel Drosophila MAP kinase kinases, D-MKK3 and D-MKK4, were identified. D-MKK3 is an efficient activator of both Drosophila p38 MAP kinases, while D-MKK4 is an activator of D-JNK but not D-p38. These data establish that Drosophila indeed possesses a conserved p38 MAP kinase signaling pathway. We have examined the role of the D-p38 MAP kinases in the regulation of insect immunity. The results revealed that one of the functions of D-p38 is to attenuate antimicrobial peptide gene expression following exposure to lipopolysaccharide. PMID:9584193

  7. Insulin-mediated inhibition of p38 mitogen-activated protein kinase protects cardiomyocytes in severe burns.

    PubMed

    Lv, Gen-fa; Dong, Mao-long; Hu, Da-hai; Zhang, Wan-fu; Wang, Yun-chuan; Tang, Chao-wu; Zhu, Xiong-xiang

    2011-01-01

    Thermal injury inhibits Akt activation and upregulates p38 mitogen-activated protein kinase, which in turn induces inflammation and increases apoptosis. This study aimed to elucidate the mechanism underlying the cytoprotective role of insulin in severe burns by examining the effects of insulin on inflammation and apoptosis mediated by p38 mitogen-activated protein kinase in burn serum-challenged cardiomyocytes. Neonatal rat cardiomyocytes were exposed to burn serum for 6 hours in the presence or absence of insulin and pretreated with inhibitors to p38 mitogen-activated protein kinase (SB203580) and Akt (LY294002). The authors examined expression of myocardial tumor necrosis factor-alpha, cardiac myofilament proteins caspase-3 and Bcl2, and apoptosis. Burn serum-induced upregulation of tumor necrosis factor was inhibited by both SB203580 and insulin. LY294002 reversed insulin-mediated downregulation of tumor necrosis factor. Both SB203580 and insulin inhibited apoptosis, resulting in fewer pyknotic nuclei and inhibition of caspase-3 activation and Bcl2 downregulation. LY294002 reversed insulin-mediated inhibition of apoptosis. Insulin decreases inflammatory cytokine expression and apoptosis via PI3K/Akt-mediated inhibition of p38 mitogen-activated protein kinase. The cytoprotective role of insulin suggests that it may have a potential role in strategies for treating thermal injuries.

  8. Angiotensin II modulates interleukin-1{beta}-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-{kappa}B crosstalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun

    2011-07-08

    Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. Inmore » cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that

  9. [6]-Gingerol Induces Cell Cycle Arrest and Cell Death of Mutant p53-expressing Pancreatic Cancer Cells

    PubMed Central

    Park, Yon Jung; Wen, Jing; Bang, Seungmin; Park, Seung Woo

    2006-01-01

    [6]-Gingerol, a major phenolic compound derived from ginger, has anti-bacterial, anti-inflammatory and anti-tumor activities. While several molecular mechanisms have been described to underlie its effects on cells in vitro and in vivo, the underlying mechanisms by which [6]-gingerol exerts anti-tumorigenic effects are largely unknown. The purpose of this study was to investigate the action of [6]-gingerol on two human pancreatic cancer cell lines, HPAC expressing wild-type (wt) p53 and BxPC-3 expressing mutated p53. We found that [6]-gingerol inhibited the cell growth through cell cycle arrest at G1 phase in both cell lines. Western blot analyses indicated that [6]-gingerol decreased both Cyclin A and Cyclin-dependent kinase (Cdk) expression. These events led to reduction in Rb phosphorylation followed by blocking of S phase entry. p53 expression was decreased by [6]-gingerol treatment in both cell lines suggesting that the induction of Cyclin-dependent kinase inhibitor, p21cip1, was p53-independent. [6]-Gingerol induced mostly apoptotic death in the mutant p53-expressing cells, while no signs of early apoptosis were detected in wild type p53-expressing cells and this was related to the increased phosphorylation of AKT. These results suggest that [6]-gingerol can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing apoptotic cell death while it exerts cytostatic effect on wild type p53-expressing cells by inducing temporal growth arrest. PMID:17066513

  10. Enterococcus faecalis phosphomevalonate kinase

    PubMed Central

    Doun, Stephanie S.; Burgner, John W.; Briggs, Scott D.; Rodwell, Victor W.

    2005-01-01

    The six enzymes of the mevalonate pathway of isopentenyl diphosphate biosynthesis represent potential for addressing a pressing human health concern, the development of antibiotics against resistant strains of the Gram-positive streptococci. We previously characterized the first four of the mevalonate pathway enzymes of Enterococcus faecalis, and here characterize the fifth, phosphomevalonate kinase (E.C. 2.7.4.2). E. faecalis genomic DNA and the polymerase chain reaction were used to clone DNA thought to encode phosphomevalonate kinase into pET28b(+). Double-stranded DNA sequencing verified the sequence of the recombinant gene. The encoded N-terminal hexahistidine-tagged protein was expressed in Escherichia coli with induction by isopropylthiogalactoside and purified by Ni++ affinity chromatography, yield 20 mg protein per liter. Analysis of the purified protein by MALDI-TOF mass spectrometry established it as E. faecalis phosphomevalonate kinase. Analytical ultracentrifugation revealed that the kinase exists in solution primarily as a dimer. Assay for phosphomevalonate kinase activity used pyruvate kinase and lactate dehydrogenase to couple the formation of ADP to the oxidation of NADH. Optimal activity occurred at pH 8.0 and at 37°C. The activation energy was ~5.6 kcal/mol. Activity with Mn++, the preferred cation, was optimal at about 4 mM. Relative rates using different phosphoryl donors were 100 (ATP), 3.6 (GTP), 1.6 (TTP), and 0.4 (CTP). Km values were 0.17 mM for ATP and 0.19 mM for (R,S)-5-phosphomevalonate. The specific activity of the purified enzyme was 3.9 μmol substrate converted per minute per milligram protein. Applications to an immobilized enzyme bioreactor and to drug screening and design are discussed. PMID:15802646

  11. Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer.

    PubMed

    Shao, Yang-Guang; Ning, Ke; Li, Feng

    2016-01-21

    P21-activated kinases (PAKs) are central players in various oncogenic signaling pathways. The six PAK family members are classified into group I (PAK1-3) and group II (PAK4-6). Focus is currently shifting from group I PAKs to group II PAKs. Group II PAKs play important roles in many fundamental cellular processes, some of which have particular significance in the development and progression of cancer. Because of their important functions, group II PAKs have become popular potential drug target candidates. However, few group II PAKs inhibitors have been reported, and most do not exhibit satisfactory kinase selectivity and "drug-like" properties. Isoform- and kinase-selective PAK inhibitors remain to be developed. This review describes the biological activities of group II PAKs, the importance of group II PAKs in the development and progression of gastrointestinal cancer, and small-molecule inhibitors of group II PAKs for the treatment of cancer.

  12. 1,2,6-Thiadiazinones as Novel Narrow Spectrum Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) Inhibitors.

    PubMed

    Asquith, Christopher R M; Godoi, Paulo H; Couñago, Rafael M; Laitinen, Tuomo; Scott, John W; Langendorf, Christopher G; Oakhill, Jonathan S; Drewry, David H; Zuercher, William J; Koutentis, Panayiotis A; Willson, Timothy M; Kalogirou, Andreas S

    2018-05-19

    We demonstrate for the first time that 4 H -1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4 H -1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors.

  13. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    PubMed Central

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  14. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6.

    PubMed

    Ichimura, K; Mizoguchi, T; Yoshida, R; Yuasa, T; Shinozaki, K

    2000-12-01

    Mitogen-activated protein kinase (MAP kinase, MAPK) cascades play pivotal roles in signal transduction of extracellular stimuli, such as environmental stresses and growth regulators, in various organisms. Arabidopsis thaliana MAP kinases constitute a gene family, but stimulatory signals for each MAP kinase have not been elucidated. Here we show that environmental stresses such as low temperature, low humidity, hyper-osmolarity, touch and wounding induce rapid and transient activation of the Arabidopsis MAP kinases ATMPK4 and ATMPK6. Activation of ATMPK4 and ATMPK6 was associated with tyrosine phosphorylation but not with the amounts of mRNA or protein. Kinetics during activation differ between these two MAP kinases. These results suggest that ATMPK4 and ATMPK6 are involved in distinct signal transduction pathways responding to these environmental stresses.

  15. Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P{sub 2} on cell migration and invasiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Nicholas; Van Brocklyn, James R.

    2007-05-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P{sub 1-5}. S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P{sub 1}, S1P{sub 2} and S1P{sub 3} all contribute positively to S1P-stimulated glioma cell proliferation, with S1P{sub 1} being the major contributor. Stimulationmore » of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P{sub 5} blocks glioma cell proliferation, and inhibits ERK activation. S1P{sub 1} and S1P{sub 3} enhance glioma cell migration and invasion. S1P{sub 2} inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P{sub 2} also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P{sub 2}-stimulated glioma invasion. Thus, while S1P{sub 2} decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix.« less

  16. Measurements and predictions of the 6s6p{sup 1,3}P{sub 1} lifetimes in the Hg isoelectronic sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, L. J.; Irving, R. E.; Henderson, M.

    2001-04-01

    Experimental and theoretical values for the lifetimes of the 6s6p{sup 1}P{sub 1} and {sup 3}P{sub 1} levels in the Hg isoelectronic sequence are examined in the context of a data-based isoelectronic systematization. New beam-foil measurements for lifetimes in Pb III and Bi IV are reported and included in a critical evaluation of the available database. These results are combined with ab initio theoretical calculations and linearizing parametrizations to make predictive extrapolations for ions with 84{<=}Z{le}92.

  17. Estimation of pH effect on the structure and stability of kinase domain of human integrin-linked kinase.

    PubMed

    Syed, Sunayana Begum; Shahbaaz, Mohd; Khan, Sabab Hassan; Srivastava, Saurabha; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2018-01-07

    Integrin-linked kinase (ILK) is an evolutionarily conserved Ser/Thr protein kinase, involved in many physiological functions such as signal transduction, actin rearrangement, cell proliferation, migration, polarisation, angiogenesis and apoptosis. An increased expression of ILK is associated with different cancers and thus considered as an attractive target for cancer therapy. We have successfully cloned, expressed and purified the kinase domain (193-446 residues) of ILK. To see the effect of pH on the structure and conformation, we performed circular diachroism, fluorescence and absorbance measurements in a wide range of pH conditions. We observed that within the range of pH 7.5-11.0, ILK 193-446 maintains its both secondary and tertiary structures. While visible aggregates were observed under the acidic pH 2.0-5.5 conditions, in order to complement these observations, we have performed molecular dynamics simulations of this kinase domain by mimicking diverse pH conditions which enabled us to see conformational preferences of the protein under such conditions. A significant correlation between the spectroscopic and molecular dynamics simulation was observed. These findings are useful to understand the conformation of ILK protein under certain pH condition which may be further implicated in the drug design and discovery.

  18. Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5.

    PubMed

    Nuñez, Illyce; Rodriguez Pino, Marbelys; Wiley, David J; Das, Maitreyi E; Chen, Chuan; Goshima, Tetsuya; Kume, Kazunori; Hirata, Dai; Toda, Takashi; Verde, Fulvia

    2016-07-30

    RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.

  19. Impact of creatine kinase correction on the predictive value of S-100B after mild traumatic brain injury.

    PubMed

    Bazarian, Jeffrey J; Beck, Christopher; Blyth, Brian; von Ahsen, Nicolas; Hasselblatt, Martin

    2006-01-01

    To validate a correction factor for the extracranial release of the astroglial protein, S-100B, based on concomitant creatine kinase (CK) levels. The CK- S-100B relationship in non-head injured marathon runners was used to derive a correction factor for the extracranial release of S-100B. This factor was then applied to a separate cohort of 96 mild traumatic brain injury (TBI) patients in whom both CK and S-100B levels were measured. Corrected S-100B was compared to uncorrected S-100B for the prediction of initial head CT, three-month headache and three-month post concussive syndrome (PCS). Corrected S-100B resulted in a statistically significant improvement in the prediction of 3-month headache (area under curve [AUC] 0.46 vs 0.52, p=0.02), but not PCS or initial head CT. Using a cutoff that maximizes sensitivity (> or = 90%), corrected S-100B improved the prediction of initial head CT scan (negative predictive value from 75% [95% CI, 2.6%, 67.0%] to 96% [95% CI: 83.5%, 99.8%]). Although S-100B is overall poorly predictive of outcome, a correction factor using CK is a valid means of accounting for extracranial release. By increasing the proportion of mild TBI patients correctly categorized as low risk for abnormal head CT, CK-corrected S100-B can further reduce the number of unnecessary brain CT scans performed after this injury.

  20. Therapeutic benefit of selective inhibition of p110α PI3-kinase in pancreatic neuroendocrine tumors

    PubMed Central

    Soler, Adriana; Figueiredo, Ana M; Castel, Pau; Martin, Laura; Monelli, Erika; Angulo-Urarte, Ana; Milà-Guasch, Maria; Viñals, Francesc; Casanovas, Oriol

    2017-01-01

    Purpose Mutations in the PI3-kinase (PI3K) pathway occur in 16% of patients with pancreatic neuroendocrine tumors (PanNETs), which suggests that these tumors are an exciting setting for PI3K/AKT/mTOR pharmacological intervention. Everolimus, an mTOR inhibitor, is being used to treat patients with advanced PanNETs. However, resistance to mTOR targeted therapy is emerging partially due to the loss of mTOR-dependent feedback inhibition of AKT. In contrast, the response to PI3K inhibitors in PanNETs is unknown. Experimental Design In the present study, we assessed the frequency of PI3K pathway activation in human PanNETs and in RIP1-Tag2 mice, a preclinical tumor model of PanNETs, and we investigated the therapeutic efficacy of inhibiting PI3K in RIP1-Tag2 mice using a combination of pan (GDC-0941) and p110α selective (GDC-0326) inhibitors and isoform specific PI3K kinase-dead mutant mice. Results Human and mouse PanNETs showed enhanced pAKT, pPRAS40 and pS6 positivity compared to normal tissue. While treatment of RIP1-Tag2 mice with GDC-0941 led to reduced tumor growth with no impact on tumor vessels, the selective inactivation of the p110α PI3K isoform, either genetically or pharmacologically, reduced tumor growth as well as vascular area. Furthermore, GDC-0326 reduced the incidence of liver and lymph node (LN) metastasis compared to vehicle treated mice. We also demonstrated that tumor and stromal cells are implicated in the anti-tumor activity of GDC-0326 in RIP1-Tag2 tumors. Conclusion Our data provide a rationale for p110α selective intervention in PanNETs and unravel a new function of this kinase in cancer biology through its role in promoting metastasis. PMID:27225693

  1. (S)-[6]-Gingerol enhances glucose uptake in L6 myotubes by activation of AMPK in response to [Ca2+]i.

    PubMed

    Li, Yiming; Tran, Van H; Koolaji, Nooshin; Duke, Colin; Roufogalis, Basil D

    2013-01-01

    The aim of this study was to investigate the mechanism of (S)-[6]-gingerol in promoting glucose uptake in L6 skeletal muscle cells. The effect of (S)-[6]-gingerol on glucose uptake in L6 myotubes was examined using 2-[1,2-3H]-deoxy-D-glucose. Intracellular Ca2+ concentration was measured using Fluo-4. Phosphorylation of AMPKα was determined by Western blotting analysis. (S)-[6]-Gingerol time-dependently enhanced glucose uptake in L6 myotubes. (S)-[6]-Gingerol elevated intracellular Ca2+ concentration and subsequently induced a dose- and time-dependent enhancement of threonine172 phosphorylated AMPKα in L6 myotubes via modulation by Ca2+/calmodulin-dependent protein kinase kinase. The results indicated that (S)-[6]-gingerol increased glucose uptake in L6 skeletal muscle cells by activating AMPK. (S)-[6]-gingerol, a major component of Zingiber officinale, may have potential for development as an antidiabetic agent.

  2. Inhibitory phosphorylation of GSK-3 by CaMKII couples depolarization to neuronal survival.

    PubMed

    Song, Bin; Lai, Bingquan; Zheng, Zhihao; Zhang, Yuying; Luo, Jingyan; Wang, Chong; Chen, Yuan; Woodgett, James R; Li, Mingtao

    2010-12-24

    Glycogen synthase kinase-3 (GSK-3) plays a critical role in neuronal apoptosis. The two mammalian isoforms of the kinase, GSK-3α and GSK-3β, are inhibited by phosphorylation at Ser-21 and Ser-9, respectively. Depolarization, which is vital for neuronal survival, causes both an increase in Ser-21/9 phosphorylation and an inhibition of GSK-3α/β. However, the role of GSK-3 phosphorylation in depolarization-dependent neuron survival and the signaling pathway contributing to GSK-3 phosphorylation during depolarization remain largely unknown. Using several approaches, we showed that both isoforms of GSK-3 are important for mediating neuronal apoptosis. Nonphosphorylatable GSK-3α/β mutants (S21A/S9A) promoted apoptosis, whereas a peptide encompassing Ser-9 of GSK-3β protected neurons in a phosphorylation-dependent manner; these results indicate a critical role for Ser-21/9 phosphorylation on depolarization-dependent neuron survival. We found that Ser-21/9 phosphorylation of GSK-3 was mediated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) but not by Akt/PKB, PKA, or p90(RSK). CaMKII associated with and phosphorylated GSK-3α/β. Furthermore, the pro-survival effect of CaMKII was mediated by GSK-3 phosphorylation and inactivation. These findings identify a novel Ca(2+)/calmodulin/CaMKII/GSK-3 pathway that couples depolarization to neuronal survival.

  3. Novel 3-Substituted 7-Phenylpyrrolo[3,2-f]quinolin-9(6H)-ones as Single Entities with Multitarget Antiproliferative Activity.

    PubMed

    Carta, Davide; Bortolozzi, Roberta; Hamel, Ernest; Basso, Giuseppe; Moro, Stefano; Viola, Giampietro; Ferlin, Maria Grazia

    2015-10-22

    A series of chemically modified 7-phenylpyrrolo[3,2-f]quinolinones was synthesized and evaluated as anticancer agents. Among them, the most cytotoxic (subnanomolar GI50 values) amidic derivative 5f was shown to act as an inhibitor of tubulin polymerization (IC50, 0.99 μM) by binding to the colchicine site with high affinity. Moreover, 5f induced cell cycle arrest in the G2/M phase of the cell cycle in a concentration dependent manner, followed by caspase-dependent apoptotic cell death. Compound 5f also showed lower toxicity in nontumoral cells, suggesting selectivity toward cancer cells. Additional experiments revealed that 5f inhibited the enzymatic activity of multiple kinases, including AURKA, FLT3, GSK3A, MAP3K, MEK, RSK2, RSK4, PLK4, ULK1, and JAK1. Computational studies showed that 5f can be properly accommodated in the colchicine binding site of tubulin as well as in the ATP binding clefts of all examined kinases. Our data indicate that the excellent antiproliferative profile of 5f may be derived from its interactions with multiple cellular targets.

  4. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min

    It is well known that the reactive oxygen species NO can trigger cell death in plants and other organisms, but the underlying molecular mechanisms are not well understood. Here we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicum) by inhibiting the activity of phosphoinositide-dependent kinase 1 (SlPDK1), a conserved negative regulator of cell death in yeasts, mammals, and plants, via S-nitrosylation. Biotin-switch assays indicated that SlPDK1 is a target of S-nitrosylation. Moreover, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione in a concentration-dependent manner, indicating that SlPDK1 activity is abrogated by S-nitrosylation. The S-nitrosoglutathione–induced inhibitionmore » was reversible in the presence of a reducing agent but additively enhanced by hydrogen peroxide (H 2O 2). Our LC-MS/MS analyses further indicated that SlPDK1 is primarily S-nitrosylated on a cysteine residue at position 128 (Cys 128), and substitution of Cys 128 with serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys 128 is responsible for SlPDK1 inhibition. In summary, our results establish a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1.« less

  5. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    DOE PAGES

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min; ...

    2017-09-29

    It is well known that the reactive oxygen species NO can trigger cell death in plants and other organisms, but the underlying molecular mechanisms are not well understood. Here we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicum) by inhibiting the activity of phosphoinositide-dependent kinase 1 (SlPDK1), a conserved negative regulator of cell death in yeasts, mammals, and plants, via S-nitrosylation. Biotin-switch assays indicated that SlPDK1 is a target of S-nitrosylation. Moreover, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione in a concentration-dependent manner, indicating that SlPDK1 activity is abrogated by S-nitrosylation. The S-nitrosoglutathione–induced inhibitionmore » was reversible in the presence of a reducing agent but additively enhanced by hydrogen peroxide (H 2O 2). Our LC-MS/MS analyses further indicated that SlPDK1 is primarily S-nitrosylated on a cysteine residue at position 128 (Cys 128), and substitution of Cys 128 with serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys 128 is responsible for SlPDK1 inhibition. In summary, our results establish a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1.« less

  6. A small molecule p75NTR ligand normalizes signalling and reduces Huntington’s disease phenotypes in R6/2 and BACHD mice

    PubMed Central

    Belichenko, Nadia P.; Ford, Ellen C.; Semaan, Sarah; Monbureau, Marie; Aiyaswamy, Sruti; Holman, Cameron M.; Condon, Christina; Shamloo, Mehrdad; Massa, Stephen M.; Longo, Frank M.

    2016-01-01

    Abstract Decreases in the ratio of neurotrophic versus neurodegenerative signalling play a critical role in Huntington’s disease (HD) pathogenesis and recent evidence suggests that the p75 neurotrophin receptor (NTR) contributes significantly to disease progression. p75NTR signalling intermediates substantially overlap with those promoting neuronal survival and synapse integrity and with those affected by the mutant huntingtin (muHtt) protein. MuHtt increases p75NTR-associated deleterious signalling and decreases survival signalling suggesting that p75NTR could be a valuable therapeutic target. This hypothesis was investigated by examining the effects of an orally bioavailable, small molecule p75NTR ligand, LM11A-31, on HD-related neuropathology in HD mouse models (R6/2, BACHD). LM11A-31 restored striatal AKT and other pro-survival signalling while inhibiting c-Jun kinase (JNK) and other degenerative signalling. Normalizing p75NTR signalling with LM11A-31 was accompanied by reduced Htt aggregates and striatal cholinergic interneuron degeneration as well as extended survival in R6/2 mice. The p75NTR ligand also decreased inflammation, increased striatal and hippocampal dendritic spine density, and improved motor performance and cognition in R6/2 and BACHD mice. These results support small molecule modulation of p75NTR as an effective HD therapeutic strategy. LM11A-31 has successfully completed Phase I safety and pharmacokinetic clinical trials and is therefore a viable candidate for clinical studies in HD. PMID:28171570

  7. Lifetimes and oscillator strengths for the 5s5p6s, 5s5p5d and 5p3 levels in single-ionized tin

    NASA Astrophysics Data System (ADS)

    Colón, C.; Alonso-Medina, A.

    2004-08-01

    Radiative oscillator strengths for 103 lines arising from 5s5p6s, 5s5p5d and 5p3 configurations of Sn II and lifetimes corresponding to several levels of these configurations have been calculated. These values were obtained in intermediate coupling (IC) and using ab initio relativistic Hartree-Fock (HFR) calculations. We use the standard method of least square fitting of experimental energy levels for the IC calculations by means of computer codes from Cowan. Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/422/1109

  8. Signal Transduction by BvgS Sensor Kinase

    PubMed Central

    Dupré, Elian; Lesne, Elodie; Guérin, Jérémy; Lensink, Marc F.; Verger, Alexis; de Ruyck, Jérôme; Brysbaert, Guillaume; Vezin, Hervé; Locht, Camille; Antoine, Rudy; Jacob-Dubuisson, Françoise

    2015-01-01

    The two-component sensory transduction system BvgAS controls the virulence regulon of the whooping-cough agent Bordetella pertussis. The periplasmic moiety of the homodimeric sensor kinase BvgS is composed of four bilobed Venus flytrap (VFT) perception domains followed by α helices that extend into the cytoplasmic membrane. In the virulent phase, the default state of B. pertussis, the cytoplasmic enzymatic moiety of BvgS acts as kinase by autophosphorylating and transferring the phosphoryl group to the response regulator BvgA. Under laboratory conditions, BvgS shifts to phosphatase activity in response to modulators, notably nicotinate ions. Here we characterized the effects of nicotinate and related modulators on the BvgS periplasmic moiety by using site-directed mutagenesis and in silico and biophysical approaches. Modulators bind with low affinity to BvgS in the VFT2 cavity. Electron paramagnetic resonance shows that their binding globally affects the conformation and dynamics of the periplasmic moiety. Specific amino acid substitutions designed to slacken interactions within and between the VFT lobes prevent BvgS from responding to nicotinate, showing that BvgS shifts from kinase to phosphatase activity in response to this modulator via a tense transition state that involves a large periplasmic structural block. We propose that this transition enables the transmembrane helices to adopt a distinct conformation that sets the cytoplasmic enzymatic moiety in the phosphatase mode. The bona fide, in vivo VFT ligands that remain to be identified are likely to trigger similar effects on the transmembrane and cytoplasmic moieties. This mechanism may be relevant to the other VFT-containing sensor kinases homologous to BvgS. PMID:26203186

  9. Protein Kinase C-dependent Phosphorylation of Transient Receptor Potential Canonical 6 (TRPC6) on Serine 448 Causes Channel Inhibition*

    PubMed Central

    Bousquet, Simon M.; Monet, Michaël; Boulay, Guylain

    2010-01-01

    TRPC6 is a cation channel in the plasma membrane that plays a role in Ca2+ entry following the stimulation of a Gq-protein coupled or tyrosine kinase receptor. A dysregulation of TRPC6 activity causes abnormal proliferation of smooth muscle cells and glomerulosclerosis. In the present study, we investigated the regulation of TRPC6 activity by protein kinase C (PKC). We showed that inhibiting PKC with GF1 or activating it with phorbol 12-myristate 13-acetate potentiated and inhibited agonist-induced Ca2+ entry, respectively, into cells expressing TRPC6. Similar results were obtained when TRPC6 was directly activated with 1-oleyl-2-acetyl-sn-glycerol. Activation of the cells with carbachol increased the phosphorylation of TRPC6, an effect that was prevented by the inhibition of PKC. The target residue of PKC was identified by an alanine screen of all canonical PKC sites on TRPC6. Unexpectedly, all the mutants, including TRPC6S768A (a residue previously proposed to be a target for PKC), displayed PKC-dependent inhibition of channel activity. Phosphorylation prediction software suggested that Ser448, in a non-canonical PKC consensus sequence, was a potential target for PKCδ. Ba2+ and Ca2+ entry experiments revealed that GF1 did not potentiate TRPC6S448A activity. Moreover, activation of PKC did not enhance the phosphorylation state of TRPC6S448A. Using A7r5 vascular smooth muscle cells, which endogenously express TRPC6, we observed that a novel PKC isoform is involved in the inhibition of the vasopressin-induced Ca2+ entry. Furthermore, knocking down PKCδ in A7r5 cells potentiated vasopressin-induced Ca2+ entry. In summary, we provide evidence that PKCδ exerts a negative feedback effect on TRPC6 through the phosphorylation of Ser448. PMID:20961851

  10. Protein kinase C-dependent phosphorylation of transient receptor potential canonical 6 (TRPC6) on serine 448 causes channel inhibition.

    PubMed

    Bousquet, Simon M; Monet, Michaël; Boulay, Guylain

    2010-12-24

    TRPC6 is a cation channel in the plasma membrane that plays a role in Ca(2+) entry following the stimulation of a G(q)-protein coupled or tyrosine kinase receptor. A dysregulation of TRPC6 activity causes abnormal proliferation of smooth muscle cells and glomerulosclerosis. In the present study, we investigated the regulation of TRPC6 activity by protein kinase C (PKC). We showed that inhibiting PKC with GF1 or activating it with phorbol 12-myristate 13-acetate potentiated and inhibited agonist-induced Ca(2+) entry, respectively, into cells expressing TRPC6. Similar results were obtained when TRPC6 was directly activated with 1-oleyl-2-acetyl-sn-glycerol. Activation of the cells with carbachol increased the phosphorylation of TRPC6, an effect that was prevented by the inhibition of PKC. The target residue of PKC was identified by an alanine screen of all canonical PKC sites on TRPC6. Unexpectedly, all the mutants, including TRPC6(S768A) (a residue previously proposed to be a target for PKC), displayed PKC-dependent inhibition of channel activity. Phosphorylation prediction software suggested that Ser(448), in a non-canonical PKC consensus sequence, was a potential target for PKCδ. Ba(2+) and Ca(2+) entry experiments revealed that GF1 did not potentiate TRPC6(S448A) activity. Moreover, activation of PKC did not enhance the phosphorylation state of TRPC6(S448A). Using A7r5 vascular smooth muscle cells, which endogenously express TRPC6, we observed that a novel PKC isoform is involved in the inhibition of the vasopressin-induced Ca(2+) entry. Furthermore, knocking down PKCδ in A7r5 cells potentiated vasopressin-induced Ca(2+) entry. In summary, we provide evidence that PKCδ exerts a negative feedback effect on TRPC6 through the phosphorylation of Ser(448).

  11. p38 MAP kinase is required for Wnt3a-mediated osterix expression independently of Wnt-LRP5/6-GSK3β signaling axis in dental follicle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakisaka, Yukihiko; Kanaya, Sousuke; Liason Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575

    Wnt3a is a secreted glycoprotein that activates the glycogen synthase kinase-3β (GSK3β)/β-catenin signaling pathway through low-density-lipoprotein receptor-related protein (LRP)5/6 co-receptors. Wnt3a has been implicated in periodontal development and homeostasis, as well as in cementum formation. Recently, we have reported that Wnt3a increases alkaline phosphatase expression through the induction of osterix (Osx) expression in dental follicle cells, a precursor of cementoblasts. However, the molecular mechanism by which Wnt3a induces Osx expression is still unknown. In this study, we show that Wnt3a-induced Osx expression was inhibited in the presence of p38 mitogen-activated protein kinase (MAPK) inhibitors (SB203580 and SB202190) at gene andmore » protein levels, as assessed by real-time PCR and immunocytohistochemistry, respectively. Pretreatment of cells with Dickkopf-1, a potent canonical Wnt antagonist binding to LRP5/6 co-receptors, did not influence Wnt3a-mediated p38 MAPK phosphorylation, suggesting that Wnt3a activates p38 MAPK through LRP5/6-independent signaling. On the other hand, pretreatment with p38 MAPK inhibitors had no effects on the phosphorylated status of GSK3β and β-catenin as well as β-catenin nuclear translocation, but inhibited Wnt3a-mediated β-catenin transcriptional activity. These findings suggest that p38 MAPK modulates canonical Wnt signaling at the β-catenin transcriptional level without any crosstalk with the Wnt3a-mediated LRP5/6-GSK3β signaling axis and subsequent β-catenin nuclear translocation. These findings expand our knowledge of the mechanisms controlling periodontal development and regeneration. - Highlights: • Wnt3a induces Osx expression via p38 MAPK signaling in dental follicle cells. • p38 MAPK has no crosstalk with Wnt3a-mediated LRP5/6 and GSK3β signaling. • p38 MAPK is required for Wnt signaling at the β-catenin transcriptional level.« less

  12. Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I.

    PubMed

    Chung, T; Huang, J S; Mukherjee, J J; Crilly, K S; Kiss, Z

    2000-05-01

    In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.

  13. ClC-3 Chloride Channel Proteins Regulate the Cell Cycle by Up-regulating cyclin D1-CDK4/6 through Suppressing p21/p27 Expression in Nasopharyngeal Carcinoma Cells

    PubMed Central

    Ye, Dong; Luo, Hai; Lai, Zhouyi; Zou, Lili; Zhu, Linyan; Mao, Jianwen; Jacob, Tim; Ye, Wencai; Wang, Liwei; Chen, Lixin

    2016-01-01

    It was shown in this study that knockdown of ClC-3 expression by ClC-3 siRNA prevented the activation of hypotonicity-induced chloride currents, and arrested cells at the G0/G1 phase in nasopharyngeal carcinoma CNE-2Z cells. Reconstitution of ClC-3 expression with ClC-3 expression plasmids could rescue the cells from the cell cycle arrest caused by ClC-3 siRNA treatments. Transfection of cells with ClC-3 siRNA decreased the expression of cyclin D1, cyclin dependent kinase 4 and 6, and increased the expression of cyclin dependent kinase inhibitors (CDKIs), p21 and p27. Pretreatments of cells with p21 and p27 siRNAs depleted the inhibitory effects of ClC-3 siRNA on the expression of CDK4 and CDK6, but not on that of cyclin D1, indicating the requirement of p21 and p27 for the inhibitory effects of ClC-3 siRNA on CDK4 and CDK6 expression. ClC-3 siRNA inhibited cells to progress from the G1 phase to the S phase, but pretreatments of cells with p21 and p27 siRNAs abolished the inhibitory effects of ClC-3 siRNA on the cell cycle progress. Our data suggest that ClC-3 may regulate cell cycle transition between G0/G1 and S phases by up-regulation of the expression of CDK4 and CDK6 through suppression of p21 and p27 expression. PMID:27451945

  14. On-line electrochemistry-bioaffinity screening with parallel HR-LC-MS for the generation and characterization of modified p38α kinase inhibitors.

    PubMed

    Falck, David; de Vlieger, Jon S B; Giera, Martin; Honing, Maarten; Irth, Hubertus; Niessen, Wilfried M A; Kool, Jeroen

    2012-04-01

    In this study, an integrated approach is developed for the formation, identification and biological characterization of electrochemical conversion products of p38α mitogen-activated protein kinase inhibitors. This work demonstrates the hyphenation of an electrochemical reaction cell with a continuous-flow bioaffinity assay and parallel LC-HR-MS. Competition of the formed products with a tracer (SKF-86002) that shows fluorescence enhancement in the orthosteric binding site of the p38α kinase is the readout for bioaffinity. Parallel HR-MS(n) experiments provided information on the identity of binders and non-binders. Finally, the data produced with this on-line system were compared to electrochemical conversion products generated off-line. The electrochemical conversion of 1-{6-chloro-5-[(2R,5S)-4-(4-fluorobenzyl)-2,5-dimethylpiperazine-1-carbonyl]-3aH-indol-3-yl}-2-morpholinoethane-1,2-dione resulted in eight products, three of which showed bioaffinity in the continuous-flow p38α bioaffinity assay used. Electrochemical conversion of BIRB796 resulted, amongst others, in the formation of the reactive quinoneimine structure and its corresponding hydroquinone. Both products were detected in the p38α bioaffinity assay, which indicates binding to the p38α kinase.

  15. The level of heat shock protein 90 in pig Longissimus dorsi muscle and its relationship with meat pH and quality.

    PubMed

    Zhang, Muhan; Wang, Daoying; Geng, Zhiming; Bian, Huan; Liu, Fang; Zhu, Yongzhi; Xu, Weimin

    2014-12-15

    The 90 kDa heat shock protein (HSP90) is a molecular chaperone that participates in various cellular processes, the role and significance of HSP90 in postmortem muscle though remains unclear. In the present study, pig Longissimus dorsi muscles, categorized into three pH groups, were tested for HSP90 levels and meat quality parameters (i.e. water holding capacity, colour, tenderness and lipid oxidation). The muscles with a high initial pH (pHi) group (pH>6.4) possessing the greatest water holding capacity and lightness, contained the highest HSP90 level, followed by intermediate (6.0-6.4) and low pHi groups (pH<6.0). Statistical analysis indicated HSP90 level was significantly and negatively correlated with cooking loss, drip loss, and lightness (r=-0.797, -0.785, -0.604, respectively, P<0.01). The results suggest that HSP90 may play a crucial role in water retention of meat and may be involved in postmortem meat quality development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Cot/tpl2 activity is required for TLR-induced activation of the Akt p70 S6k pathway in macrophages: Implications for NO synthase 2 expression.

    PubMed

    López-Peláez, Marta; Soria-Castro, Irene; Boscá, Lisardo; Fernández, Margarita; Alemany, Susana

    2011-06-01

    LPS stimulation activates IKK and different MAP kinase pathways, as well as the PI3K-Akt-mTOR-p70 S6k pathway, a negative regulator of these MyD88-dependent intracellular signals. Here, we show that Cot/tpl2, a MAP3K responsible for the activation of the MKK1-Erk1/2, controls P-Ser473 Akt and P-Thr389 p70 S6k phosphorylation in LPS-stimulated macrophages. Analysis of the intracellular signalling in Cot/tpl2 KO macrophages versus WT macrophages reveals lower IκBα recovery and higher phosphorylation of JNK and p38α after 1 h of LPS stimulation. Moreover, Cot/tpl2 deficiency increases LPS-induced NO synthase 2 (NOS2) expression in macrophages. Inhibition of the PI3K pathway abolishes the differences in IκBα and NOS2 expression between Cot/tpl2 KO and WT macrophages following LPS administration. Furthermore, in zymosan- and polyI:C-stimulated macrophages, Cot/tpl2 mediates P-Ser473 Akt phosphorylation, increases IκBα levels and decreases NOS2 expression. In conclusion, these data reveal a novel role for the Cot/tpl2 pathway in mediating TLR activation of the Akt-mTOR-p70 S6k pathway, allowing Cot/tpl2 to fine-control the activation state of other signalling pathways. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Heterometallic titanium–gold complexes inhibit renal cancer cells in vitro and in vivo † †This paper is dedicated to Prof. Roberto Sánchez-Delgado, great mentor and excellent friend, on the occasion of his 65th birthday. ‡ ‡Electronic supplementary information (ESI) available: Stability studies of the new compounds by NMR, UV-vis spectroscopy and MS spectrometry, crystallographic data for compound 6, DFT calculations for compounds 4–7, IC50 values in human renal cells at both 24 and 72 h, details on migration studies, TrxR inhibition studies for 3, 5 and AF at different times, inhibition studies of compound 5 against a panel of 35 protein kinases, effects of AF on MAPKAPK-3 in Caki-1 cells, effects of compound 3 in Caki-1 mouse xenografts. CCDC 1400886. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01753j Click here for additional data file. Click here for additional data file.

    PubMed Central

    Fernández-Gallardo, Jacob; Elie, Benelita T.; Sadhukha, Tanmoy; Prabha, Swayam; Sanaú, Mercedes; Rotenberg, Susan A.

    2015-01-01

    Following recent work on heterometallic titanocene–gold complexes as potential chemotherapeutics for renal cancer, we report here on the synthesis, characterization and stability studies of new titanocene complexes containing a methyl group and a carboxylate ligand (mba = S–C6H4–COO–) bound to gold(i)-phosphane fragments through a thiolate group [(η-C5H5)2TiMe(μ-mba)Au(PR3)]. The compounds are more stable in physiological media than those previously reported and are highly cytotoxic against human cancer renal cell lines. We describe here preliminary mechanistic data involving studies on the interaction of selected compounds with plasmid (pBR322) DNA used as a model nucleic acid, and with selected protein kinases from a panel of 35 protein kinases having oncological interest. Preliminary mechanistic studies in Caki-1 renal cells indicate that the cytotoxic and anti-migration effects of the most active compound 5 [(η-C5H5)2TiMe(μ-mba)Au(PPh3)] involve inhibition of thioredoxin reductase and loss of expression of protein kinases that drive cell migration (AKT, p90-RSK, and MAPKAPK3). The co-localization of both titanium and gold metals (1 : 1 ratio) in Caki-1 renal cells was demonstrated for 5 indicating the robustness of the heterometallic compound in vitro. Two compounds were selected for further in vivo studies on mice based on their selectivity in vitro against renal cancer cell lines when compared to non-tumorigenic human kidney cell lines (HEK-293T and RPTC) and the favourable preliminary toxicity profile in C57BL/6 mice. Evaluation of Caki-1 xenografts in NOD.CB17-Prkdc SCID/J mice showed an impressive tumor reduction (67%) after treatment for 28 days (3 mg per kg per every other day) with heterometallic compound 5 as compared with the previously described [(η-C5H5)2Ti{OC(O)-4-C6H4-P(Ph2)AuCl}2] 3 which was non-inhibitory. These findings indicate that structural modifications on the ligand scaffold affect the in vivo efficacy of this class of

  18. The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6

    PubMed Central

    Dobrenel, Thomas; Mancera-Martínez, Eder; Forzani, Céline; Azzopardi, Marianne; Davanture, Marlène; Moreau, Manon; Schepetilnikov, Mikhail; Chicher, Johana; Langella, Olivier; Zivy, Michel; Robaglia, Christophe; Ryabova, Lyubov A.; Hanson, Johannes; Meyer, Christian

    2016-01-01

    Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5′ untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5′ terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase. PMID:27877176

  19. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation

    PubMed Central

    Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian

    2015-01-01

    The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation. PMID:26646662

  20. A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase.

    PubMed

    Blank, V C; Bertucci, L; Furmento, V A; Peña, C; Marino, V J; Roguin, L P

    2013-06-10

    We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells. Copyright © 2013 Elsevier Inc

  1. Hepatocyte growth factor and transforming growth factor beta regulate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression in rat hepatocyte primary cultures.

    PubMed Central

    Joaquin, M; Rosa, J L; Salvadó, C; López, S; Nakamura, T; Bartrons, R; Gil, J; Tauler, A

    1996-01-01

    Hepatocyte growth factor (HGF) and transforming growth factor beta (TGF-beta) are believed to be of major importance for hepatic regeneration after liver damage. We have studied the effect of these growth factors on fructose 2,6-bisphosphate (Fru-2,6-P2) levels and the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF2K/Fru-2,6-BPase) in rat hepatocyte primary cultures. Our results demonstrate that HGF activates the expression of the 6PF2K/Fru-2,6-BPase gene by increasing the levels of its mRNA. As a consequence of this activation, the amount of 6PF2K/Fru-2,6-BPase protein and 6-phosphofructo-2-kinase activity increased, which was reflected by a rise in Fru-2,6-P2 levels. In contrast, TGF-beta decreased the levels of 6PF2K/Fru-2,6-BPase mRNA, which led to a decrease in the amount of 6PF2K/Fru-2,6-BPase protein and Fru-2,6-P2. The different actions of HGF and TGF-beta on 6PF2K/Fru-2,6-BPase gene expression are concomitant with their effect on cell proliferation. Here we show that, in the absence of hormones, primary cultures of hepatocytes express the F-type isoenzyme. In addition, HGF increases the expression of this isoenzyme, and dexamethasone activates the L-type isoform. HGF and TGF-beta were able to inhibit this activation. PMID:8660288

  2. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.

    PubMed

    Dennis, Michael D; Jefferson, Leonard S; Kimball, Scot R

    2012-12-14

    Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.

  3. Impact damage resistance and residual property assessment of (0/+/-45/90)s SCS-6/Timetal 21S

    NASA Technical Reports Server (NTRS)

    Miller, Jennifer L.; Portanova, Marc A.; Johnson, W. Steven

    1995-01-01

    The impact damage resistance and residual mechanical properties of (0/ +/- 45/90)s SCS-6/Timetal 21S composites were evaluated. Both quasi-static indentation and drop-weight impact tests were used to investigate the impact behavior at two nominal energy levels (5.5 and 8.4 J) and determine the onset of internal damage. Through x-ray inspection, the extent of internal damage was characterized non-destructively. The composite strength and constant amplitude fatigue response were evaluated to assess the effects of the sustained damage. Scanning electron microscopy was used to characterize internal damage from impact in comparison to damage that occurs during mechanical loading alone. The effect of stacking sequence was examined by using specimens with the long dimension of the specimen both parallel (longitudinal) and perpendicular (transverse) to the 0 deg fiber direction. Damage in the form of longitudinal and transverse cracking occurred in all longitudinal specimens tested at energies greater than 6.3 J. Similar results occurred in the transverse specimens tested above 5.4 J. Initial load drop, characteristic of the onset of damage, occurred on average at 6.3 J in longitudinal specimens and at 5.0 J in transverse specimens. X-ray analysis showed broken fibers in the impacted region in specimens tested at the higher impact energies. At low impact energies, visible matrix cracking may occur, but broken fibers may not. Matrix cracking was noted along fiber swims and it appeared to depend on the surface quality of composite. At low impact energies, little damage has been incurred by the composite and the residual strength and residual life is not greatly reduced as compared to an undamaged composite. At higher impact energies, more damage occurred and a greater effect of the impact damage was observed.

  4. Synthesis and biological evaluation of 5-(fluoro-substituted-6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)imidazoles as inhibitors of transforming growth factor-β type I receptor kinase.

    PubMed

    Krishnaiah, Maddeboina; Jin, Cheng Hua; Sheen, Yhun Yhong; Kim, Dae-Kee

    2015-11-15

    To further optimize a clinical candidate 5 (EW-7197), a series of 5-(3-, 4-, or 5-fluoro-substituted-6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)imidazoles 19a-l have been synthesized and evaluated for their TGF-β type I receptor kinase (ALK5) and p38α MAP kinase inhibitory activity in an enzyme assay. The 5-(5-fluoro-substituted-6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)imidazoles 19h-l displayed the similar level of potency to that of 5 against both ALK5 (IC50=7.68-13.70 nM) and p38α MAP kinase (IC50=1240-3370 nM). Among them, 19j inhibited ALK5 with IC50 value of 7.68 nM in a kinase assay and displayed 82% inhibition at 100 nM in a luciferase reporter assay. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. P21-activated kinase 4--not just one of the PAK.

    PubMed

    Dart, Anna E; Wells, Claire M

    2013-01-01

    P21-activated kinase 4 (PAK4) is a member of the p21-activated kinase (PAK) family. Historically much of the attention has been directed towards founding family member PAK1 but the focus is now shifting towards PAK4. It is a pluripotent serine/threonine kinase traditionally recognised as a downstream effector of the Rho-family GTPases. However, emerging research over the last few years has revealed that this kinase is much more than that. New findings have shed light on the molecular mechanism of PAK4 activation and how this kinase is critical for early development. Moreover, the number of PAK4 substrates and binding partners is rapidly expanding highlighting the increasing amount of cellular functions controlled by PAK4. We propose that PAK4 should be considered a signalling integrator regulating numerous fundamental cellular processes, including actin cytoskeletal dynamics, cell morphology and motility, cell survival, embryonic development, immune defence and oncogenic transformation. This review will outline our current understanding of PAK4 biology. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Separating myoblast differentiation from muscle cell fusion using IGF-I and the p38 MAP kinase inhibitor SB202190.

    PubMed

    Gardner, Samantha; Gross, Sean M; David, Larry L; Klimek, John E; Rotwein, Peter

    2015-10-01

    The p38 MAP kinases play critical roles in skeletal muscle biology, but the specific processes regulated by these kinases remain poorly defined. Here we find that activity of p38α/β is important not only in early phases of myoblast differentiation, but also in later stages of myocyte fusion and myofibrillogenesis. By treatment of C2 myoblasts with the promyogenic growth factor insulin-like growth factor (IGF)-I, the early block in differentiation imposed by the p38 chemical inhibitor SB202190 could be overcome. Yet, under these conditions, IGF-I could not prevent the later impairment of muscle cell fusion, as marked by the nearly complete absence of multinucleated myofibers. Removal of SB202190 from the medium of differentiating myoblasts reversed the fusion block, as multinucleated myofibers were detected several hours later and reached ∼90% of the culture within 30 h. Analysis by quantitative mass spectroscopy of proteins that changed in abundance following removal of the inhibitor revealed a cohort of upregulated muscle-enriched molecules that may be important for both myofibrillogenesis and fusion. We have thus developed a model system that allows separation of myoblast differentiation from muscle cell fusion and should be useful in identifying specific steps regulated by p38 MAP kinase-mediated signaling in myogenesis. Copyright © 2015 the American Physiological Society.

  7. p56Lck and p59Fyn Regulate CD28 Binding to Phosphatidylinositol 3-Kinase, Growth Factor Receptor-Bound Protein GRB-2, and T Cell-Specific Protein-Tyrosine Kinase ITK: Implications for T-Cell Costimulation

    NASA Astrophysics Data System (ADS)

    Raab, Monika; Cai, Yun-Cai; Bunnell, Stephen C.; Heyeck, Stephanie D.; Berg, Leslie J.; Rudd, Christopher E.

    1995-09-01

    T-cell activation requires cooperative signals generated by the T-cell antigen receptor ξ-chain complex (TCRξ-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, ξ-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.

  8. Recombinant streptokinase vs phenylephrine-based suppositories in acute hemorrhoids, randomized, controlled trial (THERESA-3)

    PubMed Central

    Hernández-Bernal, Francisco; Castellanos-Sierra, Georgina; Valenzuela-Silva, Carmen M; Catasús-Álvarez, Karem M; Valle-Cabrera, Roselin; Aguilera-Barreto, Ana; López-Saura, Pedro A

    2014-01-01

    AIM: To compare the efficacy and safety of recombinant streptokinase (rSK) and phenylephrine-based suppositories in acute hemorrhoidal disease. METHODS: A multicenter (14 sites), randomized (1:1), open, parallel groups, active controlled trial was done. After inclusion, subjects with acute symptoms of hemorrhoids, who gave their written, informed consent to participate, were centrally randomized to receive, as outpatients, rSK (200000 IU) or 0.25% phenylephrine suppositories, which had different organoleptic characteristics. Treatment was administered by the rectal route, one unit every 6 h during 48 h for rSK, and up to a maximum of 5 d (20 suppositories) for phenylephrine. Evaluations were performed at 3, 5 and 10 d post-inclusion. The main end-point was the 5th-day complete clinical response (disappearance of pain and edema, and ≥ 70% reduction of the lesion size). Time to response and need for thrombectomy were secondary efficacy variables. Adverse events were evaluated too. RESULTS: 5th day complete response rates were 83/110 (75.5%) and 36/110 (32.7%) with rSK and phenylephrine suppositories, respectively. This 42.7% difference (95%CI: 30.5-54.2) was highly significant (P < 0.001). The advantage was detected since the early 3rd day evaluation (37.3% vs 6.4% for the rSK and active control groups, respectively; P < 0.001) and was kept even at the late 10th day assessment (83.6% vs 58.2% for rSK and phenylephrine, respectively; P < 0.001). Time for complete response was significantly shorter (P = 0.031; log-rank test) in the rSK group (median: 4.9 d; 95%CI: 4.8-5.0) with respect to the active control (median: 9.8 d; 95%CI: 9.8-10.0). Thrombectomy was necessary in 1/59 and 8/57 patients with baseline thrombosis in the rSK and phenylephrine groups, respectively (P = 0.016). There were no adverse events attributable to the experimental treatment. CONCLUSION: rSK suppositories showed a significant advantage over a widely used over-the-counter phenylephrine

  9. Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation.

    PubMed

    Kobayashi, Takashi; Shimizu, Yosuke; Terada, Naoki; Yamasaki, Toshinari; Nakamura, Eijiro; Toda, Yoshinobu; Nishiyama, Hiroyuki; Kamoto, Toshiyuki; Ogawa, Osamu; Inoue, Takahiro

    2010-06-01

    Ras homolog-enriched in brain (Rheb), a small GTP-binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer. Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi-quantitative and quantitative RT-PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST-1 assay were used to measure cell proliferation. Fluorescence-activated cell sorting was used to assess the cell cycle. Rheb mRNA and protein expression was higher in more aggressive, androgen-independent prostate cancer cell lines PC3, DU145, and C4-2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR. Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer.

  10. Age- and Diet-Specific Effects of Variation at S6 Kinase on Life History, Metabolic, and Immune Response Traits in Drosophila melanogaster

    PubMed Central

    Cho, Irene; Horn, Lucas; Felix, Tashauna M.; Foster, Leanne; Gregory, Gwendolyn; Starz-Gaiano, Michelle; Chambers, Michelle M.

    2010-01-01

    Life history theory hypothesizes that genetically based variation in life history traits results from alleles that alter age-specific patterns of energy allocation among the competing demands of reproduction, storage, and maintenance. Despite the important role that alleles with age-specific effects must play in life history evolution, few naturally occurring alleles with age-specific effects on life history traits have been identified. A recent mapping study identified S6 kinase (S6k) as a candidate gene affecting lipid storage in Drosophila. S6k is in the target of rapamycin pathway, which regulates cell growth in response to nutrient availability and has also been implicated to influence many life history traits from fecundity to life span. In this article, we used quantitative complementation tests to examine the effect of allelic variation at S6k on a range of phenotypes associated with metabolism and fitness in an age-, diet-, and sex-specific manner. We found that alleles of S6k have pleiotropic effects on total protein levels, glycogen storage, life span, and the immune response and demonstrate that these allelic effects are age, diet, and sex specific. As many of the genes in the target of rapamycin pathway are evolutionarily conserved, our data suggest that genes in this pathway could play a pivotal role in life history evolution in a wide range of taxa. PMID:20491566

  11. A Role for the p38 Mitogen-activated Protein Kinase Pathway in Myocardial Cell Growth, Sarcomeric Organization, and Cardiac-specific Gene Expression

    PubMed Central

    Zechner, Dietmar; Thuerauf, Donna J.; Hanford, Deanna S.; McDonough, Patrick M.; Glembotski, Christopher C.

    1997-01-01

    Three hallmark features of the cardiac hypertrophic growth program are increases in cell size, sarcomeric organization, and the induction of certain cardiac-specific genes. All three features of hypertrophy are induced in cultured myocardial cells by α1- adrenergic receptor agonists, such as phenylephrine (PE) and other growth factors that activate mitogen- activated protein kinases (MAPKs). In this study the MAPK family members extracellular signal–regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 were activated by transfecting cultured cardiac myocytes with constructs encoding the appropriate kinases possessing gain-of-function mutations. Transfected cells were then analyzed for changes in cell size, sarcomeric organization, and induction of the genes for the A- and B-type natriuretic peptides (NPs), as well as the α-skeletal actin (α-SkA) gene. While activation of JNK and/or ERK with MEKK1COOH or Raf-1 BXB, respectively, augmented cell size and effected relatively modest increases in NP and α-SkA promoter activities, neither upstream kinase conferred sarcomeric organization. However, transfection with MKK6 (Glu), which specifically activated p38, augmented cell size, induced NP and α-Ska promoter activities by up to 130-fold, and elicited sarcomeric organization in a manner similar to PE. Moreover, all three growth features induced by MKK6 (Glu) or PE were blocked with the p38-specific inhibitor, SB 203580. These results demonstrate novel and potentially central roles for MKK6 and p38 in the regulation of myocardial cell hypertrophy. PMID:9314533

  12. The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2.

    PubMed Central

    Poon, R Y; Yamashita, K; Adamczewski, J P; Hunt, T; Shuttleworth, J

    1993-01-01

    Activation of the cyclin-dependent protein kinases p34cdc2 and p33cdk2 requires binding with a cyclin partner and phosphorylation on the first threonine residue in the sequence THEVVTLWYRAPE. We present evidence that this threonine residue, number 160 in p33cdk2, can be specifically phosphorylated by a cdc2-related protein kinase from Xenopus oocytes called p40MO15. Binding to cyclin A and phosphorylation of this threonine are both required to activate fully the histone H1 kinase activity of p33cdk2. In cell extracts, a portion of p40MO15 is found in a high molecular weight complex that is considerably more active than a lower molecular weight form. Wild-type MO15 protein expressed in bacteria does not possess kinase activity, but acquires p33cdk2-T160 kinase activity after incubation with cell extract and ATP. We conclude that p40MO15 corresponds to CAK (cdc2/cdk2 activating kinase) and speculate that, like p33cdk2 and p34cdc2, p40MO15 requires activation by phosphorylation and association with a companion subunit. Images PMID:8393783

  13. The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2.

    PubMed

    Poon, R Y; Yamashita, K; Adamczewski, J P; Hunt, T; Shuttleworth, J

    1993-08-01

    Activation of the cyclin-dependent protein kinases p34cdc2 and p33cdk2 requires binding with a cyclin partner and phosphorylation on the first threonine residue in the sequence THEVVTLWYRAPE. We present evidence that this threonine residue, number 160 in p33cdk2, can be specifically phosphorylated by a cdc2-related protein kinase from Xenopus oocytes called p40MO15. Binding to cyclin A and phosphorylation of this threonine are both required to activate fully the histone H1 kinase activity of p33cdk2. In cell extracts, a portion of p40MO15 is found in a high molecular weight complex that is considerably more active than a lower molecular weight form. Wild-type MO15 protein expressed in bacteria does not possess kinase activity, but acquires p33cdk2-T160 kinase activity after incubation with cell extract and ATP. We conclude that p40MO15 corresponds to CAK (cdc2/cdk2 activating kinase) and speculate that, like p33cdk2 and p34cdc2, p40MO15 requires activation by phosphorylation and association with a companion subunit.

  14. The EphA8 Receptor Regulates Integrin Activity through p110γ Phosphatidylinositol-3 Kinase in a Tyrosine Kinase Activity-Independent Manner

    PubMed Central

    Gu, Changkyu; Park, Soochul

    2001-01-01

    Recent genetic studies suggest that ephrins may function in a kinase-independent Eph receptor pathway. Here we report that expression of EphA8 in either NIH 3T3 or HEK293 cells enhanced cell adhesion to fibronectin via α5β1- or β3 integrins. Interestingly, a kinase-inactive EphA8 mutant also markedly promoted cell attachment to fibronectin in these cell lines. Using a panel of EphA8 point mutants, we have demonstrated that EphA8 kinase activity does not correlate with its ability to promote cell attachment to fibronectin. Analysis using EphA8 extracellular and intracellular domain mutants has revealed that enhanced cell adhesion is dependent on ephrin A binding to the extracellular domain and the juxtamembrane segment of the cytoplasmic domain of the receptor. EphA8-promoted adhesion was efficiently inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor. Additionally, we found that EphA8 had associated PI 3-kinase activity and that the p110γ isoform of PI 3-kinase is associated with EphA8. In vitro binding experiments revealed that the EphA8 juxtamembrane segment was sufficient for the formation of a stable complex with p110γ. Similar results were obtained in assay using cells stripped of endogenous ephrin A ligands by treatment with preclustered ephrin A5-Fc proteins. In addition, a membrane-targeted lipid kinase-inactive p110γ mutant was demonstrated to stably associate with EphA8 and suppress EphA8-promoted cell adhesion to fibronectin. Taken together, these results suggest the presence of a novel mechanism by which the EphA8 receptor localizes p110γ PI 3-kinase to the plasma membrane in a tyrosine kinase-independent fashion, thereby allowing access to lipid substrates to enable the signals required for integrin-mediated cell adhesion. PMID:11416136

  15. Overexpression of GmHsp90s, a Heat Shock Protein 90 (Hsp90) Gene Family Cloning from Soybean, Decrease Damage of Abiotic Stresses in Arabidopsis thaliana

    PubMed Central

    Xue, Dong; Zhao, Jinming; Gai, Junyi; Guo, Na; Xing, Han

    2013-01-01

    Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max) remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1–GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1) in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline. PMID:23936107

  16. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning: role of protein kinase B/Akt signaling.

    PubMed

    Feng, Jianhua; Fischer, Gregor; Lucchinetti, Eliana; Zhu, Min; Bestmann, Lukas; Jegger, David; Arras, Margarete; Pasch, Thomas; Perriard, Jean-Claude; Schaub, Marcus C; Zaugg, Michael

    2006-05-01

    Postinfarct remodeled myocardium exhibits numerous structural and biochemical alterations. So far, it is unknown whether postconditioning elicited by volatile anesthetics can also provide protection in the remodeled myocardium. Myocardial infarct was induced in male Wistar rats by ligation of the left anterior descending coronary artery. Six weeks later, hearts were buffer-perfused and exposed to 40 min of ischemia followed by 90 min of reperfusion. Anesthetic postconditioning was induced by 15 min of 2.1 vol% isoflurane. In some experiments, LY294002 (15 microM), a phosphatidylinositol 3-kinase inhibitor, was coadministered with isoflurane. Masson's trichrome staining, immunohistochemistry, Western blot analysis, and reverse-transcription polymerase chain reaction served to confirm remodeling. In buffer-perfused hearts, functional recovery was recorded, and acute infarct size was measured using 1% triphenyltetrazolium chloride staining and lactate dehydrogenase release during reperfusion. Western blot analysis was used to determine phosphorylation of reperfusion injury salvage kinases including protein kinase B/Akt and its downstream targets after 15 min of reperfusion. Infarct hearts exhibited typical macroscopic and molecular changes of remodeling. Isoflurane postconditioning improved functional recovery and decreased acute infarct size, as determined by triphenyltetrazolium (35 +/- 5% in unprotected hearts vs. 8 +/- 3% in anesthetic postconditioning; P < 0.05) and lactate dehydrogenase release. This protection was abolished by LY294002, which inhibited phosphorylation of protein kinase B/Akt and its downstream targets glycogen synthase kinase 3beta, endothelial nitric oxide synthase, and p70S6 kinase. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning via protein kinase B/Akt signaling. This is the first time to demonstrate that anesthetic postconditioning retains its marked protection in diseased myocardium.

  17. Roles of P21-activated kinases and associated proteins in epithelial wound healing.

    PubMed

    Zegers, Mirjam

    2008-01-01

    The primary function of epithelia is to provide a barrier between the extracellular environment and the interior of the body. Efficient epithelial repair mechanisms are therefore crucial for homeostasis. The epithelial wound-healing process involves highly regulated morphogenetic changes of epithelial cells that are driven by dynamic changes of the cytoskeleton. P21-activated kinases are serine/threonine kinases that have emerged as important regulators of the cytoskeleton. These kinases, which are activated downsteam of the Rho GTPases Rac and cd42, were initially mostly implicated in the regulation of cell migration. More recently, however, these kinases were shown to have many additional functions that are relevant to the regulation of epithelial wound healing. Here, we provide an overview of the morphogenetic changes of epithelial cells during wound healing and the many functions of p21-activated kinases in these processes.

  18. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase.

    PubMed

    Hong, Eun-Hee; Lee, Su-Jae; Kim, Jae-Sung; Lee, Kee-Ho; Um, Hong-Duck; Kim, Jae-Hong; Kim, Song-Ja; Kim, Jong-Il; Hwang, Sang-Gu

    2010-01-08

    Radiotherapy is increasingly used in the treatment of joint diseases, but limited information is available on the effects of radiation on cartilage. Here, we characterize the molecular mechanisms leading to cellular senescence in irradiated primary cultured articular chondrocytes. Ionizing radiation (IR) causes activation of ERK, in turn generating intracellular reactive oxygen species (ROS) with induction of senescence-associated beta-galactosidase (SA-beta-gal) activity. ROS activate p38 kinase, which further promotes ROS generation, forming a positive feedback loop to sustain ROS-p38 kinase signaling. The ROS inhibitors, nordihydroguaiaretic acid and GSH, suppress phosphorylation of p38 and cell numbers positive for SA-beta-gal following irradiation. Moreover, inhibition of the ERK and p38 kinase pathways leads to blockage of IR-induced SA-beta-gal activity via reduction of ROS generation. Although JNK is activated by ROS, this pathway is not associated with cellular senescence of chondrocytes. Interestingly, IR triggers down-regulation of SIRT1 protein expression but not the transcript level, indicative of post-transcriptional cleavage of the protein. SIRT1 degradation is markedly blocked by SB203589 or MG132 after IR treatment, suggesting that cleavage occurs as a result of binding with p38 kinase, followed by processing via the 26 S proteasomal degradation pathway. Overexpression or activation of SIRT1 significantly reduces the IR-induced senescence phenotype, whereas inhibition of SIRT1 activity induces senescence. Based on these findings, we propose that IR induces cellular senescence of articular chondrocytes by negative post-translational regulation of SIRT1 via ROS-dependent p38 kinase activation.

  19. Treatment of rats during pubertal development with 2,3,7,8-tetrachlorodibenzo-p-dioxin alters both signaling kinase activities and epidermal growth factor receptor binding in the testis and the motility and acrosomal reaction of sperm.

    PubMed

    el-Sabeawy, F; Wang, S; Overstreet, J; Miller, M; Lasley, B; Enan, E

    1998-06-01

    Different doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (0.1, 1, 5, and 10 micrograms/kg body wt) were administered i.p. to 21-day-old male Sprague-Dawley rats. Control animals received the same volume of the vehicle (acetone:corn oil, 1:19). Body weight and daily food intake were recorded during the 90-day time course of the study. Random samples of five rats were sacrificed at 34, 49, 62, and 90 days of age. Epidermal growth factor receptor (EGFR) in whole testis was measured, as were the activities of c-Src kinase, protein tyrosine kinase (PTK), mitogen-activated protein 2 kinase (MAP2K also termed as Erk2), protein kinase A (PKA), and protein kinase C (PKC). Testicular tissue from 90-day-old rats was evaluated for histopathology, and sperm numbers in whole testis were counted to estimate daily sperm production. The motility of sperm in the vas deferens and caudal segments of the epididymis of 90-day-old rats was measured by computer assisted sperm analysis (CASA) and the function of the sperm was tested by assessment of acrosome reactions. A dose of 10 micrograms/kg resulted in testicular atrophy and histopathologic examination revealed a decrease in the diameter of the seminiferous tubules. Sertoli cell nuclei were clearly seen, but the spermatogonial population was totally absent. Lower doses of TCDD did not affect testicular histology, but doses as low as 1 microgram/kg significantly decreased testicular sperm numbers and affected some sperm functions (motility parameters and acrosome reactions) in 90-day-old rats. Significant decreases in EGFR were found in 34-day-old rats and this effect on EGFR was sustained until the end of the experiment (90 days). Although TCDD significantly increased c-Src kinase activity in immature and mature rats, opposite effects of TCDD on activities of PTK, PKA, and PKC were found in 34-day-old rats vs 49-, 62-, and 90-day-old rats. When 10 micrograms TCDD/kg was administered to 21-day-old rat, 24-h after c-Src kinase

  20. Human Nek6 is a monomeric mostly globular kinase with an unfolded short N-terminal domain

    PubMed Central

    2011-01-01

    Background The NIMA-related kinases (Neks) are widespread among eukaryotes. In mammalians they represent an evolutionarily conserved family of 11 serine/threonine kinases, with 40-45% amino acid sequence identity to the Aspergillus nidulans mitotic regulator NIMA within their catalytic domains. Neks have cell cycle-related functions and were recently described as related to pathologies, particularly cancer, consisting in potential chemotherapeutic targets. Human Nek6, -7 and -9 are involved in the control of mitotic spindle formation, acting together in a mitotic kinase cascade, but their mechanism of regulation remain elusive. Results In this study we performed a biophysical and structural characterization of human Nek6 with the aim of obtaining its low resolution and homology models. SAXS experiments showed that hNek6 is a monomer of a mostly globular, though slightly elongated shape. Comparative molecular modeling together with disorder prediction analysis also revealed a flexible disordered N-terminal domain for hNek6, which we found to be important to mediate interactions with diverse partners. SEC-MALS experiments showed that hNek6 conformation is dependent on its activation/phosphorylation status, a higher phosphorylation degree corresponding to a bigger Stokes radius. Circular dichroism spectroscopy confirmed our in silico predictions of secondary structure content and thermal stability shift assays revealed a slightly higher stability of wild-type hNek6 compared to the activation loop mutant hNek6(S206A). Conclusions Our data present the first low resolution 3D structure of hNek6 protein in solution. SAXS, comparative modeling and SEC-MALS analysis revealed that hNek6 is a monomeric kinase of slightly elongated shape and a short unfolded N-terminal domain. PMID:21320329

  1. Pharmacophore modeling of diverse classes of p38 MAP kinase inhibitors.

    PubMed

    Sarma, Rituparna; Sinha, Sharat; Ravikumar, Muttineni; Kishore Kumar, Madala; Mahmood, S K

    2008-12-01

    Mitogen-activated protein (MAP) p38 kinase is a serine-threonine protein kinase and its inhibitors are useful in the treatment of inflammatory diseases. Pharmacophore models were developed using HypoGen program of Catalyst with diverse classes of p38 MAP kinase inhibitors. The best pharmacophore hypothesis (Hypo1) with hydrogen-bond acceptor (HBA), hydrophobic (HY), hydrogen-bond donor (HBD), and ring aromatic (RA) as features has correlation coefficient of 0.959, root mean square deviation (RMSD) of 1.069 and configuration cost of 14.536. The model was validated using test set containing 119 compounds and had high correlation coefficient of 0.851. The results demonstrate that results obtained in this study can be considered to be useful and reliable tools in identifying structurally diverse compounds with desired biological activity.

  2. Overexpression of Notch3 and pS6 Is Associated with Poor Prognosis in Human Ovarian Epithelial Cancer.

    PubMed

    Liu, Zhaoxia; Yun, Rongna; Yu, Xiaolin; Hu, Hui; Huang, Genhua; Tan, Buzhen; Chen, Tingtao

    2016-01-01

    Notch3 and pS6 play important roles in tumor angiogenesis. To assess the expression of Notch3 and pS6 in Chinese ovarian epithelial cancer patients, a ten-year follow-up study was performed in ovarian epithelial cancer tissues from 120 specimens of human ovarian epithelial cancer, 30 specimens from benign ovarian tumors, and 30 samples from healthy ovaries by immunohistochemistry. The results indicate that the expression of Notch3 and pS6 was higher in ovarian epithelial cancer than in normal ovary tissues and in benign ovarian tumor tissues (p < 0.01). In tumor tissues, Notch3 expression and pS6 expression were negatively associated with age (p > 0.05) but positively associated with clinical stage, pathological grading, histologic type, lymph node metastasis, and ascites (p < 0.05 or p < 0.01). A follow-up survey of 64 patients with ovarian epithelial cancer showed that patients with high Notch3 and pS6 expression had a shorter survival time (p < 0.01), in which the clinical stage (p < 0.05) and Notch3 expression (p < 0.01) played important roles. In conclusion, Notch3 and pS6 are significantly related to ovarian epithelial cancer development and prognosis, and their combination represents a potential biomarker and therapeutic target in ovarian tumor angiogenesis.

  3. Phosphoinositide protein kinase PDPK1 is a crucial cell signaling mediator in multiple myeloma.

    PubMed

    Chinen, Yoshiaki; Kuroda, Junya; Shimura, Yuji; Nagoshi, Hisao; Kiyota, Miki; Yamamoto-Sugitani, Mio; Mizutani, Shinsuke; Sakamoto, Natsumi; Ri, Masaki; Kawata, Eri; Kobayashi, Tsutomu; Matsumoto, Yosuke; Horiike, Shigeo; Iida, Shinsuke; Taniwaki, Masafumi

    2014-12-15

    Multiple myeloma is a cytogenetically/molecularly heterogeneous hematologic malignancy that remains mostly incurable, and the identification of a universal and relevant therapeutic target molecule is essential for the further development of therapeutic strategy. Herein, we identified that 3-phosphoinositide-dependent protein kinase 1 (PDPK1), a serine threonine kinase, is expressed and active in all eleven multiple myeloma-derived cell lines examined regardless of the type of cytogenetic abnormality, the mutation state of RAS and FGFR3 genes, or the activation state of ERK and AKT. Our results revealed that PDPK1 is a pivotal regulator of molecules that are essential for myelomagenesis, such as RSK2, AKT, c-MYC, IRF4, or cyclin Ds, and that PDPK1 inhibition caused the growth inhibition and the induction of apoptosis with the activation of BIM and BAD, and augmented the in vitro cytotoxic effects of antimyeloma agents in myeloma cells. In the clinical setting, PDPK1 was active in myeloma cells of approximately 90% of symptomatic patients at diagnosis, and the smaller population of patients with multiple myeloma exhibiting myeloma cells without active PDPK1 showed a significantly less frequent proportion of the disease stage III by the International Staging System and a significantly more favorable prognosis, including the longer overall survival period and the longer progression-free survival period by bortezomib treatment, than patients with active PDPK1, suggesting that PDPK1 activation accelerates the disease progression and the resistance to treatment in multiple myeloma. Our study demonstrates that PDPK1 is a potent and a universally targetable signaling mediator in multiple myeloma regardless of the types of cytogenetic/molecular profiles. ©2014 American Association for Cancer Research.

  4. Serine/Threonine Kinase Unc-51-like Kinase-1 (Ulk1) Phosphorylates the Co-chaperone Cell Division Cycle Protein 37 (Cdc37) and Thereby Disrupts the Stability of Cdc37 Client Proteins.

    PubMed

    Li, Ran; Yuan, Fengjie; Fu, Wan; Zhang, Luyao; Zhang, Nan; Wang, Yanan; Ma, Ke; Li, Xue; Wang, Lina; Zhu, Wei-Guo; Zhao, Ying

    2017-02-17

    The serine/threonine kinase Unc-51-like kinase-1 (Ulk1) is thought to be essential for induction of autophagy, an intracellular bulk degradation process that is activated by various stresses. Although several proteins have been suggested as Ulk1 substrates during autophagic process, it still remains largely unknown about Ulk1's physiological substrates. Here, by performing in vitro and in vivo phosphorylation assay, we report that the co-chaperone cell division cycle protein 37 (Cdc37) is a Ulk1 substrate. Ulk1-mediated phosphorylation of Ser-339 in Cdc37 compromised the recruitment of client kinases to a complex comprising Cdc37 and heat shock protein 90 (Hsp90) but only modestly affected Cdc37 binding to Hsp90. Because the recruitment of protein kinase clients to the Hsp90 complex is essential for their stability and functions, Ser-339 phosphorylation of Cdc37 disrupts its ability as a co-chaperone to coordinate Hsp90. Hsp90 inhibitors are cancer chemotherapeutic agents by inducing depletion of clients, many of which are oncogenes. Upon treatment with an Hsp90 inhibitor in cancer cells, Ulk1 promoted the degradation of Hsp90-Cdc37 client kinases, resulting in increased cellular sensitivity to Hsp90 inhibitors. Thus, our study provides evidence for an anti-proliferative role of Ulk1 in response to Hsp90 inhibition in cancer cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. A molecular mechanism of P-loop pliability of Rho-kinase investigated by molecular dynamic simulation

    NASA Astrophysics Data System (ADS)

    Gohda, Keigo; Hakoshima, Toshio

    2008-11-01

    Rho-kinase is a leading player in the regulation of cytoskeletal events involving smooth muscle contraction and neurite growth-cone collapse and retraction, and is a promising drug target in the treatment of both vascular and neurological disorders. Recent crystal structure of Rho-kinase complexed with a small-molecule inhibitor fasudil has revealed structural details of the ATP-binding site, which represents the target site for the inhibitor, and showed that the conserved phenylalanine on the P-loop occupies the pocket, resulting in an increase of protein-ligand contacts. Thus, the P-loop pliability is considered to play an important role in inhibitor binding affinity and specificity. In this study, we carried out a molecular dynamic simulation for Rho-kinase-fasudil complexes with two different P-loop conformations, i.e., the extended and folded conformations, in order to understand the P-loop pliability and dynamics at atomic level. A PKA-fasudil complex was also used for comparison. In the MD simulation, the flip-flop movement of the P-loop conformation starting either from the extended or folded conformation was not able to be observed. However, a significant conformational change in a long loop region covering over the P-loop, and also alteration of ionic interaction-manner of fasudil with acidic residues in the ATP binding site were shown only in the Rho-kinase-fasudil complex with the extended P-loop conformation, while Rho-kinase with the folded P-loop conformation and PKA complexes did not show large fluctuations, suggesting that the Rho-kinase-fasudil complex with the extended P-loop conformation represents a meta-stable state. The information of the P-loop pliability at atomic level obtained in this study could provide valuable clues to designing potent and/or selective inhibitors for Rho-kinase.

  6. Pseudocapacitive Sodium Storage by Ferroelectric Sn2 P2 S6 with Layered Nanostructure.

    PubMed

    Huang, Sheng; Meng, Chao; Xiao, Min; Ren, Shan; Wang, Shuanjin; Han, Dongmei; Li, Yuning; Meng, Yuezhong

    2018-04-19

    Sodium ion batteries (SIB) are considered promising alternative candidates for lithium ion batteries (LIB) because of the wide availability and low cost of sodium, therefore the development of alternative sodium storage materials with comparable performance to LIB is urgently desired. The sodium ions with larger sizes resist intercalation or alloying because of slow reaction kinetics. Most pseudocapacitive sodium storage materials are based on subtle nanomaterial engineering, which is difficult for large-scale production. Here, ferroelectric Sn 2 P 2 S 6 with layered nanostructure is developed as sodium ion storage material. The ferroelectricity-enhanced pseudocapacitance of sodium ion in the interlayer spacing makes the electrochemical reaction easier and faster, endowing the Sn 2 P 2 S 6 electrode with excellent rate capability and cycle stability. Furthermore, the facile solid state reaction synthesis and common electrode fabrication make the Sn 2 P 2 S 6 that becomes a promising anode material of SIB. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells.

    PubMed

    Kwiatkowski, David J; Zhang, Hongbing; Bandura, Jennifer L; Heiberger, Kristina M; Glogauer, Michael; el-Hashemite, Nisreen; Onda, Hiroaki

    2002-03-01

    Tuberous sclerosis (TSC) is a autosomal dominant genetic disorder caused by mutations in either TSC1 or TSC2, and characterized by benign hamartoma growth. We developed a murine model of Tsc1 disease by gene targeting. Tsc1 null embryos die at mid-gestation from a failure of liver development. Tsc1 heterozygotes develop kidney cystadenomas and liver hemangiomas at high frequency, but the incidence of kidney tumors is somewhat lower than in Tsc2 heterozygote mice. Liver hemangiomas were more common, more severe and caused higher mortality in female than in male Tsc1 heterozygotes. Tsc1 null embryo fibroblast lines have persistent phosphorylation of the p70S6K (S6K) and its substrate S6, that is sensitive to treatment with rapamycin, indicating constitutive activation of the mTOR-S6K pathway due to loss of the Tsc1 protein, hamartin. Hyperphosphorylation of S6 is also seen in kidney tumors in the heterozygote mice, suggesting that inhibition of this pathway may have benefit in control of TSC hamartomas.

  8. High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC3 cells and their camptothecin-induced up-regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akao, Yukihiro; Banno, Yoshiko; Nakagawa, Yoshihito

    2006-04-21

    Although most of pharmacological therapies for cancer utilize the apoptotic machinery of the cells, the available anti-cancer drugs are limited due to the ability of prostate cancer cells to escape from the anti-cancer drug-induced apoptosis. A human prostate cancer cell line PC3 is resistant to camptothecin (CPT). To elucidate the mechanism of this resistance, we have examined the involvement of sphingosine kinase (SPHK) and sphingosine 1-phosphate (S1P) receptor in CPT-resistant PC3 and -sensitive LNCaP cells. PC3 cells exhibited higher activity accompanied with higher expression levels of protein and mRNA of SPHK1, and also elevated expression of S1P receptors, S1P{sub 1}more » and S1P{sub 3}, as compared with those of LNCaP cells. The knockdown of SPHK1 by small interfering RNA and inhibition of S1P receptor signaling by pertussis toxin in PC3 cells induced significant inhibition of cell growth, suggesting implication of SPHK1 and S1P receptors in cell proliferation in PC3 cells. Furthermore, the treatment of PC3 cells with CPT was found to induce up-regulation of the SPHK1/S1P signaling by induction of both SPHK1 enzyme and S1P{sub 1}/S1P{sub 3} receptors. These findings strongly suggest that high expression and up-regulation of SPHK1 and S1P receptors protect PC3 cells from the apoptosis induced by CPT.« less

  9. Early Secreted Antigenic Target of 6 kDa of Mycobacterium tuberculosis Stimulates Macrophage Chemoattractant Protein-1 Production by Macrophages and Its Regulation by p38 Mitogen-Activated Protein Kinases and Interleukin-4.

    PubMed

    Ma, J; Jung, B-G; Yi, N; Samten, B

    2016-07-01

    Early secreted antigenic target of 6 kDa (ESAT-6), the major virulence factor of Mycobacterium tuberculosis, affects host immunity and the formation of granulomas likely through inflammatory cytokines. To understand its role in this regard further, we investigated the effect of ESAT-6 on macrophages by determining the production of macrophage chemoattractant protein (MCP)-1, a major chemokine associated with tuberculosis pathogenesis, by murine bone marrow-derived macrophages (BMDMs) and its regulation by protein kinases and cytokines. The results revealed that ESAT-6, but not Ag85A and culture filtrate protein 10 kDa (CFP10), induced MCP-1 production by BMDMs dose and time dependently. Inhibition of p38 but not other mitogen-activated protein kinases (MAPK) and PI3K further enhanced ESAT-6-induced MCP-1 production by BMDMs. Inhibition of p38 MAPK enhanced ESAT-6-induced MCP-1 mRNA accumulation without affecting mRNA stability. ESAT-6 also induced TNF-α from BMDMs and MCP-1 from mouse lung epithelial cells, and these were suppressed by p38 MAPK inhibition, implying cytokine- and cell-specific effect of p38 MAPK inhibition on ESAT-6-induced MCP-1 by macrophages. Pretreatment of BMDMs with IL-4, but not other cytokines (IL-2, IL-10, TNF-α, IFN-γ and IL-1α) further elevated ESAT-6-stimulated MCP-1 production although IL-4 did not induce MCP-1 without ESAT-6. Both p38 MAPK inhibitor and IL-4 did not show additive effect on ESAT-6-induced MCP-1 protein level despite such effect on MCP-1 mRNA level was evident. In conclusion, these results indicate a specific role for both p38 MAPK and IL-4 in ESAT-6-induced MCP-1 production by macrophages and suggest a pathway with significance in tuberculosis pathogenesis. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  10. The TRPM6 Kinase Domain Determines the Mg·ATP Sensitivity of TRPM7/M6 Heteromeric Ion Channels*

    PubMed Central

    Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea

    2014-01-01

    The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg2+) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg2+ and therefore unlikely to be active at physiological levels of [Mg2+]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex. PMID:24385424

  11. The TRPM6 kinase domain determines the Mg·ATP sensitivity of TRPM7/M6 heteromeric ion channels.

    PubMed

    Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea

    2014-02-21

    The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg(2+)) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg(2+) and therefore unlikely to be active at physiological levels of [Mg(2+)]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex.

  12. HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A.

    PubMed

    Tommasino, M; Adamczewski, J P; Carlotti, F; Barth, C F; Manetti, R; Contorni, M; Cavalieri, F; Hunt, T; Crawford, L

    1993-01-01

    E7 is the major transforming protein of human papillomavirus type 16 (HPV16). It has been found to associate with the retinoblastoma protein Rb1. We investigated whether HPV16 E7 protein was associated with other cellular proteins, in particular with those involved in cell cycle control. Immunoprecipitates from CaSki cell extracts with an anti E7 monoclonal antibody contained a histone H1 kinase. Recombinant E7, synthesized in yeast, when mixed with protein extracts from epithelial cells bound histone H1 kinase activity in vitro. The in vivo and the in vitro-formed E7-kinase complex had the same periodicity of activity during the cell cycle, being most active in S and G2/M. Immunoblotting of E7 immunoprecipitates with an antibody raised against the p33CDK2, revealed a 33 kDa protein band not detected by an anti-p34cdc2 antibody, suggesting that the E7-associated kinase activity is due to the p33CDK2. The interaction appears to be via cyclin A, since probing of similar immunoblots showed a 50 kDa band corresponding to cyclin A. The association of E7 with cyclin A appeared to be direct, not involving Rb 1 or other proteins.

  13. The O-methylated isoflavone, formononetin, inhibits human ovarian cancer cell proliferation by sub G0/G1 cell phase arrest through PI3K/AKT and ERK1/2 inactivation.

    PubMed

    Park, Sunwoo; Bazer, Fuller W; Lim, Whasun; Song, Gwonhwa

    2018-05-15

    Formononetin is an isoflavone that is extracted from red clovers or soy. It has anti-oxidant, anti-proliferative, and anti-tumor effects against cells in various diseases. Several cohort studies have indicated that phytoestrogen intake, including formononetin, could reduce the risk of various carcinogenesis. In fact, many case-control studies have indicated the potential value of flavonoids as drug supplements in the treatment of many cancer patients. However, the toxic effects and the anti-cancer mechanism of formononetin in ovarian cancer are unknown. We investigated the toxicological mechanism of formononetin in ES2 and OV90 ovarian cancer cells. Formononetin suppressed cell proliferation through sub G0/G1 phase arrest and increased apoptosis in both cell lines. Furthermore, it induced loss of mitochondrial membrane potential and generation of reactive oxygen species in ES2 and OV90 cells. The formononetin-mediated regulation of cell proliferation and apoptosis involved decreased phosphorylation of ERK1/2, P90RSK, AKT, P70S6K, and S6 proteins, and increased phosphorylation of P38 protein in ES2 and OV90 cells. Co-treatment of formononetin with pharmacological inhibitors (LY294002 or U0126) revealed additional anti-proliferative effects on the two human ovarian cancer cell types. Conclusively, the results indicate the potential value of formononetin as an anti-cancer agent in human ovarian cancer. © 2018 Wiley Periodicals, Inc.

  14. 3,4-dihydroxyphenyl acetic acid and (+)-epoxydon isolated from marine algae-derived microorganisms induce down regulation of epidermal growth factor activated mitogenic signaling cascade in Hela cells.

    PubMed

    Jo, Mi Jeong; Bae, Seong Ja; Son, Byeng Wha; Kim, Chi Yeon; Kim, Gun Do

    2013-05-25

    Epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase (RTK) family. Epidermal growth factor induces its dimerization and stimulates phosphorylation of intracellular tyrosine residues. Phosphorylation of EGFR is studied for cancer therapy because EGFR regulates many cellular processes including cell proliferation, differentiation, and survival. Hence, down-regulation of EGFR kinase activity results in inhibition of signaling cascades amenable for proliferation and progression of cell cycle. In the study, we purified 3,4-dihydroxyphenyl acetic acid and (+)-epoxydon from Aspergillus sp. isolated from marine brown alga Ishige okamurae and Phoma herbarum isolated from marine red alga Hypnea saidana respectively and determined its anti-tumor activities against HeLa human cervical cancer cells. Two compounds suppressed EGFR activity in vitro with IC50 values for 3,4-dihydroxyphenyl acetic acid and (+)-epoxydon were 2.8 and 0.6 μg/mL respectively and reduced the viable numbers of HeLa cells. Immunoblotting analysis exhibited that the compounds induced inhibition of cell growth by causing downregulation of the mitogenic signaling cascade, inactivation of p90RSK, and release of cytochrome c from mitochondria. Results suggest that decreased expression of active EGFR and EGFR-related downstream molecules by treatment with the compounds may results in the inhibition of cell growth and inducement of apoptosis.

  15. Abl Tyrosine Kinase Phosphorylates Nonmuscle Myosin Light Chain Kinase to Regulate Endothelial Barrier Function

    PubMed Central

    Dudek, Steven M.; Chiang, Eddie T.; Camp, Sara M.; Guo, Yurong; Zhao, Jing; Brown, Mary E.; Singleton, Patrick A.; Wang, Lichun; Desai, Anjali; Arce, Fernando T.; Lal, Ratnesh; Van Eyk, Jennifer E.; Imam, Syed Z.

    2010-01-01

    Nonmuscle myosin light chain kinase (nmMLCK), a multi-functional cytoskeletal protein critical to vascular homeostasis, is highly regulated by tyrosine phosphorylation. We identified multiple novel c-Abl–mediated nmMLCK phosphorylation sites by mass spectroscopy analysis (including Y231, Y464, Y556, Y846) and examined their influence on nmMLCK function and human lung endothelial cell (EC) barrier regulation. Tyrosine phosphorylation of nmMLCK increased kinase activity, reversed nmMLCK-mediated inhibition of Arp2/3-mediated actin polymerization, and enhanced binding to the critical actin-binding phosphotyrosine protein, cortactin. EC challenge with sphingosine 1-phosphate (S1P), a potent barrier-enhancing agonist, resulted in c-Abl and phosphorylated nmMLCK recruitment into caveolin-enriched microdomains, rapid increases in Abl kinase activity, and spatial targeting of c-Abl to barrier-promoting cortical actin structures. Conversely, reduced c-Abl expression in EC (siRNA) markedly attenuated S1P-mediated cortical actin formation, reduced the EC modulus of elasticity (assessed by atomic force microscopy), reduced nmMLCK and cortactin tyrosine phosphorylation, and attenuated S1P-mediated barrier enhancement. These studies indicate an essential role for Abl kinase in vascular barrier regulation via posttranslational modification of nmMLCK and strongly support c-Abl-cortactin-nmMLCK interaction as a novel determinant of cortical actin-based cytoskeletal rearrangement critical to S1P-mediated EC barrier enhancement. PMID:20861316

  16. Rho GTPases and p21-activated kinase in the regulation of proliferation and apoptosis by gastrins.

    PubMed

    He, Hong; Baldwin, Graham S

    2008-01-01

    Gastrins, including amidated gastrin (Gamide) and glycine-extended gastrin (Ggly), accelerate the growth of gastrointestinal cancer cells by stimulation of proliferation and inhibition of apoptosis. Gamide and Ggly activate different G proteins of the Rho family of small GTPases. For example, Gamide signals Rac/Cdc42 to activate p21-activated kinase 1 while Ggly signals Rho to activate Rho-activated kinase. p21-activated kinase 1 and Rho-activated kinase induce changes in phosphorylation or expression, respectively, of proteins of the Bcl-2 family, which then affect the caspase cascade with consequent inhibition of apoptosis. In addition, interaction of p21-activated kinase 1 with beta-catenin results in phosphorylation of beta-catenin, which enhances its translocation in to the nucleus, activation of TCF4-dependent transcription, and proliferation and migration. The central role of the beta-catenin pathway in carcinogenesis suggests that specific inhibitors of p21-activated kinase 1 may in the future provide novel therapies for gastrointestinal malignancies.

  17. Melatonin Represses Metastasis in Her2-postive Human Breast Cancer Cells by Suppressing RSK2 Expression

    PubMed Central

    Mao, Lulu; Summers, Whitney; Xiang, Shulin; Yuan, Lin; Dauchy, Robert T.; Reynolds, Amberly; Wren-Dail, Melissa A.; Pointer, David; Frasch, Tripp; Blask, David E.; Hill, Steven M.

    2016-01-01

    The importance of the circadian/melatonin signal in suppressing the metastatic progression of breast and other cancers has been reported by numerous laboratories including our own. Currently, the mechanisms underlying the anti-metastatic actions of melatonin have not been well established. In the present study, the anti-metastatic actions of melatonin were evaluated and compared on the ERα-negative, Her2-positive SKBR-3 breast tumor cell line and ERα-positive MCF-7 cells overexpressing a constitutively active HER2.1 construct (MCF-7Her2.1 cells). Activation of Her2 is reported to induce the expression and/or phosphorylation-dependent activation of numerous kinases and transcription factors that drive drug resistance and metastasis in breast cancer. A key signaling node activated by the Her2/Mapk/Erk pathway is Rsk2, which has been shown to induce numerous signaling pathways associated with the development of epithelial-to-mesenchymal transition (EMT) and metastasis including: Creb, Stat3, cSrc, Fak, Pax, Fascin, and actin polymerization. The data demonstrate that melatonin (both endogenous and exogenous) significantly represses this invasive/metastatic phenotype through a mechanism that involves the suppression of EMT, either by promoting mesenchymal-to-epithelial transition (MET), and/or by inhibiting key signaling pathways involved in later stages of metastasis. These data, combined with our earlier in vitro studies, support the concept that maintenance of elevated and extended duration of nocturnal melatonin levels plays a critical role in repressing the metastatic progression of breast cancer. PMID:27535706

  18. Phosphorylation of Ribosomal Protein S6 Kinase 1 at Thr421/Ser424 and Dephosphorylation at Thr389 Regulates SP600125-Induced Polyploidization of Megakaryocytic Cell Lines

    PubMed Central

    Lin, Di; Zhao, Yong-Shan; Liu, Shuo; Xing, Si-Ning; Zhao, Song; Chen, Cong-Qin; Jiang, Zhi-Ming; Pu, Fei-Fei; Cao, Jian-Ping; Ma, Dong-Chu

    2014-01-01

    Megakaryocytes (MKs) are one of the few cell types that become polyploid; however, the mechanisms by which these cells are designated to become polyploid are not fully understood. In this investigation, we successfully established two relatively synchronous polyploid cell models by inducing Dami and CMK cells with SP600125. We found that SP600125 induced the polyploidization of Dami and CMK cells, concomitant with the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) at Thr421/Ser424 and dephosphorylation at Thr389. The polyploidization was partially blocked by H-89, a cAMP-dependent protein kinase (PKA) inhibitor, through direct binding to S6K1, leading to dephosphorylation at Thr421/Ser424 and phosphorylation at Thr389, independent of PKA. Overexpression of a rapamycin-resistant mutant of S6K1 further enhanced the inhibitory effect of LY294002 on the SP600125-induced polyploidization of Dami and CMK cells. SP600125 also induced the polyploidization of Meg-01 cells, which are derived from a patient with chronic myelogenous leukemia, without causing a significant change in S6K1 phosphorylation. Additionally, SP600125 induced the polyploidization of HEL cells, which are derived from a patient with erythroleukemia, and phosphorylation at Thr389 of S6K1 was detected. However, the polyploidization of both Meg-01 cells and HEL cells as a result of SP600125 treatment was lower than that of SP600125-induced Dami and CMK cells, and it was not blocked by H-89 despite the increased phosphorylation of S6K1 at Thr389 in both cell lines in response to H-89. Given that the Dami and CMK cell lines were derived from patients with acute megakaryocytic leukemia (AMKL) and expressed high levels of platelet-specific antigens, our data suggested that SP600125-induced polyploidization is cell-type specific, that these cell lines were more differentiated, and that phosphorylation at Thr421/Ser424 and dephosphorylation at Thr389 of S6K1 may play an important role in the SP600125

  19. Phosphorylation of ribosomal protein S6 kinase 1 at Thr421/Ser424 and dephosphorylation at Thr389 regulates SP600125-induced polyploidization of megakaryocytic cell lines.

    PubMed

    Li, Chang-Ling; Yang, Jin-Gang; Lin, Di; Zhao, Yong-Shan; Liu, Shuo; Xing, Si-Ning; Zhao, Song; Chen, Cong-Qin; Jiang, Zhi-Ming; Pu, Fei-Fei; Cao, Jian-Ping; Ma, Dong-Chu

    2014-01-01

    Megakaryocytes (MKs) are one of the few cell types that become polyploid; however, the mechanisms by which these cells are designated to become polyploid are not fully understood. In this investigation, we successfully established two relatively synchronous polyploid cell models by inducing Dami and CMK cells with SP600125. We found that SP600125 induced the polyploidization of Dami and CMK cells, concomitant with the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) at Thr421/Ser424 and dephosphorylation at Thr389. The polyploidization was partially blocked by H-89, a cAMP-dependent protein kinase (PKA) inhibitor, through direct binding to S6K1, leading to dephosphorylation at Thr421/Ser424 and phosphorylation at Thr389, independent of PKA. Overexpression of a rapamycin-resistant mutant of S6K1 further enhanced the inhibitory effect of LY294002 on the SP600125-induced polyploidization of Dami and CMK cells. SP600125 also induced the polyploidization of Meg-01 cells, which are derived from a patient with chronic myelogenous leukemia, without causing a significant change in S6K1 phosphorylation. Additionally, SP600125 induced the polyploidization of HEL cells, which are derived from a patient with erythroleukemia, and phosphorylation at Thr389 of S6K1 was detected. However, the polyploidization of both Meg-01 cells and HEL cells as a result of SP600125 treatment was lower than that of SP600125-induced Dami and CMK cells, and it was not blocked by H-89 despite the increased phosphorylation of S6K1 at Thr389 in both cell lines in response to H-89. Given that the Dami and CMK cell lines were derived from patients with acute megakaryocytic leukemia (AMKL) and expressed high levels of platelet-specific antigens, our data suggested that SP600125-induced polyploidization is cell-type specific, that these cell lines were more differentiated, and that phosphorylation at Thr421/Ser424 and dephosphorylation at Thr389 of S6K1 may play an important role in the SP600125

  20. The third spectrum of rhenium (Re III): Analysis of the (5d5 + 5d46s)-(5d46p + 5d36s6p) transition array

    NASA Astrophysics Data System (ADS)

    Azarov, Vladimir I.; Gayasov, Robert R.

    2018-05-01

    The spectrum of rhenium was observed in the (1017-2074) Å wavelength region. The (5d5 + 5d46s)-(5d46p + 5d36s6p) transition array of two times ionized rhenium, Re III, has been investigated and 1305 spectral lines have been classified in the region. The analysis has led to the determination of the 5d5, 5d46s, 5d46p and 5d36s6p configurations. Seventy levels of the 5d5 and 5d46s configurations in the even system and 161 levels of the 5d46p and 5d36s6p configurations in the odd system have been established. The orthogonal operators technique was used to calculate the level structure and transition probabilities. The energy parameters have been determined by the least squares fit to the observed levels. Calculated transition probability and energy values, as well as LS-compositions obtained from the fitted parameters are presented.

  1. Elevated activation of ERK1 and ERK2 accompany enhanced liver injury following alcohol binge in chronically ethanol-fed rats.

    PubMed

    Aroor, Annayya R; Jackson, Daniel E; Shukla, Shivendra D

    2011-12-01

    Binge drinking after chronic ethanol consumption is one of the important factors contributing to the progression of steatosis to steatohepatitis. The molecular mechanisms of this effect remain poorly understood. We have therefore examined in rats the effect of single and repeat ethanol binge superimposed on chronic ethanol intake on liver injury, activation of mitogen-activated protein kinases (MAPKs), and gene expression. Rats were chronically treated with ethanol in liquid diet for 4 weeks followed by single ethanol binge (5 gm/kg body weight) or 3 similar repeated doses of ethanol. Serum alcohol and alanine amino transferase (ALT) levels were determined by enzymatic methods. Steatosis was assessed by histology and hepatic triglycerides. Activation of MAPK, 90S ribosomal kinase (RSK), and caspase 3 were evaluated by Western blot. Levels of mRNA for tumor necrosis factor alpha (TNFα), early growth response-1 (egr-1), and plasminogen activator inhibitor-1 (PAI-1) were measured by real-time qRT-PCR. Chronic ethanol treatment resulted in mild steatosis and necrosis, whereas chronic ethanol followed by binge group exhibited marked steatosis and significant increase in necrosis. Chronic binge group also showed significant increase (compared with chronic ethanol alone) in the phosphorylation of extracellular regulated kinase 1 (ERK1), ERK2, and RSK. Phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK did not increase by the binge. Ethanol binge, after chronic ethanol intake, caused increase in mRNA for egr-1 and PAI-1, but not TNFα. Chronic ethanol exposure increases the susceptibility of rat liver to increased injury by 1 or 3 repeat binge. Among other alterations, the activated levels of ERK1, and more so ERK2, were remarkably amplified by binge suggesting a role of these isotypes in the binge amplification of the injury. In contrast, p38 MAPK and JNK1/2 activities were not amplified. These binge-induced changes were also reflected in the increases in the

  2. The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity.

    PubMed

    de la Torre, Fernando; Gutiérrez-Beltrán, Emilio; Pareja-Jaime, Yolanda; Chakravarthy, Suma; Martin, Gregory B; del Pozo, Olga

    2013-07-01

    Ca(2+) signaling is an early and necessary event in plant immunity. The tomato (Solanum lycopersicum) kinase Pto triggers localized programmed cell death (PCD) upon recognition of Pseudomonas syringae effectors AvrPto or AvrPtoB. In a virus-induced gene silencing screen in Nicotiana benthamiana, we independently identified two components of a Ca(2+)-signaling system, Cbl10 (for calcineurin B-like protein) and Cipk6 (for calcineurin B-like interacting protein kinase), as their silencing inhibited Pto/AvrPto-elicited PCD. N. benthamiana Cbl10 and Cipk6 are also required for PCD triggered by other plant resistance genes and virus, oomycete, and nematode effectors and for host susceptibility to two P. syringae pathogens. Tomato Cipk6 interacts with Cbl10 and its in vitro kinase activity is enhanced in the presence of Cbl10 and Ca(2+), suggesting that tomato Cbl10 and Cipk6 constitute a Ca(2+)-regulated signaling module. Overexpression of tomato Cipk6 in N. benthamiana leaves causes accumulation of reactive oxygen species (ROS), which requires the respiratory burst homolog RbohB. Tomato Cbl10 and Cipk6 interact with RbohB at the plasma membrane. Finally, Cbl10 and Cipk6 contribute to ROS generated during effector-triggered immunity in the interaction of P. syringae pv tomato DC3000 and N. benthamiana. We identify a role for the Cbl/Cipk signaling module in PCD, establishing a mechanistic link between Ca(2+) and ROS signaling in plant immunity.

  3. Species differences in the effects of prostanoids on MAP kinase phosphorylation, myosin light chain phosphorylation and contraction in bovine and cat iris sphincter smooth muscle.

    PubMed

    Kaddour-Djebbar, I; Ansari, H R; Akhtar, R A; Abdel-Latif, A A

    2005-01-01

    There is evidence from our own laboratory and that of others that EP-receptor ligands are strong contractile agonists in bovine iris sphincter and that FP-receptor agonists are strong contractile agonists in cat iris sphincter. Here, we have investigated the effects of prostaglandin (PG) receptor agonists of the FP-, EP-, TP- and DP-class on myosin light chain (MLC) phosphorylation, p42/p44 MAP kinase phosphorylation and contraction in the iris sphincter of bovine and cat. Using three signal transduction mechanism assays, namely MLC phosphorylation, MAP kinase phosphorylation and contraction, we demonstrated that in bovine iris sphincter the rank order of potency of the PG agonists in the contractile and MLC phosphorylation assays is as follows: E2>U46619>F2alpha>D2, and in cat F2alpha>D2>E2>U46619. In the MAP kinase assay, in bovine iris sphincter the rank order of potency is E2>F2alpha and in cat F2alpha>E2. These conclusions are supported by the following findings: (1) In the contractile assay, in the bovine sphincter the EC50s for PGF2alpha, PGE2, U46619 and PGD2 were found to be 1.4x10(-7), 5.0x10(-9), 9.0x10(-9) and 1.3x10(-6)M, respectively, and the corresponding values in the cat were 1.9x10(-8), 2.3x10(-7), 1.5x10(-6) and 6.9x10(-8)M, respectively. (2) In the MLC phophorylation assay, in the bovine sphincter PGF2alpha, PGE2, U46619 and PGD2 increased MLC phophorylation by 118%, 165%, 153% and 72%, respectively, and the corresponding values in cat were 175%, 99%, 90% and 95%, respectively. (3) In the MAP kinase assay, in the bovine iris sphincter PGF2alpha and PGE2, increased MAP kinase phosphorylation by 276% and 328%, respectively, and the corresponding values in cat were 308% and 245%, respectively. The data presented demonstrate pronounced species differences in the effects of the prostanoids on the MLC kinase signaling pathway in bovine and cat irides and furthermore confirm the existence of FP-receptors in that of the bovine.

  4. Inhibitor-κB kinase attenuates Hsp90-dependent endothelial nitric oxide synthase function in vascular endothelial cells

    PubMed Central

    Konopinski, Ryszard; Krishnan, Manickam; Roman, Linda; Bera, Alakesh; Hongying, Zheng; Habib, Samy L.; Mohan, Sumathy

    2015-01-01

    Endothelial nitric oxide (NO) synthase (eNOS) is the predominant isoform that generates NO in the blood vessels. Many different regulators, including heat shock protein 90 (Hsp90), govern eNOS function. Hsp90-dependent phosphorylation of eNOS is a critical event that determines eNOS activity. In our earlier study we demonstrated an inhibitor-κB kinase-β (IKKβ)-Hsp90 interaction in a high-glucose environment. In the present study we further define the putative binding domain of IKKβ on Hsp90. Interestingly, IKKβ binds to the middle domain of Hsp90, which has been shown to interact with eNOS to stimulate its activity. This new finding suggests a tighter regulation of eNOS activity than was previously assumed. Furthermore, addition of purified recombinant IKKβ to the eNOS-Hsp90 complex reduces the eNOS-Hsp90 interaction and eNOS activity, indicating a competition for Hsp90 between eNOS and IKKβ. The pathophysiological relevance of the IKKβ-Hsp90 interaction has also been demonstrated using in vitro vascular endothelial growth factor-mediated signaling and an Ins2Akita in vivo model. Our study further defines the preferential involvement of α- vs. β-isoforms of Hsp90 in the IKKβ-eNOS-Hsp90 interaction, even though both Hsp90α and Hsp90β stimulate NO production. These studies not only reinforce the significance of maintaining a homeostatic balance of eNOS and IKKβ within the cell system that regulates NO production, but they also confirm that the IKKβ-Hsp90 interaction is favored in a high-glucose environment, leading to impairment of the eNOS-Hsp90 interaction, which contributes to endothelial dysfunction and vascular complications in diabetes. PMID:25652452

  5. Diode laser based resonance ionization mass spectrometric measurement of strontium-90

    NASA Astrophysics Data System (ADS)

    Bushaw, B. A.; Cannon, B. D.

    1997-10-01

    A diode laser based scheme for the isotopically selective excitation and ionization of strontium is presented. The double-resonance excitation 5s 21S 0→5s5p 3P 1→5s6s 3S 1 is followed by photoionization at 488 nm. The isotope shifts and hyperfine structure in the resonance transitions have been accurately measured for the stable isotopes and 90Sr, with the measurement of the 90Sr shifts using sub-pg samples. Analytical tests, using graphite crucible atomization, demonstrated 90Sr detection limits of 0.8 fg and overall (optical+mass spectrometer) isotopic selectivity of >10 10 against stable strontium.

  6. Imidazopyridazine Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 Also Target Cyclic GMP-Dependent Protein Kinase and Heat Shock Protein 90 To Kill the Parasite at Different Stages of Intracellular Development

    PubMed Central

    Moon, Robert W.; Whalley, David; Bowyer, Paul W.; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K.; Howell, Steven A.; Grainger, Munira; Jones, Hayley M.; Ansell, Keith H.; Chapman, Timothy M.; Taylor, Debra L.; Osborne, Simon A.; Baker, David A.; Tatu, Utpal

    2015-01-01

    Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. PMID:26711771

  7. 41 CFR 300-90.6 - What is authorized under the test programs?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the test programs? 300-90.6 Section 300-90.6 Public Contracts and Property Management Federal Travel Regulation System GENERAL AGENCY REQUIREMENTS 90-TELEWORK TRAVEL EXPENSES TEST PROGRAMS § 300-90.6 What is authorized under the test programs? Under a telework expenses test program authorized by the Administrator of...

  8. EBNA3C regulates p53 through induction of Aurora kinase B

    PubMed Central

    Jha, Hem C.; Yang, Karren; El-Naccache, Darine W.; Sun, Zhiguo; Robertson, Erle S.

    2015-01-01

    In multicellular organisms p53 maintains genomic integrity through activation of DNA repair, and apoptosis. EBNA3C can down regulate p53 transcriptional activity. Aurora kinase (AK) B phosphorylates p53, which leads to degradation of p53. Aberrant expression of AK-B is a hallmark of numerous human cancers. Therefore changes in the activities of p53 due to AK-B and EBNA3C expression is important for understanding EBV-mediated cell transformation. Here we show that the activities of p53 and its homolog p73 are dysregulated in EBV infected primary cells which can contribute to increased cell transformation. Further, we showed that the ETS-1 binding site is crucial for EBNA3C-mediated up-regulation of AK-B transcription. Further, we determined the Ser 215 residue of p53 is critical for functional regulation by AK-B and EBNA3C and that the kinase domain of AK-B which includes amino acid residues 106, 111 and 205 was important for p53 regulation. AK-B with a mutation at residue 207 was functionally similar to wild type AK-B in terms of its kinase activities and knockdown of AK-B led to enhanced p73 expression independent of p53. This study explores an additional mechanism by which p53 is regulated by AK-B and EBNA3C contributing to EBV-induced B-cell transformation. PMID:25691063

  9. Phosphocreatine kinetics at the onset of contractions in skeletal muscle of MM creatine kinase knockout mice

    NASA Technical Reports Server (NTRS)

    Roman, Brian B.; Meyer, Ronald A.; Wiseman, Robert W.

    2002-01-01

    Phosphocreatine (PCr) depletion during isometric twitch stimulation at 5 Hz was measured by (31)P-NMR spectroscopy in gastrocnemius muscles of pentobarbital-anesthetized MM creatine kinase knockout (MMKO) vs. wild-type C57B (WT) mice. PCr depletion after 2 s of stimulation, estimated from the difference between spectra gated to times 200 ms and 140 s after 2-s bursts of contractions, was 2.2 +/- 0.6% of initial PCr in MMKO muscle vs. 9.7 +/- 1.6% in WT muscles (mean +/- SE, n = 7, P < 0.001). Initial PCr/ATP ratio and intracellular pH were not significantly different between groups, and there was no detectable change in intracellular pH or ATP in either group after 2 s. The initial difference in net PCr depletion was maintained during the first minute of continuous 5-Hz stimulation. However, there was no significant difference in the quasi-steady-state PCr level approached after 80 s (MMKO 36.1 +/- 3.5 vs. WT 35.5 +/- 4.4% of initial PCr; n = 5-6). A kinetic model of ATPase, creatine kinase, and adenylate kinase fluxes during stimulation was consistent with the observed PCr depletion in MMKO muscle after 2 s only if ADP-stimulated oxidative phosphorylation was included in the model. Taken together, the results suggest that cytoplasmic ADP more rapidly increases and oxidative phosphorylation is more rapidly activated at the onset of contractions in MMKO compared with WT muscles.

  10. Activation of multiple mitogen-activated protein kinases by recombinant calcitonin gene-related peptide receptor.

    PubMed

    Parameswaran, N; Disa, J; Spielman, W S; Brooks, D P; Nambi, P; Aiyar, N

    2000-02-18

    Calcitonin gene-related peptide is a 37-amino-acid neuropeptide and a potent vasodilator. Although calcitonin gene-related peptide has been shown to have a number of effects in a variety of systems, the mechanisms of action and the intracellular signaling pathways, especially the regulation of mitogen-activated protien kinase (MAPK) pathway, is not known. In the present study we investigated the role of calcitonin gene-related peptide in the regulation of MAPKs in human embryonic kidney (HEK) 293 cells stably transfected with a recombinant porcine calcitonin gene-related peptide-1 receptor. Calcitonin gene-related peptide caused a significant dose-dependent increase in cAMP response and the effect was inhibited by calcitonin gene-related peptide(8-37), the calcitonin gene-related peptide-receptor antagonist. Calcitonin gene-related peptide also caused a time- and concentration-dependent increase in extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38 MAPK) activities, with apparently no significant change in cjun-N-terminal kinase (JNK) activity. Forskolin, a direct activator of adenylyl cyclase also stimulated ERK and P38 activities in these cells suggesting the invovement of cAMP in this process. Calcitonin gene-related peptide-stimulated ERK and P38 MAPK activities were inhibited significantly by calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide-(8-37) suggesting the involvement of calcitonin gene-related peptide-1 receptor. Preincubation of the cells with the cAMP-dependent protein kinase inhibitor, H89 [¿N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, hydrochloride¿] inhibited calcitonin gene-related peptide-mediated activation of ERK and p38 kinases. On the other hand, preincubation of the cells with wortmannin ¿[1S-(1alpha,6balpha,9abeta,11alpha, 11bbeta)]-11-(acetyloxy)-1,6b,7,8,9a,10,11, 11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3, 2-de]indeno[4,5-h]-2

  11. Phosphorylation of the Saccharomyces cerevisiae Grx4p glutaredoxin by the Bud32p kinase unveils a novel signaling pathway involving Sch9p, a yeast member of the Akt / PKB subfamily.

    PubMed

    Peggion, Caterina; Lopreiato, Raffaele; Casanova, Elena; Ruzzene, Maria; Facchin, Sonia; Pinna, Lorenzo A; Carignani, Giovanna; Sartori, Geppo

    2008-12-01

    The Saccharomyces cerevisiae atypical protein kinase Bud32p is a member of the nuclear endopeptidase-like, kinase, chromatin-associated/kinase, endopeptidase-like and other protein of small size (EKC/KEOPS) complex, known to be involved in the control of transcription and telomere homeostasis. Complex subunits (Pcc1p, Pcc2p, Cgi121p, Kae1p) represent, however, a small subset of the proteins able to interact with Bud32p, suggesting that this protein may be endowed with additional roles unrelated to its participation in the EKC/KEOPS complex. In this context, we investigated the relationships between Bud32p and the nuclear glutaredoxin Grx4p, showing that it is actually a physiological substrate of the kinase and that Bud32p contributes to the full functionality of Grx4p in vivo. We also show that this regulatory system is influenced by the phosphorylation of Bud32p at Ser258, which is specifically mediated by the Sch9p kinase [yeast homolog of mammalian protein kinase B (Akt/PKB)]. Notably, Ser258 phosphorylation of Bud32p does not alter the catalytic activity of the protein kinase per se, but positively regulates its ability to interact with Grx4p and thus to phosphorylate it. Interestingly, this novel signaling pathway represents a function of Bud32p that is independent from its role in the EKC/KEOPS complex, as the known functions of the complex in the regulation of transcription and telomere homeostasis are unaffected when the cascade is impaired. A similar relationship has already been observed in humans between Akt/PKB and p53-related protein kinase (Bud32p homolog), and could indicate that this pathway is conserved throughout evolution.

  12. Distinct and Overlapping Functions of TEC Kinase and BTK in B Cell Receptor Signaling.

    PubMed

    de Bruijn, Marjolein J W; Rip, Jasper; van der Ploeg, Esmee K; van Greuningen, Lars W; Ta, Van T B; Kil, Laurens P; Langerak, Anton W; Rimmelzwaan, Guus F; Ellmeier, Wilfried; Hendriks, Rudi W; Corneth, Odilia B J

    2017-04-15

    The Tec tyrosine kinase is expressed in many cell types, including hematopoietic cells, and is a member of the Tec kinase family that also includes Btk. Although the role of Btk in B cells has been extensively studied, the role of Tec kinase in B cells remains largely unclear. It was previously shown that Tec kinase has the ability to partly compensate for loss of Btk activity in B cell differentiation, although the underlying mechanism is unknown. In this study, we confirm that Tec kinase is not essential for normal B cell development when Btk is present, but we also found that Tec-deficient mature B cells showed increased activation, proliferation, and survival upon BCR stimulation, even in the presence of Btk. Whereas Tec deficiency did not affect phosphorylation of phospholipase Cγ or Ca 2+ influx, it was associated with significantly increased activation of the intracellular Akt/S6 kinase signaling pathway upon BCR and CD40 stimulation. The increased S6 kinase phosphorylation in Tec-deficient B cells was dependent on Btk kinase activity, as ibrutinib treatment restored pS6 to wild-type levels, although Btk protein and phosphorylation levels were comparable to controls. In Tec-deficient mice in vivo, B cell responses to model Ags and humoral immunity upon influenza infection were enhanced. Moreover, aged mice lacking Tec kinase developed a mild autoimmune phenotype. Taken together, these data indicate that in mature B cells, Tec and Btk may compete for activation of the Akt signaling pathway, whereby the activating capacity of Btk is limited by the presence of Tec kinase. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Sustained activation of c-Jun N-terminal and extracellular signal-regulated kinases in port-wine stain blood vessels.

    PubMed

    Tan, Wenbin; Chernova, Margarita; Gao, Lin; Sun, Victor; Liu, Huaxu; Jia, Wangcun; Langer, Stephanie; Wang, Gang; Mihm, Martin C; Nelson, J Stuart

    2014-11-01

    Port-wine stain (PWS) is a congenital, progressive vascular malformation but the pathogenesis remains incompletely understood. We sought to investigate the activation status of various kinases, including extracellular signal-regulated kinase, c-Jun N-terminal kinase, AKT, phosphatidylinositol 3-kinase, P70 ribosomal S6 kinase, and phosphoinositide phospholipase C γ subunit, in PWS biopsy tissues. Immunohistochemistry was performed on 19 skin biopsy samples from 11 patients with PWS. c-Jun N-terminal kinase, extracellular signal-regulated kinase, and P70 ribosomal S6 kinase in pediatric and adult PWS blood vessels were consecutively activated. Activation of AKT and phosphatidylinositol 3-kinase was found in many adult hypertrophic PWS blood vessels but not in infants. Phosphoinositide phospholipase C γ subunit showed strong activation in nodular PWS blood vessels. Infantile PWS sample size was small. Our data suggest a subsequent activation profile of various kinases during different stages of PWS: (1) c-Jun N-terminal and extracellular signal-regulated kinases are firstly and consecutively activated in all PWS tissues, which may contribute to both the pathogenesis and progressive development of PWS; (2) AKT and phosphatidylinositol 3-kinase are subsequently activated, and are involved in the hypertrophic development of PWS blood vessels; and (3) phosphoinositide phospholipase C γ subunit is activated in the most advanced stage of PWS and may participate in nodular formation. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  14. Changes in growth-related kinases in head, neck and limb muscles with age.

    PubMed

    Rahnert, Jill A; Luo, Qingwei; Balog, Edward M; Sokoloff, Alan J; Burkholder, Thomas J

    2011-04-01

    Sarcopenia coincides with declines in several systemic processes that signal through the MAP kinase and Akt-mTOR-p70S6k cascades typically associated with muscle growth. Effects of aging on these pathways have primarily been examined in limb muscles, which experience substantial activity and neural changes in addition to systemic hormonal and metabolic changes. Head and neck muscles are reported to undergo reduced sarcopenia and disuse with age relative to limb muscles, suggesting muscle activity may contribute to maintaining mass with age. However many head and neck muscles derive from embryonic branchial arches, rather than the somites from which limb muscles originate, suggesting that developmental origin may be important. This study compares the expression and phosphorylation of MAP kinase and mTOR networks in head, neck, tongue, and limb muscles from 8- and 26-month old F344 rats to test the hypothesis that physical activity and developmental origin contribute to preservation of muscle mass with age. Phosphorylation of p38 was exaggerated in aged branchial arch muscles. Phosphorylation of ERK and p70S6k T421/S424 declined with age only in the biceps brachii. Expression of p70S6k declined in all head and neck, tongue and limb muscles although no change in phosphorylation of p70S6k on T389 could be resolved. A systemic change that results in a loss of p70S6k protein expression may reduce the capacity to respond to acute hypertrophic stimuli, while the exaggerated p38 signaling in branchial arch muscles may reflect more active muscle remodeling. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Changes in growth-related kinases in head, neck and limb muscles with age

    PubMed Central

    Rahnert, Jill A.; Luo, Qingwei; Balog, Edward M.; Sokoloff, Alan J.; Burkholder, Thomas J.

    2010-01-01

    Sarcopenia coincides with declines in several systemic processes that signal through the MAP kinase and Akt-mTOR-p70S6k cascades typically associated with muscle growth. Effects of aging on these pathways have primarily been examined in limb muscles, which experience substantial activity and neural changes in addition to systemic hormonal and metabolic changes. Head and neck muscles are reported to undergo reduced sarcopenia and disuse with age relative to limb muscles, suggesting muscle activity may contribute to maintaining mass with age. However many head and neck muscles derive from embryonic branchial arches, rather than the somites from which limb muscles originate, suggesting that developmental origin may be important. This study compares the expression and phosphorylation of MAP kinase and mTOR networks in head, neck, tongue, and limb muscles from 8- and 26-month old F344 rats to test the hypothesis that physical activity and developmental origin contribute to preservation of muscle mass with age. Phosphorylation of p38 was exaggerated in aged branchial arch muscles. Phosphorylation of ERK and p70S6k T421/S424 declined with age only in the biceps brachii. Expression of p70S6k declined in all head and neck, tongue and limb muscles although no change in phosphorylation of p70S6k on T389 could be resolved. A systemic change that results in a loss of p70S6k protein expression may reduce the capacity to respond to acute hypertrophic stimuli, while the exaggerated p38 signaling in branchial arch muscles may reflect more active muscle remodeling. PMID:21095226

  16. The p38α mitogen-activated protein kinase as a central nervous system drug discovery target

    PubMed Central

    Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin

    2008-01-01

    Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38α mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38α MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38α MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38α MAPK in neurodegenerative disorders. PMID:19090985

  17. The p38alpha mitogen-activated protein kinase as a central nervous system drug discovery target.

    PubMed

    Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin

    2008-12-03

    Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38alpha mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38alpha MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38alpha MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38alpha MAPK in neurodegenerative disorders.

  18. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria

    PubMed Central

    Djouaka, Rousseau F; Bakare, Adekunle A; Coulibaly, Ousmane N; Akogbeto, Martin C; Ranson, Hilary; Hemingway, Janet; Strode, Clare

    2008-01-01

    Background Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes. Results All mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron) and an urban area (Gbedjromede), low levels of resistance in mosquito samples from an oil contaminated site (Ojoo) and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84) but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold) and Ojoo (7.4-fold) populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations. Conclusion Multiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential resistance mechanisms

  19. Imidazopyridazine Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 Also Target Cyclic GMP-Dependent Protein Kinase and Heat Shock Protein 90 To Kill the Parasite at Different Stages of Intracellular Development.

    PubMed

    Green, Judith L; Moon, Robert W; Whalley, David; Bowyer, Paul W; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K; Howell, Steven A; Grainger, Munira; Jones, Hayley M; Ansell, Keith H; Chapman, Timothy M; Taylor, Debra L; Osborne, Simon A; Baker, David A; Tatu, Utpal; Holder, Anthony A

    2015-12-28

    Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. Copyright © 2016 Green et al.

  20. Redox-sensitive induction of Src/PI3-kinase/Akt and MAPKs pathways activate eNOS in response to EPA:DHA 6:1.

    PubMed

    Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B

    2014-01-01

    Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS.

  1. Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway.

    PubMed

    Chen, R H; Su, Y H; Chuang, R L; Chang, T Y

    1998-10-15

    Insulin and insulin receptor substrate 1 (IRS-1) are capable of protecting liver cells from apoptosis induced by transforming growth factor-beta1 (TGF-beta). The Ras/mitogen-activated protein kinase (MAP kinase) and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways are both activated upon insulin stimulation and can protect against apoptosis under certain circumstances. We investigated which of these pathways is responsible for the protective effect of insulin on TGF-beta-induced apoptosis. An activated Ras, although elicited a strong mitogenic effect, could not protect Hep3B cells from TGF-beta-induced apoptosis. Furthermore, PD98059, a selective inhibitor of MEK, did not suppress the antiapoptotic effect of insulin. In contrast, the PI 3-kinase inhibitor, LY294002, efficiently blocked the effect of insulin. Protection against TGF-beta-induced apoptosis conferred by PI 3-kinase was further verified by stable transfection of an activated PI 3-kinase. Downstream targets of PI 3-kinase involved in this protection was further investigated. An activated Akt mimicked the antiapoptotic effect of insulin, whereas a dominant-negative Akt inhibited such effect. However, rapamycin, the p70S6 kinase inhibitor, had no effect on the protectivity of insulin against TGF-beta-induced apoptosis, suggesting that the antiapoptotic target of PI 3-kinase/Akt pathway is independent or lies upstream of the p70S6 kinase. The mechanism by which PI 3-kinase/Akt pathway interferes with the apoptotic signaling of TGF-beta was explored. Activation of PI 3-kinase did not lead to a suppression of Smad hetero-oligomerization or nuclear translocation but blocked TGF-beta-induced caspase-3-like activity. In summary, the PI 3-kinase/Akt pathway, but not the Ras/MAP kinase pathway, protects against TGF-beta-induced apoptosis by inhibiting a step downstream of Smad but upstream of caspase-3.

  2. Src Family Kinases and p38 Mitogen-Activated Protein Kinases Regulate Pluripotent Cell Differentiation in Culture

    PubMed Central

    Tan, Boon Siang Nicholas; Kwek, Joly; Wong, Chong Kum Edwin; Saner, Nicholas J.; Yap, Charlotte; Felquer, Fernando; Morris, Michael B.; Gardner, David K.; Rathjen, Peter D.; Rathjen, Joy

    2016-01-01

    Multiple pluripotent cell populations, which together comprise the pluripotent cell lineage, have been identified. The mechanisms that control the progression between these populations are still poorly understood. The formation of early primitive ectoderm-like (EPL) cells from mouse embryonic stem (mES) cells provides a model to understand how one such transition is regulated. EPL cells form from mES cells in response to l-proline uptake through the transporter Slc38a2. Using inhibitors of cell signaling we have shown that Src family kinases, p38 MAPK, ERK1/2 and GSK3β are required for the transition between mES and EPL cells. ERK1/2, c-Src and GSK3β are likely to be enforcing a receptive, primed state in mES cells, while Src family kinases and p38 MAPK are involved in the establishment of EPL cells. Inhibition of these pathways prevented the acquisition of most, but not all, features of EPL cells, suggesting that other pathways are required. L-proline activation of differentiation is mediated through metabolism and changes to intracellular metabolite levels, specifically reactive oxygen species. The implication of multiple signaling pathways in the process suggests a model in which the context of Src family kinase activation determines the outcomes of pluripotent cell differentiation. PMID:27723793

  3. Enhanced expression of glucose transporter-1 in vascular smooth muscle cells via the Akt/tuberous sclerosis complex subunit 2 (TSC2)/mammalian target of rapamycin (mTOR)/ribosomal S6 protein kinase (S6K) pathway in experimental renal failure.

    PubMed

    Lin, Chih-Yuan; Hsu, Shih-Che; Lee, Herng-Sheng; Lin, Shih-Hua; Tsai, Chien-Sung; Huang, Shih-Ming; Shih, Chun-Che; Hsu, Yu-Juei

    2013-02-01

    Chronic renal failure (CRF) is associated with increased cardiovascular mortality, and medial vascular smooth muscle cell (VSMC) hypertrophy, proliferation, and calcification play a pivotal role in uremic vasculopathy. Glucose transporter-1 (GLUT1) facilitates the transport of glucose into VSMCs, and GLUT1 overexpression associated with high glucose influx leads to a stimulation of VSMC proliferation. However, the role of GLUT1 in uremic vasculopathy remains unclear. This study aimed to identify changes in the expression of GLUT1 in VSMCs in the setting of experimental uremia and investigate whether Akt/tuberous sclerosis complex subunit 2 (TSC2)/mammalian target of rapamycin (mTOR)/ribosomal S6 protein kinase (S6K) signaling, which plays a crucial role in VSMC proliferation and glucose metabolism, is involved in the regulation of GLUT1 expression. In vivo experimental CRF was induced in Wistar rats by 5/6 nephrectomy, and the GLUT1 expression in aortic tissue was determined by the reverse transcriptase-polymerase chain reaction, immunoblotting, and immunohistochemical staining. Indoxyl sulfate (IS) is a uremic retention solute proven with pro-proliferative effect on rat VSMCs, and we further studied the expression of GLUT1 in rat A7r5 rat embryonic aortic cells stimulated by IS in the presence or absence of phloretin, a GLUT1 inhibitor, to explore the pathogenic role of GLUT1 in uremic vasculopathy. The contribution of Akt/TSC2/mTOR/S6K signaling in modifying the GLUT1 expression was also assessed. Eight weeks after 5/6 nephrectomy, aortic tissue obtained from CRF rats exhibited increased wall thickness and VSMC hypertrophy, hyperplasia, and degeneration. Compared with the sham-operated control group, the messenger (m)RNA and protein abundance of GLUT1 were both markedly increased in CRF rats. In vitro, IS induced a significant increase in expression of GLUT1 protein as well as pro-proliferative cyclin D1 and p21 mRNA and a modest increase in expression of

  4. IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85.

    PubMed Central

    Myers, M G; Backer, J M; Sun, X J; Shoelson, S; Hu, P; Schlessinger, J; Yoakim, M; Schaffhausen, B; White, M F

    1992-01-01

    IRS-1 is an insulin receptor substrate that undergoes tyrosine phosphorylation and associates with the phosphatidylinositol (PtdIns) 3'-kinase immediately after insulin stimulation. Recombinant IRS-1 protein was tyrosine phosphorylated by the insulin receptor in vitro and associated with the PtdIns 3'-kinase from lysates of quiescent 3T3 fibroblasts. Bacterial fusion proteins containing the src homology 2 domains (SH2 domains) of the 85-kDa subunit (p85) of the PtdIns 3'-kinase bound quantitatively to tyrosine phosphorylated, but not unphosphorylated, IRS-1, and this association was blocked by phosphotyrosine-containing synthetic peptides. Moreover, the phosphorylated peptides and the SH2 domains each inhibited binding of PtdIns 3'-kinase to IRS-1. Phosphorylated IRS-1 activated PtdIns 3'-kinase in anti-p85 immunoprecipitates in vitro, and this activation was blocked by SH2 domain fusion proteins. These data suggest that the interaction between PtdIns 3'-kinase and IRS-1 is mediated by tyrosine phosphorylated motifs on IRS-1 and the SH2 domains of p85, and IRS-1 activates PtdIns 3'-kinase by binding to the SH2 domains of p85. Thus, IRS-1 likely serves to transmit the insulin signal by binding and regulating intracellular enzymes containing SH2 domains. Images PMID:1332046

  5. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity

    DOE PAGES

    Lin, Yen -Lin; Meng, Yilin; Huang, Lei; ...

    2014-10-22

    Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to themore » DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.« less

  6. Role of the Phosphoinositide 3-Kinase-Akt-Mammalian Target of the Rapamycin Signaling Pathway in Long-Term Potentiation and Trace Fear Conditioning Memory in Rat Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Sui, Li; Wang, Jing; Li, Bao-Ming

    2008-01-01

    Phosphatidylinositol 3-kinase (PI3K) and its downstream targets, including Akt (also known as protein kinase B, PKB), mammalian target of rapamycin (mTOR), the 70-kDa ribosomal S6 kinase (p70S6k), and the eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), may play important roles in long-term synaptic plasticity and memory in many…

  7. Brain high-energy phosphates and creatine kinase synthesis rate under graded isoflurane anesthesia: An in vivo (31) P magnetization transfer study at 11.7 tesla.

    PubMed

    Bresnen, Andrew; Duong, Timothy Q

    2015-02-01

    The creatine kinase rate of metabolic adenosine triphosphate (ATP) synthesis is an important metabolic parameter but is challenging to measure in vivo due to limited signal-to-noise ratio and long measurement time. This study reports the implementation of an accelerated (31) P Four Angle Saturation Transfer (FAST) method to measure the forward creatine kinase (CK) rate of ATP synthesis. Along with a high-field scanner (11.7 Tesla) and a small sensitive surface coil, the forward CK rate in the rat brain was measured in ∼5 min. Under 1.2% isoflurane, the forward CK rate constant and metabolic flux were, respectively, kf , CK =0.26 ± 0.02 s(-1) and Ff,CK =70.8 ± 4.6 μmol/g/min. As a demonstration of utility and sensitivity, measurements were made under graded isoflurane. Under 2.0% isoflurane, kf , CK =0.16 ± 0.02 s(-1) and Ff,CK =410.0 ± 4.2 μmol/g/min, corresponding to a 38% and 42% reduction, respectively, relative to 1.2% isoflurane. By contrast, the ATP and phosphocreatine concentrations were unaltered. This study demonstrated the (31) P FAST measurement of creatine kinase rate of ATP synthesis in rat brain with reasonable temporal resolution. Different isoflurane levels commonly used in animal models significantly alter the CK reaction rate but not ATP and phosphocreatine concentrations. © 2014 Wiley Periodicals, Inc.

  8. Recombinant streptokinase vs hydrocortisone suppositories in acute hemorrhoids: A randomized controlled trial.

    PubMed

    Hernández-Bernal, Francisco; Castellanos-Sierra, Georgina; Valenzuela-Silva, Carmen M; Catasús-Álvarez, Karem M; Martínez-Serrano, Osmany; Lazo-Diago, Odalys C; Bermúdez-Badell, Cimara H; Causa-García, José R; Domínguez-Suárez, Juan E

    2015-06-21

    To compare the efficacy and safety of recombinant streptokinase (rSK) vs hydrocortisone acetate-based suppositories in acute hemorrhoidal disease. A multicenter (11 sites), randomized (1:1:1), open, controlled trial with parallel groups was performed. All participating patients gave their written, informed consent. After inclusion, patients with acute symptoms of hemorrhoids were centrally randomized to receive, as outpatients, by the rectal route, suppositories of rSK 200000 IU of one unit every 8 h (first 3 units) and afterwards every 12 h until 8 administrations were completed (schedule A), one unit every 8 h until 6 units were completed (schedule B), or 25 mg hydrocortisone acetate once every 8 h up to a maximum of 24 administrations. Evaluations were performed at 3, 5, and 10 d post-inclusion. The main end-point was the 5(th)-day response (disappearance of pain and bleeding, and ≥ 70% reduction of the lesion size). Time to response and need for thrombectomy were secondary efficacy variables. Adverse events were also evaluated. Groups were homogeneous with regards to demographic and baseline characteristics. Fifth day complete response rates were 156/170 (91.8%; 95%CI: 87.3-96.2), 155/170 (91.2%; 95%CI: 86.6%-95.7%), and 46/170 (27.1%; 95%CI: 20.1%-34.0%) with rSK (schedule A and B) and hydrocortisone acetate suppositories, respectively. These 64.6% and 63.9% differences (95%CI: 56.7%-72.2% and 55.7%-72.0%) were highly significant (P < 0.001). This advantage was detected since the early 3(rd) day evaluation (68.8% and 64.1% vs 7.1% for the rSK and active control groups, respectively; P < 0.001) and was maintained even at the late 10(th) day assessment (97.1% and 93.5% vs 67.1% for rSK and hydrocortisone acetate, respectively; P < 0.001). Time to response was 3 d (95%CI: 2.9-3.1) for both rSK groups and 10 d (95%CI: 9.3-10.7) in the hydrocortisone acetate group. This difference was highly significant (P < 0.001). All subgroup stratified analyses (with or

  9. Radioimmunotherapy of pancreatic cancer xenografts in nude mice using 90Y-labeled anti-α6β4 integrin antibody

    PubMed Central

    Aung, Winn; Tsuji, Atsushi B.; Sudo, Hitomi; Sugyo, Aya; Ukai, Yoshinori; Kouda, Katsushi; Kurosawa, Yoshikazu; Furukawa, Takako; Saga, Tsuneo

    2016-01-01

    The contribution of integrin α6β4 (α6β4) overexpression to the pancreatic cancer invasion and metastasis has been previously shown. We have reported immunotargeting of α6β4 for radionuclide-based and near-infrared fluorescence imaging in a pancreatic cancer model. In this study, we prepared yttrium-90 labeled anti-α6β4 antibody (90Y-ITGA6B4) and evaluated its radioimmunotherapeutic efficacy against pancreatic cancer xenografts in nude mice. Mice bearing xenograft tumors were randomly divided into 5 groups: (1) single administration of 90Y-ITGA6B4 (3.7MBq), (2) double administrations of 90Y-ITGA6B4 with once-weekly schedule (3.7MBq × 2), (3) single administration of unlabeled ITGA6B4, (4) double administrations of unlabeled ITGA6B4 with once-weekly schedule and (5) the untreated control. Biweekly tumor volume measurements and immunohistochemical analyses of tumors at 2 days post-administration were performed to monitor the response to treatments. To assess the toxicity, body weight was measured biweekly. Additionally, at 27 days post-administration, blood samples were collected through cardiac puncture, and hematological parameters, hepatic and renal functions were analyzed. Both 90Y-ITGA6B4 treatment groups showed reduction in tumor volumes (P < 0.04), decreased cell proliferation marker Ki-67-positive cells and increased DNA damage marker p-H2AX-positive cells, compared with the other groups. Mice treated with double administrations of 90Y-ITGA6B4, exhibited myelosuppression. There were no significant differences in hepatic and renal functions between the 2 treatment groups and the other groups. Our results suggest that 90Y-ITGA6B4 is a promising radioimmunotherapeutic agent against α6β4 overexpressing tumors. In the future studies, dose adjustment for fractionated RIT should be considered carefully in order to get the optimal effect while avoiding myelotoxicity. PMID:27246980

  10. Properties of the ferroelectric visible light absorbing semiconductors: Sn 2 P 2 S 6 and Sn 2 P 2 Se 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuwei; Singh, David J.

    Ferroelectrics with suitable band gaps have recently attracted attention as candidate solar absorbing materials for photovoltaics. The inversion symmetry breaking may promote the separation of photoexcited carriers and allow voltages higher than the band gap. However, these effects are not fully understood, in part because of a lack of suitable model systems for studying these effects in detail. Here, we report properties of ferroelectric Sn 2P 2S 6 and Sn 2P 2Se 6 using first principles calculations. Results are given for the electronic structure, carrier pocket shapes, optical absorption, and transport.We find indirect band gaps of 2.20 eV and 1.55more » eV, respectively, and favorable band structures for carrier transport, including both holes and electrons. Strong absorption is found above the direct gaps of 2.43 eV and 1.76 eV. Furthermore these compounds may serve as useful model systems for understanding photovoltaic effects in ferroelectric semiconductors.« less

  11. Properties of the ferroelectric visible light absorbing semiconductors: Sn 2 P 2 S 6 and Sn 2 P 2 Se 6

    DOE PAGES

    Li, Yuwei; Singh, David J.

    2017-12-05

    Ferroelectrics with suitable band gaps have recently attracted attention as candidate solar absorbing materials for photovoltaics. The inversion symmetry breaking may promote the separation of photoexcited carriers and allow voltages higher than the band gap. However, these effects are not fully understood, in part because of a lack of suitable model systems for studying these effects in detail. Here, we report properties of ferroelectric Sn 2P 2S 6 and Sn 2P 2Se 6 using first principles calculations. Results are given for the electronic structure, carrier pocket shapes, optical absorption, and transport.We find indirect band gaps of 2.20 eV and 1.55more » eV, respectively, and favorable band structures for carrier transport, including both holes and electrons. Strong absorption is found above the direct gaps of 2.43 eV and 1.76 eV. Furthermore these compounds may serve as useful model systems for understanding photovoltaic effects in ferroelectric semiconductors.« less

  12. Posttranslational Modifications of Baculovirus Protamine-Like Protein P6.9 and the Significance of Its Hyperphosphorylation for Viral Very Late Gene Hyperexpression

    PubMed Central

    Li, Ao; Zhao, Haizhou; Lai, Qingying; Huang, Zhihong; Yuan, Meijin

    2015-01-01

    regulate gene expression. Many viruses also utilize host- or virus-induced chromatin machinery to promote efficient infections. Baculoviruses encode a protamine-like protein, P6.9, which is required for a variety of processes in the infection cycle. Currently, P6.9's PTM sites and its regulating factors remain unknown. Here, we found that P6.9 could be categorized as unphosphorylated, hypophosphorylated, and hyperphosphorylated species and that a virus-encoded serine/threonine kinase, PK1, was essential for P6.9 hyperphosphorylation. Abundant PTM sites on P6.9 were identified, among which 7 Ser/Thr phosphorylated sites were PK1 dependent. Mutation of these Ser/Thr sites reduced very late viral gene transcription and viral infectivity, indicating that the PK1-mediated P6.9 hyperphosphorylation contributes to viral proliferation. These data suggest that a code exists in the sophisticated PTM of viral protamine-like proteins and participates in viral gene transcription. PMID:25972542

  13. [Effects of dihydroartiminisin on proliferation and phosphorylation of mitogen-activated protein kinase in epithelial ovarian cancer cell lines].

    PubMed

    Tan, Xian-Jie; Plouet, Jean; Lang, Jing-He; Wu, Ming; Shen, Keng

    2008-09-01

    To determine the effect of dihydroartiminisin on the proliferation and phosphorylation of mitogen-activated protein kinase (MAPK) in SKOV3 and OVCAR3 ovarian cancer cell lines. Methyl thiazolyl tetrazolium assay was performed to evaluate the anti-proliferative effect of dihydroartiminisin in SKOV3 and OVCAR3 cells, and Western blot was used to determine its effect on phosphorylation level of MAPK, including extra-cell regulated kinase (ERK) 1/2 and p38 protein kinase, in the two cell lines. Dihydroartiminisin inhibited the proliferation of ovarian cancer cells in vitro, with a mean of 50% inhibition concentration (IC(50)) at 72 h of (9.0 +/- 1.4) micromol/L for SKOV3 and (5.5 +/- 1.2) micromol/L for OVCAR3 respectively. Compared to cells without dihydroartiminisin treatment, phosphorylation level of ERK 1/2 in SKOV3 and OVCAR3 cells treated with dihydroartiminisin decreased by 64.2% and 75.3% respectively (P < 0.05), while phosphorylation of p38 protein kinase in SKOV3 and OVCAR3 only decreased by 8.5%and 6.4%respectively (P > 0.05). Dihydroartiminisin can inhibit the proliferation of ovarian cancer cell in vitro, probably through down-regulation of the phosphorylation of ERK 1/2 in ovarian cancer cells.

  14. Fragment-Based Discovery of a Potent, Orally Bioavailable Inhibitor That Modulates the Phosphorylation and Catalytic Activity of ERK1/2.

    PubMed

    Heightman, Tom D; Berdini, Valerio; Braithwaite, Hannah; Buck, Ildiko M; Cassidy, Megan; Castro, Juan; Courtin, Aurélie; Day, James E H; East, Charlotte; Fazal, Lynsey; Graham, Brent; Griffiths-Jones, Charlotte M; Lyons, John F; Martins, Vanessa; Muench, Sandra; Munck, Joanne M; Norton, David; O'Reilly, Marc; Palmer, Nick; Pathuri, Puja; Reader, Michael; Rees, David C; Rich, Sharna J; Richardson, Caroline; Saini, Harpreet; Thompson, Neil T; Wallis, Nicola G; Walton, Hugh; Wilsher, Nicola E; Woolford, Alison J-A; Cooke, Michael; Cousin, David; Onions, Stuart; Shannon, Jonathan; Watts, John; Murray, Christopher W

    2018-05-31

    Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.

  15. Rapid synthesis of VX-745: p38 MAP kinase inhibition in Werner syndrome cells.

    PubMed

    Bagley, Mark C; Davis, Terence; Dix, Matthew C; Rokicki, Michal J; Kipling, David

    2007-09-15

    The p38 mitogen-activated protein kinase inhibitor VX-745 is prepared rapidly and efficiently in a four-step sequence using a combination of conductive heating and microwave-mediated steps. Its inhibitory activity was confirmed in hTERT immortalized HCA2 and WS dermal fibroblasts at 0.5-1.0 microM concentration by ELISA and immunoblot assay, and displays excellent kinase selectivity over the related stress-activated kinase JNK.

  16. Partitioning-defective Protein 6 (Par-6) Activates Atypical Protein Kinase C (aPKC) by Pseudosubstrate Displacement*

    PubMed Central

    Graybill, Chiharu; Wee, Brett; Atwood, Scott X.; Prehoda, Kenneth E.

    2012-01-01

    Atypical protein kinase C (aPKC) controls cell polarity by modulating substrate cortical localization. Aberrant aPKC activity disrupts polarity, yet the mechanisms that control aPKC remain poorly understood. We used a reconstituted system with purified components and a cultured cell cortical displacement assay to investigate aPKC regulation. We find that aPKC is autoinhibited by two domains within its NH2-terminal regulatory half, a pseudosubstrate motif that occupies the kinase active site, and a C1 domain that assists in this process. The Par complex member Par-6, previously thought to inhibit aPKC, is a potent activator of aPKC in our assays. Par-6 and aPKC interact via PB1 domain heterodimerization, and this interaction activates aPKC by displacing the pseudosubstrate, although full activity requires the Par-6 CRIB-PDZ domains. We propose that, along with its previously described roles in controlling aPKC localization, Par-6 allosterically activates aPKC to allow for high spatial and temporal control of substrate phosphorylation and polarization. PMID:22544755

  17. A Genome-Wide siRNA Screen in Mammalian Cells for Regulators of S6 Phosphorylation

    PubMed Central

    Papageorgiou, Angela; Rapley, Joseph; Mesirov, Jill P.; Tamayo, Pablo; Avruch, Joseph

    2015-01-01

    mTOR complex1, the major regulator of mRNA translation in all eukaryotic cells, is strongly activated in most cancers. We performed a genome-wide RNAi screen in a human cancer cell line, seeking genes that regulate S6 phosphorylation, readout of mTORC1 activity. Applying a stringent selection, we retrieved nearly 600 genes wherein at least two RNAis gave significant reduction in S6-P. This cohort contains known regulators of mTOR complex 1 and is significantly enriched in genes whose depletion affects the proliferation/viability of the large set of cancer cell lines in the Achilles database in a manner paralleling that caused by mTOR depletion. We next examined the effect of RNAi pools directed at 534 of these gene products on S6-P in TSC1 null mouse embryo fibroblasts. 76 RNAis reduced S6 phosphorylation significantly in 2 or 3 replicates. Surprisingly, among this cohort of genes the only elements previously associated with the maintenance of mTORC1 activity are two subunits of the vacuolar ATPase and the CUL4 subunit DDB1. RNAi against a second set of 84 targets reduced S6-P in only one of three replicates. However, an indication that this group also bears attention is the presence of rpS6KB1 itself, Rac1 and MAP4K3, a protein kinase that supports amino acid signaling to rpS6KB1. The finding that S6 phosphorylation requires a previously unidentified, functionally diverse cohort of genes that participate in fundamental cellular processes such as mRNA translation, RNA processing, DNA repair and metabolism suggests the operation of feedback pathways in the regulation of mTORC1 operating through novel mechanisms. PMID:25790369

  18. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma.

    PubMed

    Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J H; Okkenhaug, Klaus; Vanhaesebroeck, Bart

    2008-06-17

    The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110alpha, p110beta, and p110delta) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110alpha and p110delta to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110gamma class IB PI3K lack SH2 domains and instead couple p110gamma to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110beta and cells derived from a p110beta-deficient mouse line, that p110beta is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110beta and p110gamma contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110beta but not p110gamma, p110beta mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110gamma in these cells reduced the contribution of p110beta to GPCR signaling. Taken together, these data show that p110beta and p110gamma can couple redundantly to the same GPCR agonists. p110beta, which shows a much broader tissue distribution than the leukocyte-restricted p110gamma, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110gamma expression is low or absent.

  19. The p110β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110γ

    PubMed Central

    Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J. H.; Okkenhaug, Klaus; Vanhaesebroeck, Bart

    2008-01-01

    The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110α, p110β, and p110δ) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110α and p110δ to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110γ class IB PI3K lack SH2 domains and instead couple p110γ to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110β and cells derived from a p110β-deficient mouse line, that p110β is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110β and p110γ contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110β but not p110γ, p110β mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110γ in these cells reduced the contribution of p110β to GPCR signaling. Taken together, these data show that p110β and p110γ can couple redundantly to the same GPCR agonists. p110β, which shows a much broader tissue distribution than the leukocyte-restricted p110γ, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110γ expression is low or absent. PMID:18544649

  20. The p110α and p110β Isoforms of Class I Phosphatidylinositol 3-Kinase Are Involved in Toll-Like Receptor 5 Signaling in Epithelial Cells

    PubMed Central

    Ivison, Sabine M.; Khan, Mohammed A. S.; Graham, Nicholas R.; Shobab, Leila A.; Yao, Yu; Kifayet, Arnawaz; Sly, Laura M.; Steiner, Theodore S.

    2010-01-01

    Background. Bacterial flagellin triggers inflammation in mammalian cells via Toll-like receptor (TLR) 5. Release of the chemokine IL-8 in response to flagellin involves NF-κB, p38 MAP kinase, and phosphatidylinositol 3-kinase (PI3K). However, PI3K has been reported to be either pro- or anti-inflammatory in different model systems. We hypothesized that this could be due to different activities of the p110α and β isoforms of PI3K. Results. PI3K and Akt were rapidly activated in Caco-2 colon carcinoma cells by flagellin. Using a plasmid-based shRNA delivery system and novel p110 isoform-specific inhibitors, we found that flagellin-induced IL-8 production was dependent on both p110α and p110β. However in the mouse, inhibition of p110β but not p110α reduced the increase of serum IL-6 levels induced by intraperitoneal injection of flagellin. Conclusions. These data demonstrate that the p110α and β isoforms of class IA PI3K are both required for the proinflammatory response to flagellin. PMID:20953381

  1. Redox-Sensitive Induction of Src/PI3-kinase/Akt and MAPKs Pathways Activate eNOS in Response to EPA:DHA 6:1

    PubMed Central

    Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B.

    2014-01-01

    Aims Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. Methods and Results EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Conclusion Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS. PMID:25133540

  2. Highly efficient acousto-optic diffraction in Sn2P2S6 crystals.

    PubMed

    Martynyuk-Lototska, I Yu; Mys, O G; Grabar, A A; Stoika, I M; Vysochanskii, Yu M; Vlokh, R O

    2008-01-01

    We have studied the acousto-optic (AO) diffraction in Sn2P2S6 crystals and found that they manifest high values of an AO figure of merit. The above crystals may therefore be used as highly efficient materials in different AO applications.

  3. Normal p21Ras/MAP kinase pathway expression and function in PBMC from patients with polycystic ovary disease.

    PubMed

    Buchs, A; Chagag, P; Weiss, M; Kish, E; Levinson, R; Aharoni, D; Rapoport, M J

    2004-04-01

    Polycystic ovary disease (PCOD) is associated with insulin resistance and increased prevalence of type II diabetes mellitus (T2DM). The p21Ras/MAP kinase is a major intracellular signaling pathway mediating insulin signaling in insulin responsive tissues. The expression, regulation and function of the p21Ras/MAP kinase pathway in PCOD patients were examined. Peripheral blood mononuclear cells (PBMC) were isolated from ten patients with PCOD and ten controls. The expression of p21Ras and its regulatory proteins; hSOS1 and p120GAP were studied. The basal and phytohemaglutinin (PHA) or insulin stimulated phosphorylation of MAP kinase was determined. Expression of p21Ras, and its regulatory proteins hSOS1 and p120GAP were similar in PCOD patients and controls. Basal, PHA and insulin stimulated phosphorylation of MAP kinase, were also comparable in the two groups as well as their PBMC proliferative response. These data indicate that the expression and overall function of the p21Ras/MAP kinase pathway remain intact in non-diabetic patients with PCOD.

  4. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase, extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun N-terminal kinase downregulation in obese rats.

    PubMed

    Touati, Sabeur; Montezano, Augusto C I; Meziri, Fayçal; Riva, Catherine; Touyz, Rhian M; Laurant, Pascal

    2015-02-01

    Exercise training reverses atherosclerotic risk factors associated with metabolic syndrome and obesity. The aim of the present study was to determine the molecular anti-inflammatory, anti-oxidative and anti-atherogenic effects in aorta from rats with high-fat diet-induced obesity. Male Sprague-Dawley rats were placed on a high-fat (HFD) or control (CD) diet for 12 weeks. The HFD rats were then divided into four groups: (i) sedentary HFD-fed rats (HFD-S); (ii) exercise trained (motor treadmill 5 days/week, 60 min/day, 12 weeks) HFD-fed rats (HFD-Ex); (iii) modified diet (HFD to CD) sedentary rats (HF/CD-S); and (iv) an exercise-trained modified diet group (HF/CD-Ex). Tissue levels of NADPH oxidase (activity and expression), NADPH oxidase (Nox) 1, Nox2, Nox4, p47(phox) , superoxide dismutase (SOD)-1, angiotensin AT1 and AT2 receptors, phosphorylated mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the aorta. Plasma cytokines (tumour necrosis factor (TNF)-α and interleukin (IL)-6) levels were also measured. Obesity was accompanied by increases in NADPH oxidase activity, p47(phox) translocation, Nox4 and VCAM-1 protein expression, MAPK (ERK1/2, SAPK/JNK) phosphorylation and plasma TNF-α and IL-6 levels. Exercise training and switching from the HFD to CD reversed almost all these molecular changes. In addition, training increased aortic SOD-1 protein expression and decreased ERK1/2 phosphorylation. These findings suggest that protective effects of exercise training on atherosclerotic risk factors induced by obesity are associated with downregulation of NADPH oxidase, ERK1/2 and SAPK/JNK activity and increased SOD-1 expression. © 2014 Wiley Publishing Asia Pty Ltd.

  5. S100A8 and S100A9 Promotes Invasion and Migration through p38 Mitogen-Activated Protein Kinase-Dependent NF-κB Activation in Gastric Cancer Cells

    PubMed Central

    Kwon, Chae Hwa; Moon, Hyun Jung; Park, Hye Ji; Choi, Jin Hwa; Park, Do Youn

    2013-01-01

    S100A8 and S100A9 (S100A8/A9) are low-molecular weight members of the S100 family of calcium-binding proteins. Recent studies have reported S100A8/A9 promote tumorigenesis. We have previously reported that S100A8/A9 is mostly expressed in stromal cells and inflammatory cells between gastric tumor cells. However, the role of environmental S100A8/A9 in gastric cancer has not been defined. We observed in the present study the effect of S100A8/A9 on migration and invasion of gastric cancer cells. S100A8/A9 treatment increased migration and invasionat lower concentrations that did not affect cell proliferation and cell viability. S100A8/A9 caused activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The phosphorylation of p38 MAPK was not affected by the NF-κB inhibitor Bay whereas activation of NF-κB was blocked by p38 MAPK inhibitor SB203580, indicating that S100A8/A9-induced NF-κB activation is mediated by phosphorylation of p38 MAPK. S100A8/A9-induced cell migration and invasion was inhibited by SB203580 and Bay, suggesting that activation of p38 MAPK and NF-κB is involved in the S100A8/A9 induced cell migration and invasion. S100A8/A9 caused an increase in matrix metalloproteinase 2 (MMP2) and MMP12 expression, which were inhibited by SB203580 and Bay. S100A8/A9-induced cell migration and invasion was inhibited by MMP2 siRNA and MMP12 siRNA, indicating that MMP2 and MMP12 is related to the S100A8/A9 induced cell migration and invasion. Taken together, these results suggest that S100A8/A9 promotes cell migration and invasion through p38 MAPK-dependent NF-κB activation leading to an increase of MMP2 and MMP12 in gastric cancer. PMID:23456298

  6. Btk regulation in human and mouse B cells via protein kinase C phosphorylation of IBtkγ.

    PubMed

    Janda, Elzbieta; Palmieri, Camillo; Pisano, Antonio; Pontoriero, Marilena; Iaccino, Enrico; Falcone, Cristina; Fiume, Giuseppe; Gaspari, Marco; Nevolo, Maria; Di Salle, Emanuela; Rossi, Annalisa; De Laurentiis, Annamaria; Greco, Adelaide; Di Napoli, Daniele; Verheij, Elwin; Britti, Domenico; Lavecchia, Luca; Quinto, Ileana; Scala, Giuseppe

    2011-06-16

    The inhibitor of Bruton tyrosine kinase γ (IBtkγ) is a negative regulator of the Bruton tyrosine kinase (Btk), which plays a major role in B-cell differentiation; however, the mechanisms of IBtkγ-mediated regulation of Btk are unknown. Here we report that B-cell receptor (BCR) triggering caused serine-phosphorylation of IBtkγ at protein kinase C consensus sites and dissociation from Btk. By liquid chromatography and mass-mass spectrometry and functional analysis, we identified IBtkγ-S87 and -S90 as the critical amino acid residues that regulate the IBtkγ binding affinity to Btk. Consistently, the mutants IBtkγ carrying S87A and S90A mutations bound constitutively to Btk and down-regulated Ca(2+) fluxes and NF-κB activation on BCR triggering. Accordingly, spleen B cells from Ibtkγ(-/-) mice showed an increased activation of Btk, as evaluated by Y551-phosphorylation and sustained Ca(2+) mobilization on BCR engagement. These findings identify a novel pathway of Btk regulation via protein kinase C phosphorylation of IBtkγ.

  7. 15 CFR 90.6 - Where to file challenge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CENSUS, DEPARTMENT OF COMMERCE PROCEDURE FOR CHALLENGING CERTAIN POPULATION AND INCOME ESTIMATES § 90.6... filed with the Chief, Population Division, Bureau of the Census, Room 2011, Federal Building 3...

  8. 15 CFR 90.6 - Where to file challenge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CENSUS, DEPARTMENT OF COMMERCE PROCEDURE FOR CHALLENGING CERTAIN POPULATION AND INCOME ESTIMATES § 90.6... filed with the Chief, Population Division, Bureau of the Census, Room 2011, Federal Building 3...

  9. 15 CFR 90.6 - Where to file challenge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CENSUS, DEPARTMENT OF COMMERCE PROCEDURE FOR CHALLENGING CERTAIN POPULATION AND INCOME ESTIMATES § 90.6... filed with the Chief, Population Division, Bureau of the Census, Room 2011, Federal Building 3...

  10. 15 CFR 90.6 - Where to file challenge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CENSUS, DEPARTMENT OF COMMERCE PROCEDURE FOR CHALLENGING CERTAIN POPULATION AND INCOME ESTIMATES § 90.6... filed with the Chief, Population Division, Bureau of the Census, Room 2011, Federal Building 3...

  11. Optimized conditions for chelation of yttrium-90-DOTA immunoconjugates.

    PubMed

    Kukis, D L; DeNardo, S J; DeNardo, G L; O'Donnell, R T; Meares, C F

    1998-12-01

    Radioimmunotherapy (RIT) with 90Y-labeled immunoconjugates has shown promise in clinical trials. The macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA) binds 90Y with extraordinary stability, minimizing the toxicity of 90Y-DOTA immunoconjugates arising from loss of 90Y to bone. However, reported 90Y-DOTA immunoconjugate product yields have been typically only < or =50%. Improved yields are needed for RIT with 90Y-DOTA immunoconjugates to be practical. (S) 2-[p-(bromoacetamido)benzyl]-DOTA (BAD) was conjugated to the monoclonal antibody Lym-1 via 2-iminothiolane (2IT). The immunoconjugate product, 2IT-BAD-Lym-1, was labeled in excess yttrium in various buffers over a range of concentrations and pH. Kinetic studies were performed in selected buffers to estimate radiolabeling reaction times under prospective radiopharmacy labeling conditions. The effect of temperature on reaction kinetics was examined. Optimal radiolabeling conditions were identified and used in eight radiolabeling experiments with 2IT-BAD-Lym-1 and a second immunoconjugate, DOTA-peptide-chimeric L6, with 248-492 MBq (6.7-13.3 mCi) of 90Y. Ammonium acetate buffer (0.5 M) was associated with the highest uptake of yttrium. On the basis of kinetic data, the time required to chelate 94% of 90Y (four half-times) under prospective radiopharmacy labeling conditions in 0.5 M ammonium acetate was 17-148 min at pH 6.5, but it was only 1-10 min at pH 7.5. Raising the reaction temperature from 25 degrees C to 37 degrees C markedly increased the chelation rate. Optimal radiolabeling conditions were identified as: 30-min reaction time, 0.5 M ammonium acetate buffer, pH 7-7.5 and 37 degrees C. In eight labeling experiments under optimal conditions, a mean product yield (+/- s.d.) of 91%+/-8% was achieved, comparable to iodination yields. The specific activity of final products was 74-130 MBq (2.0-3.5 mCi) of 90Y per mg of monoclonal antibody. The immunoreactivity of 90Y

  12. Mechanisms of aldehyde-induced adenosinetriphosphatase activities of kinases.

    PubMed

    Rendina, A R; Cleland, W W

    1984-10-23

    Aldehyde analogues of the normal alcohol substrates induce ATPase activities by glycerokinase (D-glyceraldehyde), fructose-6-phosphate kinase (2,5-anhydromannose 6-phosphate), fructokinase (2,5-anhydromannose or 2,5-anhydrotalose), hexokinase (D-gluco-hexodialdose), choline kinase (betaine aldehyde), and pyruvate kinase (glyoxylate). Since purified deuterated aldehydes give V and V/K isotope effects near 1.0 for glycerokinase, fructokinase with 2,5-anhydro[1-2H]talose, hexokinase, choline kinase, and pyruvate kinase, the hydrates of these almost fully hydrated aldehydes are the activators of the ATPase reactions. Fructose-6-phosphate kinase and fructokinase with 2,5-anhydro[1-2H]mannose show V/K deuterium isotope effects of 1.10 and 1.22, respectively, suggesting either that both hydrate and free aldehyde may be activators (predicted values are 1.37 if only the free aldehyde activates the ATPase) or, more likely, that the phosphorylated hydrate breaks down in a rate-limiting step on the enzyme while MgADP is still present and the back-reaction to yield free hydrate in solution is still possible. 18O was transferred from the aldehyde hydrate to phosphate during the ATPase reactions of glycerokinase, fructose-6-phosphate kinase, fructokinase, and hexokinase but not with choline kinase or pyruvate kinase. Thus, direct phosphorylation of the hydrates by the first four enzymes gives the phosphate adduct of the aldehyde, which decomposes nonenzymatically, while with choline kinase and pyruvate kinase the hydrates induce transfer to water (metal-bound hydroxide or water with pyruvate kinase on the basis of pH profiles). Observation of a lag in the release of phosphate from the glycerokinase ATPase reaction at 15 degrees C supports the existence of a phosphorylated hydrate intermediate with a rate constant for breakdown of 0.035-0.043 s-1 at this temperature. Kinases that phosphorylate creatine, 3-phosphoglycerate, and acetate did not exhibit ATPase activities in the

  13. New observation and combined analysis of the Cs{sub 2} 0{sub g}{sup −}, 0{sub u}{sup +}, and 1{sub g} states at the asymptotes 6S{sub 1/2} + 6P{sub 1/2} and 6S{sub 1/2} + 6P{sub 3/2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jie; Liu, Wenliang; Wu, Jizhou

    2014-12-28

    We report on new observations of the photoassociation spectroscopy of ultracold cesium molecules using a highly sensitive detection technique and a combined analysis with all observed electronic states. The technique is achieved by directly modulating the frequency of the trapping lasers of a magneto-optical trap. New observations of the Cs{sub 2}0{sub g}{sup −}, 0{sub u}{sup +}, and 1{sub g} states at the asymptotes 6S{sub 1/2} + 6P{sub 1/2} and 6S{sub 1/2} + 6P{sub 3/2} are reported. The spectral range is extended to the red detuning of 112 cm{sup −1} below the 6S{sub 1/2} + 6P{sub 3/2} dissociation limit. Dozens ofmore » vibrational levels of the ultracold Cs{sub 2}0{sub g}{sup −}, 0{sub u}{sup +}, and 1{sub g} states are observed for the first time. The available experimental binding energies of these states are analyzed simultaneously in a framework of the generalized LeRoy–Bernstein theory and the almost degenerate perturbation theory by Marinescu and Dalgarno [Phys. Rev. A: At., Mol., Opt. Phys. 52, 311 (1995)]. The unique atomic-related parameter c{sub 3} governing the dispersion forces of all the molecular states is estimated as (10.29 ± 0.05) a.u.« less

  14. Antitumor activity of combined endostatin and thymidine kinase gene therapy in C6 glioma models.

    PubMed

    Chen, Yan; Huang, Honglan; Yao, Chunshan; Su, Fengbo; Guan, Wenming; Yan, Shijun; Ni, Zhaohui

    2016-09-01

    The combination of Endostatin (ES) and Herpes Simplex Virus thymidine kinase (HSV-TK) gene therapy is known to have antitumor activity in bladder cancer. The potential effect of ES and TK therapy in glioma has not yet been investigated. In this study, pTK-internal ribosome entry site (IRES), pIRES-ES, and pTK-IRES-ES plasmids were constructed; pIRES empty vector served as the negative control. The recombinant constructs were transfected into human umbilical vein endothelial cells (HUVECs) ECV304 and C6 rat glioma cell line. Ganciclovir (GCV) was used to induce cell death in transfected C6 cells. We found that ECV304 cells expressing either ES or TK-ES showed reduced proliferation, decreased migration capacity, and increased apoptosis, as compared to untransfected cells or controls. pTK-IRES-ES/GCV or pTK-IRES/GCV significantly suppressed cell proliferation and induced cell apoptosis in C6 cells, as compared to the control. In addition, the administration of pIRES-ES, pTK-IRES/GCV, or pTK-IRES-ES/GCV therapy improved animal activity and behavior; was associated with prolonged animal survival, and a lower microvessel density (MVD) value in tumor tissues of C6 glioma rats. In comparison to others, dual gene therapy in form of pTK-IRES-ES/GCV had a significant antitumor activity against C6 glioma. These findings indicate combined TK and ES gene therapy was associated with a superior antitumor efficacy as compared to single gene therapy in C6 glioma. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  15. Proteomics analysis of immunoprecipitated proteins associated with the oncogenic kinase cot.

    PubMed

    Wu, Binhui; Wilmouth, R C

    2008-02-29

    Cancer Osaka thyroid, also known as Tpl-2 (Cot) is a member of the MAP3K kinase family and plays a key role in the regulation of the immune response to pro-inflammatory stimuli such as lipopolysaccharide (LPS) and tumour necrosis factor-alpha (TNF-alpha). A series of Cot constructs with an N-terminal 6xHis tag were transiently expressed in HEK293 cells: Cot(130-399) (kinase domain), Cot(1-388) (N-terminal and kinase domains), Cot(1-413), Cot(1-438) (containing a putative PEST sequence), Cot(1-457) (containing both PEST and degron sequences) and Cot(1-467) (full-length protein). These Cot proteins were pulled down using an anti-6xHis antibody and separated by 2D electrophoresis. The gels were silver-stained and 21 proteins were detected that did not appear, or had substantially reduced intensity, in the control sample. Three of these were identified by MS and MS/MS analysis as Hsp90, Hsp70 and Grp78. Hsp90 appeared to bind to the kinase domain of Cot and this interaction was further investigated using co-immuno-precipitation with both overexpressed Cot in HEK293 cells and endogenous Cot in Hela cells.

  16. The putative RNA helicase Dbp6p functionally interacts with Rpl3p, Nop8p and the novel trans-acting Factor Rsa3p during biogenesis of 60S ribosomal subunits in Saccharomyces cerevisiae.

    PubMed Central

    de la Cruz, Jesús; Lacombe, Thierry; Deloche, Olivier; Linder, Patrick; Kressler, Dieter

    2004-01-01

    Ribosome biogenesis requires at least 18 putative ATP-dependent RNA helicases in Saccharomyces cerevisiae. To explore the functional environment of one of these putative RNA helicases, Dbp6p, we have performed a synthetic lethal screen with dbp6 alleles. We have previously characterized the nonessential Rsa1p, whose null allele is synthetically lethal with dbp6 alleles. Here, we report on the characterization of the four remaining synthetic lethal mutants, which reveals that Dbp6p also functionally interacts with Rpl3p, Nop8p, and the so-far-uncharacterized Rsa3p (ribosome assembly 3). The nonessential Rsa3p is a predominantly nucleolar protein required for optimal biogenesis of 60S ribosomal subunits. Both Dbp6p and Rsa3p are associated with complexes that most likely correspond to early pre-60S ribosomal particles. Moreover, Rsa3p is co-immunoprecipitated with protA-tagged Dbp6p under low salt conditions. In addition, we have established a synthetic interaction network among factors involved in different aspects of 60S-ribosomal-subunit biogenesis. This extensive genetic analysis reveals that the rsa3 null mutant displays some specificity by being synthetically lethal with dbp6 alleles and by showing some synthetic enhancement with the nop8-101 and the rsa1 null allele. PMID:15126390

  17. Therapeutic Benefit of Selective Inhibition of p110α PI3-Kinase in Pancreatic Neuroendocrine Tumors.

    PubMed

    Soler, Adriana; Figueiredo, Ana M; Castel, Pau; Martin, Laura; Monelli, Erika; Angulo-Urarte, Ana; Milà-Guasch, Maria; Viñals, Francesc; Baselga, Jose; Casanovas, Oriol; Graupera, Mariona

    2016-12-01

    Mutations in the PI3K pathway occur in 16% of patients with pancreatic neuroendocrine tumors (PanNETs), which suggests that these tumors are an exciting setting for PI3K/AKT/mTOR pharmacologic intervention. Everolimus, an mTOR inhibitor, is being used to treat patients with advanced PanNETs. However, resistance to mTOR-targeted therapy is emerging partially due to the loss of mTOR-dependent feedback inhibition of AKT. In contrast, the response to PI3K inhibitors in PanNETs is unknown. In the current study, we assessed the frequency of PI3K pathway activation in human PanNETs and in RIP1-Tag2 mice, a preclinical tumor model of PanNETs, and we investigated the therapeutic efficacy of inhibiting PI3K in RIP1-Tag2 mice using a combination of pan (GDC-0941) and p110α-selective (GDC-0326) inhibitors and isoform-specific PI3K kinase-dead-mutant mice. Human and mouse PanNETs showed enhanced pAKT, pPRAS40, and pS6 positivity compared with normal tissue. Although treatment of RIP1-Tag2 mice with GDC-0941 led to reduced tumor growth with no impact on tumor vessels, the selective inactivation of the p110α PI3K isoform, either genetically or pharmacologically, reduced tumor growth as well as vascular area. Furthermore, GDC-0326 reduced the incidence of liver and lymph node metastasis compared with vehicle-treated mice. We also demonstrated that tumor and stromal cells are implicated in the antitumor activity of GDC-0326 in RIP1-Tag2 tumors. Our data provide a rationale for p110α-selective intervention in PanNETs and unravel a new function of this kinase in cancer biology through its role in promoting metastasis. Clin Cancer Res; 22(23); 5805-17. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. The GlcN6P cofactor serves multiple catalytic roles in the glmS ribozyme

    PubMed Central

    Bingaman, Jamie L.; Zhang, Sixue; Stevens, David R.; Yennawar, Neela H.; Hammes-Schiffer, Sharon; Bevilacqua, Philip C.

    2017-01-01

    RNA enzymes have remarkably diverse biological roles despite having limited chemical diversity. Protein enzymes enhance their reactivity through recruitment of cofactors. The naturally occurring glmS ribozyme uses the glucosamine-6-phosphate (GlcN6P) organic cofactor for phosphodiester bond cleavage. Prior structural and biochemical studies implicated GlcN6P as the general acid. Here we describe new catalytic roles for GlcN6P through experiments and calculations. Large stereospecific normal thio effects and lack of metal ion rescue in the holoribozyme show that nucleobases and the cofactor play direct chemical roles and align the active site for self-cleavage. Large stereospecific inverse thio effects in the aporibozyme suggest that the GlcN6P cofactor disrupts an inhibitory interaction of the nucleophile. Strong metal ion rescue in the aporibozyme reveals this cofactor also provides electrostatic stabilization. Ribozyme organic cofactors thus perform myriad catalytic roles, allowing RNA to compensate for its limited functional diversity. PMID:28192411

  19. Endothelin-1 activates p38 mitogen-activated protein kinase and cytosolic phospholipase A2 in cat iris sphincter smooth muscle cells.

    PubMed

    Husain, S; Abdel-Latif, A A

    1999-08-15

    We have shown previously that cytosolic phospholipase A(2) (cPLA(2)) is responsible for endothelin-1-induced release of arachidonic acid for prostaglandin synthesis in cat iris sphincter smooth muscle (CISM) cells [Husain and Abdel-Latif (1998) Biochim. Biophys. Acta 1392, 127-144]. Here we show that p38 mitogen-activated protein (MAP) kinase, but not p42/p44 MAP kinases, plays an important role in the phosphorylation and activation of cPLA(2) in endothelin-1-stimulated CISM cells. This conclusion is supported by the following findings. Both p38 MAP kinase and p42/p44 MAP kinases were present in the CISM cells and both were activated by endothelin-1. SB203580, a potent specific inhibitor of p38 MAP kinase, but not the p42/p44 MAP kinases specific inhibitor, PD98059, markedly suppressed endothelin-1-enhanced cPLA(2) phosphorylation, cPLA(2) activity and arachidonic acid release. The addition of endothelin-1 resulted in the phosphorylation and activation of cPLA(2). Endothelin-1 stimulated p38 MAP kinase activity in a time- and concentration-dependent manner, and these effects were mediated through the endothelin-A receptor subtype. The protein kinase C (PKC) inhibitor, RO 31-8220, had no inhibitory effect on endothelin-1-induced p38 MAP kinase activation, suggesting that endothelin-1 activation of p38 MAP kinase is independent of PKC. Pertussis toxin inhibited both endothelin-1 and mastoparan stimulation of p38 MAP kinase activity and arachidonic acid release. The inhibitory effects of pertussis toxin are not mediated through cAMP formation. Mastoparan-stimulated [(3)H]arachidonic acid release and cPLA(2) activation was inhibited by SB203580, but not by RO 31-8220. These data suggest that endothelin-1 binds to the endothelin-A receptor to activate the Gi-protein which, through a series of kinases, leads to the activation of p38 MAP kinase and subsequently to phosphorylation and activation of cPLA(2). Activation of cPLA(2) leads to the liberation of arachidonic acid

  20. Endothelin-1 activates p38 mitogen-activated protein kinase and cytosolic phospholipase A2 in cat iris sphincter smooth muscle cells.

    PubMed Central

    Husain, S; Abdel-Latif, A A

    1999-01-01

    We have shown previously that cytosolic phospholipase A(2) (cPLA(2)) is responsible for endothelin-1-induced release of arachidonic acid for prostaglandin synthesis in cat iris sphincter smooth muscle (CISM) cells [Husain and Abdel-Latif (1998) Biochim. Biophys. Acta 1392, 127-144]. Here we show that p38 mitogen-activated protein (MAP) kinase, but not p42/p44 MAP kinases, plays an important role in the phosphorylation and activation of cPLA(2) in endothelin-1-stimulated CISM cells. This conclusion is supported by the following findings. Both p38 MAP kinase and p42/p44 MAP kinases were present in the CISM cells and both were activated by endothelin-1. SB203580, a potent specific inhibitor of p38 MAP kinase, but not the p42/p44 MAP kinases specific inhibitor, PD98059, markedly suppressed endothelin-1-enhanced cPLA(2) phosphorylation, cPLA(2) activity and arachidonic acid release. The addition of endothelin-1 resulted in the phosphorylation and activation of cPLA(2). Endothelin-1 stimulated p38 MAP kinase activity in a time- and concentration-dependent manner, and these effects were mediated through the endothelin-A receptor subtype. The protein kinase C (PKC) inhibitor, RO 31-8220, had no inhibitory effect on endothelin-1-induced p38 MAP kinase activation, suggesting that endothelin-1 activation of p38 MAP kinase is independent of PKC. Pertussis toxin inhibited both endothelin-1 and mastoparan stimulation of p38 MAP kinase activity and arachidonic acid release. The inhibitory effects of pertussis toxin are not mediated through cAMP formation. Mastoparan-stimulated [(3)H]arachidonic acid release and cPLA(2) activation was inhibited by SB203580, but not by RO 31-8220. These data suggest that endothelin-1 binds to the endothelin-A receptor to activate the Gi-protein which, through a series of kinases, leads to the activation of p38 MAP kinase and subsequently to phosphorylation and activation of cPLA(2). Activation of cPLA(2) leads to the liberation of arachidonic acid

  1. P6 truss and radiator panels

    NASA Image and Video Library

    2005-07-28

    STS114-E-5283 (28 July 2005) --- This frame and STS114-E-5282 actually can be conjoined and rotated 90 degrees to make a single frame, providing an "astronaut's eye view" from Discovery's aft cabin looking toward the recently docked International Space Station. This frame shows the end of the P6 truss and a radiator panel. The two cropped cylinder-shaped objects are actually the base for the large solar array panels (out of frame).

  2. IL6 induces TAM resistance via kinase-specific phosphorylation of ERα in OVCA cells.

    PubMed

    Wang, Yue; Niu, Xiu Long; Guo, Xiao Qin; Yang, Jing; Li, Ling; Qu, Ye; Xiu Hu, Cun; Mao, Li Qun; Wang, Dan

    2015-06-01

    About 40-60% of ovarian cancer (OVCA) cases express ERα, but only a small proportion of patients respond clinically to anti-estrogen treatment with estrogen receptor (ER) antagonist tamoxifen (TAM). The mechanism of TAM resistance in the course of OVCA progression remains unclear. However, IL6 plays a critical role in the development and progression of OVCA. Our recent results indicated that IL6 secreted by OVCA cells may promote the resistance of these cells to TAM via ER isoforms and steroid hormone receptor coactivator-1. Here we demonstrate that both exogenous (a relatively short period of treatment with recombinant IL6) and endogenous IL6 (generated as a result of transfection with a plasmid encoding sense IL6) increases expression of pERα-Ser118 and pERα-Ser167 in non-IL6-expressing A2780 cells, while deleting endogenous IL6 expression in IL6-overexpressing CAOV-3 cells (by transfection with a plasmid encoding antisense IL6) reduces expression of pERα-Ser118 and pERα-Ser167, indicating that IL6-induced TAM resistance may also be associated with increased expression of pERα-Ser118 and pERα-Ser167 in OVCA cells. Results of further investigation indicate that IL6 phosphorylates ERα at Ser118 and Ser167 by triggering activation of MEK/ERK and phosphotidylinositol 3 kinase/Akt signaling, respectively, to activate the ER pathway and thereby induce OVCA cells resistance to TAM. These results indicate that IL6 secreted by OVCA cells may also contribute to the refractoriness of these cells to TAM via the crosstalk between ER and IL6-mediated intracellular signal transduction cascades. Overexpression of IL6 not only plays an important role in OVCA progression but also promotes TAM resistance. Our results indicate that TAM-IL6-targeted adjunctive therapy may lead to a more effective intervention than TAM alone. © 2015 Society for Endocrinology.

  3. 15 CFR 90.6 - When a challenge may be filed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CENSUS, DEPARTMENT OF COMMERCE PROCEDURE FOR CHALLENGING POPULATION ESTIMATES § 90.6 When a challenge may be filed. (a) A request for a challenge to a population estimate may be filed any time up to 90 days...

  4. Histone H3 phosphorylation in GBM: a new rational to guide the use of kinase inhibitors in anti-GBM therapy.

    PubMed

    Pacaud, Romain; Cheray, Mathilde; Nadaradjane, Arulraj; Vallette, François M; Cartron, Pierre-François

    2015-01-01

    Histones post-translational modifications (PTMs) are crucial components of diverse processes that modulate chromatin. Among the histones PTMs, the histones phosphorylation appears such crucial since it plays a significant role into DNA repair structure, transcription and chromatin compaction during cell division and apoptosis. However, little is known about the prognostic value of the histone phosphorylation in human cancer. This point could be considerate such as an important gap in anti-cancer therapy since the use of adequate kinase inhibitors could remedy to the aberrant histone phosphorylation associated with a poor prognosis factor. To remedy at this situation, we analyzed the phosphorylation level of histone H3 at the residues T3, T6, S10, S28, Y41 and T45 in a collection of 42 glioblastoma multiformes (GBM). Our data indicated that the high level of pH3T6, pH3S10 and pH3Y41 are signatures associated with a poor prognosis of overall survival (OS) of GBM treated with the "temozolomide and irradiation standard" treatment of GBM (named TMZ+Irad treatment). Our data also showed that these signatures are correlated with the high activity of kinases already described as writers of the pH3T6, pH3S10 and pH3Y41 i.e. the PKC, Aurora-B and JAK2, respectively. Finally, our analysis revealed that the use of Enzastaurin, AZD1152, and AZD1480 abrogated the high level of pH3T6, pH3S10 and pH3Y41 while increasing the sensitivity to the "temozolomide and irradiation"-induced cell death. To conclude, it appears that this work provides biomarkers for patient stratification for a therapy including kinase inhibitors.

  5. Mps1 Mediated Phosphorylation of Hsp90 Confers Renal Cell Carcinoma Sensitivity and Selectivity to Hsp90 Inhibitors.

    PubMed

    Woodford, Mark R; Truman, Andrew W; Dunn, Diana M; Jensen, Sandra M; Cotran, Richard; Bullard, Renee; Abouelleil, Mourad; Beebe, Kristin; Wolfgeher, Donald; Wierzbicki, Sara; Post, Dawn E; Caza, Tiffany; Tsutsumi, Shinji; Panaretou, Barry; Kron, Stephen J; Trepel, Jane B; Landas, Steve; Prodromou, Chrisostomos; Shapiro, Oleg; Stetler-Stevenson, William G; Bourboulia, Dimitra; Neckers, Len; Bratslavsky, Gennady; Mollapour, Mehdi

    2016-02-02

    The molecular chaperone Hsp90 protects deregulated signaling proteins that are vital for tumor growth and survival. Tumors generally display sensitivity and selectivity toward Hsp90 inhibitors; however, the molecular mechanism underlying this phenotype remains undefined. We report that the mitotic checkpoint kinase Mps1 phosphorylates a conserved threonine residue in the amino-domain of Hsp90. This, in turn, regulates chaperone function by reducing Hsp90 ATPase activity while fostering Hsp90 association with kinase clients, including Mps1. Phosphorylation of Hsp90 is also essential for the mitotic checkpoint because it confers Mps1 stability and activity. We identified Cdc14 as the phosphatase that dephosphorylates Hsp90 and disrupts its interaction with Mps1. This causes Mps1 degradation, thus providing a mechanism for its inactivation. Finally, Hsp90 phosphorylation sensitizes cells to its inhibitors, and elevated Mps1 levels confer renal cell carcinoma selectivity to Hsp90 drugs. Mps1 expression level can potentially serve as a predictive indicator of tumor response to Hsp90 inhibitors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Molecular markers in dysplasia of the larynx: expression of cyclin-dependent kinase inhibitors p21, p27 and p53 tumour suppressor gene in predicting cancer risk.

    PubMed

    Jeannon, J-P; Soames, J V; Aston, V; Stafford, F W; Wilson, J A

    2004-12-01

    Premalignant conditions affect the larynx. Dysplasia can progress in severity resulting in cancer depending on many clinical, pathological and molecular factors. The purpose of this study was to examine the expression of the p21 and p27 cyclin-dependent kinase inhibitors and p53 tumour suppressor gene in dysplasia of the larynx. A total of 114 cases of untreated dysplasia were selected from the archives of the University of Newcastle. p21, p27 and p53 immunohistochemistry was performed and the cases followed up. Twenty-eight dysplasias (24%) subsequently developed into cancers. Expression of the molecular factors studied was not associated with cancer progression. p53 expression was associated with smoking (P = 0.005). In contrast, grade of dysplasia was significantly associated with cancer risk (odds ratio 6.7; P = 0.0001). The majority (75%) of cancers were detected within 12 months of dysplasia being diagnosed.

  7. Luteinizing hormone stimulates mammalian target of rapamycin signaling in bovine luteal cells via pathways independent of AKT and mitogen-activated protein kinase: modulation of glycogen synthase kinase 3 and AMP-activated protein kinase.

    PubMed

    Hou, Xiaoying; Arvisais, Edward W; Davis, John S

    2010-06-01

    LH stimulates the production of cAMP in luteal cells, which leads to the production of progesterone, a hormone critical for the maintenance of pregnancy. The mammalian target of rapamycin (MTOR) signaling cascade has recently been examined in ovarian follicles where it regulates granulosa cell proliferation and differentiation. This study examined the actions of LH on the regulation and possible role of the MTOR signaling pathway in primary cultures of bovine corpus luteum cells. Herein, we demonstrate that activation of the LH receptor stimulates the phosphorylation of the MTOR substrates ribosomal protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1. The actions of LH were mimicked by forskolin and 8-bromo-cAMP. LH did not increase AKT or MAPK1/3 phosphorylation. Studies with pathway-specific inhibitors demonstrated that the MAPK kinase 1 (MAP2K1)/MAPK or phosphatidylinositol 3-kinase/AKT signaling pathways were not required for LH-stimulated MTOR/S6K1 activity. However, LH decreased the activity of glycogen synthase kinase 3Beta (GSK3B) and AMP-activated protein kinase (AMPK). The actions of LH on MTOR/S6K1 were mimicked by agents that modulated GSK3B and AMPK activity. The ability of LH to stimulate progesterone secretion was not prevented by rapamycin, a MTOR inhibitor. In contrast, activation of AMPK inhibited LH-stimulated MTOR/S6K1 signaling and progesterone secretion. In summary, the LH receptor stimulates a unique series of intracellular signals to activate MTOR/S6K1 signaling. Furthermore, LH-directed changes in AMPK and GSK3B phosphorylation appear to exert a greater impact on progesterone synthesis in the corpus luteum than rapamycin-sensitive MTOR-mediated events.

  8. p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase/Akt/GSK3 signaling.

    PubMed

    Nayak, G; Cooper, G M

    2012-10-11

    The phosphatidylinositol (PI) 3-kinase/Akt signaling pathway has a prominent role in cell survival and proliferation, in part, by regulating gene expression at the transcriptional level. Previous work using global expression profiling identified FOXOs and the E-box-binding transcription factors MITF and USF1 as key targets of PI 3-kinase signaling that lead to the induction of proapoptotic and cell cycle arrest genes in response to inhibition of PI 3-kinase. In this study, we investigated the role of p53 downstream of PI 3-kinase signaling by analyzing the effects of inhibition of PI 3-kinase in Rat-1 cells, which have wild-type p53, compared with Rat-1 cells expressing a dominant-negative p53 mutant. Expression of dominant-negative p53 conferred partial resistance to apoptosis induced by inhibition of PI 3-kinase. Global gene expression profiling combined with computational and experimental analysis of transcription factor binding sites demonstrated that p53, along with FOXO, MITF and USF1, contributed to gene induction in response to PI 3-kinase inhibition. Activation of p53 was mediated by phosphorylation of the histone acetyltransferase Tip60 by glycogen synthase kinase (GSK) 3, leading to activation of p53 by acetylation. Many of the genes targeted by p53 were also targeted by FOXO and E-box-binding transcription factors, indicating that p53 functions coordinately with these factors to regulate gene expression downstream of PI 3-kinase/Akt/GSK3 signaling.

  9. Recombinant streptokinase vs hydrocortisone suppositories in acute hemorrhoids: A randomized controlled trial

    PubMed Central

    Hernández-Bernal, Francisco; Castellanos-Sierra, Georgina; Valenzuela-Silva, Carmen M; Catasús-Álvarez, Karem M; Martínez-Serrano, Osmany; Lazo-Diago, Odalys C; Bermúdez-Badell, Cimara H; Causa-García, José R; Domínguez-Suárez, Juan E; Investigators, Pedro A López-Saura; THERESA-4 (Treatment of HEmorrhoids with REcombinant Streptokinase Application) Group of

    2015-01-01

    AIM: To compare the efficacy and safety of recombinant streptokinase (rSK) vs hydrocortisone acetate-based suppositories in acute hemorrhoidal disease. METHODS: A multicenter (11 sites), randomized (1:1:1), open, controlled trial with parallel groups was performed. All participating patients gave their written, informed consent. After inclusion, patients with acute symptoms of hemorrhoids were centrally randomized to receive, as outpatients, by the rectal route, suppositories of rSK 200000 IU of one unit every 8 h (first 3 units) and afterwards every 12 h until 8 administrations were completed (schedule A), one unit every 8 h until 6 units were completed (schedule B), or 25 mg hydrocortisone acetate once every 8 h up to a maximum of 24 administrations. Evaluations were performed at 3, 5, and 10 d post-inclusion. The main end-point was the 5th-day response (disappearance of pain and bleeding, and ≥ 70% reduction of the lesion size). Time to response and need for thrombectomy were secondary efficacy variables. Adverse events were also evaluated. RESULTS: Groups were homogeneous with regards to demographic and baseline characteristics. Fifth day complete response rates were 156/170 (91.8%; 95%CI: 87.3-96.2), 155/170 (91.2%; 95%CI: 86.6%-95.7%), and 46/170 (27.1%; 95%CI: 20.1%-34.0%) with rSK (schedule A and B) and hydrocortisone acetate suppositories, respectively. These 64.6% and 63.9% differences (95%CI: 56.7%-72.2% and 55.7%-72.0%) were highly significant (P < 0.001). This advantage was detected since the early 3rd day evaluation (68.8% and 64.1% vs 7.1% for the rSK and active control groups, respectively; P < 0.001) and was maintained even at the late 10th day assessment (97.1% and 93.5% vs 67.1% for rSK and hydrocortisone acetate, respectively; P < 0.001). Time to response was 3 d (95%CI: 2.9-3.1) for both rSK groups and 10 d (95%CI: 9.3-10.7) in the hydrocortisone acetate group. This difference was highly significant (P < 0.001). All subgroup stratified

  10. Photorefractive splicing device with double phase conjugate mirror using Sn2P2S6:Sb crystal

    NASA Astrophysics Data System (ADS)

    Wakayama, Yuta; Okamoto, Atsushi; Shimayabu, Kohei; Kojima, Yasunori; Grabar, Alexander A.

    2009-02-01

    We develop a splicing device for photonic crystal fibers (PCFs) based on a double phase conjugate mirror (DPCM) using a novel photorefractive (PR) Sn2P2S6:Sb 1.5% crystal. This PR splicer has many attractive characteristics including modal field compensation and the automatic reconfiguration of the optical path. Utilizing a DPCM as the splicer, our device can adapt to misalignments automatically since the incident beams continuously rewrite an index grating which formed in the crystal. By the implementation of the Sn2P2S6:Sb crystal, the response time for the characteristic of dynamic reconfiguration is improved several-hundred-fold compared with conventional materials, e.g. BaTiO3. We demonstrate that the high angular tolerance is provided using the DPCM with the Sn2P2S6:Sb crystal. When the misalignment of the incident angle is from -7° to 8°, the increment of coupling loss is less than 0.6dB. This is several-ten-fold compared with the fusion splicing. We reveal the dependence of the coupling loss on the position of the incident beams and also the dependence of the energy flow on the propagation distance for the first time with the two-dimensional finite-difference beampropagation method. Using our numerical simulation tool, we can visually investigate the beam propagation property considering the influence of the fanning effect in the Sn2P2S6 crystals.

  11. Efficacy of novel acridine derivatives in the inhibition of hPrP90-231 prion protein fragment toxicity.

    PubMed

    Villa, Valentina; Tonelli, Michele; Thellung, Stefano; Corsaro, Alessandro; Tasso, Bruno; Novelli, Federica; Canu, Caterina; Pino, Albiana; Chiovitti, Katia; Paludi, Domenico; Russo, Claudio; Sparatore, Anna; Aceto, Antonio; Boido, Vito; Sparatore, Fabio; Florio, Tullio

    2011-05-01

    Quinacrine is one of the few molecules tested to treat patients affected by prion diseases, although the clinical outcome is largely unsatisfactory. To identify novel derivatives with higher neuroprotective activity, we evaluated the effects of a small library of acridine derivatives. The 6-chloro-2-methoxyacridine derivatives bearing on position 9 a quinolizidin-1-ylamino (Q1, Q2) or a quinolizidin-1-ylalkylamino residue (Q3, Q4, Q6, Q7), the thio-bioisoster of Q3 (Q5), the 9-(N-lupinylthiopropyl)amino derivative (Q8) and simple acridines (Q9 and Q10) were considered. We compared the effects of quinacrine and these novel analogues in the inhibition of the cytotoxic activity and protease K (PK) resistance of the human prion protein fragment 90-231 (hPrP90-231). We demonstrate that quinacrine caused a significant reduction of hPrP90-231 toxicity due to its binding to the fragment and the prevention of its conversion in a toxic isoform. All acridine derivatives analyzed showed high affinity binding for hPrP90-231, but only Q3 and Q10, caused a significant reduction of hPrP90-231 cytotoxicity, with higher efficacy than quinacrine. We attempted to correlate the cytoprotective effects of the new compounds with some biochemical parameters (binding affinity to hPrP90-231, intrinsic fluorescence quenching, hydrophobic amino acid exposure), but a direct relationship occurred only with the reduction of PK resistance, likely due to the prevention of the acquisition of the β-sheet-rich toxic conformation. These data represent interesting leads for further modifications of the basic side chain and the substituent pattern of the acridine nucleus to develop novel compounds with improved antiprion activity to be tested in in vivo experimental setting.

  12. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    PubMed Central

    Yang, Yanyan; Yu, Tao; Sung, Gi-Ho; Yoo, Byong Chul

    2014-01-01

    Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases. PMID:24771982

  13. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  14. Forskolin-mediated BeWo cell fusion involves down-regulation of miR-92a-1-5p that targets dysferlin and protein kinase cAMP-activated catalytic subunit alpha.

    PubMed

    Dubey, Richa; Malhotra, Sudha S; Gupta, Satish K

    2018-06-01

    To study the role of miRNA(s) during trophoblastic BeWo cell fusion. Changes in miRNA(s) profile of BeWo cells treated with forskolin were analyzed using Affymetrix miRNA microarray platform. Down-regulated miRNA, miR-92a-1-5p, was overexpressed in BeWo cells followed by forskolin treatment to understand its relevance in the process of BeWo cell fusion by desmoplakin I+II staining and hCG secretion by ELISA. Predicted targets of miR-92a-1-5p were also confirmed by qRT-PCR/Western blotting. The miRNA profiling of BeWo cells after forskolin (25 μmol/L) treatment identified miR-92a-1-5p as the most significantly down-regulated miRNA both at 24 and 48 hours time points. Overexpression of miR-92a-1-5p in these cells led to a significant decrease in forskolin-mediated cell fusion and hCG secretion. miRNA target prediction software, TargetScan, revealed dysferlin (DYSF) and protein kinase cAMP-activated catalytic subunit alpha (PRKACA), as target genes of miR-92a-1-5p. Overexpression of miR-92a-1-5p in BeWo cells showed reduction in forskolin-induced transcripts for DYSF and PRKACA. Further, reduction in DYSF (~2.6-fold) at protein level and PRKACA-encoded protein kinase A catalytic subunit alpha (PKAC-α; ~1.6-fold) were also observed. These observations suggest that miR-92a-1-5p regulates forskolin-mediated BeWo cell fusion and hCG secretion by regulating PKA signaling pathway and dysferlin expression. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Tangeretin and its metabolite 4'-hydroxytetramethoxyflavone attenuate EGF-stimulated cell cycle progression in hepatocytes; role of inhibition at the level of mTOR/p70S6K.

    PubMed

    Cheng, Z; Surichan, S; Ruparelia, K; Arroo, R; Boarder, M R

    2011-04-01

    The mechanisms by which the dietary compound tangeretin has anticancer effects may include acting as a prodrug, forming an antiproliferative product in cancer cells. Here we show that tangeretin also inhibits cell cycle progression in hepatocytes and investigate the role of its primary metabolite 4'-hydroxy-5,6,7,8-tetramethoxyflavone (4'-OH-TMF) in this effect. We used epidermal growth factor (EGF)-stimulated rat hepatocytes, with [(3)H]-thymidine incorporation into DNA as an index of progression to S-phase of the cell cycle, and Western blots for phospho-proteins involved in the cell signalling cascade. Incubation of tangeretin with microsomes expressing CYP1A, or with hepatocytes, generated a primary product we identified as 4'-OH-TMF. Low micromolar concentrations of tangeretin or 4'-OH-TMF gave a concentration-dependent inhibition of EGF-stimulated progression to S-phase while having little effect on cell viability. To determine whether time for conversion of tangeretin to an active metabolite would enhance the inhibitory effect we used long pre-incubations; this reduced the inhibitory effect, in parallel with a reduction in the concentration of tangeretin. The EGF-stimulation of hepatocyte cell cycle progression requires signalling through Akt/mTOR/p70S6K kinase cascades. The tangeretin metabolite 4'-OH-TMF selectively inhibited S6K phosphorylation in the absence of significant inhibition of upstream Akt activity, suggesting an effect at the level of mTOR. Tangeretin and 4'-OH-TMF both inhibit cell cycle progression in primary hepatocytes. The inhibition of p70S6K phosphorylation by 4'-OH-TMF raises the possibility that inhibition of the mTOR pathway may contribute to the anticancer influence of a flavonoid-rich diet. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  16. Palmatine inhibits growth and invasion in prostate cancer cell: Potential role for rpS6/NFκB/FLIP.

    PubMed

    Hambright, Heather G; Batth, Izhar Singh; Xie, Jianping; Ghosh, Rita; Kumar, Addanki Pratap

    2015-10-01

    Novel agents are desperately needed for improving the quality of life and 5-year survival to more than 30% for metastatic castrate-resistant prostate cancer. Previously we showed that Nexrutine, Phellodendron amurense bark extract, inhibits prostate tumor growth in vitro and in vivo. Subsequently using biochemical fractionation we identified butanol fraction contributes to the observed biological activities. We report here that palmatine, which is present in the butanol fraction, selectively inhibits growth of prostate cancer cells without significant effect on non-tumorigenic prostate epithelial cells. By screening receptor tyrosine kinases in a protein kinase array, we identified ribosomal protein S6, a downstream target of p70S6K and the Akt/mTOR signaling cascade as a potential target. We further show that palmatine treatment is associated with decreased activation of NFκB and its downstream target gene FLIP. These events led to inhibition of invasion. Similar results were obtained using parent extract Nexrutine (Nx) suggesting that palmatine either in the purified form or as one of the components in Nx is a potent cytotoxic agent with tumor invasion inhibitory properties. Synergistic inhibition of rpS6/NFκB/FLIP axis with palmatine may have therapeutic potential for the treatment of prostate cancer and possibly other malignancies with their constitutive activation. These data support a biological link between rpS6/NFκB/FLIP in mediating palmatine-induced inhibitory effects and warrants additional preclinical studies to test its therapeutic efficacy. © 2014 Wiley Periodicals, Inc.

  17. Sphingosine 1-phosphate (S1P) suppresses the collagen-induced activation of human platelets via S1P4 receptor.

    PubMed

    Onuma, Takashi; Tanabe, Kumiko; Kito, Yuko; Tsujimoto, Masanori; Uematsu, Kodai; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Doi, Tomoaki; Nagase, Kiyoshi; Akamatsu, Shigeru; Tokuda, Haruhiko; Ogura, Shinji; Iwama, Toru; Kozawa, Osamu; Iida, Hiroki

    2017-08-01

    Sphingosine 1-phosphate (S1P) is as an extracellular factor that acts as a potent lipid mediator by binding to specific receptors, S1P receptors (S1PRs). However, the precise role of S1P in human platelets that express S1PRs has not yet been fully clarified. We previously reported that heat shock protein 27 (HSP27) is released from human platelets accompanied by its phosphorylation stimulated by collagen. In the present study, we investigated the effect of S1P on the collagen-induced platelet activation. S1P pretreatment markedly attenuated the collagen-induced aggregation. Co-stimulation with S1P and collagen suppressed collagen-induced platelet activation, but the effect was weaker than that of S1P-pretreatment. The collagen-stimulated secretion of platelet-derived growth factor (PDGF)-AB and the soluble CD40 ligand (sCD40L) release were significantly reduced by S1P. In addition, S1P suppressed the collagen-induced release of HSP27 as well as the phosphorylation of HSP27. S1P significantly suppressed the collagen-induced phosphorylation of p38 mitogen-activated protein kinase. S1P increased the levels of GTP-bound Gαi and GTP-bound Gα13 coupled to S1PPR1 and/or S1PR4. CYM50260, a selective S1PR4 agonist, but not SEW2871, a selective S1PR1 agonist, suppressed the collagen-stimulated platelet aggregation, PDGF-AB secretion and sCD40L release. In addition, CYM50260 reduced the release of phosphorylated-HSP27 by collagen as well as the phosphorylation of HSP27. The selective S1PR4 antagonist CYM50358, which failed to affect collagen-induced HSP27 phosphorylation, reversed the S1P-induced attenuation of HSP27 phosphorylation by collagen. These results strongly suggest that S1P inhibits the collagen-induced human platelet activation through S1PR4 but not S1PR1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Serine 302 Phosphorylation of Mouse Insulin Receptor Substrate 1 (IRS1) Is Dispensable for Normal Insulin Signaling and Feedback Regulation by Hepatic S6 Kinase*

    PubMed Central

    Copps, Kyle D.; Hançer, Nancy J.; Qiu, Wei; White, Morris F.

    2016-01-01

    Constitutive activation of the mammalian target of rapamycin complex 1 and S6 kinase (mTORC1→ S6K) attenuates insulin-stimulated Akt activity in certain tumors in part through “feedback” phosphorylation of the upstream insulin receptor substrate 1 (IRS1). However, the significance of this mechanism for regulating insulin sensitivity in normal tissue remains unclear. We investigated the function of Ser-302 in mouse IRS1, the major site of its phosphorylation by S6K in vitro, through genetic knock-in of a serine-to-alanine mutation (A302). Although insulin rapidly stimulated feedback phosphorylation of Ser-302 in mouse liver and muscle, homozygous A302 mice (A/A) and their knock-in controls (S/S) exhibited similar glucose homeostasis and muscle insulin signaling. Furthermore, both A302 and control primary hepatocytes from which Irs2 was deleted showed marked inhibition of insulin-stimulated IRS1 tyrosine phosphorylation and PI3K binding after emetine treatment to raise intracellular amino acids and activate mTORC1 → S6K signaling. To specifically activate mTORC1 in mouse tissue, we deleted hepatic Tsc1 using Cre adenovirus. Although it moderately decreased IRS1/PI3K association and Akt phosphorylation in liver, Tsc1 deletion failed to cause glucose intolerance or promote hyperinsulinemia in mixed background A/A or S/S mice. Moreover, Tsc1 deletion failed to stimulate phospho-Ser-302 or other putative S6K sites within IRS1, whereas ribosomal S6 protein was constitutively phosphorylated. Following acute Tsc1 deletion from hepatocytes, Akt phosphorylation, but not IRS1/PI3K association, was rapidly restored by treatment with the mTORC1 inhibitor rapamycin. Thus, within the hepatic compartment, mTORC1 → S6K signaling regulates Akt largely through IRS-independent means with little effect upon physiologic insulin sensitivity. PMID:26846849

  19. Evaluation of the interaction of cyclin-dependent kinase 5 with activator p25 and with p25-derived inhibitor CIP.

    PubMed

    Cardone, Antonio; Albers, R Wayne; Sriram, Ram D; Pant, Harish C

    2010-05-01

    A high-affinity inhibitor protein called CIP, produced by small truncations of p35, was experimentally identified. P35 is a physiological activator of the cyclin-dependent kinase cdk5. P25 is derived from proteolytic truncation of p35 within "stressed" neurons, and it is associated with the hyperphosphorylation of specific neuronal proteins, typically occurring in neurodegenerative diseases such as Alzheimer's. Here, we report a study of the binding mechanisms of the cdk5-p25 and cdk5-CIP complexes. This provides a better understanding of the source of the inhibitory activity of the protein CIP. We use a geometry-based technique to test the hypothesis that p25's truncation increases the flexibility of CIP and thus prevents cdk5 from reaching its active conformation. Our study is based on a geometry-based alignment algorithm, which aligns two given protein conformations with respect to their interfaces. Our results support the flexibility hypothesis and will be used as a basis for targeted molecular dynamics simulations.

  20. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis in Mice via a Toll-Like Receptor 4/p21-Activated Kinase 1 Cascade.

    PubMed

    Wu, Yaxin; Wu, Jiao; Chen, Ting; Li, Qing; Peng, Wei; Li, Huan; Tang, Xiaowei; Fu, Xiangsheng

    2018-05-01

    The underlying pathogenic mechanism of Fusobacterium nucleatum in the carcinogenesis of colorectal cancer has been poorly understood. Using C57BL/6-Apc Min/+ mice, we investigated gut microbial structures with F. nucleatum, antibiotics, and Toll-like receptor 4 (TLR4) antagonist TAK-242 treatment. In addition, we measured intestinal tumor formation and the expression of TLR4, p21-activated kinase 1 (PAK1), phosphorylated-PAK1 (p-PAK1), phosphorylated-β-catenin S675 (p-β-catenin S675), and cyclin D1 in mice with different treatments. Fusobacterium nucleatum and antibiotics treatment altered gut microbial structures in mice. In addition, F. nucleatum invaded into the intestinal mucosa in large amounts but were less abundant in the feces of F. nucleatum-fed mice. The average number and size of intestinal tumors in F. nucleatum groups was significantly increased compared to control groups in Apc Min/+ mice (P < 0.05). The expression of TLR4, PAK1, p-PAK1, p-β-catenin S675, and cyclin D1 was significantly increased in F. nucleatum groups compared to the control groups (P < 0.05). Moreover, TAK-242 significantly decreased the average number and size of intestinal tumors compared to F. nucleatum groups (P < 0.05). The expression of p-PAK1, p-β-catenin S675, and cyclin D1 was also significantly decreased in the TAK-242-treated group compared to F. nucleatum groups (P < 0.05). Fusobacterium nucleatum potentiates intestinal tumorigenesis in Apc Min/+ mice via a TLR4/p-PAK1/p-β-catenin S675 cascade. Fusobacterium nucleatum-induced intestinal tumorigenesis can be inhibited by TAK-242, implicating TLR4 as a potential target for the prevention and therapy of F. nucleatum-related colorectal cancer.

  1. An emerging role for p21-activated kinases (Paks) in viral infections.

    PubMed

    Van den Broeke, Celine; Radu, Maria; Chernoff, Jonathan; Favoreel, Herman W

    2010-03-01

    p21-activated protein kinases (Paks) are cytosolic serine/threonine protein kinases that act as effectors for small (p21) GTPases of the Cdc42 and Rac families. It has long been established that Paks play a major role in a host of vital cellular functions such as proliferation, survival and motility, and abnormal Pak function is associated with a number of human diseases. Here, we discuss emerging evidence that these enzymes also play a major role in the entry, replication and spread of many important pathogenic human viruses, including HIV. Careful assessment of the potential role of Paks in antiviral immunity will be pivotal to evaluate thoroughly the potential of agents that inhibit Pak as a new class of anti-viral therapeutics.

  2. Group I p21-activated kinases: emerging roles in immune function and viral pathogenesis.

    PubMed

    Pacheco, Almudena; Chernoff, Jonathan

    2010-01-01

    Group I p21-activated kinases are a highly conserved three-member family of serine/threonine kinases that act as key effectors for the small GTPases Cdc42 and Rac. In man, these enzymes have been implicated in a wide range of biological processes and are beginning to draw the attention of the pharmaceutical industry as potential therapeutic targets in cancer and in inflammatory processes. In this review, we summarize basic properties of group I Paks and discuss recently uncovered roles for these kinases in immune function and in viral infection.

  3. The Tyrosine Kinase c-Met Contributes to the Pro-tumorigenic Function of the p38 Kinase in Human Bile Duct Cholangiocarcinoma Cells*

    PubMed Central

    Dai, Rongyang; Li, Juanjuan; Fu, Jing; Chen, Yao; Wang, Ruoyu; Zhao, Xiaofang; Luo, Tao; Zhu, Junjie; Ren, Yibin; Cao, Jie; Qian, Youwen; Li, Ning; Wang, Hongyang

    2012-01-01

    Pro-tumorigenic function of the p38 kinase plays a critical role in human cholangiocarcinogenesis. However, the underlying mechanism remains incompletely understood. Here, we report that c-Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), contributes to the pro-tumorigenic ability of p38 in human cholangiocarcinoma cells. Both p38 and c-Met promote the proliferation and invasion of human cholangiocarcinoma cells. Importantly, inhibition or knockdown of p38 decreased the basal activation of c-Met. Tyrosine phosphatase inhibitor studies revealed that p38 promotes the activity of c-Met, at least in part, by inhibiting dephosphorylation of the receptor. Moreover, density enhanced phosphatase-1 (DEP-1) is involved in p38-mediated inhibiting dephosphorylation of c-Met. Furthermore, p38 inhibits the degradation of c-Met. Taken together, these data provide a potential mechanism to explain how p38 promotes human cholangiocarcinoma cell proliferation and invasion. We propose that the link between p38 and c-Met is implicated in the progression of human cholangiocarcinoma. PMID:23024367

  4. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  5. The T-cell antigen CD5 acts as a receptor and substrate for the protein-tyrosine kinase p56lck.

    PubMed Central

    Raab, M; Yamamoto, M; Rudd, C E

    1994-01-01

    CD5 is a T-cell-specific antigen which binds to the B-cell antigen CD72 and acts as a coreceptor in the stimulation of T-cell growth. CD5 associates with the T-cell receptor zeta chain (TcR zeta)/CD3 complex and is rapidly phosphosphorylated on tyrosine residues as a result of TcR zeta/CD3 ligation. However, despite this, the mechanism by which CD5 generates intracellular signals is unclear. In this study, we demonstrate that CD5 is coupled to the protein-tyrosine kinase p56lck and can act as a substrate for p56lck. Coexpression of CD5 with p56lck in the baculovirus expression system resulted in the phosphorylation of CD5 on tyrosine residues. Further, anti-CD5 and anti-p56lck coprecipitated each other in a variety of detergents, including Nonidet P-40 and Triton X-100. Anti-CD5 also precipitated the kinase from various T cells irrespective of the expression of TcR zeta/CD3 or CD4. No binding between p59fyn(T) and CD5 was detected in T cells. The binding of p56lck to CD5 induced a 10- to 15-fold increase in p56lck catalytic activity, as measured by in vitro kinase analysis. In vivo labelling with 32P(i) also showed a four- to fivefold increase in Y-394 occupancy in p56lck when associated with CD5. The use of glutathione S-transferase-Lck fusion proteins in precipitation analysis showed that the SH2 domain of p56lck could recognize CD5 as expressed in the baculovirus expression system. CD5 interaction with p56lck represents a novel variant of a receptor-kinase complex in which receptor can also serve as substrate. The CD5-p56lck interaction is likely to play roles in T-cell signalling and T-B collaboration. Images PMID:7513045

  6. HPV8-E6 Interferes with Syntenin-2 Expression through Deregulation of Differentiation, Methylation and Phosphatidylinositide-Kinase Dependent Mechanisms.

    PubMed

    Marx, Benjamin; Miller-Lazic, Daliborka; Doorbar, John; Majewski, Slawomir; Hofmann, Kay; Hufbauer, Martin; Akgül, Baki

    2017-01-01

    The E6 oncoproteins of high-risk human papillomaviruses (HPV) of genus alpha contain a short peptide sequence at the carboxy-terminus, the PDZ binding domain, with which they interact with the corresponding PDZ domain of cellular proteins. Interestingly, E6 proteins from papillomaviruses of genus beta (betaPV) do not encode a comparable PDZ binding domain. Irrespective of this fact, we previously showed that the E6 protein of HPV8 (betaPV type) could circumvent this deficit by targeting the PDZ protein Syntenin-2 through transcriptional repression (Lazic et al., 2012). Despite its high binding affinity to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 ), very little is known about Syntenin-2. This study aimed to extend the knowledge on Syntenin-2 and how its expression is controlled. We now identified that Syntenin-2 is expressed at high levels in differentiating and in lower amounts in keratinocytes cultured in serum-free media containing low calcium concentration. HPV8-E6 led to a further reduction of Syntenin-2 expression only in cells cultured in low calcium. In the skin of patients suffering from Epidermodysplasia verruciformis, who are predisposed to betaPV infection, Syntenin-2 was expressed in differentiating keratinocytes of non-lesional skin, but was absent in virus positive squamous tumors. Using 5-Aza-2'-deoxycytidine, which causes DNA demethylation, Syntenin-2 transcription was profoundly activated and fully restored in the absence and presence of HPV8-E6, implicating that E6 mediated repression of Syntenin-2 transcription is due to promoter hypermethylation. Since Syntenin-2 binds to PI(4,5)P 2 , we further tested whether the PI(4,5)P 2 metabolic pathway might govern Syntenin-2 expression. PI(4,5)P 2 is generated by the activity of phosphatidylinositol-4-phosphate-5-kinase type I (PIP5KI) or phosphatidylinositol-5-phosphate-4-kinase type II (PIP4KII) isoforms α, β and γ. Phosphatidylinositide kinases have recently been identified as regulators

  7. Glutamine Enhances the Hypoglycemic Effect of Insulin in L6 Cells via Phosphatidylinositol-3-Kinase (PI3K)/Protein Kinase B (AKT)/Glucose Transporter 4 (GLUT4) Signaling Pathway.

    PubMed

    Wang, Caijuan; Deng, Yujiao; Yue, Yenan; Chen, Wenting; Zhang, Yu; Shi, Guifang; Wu, Zhongming

    2018-03-01

    BACKGROUND Diabetes mellitus (DM) is characterized by a decreased blood level of glutamine (Gln), which may contribute to the disturbance in the effect of insulin on skeletal muscle. Therefore, it is crucial to study how to improve the effect of insulin on skeletal muscle by increasing Gln. In the present study, we investigated the effect of Gln on the hypoglycemic action of insulin in skeletal muscle L6 cells at high glucose levels through the insulin signaling pathway and glycogen synthesis pathway. MATERIAL AND METHODS The L6 cells were cultured in and stimulated by Gln and insulin. The glutamine analogue, L-Gamma-Glutamyl-p-nitroanilide (GPNA), was used for verifying the effect of Gln. The expression of insulin signaling molecules, including phosphatidylinositol-3-kinase (PI3K), 3-phosphoinositide-dependent protein kinase-1 (PDK1), protein kinase B (AKT), protein kinase C zeta (PKCz), and glucose transporter 4 (GLUT4), were detected by real-time PCR and Western blot analysis, GLUT4 translocation was observed by immunofluorescence staining, glycogen synthase kinase (GSK) was analyzed by Western blotting, and glucose uptake was measured by glucose oxidase method (GOD). RESULTS The results demonstrated that Gln combined with insulin remarkably up-regulated PI3K and PDK1 and also increased AKT and PKCz phosphorylation. The present study shows that Gln enhanced the impact of insulin on GLUT4 and its translocation. The results of glucose uptake and GSK phosphorylation further confirmed the hypoglycemic effect of Gln accompanied with insulin. The hypoglycemic effect of Gln was reversed by GPNA. CONCLUSIONS These findings suggest that Gln enhances the hypoglycemic role of insulin through the PI3K/AKT/GLUT4 signaling pathway and glycogen synthesis pathway.

  8. Further characterization of loss of heterozygosity enhanced by p53 abrogation in human lymphoblastoid TK6 cells: disappearance of endpoint hotspots.

    PubMed

    Yatagai, Fumio; Morimoto, Shigeko; Kato, Takesi; Honma, Masamitsu

    2004-06-13

    Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK(-) mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6Mb to map various LOH endpoints on the 45Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I-IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15-20Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.

  9. Recent advances in the development of p21-activated kinase inhibitors.

    PubMed

    Coleman, Natalia; Kissil, Joseph

    2012-04-01

    The p21-activated kinases (PAKs) are downstream effectors of the small G-proteins of the Rac and cdc42 family and have been implicated as essential for cell proliferation and survival. Recent studies have also demonstrated the promise of PAKs as therapeutic targets in various types of cancers. The PAKs are divided into two major groups (group I and II) based on sequence similarities. Although the different roles the PAK groups might play are not well understood, recent efforts have focused on the identification of kinase inhibitors that can discriminate between the two groups. In this review these efforts and newly identified inhibitors will be described and future directions discussed.

  10. Tungstate Reduces the Expression of Gluconeogenic Enzymes in STZ Rats

    PubMed Central

    Calbó, Joaquim; Domínguez, Jorge; Guinovart, Joan J.

    2012-01-01

    Aims Oral administration of sodium tungstate has shown hyperglycemia-reducing activity in several animal models of diabetes. We present new insights into the mechanism of action of tungstate. Methods We studied protein expression and phosphorylation in the liver of STZ rats, a type I diabetes model, treated with sodium tungstate in the drinking water (2 mg/ml) and in primary cultured-hepatocytes, through Western blot and Real Time PCR analysis. Results Tungstate treatment reduces the expression of gluconeogenic enzymes (PEPCK, G6Pase, and FBPase) and also regulates transcription factors accountable for the control of hepatic metabolism (c-jun, c-fos and PGC1α). Moreover, ERK, p90rsk and GSK3, upstream kinases regulating the expression of c-jun and c-fos, are phosphorylated in response to tungstate. Interestingly, PKB/Akt phosphorylation is not altered by the treatment. Several of these observations were reproduced in isolated rat hepatocytes cultured in the absence of insulin, thereby indicating that those effects of tungstate are insulin-independent. Conclusions Here we show that treatment with tungstate restores the phosphorylation state of various signaling proteins and changes the expression pattern of metabolic enzymes. PMID:22905122

  11. Tungstate reduces the expression of gluconeogenic enzymes in STZ rats.

    PubMed

    Nocito, Laura; Zafra, Delia; Calbó, Joaquim; Domínguez, Jorge; Guinovart, Joan J

    2012-01-01

    Oral administration of sodium tungstate has shown hyperglycemia-reducing activity in several animal models of diabetes. We present new insights into the mechanism of action of tungstate. We studied protein expression and phosphorylation in the liver of STZ rats, a type I diabetes model, treated with sodium tungstate in the drinking water (2 mg/ml) and in primary cultured-hepatocytes, through Western blot and Real Time PCR analysis. Tungstate treatment reduces the expression of gluconeogenic enzymes (PEPCK, G6Pase, and FBPase) and also regulates transcription factors accountable for the control of hepatic metabolism (c-jun, c-fos and PGC1α). Moreover, ERK, p90rsk and GSK3, upstream kinases regulating the expression of c-jun and c-fos, are phosphorylated in response to tungstate. Interestingly, PKB/Akt phosphorylation is not altered by the treatment. Several of these observations were reproduced in isolated rat hepatocytes cultured in the absence of insulin, thereby indicating that those effects of tungstate are insulin-independent. Here we show that treatment with tungstate restores the phosphorylation state of various signaling proteins and changes the expression pattern of metabolic enzymes.

  12. Structure-based design, synthesis, and biological evaluation of imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors.

    PubMed

    Kaieda, Akira; Takahashi, Masashi; Takai, Takafumi; Goto, Masayuki; Miyazaki, Takahiro; Hori, Yuri; Unno, Satoko; Kawamoto, Tomohiro; Tanaka, Toshimasa; Itono, Sachiko; Takagi, Terufumi; Hamada, Teruki; Shirasaki, Mikio; Okada, Kengo; Snell, Gyorgy; Bragstad, Ken; Sang, Bi-Ching; Uchikawa, Osamu; Miwatashi, Seiji

    2018-02-01

    We identified novel potent inhibitors of p38 MAP kinase using structure-based design strategy. X-ray crystallography showed that when p38 MAP kinase is complexed with TAK-715 (1) in a co-crystal structure, Phe169 adopts two conformations, where one interacts with 1 and the other shows no interaction with 1. Our structure-based design strategy shows that these two conformations converge into one via enhanced protein-ligand hydrophobic interactions. According to the strategy, we focused on scaffold transformation to identify imidazo[1,2-b]pyridazine derivatives as potent inhibitors of p38 MAP kinase. Among the herein described and evaluated compounds, N-oxide 16 exhibited potent inhibition of p38 MAP kinase and LPS-induced TNF-α production in human monocytic THP-1 cells, and significant in vivo efficacy in rat collagen-induced arthritis models. In this article, we report the discovery of potent, selective and orally bioavailable imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors with pyridine N-oxide group. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae.

    PubMed

    Elefteriou, Florent; Benson, M Douglas; Sowa, Hideaki; Starbuck, Michael; Liu, Xiuyun; Ron, David; Parada, Luis F; Karsenty, Gerard

    2006-12-01

    The transcription factor ATF4 enhances bone formation by favoring amino acid import and collagen synthesis in osteoblasts, a function requiring its phosphorylation by RSK2, the kinase inactivated in Coffin-Lowry Syndrome. Here, we show that in contrast, RSK2 activity, ATF4-dependent collagen synthesis, and bone formation are increased in mice lacking neurofibromin in osteoblasts (Nf1(ob)(-/-) mice). Independently of RSK2, ATF4 phosphorylation by PKA is enhanced in Nf1(ob)(-/-) mice, thereby increasing Rankl expression, osteoclast differentiation, and bone resorption. In agreement with ATF4 function in amino acid transport, a low-protein diet decreased bone protein synthesis and normalized bone formation and bone mass in Nf1(ob)(-/-) mice without affecting other organ weight, while a high-protein diet overcame Atf4(-/-) and Rsk2(-/-) mice developmental defects, perinatal lethality, and low bone mass. By showing that ATF4-dependent skeletal dysplasiae are treatable by dietary manipulations, this study reveals a molecular connection between nutrition and skeletal development.

  14. p21 Activated Kinase 5 Activates Raf-1 and Targets it to Mitochondria

    PubMed Central

    Wu, Xiaochong; Carr, Heather S.; Dan, Ippeita; Ruvolo, Peter P.; Frost, Jeffrey A.

    2008-01-01

    Raf-1 is an important effector of Ras mediated signaling and is a critical regulator of the ERK/MAPK pathway. Raf-1 activation is controlled in part by phosphorylation on multiple residues, including an obligate phosphorylation site at serine 338. Previously PAK1 and casein kinase II have been implicated as serine 338 kinases. To identify novel kinases that phosphorylate this site, we tested the ability of group II PAKs (PAKs 4-6) to control serine 338 phosphorylation. We observed that all group II PAKs were efficient serine 338 kinases, although only PAK1 and PAK5 significantly stimulated Raf-1 kinase activity. We also showed that PAK5 forms a tight complex with Raf-1 in the cell, but not A-Raf or B-Raf. Importantly, we also demonstrated that the association of Raf-1 with PAK5 targets a subpopulation of Raf-1 to mitochondria. These data indicate that PAK5 is a potent regulator of Raf-1 activity and may control Raf-1 dependent signaling at the mitochondria. PMID:18465753

  15. Juvenile myoclonic epilepsy in chromosome 6p12-p11: Locus heterogeneity and recombinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.W.; Delgado-Escueta, A.V.; Serratosa, J.M.

    1996-06-14

    We recently analyzed under homogeneity a large pedigree from Belize with classic juvenile myoclonic epilepsy (JME). After a genome-wide search with 146 microsatellites, we obtained significant linkage between chromosome 6p markers, D6S257 and D6S272, and both convulsive and EEG traits of JME. Recombinations in two affected members defined a 40 cM JME region flanked by D6S313 and D6S258. In the present communication, we explored if the same chromosome 6p11 microsatellites also have a role in JME mixed with pyknoleptic absences. We allowed for heterogeneity during linkage analyses. We tested for heterogeneity by the admixture test and looked for more recombinations.more » D6S272, D6S466, D6S294, and D6S257 were significantly linked (Z{sub max} > 3.5) to the clinical and EEG traits of 22 families, assuming autosomal dominant inheritance with 70% penetrance. Pairwise Z{sub max} were 4.230 for D6S294 ({theta}{sub m=f} at 0.133) and 4.442 for D6S466 ({theta}{sub m=f} at 0.111). Admixture test (H{sub 2} vs. H{sub 1}) was significant (P = 0.0234 for D6S294 and 0.0128 for D6S272) supporting the hypotheses of linkage with heterogeneity. Estimated proportion of linked families, {alpha}, was 0.50 (95% confidence interval 0.05-0.99) for D6S294 and D6S272. Multipoint analyses and recombinations in three new families narrowed the JME locus to a 7 cM interval flanked by D6S272 and D6S257. 44 refs., 3 figs., 4 tabs.« less

  16. The MAP Kinase Cascade Is Activated prior to the Induction of Gliosis in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Model of Dopaminergic Neurotoxicity.

    PubMed

    Callaghan, James P; Martin, Parthena M; Mass, Marc J

    1998-05-01

    Injury to the central nervous system (CNS) provokes microglial activation and astrocytic hypertrophy at the site of damage. The signaling events that underlie these cellular responses remain unknown. Recent evidence has implicated tyrosine phosphorylation systems, in general, and the mitogen-activated protein kinase (MAP kinase) cascade, in particular, in the mediation of growth-associated events linked to neural degeneration, such as glial activation. 1 Moreover, an increase in the mRNA coding for the 14.3.3 protein, a known regulator of the MAP kinase pathway, 2 appears to be involved in methamphetamine neurotoxicity. 3 To examine the potential role of these protein kinase pathways in drug-induced damage to the CNS, we used the dopaminergic neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), to damage nerve terminals in the mouse neostriatum and elicit a glial reaction. The onset of reactive gliosis then was verified by Northern blot analysis of glial fibrillary acidic protein (GFAP) mRNA and qualified by enzyme-linked immunosorbent assay (ELISA) of GFAP (protein). A single administration of MPTP (12.5 mg/kg, subcutaneously (s.c.)) to the C57B1/6J mouse resulted in a 10-fold increase in GFAP mRNA by 1 day and a 4-fold increase in GFAP (protein) by 2 days. To determine the potential role of protein tyrosine phosphorylation and MAP kinase activation in these events, blots of striatal homogenates were probed with antibodies directed against phospho-tyr 204 and phospho-thr 202, residues corresponding to the active sites of p42/44 MAP kinase. After mice were sacrificed by focused microwave irradiation to preserve steady-state phosphorylation, proteins from striatal homogenates were resolved by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). Immunoblots of these samples showed a number of phosphotyrosine-labeled bands, but there were no apparent differences between control and MPTP groups. In contrast, phospho-MAP kinase was

  17. Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action.

    PubMed

    Deng, Youping; Bhattacharya, Sujoy; Swamy, O Rama; Tandon, Ruchi; Wang, Yong; Janda, Robert; Riedel, Heimo

    2003-10-10

    The regulation of the metabolic insulin response by mouse growth factor receptor-binding protein 10 (Grb10) has been addressed in this report. We find mouse Grb10 to be a critical component of the insulin receptor (IR) signaling complex that provides a functional link between IR and p85 phosphatidylinositol (PI) 3-kinase and regulates PI 3-kinase activity. This regulatory mechanism parallels the established link between IR and p85 via insulin receptor substrate (IRS) proteins. A direct association was demonstrated between Grb10 and p85 but was not observed between Grb10 and IRS proteins. In addition, no effect of mouse Grb10 was observed on the association between IRS-1 and p85, on IRS-1-associated PI 3-kinase activity, or on insulin-mediated activation of IR or IRS proteins. A critical role of mouse Grb10 was observed in the regulation of PI 3-kinase activity and the resulting metabolic insulin response. Dominant-negative Grb10 domains, in particular the SH2 domain, eliminated the metabolic response to insulin in differentiated 3T3-L1 adipocytes. This was consistently observed for glycogen synthesis, glucose and amino acid transport, and lipogenesis. In parallel, the same metabolic responses were substantially elevated by increased levels of Grb10. A similar role of Grb10 was confirmed in mouse L6 cells. In addition to the SH2 domain, the Pro-rich amino-terminal region of Grb10 was implicated in the regulation of PI 3-kinase catalytic activity. These regulatory roles of Grb10 were extended to specific insulin mediators downstream of PI 3-kinase including PKB/Akt, glycogen synthase kinase, and glycogen synthase. In contrast, a regulatory role of Grb10 in parallel insulin response pathways including p70 S6 kinase, ubiquitin ligase Cbl, or mitogen-activated protein kinase p38 was not observed. The dissection of the interaction of mouse Grb10 with p85 and the resulting regulation of PI 3-kinase activity should help elucidate the complexity of the IR signaling

  18. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-kinase Inhibitors

    PubMed Central

    Marlowe, Timothy A.; Lenzo, Felicia L.; Figel, Sheila A.; Grapes, Abigail T.; Cance, William G.

    2016-01-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms which drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTKs) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK’s critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. Additionally, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: 1) the rapid phosphorylation and activation of RTK signaling pathways in RTKHigh cells and 2) the long-term acquisition of RTKs novel to the parental cell line in RTKLow cells. Finally, HER2+ cancer cells displayed resistance to FAK-kinase inhibition in 3D–growth assays using a HER2 isogenic system and HER2+ cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. PMID:27638858

  19. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases

    PubMed Central

    Rueda, Elda M.; Johnson, Jerry E.; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J.; Sigel, Irena; Chaney, Shawnta Y.

    2016-01-01

    Purpose The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. Methods mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. Results The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor

  20. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.

    PubMed

    Rueda, Elda M; Johnson, Jerry E; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J; Sigel, Irena; Chaney, Shawnta Y; Fox, Donald A

    2016-01-01

    The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The

  1. S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid.

    PubMed

    Xia, Tingting; Cheng, Ying; Zhang, Qian; Xiao, Fei; Liu, Bin; Chen, Shanghai; Guo, Feifan

    2012-10-01

    It is well established that the central nervous system (CNS), especially the hypothalamus, plays an important role in regulating energy homeostasis and lipid metabolism. We have previously shown that hypothalamic corticotropin-releasing hormone (CRH) is critical for stimulating fat loss in response to dietary leucine deprivation. The molecular mechanisms underlying the CNS regulation of leucine deprivation-stimulated fat loss are, however, still largely unknown. Here, we used intracerebroventricular injection of adenoviral vectors to identify a novel role for hypothalamic p70 S6 kinase 1 (S6K1), a major downstream effector of the kinase mammalian target of rapamycin, in leucine deprivation stimulation of energy expenditure. Furthermore, we show that the effect of hypothalamic S6K1 is mediated by modulation of Crh expression in a melanocortin-4 receptor-dependent manner. Taken together, our studies provide a new perspective for understanding the regulation of energy expenditure by the CNS and the importance of cross-talk between nutritional control and regulation of endocrine signals.

  2. Ibrutinib: a first in class covalent inhibitor of Bruton’s tyrosine kinase

    PubMed Central

    Davids, Matthew S; Brown, Jennifer R

    2015-01-01

    Ibrutinib (formerly PCI-32765) is a potent, covalent inhibitor of Bruton’s tyrosine kinase, a kinase downstream of the B-cell receptor that is critical for B-cell survival and proliferation. In preclinical studies, ibrutinib bound to Bruton’s tyrosine kinase with high affinity, leading to inhibition of B-cell receptor signaling, decreased B-cell activation and induction of apoptosis. In clinical studies, ibrutinib has been well-tolerated and has demonstrated profound anti-tumor activity in a variety of hematologic malignancies, most notably chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), leading to US FDA approval for relapsed CLL and MCL. Ongoing studies are evaluating ibrutinib in other types of non-Hodgkin’s lymphoma, such as diffuse large B-cell lymphoma and Waldenström’s macrogobulinemia, in larger Phase III studies in CLL and MCL, and in combination studies with monoclonal antibodies and chemotherapy. Future studies will combine ibrutinib with other promising novel agents currently in development in hematologic malignancies. PMID:24941982

  3. p38 mitogen-activated protein kinase (MAPK) first regulates filamentous actin at the 8-16-cell stage during preimplantation development.

    PubMed

    Paliga, Andrew J M; Natale, David R; Watson, Andrew J

    2005-08-01

    The MAPK (mitogen-activated protein kinase) superfamily of proteins consists of four separate signalling cascades: the c-Jun N-terminal kinase or stress-activated protein kinases (JNK/SAPK); the ERKs (extracellular-signal-regulated kinases); the ERK5 or big MAPK1; and the p38 MAPK group of protein kinases, all of which are highly conserved. To date, our studies have focused on defining the role of the p38 MAPK pathway during preimplantation development. p38 MAPK regulates actin filament formation through the downstream kinases MAPKAPK2/3 (MAPK-activated protein kinase 2/3) or MAPKAPK5 [PRAK (p38 regulated/activated kinase)] and subsequently through HSP25/27 (heat-shock protein 25/27). We recently reported that 2-cell-stage murine embryos treated with cytokine-suppressive anti-inflammatory drugs (CSAIDtrade mark; SB203580 and SB220025) display a reversible blockade of development at the 8-16-cell stage, indicating that p38 (MAPK) activity is required to complete murine preimplantation development. In the present study, we have investigated the stage-specific action and role of p38 MAPK in regulating filamentous actin during murine preimplantation development. Treatment of 8-cell-stage embryos with SB203580 and SB220025 (CSAIDtrade mark) resulted in a blockade of preimplantation development, loss of rhodamine phalloidin fluorescence, MK-p (phosphorylated MAPKAPK2/3), HSP-p (phosphorylated HSP25/27) and a redistribution of alpha-catenin immunofluorescence by 12 h of treatment. In contrast, treatment of 2- and 4-cell-stage embryos with CSAIDtrade mark drugs resulted in a loss of MK-p and HSP-p, but did not result in a loss of rhodamine phalloidin fluorescence. All these effects of p38 MAPK inhibition were reversed upon removal of the inhibitor, and development resumed in a delayed but normal manner to the blastocyst stage. Treatment of 8-cell embryos with PD098059 (ERK pathway inhibitor) did not affect development or fluorescence of MK-p, HSP-p or rhodamine phalloidin

  4. Tangeretin induces cell-cycle G1 arrest through inhibiting cyclin-dependent kinases 2 and 4 activities as well as elevating Cdk inhibitors p21 and p27 in human colorectal carcinoma cells.

    PubMed

    Pan, Min-Hsiung; Chen, Wei-Jen; Lin-Shiau, Shoei-Yn; Ho, Chi-Tang; Lin, Jen-Kun

    2002-10-01

    Tangeretin (5,6,7,8,4'-pentamethoxyflavone) is concentrated in the peel of citrus fruits. DNA flow cytometric analysis indicated that tangeretin blocked cell cycle progression at G1 phase in colorectal carcinoma COLO 205 cells. Over a 24 h exposure to tangeretin, the degree of phosphorylation of Rb was decreased after 12 h and G1 arrest developed. The protein expression of cyclins A, D1, and E reduced slightly under the same conditions. Immunocomplex kinase experiments showed that tangeretin inhibited the activities of cyclin-dependent kinases 2 (Cdk2) and 4 (Cdk4) in a dose-dependent manner in the cell-free system. As the cells were exposed to tangeretin (50 microM) over 48 h a gradual loss of both Cdk2 and 4 kinase activities occurred. Tangeretin also increased the content of the Cdk inhibitor p21 protein and this effect correlated with the elevation in p53 levels. In addition, tangeretin also increased the level of the Cdk inhibitor p27 protein within 18 h. These results suggest that tangeretin either exerts its growth-inhibitory effects through modulation of the activities of several key G1 regulatory proteins, such as Cdk2 and Cdk4, or mediates the increase of Cdk inhibitors p21 and p27.

  5. Partial purification and characterization of a Ca(2+)-dependent protein kinase from pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Dauwalder, M.; Roux, S. J.

    1991-01-01

    Almost all the Ca(2+)-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 x 10(-7) molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca(2+)-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca(2+)-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.

  6. ERK and p38 Upregulation versus Bcl-6 Downregulation in Rat Kidney Epithelial Cells Exposed to Prolonged Hypoxia.

    PubMed

    Luo, Fengbao; Shi, Jian; Shi, Qianqian; He, Xiaozhou; Xia, Ying

    2017-08-01

    Hypoxia is a common cause of kidney injury and a major issue in kidney transplantation. Mitogen-activated protein kinases (MAPKs) are involved in the cellular response to hypoxia, but the precise roles of MAPKs in renal cell reactions to hypoxic stress are not well known yet. This work was conducted to investigate the regulation of extracellular signal-regulated kinase-1 and -2 (ERK1/2) and p38 and their signaling-relevant molecules in kidney epithelial cells exposed to prolonged hypoxia. Rat kidney epithelial cells Normal Rat Kidney (NRK)-52E were exposed to hypoxic conditions (1% O 2 ) for 24 to 72 h. Cell morphology was examined by light microscopy, and cell viability was checked by 3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxypheny]-2-[4-sulfophenyl]-2H-tetrazolium (MTS). The expression of ERK1/2 and p38 MAPK, as well as their signaling-related molecules, was measured by Western blot and real-time polymerase chain (RT-PCR) reaction. At the 1% oxygen level, cell morphology had no appreciable changes compared to the control up to 72 h of exposure under light microscopy, whereas the results of MTS showed a slight but significant reduction in cell viability after 72 h of hypoxia. On the other hand, ERK1/2 and p38 phosphorylation remarkably increased in these cells after 24 to 72 h of hypoxia. In sharp contrast, the expression of transcription factor B-cell lymphoma 6 (Bcl-6) was significantly downregulated in response to hypoxic stress. Other intracellular molecules relevant to the ERK1/2 and p38 signaling pathway, such as protein kinase A, protein kinase C, Bcl-2, nuclear factor erythroid 2-related factor 2, tristetraprolin, and interleukin-10(IL-10), had no significant alterations after 24 to 72 h of hypoxic exposure. We conclude that hypoxic stress increases the phosphorylation of both ERK1/2 and p38 but decreases the level of Bcl-6 in rat kidney epithelial cells.

  7. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    PubMed Central

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  8. Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50Cdc37 complex and direct interactions with amino acids residues of Hsp90

    PubMed Central

    Li, Yanyan; Karagöz, G. Elif; Seo, Young Ho; Zhang, Tao; Jiang, Yiqun; Yu, Yanke; Duarte, Afonso M.S.; Schwartz, Steven J.; Boelens, Rolf; Carroll, Kate; Rüdiger, Stefan G. D.; Sun, Duxin

    2011-01-01

    Sulforaphane [1-isothiocyanato-4-(methyl-sulfinyl) butane)], an isothiocyanate derived from cruciferous vegetables, has been shown to possess potent chemopreventive activity. We analyzed the effect of sulforaphane on the proliferation of pancreatic cancer cells. Sulforaphane inhibited pancreatic cancer cell growth in vitro with the IC50's around 10-15 μM and induced apoptosis. In pancreatic cancer xenograft mouse model, administration of sulforaphane showed remarkable inhibition of tumor growth without apparent toxicity noticed. We found that sulforaphane induced the degradation of heat shock protein 90 (Hsp90) client proteins and blocked the interaction of Hsp90 with its cochaperone p50Cdc37 in pancreatic cancer cells. Using Nuclear Magnetic Resonance Spectroscopy (NMR) with an isoleucine-specific labeling strategy, we overcame the protein size limit of conventional NMR and studied the interaction of sulforaphane with full-length Hsp90 dimer (170 kDa) in solution. NMR revealed multiple chemical shifts in sheet 2 and the adjacent loop in Hsp90 N-terminal domain after incubation of Hsp90 with sulforaphane. Liquid Chromatography coupled to Mass Spectrometry (LC-MS) further mapped a short peptide in this region that was tagged with sulforaphane. These data suggest a new mechanism of sulforaphane that disrupts protein-protein interaction in Hsp90 complex for its chemopreventive activity. PMID:22444872

  9. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses.

    PubMed

    Barbosa, Inês C R; Shikata, Hiromasa; Zourelidou, Melina; Heilmann, Mareike; Heilmann, Ingo; Schwechheimer, Claus

    2016-12-15

    Polar transport of the phytohormone auxin through PIN-FORMED (PIN) auxin efflux carriers is essential for the spatiotemporal control of plant development. The Arabidopsis thaliana serine/threonine kinase D6 PROTEIN KINASE (D6PK) is polarly localized at the plasma membrane of many cells where it colocalizes with PINs and activates PIN-mediated auxin efflux. Here, we show that the association of D6PK with the basal plasma membrane and PINs is dependent on the phospholipid composition of the plasma membrane as well as on the phosphatidylinositol phosphate 5-kinases PIP5K1 and PIP5K2 in epidermis cells of the primary root. We further show that D6PK directly binds polyacidic phospholipids through a polybasic lysine-rich motif in the middle domain of the kinase. The lysine-rich motif is required for proper PIN3 phosphorylation and for auxin transport-dependent tropic growth. Polybasic motifs are also present at a conserved position in other D6PK-related kinases and required for membrane and phospholipid binding. Thus, phospholipid-dependent recruitment to membranes through polybasic motifs might not only be required for D6PK-mediated auxin transport but also other processes regulated by these, as yet, functionally uncharacterized kinases. © 2016. Published by The Company of Biologists Ltd.

  10. New approaches to the treatment of inflammatory disorders small molecule inhibitors of p38 MAP kinase.

    PubMed

    Peifer, Christian; Wagner, Gerd; Laufer, Stefan

    2006-01-01

    The therapy of chronic inflammatory diseases like rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) has recently been enriched by the successful launch of the anti-cytokine biologicals Etanercept (tumor necrosis factor (TNF) receptor-p75 Fc fusion protein), Infliximab (chimeric anti-human TNF-alpha monoclonal antibody), Adalimumab (recombinant human anti-human TNF-alpha monoclonal antibody) and Anakinra (recombinant form of human interleukin 1beta (IL-1) receptor antagonist). The success of these novel treatments has impressively demonstrated the clinical benefit that can be gained from therapeutic intervention in cytokine signalling, highlighting the central role of proinflammatory cytokine systems like IL-1alpha and TNF-alpha to be validated targets. However, all of the anti-cytokine biologicals available to date are proteins, and therefore suffering to a varying degree from the general disadvantages associated with protein drugs. Therefore, small molecular, orally active anti-cytokine agents, which target specific pathways of proinflammatory cytokines, would offer an attractive alternative to anti-cytokine biologicals. A number of molecular targets have been identified for the development of such small molecular agents but p38 mitogen-activated protein (MAP) kinase occupies a central role in the regulation of IL-1beta and TNF-alpha signalling network at both the transcriptional and translational level. Since the mid-1990s, an immense number of inhibitors of p38 MAP kinase has been characterised in vitro, and to date several compounds have been advanced into clinical trials. This review will highlight the correlation between effective inhibition of p38 MAP kinase at the molecular target and cellular activity in functional assays of cytokine, particularly TNF-alpha and IL-1beta production. SAR will be discussed regarding activity at the enzyme target, but also with regard to properties required for efficient in vitro and in vivo activity.

  11. The Bcr Kinase Downregulates Ras Signaling by Phosphorylating AF-6 and Binding to Its PDZ Domain

    PubMed Central

    Radziwill, G.; Erdmann, R. A.; Margelisch, U.; Moelling, K.

    2003-01-01

    The protein kinase Bcr is a negative regulator of cell proliferation and oncogenic transformation. We identified Bcr as a ligand for the PDZ domain of the cell junction and Ras-interacting protein AF-6. The Bcr kinase phosphorylates AF-6, which subsequently allows efficient binding of Bcr to AF-6, showing that the Bcr kinase is a regulator of the PDZ domain-ligand interaction. Bcr and AF-6 colocalize in epithelial cells at the plasma membrane. In addition, Bcr, AF-6, and Ras form a trimeric complex. Bcr increases the affinity of AF-6 to Ras, and a mutant of AF-6 that lacks a specific phosphorylation site for Bcr shows a reduced binding to Ras. Wild-type Bcr, but not Bcr mutants defective in binding to AF-6, interferes with the Ras-dependent stimulation of the Raf/MEK/ERK pathway. Since AF-6 binds to Bcr via its PDZ domain and to Ras via its Ras-binding domain, we propose that AF-6 functions as a scaffold-like protein that links Bcr and Ras to cellular junctions. We suggest that this trimeric complex is involved in downregulation of Ras-mediated signaling at sites of cell-cell contact to maintain cells in a nonproliferating state. PMID:12808105

  12. HSP27 knockdown produces synergistic induction of apoptosis by HSP90 and kinase inhibitors in glioblastoma multiforme.

    PubMed

    Belkacemi, Louiza; Hebb, Matthew O

    2014-09-01

    The heat-shock proteins HSP27 and HSP90 perpetuate the malignant nature of glioblastoma multiforme (GBM) and offer promise as targets for novel cancer therapeutics. The present study sought to define synergistic antitumor benefits of concurrent HSP27-knockdown and the HSP90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) or, comparatively, the non-selective kinase inhibitor, staurosporine, in GBM cells. Dose-response relations were determined for 17-AAG and staurosporine in three GBM cell lines. HSP27-targeted siRNA was administered alone or in combination with subtherapeutic concentrations of each drug and cells were evaluated for viability, proliferation and apoptosis. Adjuvant HSP27 knockdown with 17-AAG or staurosporine produced marked and synergistic decrease in GBM cell viability and proliferation, with robust elevation of apoptotic fractions and caspase-3 activation. HSP27 knockdown confers potent chemosensitization of GBM cells. These novel data support the development of HSP-targeting strategies and, specifically, anti-HSP27 agents for the treatment of GBM. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Downstream of human NDR kinases: impacting on c-myc and p21 protein stability to control cell cycle progression.

    PubMed

    Cornils, Hauke; Kohler, Reto S; Hergovich, Alexander; Hemmings, Brian A

    2011-06-15

    The mammalian genome encodes four members of the NDR/LATS kinase family: NDR1 (STK38), NDR2 (STK38L), LATS1 and LATS2, which are highly conserved from yeast to man. Members of the NDR/LATS kinase family have been implicated in a variety of biological processes ranging from cell division and morphology to apoptosis and tumor suppression. In mammals, LATS1/2 function as central parts of the HIPPO tumor suppressor pathway by restricting the activity of the YAP/TAZ proto-oncogenes. Recent evidence suggested that NDR1/2 are also part of an extended HIPPO tumor suppressor pathway. Apart from functions in apoptosis signaling and tumor suppression, NDR1/2 have been implicated in controlling centrosome duplication and mitotic chromosome alignment downstream of the HIPPO kinase homologs MST1 and MST2. Significantly, we also reported recently that NDR1/2 are controlling G 1/S transition downstream of a third MST family member MST3. Intriguingly, this newly described MST3-NDR1/2 axis promotes G 1 progression by stabilizing c-myc and preventing p21 accumulation, indicating a potential pro-tumorigenic role for NDR kinases. Here, we discuss these novel cell cycle functions of NDR kinases in a broader context and elaborate on possible explanations for the opposing functions of NDR kinases in normal and tumor biology.

  14. Conformational Changes of an Interdomain Linker Mediate Mechanical Signal Transmission in Sensor Kinase BvgS

    PubMed Central

    Lesne, Elodie; Dupré, Elian; Locht, Camille

    2017-01-01

    ABSTRACT The whooping cough agent, Bordetella pertussis, controls the expression of its large virulence regulon in a coordinated manner through the two-component system BvgAS. BvgS is a dimeric, multidomain sensor kinase. Each monomer comprises, in succession, tandem periplasmic Venus flytrap (VFT) domains, a transmembrane segment, a cytoplasmic Per-Arnt-Sim (PAS) domain, a kinase module, and additional phosphorelay domains. BvgS shifts between kinase and phosphatase modes of activity in response to chemical modulators that modify the clamshell motions of the VFT domains. We have shown previously that this regulation involves a shift between distinct states of conformation and dynamics of the two-helix coiled-coil linker preceding the enzymatic module. In this work, we determined the mechanism of signal transduction across the membrane via a first linker, which connects the VFT and PAS domains of BvgS, using extensive cysteine cross-linking analyses and other approaches. Modulator perception by the periplasmic domains appears to trigger a small, symmetrical motion of the transmembrane segments toward the periplasm, causing rearrangements of the noncanonical cytoplasmic coiled coil that follows. As a consequence, the interface of the PAS domains is modified, which affects the second linker and eventually causes the shift of enzymatic activity. The major features of this first linker are well conserved among BvgS homologs, indicating that the mechanism of signal transduction unveiled here is likely to be generally relevant for this family of sensor kinases. IMPORTANCE Bordetella pertussis produces virulence factors coordinately regulated by the two-component system BvgAS. BvgS is a sensor kinase, and BvgA is a response regulator that activates gene transcription when phosphorylated by BvgS. Sensor kinases homologous to BvgS are also found in other pathogens. Our goal is to decipher the mechanisms of BvgS signaling, since these sensor kinases may represent new targets

  15. p38 Mitogen-Activated Protein Kinase-γ Inhibition by Long-Acting β2 Adrenergic Agonists Reversed Steroid Insensitivity in Severe Asthma

    PubMed Central

    Mercado, Nicholas; To, Yasuo; Kobayashi, Yoshiki; Adcock, Ian M.; Barnes, Peter J.

    2011-01-01

    Corticosteroid insensitivity (CI) is a major barrier to treating severe asthma. Despite intensive research, the molecular mechanism of CI remains uncertain. The aim of this study was to determine abnormality in corticosteroid action in severe asthma and to identify the molecular mechanism of the long-acting β2-adrenergic agonists (LABAs) formoterol and salmeterol on restoration of corticosteroid sensitivity in severe asthma in vitro. Peripheral blood mononuclear cells (PBMCs) were obtained from 16 subjects with severe corticosteroid-insensitive asthma, 6 subjects with mild corticosteroid-sensitive asthma, and 11 healthy volunteers. Corticosteroid (dexamethasone) sensitivity was determined on tumor necrosis factor-α (TNF-α)-induced interleukin (IL)-8 production. Glucocorticoid receptor (GR) phosphorylation and kinase phosphorylation were evaluated by immunoprecipitation-Western blotting analysis and kinase phosphorylation array in IL-2/IL-4-treated corticosteroid insensitive model in PBMCs. In vitro corticosteroid sensitivity on TNF-α-induced IL-8 production was significantly lower in patients with severe asthma than in healthy volunteers and patients with mild asthma. This CI seen in severe asthma was associated with reduced GR nuclear translocation and with hyperphosphorylation of GR, which were reversed by LABAs. In IL-2/IL-4-treated PBMCs, LABAs inhibited phosphorylation of Jun-NH2-terminal kinase and p38 mitogen-activated protein kinase-γ (p38MAPK-γ) as well as GR. In addition, cells with p38MAPK-γ knockdown by RNA interference did not develop CI in the presence of IL-2/IL-4. Furthermore, p38MAPK-γ protein expression was up-regulated in PBMCs from some patients with severe asthma. In conclusion, p38 MAPK-γ activation impairs corticosteroid action and p38 MAPK-γ inhibition by LABAs has potential for the treatment of severe asthma. PMID:21917909

  16. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism.

    PubMed

    Zhang, Xuxiao; Vadas, Oscar; Perisic, Olga; Anderson, Karen E; Clark, Jonathan; Hawkins, Phillip T; Stephens, Len R; Williams, Roger L

    2011-03-04

    Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. The structure of a p110β/p85β complex identifies an inhibitory function for the C-terminal SH2 domain (cSH2) of the p85 regulatory subunit. Mutagenesis of a cSH2 contact residue activates downstream signaling in cells. This inhibitory contact ties up the C-terminal region of the p110β catalytic subunit, which is essential for lipid kinase activity. In vitro, p110β basal activity is tightly restrained by contacts with three p85 domains: the cSH2, nSH2, and iSH2. RTK phosphopeptides relieve inhibition by nSH2 and cSH2 using completely different mechanisms. The binding site for the RTK's pYXXM motif is exposed on the cSH2, requiring an extended RTK motif to reach and disrupt the inhibitory contact with p110β. This contrasts with the nSH2 where the pY-binding site itself forms the inhibitory contact. This establishes an unusual mechanism by which p85 SH2 domains contribute to RTK signaling specificities. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Differential Properties of Cytomegalovirus pUL97 Kinase Isoforms Affect Viral Replication and Maribavir Susceptibility

    PubMed Central

    Webel, Rike; Hakki, Morgan; Prichard, Mark N.; Rawlinson, William D.; Marschall, Manfred

    2014-01-01

    ABSTRACT The human cytomegalovirus (HCMV)-encoded kinase pUL97 is required for efficient viral replication. Previous studies described two isoforms of pUL97, the full-length isoform (M1) and a smaller isoform likely resulting from translation initiation at codon 74 (M74). Here, we report the detection of a third pUL97 isoform during viral infection resulting from translation initiation at codon 157 (isoform M157). The consistent expression of isoform M157 as a minor component of pUL97 during infection with clinical and laboratory-adapted HCMV strains was suppressed when codon 157 was mutagenized. Viral mutants expressing specific isoforms were generated to compare their growth and drug susceptibility phenotypes, as well as pUL97 intracellular localization patterns and kinase activities. The exclusive expression of isoform M157 resulted in substantially reduced viral growth and resistance to the pUL97 inhibitor maribavir while retaining susceptibility to ganciclovir. Confocal imaging demonstrated reduced nuclear import of amino-terminal deletion isoforms compared to isoform M1. Isoform M157 showed reduced efficiency of various substrate protein interactions and autophosphorylation, whereas Rb phosphorylation was preserved. These results reveal differential properties of pUL97 isoforms that affect viral replication, with implications for the antiviral efficacy of maribavir. IMPORTANCE The HCMV UL97 kinase performs important functions in viral replication that are targeted by the antiviral drug maribavir. Here, we describe a naturally occurring short isoform of the kinase that when expressed by itself in a recombinant virus results in altered intracellular localization, impaired growth, and high-level resistance to maribavir compared to those of the predominant full-length counterpart. This is another factor to consider in explaining why maribavir appears to have variable antiviral activity in cell culture and in vivo. PMID:24522923

  18. p110α Hot Spot Mutations E545K and H1047R Exert Metabolic Reprogramming Independently of p110α Kinase Activity.

    PubMed

    Chaudhari, Aditi; Krumlinde, Daniel; Lundqvist, Annika; Akyürek, Levent M; Bandaru, Sashidhar; Skålén, Kristina; Ståhlman, Marcus; Borén, Jan; Wettergren, Yvonne; Ejeskär, Katarina; Rotter Sopasakis, Victoria

    2015-10-01

    The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit p110α is the most frequently mutated kinase in human cancer, and the hot spot mutations E542K, E545K, and H1047R are the most common mutations in p110α. Very little is known about the metabolic consequences of the hot spot mutations of p110α in vivo. In this study, we used adenoviral gene transfer in mice to investigate the effects of the E545K and H1047R mutations on hepatic and whole-body glucose metabolism. We show that hepatic expression of these hot spot mutations results in rapid hepatic steatosis, paradoxically accompanied by increased glucose tolerance, and marked glycogen accumulation. In contrast, wild-type p110α expression does not lead to hepatic accumulation of lipids or glycogen despite similar degrees of upregulated glycolysis and expression of lipogenic genes. The reprogrammed metabolism of the E545K and H1047R p110α mutants was surprisingly not dependent on altered p110α lipid kinase activity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. P-S & S-P Elastic Wave Conversions from Linear Arrays of Oriented Microcracks

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Natural and induced processes can produce oriented mechanical discontinuities such as en echelon cracks, fractures and faults. Previous research has shown that compressional to shear (P-S) wave conversions occur at normal incidence to a fracture because of cross-coupling fracture compliances (Nakagawa et al., 2000). Here, experiments and computer simulation are presented to demonstrate the link among cross-coupling stiffness, microcrack orientation and energy partitioning among P, S, and P-S/S-P waves. A FormLabs 2 3D printer was used to fabricate 7 samples (50 mm x 50 mm x 100 mm) with linear arrays of microcracks oriented at 0, 15, 30, 45, 60, 75, and 900 with a print resolution of 0.025 mm. The microcracks were elliptical in cross-sections (2 mm long by 1 mm wide), through the 50 mm thickness of sample, and spaced 3 mm (center-to-center for adjacent cracks). A 25 mm length of each sample contained no microcracks to act as a reference material. Broadband transducers (0.2-1.5 MHz) were used to transmit and receive P and polarized S wave signals that were propagated at normal incidence to the linear array of microcracks. P-wave amplitude increased, while S-wave amplitude remained relatively constant, as the microcrack orientation increased from 0o to 90o. At normal incidence, P-S and S-P wave conversions emerged and increased in amplitude as the crack inclination increased from 00 to 450. From 450 to 900, the amplitude of these converted modes decreased. Between negative and positive crack angles, the P-to-S and S-to-P waves were 1800 phase reversed. The observed energy partitioning matched the computed compliances obtained from numerical simulations with ABAQUS. The cross-coupling compliance for cracks inclined at 450 was found to be the smallest magnitude. 3D printing enabled the study of microstructural effects on macro-scale wave measurements. Information on the orientation of microcracks or even en echelon fractures and faults is contained in P-S conversions

  20. CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming

    PubMed Central

    Woo, Joo Yong; Jeong, Kwang Ju; Kim, Young Jin; Paek, Kyung-Hee

    2016-01-01

    In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reactive oxygen species burst, secondary metabolite production, mitogen-activated protein kinase activation, and defense-related gene expression in response to Tobacco mosaic virus pathotype P0 (TMV-P0) infection. Suppression of CaLecRK-S.5 expression significantly enhanced the susceptibility to Pepper mild mottle virus pathotype P1,2,3, Xanthomonas campestris pv. vesicatoria, Phytophthora capsici, as well as TMV-P0. Additionally, β-aminobutyric acid treatment and a systemic acquired resistance assay revealed that CaLecRK-S.5 is involved in priming of plant immunity. Pre-treatment with β-aminobutyric acid before viral infection restored the reduced disease resistance phenotypes shown in CaLecRK-S.5-silenced plants. Systemic acquired resistance was also abolished in CaLecRK-S.5-silenced plants. Finally, RNA sequencing analysis indicated that CaLecRK-S.5 positively regulates plant immunity at the transcriptional level. Altogether, these results suggest that CaLecRK-S.5-mediated broad-spectrum resistance is associated with the regulation of priming. PMID:27647723

  1. STS-90 M.S. Williams and back-up P.S. Mukai, participate in CEIT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Mission Specialist Dafydd 'Dave' Rhys Williams, M.D., with the Canadian Space Agency, and back-up Payload Specialist Chiaki Mukai, M.D., Ph.D., with the National Space Development Agency of Japan, examine items to be used during the Crew Equipment Interface Test (CEIT) in Kennedy Space Center's (KSC's) Operations and Checkout Building, where the Neurolab payload is undergoing processing. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-90 is scheduled to launch aboard the Shuttle Columbia from KSC on April 2. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system.

  2. Ethylene Rapidly Up-Regulates the Activities of Both Monomeric GTP-Binding Proteins and Protein Kinase(s) in Epicotyls of Pea1

    PubMed Central

    Moshkov, Igor E.; Novikova, Galina V.; Mur, Luis A.J.; Smith, Aileen R.; Hall, Michael A.

    2003-01-01

    It is demonstrated that, in etiolated pea (Pisum sativum) epicotyls, ethylene affects the activation of both monomeric GTP-binding proteins (monomeric G-proteins) and protein kinases. For monomeric G-proteins, the effect may be a rapid (2 min) and bimodal up-regulation, a transiently unimodal activation, or a transient down-regulation. Pretreatment with 1-methylcyclopropene abolishes the response to ethylene overall. Immunoprecipitation studies indicate that some of the monomeric G-proteins affected may be of the Rab class. Protein kinase activity is rapidly up-regulated by ethylene, the effect is inhibited by 1-methylcyclopropene, and the activation is bimodal. Immunoprecipitation indicates that the kinase(s) are of the MAP kinase ERK1 group. It is proposed that the data support the hypothesis that a transduction chain exists that is separate and antagonistic to that currently revealed by studies on Arabidopsis mutants. PMID:12692330

  3. Acoustic and elastic properties of Sn(2)P(2)S(6) crystals.

    PubMed

    Mys, O; Martynyuk-Lototska, I; Grabar, A; Vlokh, R

    2009-07-01

    We present the results concerned with acoustic and elastic properties of Sn(2)P(2)S(6) crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.

  4. Solution structure of Syrian hamster prion protein rPrP(90-231).

    PubMed

    Liu, H; Farr-Jones, S; Ulyanov, N B; Llinas, M; Marqusee, S; Groth, D; Cohen, F E; Prusiner, S B; James, T L

    1999-04-27

    NMR has been used to refine the structure of Syrian hamster (SHa) prion protein rPrP(90-231), which is commensurate with the infectious protease-resistant core of the scrapie prion protein PrPSc. The structure of rPrP(90-231), refolded to resemble the normal cellular isoform PrPC spectroscopically and immunologically, has been studied using multidimensional NMR; initial results were published [James et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 10086-10091]. We now report refinement with better definition revealing important structural and dynamic features which can be related to biological observations pertinent to prion diseases. Structure refinement was based on 2778 unambiguously assigned nuclear Overhauser effect (NOE) connectivities, 297 ambiguous NOE restraints, and 63 scalar coupling constants (3JHNHa). The structure is represented by an ensemble of 25 best-scoring structures from 100 structures calculated using ARIA/X-PLOR and further refined with restrained molecular dynamics using the AMBER 4.1 force field with an explicit shell of water molecules. The rPrP(90-231) structure features a core domain (residues 125-228), with a backbone atomic root-mean-square deviation (RMSD) of 0.67 A, consisting of three alpha-helices (residues 144-154, 172-193, and 200-227) and two short antiparallel beta-strands (residues 129-131 and 161-163). The N-terminus (residues 90-119) is largely unstructured despite some sparse and weak medium-range NOEs implying the existence of bends or turns. The transition region between the core domain and flexible N-terminus, i.e., residues 113-128, consists of hydrophobic residues or glycines and does not adopt any regular secondary structure in aqueous solution. There are about 30 medium- and long-range NOEs within this hydrophobic cluster, so it clearly manifests structure. Multiple discrete conformations are evident, implying the possible existence of one or more metastable states, which may feature in conversion of PrPC to PrPSc. To

  5. Purification and kinetic characterization of recombinant human mitogen-activated protein kinase kinase kinase COT and the complexes with its cellular partner NF-kappa B1 p105.

    PubMed

    Jia, Yong; Quinn, Christopher M; Bump, Nancy J; Clark, Kevin M; Clabbers, Anca; Hardman, Jennifer; Gagnon, Andrew; Kamens, Joanne; Tomlinson, Medha J; Wishart, Neil; Allen, Hamish

    2005-09-01

    Cancer osaka thyroid (COT), a human MAP 3 K, is essential for lipopolysaccharide activation of the Erk MAPK cascade in macrophages. COT 30--467 is insoluble, whereas low levels of COT 30--397 can be expressed, but this protein is unstable. However, both COT 30--467 and COT 30--397 are expressed in a soluble and stable form when produced in complex with the C-terminal half of p105. The k(cat) of COT 30--397 is reduced approximately 47--fold in the COT 30--467/p105 Delta N complex. COT prefers Mn(2+) to Mg(2+) as the ATP metal cofactor, exhibiting an unusually high ATP K(m) in the presence of Mg(2+). When using Mn(2+) as the cofactor, the ATP K(m) is reduced to a level typical of most kinases. In contrast, the binding affinity of COT for its other substrate MEK is cofactor independent. Our results using purified proteins indicate that p105 binding improves COT solubility and stability while down-regulating kinase activity, consistent with cellular data showing that p105 functions as an inhibitor of COT.

  6. No-flow ischemia inhibits insulin signaling in heart by decreasing intracellular pH.

    PubMed

    Beauloye, C; Bertrand, L; Krause, U; Marsin, A S; Dresselaers, T; Vanstapel, F; Vanoverschelde, J L; Hue, L

    2001-03-16

    Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pH(i)) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pH(i) and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pH(i) and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pH(i), being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pH(i).

  7. Yttrium-90 DOTA peptide chimeric L6 toxicity and therapeutic potential in nude mice with human breast tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeNardo, S.J.; Zhong, G.R.; Miers, L.A.

    1994-05-01

    Chimeric L6 MoAb (ChL6) as I-131 ChL6 has shown therapeutic promise for radioimmunotherapy in breast cancer patients. In order to enhance this therapeutic potential, we have developed an yttrium-90 (Y-90) ChL6 radiopharmaceutical by conjugating Y-90 DOTA peptide to ChL6 using DOTA-Gly-3L(p-isothiocyanato)-Phe-NH2. This DOTA peptide forms neutral complexes with trivalent metals allowing excess chelating agents and divalent metal complexes to be removed by ion exchange chromatography prior to conjugation, thus yielding a high Y-90/DOTA ratio on the final immune conjugate. Groups of 9-10 nude mice bearing subcutaneous 40-200 mg HBT 3477 xenographs were given 150,250,350,400,450 or 500 {mu}Ci of Y-90 DOTAmore » peptide ChL6 (specific activity 1.1-3.5 {mu}Ci/{mu}g). Live cell immunoreactivity was 73-80% and 100% Y-90 moved with ChL6 on SEC3000 HPLC and TLC. Peripheral blood counts, weight, tumor size, blood and body clearance of Y-90 were monitored for 10 weeks. Whole body autoradiography was performed at 1,3 and 5 days post injection at the 250 and 450 {mu}Ci dose levels. No mouse that received less than 450 {mu}Ci of Y-90 died. The LD50/30 was 479 {mu}Ci. The nadirs of RBC, WBC and platelets were 10-20 days post 479 {mu}Ci. The nadirs of RBC, WBC and platelets were 10-20 days post injection. The depth of the nadir was dose dependent but occured in all groups. In the lowest dose group having substantial tumor response (350{mu}Ci) mean tumor volume decreased by >50% and 5 of 19 tumors completely regressed over the 10 week follow-up. This is the greatest LD50/30 for Y-90 immunoconjugate reported in nude mice to date. These results confirm the significance of the biodistribution and autoradiographic studies demonstrating tumor uptake of 18 {plus_minus} 8% ID/gm with 3/1 tumor to liver and 8/1 tumor to bone ratios 1, 3, and 5 days post injection.« less

  8. Rho-associated coiled-coil containing kinases (ROCK)

    PubMed Central

    Julian, Linda; Olson, Michael F

    2014-01-01

    Rho-associated coiled-coil containing kinases (ROCK) were originally identified as effectors of the RhoA small GTPase.1–5 They belong to the AGC family of serine/threonine kinases6 and play vital roles in facilitating actomyosin cytoskeleton contractility downstream of RhoA and RhoC activation. Since their discovery, ROCK kinases have been extensively studied, unveiling their manifold functions in processes including cell contraction, migration, apoptosis, survival, and proliferation. Two mammalian ROCK homologs have been identified, ROCK1 (also called ROCK I, ROKβ, Rho-kinase β, or p160ROCK) and ROCK2 (also known as ROCK II, ROKα, or Rho kinase), hereafter collectively referred to as ROCK. In this review, we will focus on the structure, regulation, and functions of ROCK. PMID:25010901

  9. CASC15-S is a tumor suppressor lncRNA at the 6p22 neuroblastoma susceptibility locus

    PubMed Central

    Russell, Mike R.; Penikis, Annalise; Oldridge, Derek A.; Alvarez-Dominguez, Juan R.; McDaniel, Lee; Diamond, Maura; Padovan, Olivia; Raman, Pichai; Li, Yimei; Wei, Jun S.; Zhang, Shile; Gnanchandran, Janahan; Seeger, Robert; Asgharzadeh, Shahab; Khan, Javed; Diskin, Sharon J.; Maris, John M.; Cole, Kristina A.

    2015-01-01

    Chromosome 6p22 was identified recently as a neuroblastoma susceptibility locus, but its mechanistic contributions to tumorigenesis are as yet undefined. Here we report that the most highly significant single nucleotide polymorphism (SNP) associations reside within CASC15, a long non-coding RNA that we define as a tumor suppressor at 6p22. Low-level expression of a short CASC15 isoform (CASC15-S) associated highly with advanced neuroblastoma and poor patient survival. In human neuroblastoma cells, attenuating CASC15-S increased cellular growth and migratory capacity. Gene expression analysis revealed downregulation of neuroblastoma-specific markers in cells with attenuated CASC15-S, with concomitant increases in cell adhesion and extracellular matrix transcripts. Altogether, our results point to CASC15-S as a mediator of neural growth and differentiation, which impacts neuroblastoma initiation and progression. PMID:26100672

  10. Inhibition of p38 mitogen-activated protein kinase impairs influenza virus-induced primary and secondary host gene responses and protects mice from lethal H5N1 infection.

    PubMed

    Börgeling, Yvonne; Schmolke, Mirco; Viemann, Dorothee; Nordhoff, Carolin; Roth, Johannes; Ludwig, Stephan

    2014-01-03

    Highly pathogenic avian influenza viruses (HPAIV) induce severe inflammation in poultry and men. One characteristic of HPAIV infections is the induction of a cytokine burst that strongly contributes to viral pathogenicity. This cell-intrinsic hypercytokinemia seems to involve hyperinduction of p38 mitogen-activated protein kinase. Here we investigate the role of p38 MAPK signaling in the antiviral response against HPAIV in mice as well as in human endothelial cells, the latter being a primary source of cytokines during systemic infections. Global gene expression profiling of HPAIV-infected endothelial cells in the presence of the p38-specific inhibitor SB 202190 revealed that inhibition of p38 MAPK leads to reduced expression of IFNβ and other cytokines after H5N1 and H7N7 infection. More than 90% of all virus-induced genes were either partially or fully dependent on p38 signaling. Moreover, promoter analysis confirmed a direct impact of p38 on the IFNβ promoter activity. Furthermore, upon treatment with IFN or conditioned media from HPAIV-infected cells, p38 controls interferon-stimulated gene expression by coregulating STAT1 by phosphorylation at serine 727. In vivo inhibition of p38 MAPK greatly diminishes virus-induced cytokine expression concomitant with reduced viral titers, thereby protecting mice from lethal infection. These observations show that p38 MAPK acts on two levels of the antiviral IFN response. Initially the kinase regulates IFN induction and, at a later stage, p38 controls IFN signaling and thereby expression of IFN-stimulated genes. Thus, inhibition of MAP kinase p38 may be an antiviral strategy that protects mice from lethal influenza by suppressing excessive cytokine expression.

  11. Pump-probe photoelectron velocity-map imaging of autoionizing singly excited 4s{sup 1}4p{sup 6}np{sup 1}(n=7,8) and doubly excited 4s{sup 2}4p{sup 4}5s{sup 1}6p{sup 1} resonances in atomic krypton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, Benjamin; Haber, Louis H.; Leone, Stephen R.

    2011-10-15

    Pump-probe photoelectron velocity-map imaging, using 27-eV high-harmonic excitation and 786-nm ionization, is used to resolve overlapping autoionizing resonances in atomic krypton, obtaining two-photon photoelectron angular distributions (PADs) for singly and doubly excited states. Two features in the photoelectron spectrum are assigned to singly excited 4s{sup 1}4p{sup 6}np{sup 1} (n = 7,8) configurations and four features provide information about double excitation configurations. The anisotropy parameters for the singly excited 7p configuration are measured to be {beta}{sub 2} = 1.61 {+-} 0.06 and {beta}{sub 4} = 1.54 {+-} 0.16 while the 8p configuration gives {beta}{sub 2} = 1.23 {+-} 0.19 and {beta}{submore » 4} = 0.60 {+-} 0.15. These anisotropies most likely represent the sum of overlapping PADs from states of singlet and triplet spin multiplicities. Of the four bands corresponding to ionization of doubly excited states, two are assigned to 4s{sup 2}4p{sup 4}5s{sup 1}6p{sup 1} configurations that are probed to different J-split ion states. The two remaining doubly excited states are attributed to a previously observed, but unassigned, resonance in the vacuum-ultraviolet photoabsorption spectrum. The PADs from each of the double excitation states are also influenced by overlap from neighboring states that are not completely spectrally resolved. The anisotropies of the observed double excitation states are reported, anticipating future theoretical and experimental work to separate the overlapping PADs into the state resolved PADs. The results can be used to test theories of excited state ionization.« less

  12. p53-Based Strategy for Protection of Bone Marrow From Y-90 Ibritumomab Tiuxetan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hang, E-mail: suh3@uthscsa.edu; Ganapathy, Suthakar; Li, Xiaolei

    Purpose: The main drawbacks of radioimmunotherapy have been severe hematological toxicity and potential development of myelodysplastic syndrome and secondary leukemia. Activation of p53 follows a major pathway by which normal tissues respond to DNA-damaging agents, such as chemotherapy and radiation therapy, that result in injuries and pathological consequences. This pathway is separate from the tumor suppressor pathway of p53. We have previously reported that use of low-dose arsenic (LDA) temporarily and reversibly suppresses p53 activation, thereby ameliorating normal tissue toxicity from exposure to 5-fluorouracil and X rays. We have also demonstrated that LDA-mediated protection requires functional p53 and thus ismore » selective to normal tissues, as essentially every cancer cell has dysfunctional p53. Here we tested the protective efficacy of LDA for bone marrow tissue against radioimmunotherapy through animal experiments. Methods and Materials: Mice were subjected to LDA pretreatment for 3 days, followed by treatment with Y-90 ibritumomab tiuxetan. Both dose course (10, 25, 50, 100, and 200 μCi) and time course (6, 24, and 72 hours and 1 and 2 weeks) experiments were performed. The response of bone marrow cells to LDA was determined by examining the expression of NFκB, Glut1, and Glut3. Staining with hematoxylin and eosin, γ-H2AX, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to examine morphology, DNA damage response, and apoptotic cell populations. Results: Elevated levels of NFκB, Glut1, and Glut3 were observed in bone marrow cells after LDA treatment. Bone marrow damage levels induced by Y-90 ibritumomab tiuxetan were greatly reduced by LDA pretreatment. Consistent with this observation, significantly less DNA damage and fewer apoptotic cells were accumulated after Y-90 ibritumomab tiuxetan treatment in LDA-pretreated mice. Furthermore, in the mouse xenograft model implanted with human Karpas-422 lymphoma

  13. Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50(Cdc37) complex and direct interactions with amino acids residues of Hsp90.

    PubMed

    Li, Yanyan; Karagöz, G Elif; Seo, Young Ho; Zhang, Tao; Jiang, Yiqun; Yu, Yanke; Duarte, Afonso M S; Schwartz, Steven J; Boelens, Rolf; Carroll, Kate; Rüdiger, Stefan G D; Sun, Duxin

    2012-12-01

    Sulforaphane [1-isothiocyanato-4-(methyl-sulfinyl) butane)], an isothiocyanate derived from cruciferous vegetables, has been shown to possess potent chemopreventive activity. We analyzed the effect of sulforaphane on the proliferation of pancreatic cancer cells. Sulforaphane inhibited pancreatic cancer cell growth in vitro with IC(50)s of around 10-15 μM and induced apoptosis. In pancreatic cancer xenograft mouse model, administration of sulforaphane showed remarkable inhibition of tumor growth without apparent toxicity noticed. We found that sulforaphane induced the degradation of heat shock protein 90 (Hsp90) client proteins and blocked the interaction of Hsp90 with its cochaperone p50(Cdc37) in pancreatic cancer cells. Using nuclear magnetic resonance spectroscopy (NMR) with an isoleucine-specific labeling strategy, we overcame the protein size limit of conventional NMR and studied the interaction of sulforaphane with full-length Hsp90 dimer (170 kDa) in solution. NMR revealed multiple chemical shifts in sheet 2 and the adjacent loop in Hsp90 N-terminal domain after incubation of Hsp90 with sulforaphane. Liquid chromatography coupled to mass spectrometry further mapped a short peptide in this region that was tagged with sulforaphane. These data suggest a new mechanism of sulforaphane that disrupts protein-protein interaction in Hsp90 complex for its chemopreventive activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Role of phosphoinositide 3-OH kinase p110β in skeletal myogenesis.

    PubMed

    Matheny, Ronald W; Riddle-Kottke, Melissa A; Leandry, Luis A; Lynch, Christine M; Abdalla, Mary N; Geddis, Alyssa V; Piper, David R; Zhao, Jean J

    2015-04-01

    Phosphoinositide 3-OH kinase (PI3K) regulates a number of developmental and physiologic processes in skeletal muscle; however, the contributions of individual PI3K p110 catalytic subunits to these processes are not well-defined. To address this question, we investigated the role of the 110-kDa PI3K catalytic subunit β (p110β) in myogenesis and metabolism. In C2C12 cells, pharmacological inhibition of p110β delayed differentiation. We next generated mice with conditional deletion of p110β in skeletal muscle (p110β muscle knockout [p110β-mKO] mice). While young p110β-mKO mice possessed a lower quadriceps mass and exhibited less strength than control littermates, no differences in muscle mass or strength were observed between genotypes in old mice. However, old p110β-mKO mice were less glucose tolerant than old control mice. Overexpression of p110β accelerated differentiation in C2C12 cells and primary human myoblasts through an Akt-dependent mechanism, while expression of kinase-inactive p110β had the opposite effect. p110β overexpression was unable to promote myoblast differentiation under conditions of p110α inhibition, but expression of p110α was able to promote differentiation under conditions of p110β inhibition. These findings reveal a role for p110β during myogenesis and demonstrate that long-term reduction of skeletal muscle p110β impairs whole-body glucose tolerance without affecting skeletal muscle size or strength in old mice. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Djhsp90s are crucial regulators during planarian regeneration and tissue homeostasis.

    PubMed

    Dong, Zimei; Chu, Gengbo; Sima, Yingxu; Chen, Guangwen

    2018-04-15

    Heat shock protein 90 family members (HSP90s), as molecular chaperones, have conserved roles in the physiological processes of eukaryotes regulating cytoprotection, increasing host resistance and so on. However, whether HSP90s affect regeneration in animals is unclear. Planarians are emerging models for studying regeneration in vivo. Here, the roles of three hsp90 genes from planarian Dugesia japonica are investigated by WISH and RNAi. The results show that: (1) Djhsp90s expressions are induced by heat and cold shock, tissue damage and ionic liquid; (2) Djhsp90s mRNA are mainly distributed each side of the body in intact worms as well as blastemas in regenerative worms; (3) the worms show head regression, lysis, the body curling and the regeneration arrest or even failure after Djhsp90s RNAi; (4) Djhsp90s are involved in autophagy and locomotion of the body. The research results suggest that Djhsp90s are not only conserved in cytoprotection, but also involved in homeostasis maintenance and regeneration process by regulating different pathways in planarians. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Cyclin B Proteolysis and the Cyclin-dependent Kinase Inhibitor rum1p Are Required for Pheromone-induced G1 Arrest in Fission Yeast

    PubMed Central

    Stern, Bodo; Nurse, Paul

    1998-01-01

    The blocking of G1 progression by fission yeast pheromones requires inhibition of the cyclin-dependent kinase cdc2p associated with the B-cyclins cdc13p and cig2p. We show that cyclosome-mediated degradation of cdc13p and cig2p is necessary for down-regulation of B-cyclin–associated cdc2p kinase activity and for phermone-induced G1 arrest. The cyclin-dependent kinase inhibitor rum1p is also required to maintain this G1 arrest; it binds both cdc13p and cig2p and is specifically required for cdc13p proteolysis. We propose that rum1p acts as an adaptor targeting cdc13p for degradation by the cyclosome. In contrast, the cig2p–cdc2p kinase can be down-regulated, and the cyclin cig2p can be proteolyzed independently of rum1p. We suggest that pheromone signaling inhibits the cig2p–cdc2p kinase, bringing about a transient G1 arrest. As a consequence, rum1p levels increase, thus inhibiting and inducing proteolysis of the cdc13p–cdc2p kinase; this is necessary to maintain G1 arrest. We have also shown that pheromone-induced transcription occurs only in G1 and is independent of rum1p. PMID:9614176

  17. Apigenin Reduces Survival of Choriocarcinoma Cells by Inducing Apoptosis via the PI3K/AKT and ERK1/2 MAPK Pathways.

    PubMed

    Lim, Whasun; Park, Sunwoo; Bazer, Fuller W; Song, Gwonhwa

    2016-12-01

    Apigenin is a flavonoid found in parsley, onions, oranges, tea, chamomile, wheat, and sprouts. It has a variety of biological properties including anti-oxidant, anti-mutagenic, anti-carcinogenic, anti-inflammatory, anti-proliferative, and anti-spasmodic effects. Based on epidemiological and case-control studies, apigenin is regarded as a novel chemotherapeutic agent against various cancer types. However, little is known about the effects of apigenin on choriocarcinoma cells. Therefore, we investigated the anti-cancer effects of apigenin on choriocarcinoma cells (JAR and JEG3) in the present study. Apigenin reduced viability and migratory properties, increased apoptosis, and suppressed mitochondrial membrane potential in both the JAR and JEG3 cells. In addition, apigenin predominantly decreased phosphorylation of AKT, P70RSK, and S6 whereas the phosphorylation of ERK1/2 and P90RSK was increased by apigenin treatment of JAR and JEG3 cells in a dose-dependent manner. Moreover, treatment of JAR and JEG3 cells with both apigenin and pharmacological inhibitors of PI3K/AKT (LY294002) and ERK1/2 (U0126) revealed synergistic anti-proliferative effects. Collectively, these results indicated that the apigenin is an invaluable chemopreventive agent that inhibits progression and metastasis of choriocarcinoma cells through regulation of PI3K/AKT and ERK1/2 MAPK signal transduction mechanism. J. Cell. Physiol. 231: 2690-2699, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. P21-activated kinase in inflammatory and cardiovascular disease.

    PubMed

    Taglieri, Domenico M; Ushio-Fukai, Masuko; Monasky, Michelle M

    2014-09-01

    P-21 activated kinases, or PAKs, are serine-threonine kinases that serve a role in diverse biological functions and organ system diseases. Although PAK signaling has been the focus of many investigations, still our understanding of the role of PAK in inflammation is incomplete. This review consolidates what is known about PAK1 across several cell types, highlighting the role of PAK1 and PAK2 in inflammation in relation to NADPH oxidase activation. This review explores the physiological functions of PAK during inflammation, the role of PAK in several organ diseases with an emphasis on cardiovascular disease, and the PAK signaling pathway, including activators and targets of PAK. Also, we discuss PAK1 as a pharmacological anti-inflammatory target, explore the potentials and the limitations of the current pharmacological tools to regulate PAK1 activity during inflammation, and provide indications for future research. We conclude that a vast amount of evidence supports the idea that PAK is a central molecule in inflammatory signaling, thus making PAK1 itself a promising prospective pharmacological target. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans

    PubMed Central

    D’Souza, Serena A.; Rajendran, Luckshika; Bagg, Rachel; van Pel, Derek M.; Moshiri, Houtan; Roy, Peter J.

    2016-01-01

    The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue. PMID:27123983

  20. Molecular Determinants of Hormone Refractory Prostate Cancer

    DTIC Science & Technology

    2013-07-01

    Chk2 T68 STAT5b Y699 STAT6 Y641 MEK1/2 STAT5a/b… STAT2 Y689 RSK1/2/3 STAT3 Y705 Lck Y394 AMPKa2 T172 STAT1 Y701 AMPKa1 FAK Y397 Fyn Y420 HSP27 S78/S82...p27 T198 STAT5a Y694 STAT3 Y705 AMPKa2 T172 Lck Y394 STAT2 Y689 STAT1 Y701 p70S6K T229 p38a Fyn Y420 HSP27 … c-Jun S63 ranked by AKT1 (>1.5x,ɘ.67x

  1. Quercetin ameliorates pulmonary fibrosis by inhibiting SphK1/S1P signaling.

    PubMed

    Zhang, Xingcai; Cai, Yuli; Zhang, Wei; Chen, Xianhai

    2018-06-25

    Idiopathic pulmonary fibrosis (IPF) is an agnogenic chronic disorder with high morbidity and low survival rate. Quercetin is a flavonoid found in a variety of herbs with anti-fibrosis function. In this study, bleomycin was employed to induce a pulmonary fibrosis mouse model. The quercetin administration ameliorated bleomycin-induced pulmonary fibrosis, evidenced by the expression level changes of hydroxyproline, fibronectin, α-smooth muscle actin, Collagen I and Collagen III. The similar results were observed in transforming growth factor (TGF)-β-treated human embryonic lung fibroblast (HELF). The bleomycin or TGF-β administration caused the increase of sphingosine-1-phosphate (S1P) level in pulmonary tissue and HELF cells, as well as its activation-required kinase, sphingosine kinase 1 (SphK1), and its degradation enzyme, sphinogosine-1-phosphate lyase (S1PL). However, the increase of S1P, SphK1 and S1PL was attenuated by application of quercetin. In addition, the effect of quercetin on fibrosis was abolished by the ectopic expression of SphK1. The colocalization of SphK1/S1PL and fibroblast specific protein 1 (FSP1) suggested the roles of fibroblasts in pulmonary fibrosis. In summary, we demonstrated that quercetin ameliorated pulmonary fibrosis in vivo and in vitro by inhibiting SphK1/S1P signaling.

  2. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia.

    PubMed

    Yang, Guang; Zhou, Yangsheng; Liu, Xia; Xu, Lian; Cao, Yang; Manning, Robert J; Patterson, Christopher J; Buhrlage, Sara J; Gray, Nathanael; Tai, Yu-Tzu; Anderson, Kenneth C; Hunter, Zachary R; Treon, Steven P

    2013-08-15

    Myeloid differentiation factor 88 (MYD88) L265P somatic mutation is highly prevalent in Waldenström macroglobulinemia (WM) and supports malignant growth through nuclear factor κB (NF-κB). The signaling cascade(s) by which MYD88 L265P promotes NF-κB activation in WM remain unclear. By lentiviral knockdown or use of a MYD88 inhibitor, decreased phosphorylation of the NF-κB gatekeeper IκBα and survival occurred in MYD88 L265P-expressing WM cells. Conversely, WM cells engineered to overexpress MYD88 L265P showed enhanced survival. Coimmunoprecipitation studies identified Bruton tyrosine kinase (BTK) complexed to MYD88 in L265P-expressing WM cells, with preferential binding of MYD88 to phosphorylated BTK (pBTK). Increased pBTK was also observed in WM cells transduced to overexpress L265P vs wild-type MYD88. Importantly, MYD88 binding to BTK was abrogated following treatment of MYD88 L265P-expressing cells with a BTK kinase inhibitor. Inhibition of BTK or interleukin-1 receptor-associated kinase 1 and 4 (IRAK-1 and -4) kinase activity induced apoptosis of WM cells, and their combination resulted in more robust inhibition of NF-κB signaling and synergistic WM cell killing. The results establish BTK as a downstream target of MYD88 L265P signaling, and provide a framework for the study of BTK inhibitors alone, and in combination with IRAK inhibitors for the treatment of WM.

  3. Regulation of cardiac excitation and contraction by p21 activated kinase-1.

    PubMed

    Ke, Yunbo; Lei, Ming; Solaro, R John

    2008-01-01

    Cardiac excitation and contraction are regulated by a variety of signaling molecules. Central to the regulatory scheme are protein kinases and phosphatases that carry out reversible phosphorylation of different effectors. The process of beta-adrenergic stimulation mediated by cAMP dependent protein kinase (PKA) forms a well-known pathway considered as the most significant control mechanism in excitation and contraction as well as many other regulatory mechanisms in cardiac function. However, although dephosphorylation pathways are critical to these regulatory processes, signaling to phosphatases is relatively poorly understood. Emerging evidence indicates that regulation of phosphatases, which dampen the effect of beta-adrenergic stimulation, is also important. We review here functional studies of p21 activated kinase-1 (Pak1) and its potential role as an upstream signal for protein phosphatase PP2A in the heart. Pak1 is a serine/threonine protein kinase directly activated by the small GTPases Cdc42 and Rac1. Pak1 is highly expressed in different regions of the heart and modulates the activities of ion channels, sarcomeric proteins, and other phosphoproteins through up-regulation of PP2A activity. Coordination of Pak1 and PP2A activities is not only potentially involved in regulation of normal cardiac function, but is likely to be important in patho-physiological conditions.

  4. Casein Kinase 2-Mediated Phosphorylation of Respiratory Syncytial Virus Phosphoprotein P Is Essential for the Transcription Elongation Activity of the Viral Polymerase; Phosphorylation by Casein Kinase 1 Occurs Mainly at Ser215 and Is without Effect

    PubMed Central

    Dupuy, Lesley C.; Dobson, Sean; Bitko, Vira; Barik, Sailen

    1999-01-01

    The major site of in vitro phosphorylation by casein kinase 2 (CK2) was the conserved Ser232 in the P proteins of human, bovine, and ovine strains of respiratory syncytial virus (RSV). Enzymatic removal of this phosphate group from the P protein instantly halted transcription elongation in vitro. Transcription reconstituted in the absence of P protein or in the presence of phosphate-free P protein produced abortive initiation products but no full-length transcripts. A recombinant P protein in which Ser232 was mutated to Asp exhibited about half of the transcriptional activity of the wild-type phosphorylated protein, suggesting that the negative charge of the phosphate groups is an important contributor to P protein function. Use of a temperature-sensitive CK2 mutant yeast revealed that in yeast, phosphorylation of recombinant P by non-CK2 kinase(s) occurs mainly at Ser215. In vitro, P protein could be phosphorylated by purified CK1 at Ser215 but this phosphorylation did not result in transcriptionally active P protein. A triple mutant P protein in which Ser215, Ser232, and Ser237 were all mutated to Ala was completely defective in phosphorylation in vitro as well as ex vivo. The xanthate compound D609 inhibited CK2 but not CK1 in vitro and had a very modest effect on P protein phosphorylation and RSV yield ex vivo. Together, these results suggest a role for CK2-mediated phosphorylation of the P protein in the promoter clearance and elongation properties of the viral RNA-dependent RNA polymerase. PMID:10482589

  5. Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways.

    PubMed

    Feng, Wei; Liu, Hongrui; Luo, Tingting; Liu, Di; Du, Juan; Sun, Jing; Wang, Wei; Han, Xiuchun; Yang, Kaiyun; Guo, Jie; Amizuka, Norio; Li, Minqi

    2017-01-27

    Interleukin (IL)-6 is known to indirectly enhance osteoclast formation by promoting receptor activator of nuclear factor kappa-B ligand (RANKL) production by osteoblastic/stromal cells. However, little is known about the direct effect of IL-6 on osteoclastogenesis. Here, we determined the direct effects of IL-6 and its soluble receptor (sIL-6R) on RANKL-induced osteoclast formation by osteoclast precursors in vitro. We found IL-6/sIL-6R significantly promoted and suppressed osteoclast differentiation induced by low- (10 ng/ml) and high-level (50 ng/ml) RANKL, respectively. Using a bone resorption pit formation assay, expression of osteoclastic marker genes and transcription factors confirmed differential regulation of RANKL-induced osteoclastogenesis by IL-6/sIL-6R. Intracellular signaling transduction analysis revealed IL-6/sIL-6R specifically upregulated and downregulated the phosphorylation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), ERK (extracellular signal-regulated kinase) and JNK (c-Jun N-terminal kinase) induced by low- and high level RANKL, respectively. Taken together, our findings demonstrate that IL-6/sIL-6R differentially regulate RANKL-induced osteoclast differentiation and activity through modulation of NF-κB, ERK and JNK signaling pathways. Thus, IL-6 likely plays a dual role in osteoclastogenesis either as a pro-resorption factor or as a protector of bone, depending on the level of RANKL within the local microenvironment.

  6. Differential activation of eIF2 kinases in response to cellular stresses in Schizosaccharomyces pombe.

    PubMed

    Zhan, Ke; Narasimhan, Jana; Wek, Ronald C

    2004-12-01

    Phosphorylation of eukaryotic initiation factor-2 (eIF2) is an important mechanism mitigating cellular injury in response to diverse environmental stresses. While all eukaryotic organisms characterized to date contain an eIF2 kinase stress response pathway, the composition of eIF2 kinases differs, with mammals containing four distinct family members and the well-studied lower eukaryote Saccharomyces cerevisiae expressing only a single eIF2 kinase. We are interested in the mechanisms by which multiple eIF2 kinases interface with complex stress signals and elicit response pathways. In this report we find that in addition to two previously described eIF2 kinases related to mammalian HRI, designated Hri1p and Hri2p, the yeast Schizosaccharomyces pombe expresses a third eIF2 kinase, a Gcn2p ortholog. To delineate the roles of each eIF2 kinase, we constructed S. pombe strains expressing only a single eIF2 kinase gene or deleted for the entire eIF2 kinase family. We find that Hri2p is the primary activated eIF2 kinase in response to exposure to heat shock, arsenite, or cadmium. Gcn2p serves as the primary eIF2 kinase induced during a nutrient downshift, treatment with the amino acid biosynthetic inhibitor 3-aminotriazole, or upon exposure to high concentrations of sodium chloride. In one stress example, exposure to H(2)O(2), there is early tandem activation of both Hri2p and Gcn2p. Interestingly, with extended stress conditions there is activation of alternative secondary eIF2 kinases, suggesting that eukaryotes have mechanisms of coordinate activation of eIF2 kinase in their stress remediation responses. Deletion of these eIF2 kinases renders S. pombe more sensitive to many of these stress conditions.

  7. Glycogen synthase kinase-3beta and the p25 activator of cyclin dependent kinase 5 increase pausing of mitochondria in neurons.

    PubMed

    Morel, M; Authelet, M; Dedecker, R; Brion, J P

    2010-06-02

    The complex bi-directional axoplasmic transport of mitochondria is essential for proper metabolic functioning of neurons and is controlled by phosphorylation. We have investigated by time-lapse imaging the effects of increased expression of glycogen synthase kinase-3beta (GSK-3beta) and of the p25 activator of cyclin dependent kinase 5 on mitochondria movements in mammalian cortical neurons and in PC12 cells. Both GSK-3beta and p25 increased the stationary behaviour of mitochondria in PC12 and in neurons, decreased their anterograde transport but did not affect the intrinsic velocities of mitochondria. The microtubule-associated tau proteins were more phosphorylated in GSK-3beta and p25 transfected neurons, but ultrastructural observation showed that these cells still contained microtubules and nocodazole treatment further reduced residual mitochondria movements in GSK-3beta or p25 transfected neurons, indicating that microtubule disruption was not the primary cause of increased mitochondrial stationary behaviour in GSK-3beta or p25 transfected neurons. Our results suggest that increased expression of GSK-3beta and p25 acted rather by decreasing the frequency of mitochondrial movements driven by molecular motors and that GSK-3beta and p25 might regulate these transports by controlling the time that mitochondria spend pausing, rather than their velocities. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Error-prone bypass of O6-methylguanine by DNA polymerase of Pseudomonas aeruginosa phage PaP1.

    PubMed

    Gu, Shiling; Xiong, Jingyuan; Shi, Ying; You, Jia; Zou, Zhenyu; Liu, Xiaoying; Zhang, Huidong

    2017-09-01

    O 6 -Methylguanine (O 6 -MeG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, generally leads to G:C to A:T mutagenesis. To study DNA replication encountering O 6 -MeG by the DNA polymerase (gp90) of P. aeruginosa phage PaP1, we analyzed steady-state and pre-steady-state kinetics of nucleotide incorporation opposite O 6 -MeG by gp90 exo - . O 6 -MeG partially inhibited full-length extension by gp90 exo - . O 6 -MeG greatly reduces dNTP incorporation efficiency, resulting in 67-fold preferential error-prone incorporation of dTTP than dCTP. Gp90 exo - extends beyond T:O 6 -MeG 2-fold more efficiently than C:O 6 -MeG. Incorporation of dCTP opposite G and incorporation of dCTP or dTTP opposite O 6 -MeG show fast burst phases. The pre-steady-state incorporation efficiency (k pol /K d,dNTP ) is decreased in the order of dCTP:G>dTTP:O 6 -MeG>dCTP:O 6 -MeG. The presence of O 6 -MeG at template does not affect the binding affinity of polymerase to DNA but it weakened their binding in the presence of dCTP and Mg 2+ . Misincorporation of dTTP opposite O 6 -MeG further weakens the binding affinity of polymerase to DNA. The priority of dTTP incorporation opposite O 6 -MeG is originated from the fact that dTTP can induce a faster conformational change step and a faster chemical step than dCTP. This study reveals that gp90 bypasses O 6 -MeG in an error-prone manner and provides further understanding in DNA replication encountering mutagenic alkylation DNA damage for P. aeruginosa phage PaP1. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Eriocalyxin B, a novel autophagy inducer, exerts anti-tumor activity through the suppression of Akt/mTOR/p70S6K signaling pathway in breast cancer.

    PubMed

    Zhou, Xunian; Yue, Grace Gar-Lee; Chan, Andrew Man-Lok; Tsui, Stephen Kwok-Wing; Fung, Kwok-Pui; Sun, Handong; Pu, Jianxin; Lau, Clara Bik-San

    2017-10-15

    Eriocalyxin B (EriB), a natural ent-kaurane diterpenoid presented in the plant Isodon eriocalyx var. laxiflora, has been reported to diminish angiogenesis-dependent breast tumor growth. In the present study, the effects of EriB on human breast cancer and its underlying mechanisms were further investigated. The in vitro anti-breast cancer activity of EriB was determined using MCF-7 and MDA-MB-231 cell lines. MDA-MB-231 xenograft model of human breast cancer was also established to explore the anti-tumor effect in vivo. We found that EriB was able to induce apoptosis accompanied by the activation of autophagy, which was evidenced by the increased accumulation of autophagosomes, acidic vesicular organelles formation, the microtubule-associated protein 1A/1B-light chain 3B-II (LC3B-II) conversion from LC3B-I and p62 degradation. Meanwhile, EriB treatment time-dependently decreased the phosphorylation of Akt, mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (p70S6K), leading to the inhibition of Akt/mTOR/p70S6K signaling pathway. Moreover, the blockage of autophagy obviously sensitized EriB-induced cell death, which suggested the cytoprotective function of autophagy in both MCF-7 and MDA-MB-231 cells. Interestingly, the autophagic features and apoptosis induction were prevented by reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine, indicating that ROS played an essential role in the mediation of EriB-induced cell death. Furthermore, in MDA-MB-231 xenograft model, EriB displayed a significant anti-tumor effect via the activation of autophagy and apoptosis in breast tumor cells. Taken together, our findings firstly demonstrated that EriB suppressed breast cancer cells growth both in vitro and in vivo, and thus could be developed as a promising anti-breast tumor agent. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. S6K1ing to ResTOR Adipogenesis with Polycomb.

    PubMed

    Juan, Aster H; Sartorelli, Vittorio

    2016-05-05

    Signal-directed chromatin recruitment of mammalian Polycomb complexes is a fundamental component of epigenetic regulation. In this issue, Yi et al. (2016) reveal how mTORC1 activation deploys the ribosomal serine/threonine kinase S6K1 and Polycomb proteins at genomic regulatory regions to repress expression of anti-adipogenic developmental regulators. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Hexacopper(I) phosphorus(V) bromide penta(selenide/sulfide), Cu6P(Se0.7S0.3)5Br.

    PubMed

    Gagor, A; Pietraszko, A; Panko, V V

    2008-04-01

    This work illustrates possible diffusion paths for Cu(I) ions in a highly disordered structure of a superionic conductor of the argyrodite family. The Cu(6)P(Se(0.7)S(0.3))(5)Br cubic structure is built from a [P(Se(0.7)S(0.3))(5)Br] framework in which Cu(I) ions are distributed in various tetrahedral, triangular and linear sites. There are two types of disorder in the structure. The first type results from the fact that there are fewer Cu(I) ions than the number of positions available for them in the unit cell. The second type is due to the static distribution of Se and S atoms in the [P(Se(0.7)S(0.3))(5)Br] framework. The title compound is a solid solution of two efficient ionic conductors, namely Cu(6)PSe(5)Br and Cu(6)PS(5)Br, in which high ionic conductivity results from order-disorder phenomena in the copper substructure. To shed light on the distribution of Cu(I) ions in disordered Cu(6)P(Se(0.7)S(0.3))(5)Br, we refined their positions using a combination of a nonharmonic approach and a split-atom model. At room temperature, Cu(I) ions show strong anharmonic vibrations along the edge of the (Br)(4) tetrahedra. The probability density functions of the Cu(I) ions overlap and reveal possible diffusion paths.

  12. The visual orientation memory of Drosophila requires Foraging (PKG) upstream of Ignorant (RSK2) in ring neurons of the central complex

    PubMed Central

    Kuntz, Sara; Poeck, Burkhard; Sokolowski, Marla B.; Strauss, Roland

    2012-01-01

    Orientation and navigation in a complex environment requires path planning and recall to exert goal-driven behavior. Walking Drosophila flies possess a visual orientation memory for attractive targets which is localized in the central complex of the adult brain. Here we show that this type of working memory requires the cGMP-dependent protein kinase encoded by the foraging gene in just one type of ellipsoid-body ring neurons. Moreover, genetic and epistatic interaction studies provide evidence that Foraging functions upstream of the Ignorant Ribosomal-S6 Kinase 2, thus revealing a novel neuronal signaling pathway necessary for this type of memory in Drosophila. PMID:22815538

  13. Never in mitosis gene A related kinase-6 attenuates pressure overload-induced activation of the protein kinase B pathway and cardiac hypertrophy.

    PubMed

    Bian, Zhouyan; Liao, Haihan; Zhang, Yan; Wu, Qingqing; Zhou, Heng; Yang, Zheng; Fu, Jinrong; Wang, Teng; Yan, Ling; Shen, Difei; Li, Hongliang; Tang, Qizhu

    2014-01-01

    Cardiac hypertrophy appears to be a specialized form of cellular growth that involves the proliferation control and cell cycle regulation. NIMA (never in mitosis, gene A)-related kinase-6 (Nek6) is a cell cycle regulatory gene that could induce centriole duplication, and control cell proliferation and survival. However, the exact effect of Nek6 on cardiac hypertrophy has not yet been reported. In the present study, the loss- and gain-of-function experiments were performed in Nek6 gene-deficient (Nek6-/-) mice and Nek6 overexpressing H9c2 cells to clarify whether Nek6 which promotes the cell cycle also mediates cardiac hypertrophy. Cardiac hypertrophy was induced by transthoracic aorta constriction (TAC) and then evaluated by echocardiography, pathological and molecular analyses in vivo. We got novel findings that the absence of Nek6 promoted cardiac hypertrophy, fibrosis and cardiac dysfunction, which were accompanied by a significant activation of the protein kinase B (Akt) signaling in an experimental model of TAC. Consistent with this, the overexpression of Nek6 prevented hypertrophy in H9c2 cells induced by angiotonin II and inhibited Akt signaling in vitro. In conclusion, our results demonstrate that the cell cycle regulatory gene Nek6 is also a critical signaling molecule that helps prevent cardiac hypertrophy and inhibits the Akt signaling pathway.

  14. An activating mutation of GNB1 is associated with resistance to tyrosine kinase inhibitors in ETV6-ABL1-positive leukemia

    PubMed Central

    Zimmermannova, O; Doktorova, E; Stuchly, J; Kanderova, V; Kuzilkova, D; Strnad, H; Starkova, J; Alberich-Jorda, M; Falkenburg, J H F; Trka, J; Petrak, J; Zuna, J; Zaliova, M

    2017-01-01

    Leukemias harboring the ETV6-ABL1 fusion represent a rare subset of hematological malignancies with unfavorable outcomes. The constitutively active chimeric Etv6-Abl1 tyrosine kinase can be specifically inhibited by tyrosine kinase inhibitors (TKIs). Although TKIs represent an important therapeutic tool, so far, the mechanism underlying the potential TKI resistance in ETV6-ABL1-positive malignancies has not been studied in detail. To address this issue, we established a TKI-resistant ETV6-ABL1-positive leukemic cell line through long-term exposure to imatinib. ETV6-ABL1-dependent mechanisms (including fusion gene/protein mutation, amplification, enhanced expression or phosphorylation) and increased TKI efflux were excluded as potential causes of resistance. We showed that TKI effectively inhibited the Etv6-Abl1 kinase activity in resistant cells, and using short hairpin RNA (shRNA)-mediated silencing, we confirmed that the resistant cells became independent from the ETV6-ABL1 oncogene. Through analysis of the genomic and proteomic profiles of resistant cells, we identified an acquired mutation in the GNB1 gene, K89M, as the most likely cause of the resistance. We showed that cells harboring mutated GNB1 were capable of restoring signaling through the phosphoinositide-3-kinase (PI3K)/Akt/mTOR and mitogen-activated protein kinase (MAPK) pathways, whose activation is inhibited by TKI. This alternative GNB1K89M-mediated pro-survival signaling rendered ETV6-ABL1-positive leukemic cells resistant to TKI therapy. The mechanism of TKI resistance is independent of the targeted chimeric kinase and thus is potentially relevant not only to ETV6-ABL1-positive leukemias but also to a wider spectrum of malignancies treated by kinase inhibitors. PMID:28650474

  15. Saw palmetto extract suppresses insulin-like growth factor-I signaling and induces stress-activated protein kinase/c-Jun N-terminal kinase phosphorylation in human prostate epithelial cells.

    PubMed

    Wadsworth, Teri L; Carroll, Julie M; Mallinson, Rebecca A; Roberts, Charles T; Roselli, Charles E

    2004-07-01

    A common alternative therapy for benign prostatic hyperplasia (BPH) is the extract from the fruit of saw palmetto (SPE). BPH is caused by nonmalignant growth of epithelial and stromal elements of the prostate. IGF action is important for prostate growth and development, and changes in the IGF system have been documented in BPH tissues. The main signaling pathways activated by the binding of IGF-I to the IGF-I receptor (IGF-IR) are the ERK arm of the MAPK cascade and the phosphoinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) cascade. We tested the hypothesis that SPE suppresses growth and induces apoptosis in the P69 prostate epithelial cell line by inhibiting IGF-I signaling. Treatment with 150 microg/ml SPE for 24 h decreased IGF-I-induced proliferation of P69 cells and induced cleavage of the enzyme poly(ADP-ribose)polymerase (PARP), an index of apoptosis. Treatment of serum-starved P69 cells with 150 microg/ml SPE for 6 h reduced IGF-I-induced phosphorylation of Akt (assessed by Western blot) and Akt activity (assessed by an Akt kinase assay). Western blot analysis showed that SPE reduced IGF-I-induced phosphorylation of the adapter protein insulin receptor substrate-1 and decreased downstream effects of Akt activation, including increased cyclin D1 levels and phosphorylation of glycogen synthase kinase-3 and p70(s6k). There was no effect on IGF-I-induced phosphorylation of MAPK, IGF-IR, or Shc. Treatment of starved cells with SPE alone induced phosphorylation the proapoptotic protein JNK. SPE treatment may relieve symptoms of BPH, in part, by inhibiting specific components of the IGF-I signaling pathway and inducing JNK activation, thus mediating antiproliferative and proapoptotic effects on prostate epithelia.

  16. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae

    PubMed Central

    Elefteriou, Florent; Benson, M. Douglas; Sowa, Hideaki; Starbuck, Michael; Liu, Xiuyun; Ron, David; Parada, Luis F.; Karsenty, Gerard

    2009-01-01

    Summary The transcription factor ATF4 enhances bone formation by favoring amino acid import and collagen synthesis in osteoblasts, a function requiring its phosphorylation by RSK2, the kinase inactivated in Coffin-Lowry Syndrome. Here, we show that in contrast, RSK2 activity, ATF4-dependent collagen synthesis, and bone formation are increased in mice lacking neurofibromin in osteoblasts (Nf1ob−/− mice). Independently of RSK2, ATF4 phosphorylation by PKA is enhanced in Nf1ob−/− mice, thereby increasing Rankl expression, osteoclast differentiation, and bone resorption. In agreement with ATF4 function in amino acid transport, a low-protein diet decreased bone protein synthesis and normalized bone formation and bone mass in Nf1ob−/− mice without affecting other organ weight, while a high-protein diet overcame Atf4−/− and Rsk2−/− mice developmental defects, perinatal lethality, and low bone mass. By showing that ATF4-dependent skeletal dysplasiae are treatable by dietary manipulations, this study reveals a molecular connection between nutrition and skeletal development. PMID:17141628

  17. A Chrysin Derivative Suppresses Skin Cancer Growth by Inhibiting Cyclin-dependent Kinases*

    PubMed Central

    Liu, Haidan; Liu, Kangdong; Huang, Zunnan; Park, Chan-Mi; Thimmegowda, N. R.; Jang, Jae-Hyuk; Ryoo, In-Ja; He, Long; Kim, Sun-Ok; Oi, Naomi; Lee, Ki Won; Soung, Nak-Kyun; Bode, Ann M.; Yang, Yifeng; Zhou, Xinmin; Erikson, Raymond L.; Ahn, Jong-Seog; Hwang, Joonsung; Kim, Kyoon Eon; Dong, Zigang; Kim, Bo-Yeon

    2013-01-01

    Chrysin (5,7-dihydroxyflavone), a natural flavonoid widely distributed in plants, reportedly has chemopreventive properties against various cancers. However, the anticancer activity of chrysin observed in in vivo studies has been disappointing. Here, we report that a chrysin derivative, referred to as compound 69407, more strongly inhibited EGF-induced neoplastic transformation of JB6 P+ cells compared with chrysin. It attenuated cell cycle progression of EGF-stimulated cells at the G1 phase and inhibited the G1/S transition. It caused loss of retinoblastoma phosphorylation at both Ser-795 and Ser-807/811, the preferred sites phosphorylated by Cdk4/6 and Cdk2, respectively. It also suppressed anchorage-dependent and -independent growth of A431 human epidermoid carcinoma cells. Compound 69407 reduced tumor growth in the A431 mouse xenograft model and retinoblastoma phosphorylation at Ser-795 and Ser-807/811. Immunoprecipitation kinase assay results showed that compound 69407 attenuated endogenous Cdk4 and Cdk2 kinase activities in EGF-stimulated JB6 P+ cells. Pulldown and in vitro kinase assay results indicated that compound 69407 directly binds with Cdk2 and Cdk4 in an ATP-independent manner and inhibited their kinase activities. A binding model between compound 69407 and a crystal structure of Cdk2 predicted that compound 69407 was located inside the Cdk2 allosteric binding site. The binding was further verified by a point mutation binding assay. Overall results indicated that compound 69407 is an ATP-noncompetitive cyclin-dependent kinase inhibitor with anti-tumor effects, which acts by binding inside the Cdk2 allosteric pocket. This study provides new insights for creating a general pharmacophore model to design and develop novel ATP-noncompetitive agents with chemopreventive or chemotherapeutic potency. PMID:23888052

  18. Multiple signals modulate the activity of the complex sensor kinase TodS

    PubMed Central

    Silva-Jiménez, Hortencia; Ortega, Álvaro; García-Fontana, Cristina; Ramos, Juan Luis; Krell, Tino

    2015-01-01

    The reason for the existence of complex sensor kinases is little understood but thought to lie in the capacity to respond to multiple signals. The complex, seven-domain sensor kinase TodS controls in concert with the TodT response regulator the expression of the toluene dioxygenase pathway in Pseudomonas putida F1 and DOT-T1E. We have previously shown that some aromatic hydrocarbons stimulate TodS activity whereas others behave as antagonists. We show here that TodS responds in addition to the oxidative agent menadione. Menadione but no other oxidative agent tested inhibited TodS activity in vitro and reduced PtodX expression in vivo. The menadione signal is incorporated by a cysteine-dependent mechanism. The mutation of the sole conserved cysteine of TodS (C320) rendered the protein insensitive to menadione. We evaluated the mutual opposing effects of toluene and menadione on TodS autophosphorylation. In the presence of toluene, menadione reduced TodS activity whereas toluene did not stimulate activity in the presence of menadione. It was shown by others that menadione increases expression of glucose metabolism genes. The opposing effects of menadione on glucose and toluene metabolism may be partially responsible for the interwoven regulation of both catabolic pathways. This work provides mechanistic detail on how complex sensor kinases integrate different types of signal molecules. PMID:24986263

  19. p65 fragments, homologous to the C2 region of protein kinase C, bind to the intracellular receptors for protein kinase C.

    PubMed

    Mochly-Rosen, D; Miller, K G; Scheller, R H; Khaner, H; Lopez, J; Smith, B L

    1992-09-08

    Receptors for activated protein kinase C (RACKs) have been isolated from the particulate cell fraction of heart and brain. We previously demonstrated that binding of protein kinase C (PKC) to RACKs requires PKC activators and is via a site on PKC that is distinct from the substrate binding site. Here, we examine the possibility that the C2 region in the regulatory domain of PKC is involved in binding of PKC to RACKs. The synaptic vesicle-specific p65 protein contains two regions homologous to the C2 region of PKC. We found that three p65 fragments, containing either one or two of these PKC C2 homologous regions, bound to highly purified RACKs. Binding of the p65 fragments and PKC to RACKs was mutually exclusive; preincubation of RACKs with the p65 fragments inhibited PKC binding, and preincubation of RACKs with PKC inhibited binding of the p65 fragments. Preincubation of the p65 fragments with a peptide resembling the PKC binding site on RACKs also inhibited p65 binding to RACKs, suggesting that PKC and p65 bind to the same or nearby regions on RACKs. Since the only homologous region between PKC and the p65 fragments is the C2 region, these results suggest that the C2 region on PKC contains at least part of the RACK binding site.

  20. Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity.

    PubMed

    Tanaka, Hiroyuki; Yamashita, Toshihide; Asada, Minoru; Mizutani, Shuki; Yoshikawa, Hideki; Tohyama, Masaya

    2002-07-22

    p21(Cip1/WAF1) has cell cycle inhibitory activity by binding to and inhibiting both cyclin/Cdk kinases and proliferating cell nuclear antigen. Here we show that p21(Cip1/WAF1) is induced in the cytoplasm during the course of differentiation of chick retinal precursor cells and N1E-115 cells. Ectopic expression of p21(Cip1/WAF1) lacking the nuclear localization signal in N1E-115 cells and NIH3T3 cells affects the formation of actin structures, characteristic of inactivation of Rho. p21(Cip1/WAF1) forms a complex with Rho-kinase and inhibits its activity in vitro and in vivo. Neurite outgrowth and branching from the hippocampal neurons are promoted if p21(Cip1/WAF1) is expressed abundantly in the cytoplasm. These results suggest that cytoplasmic p21(Cip1/WAF1) may contribute to the developmental process of the newborn neurons that extend axons and dendrites into target regions.

  1. Soluble fms-Like Tyrosine Kinase 1 as a Link Between Angiogenesis and Endothelial Dysfunction in Pediatric Patients With β-Thalassemia Intermedia.

    PubMed

    Tantawy, Azza Abdel Gawad; Adly, Amira Abdel Moneam; Ismail, Eman Abdel Rahman; Youssef, Omneya Ibrahim; Ali, Mohamed ElSayed

    2017-11-01

    Endothelial damage has been implicated in the pathogenesis of vascular complications in β-thalassemia intermedia (β-TI). Soluble fms-like tyrosine kinase 1 (sFLT-1) is a member of the vascular endothelial growth factor receptor (VEGFR) family. Soluble fms-like tyrosine kinase 1 is an antiangiogenic protein that induces endothelial dysfunction by adhering to and inhibiting VEGF and placenta growth factor. The aim of this study was to assess the level of sFLT-1 in 35 children and adolescents with β-TI, correlating it with markers of hemolysis and iron overload as well as cardiopulmonary complications. Patients were studied focusing on the history of cardiac disease, splenectomy, transfusion, chelation/hydroxyurea therapy, serum ferritin, and sFLT-1 levels. Echocardiography and measurement of carotid intima-media thickness (CIMT) were done for all participants. Soluble fms-like tyrosine kinase 1 was significantly higher in TI patients compared to the control group (median [interquartile range], 110 [80-155] pg/mL versus 70 [60-90] pg/mL; P < .001). Splenectomized patients and those who had pulmonary hypertension risk or heart disease had higher sFLT-1 levels than those without ( P < .001). The sFLT-1 cutoff value that differentiates patients with and without pulmonary hypertension risk or heart disease was determined. Soluble fms-like tyrosine kinase 1 was lower among patients who received chelation therapy and/or hydroxyurea. Significant positive relations were observed between sFLT-1 and lactate dehydrogenase, serum ferritin, liver iron concentration, tricuspid regurgitant jet velocity, and CIMT. We suggest that sFLT-1 represents a link between angiogenesis, endothelial dysfunction, and subclinical atherosclerosis. Measurement of sFLT-1 as a marker of vascular dysfunction in β-TI may provide utility for early identification of patients at increased risk of cardiopulmonary complications.

  2. Pharmacologic ATM but not ATR kinase inhibition abrogates p21-dependent G1 arrest and promotes gastrointestinal syndrome after total body irradiation.

    PubMed

    Vendetti, Frank P; Leibowitz, Brian J; Barnes, Jennifer; Schamus, Sandy; Kiesel, Brian F; Abberbock, Shira; Conrads, Thomas; Clump, David Andy; Cadogan, Elaine; O'Connor, Mark J; Yu, Jian; Beumer, Jan H; Bakkenist, Christopher J

    2017-02-01

    We show that ATM kinase inhibition using AZ31 prior to 9 or 9.25 Gy total body irradiation (TBI) reduced median time to moribund in mice to 8 days. ATR kinase inhibition using AZD6738 prior to TBI did not reduce median time to moribund. The striking finding associated with ATM inhibition prior to TBI was increased crypt loss within the intestine epithelium. ATM inhibition reduced upregulation of p21, an inhibitor of cyclin-dependent kinases, and blocked G1 arrest after TBI thereby increasing the number of S phase cells in crypts in wild-type but not Cdkn1a(p21 CIP/WAF1 )-/- mice. In contrast, ATR inhibition increased upregulation of p21 after TBI. Thus, ATM activity is essential for p21-dependent arrest while ATR inhibition may potentiate arrest in crypt cells after TBI. Nevertheless, ATM inhibition reduced median time to moribund in Cdkn1a(p21 CIP/WAF1 )-/- mice after TBI. ATM inhibition also increased cell death in crypts at 4 h in Cdkn1a(p21 CIP/WAF1 )-/-, earlier than at 24 h in wild-type mice after TBI. In contrast, ATR inhibition decreased cell death in crypts in Cdkn1a(p21 CIP/WAF1 )-/- mice at 4 h after TBI. We conclude that ATM activity is essential for p21-dependent and p21-independent mechanisms that radioprotect intestinal crypts and that ATM inhibition promotes GI syndrome after TBI.

  3. Glutamate-dependent transcriptional regulation in bergmann glia cells: involvement of p38 MAP kinase.

    PubMed

    Zepeda, Rossana C; Barrera, Iliana; Castelán, Francisco; Soto-Cid, Abraham; Hernández-Kelly, Luisa C; López-Bayghen, Esther; Ortega, Arturo

    2008-07-01

    Glutamate (Glu) is the major excitatory neurotransmitter in the Central Nervous System (CNS). Ionotropic and metabotropic glutamate receptors (GluRs) are present in neurons and glial cells and are involved in gene expression regulation. Mitogen-activated proteins kinases (MAPK) are critical for all the membrane to nuclei signaling pathways described so far. In cerebellar Bergmann glial cells, glutamate-dependent transcriptional regulation is partially dependent on p42/44 MAPK activity. Another member of this kinase family, p38 MAPK is activated by non-mitogenic stimuli through its Thr180/Tyr182 phosphorylation and phosphorylates cytoplasmic and nuclear protein targets involved in translational and transcriptional events. Taking into consideration that the role of p38MAPK in glial cells is not well understood, we demonstrate here that glutamate increases p38 MAPK phosphorylation in a time and dose dependent manner in cultured chick cerebellar Bergmann glial cells (BGC). Moreover, p38 MAPK is involved in the glutamate-induced transcriptional activation in these cells. Ionotropic as well as metabotropic glutamate receptors participate in p38 MAPK activation. The present findings demonstrate the involvement of p38 MAPK in glutamate-dependent gene expression regulation in glial cells.

  4. Differential regulation of p65 and c-Rel NF-kappaB transactivating activity by Cot, protein kinase C zeta and NIK protein kinases in CD3/CD28 activated T cells.

    PubMed

    Sánchez-Valdepeñas, Carmen; Punzón, Carmen; San-Antonio, Belén; Martin, Angel G; Fresno, Manuel

    2007-03-01

    It has been shown that phosphorylation of p65/RelA and c-Rel plays a role in the regulation of transcriptional activity of NF-kappaB independent on IkappaB degradation. In this study, we show that anti CD3/CD28 activation induces the transactivation activity of both p65/RelA and c-Rel in T cells using Gal4 dependent assays. Moreover, protein kinase C (PKC)zeta, Cot kinase and NF-kappaB-inducing kinase (NIK) seem to be involved in those processes in a different manner. Thus, transfection of dominant negative forms of Cot and PKCzeta inhibits CD3/CD28 induction of Gal4-p65 transactivation, whereas the kinase inactive versions of the 3 kinases inhibit induction of Gal4-c-Rel. Cot induction of Gal4-c-Rel transactivating activity seems to be mediated sequentially through PKCzeta and NIK activation, since dominant negative form of NIK blocks Cot and PKCzeta induction, whereas kinase inactive PKCzeta only blocks Cot activity. In contrast, the contribution of NIK to the transactivation function of p65/RelA seems to be negligible and more importantly NIK-KD did not inhibit induction by Cot and PKCzeta. Besides, the enhancing effect of Cot on Gal4-p65 was not decreased in mouse embryo fibroblasts from NIK deficient aly/aly mice in contrast with a greatest reduction on Gal4-c-Rel. By using Ser to Ala mutants in p65 and c-Rel transactivation domains, PKCzeta and NIK activities seem to be dependent of a restricted set of Ser in both proteins. In contrast, the enhancing effect of Cot seems to be less dependent of a particular set of Ser residues being partially abrogated by mutation of several Ser residues.

  5. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.

    PubMed

    Badrinarayan, Preethi; Sastry, G Narahari

    2012-04-01

    In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Na 3Cr 2P 3S 12 and K 3Cr 2P 3S 12: Two New One-Dimensional Thiophosphate Compounds with a Novel Structure

    NASA Astrophysics Data System (ADS)

    Coste, S.; Kopnin, E.; Evain, M.; Jobic, S.; Payen, C.; Brec, R.

    2001-12-01

    Two new alkali metal chromium thiophosphates, Na3Cr2P3S12 and K3Cr2P3S12, have been synthesized and their structure determined from single-crystal or powder X-ray diffraction analyses. These isostructural compounds, which exhibit a novel structural arrangement, crystallize in the monoclinic system (space group P21/c) with the cell parameters a=17.4076(10) Å, b=11.1723(10) Å, c=19.2502(11) Å, β=149.731(3)° (V=1887.1(2) Å3, Z=4) and a=17.9690(14) Å, b=12.0607(5) Å, c=19.3109(16) Å, β=150.008(3)° (V=2091.98(16) Å3, Z=4) for Na3Cr2P3S12 (I) and K3Cr2P3S12 (II), respectively. For (I), the single-crystal refinement led to R/Rw(F2)=0.0417/0.0650 (for 4125 independent reflections and 182 refined parameters). For (II), the Rietveld refinement led to Rp/Rwp=0.0181/0.0233 (for 90 refined parameters). In both materials, the structures consist of 1∞[Cr2P3S12]3- chains built upon two edge-sharing [CrS6] octahedra capped by two [PS4] tetrahedra defining isolated [Cr2P2S12]-8 entities. These entities are linked to each other through an extra [PS4] tetrahedral group. Magnetic measurements evidence antiferromagnetic coupling between Cr3+ cations. The charge balance of the phase is MI3CrIII2PV3S-II12.

  7. Effects of Trx2p and Sec23p expression on stable production of hepatitis B surface antigen S domain in recombinant Saccharomyces cerevisiae.

    PubMed

    Park, Young-Kyoung; Jung, Sang-Min; Lim, Hyung-Kwon; Son, Young-Jin; Park, Yong-Cheol; Seo, Jin-Ho

    2012-08-31

    The S domain of hepatitis B virus surface antigen (sHBsAg) is the primary component for vaccine development against virus infection. For stable expression of sHBsAg in recombinant Saccharomyces cerevisiae, new accessory genes necessary for foreign protein expression were screened by DNA microarray. Among 600 genes of interest, genes coding for an activating protein of ATPase in Hsp90 (Aha1p), S. cerevisiae DnaJ (Scj1p), thioredoxin 2 (Trx2p) and a GTPase-activator specific for Sar1 (Sec23p) as well as Pdi1p were selected in transcriptome analysis, which are known to facilitate disulfide bond formation or induce protein transport in the secretion pathway. Individual and combinatorial expression of SEC23, TRX2 and PDI1 increased total sHBsAg concentration by 1.9-6.5-fold, relative to the control strain expressing sHBsAg only. Additionally, moderate expression of Kex2p protease able to cut off the signal peptide enhanced the portion of the authentic sHBsAg to total sHBsAg. Fed-batch fermentation of the S. cerevisiae 2805 strain coexpressing the sHBsAg, SEC23, PDI1 and KEX2 genes resulted in 70.6mg/L final sHBsAg concentration which was 5.6 times higher than that of the control. Transmission electron microscopic analysis of the yeast cells elucidated the effects of the accessory gene coexpression on the intracellular localization of sHBsAg. Like PDI1, coexpression of both SEC23 and/or TRX2 newly isolated in this study is expected to improve the target protein expression in S. cerevisiae. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Involvement of kinase PKC-zeta in the p62/p62(P392L)-driven activation of NF-κB in human osteoclasts.

    PubMed

    Chamoux, Estelle; McManus, Stephen; Laberge, Gino; Bisson, Martine; Roux, Sophie

    2013-03-01

    Mutations of the gene encoding sequestosome1 (SQSTM1/p62), clustering in or near the UBA domain, have been described in Paget's disease of bone (PDB); among these the P392L substitution is the most prevalent. Protein p62 mediates several cell functions, including the control of NF-κB signaling, and autophagy. This scaffolding protein interacts with atypical PKCζ in the RANKL-induced signaling complex. We have previously shown that osteoclasts (OCs) overexpressing the p62(P392L) variant were in a constitutively activated state, presenting activated kinase p-PKCζ/λ and activated NF-κB prior to RANKL stimulation. In the present study, we investigated the relationships between PKCζ and NF-κB activation in human OCs transfected with p62 variants. We showed that PKCζ and p-PKCζ/λ co-localize with p62, and that PKCζ is involved in the RANKL-induced NF-κB activation and in the RANKL-independent activation of NF-κB observed in p62(P392L)-transfected cells. We also observed a basal and RANKL-induced increase in IκBα levels in the presence of the p62(P392L) mutation that contrasted with the NF-κB activation. In this study we propose that PKCζ plays a role in the activation of NF-κB by acting as a p65 (RelA) kinase at Ser(536), independently of IκBα; this alternative pathway could be used preferentially in the presence of the p62(P392L) mutation, which may hinder the ubiquitin-proteasome pathway. Overall, our results highlight the importance of p62-associated PKCζ in the overactive state of pagetic OCs and in the activation of NF-κB, particularly in the presence of the p62(P392L) mutation. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Structure and properties of Li 2S-P 2S 5-P 2S 3 glass and glass-ceramic electrolytes

    NASA Astrophysics Data System (ADS)

    Minami, Keiichi; Hayashi, Akitoshi; Ujiie, Satoshi; Tatsumisago, Masahiro

    High lithium ion conducting 70Li 2S·(30 - x)P 2S 5· xP 2S 3 (mol%) glasses and glass-ceramics were prepared by the mechanical milling method. Glasses were obtained in the composition range of 0 ≦ x ≦ 10. The substitution of P 2S 3 for P 2S 5 promoted the formation of the P 2S 6 4- units in the glasses. The conductivity of the glass increased with an increase in P 2S 3 contents up to 5 mol% and the glass with 5 mol% of P 2S 3 showed the conductivity of 1 × 10 -4 S cm -1 at room temperature. In the case of glass-ceramics, the conductivity increased with an increase in P 2S 3 contents up to 1 mol%, and the superionic conducting Li 7P 3S 11 crystal was precipitated in the glass-ceramic. The glass-ceramic with 1 mol% of P 2S 3 showed the highest conductivity of 3.9 × 10 -3 S cm -1 at room temperature.

  10. Activation of the AMP-activated protein kinase-p38 MAP kinase pathway mediates apoptosis induced by conjugated linoleic acid in p53-mutant mouse mammary tumor cells.

    PubMed

    Hsu, Yung-Chung; Meng, Xiaojing; Ou, Lihui; Ip, Margot M

    2010-04-01

    Conjugated linoleic acid (CLA) inhibits tumorigenesis and tumor growth in most model systems, an effect mediated in part by its pro-apoptotic activity. We previously showed that trans-10,cis-12 CLA induced apoptosis of p53-mutant TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum stress pathways. In the current study, we investigated the role of AMP-activated protein kinase (AMPK), a key player in fatty acid metabolism, in CLA-induced apoptosis in TM4t cells. We found that t10,c12-CLA increased phosphorylation of AMPK, and that CLA-induced apoptosis was enhanced by the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and inhibited by the AMPK inhibitor compound C. The increased AMPK activity was not due to nutrient/energy depletion since ATP levels did not change in CLA-treated cells, and knockdown of the upstream kinase LKB1 did not affect its activity. Furthermore, our data do not demonstrate a role for the AMPK-modulated mTOR pathway in CLA-induced apoptosis. Although CLA decreased mTOR levels, activity was only modestly decreased. Moreover, rapamycin, which completely blocked the activity of mTORC1 and mTORC2, did not induce apoptosis, and attenuated rather than enhanced CLA-induced apoptosis. Instead, the data suggest that CLA-induced apoptosis is mediated by the AMPK-p38 MAPK-Bim pathway: CLA-induced phosphorylation of AMPK and p38 MAPK, and increased expression of Bim, occurred with a similar time course as apoptosis; phosphorylation of p38 MAPK was blocked by compound C; the increased Bim expression was blocked by p38 MAPK siRNA; CLA-induced apoptosis was attenuated by the p38 inhibitor SB-203580 and by siRNAs directed against p38 MAPK or Bim. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Protein Kinase Cδ Suppresses Autophagy to Induce Kidney Cell Apoptosis in Cisplatin Nephrotoxicity

    PubMed Central

    Pan, Jian; Xiang, Xudong; Liu, Yu; Dong, Guie; Livingston, Man J.; Chen, Jian-Kang; Yin, Xiao-Ming

    2017-01-01

    Nephrotoxicity is a major adverse effect in cisplatin chemotherapy, and renoprotective approaches are unavailable. Recent work unveiled a critical role of protein kinase Cδ (PKCδ) in cisplatin nephrotoxicity and further demonstrated that inhibition of PKCδ not only protects kidneys but enhances the chemotherapeutic effect of cisplatin in tumors; however, the underlying mechanisms remain elusive. Here, we show that cisplatin induced rapid activation of autophagy in cultured kidney tubular cells and in the kidneys of injected mice. Cisplatin also induced the phosphorylation of mammalian target of rapamycin (mTOR), p70S6 kinase downstream of mTOR, and serine/threonine-protein kinase ULK1, a component of the autophagy initiating complex. In vitro, pharmacologic inhibition of mTOR, directly or through inhibition of AKT, enhanced autophagy after cisplatin treatment. Notably, in both cells and kidneys, blockade of PKCδ suppressed the cisplatin-induced phosphorylation of AKT, mTOR, p70S6 kinase, and ULK1 resulting in upregulation of autophagy. Furthermore, constitutively active and inactive forms of PKCδ respectively enhanced and suppressed cisplatin-induced apoptosis in cultured cells. In mechanistic studies, we showed coimmunoprecipitation of PKCδ and AKT from lysates of cisplatin-treated cells and direct phosphorylation of AKT at serine-473 by PKCδ in vitro. Finally, administration of the PKCδ inhibitor rottlerin with cisplatin protected against cisplatin nephrotoxicity in wild-type mice, but not in renal autophagy–deficient mice. Together, these results reveal a pathway consisting of PKCδ, AKT, mTOR, and ULK1 that inhibits autophagy in cisplatin nephrotoxicity. PKCδ mediates cisplatin nephrotoxicity at least in part by suppressing autophagy, and accordingly, PKCδ inhibition protects kidneys by upregulating autophagy. PMID:27799485

  12. Apoptosis, cell proliferation and modulation of cyclin-dependent kinase inhibitor p21cip1 in vascular remodelling during vein arterialization in the rat

    PubMed Central

    Borin, Thaiz Ferraz; Miyakawa, Ayumi Aurea; Cardoso, Leandro; de Figueiredo Borges, Luciano; Gonçalves, Giovana Aparecida; Krieger, Jose Eduardo

    2009-01-01

    Neo-intima development and atherosclerosis limit long-term vein graft use for revascularization of ischaemic tissues. Using a rat model, which is technically less challenging than smaller rodents, we provide evidence that the temporal morphological, cellular, and key molecular events during vein arterialization resemble the human vein graft adaptation. Right jugular vein was surgically connected to carotid artery and observed up to 90 days. Morphometry demonstrated gradual thickening of the medial layer and important formation of neo-intima with deposition of smooth muscle cells (SMC) in the subendothelial layer from day 7 onwards. Transmission electron microscopy showed that SMCs switch from the contractile to synthetic phenotype on day 3 and new elastic lamellae formation occurs from day 7 onwards. Apoptosis markedly increased on day 1, while α-actin immunostaining for SMC almost disappeared by day 3. On day 7, cell proliferation reached the highest level and cellular density gradually increased until day 90. The relative magnitude of cellular changes was higher in the intima vs. the media layer (100 vs. 2 times respectively). Cyclin-dependent kinase inhibitors (CDKIs) p27Kip1 and p16INKA remained unchanged, whereas p21Cip1 was gradually downregulated, reaching the lowest levels by day 7 until day 90. Taken together, these data indicate for the first time that p21Cip1 is the main CDKI protein modulated during the arterialization process the rat model of vein arterialization that may be useful to identify and validate new targets and interventions to improve the long-term patency of vein grafts. PMID:19563615

  13. Effect of mitogen-activated protein kinases on chemokine synthesis induced by substance P in mouse pancreatic acinar cells

    PubMed Central

    Ramnath, Raina Devi; Sun, Jia; Adhikari, Sharmila; Bhatia, Madhav

    2007-01-01

    Abstract Substance P, acting via its neurokinin 1 receptor (NK1 R), plays an important role in mediating a variety of inflammatory processes. Its interaction with chemokines is known to play a crucial role in the pathogenesis of acute pancreatitis. In pancreatic acinar cells, substance P stimulates the release of NFκB-driven chemokines. However, the signal transduction pathways by which substance P-NK1 R interaction induces chemokine production are still unclear. To that end, we went on to examine the participation of mitogen-activated protein kinases (MAPKs) in substance P-induced synthesis of pro-inflammatory chemokines, monocyte chemoanractant protein-1 (MCP-I), macrophage inflammatory protein-lα (MIP-lα) and macrophage inflammatory protein-2 (MIP-2), in pancreatic acini. In this study, we observed a time-dependent activation of ERK1/2, c-Jun N-terminal kinase (JNK), NFκB and activator protein-1 (AP-1) when pancreatic acini were stimulated with substance P. Moreover, substance P-induced ERK 1/2, JNK, NFκB and AP-1 activation as well as chemokine synthesis were blocked by pre-treatment with either extracellular signal-regulated protein kinase kinase 1 (MEK1) inhibitor or JNK inhibitor. In addition, substance P-induced activation of ERK 112, JNK, NFκB and AP-1-driven chemokine production were attenuated by CP96345, a selective NK1 R antagonist, in pancreatic acinar cells. Taken together, these results suggest that substance P-NK1 R induced chemokine production depends on the activation of MAPKs-mediated NFκB and AP-1 signalling pathways in mouse pancreatic acini. PMID:18205703

  14. p21-activated kinases and gastrointestinal cancer.

    PubMed

    He, Hong; Baldwin, Graham S

    2013-01-01

    p21-activated kinases (PAKs) were initially identified as effector proteins downstream from GTPases of the Rho family. To date, six members of the PAK family have been discovered in mammalian cells. PAKs play important roles in growth factor signalling, cytoskeletal remodelling, gene transcription, cell proliferation and oncogenic transformation. A large body of research has demonstrated that PAKs are up-regulated in several human cancers, and that their overexpression is linked to tumour progression and resistance to therapy. Structural and biochemical studies have revealed the mechanisms involved in PAK signalling, and opened the way to the development of PAK-targeted therapies for cancer treatment. Here we summarise recent findings from biological and clinical research on the role of PAKs in gastrointestinal cancer, and discuss the current status of PAK-targeted anticancer therapies. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins

    PubMed Central

    Graf, Laura; Webel, Rike; Wagner, Sabrina; Hamilton, Stuart T.; Rawlinson, William D.; Sticht, Heinrich; Marschall, Manfred

    2013-01-01

    The human cytomegalovirus (HCMV)-encoded protein kinase, pUL97, is considered a cyclin-dependent kinase (CDK) ortholog, due to shared structural and functional characteristics. The primary mechanism of CDK activation is binding to corresponding cyclins, including cyclin T1, which is the usual regulatory cofactor of CDK9. This study provides evidence of direct interaction between pUL97 and cyclin T1 using yeast two-hybrid and co-immunoprecipitation analyses. Confocal immunofluorescence revealed partial colocalization of pUL97 with cyclin T1 in subnuclear compartments, most pronounced in viral replication centres. The distribution patterns of pUL97 and cyclin T1 were independent of HCMV strain and host cell type. The sequence domain of pUL97 responsible for the interaction with cyclin T1 was between amino acids 231–280. Additional co-immunoprecipitation analyses showed cyclin B1 and cyclin A as further pUL97 interaction partners. Investigation of the pUL97-cyclin T1 interaction in an ATP consumption assay strongly suggested phosphorylation of pUL97 by the CDK9/cyclin T1 complex in a substrate concentration-dependent manner. This is the first demonstration of interaction between a herpesviral CDK ortholog and cellular cyclins. PMID:24351800

  16. Association of protein kinase FA/GSK-3alpha (a proline-directed kinase and a regulator of protooncogenes) with human cervical carcinoma dedifferentiation/progression.

    PubMed

    Yang, S D; Yu, J S; Lee, T T; Ni, M H; Yang, C C; Ho, Y S; Tsen, T Z

    1995-10-01

    Computer analysis of protein phosphorylation-sites sequence revealed that most transcriptional factors and viral oncoproteins are prime targets for regulation of proline-directed protein phosphorylation, suggesting an association of proline-directed protein kinase (PDPK) family with neoplastic transformation and tumorigenesis. In this report, an immunoprecipitate activity assay of protein kinase FA/glycogen synthase kinase-3alpha (kinase FA/GSK-3alpha) (a particular member of PDPK family) has been optimized for human cervical tissue and used to demonstrate for the first time significantly increased (P < 0.001) activity in poorly differentiated cervical carcinoma (82.8 +/- 6.6 U/mg of protein), moderately differentiated carcinoma (36.2 +/- 3.4 U/mg of protein), and well-differentiated carcinoma (18.3 +/- 2.4 U/mg of protein) from 36 human cervical carcinoma samples when compared to 12 normal controls (4.9 +/- 0.6 U/mg of protein). Immunoblotting analysis further revealed that increased activity of kinase FA/GSK-3alpha in cervical carcinoma is due to overexpression of protein synthesis of the kinase. Taken together, the results provide initial evidence that overexpression of protein synthesis and cellular activity of kinase FA/GSK-3alpha may be involved in human cervical carcinoma dedifferentiation/progression, supporting an association of proline-directed protein kinase with neoplastic transformation and tumorigenesis. Since protein kinase FA/GSK-3alpha may function as a possible regulator of transcription factors/proto-oncogenes, the results further suggest that kinase FA/GSK-3alpha may play a potential role in human cervical carcinogenesis, especially in its dedifferentiation and progression.

  17. HIRA, the Human Homologue of Yeast Hir1p and Hir2p, Is a Novel Cyclin-cdk2 Substrate Whose Expression Blocks S-Phase Progression

    PubMed Central

    Hall, Caitlin; Nelson, David M.; Ye, Xiaofen; Baker, Kayla; DeCaprio, James A.; Seeholzer, Steven; Lipinski, Marc; Adams, Peter D.

    2001-01-01

    Substrates of cyclin-cdk2 kinases contain two distinct primary sequence motifs: a cyclin-binding RXL motif and one or more phosphoacceptor sites (consensus S/TPXK/R or S/TP). To identify novel cyclin-cdk2 substrates, we searched the database for proteins containing both of these motifs. One such protein is human HIRA, the homologue of two cell cycle-regulated repressors of histone gene expression in Saccharomyces cerevisiae, Hir1p and Hir2p. Here we demonstrate that human HIRA is an in vivo substrate of a cyclin-cdk2 kinase. First, HIRA bound to and was phosphorylated by cyclin A- and E-cdk2 in vitro in an RXL-dependent manner. Second, HIRA was phosphorylated in vivo on two consensus cyclin-cdk2 phosphoacceptor sites and at least one of these, threonine 555, was phosphorylated by cyclin A-cdk2 in vitro. Third, phosphorylation of HIRA in vivo was blocked by cyclin-cdk2 inhibitor p21cip1. Fourth, HIRA became phosphorylated on threonine 555 in S phase when cyclin-cdk2 kinases are active. Fifth, HIRA was localized preferentially to the nucleus, where active cyclin A- and E-cdk2 are located. Finally, ectopic expression of HIRA in cells caused arrest in S phase and this is consistent with the notion that it is a cyclin-cdk2 substrate that has a role in control of the cell cycle. PMID:11238922

  18. Crystallization and preliminary X-ray analysis of pyruvate kinase from Bacillus stearothermophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kenichiro; Ito, Sohei; Shimizu-Ibuka, Akiko

    2005-08-01

    This report describes the crystallization and X-ray diffraction data collection of three types (wild-type, W416F/V435W and C9S/C268S) of B. stearothermophilus. Crystals of C9S/C268S belonged to space group P6{sub 2}22 and diffracted to a resolution of 2.4 Å. Pyruvate kinase (PK) from a moderate thermophile, Bacillus stearothermophilus (BstPK), is an allosteric enzyme activated by AMP and ribose 5-phosphate but not by fructose 1,6-bisphosphate (FBP). However, almost all other PKs are activated by FBP. The wild-type and W416F/V435W mutant BstPKs were crystallized by the hanging-drop vapour-diffusion method. However, they were unsuitable for structural analysis because their data sets exhibited low completeness. Amore » crystal suitable for structural analysis was obtained using C9S/C268S enzyme. The crystal belonged to space group P6{sub 2}22, with unit-cell parameters a = b = 145.97, c = 118.03 Å.« less

  19. Delicaflavone induces autophagic cell death in lung cancer via Akt/mTOR/p70S6K signaling pathway.

    PubMed

    Sui, Yuxia; Yao, Hong; Li, Shaoguang; Jin, Long; Shi, Peiying; Li, Zhijun; Wang, Gang; Lin, Shilan; Wu, Youjia; Li, Yuxiang; Huang, Liying; Liu, Qicai; Lin, Xinhua

    2017-03-01

    Searching for potential anticancer agents from natural sources is an effective strategy for developing novel chemotherapeutic agents. In this study, data supporting the in vitro and in vivo anticancer effects of delicaflavone, a rarely occurring biflavonoid from Selaginella doederleinii, were reported. Delicaflavone exhibited favorable anticancer properties, as shown by the MTT assay and xenograft model of human non-small cell lung cancer in male BALB/c nude mice without observable adverse effect. By transmission electron microscopy with acridine orange and Cyto-ID®Autophagy detection dyes, Western blot analysis, and RT-PCR assay, we confirmed that delicaflavone induces autophagic cell death by increasing the ratio of LC3-II to LC3-I, which are autophagy-related proteins, and promoting the generation of acidic vesicular organelles and autolysosomes in the cytoplasm of human lung cancer A549 and PC-9 cells in a time- and dose-dependent manner. Delicaflavone downregulated the expression of phospho-Akt, phospho-mTOR, and phospho-p70S6K in a time- and dose-dependent manner, suggesting that it induced autophagy by inhibiting the Akt/mTOR/p70S6K pathway in A549 and PC-9 cells. Delicaflavone is a potential anticancer agent that can induce autophagic cell death in human non-small cell lung cancer via the Akt/mTOR/p70S6K signaling pathway. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer.

  20. Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li 4 P 2 S 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, Christian; Sadowski, Marcel; Sicolo, Sabrina

    Glassy, glass–ceramic, and crystalline lithium thiophosphates have attracted interest in their use as solid electrolytes in all-solid-state batteries. Despite similar structural motifs, including PS 4 3–, P 2S 6 4–, and P 2S 7 4– polyhedra, these materials exhibit a wide range of possible compositions, crystal structures, and ionic conductivities. Here, we present a combined approach of Bragg diffraction, pair distribution function analysis, Raman spectroscopy, and 31P magic angle spinning nuclear magnetic resonance spectroscopy to study the underlying crystal structure of Li 4P 2S 6. In this work, we show that the material crystallizes in a planar structural arrangement asmore » a glass ceramic composite, explaining the observed relatively low ionic conductivity, depending on the fraction of glass content. Calculations based on density functional theory provide an understanding of occurring diffusion pathways and ionic conductivity of this Li + ionic conductor.« less