Sample records for s9 metabolic activation

  1. Inhibitory Effect of Apigenin on Losartan Metabolism and CYP2C9 Activity in vitro.

    PubMed

    Wang, Zhe; Gong, Yun; Zeng, Da-Li; Chen, Lian-Guo; Lin, Gao-Tong; Huang, Cheng-Ke; Sun, Wei; Chen, Meng-Chun; Hu, Guo-Xin; Chen, Rui-Jie

    2016-01-01

    CYP2C9 is one of the most important phase I drug-metabolizing enzymes in liver. The objective of this work was to investigate the effects of apigenin on the metabolism of losartan and human CYP2C9 and rat CYP2C11 activity in vitro. Different concentrations of apigenin were added to a 100 mmol/l Tris-HCl reaction mixture containing 2 pmol/ml recombinant human CYP2C9.1, 0.25 mg/ml human liver microsomes or 0.5 mg/ml rat liver microsomes to determine the half maximal inhibition or a half-maximal inhibitory concentration (IC50) on the metabolism of losartan. In addition, diclofenac used as CYP2C9 substrate was performed to determine the effects of apigenin on CYP2C9. The results showed that apigenin has the inhibitory effect on the metabolism of losartan in vitro, the IC50 was 7.61, 4.10 and 11.07 μmol/l on recombinant CYP2C9 microsomes, human liver microsomes and rat liver microsomes, respectively. Meanwhile, apigenin's mode of action on human CYP2C9 activity was competitive for the substrate diclofenac. In contrast to its potent inhibition of CYP2C9 in humans (9.51 μmol/l), apigenin had lesser effects on CYP2C11 in rat (IC50 = 15.51 μmol/l). The observations imply that apigenin has the inhibitory effect on the metabolism of losartan and CYP2C9 activity in vitro. More attention should be paid as to when losartan should be administrated combined with apigenin. © 2016 S. Karger AG, Basel.

  2. Assessment of metabolic stability using the rainbow trout (Oncorhynchus mykiss) liver S9 fraction

    EPA Science Inventory

    Standard protocols are given for assessing metabolic stability in rainbow trout using the liver S9 fraction. These protocols describe the isolation of S9 fractions from trout livers, evaluation of metabolic stability using a substrate depletion approach, and expression of the res...

  3. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome

    PubMed Central

    Rocha, Natalia G.; Sales, Allan R. K.; Penedo, Leticia A.; Pereira, Felipe S.; Silva, Mayra S.; Miranda, Renan L.; Silva, Jemima F. R.; Silva, Bruno M.; Santos, Aline A.; Nobrega, Antonio C. L.

    2015-01-01

    Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P < 0.05). Subjects with early MetS presented less CACs (P = 0.02) and higher MMP-9 activity (P ≤ 0.04), while healthy controls presented higher MMP-2 activity after exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise. PMID:26557715

  4. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome.

    PubMed

    Rocha, Natalia G; Sales, Allan R K; Penedo, Leticia A; Pereira, Felipe S; Silva, Mayra S; Miranda, Renan L; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nobrega, Antonio C L

    2015-01-01

    Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P < 0.05). Subjects with early MetS presented less CACs (P = 0.02) and higher MMP-9 activity (P ≤ 0.04), while healthy controls presented higher MMP-2 activity after exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise.

  5. S-Glutathionylation Regulates Inflammatory Activities of S100A9*

    PubMed Central

    Lim, Su Yin; Raftery, Mark J.; Goyette, Jesse; Geczy, Carolyn L.

    2010-01-01

    Reactive oxygen species generated by activated neutrophils can cause oxidative stress and tissue damage. S100A8 (A8) and S100A9 (A9), abundant in neutrophil cytoplasm, are exquisitely sensitive to oxidation, which may alter their functions. Murine A8 is a neutrophil chemoattractant, but it suppresses leukocyte transmigration in the microcirculation when S-nitrosylated. Glutathione (GSH) modulates intracellular redox, and S-glutathionylation can protect susceptible proteins from oxidative damage and regulate function. We characterized S-glutathionylation of A9; GSSG and GSNO generated S-glutathionylated A8 (A8-SSG) and A9 (A9-SSG) in vitro, whereas only A9-SSG was detected in cytosol of neutrophils activated with phorbol myristate acetate (PMA) but not with fMLP or opsonized zymosan. S-Glutathionylation exposed more hydrophobic regions in Zn2+-bound A9 but did not alter Zn2+ binding affinity. A9-SSG had reduced capacity to form heterocomplexes with A8, but the arachidonic acid binding capacities of A8/A9 and A8/A9-SSG were similar. A9 and A8/A9 bind endothelial cells; S-glutathionylation reduced binding. We found little effect of A9 or A9-SSG on neutrophil CD11b/CD18 expression or neutrophil adhesion to endothelial cells. However, A9, A9-SSG and A8/A9 promoted neutrophil adhesion to fibronectin but, in the presence of A8, A9-mediated adhesion was abrogated by glutathionylation. S-Glutathionylation of A9 may protect its oxidation to higher oligomers and reduce neutrophil binding to the extracellular matrix. This may regulate the magnitude of neutrophil migration in the extravasculature, and together with the functional changes we reported for S-nitrosylated A8, particular oxidative modifications of these proteins may limit tissue damage in acute inflammation. PMID:20223829

  6. Mutagenicity of 1-nitropyrene metabolites from lung S9.

    PubMed

    King, L C; Kohan, M J; Ball, L M; Lewtas, J

    1984-04-01

    The mutagenicity of 1-nitropyrene metabolites from rabbit lung S9 incubates was evaluated using the Salmonella typhimurium plate incorporation assay with strain TA98, with and without Aroclor-induced rat liver S9. The following metabolites were isolated, identified and quantitated by HPLC: 1-nitropyrene -4,5- or -9,10-dihydrodiol (K-DHD), N-acetyl-1-aminopyrene ( NAAP ), 1-aminopyrene (1-AMP), 10-hydroxy-1-nitropyrene, 4-, 5-, 6-, 8- or 9-monohydroxy-1-nitropyrene (phenols) and 3-hydroxy-1-nitropyrene. The predominant metabolites formed by lung S9 incubates were K-DHD, 3-OH-1-nitropyrene and phenols. All of the metabolites were mutagenic in the absence of the exogenous rat liver S9 metabolic activation system, and several, including two unidentified metabolites were more potent than the parent 1-nitropyrene. The mutagenicity of 3 of the metabolites ( NAAP , 10-OH-1-nitropyrene and phenols) were enhanced by S9 while most of the other metabolites were less mutagenic in the presence of S9. These results indicate that lung tissue is capable of both oxidative and reductive metabolism which produced mutagenic metabolites, several of which were more potent than the parent compound, 1-NP.

  7. METABOLISM OF BENZ(J)ACEANTHRYLENE (CHOLANTHRYLENE) AND BENZ(L)ACEANTHRYLENE BY INDUCED RAT LIVER S9 (JOURNAL VERSION)

    EPA Science Inventory

    The metabolites of benz(j)aceanthrylene (B(j)A) and benz(l)aceanthrylene (B(l)A) produced by incubation with liver S9 proteins from rats induced with Aroclor-1254 and phenobarbital have been studied. Aroclor-1254 and phenobarbital induced rat liver S9 each metabolized B(j)A to tr...

  8. TLR-activated repression of Fe-S cluster biogenesis drives a metabolic shift and alters histone and tubulin acetylation.

    PubMed

    Tong, Wing-Hang; Maio, Nunziata; Zhang, De-Liang; Palmieri, Erika M; Ollivierre, Hayden; Ghosh, Manik C; McVicar, Daniel W; Rouault, Tracey A

    2018-05-22

    Given the essential roles of iron-sulfur (Fe-S) cofactors in mediating electron transfer in the mitochondrial respiratory chain and supporting heme biosynthesis, mitochondrial dysfunction is a common feature in a growing list of human Fe-S cluster biogenesis disorders, including Friedreich ataxia and GLRX5-related sideroblastic anemia. Here, our studies showed that restriction of Fe-S cluster biogenesis not only compromised mitochondrial oxidative metabolism but also resulted in decreased overall histone acetylation and increased H3K9me3 levels in the nucleus and increased acetylation of α-tubulin in the cytosol by decreasing the lipoylation of the pyruvate dehydrogenase complex, decreasing levels of succinate dehydrogenase and the histone acetyltransferase ELP3, and increasing levels of the tubulin acetyltransferase MEC17. Previous studies have shown that the metabolic shift in Toll-like receptor (TLR)-activated myeloid cells involves rapid activation of glycolysis and subsequent mitochondrial respiratory failure due to nitric oxide (NO)-mediated damage to Fe-S proteins. Our studies indicated that TLR activation also actively suppresses many components of the Fe-S cluster biogenesis machinery, which exacerbates NO-mediated damage to Fe-S proteins by interfering with cluster recovery. These results reveal new regulatory pathways and novel roles of the Fe-S cluster biogenesis machinery in modifying the epigenome and acetylome and provide new insights into the etiology of Fe-S cluster biogenesis disorders.

  9. TLR-activated repression of Fe-S cluster biogenesis drives a metabolic shift and alters histone and tubulin acetylation

    PubMed Central

    Maio, Nunziata; Palmieri, Erika M.; Ollivierre, Hayden; Ghosh, Manik C.

    2018-01-01

    Given the essential roles of iron-sulfur (Fe-S) cofactors in mediating electron transfer in the mitochondrial respiratory chain and supporting heme biosynthesis, mitochondrial dysfunction is a common feature in a growing list of human Fe-S cluster biogenesis disorders, including Friedreich ataxia and GLRX5-related sideroblastic anemia. Here, our studies showed that restriction of Fe-S cluster biogenesis not only compromised mitochondrial oxidative metabolism but also resulted in decreased overall histone acetylation and increased H3K9me3 levels in the nucleus and increased acetylation of α-tubulin in the cytosol by decreasing the lipoylation of the pyruvate dehydrogenase complex, decreasing levels of succinate dehydrogenase and the histone acetyltransferase ELP3, and increasing levels of the tubulin acetyltransferase MEC17. Previous studies have shown that the metabolic shift in Toll-like receptor (TLR)–activated myeloid cells involves rapid activation of glycolysis and subsequent mitochondrial respiratory failure due to nitric oxide (NO)–mediated damage to Fe-S proteins. Our studies indicated that TLR activation also actively suppresses many components of the Fe-S cluster biogenesis machinery, which exacerbates NO-mediated damage to Fe-S proteins by interfering with cluster recovery. These results reveal new regulatory pathways and novel roles of the Fe-S cluster biogenesis machinery in modifying the epigenome and acetylome and provide new insights into the etiology of Fe-S cluster biogenesis disorders. PMID:29784770

  10. Hydroperoxide Lyase and Other Hydroperoxide-Metabolizing Activity in Tissues of Soybean, Glycine max

    PubMed Central

    Gardner, Harold W.; Weisleder, David; Plattner, Ronald D.

    1991-01-01

    Hydroperoxide lyase (HPLS) activity in soybean (Glycine max) seed/seedlings, leaves, and chloroplasts of leaves required detergent solubilization for maximum in vitro activity. On a per milligram of protein basis, more HPLS activity was found in leaves, especially chloroplasts, than in seeds or seedlings. The total yield of hexanal from 13(S)-hydroperoxy-cis-9,trans-11-octadecadienoic acid (13S-HPOD) from leaf or chloroplast preparations was 58 and 66 to 85%, respectively. Because of significant competing hydroperoxide-metabolizing activities from other enzymes in seed/seedling preparations, the hexanal yields from this source were lower (36-56%). Some of the products identified from the seed or seedling preparations indicated that the competing activity was mainly due to both a hydroperoxide peroxygenase and reactions catalyzed by lipoxygenase. Different HPLS isozyme compositions in the seed/seedling versus the leaf/chloroplast preparations were indicated by differences in the activity as a function of pH, the Km values, relative Vmax with 13S-HPOD and 13(S)-hydroperoxy-cis-9,trans-11,cis-15-octadecatrienoic acid (13S-HPOT), and the specificity with different substrates. With regard to the latter, both seed/seedling and chloroplast HPLS utilized the 13S-HPOD and 13S-HPOT substrates, but only seeds/seedlings were capable of metabolizing 9(S)-hydroperoxy-trans-10,cis-12-octadecadienoic acid into 9-oxononanoic acid, isomeric nonenals, and 4-hydroxynonenal. From 13S-HPOD and 13S-HPOT, the products were identified as 12-oxo-cis-9-dodecenoic acid, as well as hexanal from 13S-HPOD and cis-3-hexenal from 13S-HPOT. In seed preparations, there was partial isomerization of the cis-3 or cis-9 into trans-2 or trans-10 double bonds, respectively. PMID:16668490

  11. Proinflammatory Proteins S100A8/S100A9 Activate NK Cells via Interaction with RAGE.

    PubMed

    Narumi, Kenta; Miyakawa, Reina; Ueda, Ryosuke; Hashimoto, Hisayoshi; Yamamoto, Yuki; Yoshida, Teruhiko; Aoki, Kazunori

    2015-06-01

    S100A8/A9, a proinflammatory protein, is upregulated in inflammatory diseases, and also has a tumor-promoting activity by the recruitment of myeloid cells and tumor cell invasion. However, whether the expression of S100A8/A9 in tumors predicts a good or poor prognosis is controversial in the clinical setting. In this study, to clarify the in vivo role of S100A8/A9 in the tumor microenvironment, we s.c. inoculated Pan02 cells stably expressing S100A8 and S100A9 proteins (Pan02-S100A8/A9) in syngeneic C57BL/6 mice. Unexpectedly, after small tumor nodules were once established, they rapidly disappeared. Flow cytometry showed that the number of NK cells in the tumors was increased, and an administration of anti-asialoGM1 Ab for NK cell depletion promoted the growth of Pan02-S100A8/A9 s.c. tumors. Although the S100A8/A9 proteins alone did not change the IFN-γ expression of NK cells in vitro, a coculture with Pan02 cells, which express Rae-1, induced IFN-γ production, and Pan02-S100A8/A9 cells further increased the number of IFN-γ(+) NK cells, suggesting that S100A8/A9 enhanced the NK group 2D ligand-mediated intracellular activation pathway in NK cells. We then examined whether NK cell activation by S100A8/A9 was via their binding to receptor of advanced glycation end product (RAGE) by using the inhibitors. RAGE antagonistic peptide and anti-RAGE Ab inhibited the IFN-γ production of NK cells induced by S100A8/A9 proteins, and an administration of FPS-ZM1, a RAGE inhibitor, significantly enhanced the in vivo growth of Pan02-S100A8/A9 tumors. We thus found a novel activation mechanism of NK cells via S100A8/A9-RAGE signaling, which may open a novel perspective on the in vivo interaction between inflammation and innate immunity. Copyright © 2015 by The American Association of Immunologists, Inc.

  12. Incorporation of metabolic activation potentiates cyclophosphamide-induced DNA damage response in isogenic DT40 mutant cells

    PubMed Central

    Hashimoto, Kiyohiro; Takeda, Shunichi; Swenberg, James A.; Nakamura, Jun

    2015-01-01

    Elucidating the DNA repair pathways that are activated in the presence of genotoxic agents is critical to understand their modes of action. Although the DT40 cell-based DNA damage response (DDR) assay provides rapid and sensitive results, the assay cannot be used on genotoxic compounds that require metabolic activation to be reactive. Here, we applied the metabolic activation system to a DDR and micronucleus (MN) assays in DT40 cells. Cyclophosphamide (CP), a well-known cross-linking agent requiring metabolic activation, was preincubated with liver S9 fractions. When DT40 cells and mutant cells were exposed to the preactivated CP, CP caused increased cytotoxicity in FANC-, RAD9-, REV3- and RAD18-mutant cells compared to isogenic wild-type cells. We then performed a MN assay on DT40 cells treated with preactivated CP. An increase in the MN was observed in REV3- and FANC-mutant cells at lower concentrations of activated CP than in the parental DT40 cells. These results demonstrated that the incorporation of metabolic preactivation system using S9 fractions significantly potentiates DDR caused by CP in DT40 cells and their mutants. In addition, our data suggest that the metabolic preactivation system for DDR and MN assays has a potential to increase the relevance of this assay to screening various compounds for potential genotoxicity. PMID:26085549

  13. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation.

    PubMed

    Vogl, Thomas; Stratis, Athanasios; Wixler, Viktor; Völler, Tom; Thurainayagam, Sumita; Jorch, Selina K; Zenker, Stefanie; Dreiling, Alena; Chakraborty, Deblina; Fröhling, Mareike; Paruzel, Peter; Wehmeyer, Corinna; Hermann, Sven; Papantonopoulou, Olympia; Geyer, Christiane; Loser, Karin; Schäfers, Michael; Ludwig, Stephan; Stoll, Monika; Leanderson, Tomas; Schultze, Joachim L; König, Simone; Pap, Thomas; Roth, Johannes

    2018-05-01

    Autoimmune diseases, such as psoriasis and arthritis, show a patchy distribution of inflammation despite systemic dysregulation of adaptive immunity. Thus, additional tissue-derived signals, such as danger-associated molecular patterns (DAMPs), are indispensable for manifestation of local inflammation. S100A8/S100A9 complexes are the most abundant DAMPs in many autoimmune diseases. However, regulatory mechanisms locally restricting DAMP activities are barely understood. We now unravel for the first time, to our knowledge, a mechanism of autoinhibition in mice and humans restricting S100-DAMP activity to local sites of inflammation. Combining protease degradation, pull-down assays, mass spectrometry, and targeted mutations, we identified specific peptide sequences within the second calcium-binding EF-hands triggering TLR4/MD2-dependent inflammation. These binding sites are free when S100A8/S100A9 heterodimers are released at sites of inflammation. Subsequently, S100A8/S100A9 activities are locally restricted by calcium-induced (S100A8/S100A9)2 tetramer formation hiding the TLR4/MD2-binding site within the tetramer interphase, thus preventing undesirable systemic effects. Loss of this autoinhibitory mechanism in vivo results in TNF-α-driven fatal inflammation, as shown by lack of tetramer formation in crossing S100A9-/- mice with 2 independent TNF-α-transgene mouse strains. Since S100A8/S100A9 is the most abundant DAMP in many inflammatory diseases, specifically blocking the TLR4-binding site of active S100 dimers may represent a promising approach for local suppression of inflammatory diseases, avoiding systemic side effects.

  14. Circulating PCSK9 in patients with type 2 diabetes and related metabolic disorders.

    PubMed

    Ibarretxe, Daiana; Girona, Josefa; Plana, Núria; Cabré, Anna; Ferré, Raimón; Amigó, Núria; Guaita, Sandra; Mallol, Roger; Heras, Mercedes; Masana, Luis

    2016-01-01

    PCSK9 is a pivotal molecule in the regulation of lipid metabolism. Previous studies have suggested that PCSK9 expression and its function in LDL receptor regulation could be altered in the context of diabetes. The aim was to assess PCSK9 plasma levels in patients with type 2 diabetes (T2DM) and other related metabolic disorders as well as its relation to the metabolomic profile generated by nuclear magnetic resonance (NMR) and glucose homeostasis. There were recruited a total of 457 patients suffering from T2DM and other metabolic disorders (metabolic syndrome (MetS), obesity and atherogenic dyslipidaemia (AD) and other disorders). Anamnesis, anthropometry and physical examinations were conducted, and vascular and abdominal adiposity imaging were carried out. Biochemical studies were performed to determine PCSK9 plasma levels 6 weeks after lipid lowering drug wash-out in treated patients. A complete metabolomic lipid profile was also generated by NMR. The rs505151 and rs11591147 genetic variants of PCSK9 gene were identified in patients. The results showed that PCSK9 levels are increased in patients with T2DM and MetS (14% and 13%; p<0.005, respectively). Circulating PCSK9 levels were correlated with an atherogenic lipid profile and with insulin resistance parameters. PCSK9 levels were also positively associated with AD, as defined by lipoprotein particle number and size. The rs11591147 genetic variant resulted in lower levels of circulating PCSK9 and LDL cholesterol (LDL-C). PCSK9 plasma levels are increased in T2DM and MetS patients and are associated with LDL-C and other parameters of AD and glucose metabolism. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  15. Effects of human placental S9 and induced rat liver S9 on the mutagenicity of drinking waters processed from humus-rich surface waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vartiainen, T.; Lampelo, S.

    The mutagenicity of chlorinated drinking waters processed from humus-rich surface waters has been shown to be very high. The effect of placental S9 on the mutagenicity of drinking waters has not been studied previously. The purpose of this study was to compare the effects of human placental and rat liver microsomal fractions on the mutagenicity of drinking waters processed from humus-rich surface waters. The samples of 34 drinking and two raw waters from 26 localities in Finland were tested for mutagenicity in Ames Salmonella typhimurium tester strain TA100 with and without metabolic activations. Between the drinking water samples, clear differencesmore » were recorded in the presence of placental and rat liver S9, suggesting different mutagens in the drinking waters. Rat liver S9 decreased the mutagenicities of drinking water concentrates, but placental S9 increased, decreased, or had no effect. It is not known if placental mutagenicity enhancing system might cause any health hazard to a developing fetus.« less

  16. Xenobiotic metabolizing enzyme activities in cells used for testing skin sensitization in vitro.

    PubMed

    Fabian, E; Vogel, D; Blatz, V; Ramirez, T; Kolle, S; Eltze, T; van Ravenzwaay, B; Oesch, F; Landsiedel, R

    2013-09-01

    For ethical and regulatory reasons, in vitro tests for scoring potential toxicities of cosmetics are essential. A test strategy for investigating potential skin sensitization using two human keratinocytic and two human dendritic cell lines has been developed (Mehling et al. Arch Toxicol 86:1273–1295, 2012). Since prohaptens may be metabolically activated in the skin, information on xenobiotic metabolizing enzyme (XME) activities in these cell lines is of high interest. In this study, XME activity assays, monitoring metabolite or cofactor, showed the following: all three passages of keratinocytic (KeratinoSens® and LuSens) and dendritic (U937 und THP-1) cells displayed N-acetyltransferase 1 (NAT1) activities (about 6–60 nmol/min/mg S9-protein for acetylation of para-aminobenzoic acid). This is relevant since reactive species of many cosmetics are metabolically controlled by cutaneous NAT1. Esterase activities of about 1–4 nmol fluorescein diacetate/min/mg S9-protein were observed in all passages of investigated keratinocytic and about 1 nmol fluorescein diacetate/min/mg S9-protein in dendritic cell lines. This is also of practical relevance since many esters and amides are detoxified and others activated by cutaneous esterases. In both keratinocytic cell lines, activities of aldehyde dehydrogenase (ALDH) were observed (5–17 nmol product/min/mg cytosolic protein). ALDH is relevant for the detoxication of reactive aldehydes. Activities of several other XME were below detection, namely the investigated cytochrome P450-dependent alkylresorufin O-dealkylases 7-ethylresorufin O-deethylase, 7-benzylresorufin O-debenzylase and 7-pentylresorufin O-depentylase (while NADPH cytochrome c reductase activities were much above the limit of quantification), the flavin-containing monooxygenase, the alcohol dehydrogenase as well as the UDP glucuronosyl transferase activities.

  17. Optimized UDP-glucuronosyltransferase (UGT) activity assay for trout liver S9 fractions

    EPA Pesticide Factsheets

    This publication provides an optimized UGT assay for trout liver S9 fractions which can be used to perform in vitro-in vivo extrapolations of measured UGT activityThis dataset is associated with the following publication:Ladd, M., P. Fitzsimmons , and J. Nichols. Optimization of a UDP-glucuronosyltransferase assay for trout liver S9 fractions: Activity enhancement by alamethicin, a pore-forming peptide. XENOBIOTICA. Taylor & Francis, Inc., Philadelphia, PA, USA, 46(12): 1066-1075, (2016).

  18. Physical activity does not attenuate the relationship between daily cortisol and metabolic syndrome in obese youth.

    PubMed

    Guseman, Emily Hill; Pfeiffer, Karin A; Carlson, Joseph J; Stansbury, Kathy; Eisenmann, Joey C

    2016-01-01

    We examined the associations among daily cortisol, physical activity (MVPA) and continuous metabolic syndrome score (cMetS) in obese youth. Fifty adolescents (mean age 14.8 ± 1.9 years) were recruited from medical clinics. Daily MVPA (min/day) was assessed by accelerometry. Saliva was sampled at prescribed times: immediately upon waking; 30 min after waking; and 3, 6 and 9 h after waking. Fasting lipids, glucose, waist circumference and blood pressure were used to calculate a continuous metabolic syndrome score (cMetS). Multiple linear regression analysis was used to examine associations among variables. The mean cMetS score was 4.16 ± 4.30 and did not differ by clinic or sex. No significant relationship was found between cortisol area under the curve (cAUC) and cMetS, nor did the interaction of MVPA with cAUC significantly predict cMetS. Physical activity, cortisol, and metabolic risk were not associated in this sample of obese adolescents. Future research should examine the role of insulin sensitivity in these relationships.

  19. Limited value of the urinary phenytoin metabolic ratio for the assessment of cytochrome P4502C9 activity in vivo

    PubMed Central

    TASSANEEYAKUL, WICHITTRA; BIRKETT, DONALD J.; PASS, MICHAEL C.; MINERS, JOHN O.

    1996-01-01

    Relationships between the ratio of p-hydroxyphenytoin (p-HPPH), the major metabolite of phenytoin, to unchanged phenytoin excreted in urine (the urinary metabolic ratio or MR) were compared with a number of indices of the metabolic clearances of phenytoin and tolbutamide published previously for seventeen subjects separately administered these known cytochrome P4502C9 (CYP2C9) substrates. Significant correlations (rs=0.50–0.60, P<0.05) were observed between the phenytoin MR, derived from either 0–24 or 24–48 h urine collections, and inverse areas under the plasma unbound concentration-time curves (measured over various time intervals) of phenytoin and with plasma unbound tolbutamide clearance. Significant correlations (rs =0.59–0.74) were also observed between the phenytoin MRs and metabolic unbound clearances for p-hydroxyphenytoin formation. Despite the significant correlations, variability in tolbutamide and phenytoin metabolic clearance parameters tended to account for <50% of the variability in phenytoin MR. Correlations between the renal clearance of phenytoin and the phenytoin MRs suggest that variability in the renal clearance of unchanged drug limits the usefulness of the phenytoin MR for the investigation of factors influencing CYP2C9 activity in vivo. PMID:8971435

  20. Altered metabolism of synthetic cannabinoid JWH-018 by human cytochrome P450 2C9 and variants.

    PubMed

    Patton, Amy L; Seely, Kathryn A; Yarbrough, Azure L; Fantegrossi, William; James, Laura P; McCain, Keith R; Fujiwara, Ryoichi; Prather, Paul L; Moran, Jeffery H; Radominska-Pandya, Anna

    2018-04-06

    Synthetic cannabinoids (SCBs), synonymous with 'K2', 'Spice' or 'synthetic marijuana', are psychoactive drugs of abuse that frequently result in clinical effects and toxicity more severe than those classically associated with Δ 9 -tetrahydrocannabinol such as extreme agitation, hallucinations, supraventricular tachycardia, syncope, and seizures. JWH-018 is one of the earliest compounds identified in various SCB products, and our laboratory previously demonstrated that JWH-018 undergoes extensive metabolism by cytochromes P450 (P450), binds to, and activates cannabinoid receptors (CBRs). The major enzyme involved in the metabolism of JWH-018 is CYP2C9, a highly polymorphic enzyme found largely in the intestines and liver, with *1 being designated as the wild type, and *2 and *3 as the two most common variants. Three different major products have been identified in human urine and plasma: JWH-018 (ω)-OH, JWH-018 (ω-1)-OH(R), and JWH-018 (ω-1)-OH(S). The (ω-1)-OH metabolite of JWH-018 is a chiral molecule, and is thus designated as either (ω-1)-OH(R) or (ω-1)-OH(S). Here, in vitro enzyme kinetic assays performed with human recombinant CYP2C9 variants (*1, *2, and *3) revealed that oxidative metabolism by CYP2C9*3 resulted in significantly less formation of (ω)-OH and (ω-1)-OH metabolites. Surprisingly, CYP2C9*2 was roughly 3.6-fold more efficient as the CYP2C9*1 enzyme based on V max /K m , increasing the rate of JWH-018 metabolism and allowed for a much more rapid elimination. These results suggest that genetic polymorphisms of P450 enzymes result in the production of varying levels of biologically active JWH-018 metabolites in some individuals, offering a mechanistic explanation for the diverse clinical toxicity often observed following JWH-018 abuse. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Alarmin S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity.

    PubMed

    Vogl, Thomas; Eisenblätter, Michel; Völler, Tom; Zenker, Stefanie; Hermann, Sven; van Lent, Peter; Faust, Andreas; Geyer, Christiane; Petersen, Beatrix; Roebrock, Kirsten; Schäfers, Michael; Bremer, Christoph; Roth, Johannes

    2014-08-06

    Inflammation has a key role in the pathogenesis of various human diseases. The early detection, localization and monitoring of inflammation are crucial for tailoring individual therapies. However, reliable biomarkers to detect local inflammatory activities and to predict disease outcome are still missing. Alarmins, which are locally released during cellular stress, are early amplifiers of inflammation. Here, using optical molecular imaging, we demonstrate that the alarmin S100A8/S100A9 serves as a sensitive local and systemic marker for the detection of even sub-clinical disease activity in inflammatory and immunological processes like irritative and allergic contact dermatitis. In a model of collagen-induced arthritis, we use S100A8/S100A9 imaging to predict the development of disease activity. Furthermore, S100A8/S100A9 can act as a very early and sensitive biomarker in experimental leishmaniasis for phagocyte activation linked to an effective Th1-response. In conclusion, the alarmin S100A8/S100A9 is a valuable and sensitive molecular target for novel imaging approaches to monitor clinically relevant inflammatory disorders on a molecular level.

  2. Pharmacokinetics and N-acetylation metabolism of S-methyl-l-cysteine and trans-S-1-propenyl-l-cysteine in rats and dogs.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-11-01

    1. Pharmacokinetics and N-acetylation metabolism of S-methyl-L-cysteine (SMC) and trans-S-1-propenyl-L-cysteine (S1PC) were examined in rats and dogs. SMC and S1PC (2-5 mg/kg) were well absorbed in both species with high bioavailability (88-100%). 2. SMC and S1PC were excreted only to a small extent in the urine of rats and dogs. The small renal clearance values (<0.03 l/h/kg) indicated the extensive renal reabsorption of SMC and S1PC, which potentially contributed to their long elimination half-lives (>5 h) in dogs. 3. S1PC, but not SMC, underwent N-acetylation extensively in vivo, which can be explained by the relative activities of N-acetylation of S1PC/SMC and deacetylation of their N-acetylated forms, N-acetyl-S1PC/N-acetyl-SMC, in the liver and kidney in vitro. The activities for S1PC N-acetylation were similar to or higher than those for N-acetyl-S1PC deacetylation in liver S9 fractions of rat and dog, whereas liver and kidney S9 fractions of rat and dog had little activity for SMC N-acetylation or considerably higher activities for N-acetyl-SMC deacetylation. 4. Our study demonstrated that the pharmacokinetics of SMC and S1PC in rats and dogs was characterized by high bioavailability and extensive renal reabsorption; however, the extent of undergoing the N-acetylation metabolism was extremely different between SMC and S1PC.

  3. S100A12 and S100A8/9 proteins are biomarkers of articular disease activity in Blau syndrome.

    PubMed

    Wang, Lin; Rosé, Carlos D; Foley, Kevin P; Anton, Jordi; Bader-Meunier, Brigitte; Brissaud, Philippe; Chédeville, Gaelle; Cimaz, Rolando; Fernández-Martín, Jorge; Guly, Catherine; Hachulla, Eric; Harjacek, Miroslav; Mackensen, Friederike; Merino, Rosa; Modesto, Consuelo; Naranjo Hernández, Antonio; Pajot, Christine; Ramanan, Athimalaipet V; Thatayatikom, Akaluck; Thomée, Caroline; Vastert, Sebastiaan; Votta, Bart J; Bertin, John; Wouters, Carine H

    2018-04-07

    To identify biomarkers of articular and ocular disease activity in patients with Blau syndrome (BS). Multiplex plasma protein arrays were performed in five BS patients and eight normal healthy volunteers (NHVs). Plasma S100A12 and S100A8/9 were subsequently measured by ELISA at baseline and 1-year follow-up in all patients from a prospective multicentre cohort study. CRP was measured using Meso Scale Discovery immunoassay. Active joint counts, standardization uveitis nomenclature for anterior uveitis cells and vitreous haze by Nussenblatt scale were the clinical parameters. Multiplex Luminex arrays identified S100A12 as the most significantly elevated protein in five selected BS vs eight NHVs and this was confirmed by ELISA on additional samples from the same five BS patients. In the patient cohort, S100A12 (n = 39) and S100A8/9 (n = 33) were significantly higher compared with NHVs (n = 44 for S100A12, n = 40 for S100A8/9) (P = 0.0000004 and P = 0.0003, respectively). Positive correlations between active joint counts and S100 levels were significant for S100A12 (P = 0.0008) and S100A8/9 (P = 0.015). CRP levels did not correlate with active joint count. Subgroup analysis showed significant association of S100 proteins with active arthritis (S100A12 P = 0.01, S100A8/9 P = 0.008). Active uveitis was not associated with increased S100 levels. S100 proteins are biomarkers of articular disease activity in BS and potential outcome measures in future clinical trials. As secreted neutrophil and macrophage products, S100 proteins may reflect the burden of granulomatous tissue in BS.

  4. CYP2C9 Genotype-Dependent Warfarin Pharmacokinetics: Impact of CYP2C9 Genotype on R- and S-Warfarin and Their Oxidative Metabolites.

    PubMed

    Flora, Darcy R; Rettie, Allan E; Brundage, Richard C; Tracy, Timothy S

    2017-03-01

    Multiple factors can impact warfarin therapy, including genetic variations in the drug-metabolizing enzyme cytochrome P450 2C9 (CYP2C9). Compared with individuals with the wild-type allele, CYP2C9*1, carriers of the common *3 variant have significantly impaired CYP2C9 metabolism. Genetic variations in CYP2C9, the primary enzyme governing the metabolic clearance of the more potent S-enantiomer of the racemic anticoagulant warfarin, may impact warfarin-drug interactions. To establish a baseline for such studies, plasma and urine concentrations of R- and S-warfarin and 10 warfarin metabolites were monitored for up to 360 hours following a 10-mg warfarin dose in healthy subjects with 4 different CYP2C9 genotypes: CYP2C9*1/*1 (n = 8), CYP2C9*1/*3 (n = 9), CYP2C9*2/*3 (n = 3), and CYP2C9*3/*3 (n = 4). Plasma clearance of S-warfarin, but not R-warfarin, decreased multiexponentially and in a CYP2C9 gene-dependent manner: 56%, 70%, and 75% for CYP2C9*1/*3, CYP2C9*2/*3, and CYP2C9*3/*3 genotypes, respectively, compared with CYP2C9*1/*1, resulting in pronounced differences in the S:R ratio that identified warfarin-sensitive genotypes. CYP2C9 was the primary P450 enzyme contributing to S-warfarin metabolism and a minor contributor to R-warfarin metabolism. In the presence of a defective CYP2C9 allele, switching of warfarin metabolism to other oxidative pathways and P450 enzymes for the metabolic elimination of S-warfarin was not observed. The 10-hydroxywarfarin metabolites, whose detailed pharmacokinetics are reported for the first time, exhibited a prolonged half-life with no evidence of renal excretion and displayed elimination rate-limited kinetics. Understanding the impact of CYP2C9 genetics on warfarin pharmacokinetics lays the foundation for future genotype-dependent warfarin-drug interaction studies. © 2016, The American College of Clinical Pharmacology.

  5. Mutagenicity of silver nanoparticles in CHO cells dependent on particle surface functionalization and metabolic activation

    NASA Astrophysics Data System (ADS)

    Guigas, Claudia; Walz, Elke; Gräf, Volker; Heller, Knut J.; Greiner, Ralf

    2017-06-01

    The potential of engineered nanomaterials to induce genotoxic effects is an important aspect of hazard identification. In this study, cytotoxicity and mutagenicity as a function of metabolic activation of three silver nanoparticle (AgNP) preparations differing in surface coating were determined in Chinese hamster ovary (CHO) subclone K1 cells. Three silver nanoparticle preparations ( x 90,0 <30 nm) stabilized with polyoxyethylene glycerol trioleate and polyoxyethylene sorbitan monolaurate (AgPure™), citrate (Citrate-Ag), and polyvinylpyrrolidone (PVP-Ag) were used for the experiments. The cytotoxic effect of AgNPs was assessed with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide) test using different concentrations of nanoparticles, while the mutagenicity was evaluated using the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation assay. The cytotoxicity of all three AgNPs was lower in a cell culture medium containing 10% fetal calf serum (FCS) than in medium without FCS. The HPRT test without metabolic activation system S9 revealed that compared to the other AgNP formulations, citrate-coated Ag showed a lower genotoxic effect. However, addition of S9 increased the mutation frequency of all AgNPs and especially influenced the genotoxicity of Citrate-Ag. The results showed that exogenous metabolic activation of nanosilver is crucial even if interactions of the metabolic activation system, nanosilver, and cells are not really understood up to now.

  6. Abcc9 is required for the transition to oxidative metabolism in the newborn heart.

    PubMed

    Fahrenbach, John P; Stoller, Douglas; Kim, Gene; Aggarwal, Nitin; Yerokun, Babatunde; Earley, Judy U; Hadhazy, Michele; Shi, Nian-Qing; Makielski, Jonathan C; McNally, Elizabeth M

    2014-07-01

    The newborn heart adapts to postnatal life by shifting from a fetal glycolytic metabolism to a mitochondrial oxidative metabolism. Abcc9, an ATP-binding cassette family member, increases expression concomitant with this metabolic shift. Abcc9 encodes a membrane-associated receptor that partners with a potassium channel to become the major potassium-sensitive ATP channel in the heart. Abcc9 also encodes a smaller protein enriched in the mitochondria. We now deleted exon 5 of Abcc9 to ablate expression of both plasma membrane and mitochondria-associated Abcc9-encoded proteins, and found that the myocardium failed to acquire normal mature metabolism, resulting in neonatal cardiomyopathy. Unlike wild-type neonatal cardiomyocytes, mitochondria from Ex5 cardiomyocytes were unresponsive to the KATP agonist diazoxide, consistent with loss of KATP activity. When exposed to hydrogen peroxide to induce cell stress, Ex5 neonatal cardiomyocytes displayed a rapid collapse of mitochondria membrane potential, distinct from wild-type cardiomyocytes. Ex5 cardiomyocytes had reduced fatty acid oxidation, reduced oxygen consumption and reserve. Morphologically, Ex5 cardiac mitochondria exhibited an immature pattern with reduced cross-sectional area and intermitochondrial contacts. In the absence of Abcc9, the newborn heart fails to transition normally from fetal to mature myocardial metabolism.-Fahrenbach, J. P., Stoller, D., Kim, G., Aggarwal, N., Yerokun, B., Earley, J. U., Hadhazy, M., Shi, N.-Q., Makielski, J. C., McNally, E. M. Abcc9 is required for the transition to oxidative metabolism in the newborn heart. © FASEB.

  7. New insights into the pharmacokinetics and metabolism of (R,S)-ifosfamide in cancer patients using a population pharmacokinetic-metabolism model.

    PubMed

    Di Marco, M P; Wainer, I W; Granvil, C L; Batist, G; Ducharme, M P

    2000-06-01

    To describe the pharmacokinetics of R- and S-Ifosfamide (IFF), and their respective 2 and 3 N-dechloroethylated (DCE) metabolites (R2-, R3-, S2, S3-DCE-IFF) in cancer patients. (R,S)-IFF was administered (1.5 g/m2) daily for 5 days in 13 cancer patients. Plasma and urine samples were collected and analyzed using an enantioselective GC-MS method. An average of 97 observations per patient were simultaneously fitted using a pharmacokinetic-metabolism (PK-MB) model. A population PK analysis was performed using an iterative 2-stage method (IT2S). Auto-induction of IFF metabolism was observed over the 5 day period. Increases were seen in IFF clearance (R: 4 vs. 7 L/h; S: 5 vs. 10 L/h), and in the formation of DCE (R: 7 vs. 9%; S: 14 vs. 19%) and active metabolites (4-OHM-IFF; R: 71 vs. 77%; S: 67 vs. 71%). A novel finding of this analysis was that the renal excretion of the DCE metabolites was also induced. This population PK-MB model for (R,S)-IFF may be useful in the optimization of patient care, and gives new insight into the metabolism of (R,S)-IFF.

  8. S100A8 and S100A9 Promotes Invasion and Migration through p38 Mitogen-Activated Protein Kinase-Dependent NF-κB Activation in Gastric Cancer Cells

    PubMed Central

    Kwon, Chae Hwa; Moon, Hyun Jung; Park, Hye Ji; Choi, Jin Hwa; Park, Do Youn

    2013-01-01

    S100A8 and S100A9 (S100A8/A9) are low-molecular weight members of the S100 family of calcium-binding proteins. Recent studies have reported S100A8/A9 promote tumorigenesis. We have previously reported that S100A8/A9 is mostly expressed in stromal cells and inflammatory cells between gastric tumor cells. However, the role of environmental S100A8/A9 in gastric cancer has not been defined. We observed in the present study the effect of S100A8/A9 on migration and invasion of gastric cancer cells. S100A8/A9 treatment increased migration and invasionat lower concentrations that did not affect cell proliferation and cell viability. S100A8/A9 caused activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The phosphorylation of p38 MAPK was not affected by the NF-κB inhibitor Bay whereas activation of NF-κB was blocked by p38 MAPK inhibitor SB203580, indicating that S100A8/A9-induced NF-κB activation is mediated by phosphorylation of p38 MAPK. S100A8/A9-induced cell migration and invasion was inhibited by SB203580 and Bay, suggesting that activation of p38 MAPK and NF-κB is involved in the S100A8/A9 induced cell migration and invasion. S100A8/A9 caused an increase in matrix metalloproteinase 2 (MMP2) and MMP12 expression, which were inhibited by SB203580 and Bay. S100A8/A9-induced cell migration and invasion was inhibited by MMP2 siRNA and MMP12 siRNA, indicating that MMP2 and MMP12 is related to the S100A8/A9 induced cell migration and invasion. Taken together, these results suggest that S100A8/A9 promotes cell migration and invasion through p38 MAPK-dependent NF-κB activation leading to an increase of MMP2 and MMP12 in gastric cancer. PMID:23456298

  9. Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30

    PubMed Central

    Louet, Maxime; Labbé, Céline M.; Aono, Cassiano M.; Homem-de-Mello, Paula; Villoutreix, Bruno O.

    2018-01-01

    Cytochrome P450 2C9 (CYP2C9) metabolizes about 15% of clinically administrated drugs. The allelic variant CYP2C9*30 (A477T) is associated to diminished response to the antihypertensive effects of the prodrug losartan and affected metabolism of other drugs. Here, we investigated molecular mechanisms involved in the functional consequences of this amino-acid substitution. Molecular dynamics (MD) simulations performed for the active species of the enzyme (heme in the Compound I state), in the apo or substrate-bound state, and binding energy analyses gave insights into altered protein structure and dynamics involved in the defective drug metabolism of human CYP2C9.30. Our data revealed an increased rigidity of the key Substrate Recognition Sites SRS1 and SRS5 and shifting of the β turn 4 of SRS6 toward the helix F in CYP2C9.30. Channel and binding substrate dynamics analyses showed altered substrate channel access and active site accommodation. These conformational and dynamic changes are believed to be involved in the governing mechanism of the reduced catalytic activity. An ensemble of representative conformations of the WT and A477T mutant properly accommodating drug substrates were identified, those structures can be used for prediction of new CYP2C9 and CYP2C9.30 substrates and drug-drug interactions. PMID:29746595

  10. S100A8/A9 and S100A9 reduce acute lung injury.

    PubMed

    Hiroshima, Yuka; Hsu, Kenneth; Tedla, Nicodemus; Wong, Sze Wing; Chow, Sharron; Kawaguchi, Naomi; Geczy, Carolyn L

    2017-05-01

    S100A8 and S100A9 are myeloid cell-derived proteins that are elevated in several types of inflammatory lung disorders. Pro- and anti-inflammatory properties are reported and these proteins are proposed to activate TLR4. S100A8 and S100A9 can function separately, likely through distinct receptors but a systematic comparison of their effects in vivo are limited. Here we assess inflammation in murine lung following S100A9 and S100A8/A9 inhalation. Unlike S100A8, S100A9 promoted mild neutrophil and lymphocyte influx, possibly mediated in part, by increased mast cell degranulation and selective upregulation of some chemokine genes, particularly CXCL-10. S100 proteins did not significantly induce proinflammatory mediators including TNF-α, interleukin-1β (IL-1β), IL-6 or serum amyloid A3 (SAA3). In contrast to S100A8, neither preparation induced S100A8 or IL-10 mRNA/protein in airway epithelial cells, or in tracheal epithelial cells in vitro. Like S100A8, S100A9 and S100A8/A9 reduced neutrophil influx in acute lung injury provoked by lipopolysaccharide (LPS) challenge but were somewhat less inhibitory, possibly because of differential effects on expression of some chemokines, IL-1β, SAA3 and IL-10. Novel common pathways including increased induction of an NAD + -dependent protein deacetylase sirtuin-1 that may reduce NF-κB signalling, and increased STAT3 activation may reduce LPS activation. Results suggest a role for these proteins in normal homeostasis and protective mechanisms in the lung.

  11. S100A8/A9 and S100A9 reduce acute lung injury

    PubMed Central

    Hiroshima, Yuka; Hsu, Kenneth; Tedla, Nicodemus; Wong, Sze Wing; Chow, Sharron; Kawaguchi, Naomi; Geczy, Carolyn L

    2017-01-01

    S100A8 and S100A9 are myeloid cell-derived proteins that are elevated in several types of inflammatory lung disorders. Pro- and anti-inflammatory properties are reported and these proteins are proposed to activate TLR4. S100A8 and S100A9 can function separately, likely through distinct receptors but a systematic comparison of their effects in vivo are limited. Here we assess inflammation in murine lung following S100A9 and S100A8/A9 inhalation. Unlike S100A8, S100A9 promoted mild neutrophil and lymphocyte influx, possibly mediated in part, by increased mast cell degranulation and selective upregulation of some chemokine genes, particularly CXCL-10. S100 proteins did not significantly induce proinflammatory mediators including TNF-α, interleukin-1β (IL-1β), IL-6 or serum amyloid A3 (SAA3). In contrast to S100A8, neither preparation induced S100A8 or IL-10 mRNA/protein in airway epithelial cells, or in tracheal epithelial cells in vitro. Like S100A8, S100A9 and S100A8/A9 reduced neutrophil influx in acute lung injury provoked by lipopolysaccharide (LPS) challenge but were somewhat less inhibitory, possibly because of differential effects on expression of some chemokines, IL-1β, SAA3 and IL-10. Novel common pathways including increased induction of an NAD+-dependent protein deacetylase sirtuin-1 that may reduce NF-κB signalling, and increased STAT3 activation may reduce LPS activation. Results suggest a role for these proteins in normal homeostasis and protective mechanisms in the lung. PMID:28074060

  12. Longitudinal association of antidepressant medication use with metabolic syndrome: Results of a 9-year follow-up of the D.E.S.I.R. cohort study.

    PubMed

    Azevedo Da Silva, Marine; Balkau, Beverley; Roussel, Ronan; Tichet, Jean; Fumeron, Frédéric; Fagherazzi, Guy; Nabi, Hermann

    2016-12-01

    To examine longitudinal associations between antidepressant medication use and the metabolic syndrome (MetS). 5014 participants (49.8% were men) from the D.E.S.I.R. cohort study, aged 30-65 years at baseline in 1994-1996, were followed over 9 years at 3-yearly intervals (1997-1999, 2000-2002, and 2003-2005). Antidepressant use and MetS, defined by the National Cholesterol Education Program Adult Treatment Panel III criteria (NCEP-ATP III) and the American Heart Association and the National Heart, Lung and Blood Institute (AHA/NHLBI) criteria, were assessed concurrently at four medical examinations. In fully-adjusted longitudinal logistic regression analyses based on generalized estimating equations, antidepressant users had a 9% (p=0.011) and a 6% (p=0.036) greater annual increase in the odds of having the MetS defined by NCEP-ATP III and AHA/NHLBI criteria respectively. Sex-specific analyses showed that this association was confined to men only. When the different types of antidepressant were considered, men who used selective serotonin reuptake inhibitors (SSRIs), imipramine type antidepressants or "other" antidepressants had a 52% (p=0.028), 31% (p=0.011), and 16% (p=0.016) greater annual increase in the odds of having the MetS over time compared to non-users, respectively. These associations depended on the definition of the MetS. Our longitudinal data showed that antidepressant use was associated with an increased odds of having the MetS in men but not in women and this was mainly for SSRIs, imipramine type and "other" antidepressants. People on antidepressants may need to be checked regularly for the elements of the metabolic syndrome treatable by change in diet, physical activity and/or by medication therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The L‐type Ca2+ channel facilitates abnormal metabolic activity in the cTnI‐G203S mouse model of hypertrophic cardiomyopathy

    PubMed Central

    Viola, Helena; Johnstone, Victoria; Cserne Szappanos, Henrietta; Richman, Tara; Tsoutsman, Tatiana; Filipovska, Aleksandra; Semsarian, Christopher

    2016-01-01

     = 10 vs. wild‐type (wt): τ1 = 59.05 ± 6.40, n = 6, P < 0.05]. Activation of ICa‐L caused a greater increase in mitochondrial membrane potential (Ψm, 29.19 ± 1.85%, n = 15 vs. wt: 18.84 ± 2.01%, n = 10, P < 0.05) and metabolic activity (24.40 ± 6.46%, n = 8 vs. wt: 9.98 ± 1.57%, n = 9, P < 0.05). The responses occurred because of impaired communication between ICa‐L and F‐actin, involving lack of dynamic movement of actin–myosin and block of the mitochondrial voltage‐dependent anion channel. Similar responses were observed in precardiomyopathic mice. ICa‐L antagonists nisoldipine and diltiazem decreased Ψm to basal levels. We conclude that the Gly203Ser mutation leads to impaired functional communication between ICa‐L and mitochondria, resulting in a ‘hypermetabolic’ state. This might contribute to development of cTnI‐G203S cardiomyopathy because the response is present in young precardiomyopathic mice. ICa‐L antagonists might be effective in reducing the cardiomyopathy by altering mitochondrial function. PMID:27062056

  14. S100A8/A9 activate key genes and pathways in colon tumor progression

    PubMed Central

    Ichikawa, Mie; Williams, Roy; Wang, Ling; Vogl, Thomas; Srikrishna, Geetha

    2011-01-01

    The tumor microenvironment plays an important role in modulating tumor progression. We earlier showed that S100A8/A9 proteins secreted by myeloid-derived suppressor cells (MDSC) present within tumors and metastatic sites promote an autocrine pathway for accumulation of MDSC. In a mouse model of colitis-associated colon cancer, we also showed that S100A8/A9 positive cells accumulate in all regions of dysplasia and adenoma. Here we present evidence that S100A8/A9 interact with RAGE and carboxylated glycans on colon tumor cells and promote activation of MAPK and NF-κB signaling pathways. Comparison of gene expression profiles of S100A8/A9-activated colon tumor cells versus unactivated cells led us to identify a small cohort of genes upregulated in activated cells, including Cxcl1, Ccl5 and Ccl7, Slc39a10, Lcn2, Zc3h12a, Enpp2 and other genes, whose products promote leukocyte recruitment, angiogenesis, tumor migration, wound healing, and formation of premetastatic niches in distal metastatic organs. Consistent with this observation, in murine colon tumor models we found that chemokines were up-regulated in tumors, and elevated in sera of tumor-bearing wild-type mice. Mice lacking S100A9 showed significantly reduced tumor incidence, growth and metastasis, reduced chemokine levels, and reduced infiltration of CD11b+Gr1+ cells within tumors and premetastatic organs. Studies using bone marrow chimeric mice revealed that S100A8/A9 expression on myeloid cells is essential for development of colon tumors. Our results thus reveal a novel role for myeloid-derived S100A8/A9 in activating specific downstream genes associated with tumorigenesis and in promoting tumor growth and metastasis. PMID:21228116

  15. P-NITROPHENOL METABOLISM BY JAPANESE MEDAKA (ORYZIAS LATIPES) LIVER MICROSOMES AND S-9 FRACTION: ADDITIONAL EVIDENCE FOR THE EXISTENCE OF A CYP2E1-LIKE ISOFORM IN TELEOSTS

    EPA Science Inventory

    Liver microsomes and S-9 fraction of Japanese medaka (Oryzias latipes) metabolized the CYP2E1 specific substrate, p-nitrophenol (PNP), to a single hydroxylated product, 4-nitrocatechol. The use of liver S-9 fraction proved to be a viable alternative to liver microsomes and allowe...

  16. Nerve growth factor metabolic dysfunction in Down’s syndrome brains

    PubMed Central

    Iulita, M. Florencia; Do Carmo, Sonia; Ower, Alison K.; Fortress, Ashley M.; Aguilar, Lisi Flores; Hanna, Michael; Wisniewski, Thomas; Granholm, Ann-Charlotte; Buhusi, Mona; Busciglio, Jorge

    2014-01-01

    Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer’s disease and Down’s syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer’s disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF’s extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down’s syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down’s syndrome and age-matched controls (age range 31–68 years). We further examined primary cultures of human foetal Down’s syndrome cortex (17–21 gestational age weeks) and brains from Ts65Dn mice (12–22 months), a widely used animal model of Down’s syndrome. We report a significant increase in proNGF levels in human and mouse Down’s syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down’s syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down’s syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic

  17. An evaluation of a genotoxicity assay with liver s9 for activation and luminescent bacteria for detection

    USGS Publications Warehouse

    Johnson, B. Thomas

    1992-01-01

    A new short-term in vitro genotoxicity assay with marine bioluminescent bacteria was evaluated for sensitivity and cost. Known under the trade name of Mutatox™, this assay is a simple and rapid screening tool that detects DNA-damaging substances (genotoxins) by measuring light output from an isolated dark mutant strain of the luminescent bacterium Photobacterium phosphoreum. A positive response indicates the ability of the test chemical to restore the luminescent state in the dark mutant strain; the degree of light increase indicates the relative genotoxicity of the sample. In this study, the Mutatox assay with rat hepatic fractions (S9) as an exogenous metabolic activation system detected genotoxic activity with known progenotoxins: 2-acetamidofluorene, aflatoxin B1, 2-aminoanthracene, 2-aminofluorene, 2-aminonaphthalene, benzo[a]pyrene, 3-methyl-cholanthrene, and pyrene. Each chemical clearly demonstrated a dose response between 5.0 and 0.6 μg per tube. Known nongenotoxic controls carbofuran, di-2-ethylhexyl phthalate, malathion, simazine, and permethrin showed no genotoxic responses. The optimum assay conditions were determined to be rat S9 concentration of 0.4 mg/ml, preincubation at 37°C for 30 min, and 18 h incubation at 23°C. Genotoxicity data were obtained in <24 h. The Mutatox assay compared favorably in sensitivity with the Ames test; it was easier and more rapid to perform and, as a result, cost less. The sensitivity, specificity, and predictive value suggested that the Mutatox assay could be a valuable screening tool to monitor complex environmental samples for genotoxins.

  18. Identification of allocryptopine and protopine metabolites in rat liver S9 by high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry.

    PubMed

    Huang, Ya-Jun; Xiao, Sa; Sun, Zhi-Liang; Zeng, Jian-Guo; Liu, Yi-Song; Liu, Zhao-Ying

    2016-07-15

    Allocryptopine (AL) and protopine (PR) have been extensively studied because of their anti-parasitic, anti-arrhythmic, anti-thrombotic, anti-inflammatory and anti-bacterial activity. However, limited information on the pharmacokinetics and metabolism of AL and PR has been reported. Therefore, the purpose of the present study was to investigate the in vitro metabolism of AL and PR in rat liver S9 using a rapid and accurate high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC/QqTOFMS) method. The incubation mixture was processed with 15% trichloroacetic acid (TCA). Multiple scans of AL and PR metabolites and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only a 30-min analysis. The structural elucidations of these metabolites were performed by comparing their changes in accurate molecular masses and product ions with those of the precursor ion or metabolite. Eight and five metabolites of AL and PR were identified in rat liver S9, respectively. Among these metabolites, seven and two metabolites of AL and PR were identified in the first time, respectively. The demethylenation of the 2,3-methylenedioxy, the demethylation of the 9,10-vicinal methoxyl group and the 2,3-methylenedioxy group were the main metabolic pathways of AL and PR in liver S9, respectively. In addition, the cleavage of the methylenedioxy group of the drugs and subsequent methylation or O-demethylation were also the common metabolic pathways of drugs in liver S9. In addition, the hydroxylation reaction was also the metabolic pathway of AL. This was the first investigation of in vitro metabolism of AL and PR in rat liver S9. The detailed structural elucidations of AL and PR metabolites were performed using a rapid and accurate HPLC/QqTOFMS method. The metabolic pathways of AL and PR in rat were tentatively proposed based on these characterized metabolites and early reports. Copyright © 2016 John Wiley

  19. In Vitro and In Vivo Metabolism and Inhibitory Activities of Vasicine, a Potent Acetylcholinesterase and Butyrylcholinesterase Inhibitor

    PubMed Central

    Liu, Wei; Shi, Xiaoyuan; Yang, Yadi; Cheng, Xuemei; Liu, Qing; Han, Han; Yang, Baohua; He, Chunyong; Wang, Yongli; Jiang, Bo; Wang, Zhengtao; Wang, Changhong

    2015-01-01

    Vasicine (VAS), a potential natural cholinesterase inhibitor, exhibited promising anticholinesterase activity in preclinical models and has been in development for treatment of Alzheimer’s disease. This study systematically investigated the in vitro and in vivo metabolism of VAS in rat using ultra performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry. A total of 72 metabolites were found based on a detailed analysis of their 1H- NMR and 13C NMR data. Six key metabolites were isolated from rat urine and elucidated as vasicinone, vasicinol, vasicinolone, 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, 9-oxo-1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, and 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-β-D-glucuronide. The metabolic pathway of VAS in vivo and in vitro mainly involved monohydroxylation, dihydroxylation, trihydroxylation, oxidation, desaturation, sulfation, and glucuronidation. The main metabolic soft spots in the chemical structure of VAS were the 3-hydroxyl group and the C-9 site. All 72 metabolites were found in the urine sample, and 15, 25, 45, 18, and 11 metabolites were identified from rat feces, plasma, bile, rat liver microsomes, and rat primary hepatocyte incubations, respectively. Results indicated that renal clearance was the major excretion pathway of VAS. The acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of VAS and its main metabolites were also evaluated. The results indicated that although most metabolites maintained potential inhibitory activity against AChE and BChE, but weaker than that of VAS. VAS undergoes metabolic inactivation process in vivo in respect to cholinesterase inhibitory activity. PMID:25849329

  20. Beyond LDL: What Role for PCSK9 in Triglyceride-Rich Lipoprotein Metabolism?

    PubMed

    Dijk, Wieneke; Le May, Cédric; Cariou, Bertrand

    2018-06-01

    Elevated plasma triglyceride (TG) levels are an independent risk factor for cardiovascular disease (CVD). Proprotein convertase subtilisin-kexin 9 (PCSK9) - a protein therapeutically targeted to lower plasma cholesterol levels - might regulate plasma TG-rich lipoprotein (TRL) levels. We provide a timely and critical review of the current evidence for a role of PCSK9 in TRL metabolism by assessing the impact of PCSK9 gene variants, by reviewing recent clinical data with PCSK9 inhibitors, and by describing the potential mechanisms by which PCSK9 might regulate TRL metabolism. We conclude that the impact of PCSK9 on TRL metabolism is relatively modest, especially compared to its impact on cholesterol metabolism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by operational malaria control activities.

    PubMed

    Vontas, John; Grigoraki, Linda; Morgan, John; Tsakireli, Dimitra; Fuseini, Godwin; Segura, Luis; Niemczura de Carvalho, Julie; Nguema, Raul; Weetman, David; Slotman, Michel A; Hemingway, Janet

    2018-05-01

    Since 2004, indoor residual spraying (IRS) and long-lasting insecticide-impregnated bednets (LLINs) have reduced the malaria parasite prevalence in children on Bioko Island, Equatorial Guinea, from 45% to 12%. After target site-based (knockdown resistance; kdr ) pyrethroid resistance was detected in 2004 in Anopheles coluzzii (formerly known as the M form of the Anopheles gambiae complex), the carbamate bendiocarb was introduced. Subsequent analysis showed that kdr alone was not operationally significant, so pyrethroid-based IRS was successfully reintroduced in 2012. In 2007 and 2014-2015, mass distribution of new pyrethroid LLINs was undertaken to increase the net coverage levels. The combined selection pressure of IRS and LLINs resulted in an increase in the frequency of pyrethroid resistance in 2015. In addition to a significant increase in kd r frequency, an additional metabolic pyrethroid resistance mechanism had been selected. Increased metabolism of the pyrethroid deltamethrin was linked with up-regulation of the cytochrome P450 CYP9K1. The increase in resistance prompted a reversion to bendiocarb IRS in 2016 to avoid a resurgence of malaria, in line with the national Malaria Control Program plan. Copyright © 2018 the Author(s). Published by PNAS.

  2. Alginate Immobilization of Metabolic Enzymes (AIME) for High ...

    EPA Pesticide Factsheets

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput screening (HTS) assays to assess chemical perturbations of molecular and cellular endpoints. A key criticism of using HTS assays for toxicity assessment is the lack of xenobiotic metabolism (XM) which precludes both metabolic detoxification as well as bioactivation of chemicals tested in vitro thereby mischaracterizing the potential risk posed by these chemicals. To address this deficiency, we have developed an extracellular platform to retrofit existing HTS assays with XM activity. This platform utilizes the S9 fraction of liver homogenate encapsulated in an alginate gel network which reduces the cytotoxicity caused by direct addition of S9 to cells in culture. Alginate microspheres containing encapsulated human liver S9 were cross-linked to solid supports extending from a 96-well plate lid and were assayed using a pro-luciferin substrate specific for CYP3A4 (IPA). We demonstrate that S9 was successfully encapsulated and remained enzymatically active post-encapsulation with 5-10X the CYP3A4 activity as compared to 1 µg solubilized human liver S9. Ketoconazole, a known inhibitor of human CYP3A4, inhibited CYP3A4 activity in a concentration-dependent manner (IC50: 0.27 µM) and inhibiti

  3. CYP2C9 polymorphisms and phenytoin metabolism: implications for adverse effects.

    PubMed

    Franco, Valentina; Perucca, Emilio

    2015-01-01

    Phenytoin, a widely prescribed old-generation antiepileptic drug, requires careful individualization of dosage to compensate for its prominent pharmacokinetic variability. This article reviews the contribution of genetic polymorphisms affecting the activity of CYP2C9, the main enzyme responsible for phenytoin metabolism, to the variation in phenytoin clearance and susceptibility to adverse effects. Comprehensive and critical review of available evidence concerning the influence of CYP2C9 genetic polymorphism on phenytoin pharmacokinetic and safety profile. There is extensive evidence that CYP2C9 polymorphisms are an important determinant of the rate of phenytoin metabolism, although other factors including expression of other enzymes such as CYP2C19 and the influence of drug interactions, physiological and disease-related factors may also play a role. Patients carrying CYP2C9 genotypes associated with reduced phenytoin clearance are at greater risk of developing CNS adverse effects as well as serious cutaneous adverse reactions when given usual dosages of phenytoin. The clinical value and cost-effectiveness of CYP2C9 genotyping in improving the safety of phenytoin therapy, however, have not been clearly established and require formal testing in well-designed prospective studies.

  4. Biochemical and nutritional markers and antioxidant activity in metabolic syndrome.

    PubMed

    Bernabé García, Juana; Zafrilla Rentero, Pilar; Mulero Cánovas, Juana; Gómez Jara, Purificación; Leal Hernández, Mariano; Abellán Alemán, José

    2014-01-01

    1) Nutritional assessment of the diet followed by patients with metabolic syndrome, and 2) biochemical analysis of the oxidation-reduction level in patients with metabolic syndrome. A cross-sectional study was conducted in patients with metabolic syndrome in Murcia. Fifty-three patients, 33 with and 20 without (control group) metabolic syndrome, were selected. The intervention consisted of completion of a recall survey and a test to nutritionally assess dietary intake. Anthropometric and laboratory variables, including those related to antioxidant activity, were also tested. Antioxidant activity was within normal limits in both groups (1.7 ± 0.2 mmol/L in the control group and 1.8 ± 0.1 mmol/L in the metabolic syndrome group) (NS). Superoxide dismutase levels were not significantly different between the groups. Mean glutathione reductase levels (U/L) were higher in the control group as compared to patients with metabolic syndrome (P<.05). As regards oxidative stress biomarkers, mean isoprostane levels were higher in the control group (4.9 ± 6.2 ng/mL) than in metabolic syndrome patients (3.5 ± 3.9 ng/mL) (P<.05). Oxidized LDL values tended to be higher in metabolic syndrome patients (96 ± 23.2U/L) as compared to the control group (86.2 ± 17.3 U/L), but differences were not significant. There is a trend to a poorer nutritional and biochemical profile in patients with metabolic syndrome, who also tend to have a greater degree of oxidative stress. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.

  5. Fibroblast activation protein (FAP) as a novel metabolic target.

    PubMed

    Sánchez-Garrido, Miguel Angel; Habegger, Kirk M; Clemmensen, Christoffer; Holleman, Cassie; Müller, Timo D; Perez-Tilve, Diego; Li, Pengyun; Agrawal, Archita S; Finan, Brian; Drucker, Daniel J; Tschöp, Matthias H; DiMarchi, Richard D; Kharitonenkov, Alexei

    2016-10-01

    Fibroblast activation protein (FAP) is a serine protease belonging to a S9B prolyl oligopeptidase subfamily. This enzyme has been implicated in cancer development and recently reported to regulate degradation of FGF21, a potent metabolic hormone. Using a known FAP inhibitor, talabostat (TB), we explored the impact of FAP inhibition on metabolic regulation in mice. To address this question we evaluated the pharmacology of TB in various mouse models including those deficient in FGF21, GLP1 and GIP signaling. We also studied the ability of FAP to process FGF21 in vitro and TB to block FAP enzymatic activity. TB administration to diet-induced obese (DIO) animals led to profound decreases in body weight, reduced food consumption and adiposity, increased energy expenditure, improved glucose tolerance and insulin sensitivity, and lowered cholesterol levels. Total and intact plasma FGF21 were observed to be elevated in TB-treated DIO mice but not lean animals where the metabolic impact of TB was significantly attenuated. Furthermore, and in stark contrast to naïve DIO mice, the administration of TB to obese FGF21 knockout animals demonstrated no appreciable effect on body weight or any other measures of metabolism. In support of these results we observed no enzymatic degradation of human FGF21 at either end of the protein when FAP was inhibited in vitro by TB. We conclude that pharmacological inhibition of FAP enhances levels of FGF21 in obese mice to provide robust metabolic benefits not observed in lean animals, thus validating this enzyme as a novel drug target for the treatment of obesity and diabetes.

  6. Actinidia chinensis Planch root extract inhibits cholesterol metabolism in hepatocellular carcinoma through upregulation of PCSK9.

    PubMed

    He, Mingyan; Hou, Jiayun; Wang, Lingyan; Zheng, Minghuan; Fang, Tingting; Wang, Xiangdong; Xia, Jinglin

    2017-06-27

    Actinidia chinensis Planch root extract (acRoots) is a traditional Chinese medicine with anti-tumor efficacy. To investigate the mechanisms responsible for this activity, we examined the effects of acRoots on cholesterol metabolism in hepatocellular carcinoma (HCC). mRNA chip analysis was used to identify the metabolic genes regulated by acRoots. The effects of acRoots on cholesterol synthesis and uptake were evaluated by measuring intracellular cholesterol levels and 3,3'-dioctadecylindocarbocyanine-labeled low-density lipoprotein (Dil-LDL) uptake. Expression of metabolic genes was analyzed using quantitative reverse transcription PCR, western blotting, and flow cytometry. acRoots reduced the viability of LM3 and HepG2 cells at 5 mg/mL and HL-7702 cells at 30 mg/mL. Gene expression profiling revealed that treatment with acRoots altered expression of genes involved in immune responses, inflammation, proliferation, cell cycle control, and metabolism. We also confirmed that acRoots enhances expression of PCSK9, which is important for cholesterol metabolism. This resulted in decreased LDL receptor expression, inhibition of LDL uptake by LM3 cells, decreased total intracellular cholesterol, and reduced proliferation. These effects were promoted by PCSK9 overexpression and rescued by PCSK9 knockdown. Our data demonstrate that acRoots is a novel anti-tumor agent that inhibits cholesterol metabolism though a PCSK9-mediated signaling pathway.

  7. Metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine in rats and dogs.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji; Kodera, Yukihiro

    2015-05-01

    The metabolism, excretion, and pharmacokinetics of S-allyl-l-cysteine (SAC), an active key component of garlic supplements, were examined in rats and dogs. A single dose of SAC was administered orally or i.v. to rats (5 mg/kg) and dogs (2 mg/kg). SAC was well absorbed (bioavailability >90%) and its four metabolites-N-acetyl-S-allyl-l-cysteine (NAc-SAC), N-acetyl-S-allyl-l-cysteine sulfoxide (NAc-SACS), S-allyl-l-cysteine sulfoxide (SACS), and l-γ-glutamyl-S-allyl-l-cysteine-were identified in the plasma and/or urine. Renal clearance values (<0.01 l/h/kg) of SAC indicated its extensive renal reabsorption, which contributed to the long elimination half-life of SAC, especially in dogs (12 hours). The metabolism of SAC to NAc-SAC, principal metabolite of SAC, was studied in vitro and in vivo. Liver and kidney S9 fractions of rats and dogs catalyzed both N-acetylation of SAC and deacetylation of NAc-SAC. After i.v. administration of NAc-SAC, SAC appeared in the plasma and its concentration declined in parallel with that of NAc-SAC. These results suggest that the rate and extent of the formation of NAc-SAC are determined by the N-acetylation and deacetylation activities of liver and kidney. Also, NAc-SACS was detected in the plasma after i.v. administration of either NAc-SAC or SACS, suggesting that NAc-SACS could be formed via both N-acetylation of SACS and S-oxidation of NAc-SAC. In conclusion, this study demonstrated that the pharmacokinetics of SAC in rats and dogs is characterized by its high oral bioavailability, N-acetylation and S-oxidation metabolism, and extensive renal reabsorption, indicating the critical roles of liver and kidney in the elimination of SAC. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Association of Objectively Measured Physical Activity and Metabolic Syndrome Among US Adults With Osteoarthritis.

    PubMed

    Liu, Shao-Hsien; Waring, Molly E; Eaton, Charles B; Lapane, Kate L

    2015-10-01

    To investigate the association between objectively measured physical activity and metabolic syndrome among adults with osteoarthritis (OA). Using cross-sectional data from the 2003-2006 National Health and Nutrition Examination Survey, we identified 566 adults with OA with available accelerometer data assessed using Actigraph AM-7164 and measurements necessary to determine metabolic syndrome by the Adult Treatment Panel III. Analysis of variance was conducted to examine the association between continuous variables in each activity level and metabolic syndrome components. Logistic models estimated the relationship of quartile of daily minutes of different physical activity levels to odds of metabolic syndrome adjusted for socioeconomic and health factors. Among persons with OA, most were women average age of 62.1 years and average disease duration of 12.9 years. Half of adults with OA had metabolic syndrome (51.0%; 95% confidence interval [95% CI] 44.2%-57.8%), and only 9.6% engaged in the recommended 150 minutes per week of moderate/vigorous physical activity. Total sedentary time was associated with higher rates of metabolic syndrome and its components, while light and objectively measured moderate/vigorous physical activity was inversely associated with metabolic syndrome and its components. Higher levels of light activity were associated with lower prevalence of metabolic syndrome (quartile 4 versus quartile 1: adjusted odds ratio 0.45, 95% CI 0.24-0.84, P for linear trend < 0.005). Most US adults with OA are sedentary. Increased daily minutes in physical activity, especially in light intensity, is more likely to be associated with decreasing prevalence of metabolic syndrome among persons with OA. © 2015, American College of Rheumatology.

  9. Association between serum CA 19-9 and metabolic syndrome: A cross-sectional study.

    PubMed

    Du, Rui; Cheng, Di; Lin, Lin; Sun, Jichao; Peng, Kui; Xu, Yu; Xu, Min; Chen, Yuhong; Bi, Yufang; Wang, Weiqing; Lu, Jieli; Ning, Guang

    2017-11-01

    Increasing evidence suggests that serum CA 19-9 is associated with abnormal glucose metabolism. However, data on the association between CA 19-9 and metabolic syndrome is limited. The aim of the present study was to investigate the association between serum CA 19-9 and metabolic syndrome. A cross-sectional study was conducted on 3641 participants aged ≥40 years from the Songnan Community, Baoshan District in Shanghai, China. Logistic regression analysis was used to evaluate the association between serum CA 19-9 and metabolic syndrome. Multivariate logistic regression analysis showed that compared with participants in the first tertile of serum CA 19-9, those in the second and third tertiles had increased odds ratios (OR) for prevalent metabolic syndrome (multivariate adjusted OR 1.46 [95% confidence interval {CI} 1.11-1.92] and 1.51 [95% CI 1.14-1.98]; P trend  = 0.005). In addition, participants with elevated serum CA 19-9 (≥37 U/mL) had an increased risk of prevalent metabolic syndrome compared with those with serum CA 19-9 < 37 U/mL (multivariate adjusted OR 2.10; 95% CI 1.21-3.65). Serum CA 19-9 is associated with an increased risk of prevalent metabolic syndrome. In order to confirm this association and identify potential mechanisms, prospective cohort and mechanic studies should be performed. © 2017 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  10. Impact of limited solvent capacity on metabolic rate, enzyme activities, and metabolite concentrations of S. cerevisiae glycolysis.

    PubMed

    Vazquez, Alexei; de Menezes, Marcio A; Barabási, Albert-László; Oltvai, Zoltan N

    2008-10-01

    The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo.

  11. Impact of Limited Solvent Capacity on Metabolic Rate, Enzyme Activities, and Metabolite Concentrations of S. cerevisiae Glycolysis

    PubMed Central

    Vazquez, Alexei; de Menezes, Marcio A.; Barabási, Albert-László; Oltvai, Zoltan N.

    2008-01-01

    The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo. PMID:18846199

  12. Association between physical activity and metabolic syndrome among Malay adults in a developing country, Malaysia.

    PubMed

    Chu, Anne H Y; Moy, F M

    2014-03-01

    Metabolic syndrome is a highly prevalent health problem within the adult population in developing countries. We aimed to study the association of physical activity levels and metabolic risk factors among Malay adults in Malaysia. Cross-sectional. Body mass index, waist circumference, and systolic/diastolic blood pressure, fasting blood glucose, fasting triglyceride and high-density lipoprotein cholesterol levels were measured in 686 Malay participants (aged 35-74 years). Self-reported physical activity was obtained with the validated International Physical Activity Questionnaire (Malay version) and categorized into low, moderate or high activity levels. Individuals who were classified as overweight and obese predominated (65.6%). On the basis of the modified NCEP ATP III criteria, metabolic syndrome was diagnosed in 31.9% of all participants, of whom 46.1% were men and 53.9% were women. The prevalence of metabolic syndrome among participants with low, moderate or high activity levels was 13.3%, 11.7% and 7.0%, respectively (p<0.001). Statistically significant negative associations were found between a number of metabolic risk factors and activity categories (p<0.05). The odds ratios for metabolic syndrome in the moderate and high activity categories were 0.42 (95% CI: 0.27-0.65) and 0.52 (95% CI: 0.35-0.76), respectively, adjusted for gender. Moderate and high activity levels were each associated with reduced odds for metabolic syndrome independent of gender. Although a slightly lower prevalence of metabolic syndrome was associated with high activity than with moderate activity, potential health benefits were observed when moderate activity was performed. Copyright © 2013 Sports Medicine Australia. All rights reserved.

  13. Effects of Cola-Flavored Beverages and Caffeine on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    PubMed

    Dotsey, Roger P; Moser, Elizabeth A S; Eckert, George J; Gregory, Richard L

    To examine the effects of cola-flavored beverages and caffeine on growth and metabolism of Streptococcus mutans biofilm. This study was designed to determine if carbonated beverages or caffeine can increase S. mutans growth and biofilm formation and metabolic activity in vitro, potentially leading to increased S. mutans-associated cariogenicity in children that consume them. Six different cola-flavored products, plus pure caffeine, and pure high fructose corn syrup (HFCS), at different concentrations similar to those in the beverages were tested. A 16-hour culture of S. mutans was treated with different dilutions in bacteriological media. To test for the effect on biofilm formation, the biofilm was stained with crystal violet. The absorbance was determined to evaluate biofilm growth. Biofilm metabolic activity was measured based on biofilm having the ability to reduce XTT to a water-soluble orange compound. The inclusion of HFCS in the beverages, as well as pure HFCS, significantly enhanced bacterial biofilm formation and metabolic activity. Pure caffeine and the presence of caffeine in beverages did not significantly increase biofilm formation, but pure caffeine significantly increased metabolism, and Diet Coke had significantly greater metabolic activity than Caffeine-Free Diet Coke. HFCS increases both the biofilm formation and metabolism of S. mutans, and caffeine in some cases increases metabolism of S. mutans.

  14. System-level perturbations of cell metabolism using CRISPR/Cas9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakočiūnas, Tadas; Jensen, Michael K.; Keasling, Jay D.

    CRISPR/Cas9 (clustered regularly interspaced palindromic repeats and the associated protein Cas9) techniques have made genome engineering and transcriptional reprogramming studies much more advanced and cost-effective. For metabolic engineering purposes, the CRISPR-based tools have been applied to single and multiplex pathway modifications and transcriptional regulations. The effectiveness of these tools allows researchers to implement genome-wide perturbations, test model-guided genome editing strategies, and perform transcriptional reprogramming perturbations in a more advanced manner than previously possible. In this mini-review we highlight recent studies adopting CRISPR/Cas9 for systems-level perturbations and model-guided metabolic engineering.

  15. Prevalence of metabolic syndrome and its relationship with physical activity in suburban Beijing, China.

    PubMed

    Zhang, Wei-Hong; Xue, Peng; Yao, Meng-Ying; Chang, Hai-Min; Wu, Yan; Zhang, Lei

    2013-01-01

    The present study aimed to estimate the up-to-date prevalence of metabolic syndrome and its relationship with physical activity among suburban adults in Beijing, China. A cross-sectional survey in a representative sample of 19,003 suburban adults aged 18-76 years was carried out in 2007-2008. Data was collected via questionnaires and blood pressure, anthropometric, and laboratory measurements. Of the residents aged 18-76 years in suburban Beijing, 25.9% (27.3% in men and 25.1% in women), 21.3% (19.4% in men and 22.9% in women), and 25.3% (24.2% in men and 26.1% in women) had 1 component, 2 components, and 3 or more components of metabolic syndrome, respectively. The age-standardized prevalence of metabolic syndrome and its components, including abdominal obesity, elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure, and elevated fasting plasma glucose, decreased across categories with increasing physical activity. After adjusting for age, sex, education level, smoking, and alcohol consumption, residents were more likely to have metabolic syndrome across categories with decreasing physical activity; a similar relationship also applied to components of metabolic syndrome. A high prevalence of metabolic syndrome and its components is commonly present in suburban Beijing. Increasing physical activity can reduce the relative risk of metabolic syndrome and it components.

  16. S100A8 and S100A9 Are Induced by Decreased Hydration in the Epidermis and Promote Fibroblast Activation and Fibrosis in the Dermis.

    PubMed

    Zhong, Aimei; Xu, Wei; Zhao, Jingling; Xie, Ping; Jia, Shengxian; Sun, Jiaming; Galiano, Robert D; Mustoe, Thomas A; Hong, Seok J

    2016-01-01

    The most critical function of the epidermis is to prevent water loss and maintain skin homeostasis. Disruption of the functional skin barrier causes delayed wound healing, hypertrophic scarring, and many skin diseases. Herein, we show that reduced hydration increases the expression of S100 protein family members, S100A8/S100A9, in stratified keratinocyte culture and human ex vivo skin culture. Immunohistological analyses show that S100A8/A9 are highly expressed in the epidermis of human hypertrophic scar and keloid tissues. Reduced hydration demonstrates activation of fibroblasts in the keratinocyte-fibroblast co-culture. In contrast, knockdown of S100A8 or S100A9 by RNA interference in keratinocytes failed to activate fibroblasts. Pretreatment with pharmacological blockers of S100A8/A9 receptors, Toll-like receptor 4 and receptor for advanced glycation end products, inhibits fibroblast activation induced by recombinant S100A8/A9 proteins. Moreover, we observe that local delivery of S100A8 protein results in a marked increase in hypertrophic scarring in the in vivo rabbit ear scar model. Our results indicate that hydration status promotes fibroblast activation and fibrosis by directly affecting the expression of inflammatory signaling in keratinocytes, thereby strongly suggesting S100A8/A9 to be novel targets in preventing scarring. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Physical activity and screen time: trends in U.S. children aged 9-13 years, 2002-2006.

    PubMed

    Huhman, Marian; Lowry, Richard; Lee, Sarah M; Fulton, Janet E; Carlson, Susan A; Patnode, Carrie D

    2012-05-01

    We examined trends of physical activity and screen time among nationally representative samples of children aged 9-13 years to explore whether children overall are becoming less physically active and less likely to be in compliance with screen time recommendations. We analyzed Youth Media Campaign Longitudinal Survey data for trends and demographic patterns of free time and organized physical activity, and hours and minutes of watching television and playing video or computer games. Child-parent dyads for 2002 (N = 3114), 2004 (N = 5177), and 2006 (N = 1200) were analyzed. On the day before the interview, and for free time physical activity in the past week, children reported a significant increase in physical activity from 2002-2006. Screen time levels were stable overall; 76.4% of children met the recommendations of 2 hours or less of daily screen time. Levels of physical activity among U.S. children aged 9-13 years were stable, or levels slightly improved from 2002-2006. Except for some subgroup differences, trends for compliance with screen time recommendations were also stable from 2002-2006 for U.S. children aged 9-13 years.

  18. Method optimization for fathead minnow (Pimephales promelas) liver S9 isolation

    EPA Science Inventory

    Standard protocols have been proposed to assess metabolic stability in rainbow trout liver S9 fractions. Using in vitro substrate depletion assays, in vitro intrinsic clearance rates can be calculated for a variety of study compounds. Existing protocols suggest potential adaptati...

  19. Pathway Activity Profiling (PAPi): from the metabolite profile to the metabolic pathway activity.

    PubMed

    Aggio, Raphael B M; Ruggiero, Katya; Villas-Bôas, Silas Granato

    2010-12-01

    Metabolomics is one of the most recent omics-technologies and uses robust analytical techniques to screen low molecular mass metabolites in biological samples. It has evolved very quickly during the last decade. However, metabolomics datasets are considered highly complex when used to relate metabolite levels to metabolic pathway activity. Despite recent developments in bioinformatics, which have improved the quality of metabolomics data, there is still no straightforward method capable of correlating metabolite level to the activity of different metabolic pathways operating within the cells. Thus, this kind of analysis still depends on extremely laborious and time-consuming processes. Here, we present a new algorithm Pathway Activity Profiling (PAPi) with which we are able to compare metabolic pathway activities from metabolite profiles. The applicability and potential of PAPi was demonstrated using a previously published data from the yeast Saccharomyces cerevisiae. PAPi was able to support the biological interpretations of the previously published observations and, in addition, generated new hypotheses in a straightforward manner. However, PAPi is time consuming to perform manually. Thus, we also present here a new R-software package (PAPi) which implements the PAPi algorithm and facilitates its usage to quickly compare metabolic pathways activities between different experimental conditions. Using the identified metabolites and their respective abundances as input, the PAPi package calculates pathways' Activity Scores, which represents the potential metabolic pathways activities and allows their comparison between conditions. PAPi also performs principal components analysis and analysis of variance or t-test to investigate differences in activity level between experimental conditions. In addition, PAPi generates comparative graphs highlighting up- and down-regulated pathway activity. These datasets are available in http://www.4shared

  20. Omeprazole preferentially inhibits the metabolism of (+)-(S)-citalopram in healthy volunteers.

    PubMed

    Rocha, Adriana; Coelho, Eduardo B; Sampaio, Stefânia A; Lanchote, Vera L

    2010-07-01

    Citalopram (CITA) pharmacokinetics are enantioselective in healthy volunteers and the metabolism of (+)-(S)-CITA to (+)-(S)-DCITA is dependent on CYP2C19. Omeprazole is a potent CYP2C19 inhibitor. This study indicates that omeprazole induces a loss of enantioselectivity in the CITA pharmacokinetics because of the selective inhibition of (+)-(S)-CITA metabolism. The study assessed the influence of omeprazole on the kinetic disposition of the (+)-(S)-citalopram (CITA) and (-)-(R)-CITA enantiomers in healthy volunteers. In a cross-over study, healthy volunteers (n = 9) phenotyped as extensive metabolizers of CYP2C19 and CYP2D6 and with an oral midazolam clearance ranging from 10.9 to 149.3 ml min(-1) kg(-1) received a single dose of racemic CITA (20 mg orally) in combination or not with omeprazole (20 mg day(-1) for 18 days). Serial blood samples were collected up to 240 h after CITA administration. CITA and demethylcitalopram (DCITA) enantiomers were analyzed by LC-MS/MS using a Chiralcel OD-R column. The kinetic disposition of CITA was enantioselective in the absence of treatment with omeprazole, with the observation of a greater proportion of plasma (-)-(R)-CITA [AUC S:R ratio of 0.53 (95% CI 0.41, 0.66) for CITA and 1.08 (95% CI 0.80, 1.76) for DCITA] than (+)-(S)-CITA. Racemic CITA administration to healthy volunteers in combination with omeprazole showed a loss of enantioselectivity in CITA pharmacokinetics with an increase of approximately 120% in plasma (+)-(S)-CITA concentrations [AUC S:R ratio of 0.95 (95% CI 0.72, 1.10) for CITA and 0.95 (95% CI 0.44, 1.72) for DCITA]. The administration of multiple doses of omeprazole preferentially inhibited (+)-(S)-CITA metabolism in healthy volunteers. Although omeprazole increased plasma concentrations of (+)-(S)-CITA by approximately 120%, it is difficult to evaluate the clinical outcome because the range of plasma CITA concentrations related to maximum efficacy and minimum risk of adverse effects has not been

  1. Cannabidiol-Δ9-tetrahydrocannabinol interactions on acute pain and locomotor activity

    PubMed Central

    Britch, Stevie C.; Wiley, Jenny L.; Yu, Zhihao; Clowers, Brian H.; Craft, Rebecca M.

    2017-01-01

    Background Previous studies suggest that cannabidiol (CBD) may potentiate or antagonize Δ9-tetrahydrocannabinol’s (THC) effects. The current study examined sex differences in CBD-THC interactions on antinociception, locomotion, and THC metabolism. Methods In Experiment 1, CBD (0, 10 or 30 mg/kg) was administered 15 min before THC (0, 1.8, 3.2, 5.6 or10 mg/kg), and rats were tested for antinociception and locomotion 15–360 min post-THC injection. In Experiments 2 and 3, CBD (30 mg/kg) was administered 13 hr or 15 min before THC (1.8 mg/kg); rats were tested for antinociception and locomotion 30–480 min post-THC injection (Experiment 2), or serum samples were taken 30–360 min post-THC injection to examine CBD modulation of THC metabolism (Experiment 3). Results In Experiment 1, CBD alone produced no antinociceptive effects, while enhancing THC-induced paw pressure but not tail withdrawal antinociception 4–6 hr post-THC injection. CBD alone increased locomotor activity at 6 hr post-injection, but enhanced THC-induced hypolocomotion 4–6 hr post-THC injection, at lower THC doses. There were no sex differences in CBD-THC interactions. In Experiments 2 and 3, CBD did not significantly enhance THC’s effects when CBD was administered 13 hr or 15 min before THC; however, CBD inhibited THC metabolism, and this effect was greater in females than males. Conclusions These results suggest that CBD may enhance THC’s antinociceptive and hypolocomotive effects, primarily prolonging THC’s duration of action; however, these effects were small and inconsistent across experiments. CBD inhibition of THC metabolism as well other mechanisms likely contribute to CBD-THC interactions on behavior. PMID:28445853

  2. Test for Chemical Induction of Chromosome Aberrations in Cultured Chinese Hamster (CHO) Cells With and Without Metabolic Activation. Test Article. Diethylene triamine trinitrate (DETN)

    DTIC Science & Technology

    2010-02-25

    metabolic activation mixture was prepared by SITEK Research Laboratories and it consisted of phenobarbital -S,6-Benzoflavone (phenobarbitallB-naphthoflavone... Phenobarbital -S,6-Benzoflavone <-70°C May 21, 2011 Detailed infonnation about the S-9 batch used in the Assay is provided in Appendix N. 13 SITEK Study No

  3. The MMP-9 -1562 C/T Polymorphism in the Presence of Metabolic Syndrome Increases the Risk of Clinical Events in Patients with Coronary Artery Disease

    PubMed Central

    Opstad, Trine B.; Arnesen, Harald; Pettersen, Alf Å.; Seljeflot, Ingebjørg

    2014-01-01

    Background and Objectives Elevated levels of matrix metalloproteinase (MMP)-9 have been associated with the metabolic syndrome (MetS) and cardiovascular events. The MMP-9 −1562 C/T polymorphism has furthermore been shown as a risk factor for coronary artery disease (CAD). The non-favourable cardiometabolic state in MetS may increase the risk. We aimed to investigate the influence of MMP-9 −1562 C/T polymorphism in subjects with CAD and MetS. Methods Patients (n = 1000) with verified CAD stratified in Mets +/− (n = 244/756), were analyzed for the MMP-9 −1562 C/T polymorphism and related to clinical events after 2 years follow-up. Serum levels of total MMP-9 and tissue inhibitor of matrix metalloproteinases (TIMP)-1were analyzed in all, whereas MMP-9 activity, extracellular matrix metalloproteinase inducer (EMMPRIN), and expression of the two genes were analyzed in a subset of 240 randomly selected patients. Results Totally, 106 clinical endpoints were recorded. In MetS; the T-allele associated with 5.5 fold increase in event rate (p<0.0001), increased with number of MetS components, a 117% increase in total MMP-9 levels (TT homozygous, p = 0.05), significantly higher total- and endogenous active MMP-9 and TIMP-1 levels (p<0.01 all), and EMMPRIN was inversely correlated with pro- and endogenous active MMP-9 (p<0.05, both). In non-MetS; the T-allele was not associated with new events, nor higher MMP-9 levels. EMMPRIN was significantly correlated with total MMP-9 and TIMP-1 (p<0.01, both) and the two genes were inter-correlated (p<0.001). Conclusion In CAD patients with MetS, the MMP-9 T-allele increased the risk of clinical events, probably mediated through elevated MMP-9 levels and altered MMP-9 regulation. PMID:25191702

  4. The MMP-9 -1562 C/T polymorphism in the presence of metabolic syndrome increases the risk of clinical events in patients with coronary artery disease.

    PubMed

    Opstad, Trine B; Arnesen, Harald; Pettersen, Alf Å; Seljeflot, Ingebjørg

    2014-01-01

    Elevated levels of matrix metalloproteinase (MMP)-9 have been associated with the metabolic syndrome (MetS) and cardiovascular events. The MMP-9 -1562 C/T polymorphism has furthermore been shown as a risk factor for coronary artery disease (CAD). The non-favourable cardiometabolic state in MetS may increase the risk. We aimed to investigate the influence of MMP-9 -1562 C/T polymorphism in subjects with CAD and MetS. Patients (n = 1000) with verified CAD stratified in Mets +/- (n = 244/756), were analyzed for the MMP-9 -1562 C/T polymorphism and related to clinical events after 2 years follow-up. Serum levels of total MMP-9 and tissue inhibitor of matrix metalloproteinases (TIMP)-1 were analyzed in all, whereas MMP-9 activity, extracellular matrix metalloproteinase inducer (EMMPRIN), and expression of the two genes were analyzed in a subset of 240 randomly selected patients. Totally, 106 clinical endpoints were recorded. In MetS; the T-allele associated with 5.5 fold increase in event rate (p<0.0001), increased with number of MetS components, a 117% increase in total MMP-9 levels (TT homozygous, p = 0.05), significantly higher total- and endogenous active MMP-9 and TIMP-1 levels (p<0.01 all), and EMMPRIN was inversely correlated with pro- and endogenous active MMP-9 (p<0.05, both). In non-MetS; the T-allele was not associated with new events, nor higher MMP-9 levels. EMMPRIN was significantly correlated with total MMP-9 and TIMP-1 (p<0.01, both) and the two genes were inter-correlated (p<0.001). In CAD patients with MetS, the MMP-9 T-allele increased the risk of clinical events, probably mediated through elevated MMP-9 levels and altered MMP-9 regulation.

  5. Optimization of a UDP-glucuronosyltransferase assay for trout liver S9 fractions: Activity enhancement by alamethicin, a pore-forming peptide

    EPA Science Inventory

    An existing assay for hepatic UDP-glucuronosyltransferase (UGT) activity was optimized for use with trout liver S9 fractions. Individual experiments were conducted to determine the time dependence of UGT activity as well as optimal levels of S9 protein, uridine 5’-diphosph...

  6. Protein C activity and postoperative metabolic liver function after liver transplantation.

    PubMed

    Wagener, G; Diaz, G; Guarrera, J V; Minhaz, M; Renz, J F; Sladen, R N

    2012-06-01

    Protein C is a natural thrombin antagonist produced by hepatocytes. Its levels are low in liver failure and predispose patients to increased risk for thrombosis. Little is known about the relationship between protein C activity and hepatic function after orthotopic liver transplantation (OLT). We measured protein C activity of 41 patients undergoing liver transplantation by the Staclot method (normal range, 70%-130%) preoperatively and then daily on postoperative days (POD) 0-5. The mean protein C activity was low before OLT (34.3 ± 4.3%) and inversely correlated with the preoperative Model for End-Stage Liver Disease score (Spearman's r = -0.643; P < .0001). Mean activity increased significantly on POD 1 (58.9 ± 4.5%), and remained above preoperative levels through POD 5. Ten patients developed metabolic liver dysfunction defined by a serum total bilirubin >5 mg/dL on POD 7. These patients had significantly lower protein C activity from POD 3 (47.2 ± 9.6% vs 75.9 ± 5.8%; P = .01) to POD 5. Preoperative protein C activity correlated inversely with the severity of liver failure as indicated by preoperative MELD score. Protein C activity recovered rapidly in patients with good allograft function but remained significantly lower in patients who had limited metabolic function as evidenced by increased total bilirubin levels. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Caspase recruitment domain 9, microbiota, and tryptophan metabolism: dangerous liaisons in inflammatory bowel diseases.

    PubMed

    Lamas, Bruno; Richard, Mathias L; Sokol, Harry

    2017-07-01

    Inflammatory bowel diseases (IBDs) develop as a result of a combination of genetic predisposition, dysbiosis of the gut microbiota, and environmental influences. Here, we describe an example of how caspase recruitment domain 9 (CARD9), one of the numerous IBD susceptibility genes, participate to colitis susceptibility by shaping gut microbiota to produce tryptophan metabolites. Recent study showed that CARD9 mice are more susceptible to colitis as a result of impaired interleukin 22 signaling pathway. Furthermore, aryl hydrocarbon receptor (AhR) ligands from tryptophan metabolism by the gut microbiota participate to intestinal homeostasis by inducing production of interleukin 22 by intestinal immune cells. These data suggest an interaction between CARD9 and the ability of gut microbiota to produce AhR ligands. The microbiota from CARD9 mice fails to metabolize tryptophan leading to defective AhR activation which contributes to the susceptibility of mice to colitis by decreased interleukin 22 production. These effects were abrogated in the presence of AhR agonist. Reduced production of AhR ligands is also observed in the microbiota from individuals with IBD, particularly in those with CARD9 risk alleles associated with IBD. Correcting impaired microbiota functions, such as ability to produce AhR ligands, is an attractive strategy in IBD.

  8. The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2.

    PubMed

    Kerkhoff, Claus; Nacken, Wolfgang; Benedyk, Malgorzata; Dagher, Marie Claire; Sopalla, Claudia; Doussiere, Jacques

    2005-03-01

    The Ca2+- and arachidonic acid-binding S100A8/A9 protein complex was recently identified by in vitro studies as a novel partner of the phagocyte NADPH oxidase. The present study demonstrated its functional relevance by the impaired oxidase activity in neutrophil-like NB4 cells, after specific blockage of S100A9 expression, and bone marrow polymorphonuclear neutrophils from S100A9-/- mice. The impaired oxidase activation could also be mimicked in a cell-free system by pretreatment of neutrophil cytosol with an S100A9-specific antibody. Further analyses gave insights into the molecular mechanisms by which S100A8/A9 promoted NADPH oxidase activation. In vitro analysis of oxidase activation as well as protein-protein interaction studies revealed that S100A8 is the privileged interaction partner for the NADPH oxidase complex since it bound to p67phox and Rac, whereas S100A9 did interact with neither p67phox nor p47phox. Moreover, S100A8/A9 transferred the cofactor arachidonic acid to NADPH oxidase as shown by the impotence of a mutant S100A8/A9 complex unable to bind arachidonic acid to enhance NADPH oxidase activity. It is concluded that S100A8/A9 plays an important role in phagocyte NADPH oxidase activation.

  9. Biodisposition and metabolism of [18F]fluorocholine in 9L glioma cells and 9L glioma-bearing Fisher rats

    PubMed Central

    Bansal, Aditya; Shuyan, Wang; Hara, Toshiko; Harris, Robert A.; DeGrado, Timothy R.

    2008-01-01

    Purpose [18F]Fluorocholine [18F]FCH) was developed as an analog of [11C]choline for tumor imaging, however, its metabolic handling remains ill-defined. In this study, the metabolism of [18F]FCH is evaluated in cultured 9L glioma cells and Fisher 344 rats bearing 9L glioma tumors. Methods 9L glioma cells were incubated with [18F]FCH and [14C]choline under normoxic and hypoxic (1% O2) conditions and analyzed for metabolic fate. [18F]FCH and [14C]choline kinetics and metabolism were studied in Fisher 344 rats bearing subcutaneous 9L tumors. Results [18F]FCH and [14C]choline were similarly metabolized in 9L cells in both normoxic and hypoxic conditions over a 2 hr incubation period. In normoxia, radioactivity was predominantly in phosphorylated form for both tracers after 5 min incubation. In hypoxia, the tracers remained mainly in nonmetabolized form at early timepoints (< 20 min). Slow dephosphorylation of intracellular [18F]phosphofluorocholine (0.043–0.060 min−1) and [14C]phosphocholine (0.072–0.088 min−1) was evidenced via efflux measurements. In rat, both [18F]FCH and [14C]choline showed high renal and hepatic uptake. Blood clearance of both tracers was rapid with oxidative metabolites, [18F]fluorobetaine and [14C]betaine, representing the majority of radiolabel in plasma after 5 min post-injection. Oxidation (in liver) and lipid incorporation (in lung) were somewhat slower for [18F]FCH relative to [14C]choline. The majority of radiolabel in hypoxic subcutaneous tumor, as in hypoxic cultured 9L cells, was found as nonmetabolized [18F]FCH and [14C]choline. Conclusions [18F]FCH mimics choline uptake and metabolism by 9L glioma cells and tumors. However, subtle changes in biodistribution, oxidative metabolism, dephosphorylation, lipid incorporation and renal excretion show moderate effects of the presence of the radiofluorine atom in [18F]FCH. The decrease in phosphorylation of exogenous choline by cancer cells should be considered in interpretation of PET

  10. S100A8 and S100A9 Induce Cytokine Expression and Regulate the NLRP3 Inflammasome via ROS-Dependent Activation of NF-κB1

    PubMed Central

    Simard, Jean-Christophe; Cesaro, Annabelle; Chapeton-Montes, Julie; Tardif, Mélanie; Antoine, Francis; Girard, Denis; Tessier, Philippe A.

    2013-01-01

    S100A8 and S100A9 are cytoplasmic proteins expressed by phagocytes. High concentrations of these proteins have been correlated with various inflammatory conditions, including autoimmune diseases such as rheumatoid arthritis and Crohn’s disease, as well as autoinflammatory diseases. In the present study, we examined the effects of S100A8 and S100A9 on the secretion of cytokines and chemokines from PBMCs. S100A8 and S100A9 induced the secretion of cytokines such as IL-6, IL-8, and IL-1β. This secretion was associated with the activation and translocation of the transcription factor NF-κB. Inhibition studies using antisense RNA and the pharmacological agent BAY-117082 confirmed the involvement of NF-κB in IL-6, IL-8, and IL-1β secretion. S100A8- and S100A9-mediated activation of NF-κB, the NLR family, pyrin domain-containing 3 (NLRP3) protein, and pro-IL-1β expression was dependent on the generation of reactive oxygen species. This effect was synergistically enhanced by ATP, a known inflammasome activator. These results suggest that S100A8 and S100A9 enhance the inflammatory response by inducing cytokine secretion of PBMCs. PMID:23977231

  11. Test for Chemical Induction of Chromosome Aberration in Cultured Chinese Hamster Ovary (CHO) Cells With and Without Metabolic Activation. Test Article: N,N,N’,N’-tetramethyl Ethanediamine (TMEDA)

    DTIC Science & Technology

    2008-06-13

    ACTIVATION SYSTEM The metabolic activation mixture was prepared by SITEK Research Laboratories and it consisted of phenobarbital -S,6-Benzoflavone...2147 31.0mg/mL Phenobarbital -S,6-Benzoflavone <-70°C April 19. 2009 Detailed information about the S-9 batch used ill the Assay is provided in

  12. Associations of Metabolic Syndrome, Elevated C-Reactive Protein, and Physical Activity in U.S. Adolescents.

    PubMed

    Williams, Bethany D; Richardson, Michael R; Johnson, Tammie M; Churilla, James R

    2017-12-01

    The aim was to estimate the prevalence of metabolic syndrome (MetS) criteria, elevated C-reactive protein (CRP), and physical activity (PA) as well as the odds of MetS criteria in those active versus inactive utilizing a representative sample of U.S. adolescents. The study sample (n = 676) included male and female adolescent (12-17 years) participants in the 2007-2010 National Health and Nutrition Examination Survey. The criteria analyzed were based on a modified definition of MetS using the Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Current adult cut points were used to determine elevated CRP. Activity was estimated using reported days per week and minutes per day of moderate/vigorous PA. The MetS criteria with the highest and lowest overall prevalence estimates were elevated fasting glucose and elevated blood pressure (20.7% [95% confidence interval, 17.02-24.38] and 5.7% [95% confidence interval, 3.70-7.70], respectively). The prevalence of elevated CRP was 7.1% (6.3% and 7.8% in males and females, respectively; p = .42). The prevalence of insufficient PA was 75.0%. Odds of low high-density lipoprotein cholesterol were significantly lower in active adolescents when compared with inactive adolescents (odds ratio = .39, p < .05). In a representative sample of U.S. adolescents, elevated fasting glucose is the most prevalent MetS criterion. One out of five U.S. adolescents has elevated fasting glucose, and three out four do not meet the daily federal PA recommendations. Adolescents meeting the federal PA recommendation demonstrate approximately 60% lower odds of having low high-density lipoprotein cholesterol. Copyright © 2017 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  13. Anthropometry and physical activity level in the prediction of metabolic syndrome in children.

    PubMed

    Andaki, Alynne Christian Ribeiro; Tinôco, Adelson Luiz Araújo; Mendes, Edmar Lacerda; Andaki Júnior, Roberto; Hills, Andrew P; Amorim, Paulo Roberto S

    2014-10-01

    To evaluate the effectiveness of anthropometric measures and physical activity level in the prediction of metabolic syndrome (MetS) in children. Cross-sectional study with children from public and private schools. Children underwent an anthropometric assessment, blood pressure measurement and biochemical evaluation of serum for determination of TAG, HDL-cholesterol and glucose. Physical activity level was calculated and number of steps per day obtained using a pedometer for seven consecutive days. Viçosa, south-eastern Brazil. Boys and girls (n 187), mean age 9·90 (SD 0·7) years. Conicity index, sum of four skinfolds, physical activity level and number of steps per day were accurate in predicting MetS in boys. Anthropometric indicators were accurate in predicting MetS for girls, specifically BMI, waist circumference measured at the narrowest point and at the level of the umbilicus, four skinfold thickness measures evaluated separately, the sum of subscapular and triceps skinfold thickness, the sum of four skinfolds and body fat percentage. The sum of four skinfolds was the most accurate method in predicting MetS in both genders.

  14. In Vitro Effects of Sports and Energy Drinks on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    PubMed

    Vinson, LaQuia A; Goodlett, Amy K; Huang, Ruijie; Eckert, George J; Gregory, Richard L

    2017-09-15

    Sports and energy drinks are being increasingly consumed and contain large amounts of sugars, which are known to increase Streptococcus mutans biofilm formation and metabolic activity. The purpose of this in vitro study was to investigate the effects of sports and energy drinks on S. mutans biofilm formation and metabolic activity. S. mutans UA159 was cultured with and without a dilution (1:3 ratio) of a variety of sports and energy drinks in bacterial media for 24 hours. The biofilm was washed, fixed, and stained. Biofilm growth was evaluated by reading absorbance of the crystal violet. Biofilm metabolic activity was measured by the biofilm-reducing XTT to a water-soluble orange compound. Gatorade Protein Recovery Shake and Starbucks Doubleshot Espresso Energy were found to significantly increase biofilm (30-fold and 22-fold, respectively) and metabolic activity (2-fold and 3-fold, respectively). However, most of the remaining drinks significantly inhibited biofilm growth and metabolic activity. Several sports and energy drinks, with sugars or sugar substitutes as their main ingredients inhibited S. mutans biofilm formation. Among the drinks evaluated, Gatorade Protein Recovery Chocolate Shake and Starbucks Doubleshot Energy appear to have cariogenic potential since they increased the biofilm formation and metabolic activity of S. mutans.

  15. Leisure time sedentary behavior, occupational/domestic physical activity, and metabolic syndrome in U.S. men and women.

    PubMed

    Sisson, Susan B; Camhi, Sarah M; Church, Timothy S; Martin, Corby K; Tudor-Locke, Catrine; Bouchard, Claude; Earnest, Conrad P; Smith, Steven R; Newton, Robert L; Rankinen, Tuomo; Katzmarzyk, Peter T

    2009-12-01

    This study examines leisure time sedentary behavior (LTSB) and usual occupational/domestic activity (UODA) and their relationship with metabolic syndrome and individual cardiovascular disease (CVD) risk factors, independent of physical activity level. National Health and Nutrition Examination Survey (NHANES) 2003-2006 data from men (n = 1868) and women (n = 1688) with fasting measures were classified as having metabolic syndrome by the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI) definition. LTSB was determined from self-reported television viewing and computer usage. UODA was self-reported daily behavior (sitting, standing, walking, carrying loads). LTSB >or=4 hours/day was associated with odds of having metabolic syndrome of 1.94 (95% confidence interval [CI], 1.24, 3.03) in men compared to or=4 hour/day was also associated with higher odds of elevated waist circumference (1.88, CI, 1.03, 3.41), low high-density lipoprotein cholesterol (HDL-C) (1.84, CI, 1.35, 2.51), and high blood pressure (1.55, CI, 1.07, 2.24) in men. LTSB 2-3 hours/day was associated with higher odds of elevated glucose (1.32, CI, 1.00, 1.75) in men. In women, odds of metabolic syndrome were 1.54 (CI, 1.00, 2.37) with >or=4 hours/day LTSB, but LTSB was not associated with risk of the individual CVD risk factors. Higher LTSB was associated with metabolic syndrome in inactive men (1.50, CI, 1.07, 2.09), active men (1.74, CI, 1.11, 2.71), inactive women (1.69, CI, 1.24, 2.33), but not active women (1.62, CI, 0.87,3.01). UODA was not strongly associated with metabolic syndrome or CVD risk factors in either men or women. In men, high LTSB is associated with higher odds of metabolic syndrome and individual CVD risk factors regardless of meeting physical activity recommendations. In women, high LTSB is associated with higher odds of metabolic syndrome only in those not meeting the physical activity recommendations.

  16. Physical activity in prevention and treatment of the metabolic syndrome.

    PubMed

    Lakka, Timo A; Laaksonen, David E

    2007-02-01

    Randomised controlled trials have shown that exercise training has a mild or moderate favourable effect on many metabolic and cardiovascular risk factors that constitute or are related to the metabolic syndrome (MetS). Epidemiological studies suggest that regular physical activity prevents type 2 diabetes, cardiovascular disease, and premature mortality in large part through these risk factors. Although randomized controlled trials with the prevention or treatment of the MetS as the main outcome have not been published, several large randomized controlled trials provide strong evidence that favourable lifestyle changes, including regular physical activity, are effective in the prevention of type 2 diabetes in individuals who are overweight and have impaired glucose tolerance. Compliance with the current recommendations to increase the total volume of moderate-intensity physical activity and to maintain good cardiorespiratory and muscular fitness appears to markedly decrease the likelihood of developing the MetS, especially in high-risk groups. Walking is the most common form of physical activity--it improves health in many ways and is generally safe. Therefore, brisk walking for at least 30 min daily can be recommended as the principal form of physical activity at the population level. If there are no contraindications, more vigorous physical exercise or resistance training should also be considered to obtain additional health benefits. Unstructured and low-intensity physical activity may also decrease the likelihood of developing the MetS, especially when substituted for sedentary behaviours such as watching television. The measurement of maximal oxygen consumption may provide an efficient means to target even individuals with relatively few metabolic risk factors who may benefit from more intensive intervention.

  17. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlomai, Amir, E-mail: amirsh@tasmc.health.gov.il; Institute for Gastroenterology and Liver disease, Tel-Aviv Sourasky Medical Center, 6 Weizmann street, Tel-Aviv; Shaul, Yosef

    2009-04-17

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1{alpha} coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1{alpha} coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4{alpha} and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1{alpha} coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhancedmore » in the presence of PGC-1{alpha}, implying that FOXO1 is a target for PGC-1{alpha} coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.« less

  18. Viscosity dictates metabolic activity of Vibrio ruber

    PubMed Central

    Borić, Maja; Danevčič, Tjaša; Stopar, David

    2012-01-01

    Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase (GPD) increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment. PMID:22826705

  19. The S100A8/A9 protein as a partner for the cytosolic factors of NADPH oxidase activation in neutrophils.

    PubMed

    Doussiere, Jacques; Bouzidi, Farid; Vignais, Pierre V

    2002-07-01

    In a previous study, the S100A8/A9 protein, a Ca2+- and arachidonic acid-binding protein, abundant in neutrophil cytosol, was found to potentiate the activation of the redox component of the O2- generating oxidase in neutrophils, namely the membrane-bound flavocytochrome b, by the cytosolic phox proteins p67phox, p47phox and Rac (Doussière J., Bouzidi F. and Vignais P.V. (2001) Biochem. Biophys. Res. Commun.285, 1317-1320). This led us to check by immunoprecipitation and protein fractionation whether the cytosolic phox proteins could bind to S100A8/A9. Following incubation of a cytosolic extract from nonactivated bovine neutrophil with protein A-Sepharose bound to anti-p67phox antibodies, the recovered immunoprecipitate contained the S100 protein, p47phox and p67phox. Cytosolic protein fractionation comprised two successive chromatographic steps on hydroxyapatite and DEAE cellulose, followed by isoelectric focusing. The S100A8/A9 heterodimeric protein comigrated with the cytosolic phox proteins, and more particularly with p67phox and Rac2, whereas the isolated S100A8 protein displayed a tendancy to bind to p47phox. Using a semirecombinant cell-free system of oxidase activation consisting of recombinant p67phox, p47phox and Rac2, neutrophil membranes and arachidonic acid, we found that the S100A8/A9-dependent increase in the elicited oxidase activity corresponded to an increase in the turnover of the membrane-bound flavocytochrome b, but not to a change of affinity for NADPH or O2. In the absence of S100A8/A9, oxidase activation departed from michaelian kinetics above a critical threshold concentration of cytosolic phox proteins. Addition of S100A8/A9 to the cell-free system rendered the kinetics fully michaelian. The propensity of S100A8/A9 to bind the cytosolic phox proteins, and the effects of S100A8/A9 on the kinetics of oxidase activation, suggest that S100A8/A9 might be a scaffold protein for the cytosolic phox proteins or might help to deliver arachidonic

  20. Composition and Metabolic Activities of the Bacterial Community in Shrimp Sauce at the Flavor-Forming Stage of Fermentation As Revealed by Metatranscriptome and 16S rRNA Gene Sequencings.

    PubMed

    Duan, Shan; Hu, Xiaoxi; Li, Mengru; Miao, Jianyin; Du, Jinghe; Wu, Rongli

    2016-03-30

    The bacterial community and the metabolic activities involved at the flavor-forming stage during the fermentation of shrimp sauce were investigated using metatranscriptome and 16S rRNA gene sequencings. Results showed that the abundance of Tetragenococcus was 95.1%. Tetragenococcus halophilus was identified in 520 of 588 transcripts annotated in the Nr database. Activation of the citrate cycle and oxidative phosphorylation, along with the absence of lactate dehydrogenase gene expression, in T. halophilus suggests that T. halophilus probably underwent aerobic metabolism during shrimp sauce fermentation. The metabolism of amino acids, production of peptidase, and degradation of limonene and pinene were very active in T. halophilus. Carnobacterium, Pseudomonas, Escherichia, Staphylococcus, Bacillus, and Clostridium were also metabolically active, although present in very small populations. Enterococcus, Abiotrophia, Streptococcus, and Lactobacillus were detected in metatranscriptome sequencing, but not in 16S rRNA gene sequencing. Many minor taxa showed no gene expression, suggesting that they were in dormant status.

  1. Tongluo Xingnao Effervescent Tablet preserves mitochondrial energy metabolism and attenuates cognition deficits in APPswe/PS1De9 mice.

    PubMed

    Dai, Yuan; Ma, Tao; Ren, Xiangyi; Wei, Jiangping; Fu, Wenjun; Ma, Yuntong; Xu, Shijun; Zhang, Zhanjun

    2016-09-06

    Tongluo Xingnao Effervescent Tablet (TXET), a traditional Chinese herbal formula composed of Ligusticum chuanxiong hor, Scutellaria baicalensis Georgi and Angelica sinensis, has been widely used to treat Alzheimer's disease (AD) and related dementias for decades in China. In the present study, we investigated the effects of TXET on mitochondrial function, energy metabolism and cognitive amelioration in the APPswe/PS1De9 transgenetic mouse model of AD. The energy charge and phosphocreatine, activity of the mitochondrial electron transport chain complexes, mitochondrial membrane potential, activity of Na(+)-K(+) ATPase and the expression levels of Bcl-2 and Bax in the brains were measured, respectively. TXET exhibits significant protection on mitochondrial function and energy supply in addition to ameliorating cognitive decline in APPswe/PS1De9 mice. TXET rescues mitochondrial function by increasing the mitochondrial membrane potential, energy charge levels, activity of respiratory chain complexes and Na(+)-K(+) ATPase activity. These findings suggest that TXET may attenuate cognition impairment through the restoration of mitochondrial function and energy metabolism in the brains in APPswe/PS1De9 mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Analysis of gene expression and regulation implicates C2H9orf152 has an important role in calcium metabolism and chicken reproduction.

    PubMed

    Liu, Long; Fan, Yanfeng; Zhang, Zhenhe; Yang, Chan; Geng, Tuoyu; Gong, Daoqing; Hou, Zhuocheng; Ning, Zhonghua

    2017-01-01

    The reproductive system of a female bird is responsible for egg production. The genes highly expressed in oviduct are potentially important. From RNA-seq analysis, C2H9orf152 (an orthologous gene of human C9orf152) was identified as highly expressed in chicken uterus. To infer its function, we obtained and characterized its complete cDNA sequence, determined its spatiotemporal expression, and probed its transcription factor(s) through pharmaceutical approach. Data showed that the complete cDNA sequence was 1468bp long with a 789bp of open reading frame. Compared to other tested tissues, this gene was highly expressed in the oviduct and liver tissues, especially uterus. Its expression in uterus was gradually increased during developmental and reproductive periods, which verified its involvement in the growth and maturity of reproductive system. In contrast, its expression was not significant different between active and quiescent uterus, suggesting the role of C2H9orf152 in reproduction is likely due to its long-term effect. Moreover, based on its 5'-flanking sequence, Foxd3 and Hnf4a were predicted as transcription factors of C2H9orf152. Using berberine or retinoic acid (which can regulate the activities of Hnf4a and Foxd3, respectively), we demonstrated suppression of C2H9orf152 by the chemicals in chicken primary hepatocytes. As retinoic acid regulates calcium metabolism, and Hnf4a is a key nuclear factor to liver, these findings suggest that C2H9orf152 is involved in liver function and calcium metabolism of reproductive system. In conclusion, C2H9orf152 may have a long-term effect on chicken reproductive system by regulating calcium metabolism, suggesting this gene has an important implication in the improvement of egg production and eggshell quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Oxcarbazepine-induced cytotoxicity and genotoxicity in human lymphocyte cultures with or without metabolic activation.

    PubMed

    Atlı Şekeroğlu, Zülal; Kefelioğlu, Haluk; Kontaş Yedier, Seval; Şekeroğlu, Vedat; Delmecioğlu, Berrin

    2017-03-01

    There has been considerable debate about the relationship between epilepsy and cancer. Oxcarbazepine (OXC) is used for treating certain types of seizures in patients with epilepsy. There have been no detailed investigations about genotoxicity of OXC and its metabolites. Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of OXC and its metabolites on cultured human lymphocytes. The cytotoxicity and genotoxicity of OXC on human peripheral blood lymphocytes were examined in vitro by sister chromatid exchange (SCE), chromosomal aberration (CA) and micronucleus (MN) tests. Cultures were treated with 125, 250 and 500 μg/ml of OXC in the presence (3 h treatment) and absence (24 h and 48 h treatment) of a metabolic activator (S9 mix). Dimethyl sulfoxide (DMSO) was used as a solvent control. OXC showed cytotoxic activities due to significant decreases in mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) in the absence of S9 mix when compared with solvent control. Metabolites of OXC also significantly reduced MI and PI in cultures with S9 mix. OXC significantly increased the CAs, aberrant cells, SCE and MN values in the presence and absence of S9 mix. Our results indicated that both OXC and its metabolites have cytotoxic, cytostatic and genotoxic potential on human peripheral blood lymphocyte cultures under the experimental conditions. Further studies are necessary to elucidate the relationship between cytotoxic, cytostatic and genotoxic effects, and to make a possible risk assessment in patients receiving therapy with this drug.

  4. Metabolic activity, urease production, antibiotic resistance and virulence in dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus.

    PubMed

    Vandecandelaere, Ilse; Van Nieuwerburgh, Filip; Deforce, Dieter; Coenye, Tom

    2017-01-01

    In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other's behavior, but additional studies are required necessary to elucidate the exact

  5. TLR4 Endogenous Ligand S100A8/A9 Levels in Adult-Onset Still's Disease and Their Association with Disease Activity and Clinical Manifestations.

    PubMed

    Kim, Hyoun-Ah; Han, Jae Ho; Kim, Woo-Jung; Noh, Hyun Jin; An, Jeong-Mi; Yim, Hyunee; Jung, Ju-Yang; Kim, You-Sun; Suh, Chang-Hee

    2016-08-16

    S100A8/A9 has been suggested as a marker of disease activity in patients with adult-onset Still's disease (AOSD). We evaluated the clinical significance of S100A8/A9 as a biomarker and its pathogenic role in AOSD. Blood samples were collected prospectively from 20 AOSD patients and 20 healthy controls (HCs). Furthermore, skin and lymph node biopsy specimens of AOSD patients were investigated for S100A8/A9 expression levels via immunohistochemistry. Peripheral blood mononuclear cells (PBMCs) of active AOSD patients and HCs were investigated for S100A8/A9 cell signals. S100A8/A9, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) levels in active AOSD patients were higher than those of HCs. S100A8/A9 levels correlated positively with IL-1β, TNF-α and C-reactive protein. The inflammatory cells expressing S100A8/A9 were graded from one to three in skin and lymph node biopsies of AOSD patients. The grading for S100A8/A9 was more intense in the skin lesions with karyorrhexis, mucin deposition, and neutrophil infiltration. Like lipopolysaccharide (LPS), S100A8/A9 induced phosphorylation of p38 and c-Jun amino-terminal kinase (JNK) in PBMCs, suggesting that S100A8/A9 activates Toll-like receptor 4 signaling pathways. These findings suggest that S100A8/A9 may be involved in the inflammatory response with induction of proinflammatory cytokines and may serve as a clinicopathological marker for disease activity in AOSD.

  6. Comparative and integrative metabolomics reveal that S-nitrosation inhibits physiologically relevant metabolic enzymes.

    PubMed

    Bruegger, Joel J; Smith, Brian C; Wynia-Smith, Sarah L; Marletta, Michael A

    2018-04-27

    Cysteine S -nitrosation is a reversible post-translational modification mediated by nitric oxide ( • NO)-derived agents. S -Nitrosation participates in cellular signaling and is associated with several diseases such as cancer, cardiovascular diseases, and neuronal disorders. Despite the physiological importance of this nonclassical • NO-signaling pathway, little is understood about how much S -nitrosation affects protein function. Moreover, identifying physiologically relevant targets of S -nitrosation is difficult because of the dynamics of transnitrosation and a limited understanding of the physiological mechanisms leading to selective protein S -nitrosation. To identify proteins whose activities are modulated by S -nitrosation, we performed a metabolomics study comparing WT and endothelial nitric-oxide synthase knockout mice. We integrated our results with those of a previous proteomics study that identified physiologically relevant S -nitrosated cysteines, and we found that the activity of at least 21 metabolic enzymes might be regulated by S -nitrosation. We cloned, expressed, and purified four of these enzymes and observed that S -nitrosation inhibits the metabolic enzymes 6-phosphogluconate dehydrogenase, Δ1-pyrroline-5-carboxylate dehydrogenase, catechol- O -methyltransferase, and d-3-phosphoglycerate dehydrogenase. Furthermore, using site-directed mutagenesis, we identified the predominant cysteine residue influencing the observed activity changes in each enzyme. In summary, using an integrated metabolomics approach, we have identified several physiologically relevant S -nitrosation targets, including metabolic enzymes, which are inhibited by this modification, and we have found the cysteines modified by S -nitrosation in each enzyme. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Differential expression of GSK3β and pS9GSK3β in normal human tissues: can pS9GSK3β be an epithelial marker?

    PubMed

    Lee, Hojung; Ro, Jae Y

    2015-01-01

    Glycogen synthase kinase 3β (GSK3β) and phosphorylated GSK3β at Ser9 (pS9GSK3β) are crucial in cellular proliferation and metabolism. GSK3β and pS9GSK3β are deregulated in many diseases including tumors. Data on altered expression of GSK3β and pS9GSK3β are mainly limited to tumor tissues, thus the expression of GSK3β and pS9GSK3β in normal human tissue has been largely unknown. Thus, we examined the immunohistochemical localization of GSK3β and pS9GSK3β in human fetal and adult tissues, and also compared the expression pattern of GSK3β and pS9GSK3β with that of the CK7 and CK20. We found GSK3β expression in neurons of brain, myenteric plexus in gastrointestinal tract, squamous epithelium of skin, and mammary gland. The expression of pS9GSK3β was restricted to the epithelial cells of breast and pancreaticobiliary duct, distal nephron of kidney, gastrointestinal tract, fallopian tube, epididymis, secretory cell of prostatic gland, and umbrella cell of urinary tract. The staining pattern of pS9GSK3β and CK7 was overlapped in most organs except for gastrointestinal tract where CK7 was negative and CK20 was positive. Our results show that the expression of GSK3β may be associated with differentiation of ectodermal derived tissues and pS9GSK3β with that of epithelial cells of endodermal derived tissues in human. In addition, the expression of pS9GSK3β in the selective epithelial cells may indicate its association with secretory or barrier function of specific cells and may serve as another immunohistochemical marker for epithelial cells.

  8. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol.

    PubMed

    Liu, Jianming; Chan, Siu Hung Joshua; Brock-Nannestad, Theis; Chen, Jun; Lee, Sang Yup; Solem, Christian; Jensen, Peter Ruhdal

    2016-07-01

    Biocompatible chemistry is gaining increasing attention because of its potential within biotechnology for expanding the repertoire of biological transformations carried out by enzymes. Here we demonstrate how biocompatible chemistry can be used for synthesizing valuable compounds as well as for linking metabolic pathways to achieve redox balance and rescued growth. By comprehensive rerouting of metabolism, activation of respiration, and finally metal ion catalysis, we successfully managed to convert the homolactic bacterium Lactococcus lactis into a homo-diacetyl producer with high titer (95mM or 8.2g/L) and high yield (87% of the theoretical maximum). Subsequently, the pathway was extended to (S,S)-2,3-butanediol (S-BDO) through efficiently linking two metabolic pathways via chemical catalysis. This resulted in efficient homo-S-BDO production with a titer of 74mM (6.7g/L) S-BDO and a yield of 82%. The diacetyl and S-BDO production rates and yields obtained are the highest ever reported, demonstrating the promising combination of metabolic engineering and biocompatible chemistry as well as the great potential of L. lactis as a new production platform. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Quiescent Fibroblasts Exhibit High Metabolic Activity

    PubMed Central

    Lemons, Johanna M. S.; Feng, Xiao-Jiang; Bennett, Bryson D.; Legesse-Miller, Aster; Johnson, Elizabeth L.; Raitman, Irene; Pollina, Elizabeth A.; Rabitz, Herschel A.; Rabinowitz, Joshua D.; Coller, Hilary A.

    2010-01-01

    Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled glutamine, we also detected a “backwards” flux in the tricarboxylic acid cycle from α-ketoglutarate to citrate that was enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions beneficial to the organism as a whole. PMID:21049082

  10. Physical activity, cardiorespiratory fitness, and metabolic syndrome in adolescents: A cross-sectional study

    PubMed Central

    2011-01-01

    Background In adults, there is a substantial body of evidence that physical inactivity or low cardiorespiratory fitness levels are strongly associated with the development of metabolic syndrome. Although this association has been studied extensively in adults, little is known regarding this association in adolescents. The aim of this study was to analyze the association between physical activity and cardiorespiratory fitness levels with metabolic syndrome in Brazilian adolescents. Methods A random sample of 223 girls (mean age, 14.4 ± 1.6 years) and 233 boys (mean age, 14.6 ± 1.6 years) was selected for the study. The level of physical activity was determined by the Bouchard three-day physical activity record. Cardiorespiratory fitness was estimated by the Leger 20-meter shuttle run test. The metabolic syndrome components assessed included waist circumference, blood pressure, HDL-cholesterol, triglycerides, and fasting plasma glucose levels. Independent Student t-tests were used to assess gender differences. The associations between physical activity and cardiorespiratory fitness with the presence of metabolic syndrome were calculated using logistic regression models adjusted for age and gender. Results A high prevalence of metabolic syndrome was observed in inactive adolescents (males, 11.4%; females, 7.2%) and adolescents with low cardiorespiratory fitness levels (males, 13.9%; females, 8.6%). A significant relationship existed between metabolic syndrome and low cardiorespiratory fitness (OR, 3.0 [1.13-7.94]). Conclusion The prevalence of metabolic syndrome is high among adolescents who are inactive and those with low cardiorespiratory fitness. Prevention strategies for metabolic syndrome should concentrate on enhancing fitness levels early in life. PMID:21878095

  11. Metabolic activity, urease production, antibiotic resistance and virulence in dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus

    PubMed Central

    Vandecandelaere, Ilse; Van Nieuwerburgh, Filip; Deforce, Dieter

    2017-01-01

    In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other’s behavior, but additional studies are required necessary to elucidate the exact

  12. S100A8/A9: From basic science to clinical application.

    PubMed

    Pruenster, Monika; Vogl, Thomas; Roth, Johannes; Sperandio, Markus

    2016-11-01

    Neutrophils and monocytes belong to the first line of immune defence cells and are recruited to sites of inflammation during infection or sterile injury. Both cells contain huge amounts of the heterodimeric protein S100A8/A9 in their cytoplasm. S100A8/A9 belongs to the Ca 2+ binding S100 protein family and has recently gained a lot of interest as a critical alarmin modulating the inflammatory response after its release (extracellular S100A8/A9) from neutrophils and monocytes. Extracellular S100A8/A9 interacts with the pattern recognition receptors Toll-like receptor 4 (TLR4) and Receptor for Advanced Glycation Endproducts (RAGE) promoting cell activation and recruitment. Besides its biological function, S100A8/A9 (also known as myeloid related protein 8/14, MRP8/14) was identified as interesting biomarker to monitor disease activity in chronic inflammatory disorders including inflammatory bowel disease and rheumatoid arthritis. Furthermore, S100A8/A9 has been tested successfully in pre-clinical imaging studies to localize sites of infection or sterile injury. Finally, recent evidence using small molecule inhibitors for S100A8/A9 also suggests that blocking S100A8/A9 activity exerts beneficial effects on disease activity in animal models of autoimmune diseases including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis and inflammatory bowel disease. This review will provide a comprehensive and detailed overview into the structure and biological function of S100A8/A9 and also will give an outlook in terms of diagnostic and therapeutic applications targeting S100A8/A9. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Sustained Axenic Metabolic Activity by the Obligate Intracellular Bacterium Coxiella burnetii▿ †

    PubMed Central

    Omsland, Anders; Cockrell, Diane C.; Fischer, Elizabeth R.; Heinzen, Robert A.

    2008-01-01

    Growth of Coxiella burnetii, the agent of Q fever, is strictly limited to colonization of a viable eukaryotic host cell. Following infection, the pathogen replicates exclusively in an acidified (pH 4.5 to 5) phagolysosome-like parasitophorous vacuole. Axenic (host cell free) buffers have been described that activate C. burnetii metabolism in vitro, but metabolism is short-lived, with bacterial protein synthesis halting after a few hours. Here, we describe a complex axenic medium that supports sustained (>24 h) C. burnetii metabolic activity. As an initial step in medium development, several biological buffers (pH 4.5) were screened for C. burnetii metabolic permissiveness. Based on [35S]Cys-Met incorporation, C. burnetii displayed optimal metabolic activity in citrate buffer. To compensate for C. burnetii auxotrophies and other potential metabolic deficiencies, we developed a citrate buffer-based medium termed complex Coxiella medium (CCM) that contains a mixture of three complex nutrient sources (neopeptone, fetal bovine serum, and RPMI cell culture medium). Optimal C. burnetii metabolism occurred in CCM with a high chloride concentration (140 mM) while the concentrations of sodium and potassium had little effect on metabolism. CCM supported prolonged de novo protein and ATP synthesis by C. burnetii (>24 h). Moreover, C. burnetii morphological differentiation was induced in CCM as determined by the transition from small-cell variant to large-cell variant. The sustained in vitro metabolic activity of C. burnetii in CCM provides an important tool to investigate the physiology of this organism including developmental transitions and responses to antimicrobial factors associated with the host cell. PMID:18310349

  14. Royal Jelly Reduces Cholesterol Levels, Ameliorates Aβ Pathology and Enhances Neuronal Metabolic Activities in a Rabbit Model of Alzheimer’s Disease

    PubMed Central

    Pan, Yongming; Xu, Jianqin; Chen, Cheng; Chen, Fangming; Jin, Ping; Zhu, Keyan; Hu, Chenyue W.; You, Mengmeng; Chen, Minli; Hu, Fuliang

    2018-01-01

    Alzheimer’s disease (AD) is the most common form of dementia characterized by aggregation of amyloid β (Aβ) and neuronal loss. One of the risk factors for AD is high cholesterol levels, which are known to promote Aβ deposition. Previous studies have shown that royal jelly (RJ), a product of worker bees, has potential neuroprotective effects and can attenuate Aβ toxicity. However, little is known about how RJ regulates Aβ formation and its effects on cholesterol levels and neuronal metabolic activities. Here, we investigated whether RJ can reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in an AD rabbit model induced by 2% cholesterol diet plus copper drinking water. Our results suggest that RJ significantly reduced the levels of plasma total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C), and decreased the level of Aβ in rabbit brains. RJ was also shown to markedly ameliorate amyloid deposition in AD rabbits from Aβ immunohistochemistry and thioflavin-T staining. Furthermore, our study suggests that RJ can reduce the expression levels of β-site APP cleaving enzyme-1 (BACE1) and receptor for advanced glycation end products (RAGE), and increase the expression levels of low density lipoprotein receptor-related protein 1 (LRP-1) and insulin degrading enzyme (IDE). In addition, we found that RJ remarkably increased the number of neurons, enhanced antioxidant capacities, inhibited activated-capase-3 protein expression, and enhanced neuronal metabolic activities by increasing N-acetyl aspartate (NAA) and glutamate and by reducing choline and myo-inositol in AD rabbits. Taken together, our data demonstrated that RJ could reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in AD rabbits, providing preclinical evidence that RJ treatment has the potential to protect neurons and prevent AD. PMID:29556189

  15. Repeated exposure to delta 9-tetrahydrocannabinol reduces prefrontal cortical dopamine metabolism in the rat.

    PubMed

    Jentsch, J D; Verrico, C D; Le, D; Roth, R H

    1998-05-01

    Long-term abuse of marijuana by humans can induce profound behavioral deficits characterized by cognitive and memory impairments. In particular, deficits on tasks dependent on frontal lobe function have been reported in cannabis abusers. In the current study, we examined whether long-term exposure to delta9-tetrahydrocannabinol, the active ingredient in marijuana, altered the neurochemistry of the frontal cortex in rats. Two weeks administration of delta9-tetrahydrocannabinol reduced dopamine transmission in the medial prefrontal cortex, while dopamine metabolism in striatal regions was unaffected. These data are consistent with earlier findings of dopaminergic regulation of frontal cortical cognition. Thus, cognitive deficits in heavy abusers of cannabis may be subserved by drug-induced alterations in frontal cortical dopamine transmission.

  16. Physical activity patterns and metabolic syndrome in Costa Rica

    PubMed Central

    Hastert, Theresa A.; Gong, Jian; Campos, Hannia; Baylin, Ana

    2015-01-01

    Objective To examine whether total physical activity or activity patterns are associated with metabolic syndrome and its components. Methods Participants include 1,994 controls from a case-control study of non-fatal myocardial infarction in Costa Rica (1994–2004). Physical activity was assessed via self-administered questionnaire and patterns were identified using principal components analysis. Metabolic syndrome was assessed via blood samples and anthropometry measurements from in-home study visits. Prevalence ratios (PR) and 95% confidence intervals (CI) were calculated using log binomial regression. Adjusted least squares means of metabolic syndrome components were calculated by quintile of total activity and pattern scores. Results Four activity patterns were identified: rest/sleep, agricultural, light indoor activity, and manual labor. Total activity was not associated with metabolic syndrome. Metabolic syndrome prevalence was 20% lower in participants with the highest scores on the agricultural job pattern compared to those with the lowest (PR: 0.80, 95% CI: 0.68–0.94). Higher total activity was associated with lower triglycerides and lower HDL cholesterol. Higher scores on each pattern were inversely associated with metabolic syndrome components, particularly waist circumference and fasting blood glucose. Conclusions Patterns or types of physical activity may be more strongly associated with metabolic syndrome and its components than total activity levels. PMID:25445330

  17. Role of peroxisome proliferator-activated receptors gene polymorphisms in type 2 diabetes and metabolic syndrome

    PubMed Central

    Dong, Chen; Zhou, Hui; Shen, Chong; Yu, Lu-Gang; Ding, Yi; Zhang, Yong-Hong; Guo, Zhi-Rong

    2015-01-01

    Metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) are the serious public health problems worldwide. Moreover, it is estimated that MetS patients have about five-fold greater risk of the T2DM development compared with people without the syndrome. Peroxisome proliferator-activated receptors are a subgroup of the nuclear hormone receptor superfamily of ligand-activated transcription factors which play an important role in the pathogenesis of MetS and T2DM. All three members of the peroxisome proliferator-activated receptor (PPAR) nuclear receptor subfamily, PPARα, PPARβ/δ and PPARγ are critical in regulating insulin sensitivity, adipogenesis, lipid metabolism, and blood pressure. Recently, more and more studies indicated that the gene polymorphism of PPARs, such as Leu162Val and Val227Ala of PPARα, +294T > C of PPARβ/δ, Pro12Ala and C1431T of PPARγ, are significantly associated with the onset and progressing of MetS and T2DM in different population worldwide. Furthermore, a large body of evidence demonstrated that the glucose metabolism and lipid metabolism were influenced by gene-gene interaction among PPARs genes. However, given the complexity pathogenesis of metabolic disease, it is unlikely that genetic variation of a single locus would provide an adequate explanation of inter-individual differences which results in diverse clinical syndromes. Thus, gene-gene interactions and gene-environment interactions associated with T2DM and MetS need future comprehensive studies. PMID:25987964

  18. S100a8/a9 released by CD11b+Gr1+ neutrophils activates cardiac fibroblasts to initiate angiotensin II-Induced cardiac inflammation and injury.

    PubMed

    Wu, Yina; Li, Yulin; Zhang, Congcong; A, Xi; Wang, Yueli; Cui, Wei; Li, Huihua; Du, Jie

    2014-06-01

    Angiotensin II induces cardiovascular injury, in part, by activating inflammatory response; however, the initial factors that trigger the inflammatory cascade remain unclear. Microarray analysis of cardiac tissue exposed to systemic angiotensin II infusion revealed that extracellular heterodimeric proteins S100a8/a9 were highly upregulated. The increase in S100a8/a9 mRNA of CD11b(+)Gr1(+) neutrophils isolated from both the peripheral blood and heart was highest on day 1 of angiotensin II infusion and decreased to baseline at day 7. Immunostaining showed that S100a8/a9 was primarily present in infiltrating CD11b(+)Gr1(+) neutrophils in the heart. The receptor for advanced glycation end products, an S100a8/a9 receptor, was expressed in cardiac fibroblasts (CFs). Microarray analysis and Bio-Plex protein array showed that treatment of CFs with recombinant S100a8/a9 activated multiple chemokine and cytokines released. Luciferase reporter assay indicated S100a8/a9-activated nuclear factor-κ B pathway in CFs. Consequently, recombinant S100a8/a9-treated CFs promoted migration of monocytes and CFs, whereas neutralizing S100a9 antibody blocked S100a9 or receptor for advanced glycation end products-suppressed cellular migration. Finally, administration of a neutralizing S100a9 antibody prevented angiotensin II infusion-induced nuclear factor-κ B activation, inflammatory cell infiltration, cytokine production, subsequent perivascular and interstitial fibrosis, and hypertrophy in heart. Our findings identify neutrophil-produced S100a8/a9 as an initial proinflammatory factor needed to trigger inflammation and cardiac injury during acute hypertension.

  19. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractionsmore » from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.« less

  20. [Circulating levels of MCP-1, VEGF-A, sICAM-1, sVCAM-1, sE-selectin and sVE-cadherin: Relationship with components of metabolic syndrome in young population].

    PubMed

    Guzmán-Guzmán, Iris Paola; Zaragoza-García, Oscar; Vences-Velázquez, Amalia; Castro-Alarcón, Natividad; Muñoz-Valle, José Francisco; Parra-Rojas, Isela

    2016-11-18

    Inflammation and endothelial dysfunction are considered the primary manifestations of the cardiovascular disease. Studies have established a relationship among components of metabolic syndrome (MetS) with inflammatory markers and the loss of permeability, vasoconstriction and vasodilatation endothelial. To determine the relationship among the concentrations of soluble endothelial dysfunction molecules and inflammation cytokines and components of the metabolic syndrome in young population. A study was performed in 240 young adult students ages 18-28 years. To define the presence of clinical and metabolic alterations and MetS the modified ATP-III criteria was considered. In all subjects were determined sociodemographic characteristics, anthropometric measures and the metabolic profile. Circulating levels of MCP-1, VEGF-A, sICAM-1, sVCAM-1, sE-selectin and sVE-cadherin were determined by ELISA immunoassay (Bioscience). Statistical analysis was performed using STATA statistical software v. 9.2. From all the participants, 44.6% had obesity, 59.9% had abdominal obesity, 49.6% low HDL-c and 16.7% high levels triglycerids. The 16.25% of the population showed 3 or more components of the MetS. Elevated MCP-1, sICAM-1 and sE-selectin levels were linked to the presence of obesity. In a model adjusted by age-gender, high soluble levels of MCP-1 and VEGF-A were linked with abdominal obesity (OR=1.83; 1.02-3.28 and OR=2.03; 1.15-3.56, respectively), as well as to the presence of the 2 components of MetS. sVCAM-1 levels were associated with impaired glucose (OR=4.74; 1.32-17.0); sE-selectin with low HDL-c (OR=1.99; 1.05-3.75), although sICAM-1 and sVE-cadherin were associated with impaired systolic blood pressure (OR=4.04; 1.24-13.1 and OR=6.28; 1.90-20.7, respectively). Levels of circulating MCP-1 and VEGF-A were associated with adiposity, levels of sVCAM-1 with the presence of impaired glucose, sE-selectin with low HDL-c, while the levels of sICAM-1 and sVE-cadherin were

  1. Active smoking and risk of metabolic syndrome: a meta-analysis of prospective studies.

    PubMed

    Sun, Kan; Liu, Jianmin; Ning, Guang

    2012-01-01

    Epidemiological evidence suggests that smoking has been associated with emergence of metabolic syndrome. However, data on this issue are inconsistent and controversial. We therefore conducted a meta-analysis to examine the association between smoking and metabolic syndrome. We searched the Medline, Embase and the Cochrane Library database up to March 2012 to identify prospective cohort studies related to smoking and metabolic syndrome. Reference lists of retrieved articles were also reviewed. Summary effect estimates were derived using a random-effects model and stratified by gender, smoking dose, follow-up duration and geographical area. Primary analysis of 13 studies involving 56,691 participants and 8,688 cases detected a significant positive association between active smoking and risk of metabolic syndrome (pooled relative risk [RR] 1.26, 95% CI: 1.10-1.44). Estimates of effects were substantially consistent in the stratified analyses. In the dose-response analysis, risk of metabolic syndrome was stronger for active male smokers (pooled RR 1.34, 95% CI: 1.20-1.50) than it was for former male smokers (pooled RR 1.19, 95% CI: 1.00-1.42), and greater for heavy smokers (pooled RR 1.42, 95% CI: 1.27-1.59) compared with light smokers (pooled RR 1.10, 95% CI: 0.90-1.35). No evidence of statistical publication bias was found (Egger' s test P=0.227, Begg' s test P=0.113). Active smoking is associated with development of metabolic syndrome. Smoking cessation appears to reduce the risk of metabolic syndrome.

  2. Rivastigmine Lowers Aβ and Increases sAPPα Levels, Which Parallel Elevated Synaptic Markers and Metabolic Activity in Degenerating Primary Rat Neurons

    PubMed Central

    Bailey, Jason A.; Ray, Balmiki; Greig, Nigel H.; Lahiri, Debomoy K.

    2011-01-01

    Overproduction of amyloid-β (Aβ) protein in the brain has been hypothesized as the primary toxic insult that, via numerous mechanisms, produces cognitive deficits in Alzheimer's disease (AD). Cholinesterase inhibition is a primary strategy for treatment of AD, and specific compounds of this class have previously been demonstrated to influence Aβ precursor protein (APP) processing and Aβ production. However, little information is available on the effects of rivastigmine, a dual acetylcholinesterase and butyrylcholinesterase inhibitor, on APP processing. As this drug is currently used to treat AD, characterization of its various activities is important to optimize its clinical utility. We have previously shown that rivastigmine can preserve or enhance neuronal and synaptic terminal markers in degenerating primary embryonic cerebrocortical cultures. Given previous reports on the effects of APP and Aβ on synapses, regulation of APP processing represents a plausible mechanism for the synaptic effects of rivastigmine. To test this hypothesis, we treated degenerating primary cultures with rivastigmine and measured secreted APP (sAPP) and Aβ. Rivastigmine treatment increased metabolic activity in these cultured cells, and elevated APP secretion. Analysis of the two major forms of APP secreted by these cultures, attributed to neurons or glia based on molecular weight showed that rivastigmine treatment significantly increased neuronal relative to glial secreted APP. Furthermore, rivastigmine treatment increased α-secretase cleaved sAPPα and decreased Aβ secretion, suggesting a therapeutic mechanism wherein rivastigmine alters the relative activities of the secretase pathways. Assessment of sAPP levels in rodent CSF following once daily rivastigmine administration for 21 days confirmed that elevated levels of APP in cell culture translated in vivo. Taken together, rivastigmine treatment enhances neuronal sAPP and shifts APP processing toward the α-secretase pathway

  3. Plasma fatty acid composition, estimated desaturase activities, and their relation with the metabolic syndrome in a population at high risk of cardiovascular disease.

    PubMed

    Mayneris-Perxachs, Jordi; Guerendiain, Marcela; Castellote, Ana I; Estruch, Ramón; Covas, María Isabel; Fitó, Montserrat; Salas-Salvadó, Jordi; Martínez-González, Miguel A; Aros, Fernando; Lamuela-Raventós, Rosa M; López-Sabater, M Carmen

    2014-02-01

    The metabolic syndrome (MetS) is a clustering of various metabolic abnormalities which is associated with increased risk of cardiovascular disease (CVD) and type 2 diabetes mellitus. Due to its increasing prevalence, it has become an important public health concern. Altered fatty acid (FA) composition and desaturase activities have been associated with several metabolic diseases, including MetS. The aim of the present study was to evaluate the relationship of the plasma FA profile and desaturase activities with the MetS in a Mediterranean population at high risk of CVD. Baseline data from 427 participants aged 55-80 years who took part in the interventional PREDIMED study were obtained. Individual FA was determined in plasma and desaturase activities were estimated from product/precursor ratios. Odds ratios (OR) and partial correlation coefficients were used to examine these relations with MetS and its components, respectively. We found higher levels of C14:0, C16:0, C16:1n-7, estimated Δ(9)- or stearoyl-CoA desaturase (SCD), and estimated Δ(6) desaturase (D6D), and lower levels of C18:2n-6 in people with MetS compared to those without it. After adjustment for several confounders, only higher quartiles of C14:0, C16:0, C16:1n-7, and D6D were found to be associated with an increasing prevalence of MetS, while higher quartiles of C18:2n-6 were inversely associated with MetS. High proportions of C14:0, C16:0, C16:1n-7, C20:3n-6, SCD, and D6D, and decreased proportions of C18:2n-6 and estimated Δ(5)-desaturase (D5D) were associated with adverse profiles of several metabolic risk factors. Women showed more unhealthy FA pattern and lipid profiles than men, but only among those with MetS. A FA composition and estimated desaturase activities consisting in high levels of SFA, SCD and D6D, and low levels of PUFA and D5D are associated with increased MetS probability and are characteristic of people presenting MetS, especially women. These findings support those observed

  4. Secretion of the Phosphorylated Form of S100A9 from Neutrophils Is Essential for the Proinflammatory Functions of Extracellular S100A8/A9.

    PubMed

    Schenten, Véronique; Plançon, Sébastien; Jung, Nicolas; Hann, Justine; Bueb, Jean-Luc; Bréchard, Sabrina; Tschirhart, Eric J; Tolle, Fabrice

    2018-01-01

    S100A8 and S100A9 are members of the S100 family of cytoplasmic EF-hand Ca 2+ -binding proteins and are abundantly expressed in the cytosol of neutrophils. In addition to their intracellular roles, S100A8/A9 can be secreted in the extracellular environment and are considered as alarmins able to amplify the inflammatory response. The intracellular activity of S100A8/A9 was shown to be regulated by S100A9 phosphorylation, but the importance of this phosphorylation on the extracellular activity of S100A8/A9 has not yet been extensively studied. Our work focuses on the impact of the phosphorylation state of secreted S100A9 on the proinflammatory function of neutrophils. In a first step, we characterized the secretion of S100A8/A9 in different stimulatory conditions and investigated the phosphorylation state of secreted S100A9. Our results on neutrophil-like differentiated HL-60 (dHL-60) cells and purified human neutrophils showed a time-dependent secretion of S100A8/A9 when induced by phorbol 12-myristoyl 13-acetate and this secreted S100A9 was found in a phosphorylated form. Second, we evaluated the impact of this phosphorylation on proinflammatory cytokine expression and secretion in dHL-60 cells. Time course experiments with purified unphosphorylated or phosphorylated S100A8/A9 were performed and the expression and secretion levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor alpha, CCL2, CCL3, CCL4, and CXCL8 were measured by real-time PCR and cytometry bead array, respectively. Our results demonstrate that only the phosphorylated form of the complex induces proinflammatory cytokine expression and secretion. For the first time, we provide evidence that S100A8/PhosphoS100A9 is inducing cytokine secretion through toll-like receptor 4 signaling.

  5. Secretion of the Phosphorylated Form of S100A9 from Neutrophils Is Essential for the Proinflammatory Functions of Extracellular S100A8/A9

    PubMed Central

    Schenten, Véronique; Plançon, Sébastien; Jung, Nicolas; Hann, Justine; Bueb, Jean-Luc; Bréchard, Sabrina; Tschirhart, Eric J.; Tolle, Fabrice

    2018-01-01

    S100A8 and S100A9 are members of the S100 family of cytoplasmic EF-hand Ca2+-binding proteins and are abundantly expressed in the cytosol of neutrophils. In addition to their intracellular roles, S100A8/A9 can be secreted in the extracellular environment and are considered as alarmins able to amplify the inflammatory response. The intracellular activity of S100A8/A9 was shown to be regulated by S100A9 phosphorylation, but the importance of this phosphorylation on the extracellular activity of S100A8/A9 has not yet been extensively studied. Our work focuses on the impact of the phosphorylation state of secreted S100A9 on the proinflammatory function of neutrophils. In a first step, we characterized the secretion of S100A8/A9 in different stimulatory conditions and investigated the phosphorylation state of secreted S100A9. Our results on neutrophil-like differentiated HL-60 (dHL-60) cells and purified human neutrophils showed a time-dependent secretion of S100A8/A9 when induced by phorbol 12-myristoyl 13-acetate and this secreted S100A9 was found in a phosphorylated form. Second, we evaluated the impact of this phosphorylation on proinflammatory cytokine expression and secretion in dHL-60 cells. Time course experiments with purified unphosphorylated or phosphorylated S100A8/A9 were performed and the expression and secretion levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor alpha, CCL2, CCL3, CCL4, and CXCL8 were measured by real-time PCR and cytometry bead array, respectively. Our results demonstrate that only the phosphorylated form of the complex induces proinflammatory cytokine expression and secretion. For the first time, we provide evidence that S100A8/PhosphoS100A9 is inducing cytokine secretion through toll-like receptor 4 signaling. PMID:29593718

  6. Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by operational malaria control activities

    PubMed Central

    Vontas, John; Grigoraki, Linda; Morgan, John; Tsakireli, Dimitra; Fuseini, Godwin; Segura, Luis; Niemczura de Carvalho, Julie; Nguema, Raul; Weetman, David; Slotman, Michel A.; Hemingway, Janet

    2018-01-01

    Since 2004, indoor residual spraying (IRS) and long-lasting insecticide-impregnated bednets (LLINs) have reduced the malaria parasite prevalence in children on Bioko Island, Equatorial Guinea, from 45% to 12%. After target site-based (knockdown resistance; kdr) pyrethroid resistance was detected in 2004 in Anopheles coluzzii (formerly known as the M form of the Anopheles gambiae complex), the carbamate bendiocarb was introduced. Subsequent analysis showed that kdr alone was not operationally significant, so pyrethroid-based IRS was successfully reintroduced in 2012. In 2007 and 2014–2015, mass distribution of new pyrethroid LLINs was undertaken to increase the net coverage levels. The combined selection pressure of IRS and LLINs resulted in an increase in the frequency of pyrethroid resistance in 2015. In addition to a significant increase in kdr frequency, an additional metabolic pyrethroid resistance mechanism had been selected. Increased metabolism of the pyrethroid deltamethrin was linked with up-regulation of the cytochrome P450 CYP9K1. The increase in resistance prompted a reversion to bendiocarb IRS in 2016 to avoid a resurgence of malaria, in line with the national Malaria Control Program plan. PMID:29674455

  7. The relationship between microbial metabolic activity and biocorrosion of carbon steel.

    PubMed

    Dzierzewicz, Z; Cwalina, B; Chodurek, E; Wilczok, T

    1997-12-01

    The effect of metabolic activity (expressed by generation time, rate of H2S production and the activity of hydrogenase and adenosine phosphosulphate (APS)-reductase enzymes) of the 8 wild strains of Desulfovibrio desulfuricans and of their resistance to metal ions (Hg2+, Cu2+, Mn2+, Zn2+, Ni2+, Cr3+) on the rate of corrosion of carbon steel was studied. The medium containing lactate as the carbon source and sulphate as the electron acceptor was used for bacterial metabolic activity examination and in corrosive assays. Bacterial growth inhibition by metal ions was investigated in the sulphate-free medium. The rate of H2S production was approximately directly proportional to the specific activities of the investigated enzymes. These activities were inversely proportional to the generation time. The rate of microbiologically induced corrosion (MIC) of carbon steel was directly proportional to bacterial resistance to metal ions (correlation coefficient r = 0.95). The correlation between the MIC rate and the activity of enzymes tested, although weaker, was also observed (r = 0.41 for APS-reductase; r = 0.69 for hydrogenase; critical value rc = 0.30, p = 0.05, n = 40).

  8. Inhibitory effect of resin composite containing S-PRG filler on Streptococcus mutans glucose metabolism.

    PubMed

    Kitagawa, Haruaki; Miki-Oka, Saeki; Mayanagi, Gen; Abiko, Yuki; Takahashi, Nobuhiro; Imazato, Satoshi

    2018-03-01

    Resin composites containing surface pre-reacted glass-ionomer (S-PRG) fillers have been reported to inhibit Streptococcus mutans growth on their surfaces, and their inhibitory effects were attributed to BO 3 3- and F - ions. The aim of this study was to evaluate S. mutans acid production through glucose metabolism on resin composite containing S-PRG fillers and assess inhibitory effects of BO 3 3- and F - on S. mutans metabolic activities. The pH change through S. mutans acid production on experimental resin composite was periodically measured after the addition of glucose. Inhibitory effects of BO 3 3- or F - solutions on S. mutans metabolism were evaluated by XTT assays and measurement of the acid production rate. The pH of experimental resin containing S-PRG fillers was significantly higher than that of control resin containing silica fillers (p < 0.05). OD 450 values by XTT assays and S. mutans acid production rates significantly decreased in the presence of BO 3 3- and F - compared with the absence of these ions (p < 0.05). pH reduction by S. mutans acid production was inhibited on resin composite containing S-PRG fillers. Moreover, S. mutans glucose metabolism and acid production were inhibited in the presence of low concentrations of BO 3 3- or F - . BO 3 3- or F - released from resin composite containing S-PRG fillers exhibits inhibitory effects on S. mutans metabolism at concentrations lower than those which inhibit bacterial growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Quantitation of enantiomers of r-7,t-8,9,c-10-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]-pyrene in human urine: evidence supporting metabolic activation of benzo[a]pyrene via the bay region diol epoxide.

    PubMed

    Hecht, Stephen S; Hochalter, Jon Bradley

    2014-09-01

    Benzo[a]pyrene (BaP), a potent polycyclic aromatic hydrocarbon carcinogen, is widely distributed in the human environment. All humans are exposed to BaP through the diet and contact with the general environment; cigarette smokers have higher exposure. An important pathway of BaP metabolism proceeds through formation of diol epoxides including the 'bay region diol epoxide' 7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [BaP-(7R,8S)-diol-(9S,10R)-epoxide] and the 'reverse diol epoxide' 9S,10R-dihydroxy-7R,8S-epoxy-7,8,9,10-tetrahydrobenzo [a]pyrene [BaP-(9S,10R)-diol-(7R,8S)-epoxide]. The bay region diol epoxide is considered a major ultimate carcinogen of BaP based on studies in cell culture and laboratory animals, but the available data in humans are less convincing. The bay region diol epoxide and the reverse diol epoxide react with H2O to produce enantiomeric BaP-tetraols that are excreted in the urine. We used chiral stationary-phase high-performance liquid chromatography and gas chromatography-negative ion chemical ionisation-tandem mass spectrometry to quantify these enantiomeric BaP-tetraols in the urine of 25 smokers and 25 non-smokers. The results demonstrated that the BaP-tetraol enantiomer representing the carcinogenic bay region diol epoxide pathway accounted for 68±6% (range 56-81%) of total BaP-tetraol in smokers and 64±6% (range 46-78%) in non-smokers. Levels of the major BaP-tetraol enantiomer decreased by 75% in smokers who quit smoking. These data provide convincing evidence in support of the bay region diol epoxide mechanism of BaP carcinogenesis in humans. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Test for Chemical Induction of Chromosome Aberrations in Cultured Chinese Hamster (CHO) Cells With and Without Metabolic Activation, Test Acticle: Ethylenediamine Dinitrate (EDDN)

    DTIC Science & Technology

    2010-02-25

    The metabolic activation mixture was prepared by SITEK Research Laboratories and it consisted of phenobarbital -S,6-Benzotlavone (phenobarbitaVB...Years I June 19,2011 38.5 mg/mL in 0.15 KCI Inducing agents: Phenobarbital (75 mg/kg body weight); b- naph.lhoflavone (80 mg/kg body weight...intraperitoneal injection once per day from days I to 4 ( phenobarbital ), and from day 3 to day 4 (b- naphthoflavone). Organs harvested for S9 preparation on

  11. Antioxidant, mutagenic and antimutagenic activities of an aqueous extract of Limoniastrum guyonianum gall.

    PubMed

    Krifa, Mounira; Bouhlel, Ines; Skandrani, Ines; Chekir-Ghedira, Leila; Ghedira, Kamel

    2014-01-01

    An aqueous extract of Limoniastrum guyonianum gall (G extract) was tested on Salmonella typhimurium to assess its mutagenic and antimutagenic effects. This extract showed no mutagenicity when tested with S. typhimurium strain TA104 either with or without exogenous metabolic activation mixture (S9), whereas our findings revealed that the aqueous gall extract induced a mutagenic effect in S. typhimurium TA1538 when tested in the presence, as well as in the absence, of S9 activation mixture at the concentration of 500 µg/mL. Thus, the same concentration produced a mutagenic effect, when incubated with S. typhimurium TA100 in the presence of metabolic activation mixture. In contrast, our results showed a weak antimutagenic potential of the same extract against sodium azide in the presence of S. typhimurium TA100 and S. typhimurium TA1538 without metabolic activation (S9), whereas, in the presence of S. typhimurium TA104, we obtained a significant inhibition percentage (76.39%) toward 3.25 µg/plate of methylmethanesulfonate. Antimutagenicity against aflatoxin B1, 4-nitro-o-phenylene-diamine and 2-aminoanthracène was significant, with an inhibition percentage of, respectively, 70.63, 99.3 and 63.37% in the presence of, respectively, S. typhimurium TA100, S. typhimurium TA1538 and S. typhimurium TA104 strains at a concentration of 250 µg/plate after metabolic activation (S9). Antioxidant capacity of the tested extract was evaluated using the enzymatic (xanthine/xanthine oxidase assay) and the nonenzymatic (2,2-diphenyl-1-picrylhydrazyl) system. G extract exhibited high antioxidant activity.

  12. Rates of performance loss and neuromuscular activity in men and women during cycling: evidence for a common metabolic basis of muscle fatigue

    PubMed Central

    Hunter, Sandra K.; Bundle, Matthew W.

    2017-01-01

    The durations that muscular force and power outputs can be sustained until failure fall predictably on an exponential decline between an individual’s 3-s burst maximum to the maximum performance they can sustain aerobically. The exponential time constants describing these rates of performance loss are similar across individuals, suggesting that a common metabolically based mechanism governs muscle fatigue; however, these conclusions come from studies mainly on men. To test whether the same physiological understanding can be applied to women, we compared the performance-duration relationships and neuromuscular activity between seven men [23.3 ± 1.9 (SD) yr] and seven women (21.7 ± 1.8 yr) from multiple exhaustive bouts of cycle ergometry. Each subject performed trials to obtain the peak 3-s power output (Pmax), the mechanical power at the aerobic maximum (Paer), and 11–14 constant-load bouts eliciting failure between 3 and 300 s. Collectively, men and women performed 180 exhaustive bouts spanning an ~6-fold range of power outputs (118–1116 W) and an ~35-fold range of trial durations (8–283 s). Men generated 66% greater Pmax (956 ± 109 W vs. 632 ± 74 W) and 68% greater Paer (310 ± 47 W vs. 212 ± 15 W) than women. However, the metabolically based time constants describing the time course of performance loss were similar between men (0.020 ± 0.003/s) and women (0.021 ± 0.003/s). Additionally, the fatigue-induced increases in neuromuscular activity did not differ between the sexes when compared relative to the pedal forces at Paer. These data suggest that muscle fatigue during short-duration dynamic exercise has a common metabolically based mechanism determined by the extent that ATP is resynthesized by anaerobic metabolism. NEW & NOTEWORTHY Although men and women differed considerably in their absolute cycling performances, there was no sex difference in the metabolically based exponential time constant that described the

  13. Omeprazole preferentially inhibits the metabolism of (+)-(S)-citalopram in healthy volunteers

    PubMed Central

    Rocha, Adriana; Coelho, Eduardo B; Sampaio, Stefânia A; Lanchote, Vera L

    2010-01-01

    AIM The study assessed the influence of omeprazole on the kinetic disposition of the (+)-(S)-citalopram (CITA) and (−)-(R)-CITA enantiomers in healthy volunteers. METHODS In a cross-over study, healthy volunteers (n = 9) phenotyped as extensive metabolizers of CYP2C19 and CYP2D6 and with an oral midazolam clearance ranging from 10.9 to 149.3 ml min−1 kg−1 received a single dose of racemic CITA (20 mg orally) in combination or not with omeprazole (20 mg day−1 for 18 days). Serial blood samples were collected up to 240 h after CITA administration. CITA and demethylcitalopram (DCITA) enantiomers were analyzed by LC-MS/MS using a Chiralcel® OD-R column. RESULTS The kinetic disposition of CITA was enantioselective in the absence of treatment with omeprazole, with the observation of a greater proportion of plasma (−)-(R)-CITA [AUC S : R ratio of 0.53 (95% CI 0.41, 0.66) for CITA and 1.08 (95% CI 0.80, 1.76) for DCITA] than (+)-(S)-CITA. Racemic CITA administration to healthy volunteers in combination with omeprazole showed a loss of enantioselectivity in CITA pharmacokinetics with an increase of approximately 120% in plasma (+)-(S)-CITA concentrations [AUC S : R ratio of 0.95 (95% CI 0.72, 1.10) for CITA and 0.95 (95% CI 0.44, 1.72) for DCITA]. CONCLUSIONS The administration of multiple doses of omeprazole preferentially inhibited (+)-(S)-CITA metabolism in healthy volunteers. Although omeprazole increased plasma concentrations of (+)-(S)-CITA by approximately 120%, it is difficult to evaluate the clinical outcome because the range of plasma CITA concentrations related to maximum efficacy and minimum risk of adverse effects has not been established. PMID:20642546

  14. Coordinate Activation of Redox-Dependent ASK1/TGF-β Signaling by a Multiprotein Complex (MPK38, ASK1, SMADs, ZPR9, and TRX) Improves Glucose and Lipid Metabolism in Mice.

    PubMed

    Seong, Hyun-A; Manoharan, Ravi; Ha, Hyunjung

    2016-03-10

    To explore the molecular connections between redox-dependent apoptosis signal-regulating kinase 1 (ASK1) and transforming growth factor-β (TGF-β) signaling pathways and to examine the physiological processes in which coordinated regulation of these two signaling pathways plays a critical role. We provide evidence that the ASK1 and TGF-β signaling pathways are interconnected by a multiprotein complex harboring murine protein serine-threonine kinase 38 (MPK38), ASK1, Sma- and Mad-related proteins (SMADs), zinc-finger-like protein 9 (ZPR9), and thioredoxin (TRX) and demonstrate that the activation of either ASK1 or TGF-β activity is sufficient to activate both the redox-dependent ASK1 and TGF-β signaling pathways. Physiologically, the restoration of the downregulated activation levels of ASK1 and TGF-β signaling in genetically and diet-induced obese mice by adenoviral delivery of SMAD3 or ZPR9 results in the amelioration of adiposity, hyperglycemia, hyperlipidemia, and impaired ketogenesis. Our data suggest that the multiprotein complex linking ASK1 and TGF-β signaling pathways may be a potential target for redox-mediated metabolic complications.

  15. Inverse association between BMI and prefrontal metabolic activity in healthy adults.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S; Goldstein, Rita Z; Alia-Klein, Nelly; Logan, Jean; Wong, Christopher; Thanos, Panayotis K; Ma, Yemine; Pradhan, Kith

    2009-01-01

    Obesity has been associated with a higher risk for impaired cognitive function, which most likely reflects associated medical complications (i.e., cerebrovascular pathology). However, there is also evidence that in healthy individuals excess weight may adversely affect cognition (executive function, attention, and memory). Here, we measured regional brain glucose metabolism (using positron emission tomography (PET) and 2-deoxy-2[(18)F]fluoro-D-glucose (FDG)) to assess the relationship between BMI and brain metabolism (marker of brain function) in 21 healthy controls (BMI range 19-37 kg/m(2)) studied during baseline (no stimulation) and during cognitive stimulation (numerical calculations). Statistical parametric mapping (SPM) revealed a significant negative correlation between BMI and metabolic activity in prefrontal cortex (Brodmann areas 8, 9, 10, 11, 44) and cingulate gyrus (Brodmann area 32) but not in other regions. Moreover, baseline metabolism in these prefrontal regions was positively associated with performance on tests of memory (California Verbal Learning Test) and executive function (Stroop Interference and Symbol Digit Modality tests). In contrast, the regional brain changes during cognitive stimulation were not associated with BMI nor with neuropsychological performance. The observed association between higher BMI and lower baseline prefrontal metabolism may underlie the impaired performance reported in healthy obese individuals on some cognitive tests of executive function. On the other hand, the lack of an association between BMI and brain metabolic activation during cognitive stimulation indicates that BMI does not influence brain glucose utilization during cognitive performance. These results further highlight the urgency to institute public health interventions to prevent obesity.

  16. S-nitrosoglutathione prevents blood-brain barrier disruption associated with increased matrix metalloproteinase-9 activity in experimental diabetes.

    PubMed

    Aggarwal, Aanchal; Khera, Alka; Singh, Inderjit; Sandhir, Rajat

    2015-03-01

    Hyperglycemia is known to induce microvascular complications, thereby altering blood-brain barrier (BBB) permeability. This study investigated the role of matrix metalloproteinases (MMPs) and their endogenous inhibitors in increased BBB permeability and evaluated the protective effect of S-nitrosoglutathione (GSNO) in diabetes. Diabetes was induced in mice by intraperitoneal injection of streptozotocin (40 mg/kg body weight) for 5 days and GSNO was administered orally (100 μg/kg body weight) daily for 8 weeks after the induction of diabetes. A significant decline in cognitive functions was observed in diabetic mice assessed by Morris water maze test. Increased permeability to different molecular size tracers accompanied by edema and ion imbalance was observed in cortex and hippocampus of diabetic mice. Furthermore, activity of both pro and active MMP-9 was found to be significantly elevated in diabetic animals. Increased in situ gelatinase activity was observed in tissue sections and isolated microvessels from diabetic mice brain. The increase in activity of MMP-9 was attributed to increased mRNA and protein expression in diabetic mice. In addition, a significant decrease in mRNA and protein expression of tissue inhibitor of matrix metalloproteinase-1 was also observed in diabetic animals. However, GSNO supplementation to diabetic animals was able to abridge MMP-9 activation as well as tissue inhibitor of matrix metalloproteinase-1 levels, restoring BBB integrity and also improving learning and memory. Our findings clearly suggest that GSNO could prevent hyperglycemia-induced disruption of BBB by suppressing MMP-9 activity. © 2014 International Society for Neurochemistry.

  17. Physical activity in obesity and metabolic syndrome

    PubMed Central

    Strasser, Barbara

    2013-01-01

    Biological aging is typically associated with a progressive increase in body fat mass and a loss of lean body mass. Owing to the metabolic consequences of reduced muscle mass, it is understood that normal aging and/or decreased physical activity may lead to a higher prevalence of metabolic disorders. Lifestyle modification, specifically changes in diet, physical activity, and exercise, is considered the cornerstone of obesity management. However, for most overweight people it is difficult to lose weight permanently through diet or exercise. Thus, prevention of weight gain is thought to be more effective than weight loss in reducing obesity rates. A key question is whether physical activity can extenuate age-related weight gain and promote metabolic health in adults. Current guidelines suggest that adults should accumulate about 60 minutes of moderate-intensity physical activity daily to prevent unhealthy weight gain. Because evidence suggests that resistance training may promote a negative energy balance and may change body fat distribution, it is possible that an increase in muscle mass after resistance training may be a key mediator leading to better metabolic control. PMID:23167451

  18. CYP2C9 Amino Acid Residues Influencing Phenytoin Turnover and Metabolite Regio- and Stereochemistry

    PubMed Central

    Mosher, Carrie M.; Tai, Guoying; Rettie, Allan E.

    2009-01-01

    Phenytoin has been an effective anticonvulsant agent for over 60 years, although its clinical use is complicated by nonlinear pharmacokinetics, a narrow therapeutic index, and metabolically based drug-drug interactions. Although it is well established that CYP2C9 is the major cytochrome P450 enzyme controlling metabolic elimination of phenytoin through its oxidative conversion to (S)-5-(4-hydroxyphenyl)-5-phenylhydantoin (p-HPPH), nothing is known about the amino acid binding determinants within the CYP2C9 active site that promote metabolism and maintain the tight stereocontrol of hydroxy metabolite formation. This knowledge gap was addressed here through the construction of nine active site mutants at amino acid positions Phe100, Arg108, Phe114, Leu208, and Phe476 and in vitro analysis of the steady-state kinetics and stereochemistry of p-HPPH formation. The F100L and F114W mutants exhibited 4- to 5-fold increases in catalytic efficiency, whereas the F100W, F114L, F476L, and F476W mutants lost >90% of their phenytoin hydroxylation capacity. This pattern of effects differs substantially from that found previously for (S)-warfarin and (S)-flurbiprofen metabolism, suggesting that these three ligands bind within discrete locations in the CYP2C9 active site. Only the F114L, F476L, and L208V mutants altered phenytoin's orientation during catalytic turnover. The L208V mutant also uniquely demonstrated enhanced 6-hydroxylation of (S)-warfarin. These latter data provide the first experimental evidence for a role of the F-G loop region in dictating the catalytic orientation of substrates within the CYP2C9 active site. PMID:19258521

  19. Physical activity as a metabolic stressor.

    PubMed

    Coyle, E F

    2000-08-01

    Both physical activity and diet stimulate processes that, over time, alter the morphologic composition and biochemical function of the body. Physical activity provides stimuli that promote very specific and varied adaptations according to the type, intensity, and duration of exercise performed. There is further interest in the extent to which diet or supplementation can enhance the positive stimuli. Prolonged walking at low intensity presents little metabolic, hormonal, or cardiovascular stress, and the greatest perturbation from rest appears to be from increased fat oxidation and plasma free fatty acid mobilization resulting from a combination of increased lipolysis and decreased reesterification. More intense jogging or running largely stimulates increased oxidation of glycogen and triacylglycerol, both of which are stored directly within the muscle fibers. Furthermore, these intramuscular stores of carbohydrate and fat appear to be the primary substrates for the enhanced oxidative and performance ability derived from endurance training-induced increases in muscle mitochondrial density. Weightlifting that produces fatigue in brief periods (ie, in 15-90 s and after 15 repetitive contractions) elicits a high degree of motor unit recruitment and muscle fiber stimulation. This is a remarkably potent stimulus for altering protein synthesis in muscle and increasing neuromuscular function. The metabolic stress of physical activity can be measured by substrate turnover and depletion, cardiovascular response, hormonal perturbation, accumulation of metabolites, or even the extent to which the synthesis and degradation of specific proteins are altered, either acutely or by chronic exercise training.

  20. Motility, ATP levels and metabolic enzyme activity of sperm from bluegill (Lepomis macrochirus).

    PubMed

    Burness, Gary; Moyes, Christopher D; Montgomerie, Robert

    2005-01-01

    Male bluegill displays one of two life history tactics. Some males (termed "parentals") delay reproduction until ca. 7 years of age, at which time they build nests and actively courts females. Others mature precociously (sneakers) and obtain fertilizations by cuckolding parental males. In the current study, we studied the relations among sperm motility, ATP levels, and metabolic enzyme activity in parental and sneaker bluegill. In both reproductive tactics, sperm swimming speed and ATP levels declined in parallel over the first 60 s of motility. Although sneaker sperm initially had higher ATP levels than parental sperm, by approximately 30 s postactivation, no differences existed between tactics. No differences were noted between tactics in swimming speed, percent motility, or the activities of key metabolic enzymes, although sperm from parentals had a higher ratio of creatine phosphokinase (CPK) to citrate synthase (CS). In both tactics, with increasing CPK and CS activity, sperm ATP levels increased at 20 s postactivation, suggesting that capacities for phosphocreatine hydrolysis and aerobic metabolism may influence interindividual variation in rates of ATP depletion. Nonetheless, there was no relation between sperm ATP levels and either swimming speed or percent of sperm that were motile. This suggests that interindividual variation in ATP levels may not be the primary determinant of variation in sperm swimming performance in bluegill.

  1. Apollo experience report: Assessment of metabolic expenditures. [extravehicular activity

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Hawkins, W. R.; Humbert, G. F.; Nelson, L. J.; Vogel, S. J.; Kuznetz, L. H.

    1975-01-01

    A significant effort was made to assess the metabolic expenditure for extravehicular activity on the lunar surface. After evaluation of the real-time data available to the flight controller during extravehicular activity, three independent methods of metabolic assessment were chosen based on the relationship between heart rate and metabolic production, between oxygen consumption and metabolic production, and between the thermodynamics of the liquid-cooled garment and metabolic production. The metabolic assessment procedure is analyzed and discussed. Real-time use of this information by the Apollo flight surgeon is discussed. Results and analyses of the Apollo missions and comments concerning future applications are included.

  2. Linking neuronal brain activity to the glucose metabolism.

    PubMed

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-08-29

    Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported.

  3. Linking neuronal brain activity to the glucose metabolism

    PubMed Central

    2013-01-01

    Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. Methods First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Results Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. Conclusions The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported. PMID:23988084

  4. Relationship between physical activity, physical fitness and multiple metabolic risk in youths from Muzambinho's study.

    PubMed

    Barbosa, João Paulo Dos Anjos Souza; Basso, Luciano; Seabra, André; Prista, Antonio; Tani, Go; Maia, José António Ribeiro; Forjaz, Cláudia Lúcia De Moraes

    2016-08-01

    Negative associations between physical activity (PA), physical fitness and multiple metabolic risk factors (MMRF) in youths from populations with low PA are reported. The persistence of this association in moderately-to highly active populations is not, however, well established. The aim of the present study was to investigate this association in a Brazilian city with high frequency of active youths. We assessed 122 subjects (9.9 ± 1.3 years) from Muzambinho city. Body mass index, waist circumference, glycaemia, cholesterolaemia, systolic and diastolic blood pressures were measured. Maximal handgrip strength and one-mile walk/run test were used. Leisure time PA was assessed by interview. Poisson regression was used in the analysis. The model explained 11% of the total variance. Only relative muscular strength and one-mile walk/run were statistically significant (p < .05). Those who needed more time to cover the one-mile walk/run test had an increased in metabolic risk of 11%, and those with greater strength reduced the risk by about 82%. In conclusion, children and youths from an active population who need less time to cover the one-mile walk/run test or who had greater muscular strength showed a reduced metabolic risk. These results suggest that even in children and youths with high leisure time PA, a greater aerobic fitness and strength might help to further reduce their MMRF.

  5. The Stress-Metabolic Syndrome Relationship in Adolescents: An Examination of the Moderating Potential of Physical Activity.

    PubMed

    Holmes, Megan E; Pivarnik, Jim; Pfeiffer, Karin; Maier, Kimberly S; Eisenmann, Joey C; Ewing, Martha

    2016-10-01

    The role of psychosocial stress in the development of obesity and metabolic syndrome is receiving increased attention and has led to examination of whether physical activity may moderate the stress-metabolic syndrome relationship. The current study examined relationships among physical activity, stress, and metabolic syndrome in adolescents. Participants (N = 126; 57 girls, 69 boys) were assessed for anthropometry, psychosocial stress, physical activity, and metabolic syndrome variables; t tests were used to examine sex differences, and regression analysis was used to assess relationships among variables controlling for sex and maturity status. Mean body mass index approached the 75th percentile for both sexes. Typical sex differences were observed for systolic blood pressure, time spent in moderate and vigorous physical activity, and perceived stress. Although stress was not associated with MetS (β = -.001, P = .82), a modest, positive relationship was observed with BMI (β = .20, P = .04). Strong relationships between physical activity and stress with MetS or BMI were not found in this sample. Results may be partially explained by overall good physical health status of the participants. Additional research in groups exhibiting varying degrees of health is needed.

  6. Relationship between metabolic syndrome and moderate-to-vigorous physical activity in youth.

    PubMed

    Machado-Rodrigues, Aristides M; Leite, Neiva; Coelho e Silva, Manuel J; Valente-dos-Santos, João; Martins, Raul A; Mascarenhas, Luis P G; Boguszewski, Margaret C S; Padez, Cristina; Malina, Robert M

    2015-01-01

    Associations of metabolic syndrome (MetS) with lifestyle behaviors in youth is potentially important for identifying subgroups at risk and encourage interventions. This study evaluates the associations among the clustering of metabolic risk factors and moderate-to-vigorous physical activity (MVPA) in youth. The sample comprised 522 girls and 402 boys (N = 924) aged 11 to 17 years. Height, weight, waist circumference (WC), fasting glucose, high-density lipoprotein cholesterol, triglycerides, and blood pressures were measured. Cardiorespiratory fitness (CRF) was assessed using the 20-m shuttle run test. MVPA was estimated with a 3-day diary. Outcome variables were statistically normalized and expressed as z scores. A clustered metabolic risk score was computed as the mean of z scores. Multiple linear regression was used to test associations between metabolic risk and MVPA by sex, adjusted for age, WC, and CRF. After adjustment for potential confounders, MVPA was inversely associated with the clustering of metabolic risk factors in girls, but not in boys; in addition, after adjusting for WC, the statistical model of that relationship was substantially improved in girls. MVPA was independently associated with increased risk of MetS in girls. Additional efforts are needed to encourage research with different analytical approach and standardization of criteria for MetS in youth.

  7. Metabolic pathways in T cell activation and lineage differentiation.

    PubMed

    Almeida, Luís; Lochner, Matthias; Berod, Luciana; Sparwasser, Tim

    2016-10-01

    Recent advances in the field of immunometabolism support the concept that fundamental processes in T cell biology, such as TCR-mediated activation and T helper lineage differentiation, are closely linked to changes in the cellular metabolic programs. Although the major task of the intermediate metabolism is to provide the cell with a constant supply of energy and molecular precursors for the production of biomolecules, the dynamic regulation of metabolic pathways also plays an active role in shaping T cell responses. Key metabolic processes such as glycolysis, fatty acid and mitochondrial metabolism are now recognized as crucial players in T cell activation and differentiation, and their modulation can differentially affect the development of T helper cell lineages. In this review, we describe the diverse metabolic processes that T cells engage during their life cycle from naïve towards effector and memory T cells. We consider in particular how the cellular metabolism may actively support the function of T cells in their different states. Moreover, we discuss how molecular regulators such as mTOR or AMPK link environmental changes to adaptations in the cellular metabolism and elucidate the consequences on T cell differentiation and function. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B sub 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoyama, Toshifumi; Yamano, Shigeru; Gelboin, H.V.

    Twelve forms of human hepatic cytochrome P450 were expressed in hepatoma cells by means of recombinant vaccinia viruses. The expressed P450s were analyzed for their abilities to activate the potent hepatocarcinogen aflatoxin B{sub 1} to metabolites having mutagenic or DNA-binding properties. Five forms, P450s IA2, IIA3, IIB7, IIIA3, and IIIA4, activated aflatoxin B{sub 1} to mutagenic metabolites as assessed by the production of His revertants of Salmonella typhimurium in the Ames test. The same P450s catalyzed conversion of aflatoxin B{sub 1} to DNA-bound derivatives as judged by an in situ assay in which the radiolabeled carcinogen was incubated with cellsmore » expressing the individual P450 forms. Seven other human P450s, IIC8, IIC9, IID6, IIE1, IIF1, and IIIA5, and IVB1, did not significantly activate aflatoxin B{sub 1} as measured by both the Ames test and the DNA-binding assay. Moreover, polyclonal anti-rat liver P450 antibodies that crossreact with individual human P450s IA2, IIA3, IIIA3, and IIIA4 each inhibited aflatoxin B{sub 1} activation catalyzed by human liver S-9 extracts. Inhibition ranged from as low as 10% with antibody against IIA3 to as high as 65% with antibody against IIIA3 and IIIA4. These results establish that metabolic activation of aflatoxin B{sub 1} in human liver involves the contribution of multiple forms of P450.« less

  9. A hepatic amino acid/mTOR/S6K-dependent signalling pathway modulates systemic lipid metabolism via neuronal signals.

    PubMed

    Uno, Kenji; Yamada, Tetsuya; Ishigaki, Yasushi; Imai, Junta; Hasegawa, Yutaka; Sawada, Shojiro; Kaneko, Keizo; Ono, Hiraku; Asano, Tomoichiro; Oka, Yoshitomo; Katagiri, Hideki

    2015-08-13

    Metabolism is coordinated among tissues and organs via neuronal signals. Levels of circulating amino acids (AAs), which are elevated in obesity, activate the intracellular target of rapamycin complex-1 (mTORC1)/S6kinase (S6K) pathway in the liver. Here we demonstrate that hepatic AA/mTORC1/S6K signalling modulates systemic lipid metabolism via a mechanism involving neuronal inter-tissue communication. Hepatic expression of an AA transporter, SNAT2, activates the mTORC1/S6K pathway, and markedly elevates serum triglycerides (TGs), while downregulating adipose lipoprotein lipase (LPL). Hepatic Rheb or active-S6K expression have similar metabolic effects, whereas hepatic expression of dominant-negative-S6K inhibits TG elevation in SNAT2 mice. Denervation, pharmacological deafferentation and β-blocker administration suppress obesity-related hypertriglyceridemia with adipose LPL upregulation, suggesting that signals are transduced between liver and adipose tissue via a neuronal pathway consisting of afferent vagal and efferent sympathetic nerves. Thus, the neuronal mechanism uncovered here serves to coordinate amino acid and lipid levels and contributes to the development of obesity-related hypertriglyceridemia.

  10. Body mass index, metabolic factors, and striatal activation during stressful and neutral-relaxing states: an FMRI study.

    PubMed

    Jastreboff, Ania M; Potenza, Marc N; Lacadie, Cheryl; Hong, Kwangik A; Sherwin, Robert S; Sinha, Rajita

    2011-02-01

    Stress is associated with alterations in neural motivational-reward pathways in the ventral striatum (VS), hormonal/metabolic changes, and weight increases. The relationship between these different factors is not well understood. We hypothesized that body mass index (BMI) status and hormonal/metabolic factors would be associated with VS activation. We used functional magnetic resonance imaging (fMRI) to compare brain responses of overweight and obese (OW/OB: BMI ≥ 25 kg/m(2): N=27) individuals with normal weight (NW: BMI<18.5-24.9 kg/m(2): N=21) individuals during exposure to personalized stress, alcohol cue, and neutral-relaxing situations using a validated, autobiographical, script-driven, guided-imagery paradigm. Metabolic factors, including fasting plasma glucose (FPG), insulin, and leptin, were examined for their association with VS activation. Consistent with previous studies, stress and alcohol cue exposure each increased activity in cortico-limbic regions. Compared with NW individuals, OW/OB individuals showed greater VS activation in the neutral-relaxing and stress conditions. FPG was correlated with VS activation. Significant associations between VS activation and metabolic factors during stress and relaxation suggest the involvement of metabolic factors in striatal dysfunction in OW/OB individuals. This relationship may contribute to non-homeostatic feeding in obesity.

  11. Variation in energy expenditure among black-legged kittiwakes: Effects of activity-specific metabolic rates and activity budgets

    USGS Publications Warehouse

    Jodice, P.G.R.; Roby, D.D.; Suryan, R.M.; Irons, D.B.; Kaufman, A.M.; Turco, K.R.; Visser, G. Henk

    2003-01-01

    We sought to determine the effect of variation in time-activity budgets (TABs) and foraging behavior on energy expenditure rates of parent black-legged kittiwakes (Rissa tridactyla). We quantified TABs using direct observations of radio-tagged adults and simultaneously measured field metabolic rates (FMR) of these same individuals (n = 20) using the doubly labeled water technique. Estimated metabolic rates of kittiwakes attending their brood at the nest or loafing near the colony were similar (ca. 1.3 x basal metabolic rate [BMR]), although loafing during foraging trips was more costly (2.9 x BMR). Metabolic rates during commuting flight (7.3 x BMR) and prey-searching flight (6.2 x BMR) were similar, while metabolic rates during plunge diving were much higher (ca. 47 x BMR). The proportion of the measurement interval spent foraging had a positive effect on FMR (R2 = 0.68), while the combined proportion of time engaged in nest attendance and loafing near the colony had a negative effect on FMR (R2 = 0.72). Thus, more than two-thirds of the variation in kittiwake FMR could be explained by the allocation of time among various activities. The high energetic cost of plunge diving relative to straight flight and searching flight suggests that kittiwakes can optimize their foraging strategy under conditions of low food availability by commuting long distances to feed in areas where gross foraging efficiency is high.

  12. Fatty Acid Metabolism is Associated With Disease Severity After H7N9 Infection.

    PubMed

    Sun, Xin; Song, Lijia; Feng, Shuang; Li, Li; Yu, Hongzhi; Wang, Qiaoxing; Wang, Xing; Hou, Zhili; Li, Xue; Li, Yu; Zhang, Qiuyang; Li, Kuan; Cui, Chao; Wu, Junping; Qin, Zhonghua; Wu, Qi; Chen, Huaiyong

    2018-06-22

    Human infections with the H7N9 virus could lead to lung damage and even multiple organ failure, which is closely associated with a high mortality rate. However, the metabolic basis of such systemic alterations remains unknown. This study included hospitalized patients (n = 4) with laboratory-confirmed H7N9 infection, healthy controls (n = 9), and two disease control groups comprising patients with pneumonia (n = 9) and patients with pneumonia who received steroid treatment (n = 10). One H7N9-infected patient underwent lung biopsy for histopathological analysis and expression analysis of genes associated with lung homeostasis. H7N9-induced systemic alterations were investigated using metabolomic analysis of sera collected from the four patients by using ultra-performance liquid chromatography-mass spectrometry. Chest digital radiography and laboratory tests were also conducted. Two of the four patients did not survive the clinical treatments with antiviral medication, steroids, and oxygen therapy. Biopsy revealed disrupted expression of genes associated with lung epithelial integrity. Histopathological analysis demonstrated severe lung inflammation after H7N9 infection. Metabolomic analysis indicated that fatty acid metabolism may be inhibited during H7N9 infection. Serum levels of palmitic acid, erucic acid, and phytal may negatively correlate with the extent of lung inflammation after H7N9 infection. The changes in fatty acid levels may not be due to steroid treatment or pneumonia. Altered structural and secretory properties of the lung epithelium may be associated with the severity of H7N9-infection-induced lung disease. Moreover, fatty acid metabolism level may predict a fatal outcome after H7N9 virus infection. Copyright © 2018. Published by Elsevier B.V.

  13. A Youth Compendium of Physical Activities: Activity Codes and Metabolic Intensities

    PubMed Central

    BUTTE, NANCY F.; WATSON, KATHLEEN B.; RIDLEY, KATE; ZAKERI, ISSA F.; MCMURRAY, ROBERT G.; PFEIFFER, KARIN A.; CROUTER, SCOTT E.; HERRMANN, STEPHEN D.; BASSETT, DAVID R.; LONG, ALEXANDER; BERHANE, ZEKARIAS; TROST, STEWART G.; AINSWORTH, BARBARA E.; BERRIGAN, DAVID; FULTON, JANET E.

    2018-01-01

    ABSTRACT Purpose A Youth Compendium of Physical Activities (Youth Compendium) was developed to estimate the energy costs of physical activities using data on youth only. Methods On the basis of a literature search and pooled data of energy expenditure measurements in youth, the energy costs of 196 activities were compiled in 16 activity categories to form a Youth Compendium of Physical Activities. To estimate the intensity of each activity, measured oxygen consumption (V˙O2) was divided by basal metabolic rate (Schofield age-, sex-, and mass-specific equations) to produce a youth MET (METy). A mixed linear model was developed for each activity category to impute missing values for age ranges with no observations for a specific activity. Results This Youth Compendium consists of METy values for 196 specific activities classified into 16 major categories for four age-groups, 6–9, 10–12, 13–15, and 16–18 yr. METy values in this Youth Compendium were measured (51%) or imputed (49%) from youth data. Conclusion This Youth Compendium of Physical Activities uses pediatric data exclusively, addresses the age dependency of METy, and imputes missing METy values and thus represents advancement in physical activity research and practice. This Youth Compendium will be a valuable resource for stakeholders interested in evaluating interventions, programs, and policies designed to assess and encourage physical activity in youth. PMID:28938248

  14. Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos)

    PubMed

    Swanson

    1998-12-01

    The euryhaline milkfish (Chanos chanos) is an excellent subject for studies of the physiological and behavioral processes involved in salinity adaptation. In this study, energy partitioning for metabolism, activity and growth, maximal activity performance and blood osmotic concentrations were assessed at two activity levels in juvenile milkfish fed equal rations and maintained at a relatively constant temperature (262 C) and at salinities (15, 35 and 55 ?) that represented a wide range of osmoregulatory challenges. Changes in the measured parameters were not consistently related to the magnitude of the trans-integumentary osmotic gradients. Routine oxygen consumption rates were high in 35 ? salinity (mean 1 s.e.m. 1678 mg O2 kg-1 h-1) and comparably low in 15 and 55 ? salinity (1336 and 1273 mg O2 kg-1 h-1, respectively). Routine activity levels (relative swimming velocity) were highest in 35 ? salinity (0. 960.04 L s-1), where L is standard length, intermediate in 15 ? salinity (0.770.03 L s-1) and lowest in 55 ? salinity (0.670.03 L s-1). Growth was significantly higher in 55 ? salinity (3.40.2 % increase in wet body mass per day) than in 35 ? salinity (2.40.2 % increase per day) and intermediate in 15 ? salinity (2.90.5 % increase per day). Maximum swimming velocities decreased with increases in salinity, from 9.90.7 L s-1 in 15 ? salinity to 6.60. 5 L s-1 in 55 ? salinity. Sustained swimming activity above routine levels for 2 h resulted in an increase in blood osmotic concentrations in milkfish in 55 ? salinity, but osmoregulation was re-established during the second 2 h of activity. Thus, patterns of variation in metabolic rate and growth were largely parallel to variations in routine activity although, comparing 15 and 55 ? salinity, elevated maintenance costs for osmoregulation at the high salinity were detectable. Reduced osmoregulatory abilities and reductions in maximal swimming performance suggest that high salinity may constrain activity. The results

  15. Correlations between the enantio- and regio-selective metabolisms of warfarin.

    PubMed

    Takahashi, Harumi; Ohara, Minami; Shibata, Soichi; Lee, Ming Ta Michael; Cavallari, Larisa H; Nutescu, Edith A; Scordo, Maria G; Pengo, Vittorio; Padrini, Roberto; Atsuda, Koichiro; Matsubara, Hajime; Chen, Yuan Tsong; Echizen, Hirotoshi

    2017-01-01

    To clarify whether the activities of multiple CYPs associated with warfarin metabolism would be correlated with each other. Oral clearances (CLpo) of warfarin enantiomers were estimated in 378 Chinese, Caucasians and African-Americans. The partial metabolic clearances (CLm) for 7-hydroxywarfarin enantiomers were also measured. In addition, CLpo and CLm were determined in a patient on warfarin and rifampicin. Correlations between CLpo for warfarin enantiomers existed across the three populations. In addition, there was a significant correlation between the CLm for 7-hydroxylation of warfarin enantiomers. Under induced conditions by rifampicin, there were significant correlations between the enantio- and regio-selective metabolisms of warfarin. Metabolic activities of CYP2C9, CYP1A2 and CYP3A4 may be regulated by common transcriptional mechanism(s).

  16. Interindividual Variability in Metabolism of [6]-Shogaol by Gut Microbiota.

    PubMed

    Wang, Pei; Wang, Ronghui; Zhu, Yingdong; Sang, Shengmin

    2017-11-08

    [6]-Shogaol (6S), one of the major bioactive components in dry ginger, is attracting considerable attention because of its wide spectrum of biological activities, but its metabolic fate is still not fully understood. In the present study, the microbial metabolism of 6S was examined for the first time in in vitro batch fecal fermentation system and in mice. Two major microbial metabolites were detected and identified as 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9) and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11). Our results indicated that reductions of the double bond and the ketone group are the major metabolic pathways of 6S by the human gut microbiota. We also observed the interindividual variability in the metabolism of M11 to M9 by human gut microbiota. In addition, we demonstrated that the glucuronidated form of 6S and its metabolites could be rapidly deconjugated by human gut microbiota and in mice, which can be regarded as a reactive process taking place in the intestinal tract. To our knowledge, this is the first report involving the identification of the microbial metabolites of 6S in an in vitro fermentation system, and the first demonstration of the critical role of gut microbiota in producing the bioactive free form of 6S and its metabolites in the intestinal tract in mice.

  17. Eicosanoids in Metabolic Syndrome

    PubMed Central

    Hardwick, James P.; Eckman, Katie; Lee, Yoon Kwang; Abdelmegeed, Mohamed A.; Esterle, Andrew; Chilian, William M.; Chiang, John Y.; Song, Byoung-Joon

    2013-01-01

    Chronic persistent inflammation plays a significant role in disease pathology of cancer, cardiovascular disease, and metabolic syndrome (MetS). MetS is a constellation of diseases that include obesity, diabetes, hypertension, dyslipidemia, hypertriglyceridemia, and hypercholesterolemia. Nonalcoholic fatty liver disease (NAFLD) is associated with many of the MetS diseases. These metabolic derangements trigger a persistent inflammatory cascade, which includes production of lipid autacoids (eicosanoids) that recruit immune cells to the site of injury and subsequent expression of cytokines and chemokines that amplify the inflammatory response. In acute inflammation, the transcellular synthesis of antiinflammatory eicosanoids resolve inflammation, while persistent activation of the autacoid-cytokine-chemokine cascade in metabolic disease leads to chronic inflammation and accompanying tissue pathology. Many drugs targeting the eicosanoid pathways have been shown to be effective in the treatment of MetS, suggesting a common linkage between inflammation, MetS and drug metabolism.The cross-talk between inflammation and MetS seems apparent because of the growing evidence linking immune cell activation and metabolic disorders such as insulin resistance, dyslipidemia, and hypertriglyceridemia. Thus modulation of lipid metabolism through either dietary adjustment or selective drugs may become a new paradigm in the treatment of metabolic disorders. This review focuses on the mechanisms linking eicosanoid metabolism to persistent inflammation and altered lipid and carbohydrate metabolism in MetS. PMID:23433458

  18. Excretion, metabolism, and pharmacokinetics of 1-(8-(2-chlorophenyl)-9-(4-chlorophenyl)-9H-purin-6-yl)-4-(ethylamino)piperidine-4-carboxamide, a selective cannabinoid receptor antagonist, in healthy male volunteers.

    PubMed

    Miao, Zhuang; Sun, Hao; Liras, Jennifer; Prakash, Chandra

    2012-03-01

    The disposition of 1-(8-(2-chlorophenyl)-9-(4-chlorophenyl)-9H- purin-6-yl)-4-(ethylamino)-piperidine-4-carboxamide (CP-945,598), an orally active antagonist of the cannabinoid CB1 receptor, was studied after a single 25-mg oral dose of [(14)C]CP-945,598 to healthy human subjects. Serial blood samples and complete urine and feces were collected up to 672 h after dose. The mean total recovery of radioactivity was 60.1 ± 12.8 from the urine and feces, with the majority of the dose excreted in the feces. The absorption of CP-945,598 in humans was slow with T(max) at 6 h. Less than 2% of the dose was recovered as unchanged drug in the combined excreta, suggesting that CP-945,598 is extensively metabolized. The primary metabolic pathway of CP-945,598 involved N-de-ethylation to form an N-desethyl metabolite (M1), which was then subsequently metabolized by amide hydrolysis (M2), N-hydroxylation (M3), piperidine ring hydroxylation (M6), and ribose conjugation (M9). M3 was further metabolized to oxime (M4) and keto (M5) metabolites. M1, M4, and M5 were the major circulating metabolites, with AUC((0-48)) values 4.7-, 1.5-, and 1.1-fold greater than that of CP-945,598. M1, M2, and M9 accounted for 5.6, 33.6, and 6.30% of the dose, respectively, in excreta. The results from in vitro experiments with recombinant isoforms suggested that the oxidative metabolism of CP-945,598 to M1 is catalyzed primarily by CYP3A4/3A5. The molecular docking study showed that the N-ethyl moiety of CP-945,598 can access to the heme iron-oxo of CYP3A4 in an energetically favored orientation. Together, these data suggest that CP-945,598 is well absorbed and eliminated largely by CYP3A4/3A5-catalyzed metabolism.

  19. [Serum creatine kinase activity in dogs and cats with metabolic diseases].

    PubMed

    Neumann, S

    2005-09-01

    Elevated Creatine kinase-activitiy (CK) indicates disturbances of the muscle cell integrity. In addition to primary muscle disease, like trauma, inflammation or dystrophy, diseases of other organs can lead to secondary muscle involvement, which will be indicated by increased serum activities of the CK. The mechanisms of muscle cell disturbance are still unknown. An elevated protein catabolism in the muscle cell is suspected. In the present study we investigated, if dogs and cats with metabolic diseases have increased CK-activity in the serum. From 34 dogs and cats in a group with different metabolic diseases without metabolic acidosis 19% of the dogs and 50% of the cats had increased CK-activity in the serum. From 33 dogs and cats with different metabolic diseases connected with metabolic acidosis 86% of the dogs and 95% of the cats had simultaneously increased CK-activity in the serum. In comparison to healthy dogs and cats animals with metabolic diseases have significant and in cases of metabolic di-seases with metabolic acidosis cats have high significant elevation (dogs significant) of CK-activity in the serum. There was no significant correlation between the groups of patients. In conclusion we think that our results show that metabolic diseases often induce secondary myopathy, measured by CK-activity in the serum, but metabolic acidosis has no direct influence on elevated CK activity in dogs and cats.

  20. Peroxygenase-Catalyzed Fatty Acid Epoxidation in Cereal Seeds (Sequential Oxidation of Linoleic Acid into 9(S),12(S),13(S)-Trihydroxy-10(E)-Octadecenoic Acid).

    PubMed Central

    Hamberg, M.; Hamberg, G.

    1996-01-01

    Peroxygenase-catalyzed epoxidation of oleic acid in preparations of cereal seeds was investigated. The 105,000g particle fraction of oat (Avena sativa) seed homogenate showed high peroxygenase activity, i.e. 3034 [plus or minus] 288 and 2441 [plus or minus] 168 nmol (10 min)-1 mg-1 protein in two cultivars, whereas the corresponding fraction obtained from barley (Hordeum vulgare and Hordeum distichum), rye (Secale cereale), and wheat (Triticum aestivum) showed only weak activity, i.e. 13 to 138 nmol (10 min)-1 mg-1 protein. In subcellular fractions of oat seed homogenate, peroxygenase specific activity was highest in the 105,000g particle fraction, whereas lipoxygenase activity was more evenly distributed and highest in the 105,000g supernatant fraction. Incubation of [1-14C]linoleic acid with the 105,000g supernatant of oat seed homogenate led to the formation of several metabolites, i.e. in order of decreasing abundance, 9(S)-hydroxy-10(E),12(Z)-octadecadienoic acid, 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, cis-9,10-epoxy-12(Z)-octadecenoic acid [mainly the 9(R),10(S) enantiomer], cis-12,13-epoxy-9(Z)-octadecenoic acid [mainly the 12(R),13(S) enantiomer], threo-12,13-dihydroxy-9(Z)-octadecenoic acid, and 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid. Incubation of linoleic acid with the 105,000g particle fraction gave a similar, but not identical, pattern of metabolites. Conversion of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, a naturally occurring oxylipin with antifungal properties, took place by a pathway involving sequential catalysis by lipoxygenase, peroxygenase, and epoxide hydrolase. PMID:12226220

  1. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum.

    PubMed

    Cho, Jae Sung; Choi, Kyeong Rok; Prabowo, Cindy Pricilia Surya; Shin, Jae Ho; Yang, Dongsoo; Jang, Jaedong; Lee, Sang Yup

    2017-07-01

    Genome engineering of Corynebacterium glutamicum, an important industrial microorganism for amino acids production, currently relies on random mutagenesis and inefficient double crossover events. Here we report a rapid genome engineering strategy to scarlessly knock out one or more genes in C. glutamicum in sequential and iterative manner. Recombinase RecT is used to incorporate synthetic single-stranded oligodeoxyribonucleotides into the genome and CRISPR/Cas9 to counter-select negative mutants. We completed the system by engineering the respective plasmids harboring CRISPR/Cas9 and RecT for efficient curing such that multiple gene targets can be done iteratively and final strains will be free of plasmids. To demonstrate the system, seven different mutants were constructed within two weeks to study the combinatorial deletion effects of three different genes on the production of γ-aminobutyric acid, an industrially relevant chemical of much interest. This genome engineering strategy will expedite metabolic engineering of C. glutamicum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Metabolic activity, experiment M171. [space flight effects on human metabolism

    NASA Technical Reports Server (NTRS)

    Michel, E. L.; Rummel, J. A.

    1973-01-01

    The Skylab metabolic activity experiment determines if man's metabolic effectiveness in doing mechanical work is progressively altered by a simulated Skylab environment, including environmental factors such as slightly increased pCO2. This test identified several hardware/procedural anomalies. The most important of these were: (1) the metabolic analyzer measured carbon dioxide production and expired water too high; (2) the ergometer load module failed under continuous high workload conditions; (3) a higher than desirable number of erroneous blood pressure measurements were recorded; (4) vital capacity measurements were unreliable; and (5) anticipated crew personal exercise needs to be more structured.

  3. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN56 neuronal cells.

    PubMed

    Klimaszewska-Łata, Joanna; Gul-Hinc, Sylwia; Bielarczyk, Hanna; Ronowska, Anna; Zyśk, Marlena; Grużewska, Katarzyna; Pawełczyk, Tadeusz; Szutowicz, Andrzej

    2015-04-01

    There are significant differences between acetyl-CoA and ATP levels, enzymes of acetyl-CoA metabolism, and toll-like receptor 4 contents in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Exposition of N9 cells to lipopolysaccharide caused concentration-dependent several-fold increases of nitrogen oxide synthesis, accompanied by inhibition of pyruvate dehydrogenase complex, aconitase, and α-ketoglutarate dehydrogenase complex activities, and by nearly proportional depletion of acetyl-CoA, but by relatively smaller losses in ATP content and cell viability (about 5%). On the contrary, SN56 cells appeared to be insensitive to direct exposition to high concentration of lipopolysaccharide. However, exogenous nitric oxide resulted in marked inhibition pyruvate dehydrogenase and aconitase activities, depletion of acetyl-CoA, along with respective loss of SN56 cells viability. These data indicate that these two common neurodegenerative signals may differentially affect energy-acetyl-CoA metabolism in microglial and cholinergic neuronal cell compartments in the brain. Moreover, microglial cells appeared to be more resistant than neuronal cells to acetyl-CoA and ATP depletion evoked by these neurodegenerative conditions. Together, these data indicate that differential susceptibility of microglia and cholinergic neuronal cells to neurotoxic signals may result from differences in densities of toll-like receptors and degree of disequilibrium between acetyl-CoA provision in mitochondria and its utilization for energy production and acetylation reactions in each particular group of cells. There are significant differences between acetyl-CoA and ATP levels and enzymes of acetyl-CoA metabolism in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Pathological stimulation of microglial toll-like receptors (TLRs) triggered excessive synthesis of microglia-derived nitric oxide (NO)/NOO radicals that

  4. Metabolic Activity - Skylab Experiment M171

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This chart details Skylab's Metabolic Activity experiment (M171), a medical evaluation facility designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer. The Marshall Space Flight Center had program responsibility for the development of Skylab hardware and experiments.

  5. Physical Activity and Metabolic Syndrome among Ethiopian Adults

    PubMed Central

    2013-01-01

    BACKGROUND The global prevalence of chronic noncommunicable diseases (NCDs) is on the rise, with the majority of the growth occurring among populations in developing countries. Few studies have quantified the health benefits for physical activity among sub-Saharan African adults. We examined associations of physical activity with the prevalence of metabolic syndrome (MetS) and its components in Ethiopian men and women. METHODS This cross-sectional study of 1,843 individuals (1,117 men and 726 women) was conducted among working adults (public schools and bank employees) in Addis Ababa, Ethiopia. The study was conducted in accordance with the STEPwise approach of the World Health Organization. Physical activity was assessed using a previously validated Global Physical Activity Questionnaire. MetS was defined according to the International Diabetes Federation criteria. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CI). RESULTS The odds of MetS was inversely associated with physical activity in men (P trend = 0.02) but not women (P trend = 0.85). Among men, the OR of MetS comparing those with high vs. low levels of physical activity was 0.56 (95% CI = 0.33–0.97). For women, the corresponding OR was 1.07 (95% CI = 0.57–2.01). Physical activity was significantly and inversely associated with high waist circumference and hypertriglyceridemia among men, but no such associations were observed among women. CONCLUSIONS Higher levels of physical activity were inversely associated with MetS and several individual components among men. No similar trends were observed among women in this cohort, in part because of the small sample size. PMID:23422933

  6. Evaluating the impact of type 2 diabetes mellitus on CYP450 metabolic activities: protocol for a case-control pharmacokinetic study.

    PubMed

    Gravel, Sophie; Chiasson, Jean-Louis; Dallaire, Suzanne; Turgeon, Jacques; Michaud, Veronique

    2018-02-08

    Diabetes affects more than 9% of the adult population worldwide. Patients with type 2 diabetes mellitus (T2DM) show variable responses to some drugs which may be due, in part, to variability in the functional activity of drug-metabolising enzymes including cytochromes P450 (CYP450s). CYP450 is a superfamily of enzymes responsible for xenobiotic metabolism. Knowledge must be gained on the impact of T2DM and related inflammatory processes on drug metabolism and its consequences on drug response. The aim of this study is to characterise the activity of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4/5 in T2DM versus non-T2DM subjects following the administration of a cocktail of probe drug substrates. This single-centre clinical study proposes the first detailed characterisation of T2DM impacts on major CYP450 drug-metabolising enzyme activities. We intend to recruit 42 patients with controlled T2DM (A1C≤7%), 42 patients with uncontrolled T2DM (A1C>7%) and 42 non-diabetic control subjects. The primary objective is to determine and compare major CYP450 activities in patients with T2DM versus non-diabetic subjects by dosing in plasma and urine probe drug substrates and metabolites following the oral administration of a drug cocktail: caffeine (CYP1A2), bupropion (CYP2B6), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1) and midazolam (CYP3A4/5). Secondary objectives will evaluate the influence of variables such as glycaemia, insulinaemia, genetic polymorphisms and inflammation. The value of an endogenous biomarker of CYP3A activity is also evaluated. The first patient was recruited in May 2015 and patients will be enrolled up to completion of study groups. Approval was obtained from the ethic review board of the CHUM research centre (Montreal, Canada). NCT02291666. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is

  7. Enantiomeric metabolic interactions and stereoselective human methadone metabolism.

    PubMed

    Totah, Rheem A; Allen, Kyle E; Sheffels, Pamela; Whittington, Dale; Kharasch, Evan D

    2007-04-01

    Methadone is administered as a racemate, although opioid activity resides in the R-enantiomer. Methadone disposition is stereoselective, with considerable unexplained variability in clearance and plasma R/S ratios. N-Demethylation of methadone in vitro is predominantly mediated by cytochrome P450 CYP3A4 and CYP2B6 and somewhat by CYP2C19. This investigation evaluated stereoselectivity, models, and kinetic parameters for methadone N-demethylation by recombinant CYP2B6, CYP3A4, and CYP2C19, and the potential for interactions between enantiomers during racemate metabolism. CYP2B6 metabolism was stereoselective. CYP2C19 was less active, and stereoselectivity was opposite that for CYP2B6. CYP3A4 was not stereoselective. With all three isoforms, enantiomer N-dealkylation rates in the racemate were lower than those of (R)-(6-dimethyamino-4,4-diphenyl-heptan-3-one) hydrochloride (R-methadone) or (S)-(6-dimethyamino-4,4-diphenyl-heptan-3-one) hydrochloride (S-methadone) alone, suggesting an enantiomeric interaction and mutual metabolic inhibition. For CYP2B6, the interaction between enantiomers was stereoselective, with S-methadone as a more potent inhibitor of R-methadone N-demethylation than R-of S-methadone. In contrast, enantiomer interactions were not stereoselective with CYP2C19 or CYP3A4. For all three cytochromes P450, methadone N-demethylation was best described by two-site enzyme models with competitive inhibition. There were minor model differences between cytochromes P450 to account for stereoselectivity of metabolism and enantiomeric interactions. Changes in plasma R/S methadone ratios observed after rifampin or troleandomycin pretreatment in humans in vivo were successfully predicted by CYP2B6- but not CYP3A4-catalyzed methadone N-demethylation. CYP2B6 is a predominant catalyst of stereoselective methadone metabolism in vitro. In vivo, CYP2B6 may be a major determinant of methadone metabolism and disposition, and CYP2B6 activity and stereoselective metabolic

  8. Protein synthesis of the pro-inflammatory S100A8/A9 complex in plasmacytoid dendritic cells and cell surface S100A8/A9 on leukocyte subpopulations in systemic lupus erythematosus

    PubMed Central

    2011-01-01

    Introduction Systemic lupus erythematosus (SLE) is an autoimmune disease with chronic or episodic inflammation in many different organ systems, activation of leukocytes and production of pro-inflammatory cytokines. The heterodimer of the cytosolic calcium-binding proteins S100A8 and S100A9 (S100A8/A9) is secreted by activated polymorphonuclear neutrophils (PMNs) and monocytes and serves as a serum marker for several inflammatory diseases. Furthermore, S100A8 and S100A9 have many pro-inflammatory properties such as binding to Toll-like receptor 4 (TLR4). In this study we investigated if aberrant cell surface S100A8/A9 could be seen in SLE and if plasmacytoid dendritic cells (pDCs) could synthesize S100A8/A9. Methods Flow cytometry, confocal microscopy and real-time PCR of flow cytometry-sorted cells were used to measure cell surface S100A8/A9, intracellular S100A8/A9 and mRNA levels of S100A8 and S100A9, respectively. Results Cell surface S100A8/A9 was detected on all leukocyte subpopulations investigated except for T cells. By confocal microscopy, real-time PCR and stimulation assays, we could demonstrate that pDCs, monocytes and PMNs could synthesize S100A8/A9. Furthermore, pDC cell surface S100A8/A9 was higher in patients with active disease as compared to patients with inactive disease. Upon immune complex stimulation, pDCs up-regulated the cell surface S100A8/A9. SLE patients had also increased serum levels of S100A8/A9. Conclusions Patients with SLE had increased cell surface S100A8/A9, which could be important in amplification and persistence of inflammation. Importantly, pDCs were able to synthesize S100A8/A9 proteins and up-regulate the cell surface expression upon immune complex-stimulation. Thus, S100A8/A9 may be a potent target for treatment of inflammatory diseases such as SLE. PMID:21492422

  9. Association between physical activity and metabolic syndrome: a cross sectional survey in adolescents in Ho Chi Minh City, Vietnam.

    PubMed

    Nguyen, Trang H H D; Tang, Hong K; Kelly, Patrick; van der Ploeg, Hidde P; Dibley, Michael J

    2010-03-17

    The emerging epidemic of overweight/obesity in adolescents in Ho Chi Minh City, Vietnam underlines the importance of studying the metabolic syndrome in Vietnamese adolescents who are becoming progressively more inactive. No study in Vietnam has examined the association of metabolic syndrome with moderate to vigorous physical activity (PA) levels among adolescents. We aimed to examine this association in a sample of urban adolescents from Ho Chi Minh City. A cross-sectional assessment was conducted in 2007 on a representative sample of 693 high-school students from urban districts in Ho Chi Minh City. Metabolic syndrome was defined according to the International Diabetes Federation criteria and physical activity was measured with Actigraph accelerometers. The association between physical activity and metabolic syndrome was assessed by using multiple logistic regression models. Overall 4.6% of the adolescents and 11.8% of the overweight/obese adolescents had metabolic syndrome. Elevated BP was the most common individual component of the metabolic syndrome (21.5%), followed by hypertriglyceridemia (11.1%). After adjusting for other study factors, the odds of metabolic syndrome among youth in the lowest physical activity group (<43 minutes of physical activity/day) were five times higher than those in the highest physical activity group (>103 minutes/day) (AOR = 5.3, 95% CI: 1.5, 19.1). Metabolic syndrome was also positively associated with socioeconomic status (AOR = 9.4, 95% CI: 2.1, 42.4). A more physically active lifestyle appears to be associated with a lower odds of metabolic syndrome in Vietnamese adolescents. Socio-economic status should be taken into account when planning interventions to prevent adolescent metabolic syndrome.

  10. Body Mass Index, Metabolic Factors, and Striatal Activation During Stressful and Neutral-Relaxing States: An fMRI Study

    PubMed Central

    Jastreboff, Ania M; Potenza, Marc N; Lacadie, Cheryl; Hong, Kwangik A; Sherwin, Robert S; Sinha, Rajita

    2011-01-01

    Stress is associated with alterations in neural motivational-reward pathways in the ventral striatum (VS), hormonal/metabolic changes, and weight increases. The relationship between these different factors is not well understood. We hypothesized that body mass index (BMI) status and hormonal/metabolic factors would be associated with VS activation. We used functional magnetic resonance imaging (fMRI) to compare brain responses of overweight and obese (OW/OB: BMI ⩾25 kg/m2: N=27) individuals with normal weight (NW: BMI<18.5–24.9 kg/m2: N=21) individuals during exposure to personalized stress, alcohol cue, and neutral-relaxing situations using a validated, autobiographical, script-driven, guided-imagery paradigm. Metabolic factors, including fasting plasma glucose (FPG), insulin, and leptin, were examined for their association with VS activation. Consistent with previous studies, stress and alcohol cue exposure each increased activity in cortico-limbic regions. Compared with NW individuals, OW/OB individuals showed greater VS activation in the neutral-relaxing and stress conditions. FPG was correlated with VS activation. Significant associations between VS activation and metabolic factors during stress and relaxation suggest the involvement of metabolic factors in striatal dysfunction in OW/OB individuals. This relationship may contribute to non-homeostatic feeding in obesity. PMID:21048702

  11. Cross-sectional surveillance study to phenotype lorry drivers' sedentary behaviours, physical activity and cardio-metabolic health.

    PubMed

    Varela-Mato, Veronica; O'Shea, Orlagh; King, James A; Yates, Thomas; Stensel, David J; Biddle, Stuart Jh; Nimmo, Myra A; Clemes, Stacy A

    2017-06-21

    Elevated risk factors for a number of chronic diseases have been identified in lorry drivers. Unhealthy lifestyle behaviours such as a lack of physical activity (PA) and high levels of sedentary behaviour (sitting) likely contribute to this elevated risk. This study behaviourally phenotyped UK lorry drivers' sedentary and non-sedentary behaviours during workdays and non-workdays and examined markers of drivers cardio-metabolic health. A transport company from the East Midlands, UK. A sample of 159 male heavy goods vehicle drivers (91% white European; (median (range)) age: 50 (24, 67) years) completed the health assessments. 87 (age: 50.0 (25.0, 65.0); body mass index (BMI): 27.7 (19.6, 43.4) kg/m 2 ) provided objective information on sedentary and non-sedentary time. Participants self-reported their sociodemographic information. Primary outcomes: sedentary behaviour and PA, assessed over 7 days using an activPAL3 inclinometer. Cardio-metabolic markers included: blood pressure (BP), heart rate, waist circumference (WC), hip circumference, body composition and fasted capillary blood glucose, triglycerides, high-density lipopreotein cholesterol, low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels. These cardio-metabolic markers were treated as secondary outcomes. Lorry drivers presented an unhealthy cardio-metabolic health profile (median (IQR) systolic BP: 129 (108.5, 164) mm Hg; diastolic BP: 81 (63, 104) mm Hg; BMI: 29 (20, 47) kg/m 2 ; WC: 102 (77.5, 146.5) cm; LDL-C: 3 (1, 6) mmol/L; TC: 4.9 (3, 7.5) mmol/L). 84% were overweight or obese, 43% had type 2 diabetes or prediabetes and 34% had the metabolic syndrome. The subsample of lorry drivers with objective postural data (n=87) accumulated 13 hours/day and 8 hours/day of sedentary behaviour on workdays and non-workdays (p<0.001), respectively. On average, drivers accrued 12 min/day on workdays and 6 min/day on non-workdays of moderate-to-vigorous PA (MVPA). Lorry drivers

  12. Metabolism of oral 9-cis-retinoic acid in the human. Identification of 9-cis-retinoyl-beta-glucuronide and 9-cis-4-oxo-retinoyl-beta-glucuronide as urinary metabolites.

    PubMed

    Sass, J O; Masgrau, E; Saurat, J H; Nau, H

    1995-09-01

    Data from a number of investigators suggest that the 9-cis-isomer of RA1 (9-cis-RA) may be a promising agent in chemoprevention and treatment of certain types of cancer. Therefore, clinical studies on this retinoid have been initiated. However, up to now, no information has been published on the metabolism of 9-cis-RA in the human. Herein, we report the first data on retinoid metabolism after multiple administration of 9-cis-RA (20 mg/day po) to human volunteers. After 2 and 12-13 hr, plasma concentrations of 9-cis-RA and its metabolites 9,13-dicis-RA, 13-cis-RA, and all-trans-RA were low. In contrast, dosing with 13-cis-RA yielded much higher plasma retinoid levels. Effects on plasma retinol concentrations did not become obvious after any drug treatment. Several retinoid metabolites were found in the urine of 9-cis-RA-treated individuals, and 9-cis-RAG, as well as 9-cis-4-oxo-RAG, could be identified. After treatment with 9-cis-RA, high concentrations of the administered drug were found in the feces, along with comparably low concentrations of 13-cis-RA, 9,13-dicis-RA, and all-trans-RA. Our report indicates that 9-cis-RA is either eliminated much more rapidly than 13-cis-RA, or it is poorly absorbed, and presents the characterization of two urinary glucuronides.

  13. Alarmins S100A8/S100A9 aggravate osteophyte formation in experimental osteoarthritis and predict osteophyte progression in early human symptomatic osteoarthritis.

    PubMed

    Schelbergen, R F P; de Munter, W; van den Bosch, M H J; Lafeber, F P J G; Sloetjes, A; Vogl, T; Roth, J; van den Berg, W B; van der Kraan, P M; Blom, A B; van Lent, P L E M

    2016-01-01

    Alarmins S100A8 and S100A9 are major products of activated macrophages regulating cartilage damage and synovial activation during murine and human osteoarthritis (OA). In the current study, we investigated whether S100A8 and S100A9 are involved in osteophyte formation during experimental OA and whether S100A8/A9 predicts osteophyte progression in early human OA. OA was elicited in S100A9-/- mice in two experimental models that differ in degree of synovial activation. Osteophyte size, S100A8, S100A9 and VDIPEN neoepitope was measured histologically. Chondrogenesis was induced in murine mesenchymal stem cells in the presence of S100A8. Levels of S100A8/A9 were determined in plasma of early symptomatic OA participants of the Cohort Hip and Cohort Knee (CHECK) cohort study and osteophytes measured after 2 and 5 years. Osteophyte size was drastically reduced in S100A9-/- mice in ligaments and at medial femur and tibia on days 21 and 42 of collagenase-induced OA, in which synovial activation is high. In contrast, osteophyte size was not reduced in S100A9-/- mice during destabilised medial meniscus OA, in which synovial activation is scant. S100A8 increased expression and activation of matrix metalloproteinases during micromass chondrogenesis, thereby possibly increasing cartilage matrix remodelling allowing for larger osteophytes. Interestingly, early symptomatic OA participants of the CHECK study with osteophyte progression after 2 and 5 years had elevated S100A8/A9 plasma levels at baseline, while C-reactive protein, erythrocyte sedimentation rate and cartilage oligomeric matrix protein were not elevated at baseline. S100A8/A9 aggravate osteophyte formation in experimental OA with high synovial activation and may be used to predict osteophyte progression in early symptomatic human OA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Systemic inflammation as a predictor of brain aging: Contributions of physical activity, metabolic risk, and genetic risk.

    PubMed

    Corlier, Fabian; Hafzalla, George; Faskowitz, Joshua; Kuller, Lewis H; Becker, James T; Lopez, Oscar L; Thompson, Paul M; Braskie, Meredith N

    2018-05-15

    Inflammatory processes may contribute to risk for Alzheimer's disease (AD) and age-related brain degeneration. Metabolic and genetic risk factors, and physical activity may, in turn, influence these inflammatory processes. Some of these risk factors are modifiable, and interact with each other. Understanding how these processes together relate to brain aging will help to inform future interventions to treat or prevent cognitive decline. We used brain magnetic resonance imaging (MRI) to scan 335 older adult humans (mean age 77.3 ± 3.4 years) who remained non-demented for the duration of the 9-year longitudinal study. We used structural equation modeling (SEM) in a subset of 226 adults to evaluate whether measures of baseline peripheral inflammation (serum C-reactive protein levels; CRP), mediated the baseline contributions of genetic and metabolic risk, and physical activity, to regional cortical thickness in AD-relevant brain regions at study year 9. We found that both baseline metabolic risk and AD risk variant apolipoprotein E ε4 (APOE4), modulated baseline serum CRP. Higher baseline CRP levels, in turn, predicted thinner regional cortex at year 9, and mediated an effect between higher metabolic risk and thinner cortex in those regions. A higher polygenic risk score composed of variants in immune-associated AD risk genes (other than APOE) was associated with thinner regional cortex. However, CRP levels did not mediate this effect, suggesting that other mechanisms may be responsible for the elevated AD risk. We found interactions between genetic and environmental factors and structural brain health. Our findings support the role of metabolic risk and peripheral inflammation in age-related brain decline. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Review of S100A9 Biology and its Role in Cancer

    PubMed Central

    Markowitz, Joseph; Carson, William E.

    2013-01-01

    S100A9 is a calcium binding protein with multiple ligands and post-translation modifications that is involved in inflammatory events and the initial development of the cancer cell through to the development of metastatic disease. This review has a threefold purpose: 1) describe S100A9 structural elements important for its biological activity, 2) describe S100A9 biology in the context of the immune system, and 3) illustrate the role of S100A9 in the development of malignancy via interactions with the immune system and other cellular processes. PMID:23123827

  16. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ9-THC: Mechanism underlying greater toxicity?

    PubMed Central

    Fantegrossi, William E.; Moran, Jeffery H.; Radominska-Pandya, Anna; Prather, Paul L.

    2013-01-01

    K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a “safe” and “legal” alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ9-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ9-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ9-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed “advantages” have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances. PMID:24084047

  17. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity?

    PubMed

    Fantegrossi, William E; Moran, Jeffery H; Radominska-Pandya, Anna; Prather, Paul L

    2014-02-27

    K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a "safe" and "legal" alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ∆(9)-tetrahydrocannabinol (Δ(9)-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ(9)-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ(9)-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ(9)-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed "advantages" have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances. © 2013.

  18. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V., E-mail: amit@pandeylab.org

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizesmore » approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.« less

  19. Peroxisome Proliferators-Activated Receptor (PPAR) Modulators and Metabolic Disorders

    PubMed Central

    Cho, Min-Chul; Lee, Kyoung; Paik, Sang-Gi; Yoon, Do-Young

    2008-01-01

    Overweight and obesity lead to an increased risk for metabolic disorders such as impaired glucose regulation/insulin resistance, dyslipidemia, and hypertension. Several molecular drug targets with potential to prevent or treat metabolic disorders have been revealed. Interestingly, the activation of peroxisome proliferator-activated receptor (PPAR), which belongs to the nuclear receptor superfamily, has many beneficial clinical effects. PPAR directly modulates gene expression by binding to a specific ligand. All PPAR subtypes (α, γ, and σ) are involved in glucose metabolism, lipid metabolism, and energy balance. PPAR agonists play an important role in therapeutic aspects of metabolic disorders. However, undesired effects of the existing PPAR agonists have been reported. A great deal of recent research has focused on the discovery of new PPAR modulators with more beneficial effects and more safety without producing undesired side effects. Herein, we briefly review the roles of PPAR in metabolic disorders, the effects of PPAR modulators in metabolic disorders, and the technologies with which to discover new PPAR modulators. PMID:18566691

  20. Energy Metabolism and Inflammation in Brain Aging and Alzheimer’s Disease

    PubMed Central

    Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique

    2016-01-01

    The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer’s disease. As important cellular sources of H2O2, mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer’s disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer’s disease. Interactions of these systems is reviewed based on basic research and clinical studies. PMID:27154981

  1. The Association between Physical Activity and the Metabolic Syndrome among Type 2 Diabetes Patients in Gaza Strip, Palestine.

    PubMed

    El Bilbeisi, Abdel Hamid; Hosseini, Saeed; Djafarian, Kurosh

    2017-05-01

    Metabolic syndrome is a major health problem worldwide. Globally, the World Health Organization identified physical inactivity as the fourth leading risk factor for mortality. This study was conducted to evaluate the association between physical activities and metabolic syndrome and diabetes complications among type 2 diabetes patients in Gaza Strip, Palestine. This cross-sectional study was conducted among 1200 previously diagnosed type 2 diabetes mellitus patients (from both genders, aged 20 to 64 years) receiving care in the primary health care centers. Metabolic syndrome was defined based on the International Diabetes Federation criteria. The International Physical Activity Questionnaire was used to measure physical activity. Statistical analysis was performed using SPSS version 20. A significant inverse association was found between inactive patients and metabolic syndrome. In our study, 93.7% of inactive patients, 66.4% of active patients and 23.5% of very active patients had metabolic syndrome (OR .048 CI 95% (.03-.072)), (OR .787 CI 95% (.59-1.03)) and (OR 15.9 CI 95% (11.8-21.3)) respectively. Our results showed a significant inverse association between physical activity levels and anthropometric measurements in both gender. Moreover, a significant association was found between physical activity levels and triglycerides, HDL-cholesterol and blood pressure in both sexes (P value < 0.05 for all) and diabetes complications (P value < 0.05 for all). We conclude that low levels of physical activity are associated with increased prevalence of metabolic syndrome. Furthermore, inactive patients had a high percentage of diabetes complications among type 2 diabetes patients in Gaza Strip, Palestine.

  2. Discovery of novel S1P2 antagonists. Part 2: Improving the profile of a series of 1,3-bis(aryloxy)benzene derivatives.

    PubMed

    Kusumi, Kensuke; Shinozaki, Koji; Yamaura, Yoshiyuki; Hashimoto, Ai; Kurata, Haruto; Naganawa, Atsushi; Ueda, Hideyuki; Otsuki, Kazuhiro; Matsushita, Takeshi; Sekiguchi, Tetsuya; Kakuuchi, Akito; Seko, Takuya

    2015-10-15

    Our initial lead compound 2 was modified to improve its metabolic stability. The resulting compound 5 showed excellent metabolic stability in rat and human liver microsomes. We subsequently designed and synthesized a hybrid compound of 5 and the 1,3-bis(aryloxy) benzene derivative 1, which was previously reported by our group to be an S1P2 antagonist. This hybridization reaction gave compound 9, which showed improved S1P2 antagonist activity and good metabolic stability. The subsequent introduction of a carboxylic acid moiety into 9 resulted in 14, which showed potent antagonist activity towards S1P2 with a much smaller species difference between human S1P2 and rat S1P2. Compound 14 also showed good metabolic stability and an improved safety profile compared with compound 9. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Comparison of trout hepatocytes and liver S9 fractions as in ...

    EPA Pesticide Factsheets

    Isolated hepatocytes and liver S9 fractions have been used to collect in vitro biotransformation data for fish as a means of improving modeled estimates of chemical bioaccumulation. To date, however, there have been few direct comparisons of these two methods. In the present study, cryopreserved trout hepatocytes were used to measure in vitro intrinsic clearance rates for 6 polycyclic aromatic hydrocarbons (PAHs). These rates were extrapolated to estimates of in vivo intrinsic clearance and used as inputs to a well-stirred liver model to predict hepatic clearance. Predicted rates of hepatic clearance were then evaluated by comparison to measured rates determined previously using isolated perfused livers. Hepatic clearance rates predicted using hepatocytes were in good agreement with measured values (< 2.1 fold difference for 5 of 6 compounds) under two competing binding assumptions. These findings, which may be attributed in part to high rates of PAH metabolism, are similar to those obtained previously using data from liver S9 fractions. For one compound (benzo[a]pyrene), the in vivo intrinsic clearance rate calculated using S9 data was 10-fold higher than that determined using hepatocytes, possibly due to a diffusion limitation on cellular uptake. Generally, however, there was good agreement between calculated in vivo intrinsic clearance rates obtained using either in vitro test system. These results suggest that both systems can be used to improve

  4. An association of health behaviors with depression and metabolic risks: Data from 2007 to 2014 U.S. National Health and Nutrition Examination Survey.

    PubMed

    Liu, Ying; Ozodiegwu, Ifeoma D; Yu, Yang; Hess, Rick; Bie, Ronghai

    2017-08-01

    Both depression and metabolic syndrome (MetS) confer an increased risk of developing type 2 diabetes (T2D) and cardiovascular disease. Accumulating evidence suggests healthy behaviors are crucial to maintain, improve and manage chronical disease and mental health; and unhealthy diet and sedentary behavior were found two major risk factors of MetS. The objective of this study was to investigate whether health behaviors (alcohol consumption, smoking, diet and recreational physical activity) are associated with depression and metabolic syndrome simultaneously. This study included 1300 participants aged 20 years and over who had answered mental health-depression screener questions (PHQ-9) and finished examinations and laboratory tests related to five risk factors of MetS during the U.S. National Health and Nutrition Examination Survey (NHANES) 2007-2014. A set of series of weighted logistic regression models were used to investigate the aforementioned relationship. The prevalence of depression among U.S. adults is 15.08%. The two most often reported depression symptoms were "Trouble sleeping or sleeping too much" and "Feeling tired or having little energy", with rates of14.68% and 13.09%, respectively. Participants who engaged in only light physical activity were more likely to have been identified as experiencing depression and MetS than those who engaged in vigorous physical activity with odd ratios 3.18 (95% CI: 1.59, 6.37) and 3.50 (95%CI: 2.17, 5.63), respectively. Individuals in the study having poor diets were more likely to suffer from depression than those eating good diets (OR=2.17, 95%CI: 1.47, 3.22). Physical activity is strongly and inversely associated with depression and MetS. Diet is significantly associated with depression rather than MetS in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Plateau hypoxia attenuates the metabolic activity of intestinal flora to enhance the bioavailability of nifedipine.

    PubMed

    Zhang, Juanhong; Chen, Yuyan; Sun, Yuemei; Wang, Rong; Zhang, Junmin; Jia, Zhengping

    2018-11-01

    Nifedipine is completely absorbed by the gastrointestinal tract and its pharmacokinetics and metabolism may be influenced by microorganisms. If gut microbes are involved in the metabolism of nifedipine, plateau hypoxia may regulate the bioavailability and the therapeutic effect of nifedipine by altering the metabolic activity of the gut microbiota. We herein demonstrated for the first time that gut flora is involved in the metabolism of nifedipine by in vitro experiments. In addition, based on the results of 16S rRNA analysis of feces in rats after acute plateau, we first confirmed that the plateau environment could cause changes in the number and composition of intestinal microbes. More importantly, these changes in flora could lead to a slower metabolic activity of nifedipine in the body after an acute plateau, resulting in increased bioavailability and therapeutic efficacy of nifedipine. Our research will provide basis and new ideas for changes in the fecal flora of human acutely entering the plateau, and contribute to rational drug use of nifedipine.

  6. Metabolism and Residues of 2,4-Dichlorophenoxyacetic Acid in DAS-40278-9 Maize (Zea mays) Transformed with Aryloxyalkanoate Dioxygenase-1 Gene.

    PubMed

    Zhou, Xiao; Rotondaro, Sandra L; Ma, Mingming; Rosser, Steve W; Olberding, Ed L; Wendelburg, Brian M; Adelfinskaya, Yelena A; Balcer, Jesse L; Blewett, T Craig; Clements, Bruce

    2016-10-12

    DAS-40278-9 maize, which is developed by Dow AgroSciences, has been genetically modified to express the aryloxyalkanoate dioxygenase-1 (AAD-1) protein and is tolerant to phenoxy auxin herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D). To understand the metabolic route and residue distribution of 2,4-D in DAS-40278-9 maize, a metabolism study was conducted with 14 C-radiolabeled 2,4-D applied at the maximum seasonal rate. Plants were grown in boxes outdoors. Forage and mature grain, cobs, and stover were collected for analysis. The metabolism study showed that 2,4-D was metabolized to 2,4-dichlorophenol (2,4-DCP), which was then rapidly conjugated with glucose. Field-scale residue studies with 2,4-D applied at the maximum seasonal rate were conducted at 25 sites in the U.S. and Canada to measure the residues of 2,4-D and free and conjugated 2,4-DCP in mature forage, grain, and stover. Residues of 2,4-D were not detectable in the majority of the grain samples and averaged <1.0 and <1.5 μg/g in forage and stover, respectively. Free plus conjugated 2,4-DCP was not observed in grain and averaged <1.0 μg/g in forage and stover.

  7. Glucose metabolism regulates T cell activation, differentiation, and functions.

    PubMed

    Palmer, Clovis S; Ostrowski, Matias; Balderson, Brad; Christian, Nicole; Crowe, Suzanne M

    2015-01-01

    The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation, and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The "Warburg effect" originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here, we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  8. Cilostazol ameliorates metabolic abnormalities with suppression of proinflammatory markers in a db/db mouse model of type 2 diabetes via activation of peroxisome proliferator-activated receptor gamma transcription.

    PubMed

    Park, So Youn; Shin, Hwa Kyoung; Lee, Jeong Hyun; Kim, Chi Dae; Lee, Won Suk; Rhim, Byung Yong; Hong, Ki Whan

    2009-05-01

    In a previous study, cilostazol promoted differentiation of 3T3-L1 fibroblasts into adipocytes and improved insulin sensitivity by stimulating peroxisome proliferator-activated receptor (PPAR) gamma transcription. This study evaluated the in vivo efficacy of cilostazol to protect a db/db mouse model of type 2 diabetes against altered metabolic abnormalities and proinflammatory markers via activation of PPARgamma transcription. Eight-week-old db/db mice were treated with cilostazol or rosiglitazone for 12 days. Cilostazol significantly decreased plasma glucose and triglyceride levels, as did rosiglitazone, a PPARgamma agonist. Elevated plasma insulin and resistin levels were significantly decreased by cilostazol, and decreased adiponectin mRNA expression was elevated along with increased plasma adiponectin. Cilostazol significantly increased both adipocyte fatty acid binding protein and fatty acid transport protein-1 mRNA expressions with increased glucose transport 4 in the adipose tissue. Cilostazol and rosiglitazone significantly suppressed proinflammatory markers (superoxide, tumor necrosis factor-alpha, and vascular cell adhesion molecule-1) in the carotid artery of db/db mice. In an in vitro study with 3T3-L1 fibroblasts, cilostazol significantly increased PPARgamma transcription activity, as did rosiglitazone. The transcription activity stimulated by cilostazol was attenuated by KT5720 [(9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9, 12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo [3,4-I][1,6]-benzodiazocine-10-carboxylic acid hexyl ester], a cAMP-dependent protein kinase inhibitor, and GW9662 (2-chloro-5-nitrobenzanilide), an antagonist of PPARgamma activity, indicative of implication of the phosphatidylinositol 3-kinase/Akt signal pathway. These results suggest that cilostazol may improve insulin sensitivity along with anti-inflammatory effects in type 2 diabetic patients via activation of both cAMP-dependent protein kinase and

  9. Activation-specific metabolic requirements for NK cell IFN-γ production1

    PubMed Central

    Keppel, Molly P.; Topcagic, Nermina; Mah, Annelise Y.; Vogel, Tiphanie P.; Cooper, Megan A.

    2014-01-01

    There has been increasing recognition of the importance of cellular metabolism and metabolic substrates for the function and differentiation of immune cells. Here, for the first time, we investigate the metabolic requirements for production of IFN-γ by freshly isolated NK cells. Primary murine NK cells mainly utilize mitochondrial oxidative phosphorylation at rest and with short-term activation. Remarkably, we discovered significant differences in the metabolic requirements of murine NK cell IFN-γ production depending upon the activation signal. Stimulation of NK cell IFN-γ production was independent of glycolysis or mitochondrial oxidative phosphorylation when cells were activated with IL-12+IL-18. By contrast, stimulation via activating NK receptors required glucose-driven oxidative phosphorylation. Prolonged treatment with high-dose, but not low dose, IL-15 eliminated the metabolic requirement for receptor stimulation. In summary, this study demonstrates that metabolism provides an essential second signal for induction of IFN-γ production by activating NK cell receptors that can be reversed with prolonged high-dose IL-15 treatment. PMID:25595780

  10. Associations Between Physical Activity and Metabolic Syndrome: Comparison Between Self-Report and Accelerometry.

    PubMed

    Tucker, Jared M; Welk, Gregory J; Beyler, Nicholas K; Kim, Youngwon

    2016-01-01

    To assess the relationship between self-reported and objectively measured physical activity (PA) and metabolic syndrome and its risk factors in U.S. adults. A cross-sectional design was used for this study. The study was set among a nationally representative sample of U.S. adults. Adults, ages 20 years and older, from the National Health and Nutrition Examination Survey (NHANES) 2003-2006 (n = 5580) participated in the study. PA measures included minutes per week of moderate plus vigorous PA estimated by self-report (MVPAsr), total 7-day accelerometry (MVPAa), and accelerometer-based MVPA performed in 10-minute bouts (MVPAb). Risk factors for metabolic syndrome included blood pressure, high-density lipoprotein cholesterol, triglycerides, glucose, and waist circumference. Odds ratios (ORs) for having metabolic syndrome were calculated for men and women who met the Physical Activity Guidelines for Americans compared to those who did not. Women who did not meet the PA guidelines had significantly greater odds of having metabolic syndrome according to MVPAsr (OR = 2.20; 95% confidence interval [CI] = 1.65-2.94), MVPAa (OR = 4.40; 95% CI = 2.65-7.31), and MVPAb (OR = 2.91; 95% CI = 1.42-5.96). Men had significantly higher odds of having metabolic syndrome according to MVPAa (OR = 2.57; 95% CI = 1.91-3.45) and MVPAb (OR = 2.83; 95% CI = 1.55-5.17), but not MVPAsr. These ORs remained significant after adjusting for all potential confounders except body mass index, after which only MVPAsr in women and MVPAb in men remained significant. Individuals who do not meet the PA guidelines exhibited greater odds of having metabolic syndrome. This relationship tended to be stronger for objective PA measures than for self-report.

  11. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    PubMed

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  12. OCIAD1 Controls Electron Transport Chain Complex I Activity to Regulate Energy Metabolism in Human Pluripotent Stem Cells.

    PubMed

    Shetty, Deeti K; Kalamkar, Kaustubh P; Inamdar, Maneesha S

    2018-06-14

    Pluripotent stem cells (PSCs) derive energy predominantly from glycolysis and not the energy-efficient oxidative phosphorylation (OXPHOS). Differentiation is initiated with energy metabolic shift from glycolysis to OXPHOS. We investigated the role of mitochondrial energy metabolism in human PSCs using molecular, biochemical, genetic, and pharmacological approaches. We show that the carcinoma protein OCIAD1 interacts with and regulates mitochondrial complex I activity. Energy metabolic assays on live pluripotent cells showed that OCIAD1-depleted cells have increased OXPHOS and may be poised for differentiation. OCIAD1 maintains human embryonic stem cells, and its depletion by CRISPR/Cas9-mediated knockout leads to rapid and increased differentiation upon induction, whereas OCIAD1 overexpression has the opposite effect. Pharmacological alteration of complex I activity was able to rescue the defects of OCIAD1 modulation. Thus, hPSCs can exist in energy metabolic substates. OCIAD1 provides a target to screen for additional modulators of mitochondrial activity to promote transient multipotent precursor expansion or enhance differentiation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Application of the TGx‐28.65 transcriptomic biomarker to classify genotoxic and non‐genotoxic chemicals in human TK6 cells in the presence of rat liver S9

    PubMed Central

    Buick, Julie K.; Williams, Andrew; Swartz, Carol D.; Recio, Leslie; Li, Heng‐Hong; Fornace, Albert J.; Thomson, Errol M.; Aubrecht, Jiri

    2016-01-01

    In vitro transcriptional signatures that predict toxicities can facilitate chemical screening. We previously developed a transcriptomic biomarker (known as TGx‐28.65) for classifying agents as genotoxic (DNA damaging) and non‐genotoxic in human lymphoblastoid TK6 cells. Because TK6 cells do not express cytochrome P450s, we confirmed accurate classification by the biomarker in cells co‐exposed to 1% 5,6 benzoflavone/phenobarbital‐induced rat liver S9 for metabolic activation. However, chemicals may require different types of S9 for activation. Here we investigated the response of TK6 cells to higher percentages of Aroclor‐, benzoflavone/phenobarbital‐, or ethanol‐induced rat liver S9 to expand TGx‐28.65 biomarker applicability. Transcriptional profiles were derived 3 to 4 hr following a 4 hr co‐exposure of TK6 cells to test chemicals and S9. Preliminary studies established that 10% Aroclor‐ and 5% ethanol‐induced S9 alone did not induce the TGx‐28.65 biomarker genes. Seven genotoxic and two non‐genotoxic chemicals (and concurrent solvent and positive controls) were then tested with one of the S9s (selected based on cell survival and micronucleus induction). Relative survival and micronucleus frequency was assessed by flow cytometry in cells 20 hr post‐exposure. Genotoxic/non‐genotoxic chemicals were accurately classified using the different S9s. One technical replicate of cells co‐treated with dexamethasone and 10% Aroclor‐induced S9 was falsely classified as genotoxic, suggesting caution in using high S9 concentrations. Even low concentrations of genotoxic chemicals (those not causing cytotoxicity) were correctly classified, demonstrating that TGx‐28.65 is a sensitive biomarker of genotoxicity. A meta‐analysis of datasets from 13 chemicals supports that different S9s can be used in TK6 cells, without impairing classification using the TGx‐28.65 biomarker. Environ. Mol. Mutagen. 57:243–260, 2016. © 2016 Her Majesty the

  14. Independent Associations between Sedentary Time, Moderate-To-Vigorous Physical Activity, Cardiorespiratory Fitness and Cardio-Metabolic Health: A Cross-Sectional Study

    PubMed Central

    Lefevre, Johan; Wijtzes, Anne; Charlier, Ruben; Mertens, Evelien; Bourgois, Jan G.

    2016-01-01

    We aimed to study the independent associations of sedentary time (ST), moderate-to-vigorous physical activity (MVPA), and objectively measured cardiorespiratory fitness (CRF) with clustered cardio-metabolic risk and its individual components (waist circumference, fasting glucose, HDL-cholesterol, triglycerides and blood pressure). We also investigated whether any associations between MVPA or ST and clustered cardio-metabolic risk were mediated by CRF. MVPA, ST, CRF and individual cardio-metabolic components were measured in a population-based sample of 341 adults (age 53.8 ± 8.9 years; 61% men) between 2012 and 2014. MVPA and ST were measured with the SenseWear pro 3 Armband and CRF was measured with a maximal exercise test. Multiple linear regression models and the product of coefficients method were used to examine independent associations and mediation effects, respectively. Results showed that low MVPA and low CRF were associated with a higher clustered cardio-metabolic risk (β = -0.26 and β = -0.43, both p<0.001, respectively). CRF explained 73% of the variance in the association between MVPA and clustered cardio-metabolic risk and attenuated this association to non-significance. After mutual adjustment for MVPA and ST, CRF was the most important risk factor for a higher clustered cardio-metabolic risk (β = -0.39, p<0.001). In conclusion, because of the mediating role of CRF, lifestyle-interventions need to be feasible yet challenging enough to lead to increases in CRF to improve someone’s cardio-metabolic health. PMID:27463377

  15. Biotransformation of anthelmintics and the activity of drug-metabolizing enzymes in the tapeworm Moniezia expansa.

    PubMed

    Prchal, Lukáš; Bártíková, Hana; Bečanová, Aneta; Jirásko, Robert; Vokřál, Ivan; Stuchlíková, Lucie; Skálová, Lenka; Kubíček, Vladimír; Lamka, Jiří; Trejtnar, František; Szotáková, Barbora

    2015-04-01

    The sheep tapeworm Moniezia expansa is very common parasite, which affects ruminants such as sheep, goats as well as other species. The benzimidazole anthelmintics albendazole (ABZ), flubendazole (FLU) and mebendazole (MBZ) are often used to treat the infection. The drug-metabolizing enzymes of helminths may alter the potency of anthelmintic treatment. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (ABZ, MBZ and FLU) in M. expansa. Activities of biotransformation enzymes were determined in subcellular fractions. Metabolites of the anthelmintics were detected and identified using high performance liquid chromatography/ultra-violet/VIS/fluorescence or ultra-high performance liquid chromatography/mass spectrometry. Reduction of MBZ, FLU and oxidation of ABZ were proved as well as activities of various metabolizing enzymes. Despite the fact that the conjugation enzymes glutathione S-transferase, UDP-glucuronosyl transferase and UDP-glucosyl transferase were active in vitro, no conjugated metabolites of anthelmintics were identified either ex vivo or in vitro. The obtained results indicate that sheep tapeworm is able to deactivate the administered anthelmintics, and thus protects itself against their action.

  16. Changes in dietary habits, physical activity and status of metabolic syndrome among expatriates in Saudi Arabia.

    PubMed

    Alzeidan, Rasmieh A; Rabiee, Fatemeh; Mandil, Ahmed A; Hersi, Ahmad S; Ullah, Anhar A

    2018-03-05

    The aim of this paper is to assess the impact of living in Saudi Arabia on expatriate employees and their families' behavioural cardiovascular risk factors (BCVRFs), and to examine the association between changes in BCVRFs and metabolic syndrome (MetS). A cross-sectional study was conducted on 1437 individuals, aged ≥ 18 years, from King Saud University in Riyadh, Saudi Arabia. We used the World Health Organization STEPS questionnaire to ask every participant questions about BCVRFs twice: (1) to reflect their period of living in Saudi Arabia and (2) to shed light upon life in their country of origin. Their mean age was 40.9 (11.7) years. The prevalence of BCVRFs was as follows: tobacco use in 156 (11%), physical inactivity in 1049 (73%) low intake of fruit and vegetables in 1264 (88%) and MetS in 378 (26%). Residing in Saudi Arabia had reduced physical activity and intake of fruit and vegetables. There was also a significant increase in the fast food consumption. In conclusion, living in Saudi Arabia had a significant negative effect on BCVRFs. However, there was no statistically significant association between changes in fruit and vegetable intake and physical activity and MetS status, except that intake of fast food was lower among participants with MetS.

  17. AMP-activated protein kinase and metabolic control

    PubMed Central

    Viollet, Benoit; Andreelli, Fabrizio

    2011-01-01

    AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, is a major regulator of cellular and whole-body energy homeostasis that coordinates metabolic pathways in order to balance nutrient supply with energy demand. It is now recognized that pharmacological activation of AMPK improves blood glucose homeostasis, lipid profile and blood pressure in insulin-resistant rodents. Indeed, AMPK activation mimics the beneficial effects of physical activity or those of calorie restriction by acting on multiple cellular targets. In addition it is now demonstrated that AMPK is one of the probable (albeit indirect) targets of major antidiabetic drugs including, the biguanides (metformin) and thiazolidinediones, as well as of insulin sensitizing adipokines (e.g., adiponectin). Taken together, such findings highlight the logic underlying the concept of targeting the AMPK pathway for the treatment of metabolic syndrome and type 2 diabetes. PMID:21484577

  18. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    PubMed Central

    Jolivet, Renaud; Coggan, Jay S.; Allaman, Igor; Magistretti, Pierre J.

    2015-01-01

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging. PMID:25719367

  19. Gonadal hormone modulation of Δ9-tetrahydrocannabinol-induced antinociception and metabolism in female versus male rats

    PubMed Central

    Craft, R.M.; Haas, A.E.; Wiley, J.L.; Yu, Z.; Clowers, B.H.

    2016-01-01

    The gonadal hormones testosterone (T) in adult males and estradiol (E2) in adult females have been reported to modulate behavioral effects of Δ9-tetrahydrocannabinol (THC). This study determined whether activational effects of T and E2 are sex-specific, and whether hormones modulate production of the active metabolite 11-hydroxy-THC (11-OH-THC) and the inactive metabolite 11-nor-9-carboxy-THC (THC-COOH). Adult male and female rats were gonadectomized (GDX) and treated with nothing (0), T (10-mm Silastic capsule/100 g body weight), or E2 (1-mm Silastic capsule/rat). Three weeks later, saline or the cytochrome P450 inhibitor proadifen (25 mg/kg; to block THC metabolism and boost THC's effects) was injected i.p.; one h later, vehicle or THC (3 mg/kg females, 5 mg/kg males) was injected i.p., and rats were tested for antinociceptive and motoric effects 15-240 min post-injection. T did not consistently alter THC-induced antinociception in males, but decreased it in females (tail withdrawal test). Conversely, T decreased THC-induced catalepsy in males, but had no effect in females. E2 did not alter THC-induced antinociception in females, but enhanced it in males. The discrepant effects of T and E2 on males’ and females’ behavioral responses to THC suggests that sexual differentiation of THC sensitivity is not simply due to activational effects of hormones, but also occurs via organizational hormone or sex chromosome effects. Analysis of serum showed that proadifen increased THC levels, E2 increased 11-OH-THC in GDX males, and T decreased 11-OH-THC (and to a lesser extent, THC) in GDX females. Thus, hormone modulation of THC's behavioral effects is caused in part by hormone modulation of THC oxidation to its active metabolite. However, the fact that hormone modulation of metabolism did not alter THC sensitivity similarly on all behavioral measures within each sex suggests that other mechanisms also play a role in gonadal hormone modulation of THC sensitivity in adult

  20. Hepatic IRE1α regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARα axis signalling.

    PubMed

    Shao, Mengle; Shan, Bo; Liu, Yang; Deng, Yiping; Yan, Cheng; Wu, Ying; Mao, Ting; Qiu, Yifu; Zhou, Yubo; Jiang, Shan; Jia, Weiping; Li, Jingya; Li, Jia; Rui, Liangyou; Yang, Liu; Liu, Yong

    2014-03-27

    Although the mammalian IRE1α-XBP1 branch of the cellular unfolded protein response has been implicated in glucose and lipid metabolism, the exact metabolic role of IRE1α signalling in vivo remains poorly understood. Here we show that hepatic IRE1α functions as a nutrient sensor that regulates the metabolic adaptation to fasting. We find that prolonged deprivation of food or consumption of a ketogenic diet activates the IRE1α-XBP1 pathway in mouse livers. Hepatocyte-specific abrogation of Ire1α results in impairment of fatty acid β-oxidation and ketogenesis in the liver under chronic fasting or ketogenic conditions, leading to hepatosteatosis; liver-specific restoration of XBP1s reverses the defects in IRE1α null mice. XBP1s directly binds to and activates the promoter of PPARα, the master regulator of starvation responses. Hence, our results demonstrate that hepatic IRE1α promotes the adaptive shift of fuel utilization during starvation by stimulating mitochondrial β-oxidation and ketogenesis through the XBP1s-PPARα axis.

  1. Correlation of BAT activity with thyroid metabolic activity in patients with fibromyalgia

    NASA Astrophysics Data System (ADS)

    Costa, A. P. C.; Maia, J. M.; Brioschi, M. L.; Machado, J. E. M. M.

    2017-03-01

    The objective of this research is to correlate the brown fat activity (BAT) with the metabolic activity of thyroid in patients with fibromyalgia syndrome (FS). For the development of the research, it was select a database containing 132 patients of a thermography clinic, male and female, with age over 18 years old; where the images selected were anteroposterior orthostasis top and anteroposterior in cervical extension. In the program Flir Report, it was possible to demarcate the region of the left and right interscapular and thyroid of each patient by getting the respective temperatures, in addition to view the hyper-radiation ("signal of mantle") in the interscapular. Temperature was organized in table format, and statistical analysis was performed in the program Microcal Origin 6.0. As conclusion, it was found that the greater the metabolic activity of thyroid in patients with fibromyalgia, the greater will be the metabolic rate of brown fat (BAT).

  2. Metabolic engineering of Schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose.

    PubMed

    Ozaki, Aiko; Konishi, Rie; Otomo, Chisako; Kishida, Mayumi; Takayama, Seiya; Matsumoto, Takuya; Tanaka, Tsutomu; Kondo, Akihiko

    2017-12-01

    Modification of the Schizosaccharomyces pombe genome is often laborious, time consuming due to the lower efficiency of homologous recombination. Here, we constructed metabolically engineered S. pombe strains using a CRISPR-Cas9 system and also demonstrated D-lactic acid (D-LA) production from glucose and cellobiose. Genes encoding two separate pyruvate decarboxylases (PDCs), an L-lactic acid dehydrogenase (L-LDH), and a minor alcohol dehydrogenase (SPBC337.11) were disrupted, thereby attenuating ethanol production. To increase the cellular supply of acetyl-CoA, an important metabolite for growth, we introduced genes encoding bacterial acetylating acetaldehyde dehydrogenase enzymes (Escherichia coli MhpF and EutE). D-LA production by the resulting strain was achieved by expressing a Lactobacillus plantarum gene encoding D-lactate dehydrogenase. The engineered strain efficiently consumed glucose and produced D-LA at 25.2 g/L from 35.5 g/L of consumed glucose with a yield of 0.71 g D-LA / g glucose. We further modified this strain by expressing beta-glucosidase by cell surface display; the resulting strain produced D-LA at 24.4 g/L from 30 g/L of cellobiose in minimal medium, with a yield of 0.68 g D-LA / g glucose. To our knowledge, this study represents the first report of a S. pombe strain that was metabolically engineered using a CRISPR-Cas9 system, and demonstrates the possibility of engineering S. pombe for the production of value-added chemicals.

  3. Metabolism of proposed nerve agent pretreatment, pyridostigmine bromide. Final report, December 1995-December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leo, K.U.

    A reverse phase High Pressure Liquid Chromatography (HPLC) method was developed to separate pyridostigmine bromide from four potential metabolites. Using male and female microsomes from both rat and human, our data suggest that pyridostigmine bromide is not metabolized by the human live microsomes or DNA expressed human CYP-450s via direct observation of no metabolites being formed for incubations up to 90 minutes. Indirect evidence that pyridostigmine metabolism is not via the major human hepatic CYP-450s involved in drug metabolism, 1A2, 2C9, 2E1, 2D6, and 3A4, was observed by failure to inhibit these isozymes while co-incubated with substrates specific for thosemore » isozymes at concentrations of 2-3 times Km. The following CYP-450 substrates were co-incubated with pyridostigmine: phenacetin, tolbutamide, chlorzoxazone, bufuralol, and testosterone. Using unlabelled and 14C-pyridostigmine, metabolite formation was not observed in both male and female rat and human subcellular fractions, specifically cytosol and S9, or under conditions favoring human FMO activity (pH 8.3). These findings indicate the metabolism of pyridostigmine bromide is unlikely to be under any component of sexual dimorphism.« less

  4. Metabolism-Activated Multitargeting (MAMUT): An Innovative Multitargeting Approach to Drug Design and Development.

    PubMed

    Mátyus, Péter; Chai, Christina L L

    2016-06-20

    Multitargeting is a valuable concept in drug design for the development of effective drugs for the treatment of multifactorial diseases. This concept has most frequently been realized by incorporating two or more pharmacophores into a single hybrid molecule. Many such hybrids, due to the increased molecular size, exhibit unfavorable physicochemical properties leading to adverse effects and/or an inappropriate ADME (absorption, distribution, metabolism, and excretion) profile. To avoid this limitation and achieve additional therapeutic benefits, here we describe a novel multitargeting strategy based on the synergistic effects of a parent drug and its active metabolite(s). The concept of metabolism-activated multitargeting (MAMUT) is illustrated using a number of examples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Promiscuous activities of heterologous enzymes lead to unintended metabolic rerouting in Saccharomyces cerevisiae engineered to assimilate various sugars from renewable biomass.

    PubMed

    Yun, Eun Ju; Oh, Eun Joong; Liu, Jing-Jing; Yu, Sora; Kim, Dong Hyun; Kwak, Suryang; Kim, Kyoung Heon; Jin, Yong-Su

    2018-01-01

    Understanding the global metabolic network, significantly perturbed upon promiscuous activities of foreign enzymes and different carbon sources, is crucial for systematic optimization of metabolic engineering of yeast Saccharomyces cerevisiae . Here, we studied the effects of promiscuous activities of overexpressed enzymes encoded by foreign genes on rerouting of metabolic fluxes of an engineered yeast capable of assimilating sugars from renewable biomass by profiling intracellular and extracellular metabolites. Unbiased metabolite profiling of the engineered S. cerevisiae strain EJ4 revealed promiscuous enzymatic activities of xylose reductase and xylitol dehydrogenase on galactose and galactitol, respectively, resulting in accumulation of galactitol and tagatose during galactose fermentation. Moreover, during glucose fermentation, a trisaccharide consisting of glucose accumulated outside of the cells probably owing to the promiscuous and transglycosylation activity of β-glucosidase expressed for hydrolyzing cellobiose. Meanwhile, higher accumulation of fatty acids and secondary metabolites was observed during xylose and cellobiose fermentations, respectively. The heterologous enzymes functionally expressed in S. cerevisiae showed promiscuous activities that led to unintended metabolic rerouting in strain EJ4. Such metabolic rerouting could result in a low yield and productivity of a final product due to the formation of unexpected metabolites. Furthermore, the global metabolic network can be significantly regulated by carbon sources, thus yielding different patterns of metabolite production. This metabolomic study can provide useful information for yeast strain improvement and systematic optimization of yeast metabolism to manufacture bio-based products.

  6. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands.

    PubMed

    Lamas, Bruno; Richard, Mathias L; Leducq, Valentin; Pham, Hang-Phuong; Michel, Marie-Laure; Da Costa, Gregory; Bridonneau, Chantal; Jegou, Sarah; Hoffmann, Thomas W; Natividad, Jane M; Brot, Loic; Taleb, Soraya; Couturier-Maillard, Aurélie; Nion-Larmurier, Isabelle; Merabtene, Fatiha; Seksik, Philippe; Bourrier, Anne; Cosnes, Jacques; Ryffel, Bernhard; Beaugerie, Laurent; Launay, Jean-Marie; Langella, Philippe; Xavier, Ramnik J; Sokol, Harry

    2016-06-01

    Complex interactions between the host and the gut microbiota govern intestinal homeostasis but remain poorly understood. Here we reveal a relationship between gut microbiota and caspase recruitment domain family member 9 (CARD9), a susceptibility gene for inflammatory bowel disease (IBD) that functions in the immune response against microorganisms. CARD9 promotes recovery from colitis by promoting interleukin (IL)-22 production, and Card9(-/-) mice are more susceptible to colitis. The microbiota is altered in Card9(-/-) mice, and transfer of the microbiota from Card9(-/-) to wild-type, germ-free recipients increases their susceptibility to colitis. The microbiota from Card9(-/-) mice fails to metabolize tryptophan into metabolites that act as aryl hydrocarbon receptor (AHR) ligands. Intestinal inflammation is attenuated after inoculation of mice with three Lactobacillus strains capable of metabolizing tryptophan or by treatment with an AHR agonist. Reduced production of AHR ligands is also observed in the microbiota from individuals with IBD, particularly in those with CARD9 risk alleles associated with IBD. Our findings reveal that host genes affect the composition and function of the gut microbiota, altering the production of microbial metabolites and intestinal inflammation.

  7. S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-κB pathways

    PubMed Central

    Kang, Jin Hyun; Hwang, Sae Mi; Chung, Il Yup

    2015-01-01

    Airway mucus hyperproduction is a common feature of chronic airway diseases such as severe asthma, chronic obstructive pulmonary disease and cystic fibrosis, which are closely associated with neutrophilic airway inflammation. S100A8, S100A9 and S100A12 are highly abundant proteins released by neutrophils and have been identified as important biomarkers in many inflammatory diseases. Herein, we report a new role for S100A8, S100A9 and S100A12 for producing MUC5AC, a major mucin protein in the respiratory tract. All three S100 proteins induced MUC5AC mRNA and the protein in normal human bronchial epithelial cells as well as NCI-H292 lung carcinoma cells in a dose-dependent manner. A Toll-like receptor 4 (TLR4) inhibitor almost completely abolished MUC5AC expression by all three S100 proteins, while neutralization of the receptor for advanced glycation end-products (RAGE) inhibited only S100A12-mediated production of MUC5AC. The S100 protein-mediated production of MUC5AC was inhibited by the pharmacological agents that block prominent signalling molecules for MUC5AC expression, such as mitogen-activated protein kinases, nuclear factor-κB (NF-κB) and epidermal growth factor receptor. S100A8, S100A9 and S100A12 equally elicited both phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear translocation of NF-κB/degradation of cytosolic IκB with similar kinetics through TLR4. In contrast, S100A12 preferentially activated the ERK pathway rather than the NF-κB pathway through RAGE. Collectively, these data reveal the capacity of these three S100 proteins to induce MUC5AC production in airway epithelial cells, suggesting that they all serve as key mediators linking neutrophil-dominant airway inflammation to mucin hyperproduction. PMID:24975020

  8. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress.

    PubMed

    Kant, Shashi; Standen, Claire L; Morel, Caroline; Jung, Dae Young; Kim, Jason K; Swat, Wojciech; Flavell, Richard A; Davis, Roger J

    2017-09-19

    Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH 2 -terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. The influence of Dworshak Dam on epilithic community metabolism in the Clearwater River, U.S.A.

    USGS Publications Warehouse

    Munn, M.D.; Brusven, M.A.

    2004-01-01

    Epilithic community metabolism was determined on a seasonal basis over two years in nonregulated and regulated reaches of the Clearwater River in northern Idaho, U.S.A. Metabolism was estimated using three, 12-liter recirculating chambers and the dissolved oxygen method, with parameters expressed as g O2 m−2 d−1. In the nonregulated reach above the reservoir, gross community productivity (GCP) ranged from 0.8 to 3.2, community respiration (CR24) from 0.3 to 1.2, and production/respiration (P/R) ratios from 1.2 to 3.3. Epilithic metabolism in the regulated reach immediately below the dam increased sharply; GCP ranged from 4.2 to 25.5, CR24 from 1.9 to 9.7, and P/R ratios from 1.4 to 5.7. Increased primary production and respiration in the regulated reach was a result of extensive growth of an aquatic moss (Fontanalis neo-mexicanus). The influence of the dam on epilithic community metabolism was mitigated 2.5 km downstream of the dam due to the regulated North Fork of the Clearwater River (NFCR) merging with the larger, nonregulated Clearwater River. While the regulated Clearwater River below the confluence was somewhat affected by the regulated NFCR flows upstream, metabolism was similar to that found above the reservoir (GCP = 1.2 – 2.6, CR24 = 0.6 – 1.3, and P/R = 1.4 – 2.2). This study demonstrates that while Dworshak Dam has altered both primary production and respiration directly below the dam, the placement of the dam only 2.5 km upstream from a nonregulated reach greatly mitigates its effects on stream metabolism downstream.

  10. Facets of Occupational Burnout Among U.S. Air Force Active Duty and National Guard/Reserve MQ-1 Predator and MQ-9 Reaper Operators

    DTIC Science & Technology

    2011-06-01

    Although occupational burnout is not a categorical psychiatric diagnosis , it stands to reason that such a condition leads to performance...AFRL-SA-WP-TR-2011-0003 FACETS OF OCCUPATIONAL BURNOUT AMONG U.S. AIR FORCE ACTIVE DUTY AND NATIONAL GUARD/RESERVE MQ-1 PREDATOR AND...Occupational Burnout Among U.S. Air Force Active Duty and National Guard/Reserve MQ-1 Predator and MQ-9 Reaper Operators 5a. CONTRACT NUMBER 5b

  11. The Calcium-binding Proteins S100A8 and S100A9 Initiate the Early Inflammatory Program in Injured Peripheral Nerves*

    PubMed Central

    Chernov, Andrei V.; Dolkas, Jennifer; Hoang, Khang; Angert, Mila; Srikrishna, Geetha; Vogl, Thomas; Baranovskaya, Svetlana; Strongin, Alex Y.; Shubayev, Veronica I.

    2015-01-01

    To shed light on the early immune response processes in severed peripheral nerves, we performed genome-wide transcriptional profiling and bioinformatics analyses of the proximal (P, regenerating) and distal (D, degenerating) nerve stumps on day 1 in the sciatic nerve axotomy model in rats. Multiple cell death-related pathways were activated in the degenerating D stump, whereas activation of the cytoskeletal motility and gluconeogenesis/glycolysis pathways was most prominent in the P stump of the axotomized nerve. Our bioinformatics analyses also identified the specific immunomodulatory genes of the chemokine, IL, TNF, MHC, immunoglobulin-binding Fc receptor, calcium-binding S100, matrix metalloproteinase, tissue inhibitor of metalloproteinase, and ion channel families affected in both the P and D segments. S100a8 and S100a9 were the top up-regulated genes in both the P and D segments. Stimulation of cultured Schwann cells using the purified S100A8/A9 heterodimer recapitulated activation of the myeloid cell and phagocyte chemotactic genes and pathways, which we initially observed in injured nerves. S100A8/A9 heterodimer injection into the intact nerve stimulated macrophage infiltration. We conclude that, following peripheral nerve injury, an immediate acute immune response occurs both distal and proximal to the lesion site and that the rapid transcriptional activation of the S100a8 and S100a9 genes results in S100A8/A9 hetero- and homodimers, which stimulate the release of chemokines and cytokines by activated Schwann cells and generate the initial chemotactic gradient that guides the transmigration of hematogenous immune cells into the injured nerve. PMID:25792748

  12. Leptin Metabolically Licenses T Cells for Activation to Link Nutrition and Immunity

    PubMed Central

    Saucillo, Donte C.; Gerriets, Valerie A.; Sheng, John; Rathmell, Jeffrey C.; MacIver, Nancie J.

    2013-01-01

    Immune responses are highly energy dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. While it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show here that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell-intrinsic and specific to activated effector T cells, as naïve T cells and Treg did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency. PMID:24273001

  13. S100A8/A9 promotes parenchymal damage and renal fibrosis in obstructive nephropathy.

    PubMed

    Tammaro, Alessandra; Florquin, Sandrine; Brok, Mascha; Claessen, Nike; Butter, Loes M; Teske, Gwendoline J D; de Boer, Onno J; Vogl, Thomas; Leemans, Jaklien C; Dessing, Mark C

    2018-05-10

    Despite advances in our understanding of the mechanisms underlying progression of chronic kidney disease and the development of fibrosis, only limited efficacious therapies exist. The calcium binding protein S100A8/A9, is a damage-associated molecular pattern which can activate TLR4 or RAGE. Activation of these receptors is involved in the progression of renal fibrosis, however the role of S100A8/A9 herein remains unknown. Therefore, we analyzed S100A8/A9 expression in patients and mice with obstructive nephropathy and subjected wild-type and S100A9 KO mice lacking the heterodimer S100A8/A9 to Unilateral Ureteral Obstruction (UUO). We found profound S100A8/A9 expression in granulocytes that infiltrated human and murine kidney, together with enhanced renal expression over time, following UUO. S100A9 KO mice were protected from UUO-induced renal fibrosis, independently of leukocyte infiltration and inflammation. Loss of S100A8/A9 protected tubular epithelial cells from UUO-induced apoptosis and critical epithelial-mesenchymal transition steps. In vitro studies revealed S100A8/A9 as a novel mediator of epithelial cell injury, through loss of cell polarity, cell cycle arrest and subsequent cell death. In conclusion, we demonstrate that S100A8/A9 mediates renal damage and fibrosis presumably through loss of tubular epithelial cell contacts and irreversible damage. Suppression of S100A8/A9 could be a therapeutic strategy to halt renal fibrosis in patients with chronic kidney disease. This article is protected by copyright. All rights reserved. © 2018 British Society for Immunology.

  14. Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder.

    PubMed

    Wu, Ping; Yu, Huan; Peng, Shichun; Dauvilliers, Yves; Wang, Jian; Ge, Jingjie; Zhang, Huiwei; Eidelberg, David; Ma, Yilong; Zuo, Chuantao

    2014-12-01

    Rapid eye movement sleep behaviour disorder has been evaluated using Parkinson's disease-related metabolic network. It is unknown whether this disorder is itself associated with a unique metabolic network. 18F-fluorodeoxyglucose positron emission tomography was performed in 21 patients (age 65.0±5.6 years) with idiopathic rapid eye movement sleep behaviour disorder and 21 age/gender-matched healthy control subjects (age 62.5±7.5 years) to identify a disease-related pattern and examine its evolution in 21 hemi-parkinsonian patients (age 62.6±5.0 years) and 16 moderate parkinsonian patients (age 56.9±12.2 years). We identified a rapid eye movement sleep behaviour disorder-related metabolic network characterized by increased activity in pons, thalamus, medial frontal and sensorimotor areas, hippocampus, supramarginal and inferior temporal gyri, and posterior cerebellum, with decreased activity in occipital and superior temporal regions. Compared to the healthy control subjects, network expressions were elevated (P<0.0001) in the patients with this disorder and in the parkinsonian cohorts but decreased with disease progression. Parkinson's disease-related network activity was also elevated (P<0.0001) in the patients with rapid eye movement sleep behaviour disorder but lower than in the hemi-parkinsonian cohort. Abnormal metabolic networks may provide markers of idiopathic rapid eye movement sleep behaviour disorder to identify those at higher risk to develop neurodegenerative parkinsonism. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity.

    PubMed

    Seamon, Kyle J; Light, Yooli K; Saada, Edwin A; Schoeniger, Joseph S; Harmon, Brooke

    2018-06-05

    The RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate its utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.

  16. Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seamon, Kyle Jeffrey; Light, Yooli Kim; Saada, Edwin A.

    Here, the RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate itsmore » utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.« less

  17. Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity

    DOE PAGES

    Seamon, Kyle Jeffrey; Light, Yooli Kim; Saada, Edwin A.; ...

    2018-05-14

    Here, the RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate itsmore » utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.« less

  18. Extracellular vesicles are independent metabolic units with asparaginase activity

    PubMed Central

    Leonardi, Tommaso; Costa, Ana S. H.; Cossetti, Chiara; Peruzzotti-Jametti, Luca; Bernstock, Joshua D.; Saini, Harpreet K.; Gelati, Maurizio; Vescovi, Angelo Luigi; Bastos, Carlos; Faria, Nuno; Occhipinti, Luigi G.; Enright, Anton J.; Frezza, Christian; Pluchino, Stefano

    2017-01-01

    Extracellular vesicles (EVs) are membrane particles involved in the exchange of a broad range of bioactive molecules between cells and the microenvironment. While it has been shown that cells can traffic metabolic enzymes via EVs much remains to be elucidated with regard to their intrinsic metabolic activity. Accordingly, herein we assessed the ability of neural stem/progenitor cell (NSC)-derived EVs to consume and produce metabolites. Both our metabolomics and functional analyses revealed that EVs harbour L-asparaginase activity catalysed by the enzyme Asparaginase-like protein 1 (Asrgl1). Critically, we show that Asrgl1 activity is selective for asparagine and is devoid of glutaminase activity. We found that mouse and human NSC-derived EVs traffic ASRGL1. Our results demonstrate for the first time that NSC EVs function as independent, extracellular metabolic units able to modify the concentrations of critical nutrients, with the potential to affect the physiology of their microenvironment. PMID:28671681

  19. [Identification of the interacting proteins with S100A8 or S100A9 by affinity purification and mass spectrometry].

    PubMed

    Wang, Jing; Zhang, Xuemei; Li, Zheng; Li, Xiayu; Ma, Jian; Shen, Shourong

    2017-04-28

    To identify the interacting proteins with S100A8 or S100A9 in HEK293 cell line by flag-tag affinity purification and liquid chromatography mass spectrometry/mass spectrometry (LC-MS/MS).
 Methods: The p3×Flag-CMV-S100A8 and p3×Flag-CMV-S100A9 expression vectors were constructed by inserting S100A8 or S100A9 coding sequence. The recombinant plasmids were then transfected into HEK293 cells. Affinity purification and LC-MS/MS were applied to identify the proteins interacting with S100A8 or S100A9. Bioinformatics analysis was used to seek the gene ontology of the interacting proteins. Co-immunoprecipitation (Co-IP) was applied to confirm the proteins interacted with S100A8 or S100A9.
 Results: Fourteen proteins including pyruvate kinase, muscle (PKM), nucleophosmin (NPM1) and eukaryotic translation initiation factor 5A (EIF5A), which potentially interacted with S100A8, were successfully identified by Flag-tag affinity purification followed by LC-MS/MS analysis. Six proteins, such as tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (14-3-3ε) and PKM, which potentially interacted with S100A9, were successfully identified. Gene ontology analysis of the identified proteins suggested that proteins interacted with S100A8 or S100A9 were involved in several biological pathways, including canonical glycolysis, positive regulation of NF-κB transcription factor activity, negative regulation of apoptotic process, cell-cell adhesion, etc. Co-IP experiment confirmed that PKM2 can interact with both S100A8 and S100A9, and 14-3-3ε can interact with S100A8.
 Conclusion: PKM2 is identified to interact with both S100A8 and S100A9, while 14-3-3ε can interact with S100A9. These results may provide a new clue for the role of S100A8 or S100A9 in the progression of colitis-associated colorectal cancer.

  20. Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans.

    PubMed

    Pontzer, Herman; Durazo-Arvizu, Ramon; Dugas, Lara R; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Cooper, Richard S; Schoeller, Dale A; Luke, Amy

    2016-02-08

    Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. GLUTATHIONE S-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE

    EPA Science Inventory

    GLUTATHIONE s-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE. M K Ross1 and R A Pegram2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill; 2Experimental Toxicology Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangl...

  2. [In vitro metabolism of fenbendazole prodrug].

    PubMed

    Wen, Ai-Dan; Duan, Li-Ping; Liu, Cong-Shan; Tao, Yi; Xue, Jian; Wu, Ning-Bo; Jiang, Bin; Zhang, Hao-Bing

    2013-02-01

    Synthesized fenbendazole prodrug N-methoxycarbonyl-N'-(2-nitro-4-phenylthiophenyl) thiourea (MPT) was analyzed in vitro in artificial gastric juice, intestinal juice and mouse liver homogenate model by using HPLC method, and metabolic curve was then generated. MPT was tested against Echinococcus granulosus protoscolices in vitro. The result showed that MPT could be metabolized in the three biological media, and to the active compound fenbendazole in liver homogenate, with a metabolic rate of 7.92%. Besides, the prodrug showed a weak activity against E. granulosus protoscolices with a mortality of 45.9%.

  3. The Individual, Joint, and Additive Interaction Associations of Aerobic-Based Physical Activity and Muscle Strengthening Activities on Metabolic Syndrome.

    PubMed

    Dankel, Scott J; Loenneke, Jeremy P; Loprinzi, Paul D

    2016-12-01

    Previous research has demonstrated that physical activity and muscle strengthening activities are independently and inversely associated with metabolic syndrome. Despite a number of studies examining the individual associations, only a few studies have examined the joint associations, and to our knowledge, no previous studies have examined the potential additive interaction of performing muscle strengthening activities and aerobic-based physical activity and their association with metabolic syndrome. Using data from the 2003 to 2006 National Health and Nutrition Examination Survey (NHANES), we computed three separate multivariable logistic regression models to examine the individual, combined, and additive interaction of meeting guidelines for accelerometer-assessed physical activity and self-reported muscle strengthening activities, and their association with metabolic syndrome. We found that individuals meeting physical activity and muscle strengthening activity guidelines, respectively, were at 61 and 25 % lower odds of having metabolic syndrome. Furthermore, individuals meeting both guidelines had the lowest odds of having metabolic syndrome (70 %), in part due to the additive interaction of performing both modes of exercise. In this national sample, accelerometer-assessed physical activity and muscle strengthening activities were synergistically associated with metabolic syndrome.

  4. Effects of Sublethal Exposure to a Glyphosate-Based Herbicide Formulation on Metabolic Activities of Different Xenobiotic-Metabolizing Enzymes in Rats.

    PubMed

    Larsen, Karen; Najle, Roberto; Lifschitz, Adrián; Maté, María L; Lanusse, Carlos; Virkel, Guillermo L

    2014-07-01

    The activities of different xenobiotic-metabolizing enzymes in liver subcellular fractions from Wistar rats exposed to a glyphosate (GLP)-based herbicide (Roundup full II) were evaluated in this work. Exposure to the herbicide triggered protective mechanisms against oxidative stress (increased glutathione peroxidase activity and total glutathione levels). Liver microsomes from both male and female rats exposed to the herbicide had lower (45%-54%, P < 0.01) hepatic cytochrome P450 (CYP) levels compared to their respective control animals. In female rats, the hepatic 7-ethoxycoumarin O-deethylase (a general CYP-dependent enzyme activity) was 57% higher (P < 0.05) in herbicide-exposed compared to control animals. Conversely, this enzyme activity was 58% lower (P < 0.05) in male rats receiving the herbicide. Lower (P < 0.05) 7-ethoxyresorufin O-deethlyase (EROD, CYP1A1/2 dependent) and oleandomycin triacetate (TAO) N-demethylase (CYP3A dependent) enzyme activities were observed in liver microsomes from exposed male rats. Conversely, in females receiving the herbicide, EROD increased (123%-168%, P < 0.05), whereas TAO N-demethylase did not change. A higher (158%-179%, P < 0.01) benzyloxyresorufin O-debenzylase (a CYP2B-dependent enzyme activity) activity was only observed in herbicide-exposed female rats. In herbicide-exposed rats, the hepatic S-oxidation of methimazole (flavin monooxygenase dependent) was 49% to 62% lower (P < 0.001), whereas the carbonyl reduction of menadione (a cytosolic carbonyl reductase-dependent activity) was higher (P < 0.05). Exposure to the herbicide had no effects on enzymatic activities dependent on carboxylesterases, glutathione transferases, and uridinediphospho-glucuronosyltransferases. This research demonstrated certain biochemical modifications after exposure to a GLP-based herbicide. Such modifications may affect the metabolic fate of different endobiotic and xenobiotic substances. The pharmacotoxicological significance of these

  5. Platelet-Derived S100A8/A9 and Cardiovascular Disease in Systemic Lupus Erythematosus.

    PubMed

    Lood, Christian; Tydén, Helena; Gullstrand, Birgitta; Jönsen, Andreas; Källberg, Eva; Mörgelin, Matthias; Kahn, Robin; Gunnarsson, Iva; Leanderson, Tomas; Ivars, Fredrik; Svenungsson, Elisabet; Bengtsson, Anders A

    2016-08-01

    Levels of S100A8/A9, a proinflammatory and prothrombotic protein complex, are increased in several diseases, and high levels predispose to cardiovascular disease (CVD). Recently, platelet S100A8/A9 synthesis was described in mice and humans in relation to CVD. The aim of this study was to investigate the role of platelet S100A8/A9 in systemic lupus erythematosus (SLE), a disease with markedly increased cardiovascular morbidity, as well as the exact platelet distribution of the S100A8/A9 proteins. The occurrence and distribution of platelet S100A8/A9 protein were detected by enzyme-linked immunosorbent assay, electron microscopy, Western blotting, and flow cytometry in healthy controls (n = 79) and in 2 individual cohorts of SLE patients (n = 148 and n = 318, respectively) and related to cardiovascular morbidity. We observed that human platelets expressed S100A8/A9 proteins, and that these were localized in close proximity to intracellular membranes and granules as well as on the cell surface upon activation with physiologic and pathophysiologic stimuli. Interestingly, S100A8/A9 was enriched at sites of membrane interactions, indicating a role of S100A8/A9 in cell-cell communication. S100A8/A9 levels were highly regulated by interferon-α, both in vivo and in vitro. Patients with SLE had increased platelet S100A8/A9 content compared with healthy individuals. Increased levels of platelet S100A8/A9 were associated with CVD, particularly myocardial infarction (odds ratio 4.8, 95% confidence interval 1.5-14.9, P = 0.032 [adjusted for age, sex, and smoking]). Platelets contain S100A8/A9 in membrane-enclosed vesicles, enabling rapid cell surface deposition upon activation. Furthermore, platelet S100A8/A9 protein levels were increased in SLE patients, particularly in those with CVD, and may be a future therapeutic target. © 2016, American College of Rheumatology.

  6. Phenylthiazoles with tert-Butyl side chain: Metabolically stable with anti-biofilm activity.

    PubMed

    Kotb, Ahmed; Abutaleb, Nader S; Seleem, Mohamed A; Hagras, Mohamed; Mohammad, Haroon; Bayoumi, Ashraf; Ghiaty, Adel; Seleem, Mohamed N; Mayhoub, Abdelrahman S

    2018-05-10

    A new series of phenylthiazoles with t-butyl lipophilic component was synthesized and their antibacterial activity against a panel of multidrug-resistant bacterial pathogens was evaluated. Five compounds demonstrated promising antibacterial activity against methicillin-resistant staphylococcal strains and several vancomycin-resistant staphylococcal and enterococcal species. Additionally, three derivatives 19, 23 and 26 exhibited rapid bactericidal activity, and remarkable ability to disrupt mature biofilm produced by MRSA USA300. More importantly, a resistant mutant to 19 couldn't be isolated after subjecting MRSA to sub-lethal doses for 14 days. Lastly, this new series of phenylthiazoles possesses an advantageous attribute over the first-generation compounds in their stability to hepatic metabolism, with a biological half-life of more than 9 h. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Rpn9 Is Required for Efficient Assembly of the Yeast 26S Proteasome

    PubMed Central

    Takeuchi, Junko; Fujimuro, Masahiro; Yokosawa, Hideyosi; Tanaka, Keiji; Toh-e, Akio

    1999-01-01

    We have isolated the RPN9 gene by two-hybrid screening with, as bait, RPN10 (formerly SUN1), which encodes a multiubiquitin chain receptor residing in the regulatory particle of the 26S proteasome. Rpn9 is a nonessential subunit of the regulatory particle of the 26S proteasome, but the deletion of this gene results in temperature-sensitive growth. At the restrictive temperature, the Δrpn9 strain accumulated multiubiquitinated proteins, indicating that the RPN9 function is needed for the 26S proteasome activity at a higher temperature. We analyzed the proteasome fractions separated by glycerol density gradient centrifugation by native polyacrylamide gel electrophoresis and found that a smaller amount of the 26S proteasome was produced in the Δrpn9 cells and that the 26S proteasome was shifted to lighter fractions than expected. The incomplete proteasome complexes were found to accumulate in the Δrpn9 cells. Furthermore, Rpn10 was not detected in the fractions containing proteasomes of the Δrpn9 cells. These results indicate that Rpn9 is needed for incorporating Rpn10 into the 26S proteasome and that Rpn9 participates in the assembly and/or stability of the 26S proteasome. PMID:10490597

  8. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability.

    PubMed

    Silver, I A; Deas, J; Erecińska, M

    2001-01-01

    In a cell culture model of murine osteoblasts three particulate bioactive glasses were evaluated and compared to glass (either borosilicate or soda-lime-silica) particles with respect to their effect on metabolic activity, cell viability, changes in intracellular ion concentrations, proliferation and differentiation. 45S5 Bioglass caused extra- and intracellular alkalinization, a rise in [Ca2+]i and [K+]i, a small plasma membrane hyperpolarization, and an increase in lactate production. Glycolytic activity was also stimulated when cells were not in direct contact with 45S5 Bioglass particles but communicated with them only through the medium. Similarly, raising the pH of culture medium enhanced lactate synthesis. 45S5 Bioglass had no effect on osteoblast viability and, under most conditions, did not affect either proliferation or differentiation. Bioactive glasses 58S and 77S altered neither the ion levels nor enhanced metabolic activity. It is concluded that: (1) some bioactive glasses exhibit well-defined effects in osteoblasts in culture which are accessible to experimentation; (2) 45S5 Bioglass causes marked external and internal alkalinization which is, most likely, responsible for enhanced glycolysis and, hence, cellular ATP production; (3) changes in [H+] could contribute to alternations in concentrations of other intracellular ions; and (4) the rise in [Ca2+]i may influence activities of a number of intracellular enzymes and pathways. It is postulated that the beneficial effect of 45S5 on in vivo bone growth and repair may be due to some extent to alkalinization, which in turn increases collagen synthesis and crosslinking, and hydroxyapatite formation.

  9. Effect of P450 Oxidoreductase Polymorphisms on the Metabolic Activities of Ten Cytochrome P450s Varied by Polymorphic CYP Genotypes in Human Liver Microsomes.

    PubMed

    Fang, Yan; Gao, Na; Tian, Xin; Zhou, Jun; Zhang, Hai-Feng; Gao, Jie; He, Xiao-Pei; Wen, Qiang; Jia, Lin-Jing; Jin, Han; Qiao, Hai-Ling

    2018-06-27

    Background/ Aims: Little is known about the effect of P450 oxidoreductase (POR) gene polymorphisms on the activities of CYPs with multiple genotypes. We genotyped 102 human livers for 18 known POR single nucleotide polymorphisms (SNPs) with allelic frequencies greater than 1% as well as for 27 known SNPs in 10 CYPs. CYP enzyme activities in microsomes prepared from these livers were determined by measuring probe substrate metabolism by high performance liquid chromatograph. We found that the effects of the 18 POR SNPs on 10 CYP activities were CYP genotype-dependent. The POR mutations were significantly associated with decreased overall Km for CYP2B6 and 2E1, and specific genotypes within CYP1A2, 2A6, 2B6, 2C8, 2D6 and 2E1 were identified as being affected by these POR SNPs. Notably, the effect of a specific POR mutation on the activity of a CYP genotype could not be predicted from other CYP genotypes of even the same CYP. When combining one POR SNP with other POR SNPs, a hitherto unrecognized effect of multiple-site POR gene polymorphisms (MSGP) on CYP activity was uncovered, which was not necessarily consistent with the effect of either single POR SNP. The effects of POR SNPs on CYP activities were not only CYP-dependent, but more importantly, CYP genotype-dependent. Moreover, the effect of a POR SNP alone and in combination with other POR SNPs (MSGP) was not always consistent, nor predictable. Understanding the impact of POR gene polymorphisms on drug metabolism necessitates knowing the complete SNP complement of POR and the genotype of the relevant CYPs. © 2018 The Author(s). Published by S. Karger AG, Basel.

  10. GABAA receptor activity modulating piperine analogs: In vitro metabolic stability, metabolite identification, CYP450 reaction phenotyping, and protein binding.

    PubMed

    Zabela, Volha; Hettich, Timm; Schlotterbeck, Götz; Wimmer, Laurin; Mihovilovic, Marko D; Guillet, Fabrice; Bouaita, Belkacem; Shevchenko, Bénédicte; Hamburger, Matthias; Oufir, Mouhssin

    2018-01-01

    In a screening of natural products for allosteric modulators of GABA A receptors (γ-aminobutyric acid type A receptor), piperine was identified as a compound targeting a benzodiazepine-independent binding site. Given that piperine is also an activator of TRPV1 (transient receptor potential vanilloid type 1) receptors involved in pain signaling and thermoregulation, a series of piperine analogs were prepared in several cycles of structural optimization, with the aim of separating GABA A and TRPV1 activating properties. We here investigated the metabolism of piperine and selected analogs in view of further cycles of lead optimization. Metabolic stability of the compounds was evaluated by incubation with pooled human liver microsomes, and metabolites were analyzed by UHPLC-Q-TOF-MS. CYP450 isoenzymes involved in metabolism of compounds were identified by reaction phenotyping with Silensomes™. Unbound fraction in whole blood was determined by rapid equilibrium dialysis. Piperine was the metabolically most stable compound. Aliphatic hydroxylation, and N- and O-dealkylation were the major routes of oxidative metabolism. Piperine was exclusively metabolized by CYP1A2, whereas CYP2C9 contributed significantly in the oxidative metabolism of all analogs. Extensive binding to blood constituents was observed for all compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Vesicular Location and Transport of S100A8 and S100A9 Proteins in Monocytoid Cells

    PubMed Central

    Chakraborty, Paramita; Bjork, Per; Källberg, Eva; Olsson, Anders; Riva, Matteo; Mörgelin, Matthias; Liberg, David; Ivars, Fredrik; Leanderson, Tomas

    2015-01-01

    We show here, by using surface biotinylation, followed by Western blotting or surface plasmon resonance analysis, that very low levels of S100A8 and/or S100A9 can be detected on the surface of THP-1 cells or freshly isolated human monocytes. This was supported by immune-electron microscopy where we observed membrane-associated expression of the proteins restricted to small patches. By using confocal microscopy we could determine that S100A8 and S100A9 protein in THP-1 cells or freshly isolated human monocytes was mostly present in vesicular structures. This finding was confirmed using immune-electron microscopy. Subcellular fractionation and confocal microscopy showed that these vesicular structures are mainly early endosomes and endolysosomes. Our subsequent studies showed that accumulation of S100A8 and S100A9 in the endolysosomal compartment is associated with induction of their release from the cells. Furthermore, an inhibitor of lysosomal activity could modulate the release of S100A8 and S100A9 in the extracellular milieu. Our current results suggest that the S100A8 and S100A9 proteins are primarily associated with certain kinds of cytosolic vesicles and may be secreted via an endolysosomal pathway. PMID:26661255

  12. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9.

    PubMed

    Demoulin, J B; Uyttenhove, C; Van Roost, E; DeLestré, B; Donckers, D; Van Snick, J; Renauld, J C

    1996-09-01

    Interleukin-9 (IL-9), a T-cell-derived cytokine, interacts with a specific receptor associated with the IL-2 receptor gamma chain. In this report, we analyze the functional domains of the human IL-9 receptor transfected into mouse lymphoid cell lines. Three different functions were examined: growth stimulation in factor-dependent pro-B Ba/F3 cells, protection against dexamethasone-induced apoptosis, and Ly-6A2 induction in BW5147 lymphoma cells. The results indicated that a single tyrosine, at position 116 in the cytoplasmic domain, was required for all three activities. In addition, we observed that human IL-9 reduced the proliferation rate of transfected BW5147 cells, an effect also dependent on the same tyrosine. This amino acid was necessary for IL-9-mediated tyrosine phosphorylation of the receptor and for STAT activation but not for IRS-2/4PS activation or for JAK1 phosphorylation, which depended on a domain closer to the plasma membrane. We also showed that JAK1 was constitutively associated with the IL-9 receptor. Activated STAT complexes induced by IL-9 were found to contain STAT1, STAT3, and STAT5 transcription factors. Moreover, sequence homologies between human IL-9 receptor tyrosine 116 and tyrosines (of other receptors activating STAT3 and STAT5 were observed. Taken together, these data indicate that a single tyrosine of the IL-9 receptor, required for activation of three different STAT proteins, is necessary for distinct activities of this cytokine, including proliferative responses.

  13. Two-Dimensional N,S-Codoped Carbon/Co 9 S 8 Catalysts Derived from Co(OH) 2 Nanosheets for Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua

    Investigation of highly active and cost-efficient electrocatalysts for oxygen reduction reaction is of great importance in a wide range of clean energy devices, including fuel cells and metal-air batteries. Herein, the simultaneous formation of Co9S8 and N,S-codoped carbon was achieved in a dual templates system. First, Co(OH)2 nanosheets and tetraethyl orthosilicate were utilized to direct the formation of two-dimensional carbon precursors, which were then dispersed into thiourea solution. After subsequent pyrolysis and templates removal, N/S-codoped porous carbon sheets confined Co9S8 catalysts (Co9S8/NSC) were obtained. Owing to the morphological and compositional advantages as well as the synergistic effects, the resultant Co9S8/NSCmore » catalysts with modified doping level and pyrolysis degree exhibit superior ORR catalytic activity and long-term stability compared with the state-of-the-art Pt/C catalyst in alkaline media. Remarkably, the as-prepared carbon composites also reveal exceptional tolerance of methanol, indicating their potential applications in fuel cells.« less

  14. Glutathione Metabolism and Parkinson’s Disease

    PubMed Central

    Smeyne, Michelle

    2013-01-01

    It has been established that oxidative stress, defined as the condition when the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson’s disease. Glutathione is a ubiquitous thiol tripeptide that acts alone, or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals and peroxynitrites. In this review, we examine the synthesis, metabolism and functional interactions of glutathione, and discuss how this relates to protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson’s disease. PMID:23665395

  15. Oligo-carrageenan kappa-induced reducing redox status and increase in TRR/TRX activities promote activation and reprogramming of terpenoid metabolism in Eucalyptus trees.

    PubMed

    González, Alberto; Gutiérrez-Cutiño, Marlen; Moenne, Alejandra

    2014-06-05

    In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR)/thioredoxin(TRX) system induced by oligo-carrageenan (OC) kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(P)H, ascorbate (ASC) and (GSH) synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO) and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%), α-pinene (7.4%), aromadendrene (3.6%), silvestrene (2.8%), sabinene (2%) and α-terpineol (0.9%). Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65%) and sabinene (0.8%) and an increase in aromadendrene (5%), silvestrene (7.8%) and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.

  16. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    PubMed Central

    Kim, Minjoo; Kim, Minkyung; Yoo, Hye Jin; Lee, Jong Ho

    2017-01-01

    The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72) or metabolically unhealthy overweight (MUO, n = 45). The immune response was measured by circulating levels of natural killer (NK) cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant) and 41% lower interleukin (IL)-12 levels (significant). The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05) than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities. PMID:29238351

  17. Integrated Social- and Neurocognitive Model of Physical Activity Behavior in Older Adults with Metabolic Disease.

    PubMed

    Olson, Erin A; Mullen, Sean P; Raine, Lauren B; Kramer, Arthur F; Hillman, Charles H; McAuley, Edward

    2017-04-01

    Despite the proven benefits of physical activity to treat and prevent metabolic diseases, such as diabetes (T2D) and metabolic syndrome (MetS), most individuals with metabolic disease do not meet physical activity (PA) recommendations. PA is a complex behavior requiring substantial motivational and cognitive resources. The purpose of this study was to examine social cognitive and neuropsychological determinants of PA behavior in older adults with T2D and MetS. The hypothesized model theorized that baseline self-regulatory strategy use and cognitive function would indirectly influence PA through self-efficacy. Older adults with T2D or MetS (M age  = 61.8 ± 6.4) completed either an 8-week physical activity intervention (n = 58) or an online metabolic health education course (n = 58) and a follow-up at 6 months. Measures included cognitive function, self-efficacy, self-regulatory strategy use, and PA. The data partially supported the hypothesized model (χ 2  = 158.535(131), p > .05, comparative fit index = .96, root mean square error of approximation = .04, standardized root mean square residual = .06) with self-regulatory strategy use directly predicting self-efficacy (β = .33, p < .05), which in turn predicted PA (β = .21, p < .05). Performance on various cognitive function tasks predicted PA directly and indirectly via self-efficacy. Baseline physical activity (β = .62, p < .01) and intervention group assignment via self-efficacy (β = -.20, p < .05) predicted follow-up PA. The model accounted for 54.4 % of the variance in PA at month 6. Findings partially support the hypothesized model and indicate that select cognitive functions (i.e., working memory, inhibition, attention, and task-switching) predicted PA behavior 6 months later. Future research warrants the development of interventions targeting cognitive function, self-regulatory skill development, and self-efficacy enhancement. The trial was registered with the

  18. Probing Metabolic Activity of Deep Subseafloor Life with NanoSIMS

    NASA Astrophysics Data System (ADS)

    Morono, Y.; Terada, T.; Itoh, M.; Inagaki, F.

    2014-12-01

    There are very few natural environments where life is absent in the Earth's surface biosphere. However, uninhabitable region is expected to be exist in the deep subsurface biosphere, of which extent and constraining factor(s) have still remained largly unknown. Scientific ocean drilling have revealed that microbial communities in sediments are generally phylogenetically distinct from known spieces isolated from the Earth's surface biosphere, and hence metabolic functions of the deep subseafloor life remain unknown. In addition, activity of subseafloor microbial cells are thought to be extraordinally slow, as indicated by limited supply of neutrient and energy substrates. To understand the limits of the Earth's subseafloor biosphere and metabolic functions of microbial populations, detection and quantification of the deeply buried microbial cells in geological habitats are fundamentary important. Using newly developed cell separation techniques as well as an discriminative cell detection system, the current quantification limit of sedimentary microbial cells approaches to 102 cells/cm3. These techniques allow not only to assess very small microbial population close to the subsurface biotic fringe, but also to separate and sort the target cells using flow cytometric cell sorter. Once the deep subseafloor microbial cells are detached from mineral grains and sorted, it opens new windows to subsequent molecular ecological and element/isotopic analyses. With a combined use of nano-scale secondary ion masspectrometry (NanoSIMS) and stable isotope-probing techniques, it is possible to detect and measure activity of substrate incorporation into biomass, even for extremely slow metabolic processes such as uncharacteriszed deep subseafloor life. For example, it was evidenced by NanoSIMS that at least over 80% of microbial cells at ~200 meters-deep, 460,000-year-old sedimentary habitat are indeed live, which substrate incooporation was found to be low (10-15 gC/cell/day) even

  19. DAMP molecules S100A9 and S100A8 activated by IL-17A and house-dust mites are increased in atopic dermatitis.

    PubMed

    Jin, Shan; Park, Chang Ook; Shin, Jung U; Noh, Ji Yeon; Lee, Yun Sun; Lee, Na Ra; Kim, Hye Ran; Noh, Seongmin; Lee, Young; Lee, Jeung-Hoon; Lee, Kwang Hoon

    2014-12-01

    S100A9 and S100A8 are called damage-associated molecular pattern (DAMP) molecules because of their pro-inflammatory properties. Few studies have evaluated S100A9 and S100A8 function as DAMP molecules in atopic dermatitis (AD). We investigated how house-dust mites affect S100A9 and S100A8 expression in Th2 cytokine- and Th17 cytokine-treated keratinocytes, and how secretion of these molecules affects keratinocyte-derived cytokines. Finally, we evaluated expression of these DAMP molecules in AD patients. S100A9 expression and S100A8 expression were strongly induced in IL-17A- and Dermatophagoides (D.) farinae-treated keratinocytes, respectively. Furthermore, co-treatment with D. farinae and IL-17A strongly increased expression of S100A9 and S100A8 compared with D. farinae-Th2 cytokine co-treatment. The IL-33 mRNA level increased in a dose-dependent manner in S100A9-treated keratinocytes, but TSLP expression did not change. S100A8/A9 levels were also higher in the lesional skin and serum of AD patients, and correlated with disease severity. Taken together, S100A9 and S100A8 may be involved in inducing DAMP-mediated inflammation in AD triggered by IL-17A and house-dust mites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Chronic liver inflammation and hepatocellular carcinogenesis are independent of S100A9.

    PubMed

    De Ponti, Aurora; Wiechert, Lars; Stojanovic, Ana; Longerich, Thomas; Marhenke, Silke; Hogg, Nancy; Vogel, Arndt; Cerwenka, Adelheid; Schirmacher, Peter; Hess, Jochen; Angel, Peter

    2015-05-15

    The S100A8/A9 heterodimer (calprotectin) acts as a danger signal when secreted into the extracellular space during inflammation and tissue damage. It promotes proinflammatory responses and drives tumor development in different models of inflammation-driven carcinogenesis. S100A8/A9 is strongly expressed in several human tumors, including hepatocellular carcinoma (HCC). Apart from this evidence, the role of calprotectin in hepatocyte transformation and tumor microenvironment is still unknown. The aim of this study was to define the function of S100A8/A9 in inflammation-driven HCC. Mice lacking S100a9 were crossed with the Mdr2(-/-) model, a prototype of inflammation-induced HCC formation. S100a9(-/-) Mdr2(-/-) (dKO) mice displayed no significant differences in tumor incidence or multiplicity compared to Mdr2(-/-) animals. Chronic liver inflammation, fibrosis and oval cell activation were not affected upon S100a9 deletion. Our data demonstrate that, although highly upregulated, calprotectin is dispensable in the onset and development of HCC, and in the maintenance of liver inflammation. © 2014 UICC.

  1. Metatranscriptome Analysis of Aquifer Samples Reveals Unexpected Metabolic Lifestyles Relevant to Active Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Jewell, T. N. M.; Karaoz, U.; Banfield, J. F.; Brodie, E.; Williams, K. H.

    2015-12-01

    Modern molecular ecology techniques are revealing the metabolic potential of uncultivated microorganisms, but there is still much to be learned about the actual biogeochemical roles of microbes that have cultivated relatives. Here, we present metatranscriptomic and metagenomic data from a field study that provides evidence of coupled redox processes that have not been documented in cultivated relatives and, indeed, represent strains with metabolic traits that are novel with respect to closely related isolates. The data come from omics analysis of groundwater samples collected during an experiment in which nitrate (a native electron acceptor) was injected into a perennially suboxic aquifer in Rifle (CO). Transcriptional data indicated that just two groups of chemolithoautotrophic bacteria accounted for a very large portion (~80%) of overall community gene expression: (1) members of the Fe(II)-oxidizing Gallionellaceae family and (2) strains of the S-oxidizing species, Sulfurimonas denitrificans. Metabolic lifestyles for Gallionellaceae strains that were novel compared to cultivated representatives included nitrate-dependent Fe(II) oxidation and S oxidation. Evidence for these metabolisms included highly correlated temporal expression in binned data of nitrate reductase (e.g., narGHI) genes (which have never been reported in Gallionellaceae genomes) and Fe(II) oxidation genes (e.g., mtoA) or S oxidation genes (e.g., dsrE, aprA). Of the two most active strains of S. denitrificans, only one showed strong expression of S oxidation genes, whereas the other was apparently using an unexpected (as-yet unidentified) primary electron donor. Transcriptional data added considerable interpretive value to this study, as (1) metagenomic data would not have highlighted these organisms, which had a disproportionately large role in community metabolism relative to their populations, and (2) co-expression of coupled pathway genes could not be predicted based solely on metagenomic data.

  2. Metabolic costs of daily activity in older adults (Chores XL) study: design and methods.

    PubMed

    Corbett, Duane B; Wanigatunga, Amal A; Valiani, Vincenzo; Handberg, Eileen M; Buford, Thomas W; Brumback, Babette; Casanova, Ramon; Janelle, Christopher M; Manini, Todd M

    2017-06-01

    For over 20 years, normative data has guided the prescription of physical activity. This data has since been applied to research and used to plan interventions. While this data seemingly provides accurate estimates of the metabolic cost of daily activities in young adults, the accuracy of use among older adults is less clear. As such, a thorough evaluation of the metabolic cost of daily activities in community dwelling adults across the lifespan is needed. The Metabolic Costs of Daily Activity in Older Adults Study is a cross-sectional study designed to compare the metabolic cost of daily activities in 250 community dwelling adults across the lifespan. Participants (20+ years) performed 38 common daily activities while expiratory gases were measured using a portable indirect calorimeter (Cosmed K4b2). The metabolic cost was examined as a metabolic equivalent value (O 2 uptake relative to 3.5 milliliter• min-1•kg-1), a function of work rate - metabolic economy, and a relative value of resting and peak oxygen uptake. The primary objective is to determine age-related differences in the metabolic cost of common lifestyle and exercise activities. Secondary objectives include (a) investigating the effect of functional impairment on the metabolic cost of daily activities, (b) evaluating the validity of perception-based measurement of exertion across the lifespan, and (c) validating activity sensors for estimating the type and intensity of physical activity. Results of this study are expected to improve the effectiveness by which physical activity and nutrition is recommended for adults across the lifespan.

  3. [Characteristics of super dwarf wheat metabolism in microgravity

    NASA Technical Reports Server (NTRS)

    Nefedova, E. L.; Livanskaia, O. G.; Levinskikh, M. A.; Sychev, V. N.; Carmen, D.; Bebenheim, D.; Campbell, W. F. (Principal Investigator)

    2000-01-01

    Metabolism of sLt during Russian-US experiment GREENHOUSE-2 (July 9, 1996-January 17, 1997) within the MIR/NASA space research program and in laboratory Svet experiments in 1995-1996 was studied. Chemical, biochemical and pigment analyses of the flight and laboratory plants were made after the first (dry biomass) and second vegetation (photosynthetically active 41-d old plants). Data on the composition of leaves and stems of ground and flight wheat do not attest any biologically significant shifts in plant metabolism. There were slight changes in accumulation and migration of several macro- and microelements, protein nitrogen and phosphororganic compounds in microgravity. Lowered content of lignin, a critical supportive element for cellular walls was observed only during early stages of vegetation. In the Mir experiment, concentrations of photosynthetically active pigments also decreased a little but the chlorophyills-carotenoids balance was not upset.

  4. Metabolic changes associated with metformin potentiates Bcl-2 inhibitor, Venetoclax, and CDK9 inhibitor, BAY1143572 and reduces viability of lymphoma cells.

    PubMed

    Chukkapalli, Vineela; Gordon, Leo I; Venugopal, Parameswaran; Borgia, Jeffrey A; Karmali, Reem

    2018-04-20

    Metformin exerts direct anti-tumor effects by activating AMP-activated protein kinase (AMPK), a major sensor of cellular metabolism in cancer cells. This, in turn, inhibits pro-survival mTOR signaling. Metformin has also been shown to disrupt complex 1 of the mitochondrial electron transport chain. Here, we explored the lymphoma specific anti-tumor effects of metformin using Daudi (Burkitt), SUDHL-4 (germinal center diffuse large B-cell lymphoma; GC DLBCL), Jeko-1 (Mantle-cell lymphoma; MCL) and KPUM-UH1 (double hit DLBCL) cell lines. We demonstrated that metformin as a single agent, especially at high concentrations produced significant reductions in viability and proliferation only in Daudi and SUDHL-4 cell lines with associated alterations in mitochondrial oxidative and glycolytic metabolism. As bcl-2 proteins, cyclin dependent kinases (CDK) and phosphoinositol-3- kinase (PI3K) also influence mitochondrial physiology and metabolism with clear relevance to the pathogenesis of lymphoma, we investigated the potentiating effects of metformin when combined with novel agents Venetoclax (bcl-2 inhibitor), BAY-1143572 (CDK9 inhibitor) and Idelalisib (p110δ- PI3K inhibitor). Co-treating KPUM-UH1 and SUDHL-4 cells with 10 mM of metformin resulted in 1.4 fold and 8.8 fold decreases, respectively, in IC-50 values of Venetoclax. By contrast, 3-fold and 10 fold reduction in IC-50 values of BAY-1143572 in Daudi and Jeko-1 cells respectively was seen in the presence of 10 mM of metformin. No change in IC-50 value for Idelalisib was observed across cell lines. These data suggest that although metformin is not a potent single agent, targeting cancer metabolism with similar but more effective drugs in novel combination with either bcl-2 or CDK9 inhibitors warrants further exploration.

  5. Abnormal Glucose Metabolism in Alzheimer’s Disease: Relation to Autophagy/Mitophagy and Therapeutic Approaches

    PubMed Central

    Banerjee, Kalpita; Munshi, Soumyabrata; Frank, David E.; Gibson, Gary E.

    2015-01-01

    Diminished glucose metabolism accompanies many neurodegenerative diseases including Alzheimer’s disease. An understanding of the relation of these metabolic changes to the disease will enable development of novel therapeutic strategies. Following a metabolic challenge, cells generally conserve energy to preserve viability. This requires activation of many cellular repair/regenerative processes such as mitophagy/autophagy and fusion/fission. These responses may diminish cell function in the long term. Prolonged fission induces mitophagy/autophagy which promotes repair but if prolonged progresses to mitochondrial degradation. Abnormal glucose metabolism alters protein signaling including the release of proteins from the mitochondria or migration of proteins from the cytosol to the mitochondria or nucleus. This overview provides an insight into the different mechanisms of autophagy/mitophagy and mitochondrial dynamics in response to the diminished metabolism that occurs with diseases, especially neurodegenerative diseases such as Alzheimer's disease. The review discusses multiple aspects of mitochondrial responses including different signaling proteins and pathways of mitophagy and mitochondrial biogenesis. Improving cellular bioenergetics and mitochondrial dynamics will alter protein signaling and improve cellular/mitochondrial repair and regeneration. An understanding of these changes will suggest new therapeutic strategies. PMID:26077923

  6. Analysis of drug metabolism activities in a miniaturized liver cell bioreactor for use in pharmacological studies.

    PubMed

    Hoffmann, Stefan A; Müller-Vieira, Ursula; Biemel, Klaus; Knobeloch, Daniel; Heydel, Sandra; Lübberstedt, Marc; Nüssler, Andreas K; Andersson, Tommy B; Gerlach, Jörg C; Zeilinger, Katrin

    2012-12-01

    Based on a hollow fiber perfusion technology with internal oxygenation, a miniaturized bioreactor with a volume of 0.5 mL for in vitro studies was recently developed. Here, the suitability of this novel culture system for pharmacological studies was investigated, focusing on the model drug diclofenac. Primary human liver cells were cultivated in bioreactors and in conventional monolayer cultures in parallel over 10 days. From day 3 on, diclofenac was continuously applied at a therapeutic concentration (6.4 µM) for analysis of its metabolism. In addition, the activity and gene expression of the cytochrome P450 (CYP) isoforms CYP1A2, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 were assessed. Diclofenac was metabolized in bioreactor cultures with an initial conversion rate of 230 ± 57 pmol/h/10(6) cells followed by a period of stable conversion of about 100 pmol/h/10(6) cells. All CYP activities tested were maintained until day 10 of bioreactor culture. The expression of corresponding mRNAs correlated well with the degree of preservation. Immunohistochemical characterization showed the formation of neo-tissue with expression of CYP2C9 and CYP3A4 and the drug transporters breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) in the bioreactor. In contrast, monolayer cultures showed a rapid decline of diclofenac conversion and cells had largely lost activity and mRNA expression of the assessed CYP isoforms at the end of the culture period. In conclusion, diclofenac metabolism, CYP activities and gene expression levels were considerably more stable in bioreactor cultures, making the novel bioreactor a useful tool for pharmacological or toxicological investigations requiring a highly physiological in vitro representation of the liver. Copyright © 2012 Wiley Periodicals, Inc.

  7. Secretion of S100A8, S100A9, and S100A12 by Neutrophils Involves Reactive Oxygen Species and Potassium Efflux.

    PubMed

    Tardif, Mélanie R; Chapeton-Montes, Julie Andrea; Posvandzic, Alma; Pagé, Nathalie; Gilbert, Caroline; Tessier, Philippe A

    2015-01-01

    S100A8/A9 (calprotectin) and S100A12 proinflammatory mediators are found at inflammatory sites and in the serum of patients with inflammatory or autoimmune diseases. These cytoplasmic proteins are secreted by neutrophils at sites of inflammation via alternative secretion pathways of which little is known. This study examined the nature of the stimuli leading to S100A8/A9 and S100A12 secretion as well as the mechanism involved in this alternative secretion pathway. Chemotactic agents, cytokines, and particulate molecules were used to stimulate human neutrophils. MSU crystals, PMA, and H2O2 induced the release of S100A8, S100A9, and S100A12 homodimers, as well as S100A8/A9 heterodimer. High concentrations of S100A8/A9 and S100A12 were secreted in response to nanoparticles like MSU, silica, TiO2, fullerene, and single-wall carbon nanotubes as well as in response to microbe-derived molecules, such as zymosan or HKCA. However, neutrophils exposed to the chemotactic factors fMLP failed to secrete S100A8/A9 or S100A12. Secretion of S100A8/A9 was dependent on the production of reactive oxygen species and required K(+) exchanges through the ATP-sensitive K(+) channel. Altogether, these findings suggest that S100A12 and S100A8/A9 are secreted independently either via distinct mechanisms of secretion or following the activation of different signal transduction pathways.

  8. Secretion of S100A8, S100A9, and S100A12 by Neutrophils Involves Reactive Oxygen Species and Potassium Efflux

    PubMed Central

    Tardif, Mélanie R.; Chapeton-Montes, Julie Andrea; Posvandzic, Alma; Pagé, Nathalie; Gilbert, Caroline; Tessier, Philippe A.

    2015-01-01

    S100A8/A9 (calprotectin) and S100A12 proinflammatory mediators are found at inflammatory sites and in the serum of patients with inflammatory or autoimmune diseases. These cytoplasmic proteins are secreted by neutrophils at sites of inflammation via alternative secretion pathways of which little is known. This study examined the nature of the stimuli leading to S100A8/A9 and S100A12 secretion as well as the mechanism involved in this alternative secretion pathway. Chemotactic agents, cytokines, and particulate molecules were used to stimulate human neutrophils. MSU crystals, PMA, and H2O2 induced the release of S100A8, S100A9, and S100A12 homodimers, as well as S100A8/A9 heterodimer. High concentrations of S100A8/A9 and S100A12 were secreted in response to nanoparticles like MSU, silica, TiO2, fullerene, and single-wall carbon nanotubes as well as in response to microbe-derived molecules, such as zymosan or HKCA. However, neutrophils exposed to the chemotactic factors fMLP failed to secrete S100A8/A9 or S100A12. Secretion of S100A8/A9 was dependent on the production of reactive oxygen species and required K+ exchanges through the ATP-sensitive K+ channel. Altogether, these findings suggest that S100A12 and S100A8/A9 are secreted independently either via distinct mechanisms of secretion or following the activation of different signal transduction pathways. PMID:27057553

  9. Multiple signals modulate the activity of the complex sensor kinase TodS

    PubMed Central

    Silva-Jiménez, Hortencia; Ortega, Álvaro; García-Fontana, Cristina; Ramos, Juan Luis; Krell, Tino

    2015-01-01

    The reason for the existence of complex sensor kinases is little understood but thought to lie in the capacity to respond to multiple signals. The complex, seven-domain sensor kinase TodS controls in concert with the TodT response regulator the expression of the toluene dioxygenase pathway in Pseudomonas putida F1 and DOT-T1E. We have previously shown that some aromatic hydrocarbons stimulate TodS activity whereas others behave as antagonists. We show here that TodS responds in addition to the oxidative agent menadione. Menadione but no other oxidative agent tested inhibited TodS activity in vitro and reduced PtodX expression in vivo. The menadione signal is incorporated by a cysteine-dependent mechanism. The mutation of the sole conserved cysteine of TodS (C320) rendered the protein insensitive to menadione. We evaluated the mutual opposing effects of toluene and menadione on TodS autophosphorylation. In the presence of toluene, menadione reduced TodS activity whereas toluene did not stimulate activity in the presence of menadione. It was shown by others that menadione increases expression of glucose metabolism genes. The opposing effects of menadione on glucose and toluene metabolism may be partially responsible for the interwoven regulation of both catabolic pathways. This work provides mechanistic detail on how complex sensor kinases integrate different types of signal molecules. PMID:24986263

  10. Activation of MMP-9 activity by acrolein in saliva from patients with primary Sjögren's syndrome and its mechanism.

    PubMed

    Uemura, Takeshi; Suzuki, Takehiro; Saiki, Ryotaro; Dohmae, Naoshi; Ito, Satoshi; Takahashi, Hoyu; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2017-07-01

    We have recently reported that the altered recognition patterns of immunoglobulins due to acrolein conjugation are at least partially responsible for autoimmune diseases in patients with primary Sjögren's syndrome (pSS). In the current study, it was found that the specific activity (activity/ng protein) of metalloproteinase-9 (MMP-9) in saliva was elevated about 2.4-fold in pSS patients. Accordingly, it was examined whether MMP-9 is activated by acrolein. It was found that the MMP-9 with 92kDa molecular weight was activated by acrolein. Under the conditions studied, Cys99, located in the propeptide, was conjugated with acrolein together with Cys230, 244, 302, 314, 329, 347, 361, 373, 388 and 516, which are located in fibronectin repeats and glycosyl domains, but not on the active site of MMP-9. In addition, 82 and 68kDa constructs of MMP-9s, lacking the NH 2 -terminal domain that contains Cys99, were not activated by acrolein. The results suggest that acrolein conjugation at Cys99 caused the active site of MMP-9 to be exposed. Activation of MMP-9 by acrolein was inhibited by cysteine, and slightly by lysine, because these amino acids inhibited acrolein conjugation with MMP-9. Conversely, MMP-9 activity in the presence of 50μM acrolein was enhanced by 100μM histidine. This was due to the inhibition of acrolein conjugation with His405 and 411 located at the Zn 2+ binding site of MMP-9. These results suggest that activation of 92kDa MMP-9 by acrolein is involved in tissue damage in pSS patients and is regulated by cysteine and histidine, and slightly by lysine. Activated 82 and 68kDa MMP-9s were not detected in saliva of pSS patients by Western blotting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Metabolism of the broad-spectrum neuropeptide growth factor antagonist: [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-substance P.

    PubMed Central

    Jones, D. A.; Cummings, J.; Langdon, S. P.; Maclellan, A. J.; Higgins, T.; Rozengurt, E.; Smyth, J. F.

    1996-01-01

    Broad-spectrum neuropeptide growth factor antagonists, such as [D-Arg1, D-Phe5, D-Trp7,9, Leu11]substance P (antagonist D) and [Arg6, D-Trp7,9, NmePhe8]substance P(6-11) (antagonist G), are currently being investigated as possible anti-tumour agents. These compounds are hoped to be effective against neuropeptide-driven cancers such as small-cell lung cancer. Antagonist D possesses a broader antagonistic spectrum than antagonist G and hence may be of greater therapeutic use. The in vitro metabolism of antagonist D has been characterised and the structures of two major metabolites have been elucidated by amino acid analysis and mass spectrometry. Metabolism was confined to the C-terminus where serine carboxypeptidase action produced [deamidated]-antagonist D (metabolite 1) and [des-Leu11]-antagonist D (metabolite 2) as the major metabolites. Biological characterisation of the metabolites demonstrated that these relatively minor changes in structure resulted in a loss of antagonist activity. These results provide some of the first structure-activity information on the factors that determine which neuropeptides these compounds inhibit and on the relative potency of that inhibition. PMID:8611370

  12. SMAD4 loss enables EGF, TGFβ1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells.

    PubMed

    Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario

    2016-10-25

    Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner.

  13. Metabolic assessments during extra-vehicular activity.

    PubMed

    Osipov YuYu; Spichkov, A N; Filipenkov, S N

    1998-01-01

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha' (ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  14. Metabolic assessments during extra-vehicular activity

    NASA Astrophysics Data System (ADS)

    Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  15. Metabolic Risk Factors, Leisure Time Physical Activity, and Nutrition in German Children and Adolescents

    PubMed Central

    Haas, Gerda-Maria; Liepold, Evelyn; Schwandt, Peter

    2012-01-01

    Purpose. We assessed the five components of the metabolic syndrome (MetS) as defined by the International Diabetes Federation (IDF) in 6040 (3158 males) youths aged 6–16 years who participated in the Präventions-Erziehungs-Programm (PEP Family Heart Study) in Nuernberg between 2000 and 2007. The purpose of this cross-sectional study was to examine associations with lifestyle habits. Results and Discussion. The prevalence of MetS was low in children (1.6%) and adolescents (2.3%). High waist circumference (WC) and low HDL-C were slightly higher in females (9.5% and 7.5%, resp.) than in males (8.8% and 5.7%, resp.). Low leisure time physical activity (LTPA) was significantly associated with low HDL-C (odds ratio [OR] 2.4; 95% CI 1.2–5.0) and inversely associated with hypertension (r = −0.146), hypertriglyceridemia (r = −0.141), and central adiposity (r = −0.258). The risk for low HDL-C (≤1.3 mmol/L) was 1.7-fold (CI 1.0–2.6) higher in youth with high (≥33%) saturated fat consumption. A low polyunsaturated/saturated fat ratio (P/S ratio) was significantly associated with fasting hyperglycemia (OR 1.4; 95% CI 1.0–1.2). PMID:22778928

  16. Functional Characterization of S100A8 and S100A9 in Altering Monolayer Permeability of Human Umbilical Endothelial Cells

    PubMed Central

    Wang, Liqun; Luo, Haihua; Chen, Xiaohuan; Jiang, Yong; Huang, Qiaobing

    2014-01-01

    S100A8, S100A9 and S100A8/A9 complexes have been known as important endogenous damage-associated molecular pattern (DAMP) proteins. But the pathophysiological roles of S100A8, S100A9 and S100A8/A9 in cardiovascular diseases are incompletely explained. In this present study, the effects of homo S100A8, S100A9 and their hetero-complex S100A8/A9 on endothelial barrier function were tested respectively in cultured human umbilical venous endothelial cells (HUVECs). The involvement of TLR4 and RAGE were observed by using inhibitor of TLR4 and blocking antibody of RAGE. The clarification of different MAPK subtypes in S100A8/A9-induced endothelial response was implemented by using specific inhibitors. The calcium-dependency was detected in the absence of Ca2+ or in the presence of gradient-dose Ca2+. The results showed that S100A8, S100A9 and S100A8/A9 could induce F-actin and ZO-1 disorganization in HUVECs and evoked the increases of HUVEC monolayer permeability in a dose- and time-dependent manner. The effects of S100A8, S100A9 and S100A8/A9 on endothelial barrier function depended on the activation of p38 and ERK1/2 signal pathways through receptors TLR4 and RAGE. Most importantly, we revealed the preference of S100A8 on TLR4 and S100A9 on RAGE in HUVECs. The results also showed the calcium dependency in S100A8- and S100A9-evoked endothelial response, indicating that calcium dependency on formation of S100A8 or A9 dimmers might be the prerequisite for this endothelial functional alteration. PMID:24595267

  17. Extracellular matrix proteins matrix metallopeptidase 9 (MMP9) and soluble intercellular adhesion molecule 1 (sICAM-1) and correlations with clinical staging in euthymic bipolar disorder.

    PubMed

    Reininghaus, Eva Z; Lackner, Nina; Birner, Armin; Bengesser, Susanne; Fellendorf, Frederike T; Platzer, Martina; Rieger, Alexandra; Queissner, Robert; Kainzbauer, Nora; Reininghaus, Bernd; McIntyre, Roger S; Mangge, Harald; Zelzer, Sieglinde; Fuchs, Dietmar; Dejonge, Silvia; Müller, Norbert

    2016-03-01

    Matrix metallopeptidase 9 (MMP9) and soluble intercellular adhesion molecule 1 (sICAM-1) are both involved in the restructuring of connective tissues. Evidence also implicates MMP9 and sICAM in cardiovascular and neoplastic diseases, where blood levels may be a marker of disease severity or prognosis. In individuals with bipolar disorder (BD), higher risk for cardiovascular illness has been extensively reported. The aim of this investigation was to measure and compare peripheral levels of serum MMP9 and sICAM in adults with euthymic BD and healthy controls (HC). Furthermore, we focussed on correlations with illness severity and metabolic parameters. MMP9 levels among the BD sample (n = 112) were significantly higher than among the HC (n = 80) (MMP9: F = 9.885, p = 0.002, η(2)  = 0.058) after controlling for confounding factors. Patients with BD in a later, progressive stage of disease showed significantly higher MMP9 as well as sICAM-1 levels compared to patients with BD in an earlier stage of disease (MMP9: F = 5.8, p = 0.018, η(2)  = 0.054; sICAM-1: F = 5.6, p = 0.020, η(2)  = 0.052). Correlation analyses of cognitive measures revealed a negative association between performance on the d2 Test of Attention and MMP9 (r = -0.287, p = 0.018) in the BD sample. Despite the sample being euthymic (i.e., according to conventional criteria) at the time of analysis, we found significant correlations between MMP9 as well as sICAM-1 and subthreshold depressive/hypomanic symptoms. A collection of disparate findings herein point to a role of MMP9 and cICAM-1 in the patho-progressive process of BD: the increased levels of serum MMP9 and sICAM-1, the correlation between higher levels of these parameters, progressive stage, and cognitive dysfunction in BD, and the positive correlation with subthreshold symptoms. As sICAM-1 and MMP9 are reliable biomarkers of inflammatory and early atherosclerotic disease, these markers may provide indications of the

  18. Metabolic Syndrome Does Not Detect Metabolic Risk in African Men Living in the U.S.

    PubMed Central

    Ukegbu, Ugochi J.; Castillo, Darleen C.; Knight, Michael G.; Ricks, Madia; Miller, Bernard V.; Onumah, Barbara M.; Sumner, Anne E.

    2011-01-01

    OBJECTIVE Metabolic risk and metabolic syndrome (MetSyn) prevalence were compared in Africans who immigrated to the U.S. and African Americans. If MetSyn were an effective predictor of cardiometabolic risk, then the group with a worse metabolic risk profile would have a higher rate of MetSyn. RESEARCH DESIGN AND METHODS Cross-sectional analyses were performed on 95 men (39 Africans, 56 African Americans, age 38 ± 6 years [mean ± SD]). Glucose tolerance was determined by oral glucose tolerance test, visceral adipose tissue (VAT) was determined by computerized tomography, and MetSyn was determined by the presence of three of five factors: central obesity, hypertriglyceridemia, low levels of HDL cholesterol, hypertension, and fasting hyperglycemia. RESULTS MetSyn prevalence was similar in Africans and African Americans (10 vs. 13%, P = 0.74), but hypertension, glycemia (fasting and 2-h glucose), and VAT were higher in Africans. CONCLUSIONS African immigrants have a worse metabolic profile than African Americans but a similar prevalence of MetSyn. Therefore, MetSyn may underpredict metabolic risk in Africans. PMID:21873563

  19. Metabolic syndrome does not detect metabolic risk in African men living in the U.S.

    PubMed

    Ukegbu, Ugochi J; Castillo, Darleen C; Knight, Michael G; Ricks, Madia; Miller, Bernard V; Onumah, Barbara M; Sumner, Anne E

    2011-10-01

    Metabolic risk and metabolic syndrome (MetSyn) prevalence were compared in Africans who immigrated to the U.S. and African Americans. If MetSyn were an effective predictor of cardiometabolic risk, then the group with a worse metabolic risk profile would have a higher rate of MetSyn. Cross-sectional analyses were performed on 95 men (39 Africans, 56 African Americans, age 38 ± 6 years [mean ± SD]). Glucose tolerance was determined by oral glucose tolerance test, visceral adipose tissue (VAT) was determined by computerized tomography, and MetSyn was determined by the presence of three of five factors: central obesity, hypertriglyceridemia, low levels of HDL cholesterol, hypertension, and fasting hyperglycemia. MetSyn prevalence was similar in Africans and African Americans (10 vs. 13%, P = 0.74), but hypertension, glycemia (fasting and 2-h glucose), and VAT were higher in Africans. African immigrants have a worse metabolic profile than African Americans but a similar prevalence of MetSyn. Therefore, MetSyn may underpredict metabolic risk in Africans.

  20. Top single nucleotide polymorphisms affecting carbohydrate metabolism in metabolic syndrome: from the LIPGENE study.

    PubMed

    Delgado-Lista, Javier; Perez-Martinez, Pablo; Solivera, Juan; Garcia-Rios, Antonio; Perez-Caballero, A I; Lovegrove, Julie A; Drevon, Christian A; Defoort, Catherine; Blaak, Ellen E; Dembinska-Kieć, Aldona; Risérus, Ulf; Herruzo-Gomez, Ezequiel; Camargo, Antonio; Ordovas, Jose M; Roche, Helen; Lopez-Miranda, José

    2014-02-01

    Metabolic syndrome (MetS) is a high-prevalence condition characterized by altered energy metabolism, insulin resistance, and elevated cardiovascular risk. Although many individual single nucleotide polymorphisms (SNPs) have been linked to certain MetS features, there are few studies analyzing the influence of SNPs on carbohydrate metabolism in MetS. A total of 904 SNPs (tag SNPs and functional SNPs) were tested for influence on 8 fasting and dynamic markers of carbohydrate metabolism, by performance of an intravenous glucose tolerance test in 450 participants in the LIPGENE study. From 382 initial gene-phenotype associations between SNPs and any phenotypic variables, 61 (16% of the preselected variables) remained significant after bootstrapping. Top SNPs affecting glucose metabolism variables were as follows: fasting glucose, rs26125 (PPARGC1B); fasting insulin, rs4759277 (LRP1); C-peptide, rs4759277 (LRP1); homeostasis assessment of insulin resistance, rs4759277 (LRP1); quantitative insulin sensitivity check index, rs184003 (AGER); sensitivity index, rs7301876 (ABCC9), acute insulin response to glucose, rs290481 (TCF7L2); and disposition index, rs12691 (CEBPA). We describe here the top SNPs linked to phenotypic features in carbohydrate metabolism among approximately 1000 candidate gene variations in fasting and postprandial samples of 450 patients with MetS from the LIPGENE study.

  1. Metabolism of a Representative Oxygenated Polycyclic Aromatic Hydrocarbon (PAH) Phenanthrene-9,10-quinone in Human Hepatoma (HepG2) Cells

    PubMed Central

    2014-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC–UV–fluorescence detection and LC–MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH. PMID:24646012

  2. Sphingolipid Metabolism Correlates with Cerebrospinal Fluid Beta Amyloid Levels in Alzheimer’s Disease

    PubMed Central

    Fonteh, Alfred N.; Ormseth, Cora; Chiang, Jiarong; Cipolla, Matthew; Arakaki, Xianghong; Harrington, Michael G.

    2015-01-01

    Sphingolipids are important in many brain functions but their role in Alzheimer’s disease (AD) is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF) contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a) total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b) levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c) three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but not impaired

  3. Community structure of the metabolically active rumen bacterial and archaeal communities of dairy cows over the transition period

    PubMed Central

    Zhu, Zhigang; Noel, Samantha Joan; Difford, Gareth Frank; Al-Soud, Waleed Abu; Brejnrod, Asker; Sørensen, Søren Johannes; Lassen, Jan; Løvendahl, Peter; Højberg, Ole

    2017-01-01

    Dairy cows experience dramatic changes in host physiology from gestation to lactation period and dietary switch from high-forage prepartum diet to high-concentrate postpartum diet over the transition period (parturition +/- three weeks). Understanding the community structure and activity of the rumen microbiota and its associative patterns over the transition period may provide insight for e.g. improving animal health and production. In the present study, rumen samples from ten primiparous Holstein dairy cows were collected over seven weeks spanning the transition period. Total RNA was extracted from the rumen samples and cDNA thereof was subsequently used for characterizing the metabolically active bacterial (16S rRNA transcript amplicon sequencing) and archaeal (qPCR, T-RFLP and mcrA and 16S rRNA transcript amplicon sequencing) communities. The metabolically active bacterial community was dominated by three phyla, showing significant changes in relative abundance range over the transition period: Firmicutes (from prepartum 57% to postpartum 35%), Bacteroidetes (from prepartum 22% to postpartum 18%) and Proteobacteria (from prepartum 7% to postpartum 32%). For the archaea, qPCR analysis of 16S rRNA transcript number, revealed a significant prepartum to postpartum increase in Methanobacteriales, in accordance with an observed increase (from prepartum 80% to postpartum 89%) in relative abundance of 16S rRNA transcript amplicons allocated to this order. On the other hand, a significant prepartum to postpartum decrease (from 15% to 2%) was observed in relative abundance of Methanomassiliicoccales 16S rRNA transcripts. In contrast to qPCR analysis of the 16S rRNA transcripts, quantification of mcrA transcripts revealed no change in total abundance of metabolically active methanogens over the transition period. According to T-RFLP analysis of the mcrA transcripts, two Methanobacteriales genera, Methanobrevibacter and Methanosphaera (represented by the T-RFs 39 and 267

  4. Proprotein convertase subtilisin/kexin 9 inhibitors: an emerging lipid-lowering therapy?

    PubMed

    Dragan, Simona; Serban, Maria-Corina; Banach, Maciej

    2015-03-01

    Proprotein convertase subtilisin/kexin 9 (PCSK9) is part of the proteinase K subfamily of subtilases and plays a key role in lipid metabolism. It increases degradation of the low-density lipoprotein receptor (LDL-R), modulates cholesterol metabolism and transport, and contributes to the production of apolipoprotein B (apoB) in intestinal cells. Exogenous PCSK9 modifies the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and acyl coenzyme A:cholesterol acyltransferase and enhances secretion of chylomicrons by modulating production of lipids and apoB-48. Statins increase PCSK9 messenger RNA expression and attenuate the capacity to increase LDL-R levels. Therefore, the inhibition of PCSK9 in combination with statins provides a promising approach for lowering low-density lipoprotein cholesterol (LDL-C) concentrations. This review will address new therapeutic strategies targeting PCSK9, including monoclonal antibodies, antisense oligonucleotides, small interfering RNAs, and other small molecule inhibitors. Further studies are still needed to determine the efficacy and safety of the PCSK9 inhibitors not only to decrease LDL-C but also to investigate the potential underlying mechanisms involved and to test whether these compounds actually reduce cardiovascular end points and mortality. © The Author(s) 2014.

  5. Diversity of Metabolically Active Bacteria in Water-Flooded High-Temperature Heavy Oil Reservoir

    PubMed Central

    Nazina, Tamara N.; Shestakova, Natalya M.; Semenova, Ekaterina M.; Korshunova, Alena V.; Kostrukova, Nadezda K.; Tourova, Tatiana P.; Min, Liu; Feng, Qingxian; Poltaraus, Andrey B.

    2017-01-01

    The goal of this work was to study the overall genomic diversity of microorganisms of the Dagang high-temperature oilfield (PRC) and to characterize the metabolically active fraction of these populations. At this water-flooded oilfield, the microbial community of formation water from the near-bottom zone of an injection well where the most active microbial processes of oil degradation occur was investigated using molecular, cultural, radiotracer, and physicochemical techniques. The samples of microbial DNA and RNA from back-flushed water were used to obtain the clone libraries for the 16S rRNA gene and cDNA of 16S rRNA, respectively. The DNA-derived clone libraries were found to contain bacterial and archaeal 16S rRNA genes and the alkB genes encoding alkane monooxygenases similar to those encoded by alkB-geo1 and alkB-geo6 of geobacilli. The 16S rRNA genes of methanogens (Methanomethylovorans, Methanoculleus, Methanolinea, Methanothrix, and Methanocalculus) were predominant in the DNA-derived library of Archaea cloned sequences; among the bacterial sequences, the 16S rRNA genes of members of the genus Geobacillus were the most numerous. The RNA-derived library contained only bacterial cDNA of the 16S rRNA sequences belonging to metabolically active aerobic organotrophic bacteria (Tepidimonas, Pseudomonas, Acinetobacter), as well as of denitrifying (Azoarcus, Tepidiphilus, Calditerrivibrio), fermenting (Bellilinea), iron-reducing (Geobacter), and sulfate- and sulfur-reducing bacteria (Desulfomicrobium, Desulfuromonas). The presence of the microorganisms of the main functional groups revealed by molecular techniques was confirmed by the results of cultural, radioisotope, and geochemical research. Functioning of the mesophilic and thermophilic branches was shown for the microbial food chain of the near-bottom zone of the injection well, which included the microorganisms of the carbon, sulfur, iron, and nitrogen cycles. PMID:28487680

  6. Interplay between adenylate metabolizing enzymes and amp-activated protein kinase.

    PubMed

    Camici, Marcella; Allegrini, Simone; Tozzi, Maria Grazia

    2018-05-18

    Purine nucleotides are involved in a variety of cellular functions, such as energy storage and transfer, and signalling, in addition to being the precursors of nucleic acids and cofactors of many biochemical reactions. They can be generated through two separate pathways, the de novo biosynthesis pathway and the salvage pathway. De novo purine biosynthesis leads to the formation of IMP, from which the adenylate and guanylate pools are generated by two additional steps. The salvage pathways utilize hypoxanthine, guanine and adenine to generate the corresponding mononucleotides. Despite several decades of research on the subject, new and surprising findings on purine metabolism are constantly being reported, and some aspects still need to be elucidated. Recently, purine biosynthesis has been linked to the metabolic pathways regulated by AMP-activated protein kinase (AMPK). AMPK is the master regulator of cellular energy homeostasis, and its activity depends on the AMP:ATP ratio. The cellular energy status and AMPK activation are connected by AMP, an allosteric activator of AMPK. Hence, an indirect strategy to affect AMPK activity would be to target the pathways that generate AMP in the cell. Herein, we report an up-to-date review of the interplay between AMPK and adenylate metabolizing enzymes. Some aspects of inborn errors of purine metabolism are also discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Electrochemistry in the mimicry of oxidative drug metabolism by cytochrome P450s.

    PubMed

    Nouri-Nigjeh, Eslam; Bischoff, Rainer; Bruins, Andries P; Permentier, Hjalmar P

    2011-05-01

    Prediction of oxidative drug metabolism at the early stages of drug discovery and development requires fast and accurate analytical techniques to mimic the in vivo oxidation reactions by cytochrome P450s (CYP). Direct electrochemical oxidation combined with mass spectrometry, although limited to the oxidation reactions initiated by charge transfer, has shown promise in the mimicry of certain CYP-mediated metabolic reactions. The electrochemical approach may further be utilized in an automated manner in microfluidics devices facilitating fast screening of oxidative drug metabolism. A wide range of in vivo oxidation reactions, particularly those initiated by hydrogen atom transfer, can be imitated through the electrochemically-assisted Fenton reaction. This reaction is based on O-O bond activation in hydrogen peroxide and oxidation by hydroxyl radicals, wherein electrochemistry is used for the reduction of molecular oxygen to hydrogen peroxide, as well as the reduction of Fe(3+) to Fe(2+). Metalloporphyrins, as surrogates for the prosthetic group in CYP, utilizing metallo-oxo reactive species, can also be used in combination with electrochemistry. Electrochemical reduction of metalloporphyrins in solution or immobilized on the electrode surface activates molecular oxygen in a manner analogous to the catalytical cycle of CYP and different metalloporphyrins can mimic selective oxidation reactions. Chemoselective, stereoselective, and regioselective oxidation reactions may be mimicked using electrodes that have been modified with immobilized enzymes, especially CYP itself. This review summarizes the recent attempts in utilizing electrochemistry as a versatile analytical and preparative technique in the mimicry of oxidative drug metabolism by CYP. © 2011 Bentham Science Publishers Ltd.

  8. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    PubMed

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  9. Marine Omega-3 Phospholipids: Metabolism and Biological Activities

    PubMed Central

    Burri, Lena; Hoem, Nils; Banni, Sebastiano; Berge, Kjetil

    2012-01-01

    The biological activities of omega-3 fatty acids (n-3 FAs) have been under extensive study for several decades. However, not much attention has been paid to differences of dietary forms, such as triglycerides (TGs) versus ethyl esters or phospholipids (PLs). New innovative marine raw materials, like krill and fish by-products, present n-3 FAs mainly in the PL form. With their increasing availability, new evidence has emerged on n-3 PL biological activities and differences to n-3 TGs. In this review, we describe the recently discovered nutritional properties of n-3 PLs on different parameters of metabolic syndrome and highlight their different metabolic bioavailability in comparison to other dietary forms of n-3 FAs. PMID:23203133

  10. Study on oxidative metabolism of S180 cells induced by meretrix glycopeptide

    NASA Astrophysics Data System (ADS)

    Wu, Jielian; Wang, Ping; Kang, Huizhu

    2017-03-01

    Previous in vitro researches have showed that MGP0501, a natural glycopeptide isolated from Meretrix meretrix, can inhibit proliferation or induce apoptosis in human gastric carcinoma, lung cance (A549), Leukemia K562, mouse melanoma B16, hepatoma or breast cancer cells (MDA-MB-231). In this study, we performed an in vivo study to investigate the anti-tumor effect and mechanisms of MGP0501 on xenografted sarcoma 180 (S180) in mice. Results revealed that the inhibition rates of S180 on solid tumors were 69.72%, with a concentration of 6 mg/kg MGP0501,which was significantly higher than that of CTX. In addition, the biochemical metabolism analysis showed that MGP0501 could enhance the activities of glutathione tablets (GSH-Px) and catalase (CAT) and supersxide dismutase (SOD) in liver of mice. The content of malondialdehyde (MDA) in liver, on the contrary, was decreased. The promotion to antioxidation and the elimination of free radical in liver also attribute the antitumor activity of MGP0501. These results indicated that in vivo antitumor activity is associated with enhanced antioxidant capacity in S180 xenografts-bearing mice.

  11. Novel drug metabolism indices for pharmacogenetic functional status based on combinatory genotyping of CYP2C9, CYP2C19 and CYP2D6 genes

    PubMed Central

    Villagra, David; Goethe, John; Schwartz, Harold I; Szarek, Bonnie; Kocherla, Mohan; Gorowski, Krystyna; Windemuth, Andreas; Ruaño, Gualberto

    2011-01-01

    Aims We aim to demonstrate clinical relevance and utility of four novel drug-metabolism indices derived from a combinatory (multigene) approach to CYP2C9, CYP2C19 and CYP2D6 allele scoring. Each index considers all three genes as complementary components of a liver enzyme drug metabolism system and uniquely benchmarks innate hepatic drug metabolism reserve or alteration through CYP450 combinatory genotype scores. Methods A total of 1199 psychiatric referrals were genotyped for polymorphisms in the CYP2C9, CYP2C19 and CYP2D6 gene loci and were scored on each of the four indices. The data were used to create distributions and rankings of innate drug metabolism capacity to which individuals can be compared. Drug-specific indices are a combination of the drug metabolism indices with substrate-specific coefficients. Results The combinatory drug metabolism indices proved useful in positioning individuals relative to a population with regard to innate drug metabolism capacity prior to pharmacotherapy. Drug-specific indices generate pharmacogenetic guidance of immediate clinical relevance, and can be further modified to incorporate covariates in particular clinical cases. Conclusions We believe that this combinatory approach represents an improvement over the current gene-by-gene reporting by providing greater scope while still allowing for the resolution of a single-gene index when needed. This method will result in novel clinical and research applications, facilitating the translation from pharmacogenomics to personalized medicine, particularly in psychiatry where many drugs are metabolized or activated by multiple CYP450 isoenzymes. PMID:21861665

  12. Metabolic abnormalities in adult and geriatric major depression with and without comorbid dementia.

    PubMed

    Blank, Karen; Szarek, Bonnie L; Goethe, John W

    2010-06-01

    Metabolic abnormalities and metabolic syndrome (MetS) increasingly have been linked to depression. The authors studied examined inpatients 35 years and older with major depressive disorder (MDD) to determine the prevalence of component metabolic abnormalities and the full MetS with age, treatment, and comorbid dementia. Data analysis involved retrospective cross-sectional review from a nonprofit psychiatry inpatient service of all discharges 35 years and older with a diagnosis of MDD during a 3 year period (April 1, 2003 to March 31, 2006) (N=1718). Metabolic measures included waist circumference, lipid measurements, glucose, and hypertension diagnosis. Abnormal metabolic measures and MetS were highly prevalent in both young and old patients with MDD: one or more component was present in 87.6% of older (65-99 years old) and 79.9% of younger patients. Full MetS was present in 31.5% of older and 28.9% of younger patients (not significant, P=0.85). Metabolic abnormalities were not associated with atypical antipsychotics after controlling other variables. One-quarter (n=79, 24.9%) of older inpatients had a dementia co-diagnosis. Older patients with MDD and dementia had greater risk of elevated glucose while younger patients were more often hypertensive. Longitudinal studies are needed to determine the relationships of MDD with or without dementia with these highly prevalent abnormal metabolic measures and MetS. Copyright 2010 Wiley Periodicals, Inc.

  13. Molecular characterization of total and metabolically active bacterial communities of "white colonizations" in the Altamira Cave, Spain.

    PubMed

    Portillo, M Carmen; Saiz-Jimenez, Cesareo; Gonzalez, Juan M

    2009-01-01

    Caves with paleolithic paintings are influenced by bacterial development. Altamira Cave (Spain) contains some of the most famous paintings from the Paleolithic era. An assessment of the composition of bacterial communities that have colonized this cave represents a first step in understanding and potentially controlling their proliferation. In this study, areas showing colonization with uncolored microorganisms, referred to as "white colonizations", were analyzed. Microorganisms present in these colonizations were studied using DNA analysis, and those showing significant metabolic activity were detected in RNA-based RNA analysis. Bacterial community fingerprints were obtained both from DNA and RNA analyses, indicating differences between the microorganisms present and metabolically active in these white colonizations. Metabolically active microorganisms represented only a fraction of the total bacterial community present in the colonizations. 16S rRNA gene libraries were used to identify the major representative members of the studied communities. Proteobacteria constituted the most frequently found division both among metabolically active microorganisms (from RNA-based analysis) and those present in the community (from DNA analysis). Results suggest the existence of a huge variety of taxa in white colonizations of the Altamira Cave which represent a potential risk for the conservation of the cave and its paintings.

  14. Neuropsychiatric Subsyndromes and Brain Metabolic Network Dysfunctions in Early Onset Alzheimer’s Disease

    PubMed Central

    Tommaso, Ballarini; Leonardo, Iaccarino; Giuseppe, Magnani; Nagehan, Ayakta; Bruce L, Miller; William J, Jagust; Luisa, Gorno-Tempini Maria; Gil D, Rabinovici; Daniela, Perani

    2017-01-01

    Neuropsychiatric symptoms (NPSs) often occur in early-age-of-onset Alzheimer’s disease (EOAD) and cluster into sub-syndromes (SSy). The aim of this study was to investigate the association between 18F-FDG-PET regional and connectivity-based brain metabolic dysfunctions and neuropsychiatric SSy. NPSs were assessed in 27 EOAD using the Neuropsychiatric Inventory and further clustered into four SSy (apathetic, hyperactivity, affective and psychotic SSy). 85% of EOAD showed at least one NPS. Voxel-wise correlations between SSy scores and brain glucose metabolism (assessed with 18F-FDG positron emission tomography) were studied. Interregional correlation analysis was used to explore metabolic connectivity in the salience (aSN) and default mode networks (DMN) in a larger sample of EOAD (N=51) and Healthy Controls (N=57). The apathetic, hyperactivity and affective SSy were highly prevalent (>60%) as compared to the psychotic SSy (33%). The hyperactivity SSy scores were associated with increase of glucose metabolism in frontal and limbic structures, implicated in behavioral control. A comparable positive correlation with part of the same network was found for the affective SSy scores. On the other hand, the apathetic SSy scores were negatively correlated with metabolism in the bilateral orbitofrontal and dorsolateral frontal cortex known to be involved in motivation and decision-making processes. Consistent with these SSy regional correlations with brain metabolic dysfunction, the connectivity analysis showed increases in the aSN and decreases in the DMN. Behavioral abnormalities in EOAD are associated with specific dysfunctional changes in brain metabolic activity, in particular in the aSN that seems to play a crucial role in NPSs in EOAD. PMID:27412866

  15. Delayed de-induction of CYP2C9 compared to CYP3A after discontinuation of rifampicin: Report of two cases
.

    PubMed

    Shibata, Soichi; Takahashi, Harumi; Baba, Akiyasu; Takeshita, Kei; Atsuda, Koichiro; Matsubara, Hajime; Echizen, Hirotoshi

    2017-05-01

    Timely dose reduction of concomitant medications is important after withdrawal of rifampicin, a CYP inducer. However, little is known about the differences in the time course of deinduction for various CYP isoforms. To clarify the time courses of deinduction of CYP2C9 and -CYP3A activities after rifampicin withdrawal, we monitored these enzyme activities in 2 patients over time after discontinuing rifampicin. Two patients (aged 70 and 80 years) received warfarin and rifampicin for anticoagulation and antituberculosis therapy, respectively. Warfarin doses were increased due to rifampicin-induced CYP activity. Upon completion of antituberculosis therapy, rifampicin was discontinued and warfarin doses were titrated downward according to prothrombin time. We monitored CYP2C9 and CYP3A activities over their clinical courses by measuring the metabolic clearance of S-warfarin to S-7-hydroxywarfarin and that of cortisol to 6β-hydroxycortisol, respectively. In both patients, the time courses of CYP2C9 deinduction appeared to be delayed compared to CYP3A. Our findings suggest that a uniform dose reduction protocol for drugs metabolized by different CYP isoforms may be unsafe after rifampicin withdrawal.
.

  16. Metabolic syndrome and mammographic density: The Study of Women’s Health Across the Nation (SWAN)

    PubMed Central

    Conroy, Shannon M.; Butler, Lesley M.; Harvey, Danielle; Gold, Ellen B.; Sternfeld, Barbara; Greendale, Gail A.; Habel, Laurel A.

    2013-01-01

    The metabolic syndrome (MetS) is associated with an increase in breast cancer risk. In this study, we evaluated whether the MetS was associated with an increase in percent mammographic density (MD), a breast cancer risk factor. We used linear regression and mixed models to examine the cross-sectional and longitudinal associations of the MetS and components of the MetS to percent MD in 790 pre- and early perimenopausal women enrolled in the Study of Women’s Health Across the Nation (SWAN). In cross-sectional analyses adjusted for body mass index (BMI), modest inverse associations were observed between percent MD and the MetS (β = −2.5, SE = 1.9, p = 0.19), abdominal adiposity (β = −4.8, SE = 1.9, p = 0.01) and raised glucose (β = −3.7, SE = 2.4, p = 0.12). In longitudinal models adjusted for covariates including age and BMI, abdominal adiposity (β = 0.34, SE = 0.17, p = 0.05) was significantly positively associated with slower annual decline in percent MD with time. In conclusion, our results do not support the hypothesis that the MetS increases breast cancer risk via a mechanism reflected by an increase in percent MD. PMID:21105041

  17. The Class II Trehalose 6-phosphate Synthase Gene PvTPS9 Modulates Trehalose Metabolism in Phaseolus vulgaris Nodules

    PubMed Central

    Barraza, Aarón; Contreras-Cubas, Cecilia; Estrada-Navarrete, Georgina; Reyes, José L.; Juárez-Verdayes, Marco A.; Avonce, Nelson; Quinto, Carmen; Díaz-Camino, Claudia; Sanchez, Federico

    2016-01-01

    Legumes form symbioses with rhizobia, producing nitrogen-fixing nodules on the roots of the plant host. The network of plant signaling pathways affecting carbon metabolism may determine the final number of nodules. The trehalose biosynthetic pathway regulates carbon metabolism and plays a fundamental role in plant growth and development, as well as in plant-microbe interactions. The expression of genes for trehalose synthesis during nodule development suggests that this metabolite may play a role in legume-rhizobia symbiosis. In this work, PvTPS9, which encodes a Class II trehalose-6-phosphate synthase (TPS) of common bean (Phaseolus vulgaris), was silenced by RNA interference in transgenic nodules. The silencing of PvTPS9 in root nodules resulted in a reduction of 85% (± 1%) of its transcript, which correlated with a 30% decrease in trehalose contents of transgenic nodules and in untransformed leaves. Composite transgenic plants with PvTPS9 silenced in the roots showed no changes in nodule number and nitrogen fixation, but a severe reduction in plant biomass and altered transcript profiles of all Class II TPS genes. Our data suggest that PvTPS9 plays a key role in modulating trehalose metabolism in the symbiotic nodule and, therefore, in the whole plant. PMID:27847509

  18. Metabolic Investigations of the Molecular Mechanisms Associated with Parkinson’s Disease

    PubMed Central

    Powers, Robert; Lei, Shulei; Anandhan, Annadurai; Marshall, Darrell D.; Worley, Bradley; Cerny, Ronald L.; Dodds, Eric D.; Huang, Yuting; Panayiotidis, Mihalis I.; Pappa, Aglaia; Franco, Rodrigo

    2017-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder characterized by fibrillar cytoplasmic aggregates of α-synuclein (i.e., Lewy bodies) and the associated loss of dopaminergic cells in the substantia nigra. Mutations in genes such as α-synuclein (SNCA) account for only 10% of PD occurrences. Exposure to environmental toxicants including pesticides and metals (e.g., paraquat (PQ) and manganese (Mn)) is also recognized as an important PD risk factor. Thus, aging, genetic alterations, and environmental factors all contribute to the etiology of PD. In fact, both genetic and environmental factors are thought to interact in the promotion of idiopathic PD, but the mechanisms involved are still unclear. In this study, we summarize our findings to date regarding the toxic synergistic effect between α-synuclein and paraquat treatment. We identified an essential role for central carbon (glucose) metabolism in dopaminergic cell death induced by paraquat treatment that is enhanced by the overexpression of α-synuclein. PQ “hijacks” the pentose phosphate pathway (PPP) to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. PQ also stimulated an increase in glucose uptake, the translocation of glucose transporters to the plasma membrane, and AMP-activated protein kinase (AMPK) activation. The overexpression of α-synuclein further stimulated an increase in glucose uptake and AMPK activity, but impaired glucose metabolism, likely directing additional carbon to the PPP to supply paraquat redox cycling. PMID:28538683

  19. Activity affects intraspecific body-size scaling of metabolic rate in ectothermic animals.

    PubMed

    Glazier, Douglas Stewart

    2009-10-01

    Metabolic rate is commonly thought to scale with body mass (M) to the 3/4 power. However, the metabolic scaling exponent (b) may vary with activity state, as has been shown chiefly for interspecific relationships. Here I use a meta-analysis of literature data to test whether b changes with activity level within species of ectothermic animals. Data for 19 species show that b is usually higher during active exercise (mean +/- 95% confidence limits = 0.918 +/- 0.038) than during rest (0.768 +/- 0.069). This significant upward shift in b to near 1 is consistent with the metabolic level boundaries hypothesis, which predicts that maximal metabolic rate during exercise should be chiefly influenced by volume-related muscular power production (scaling as M (1)). This dependence of b on activity level does not appear to be a simple temperature effect because body temperature in ectotherms changes very little during exercise.

  20. Studies on the metabolism and bioactivation of (S)-nicotine and beta-nicotyrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigenaga, M.K.

    1989-01-01

    (S)-Nicotine has long been suspected of contributing to the chronic toxicities associated with the use of cigarettes and other tobacco products. The possibility that (S)-nicotine could contribute to these chronic toxicities by causing irreversible damage to cellular macromolecules has prompted studies aimed at characterizing the metabolic pathways of (S)-nicotine that form reactive metabolites which bind covalently. In order to study these processes, (S)-5-{sup 3}H-nicotine was synthesized by catalytic tritiolysis of (S)-5-bromonicotine with carrier-free tritium gas, purified by HPLC and characterized by tritium NMR, diode array VV and HPLC chromatographic analysis. The metabolism of (S)-5-{sup 3}H-nicotine by rabbit liver and lungmore » microsomal enzymes produced reactive intermediates which bound covalently to microsomal macromolecules in a time, NADPH and cytochrome P-450 dependent manner. The results of studies employing rabbit lung microsomes and agents which inhibit or alter the expression of the cytochrome P-450 isozyme composition in this tissue indicated that the covalent binding of (S)-nicotine requires (S)-nicotine {Delta}{sup 1{prime},5{prime}}-iminium ion as an obligate intermediate and the catalytic activity of lung cytochrome P-450 isozyme-2. Investigations of the effects of (S)-nicotine and related tobacco alkaloids on the oxidation of the Parkinson's disease inducing agent MPTP by the mitochondrial enzyme MAO-B were prompted by the inverse correlation between cigarette smoking and Parkinson's disease. In the author studies (S)-nicotine A{sup 1{prime},5{prime}}-iminium bisperchlorate inhibited the MAOB catalyzed oxidation of MPTP by a linear-mixed type mechanism. Subsequent studies identified {beta}-nicotyrine as a MAO-B catalyzed oxidation product of (S)-nicotine A{sup 1{prime},5{prime}}-iminium ion.« less

  1. Cannabidiol-Δ9-tetrahydrocannabinol interactions on acute pain and locomotor activity.

    PubMed

    Britch, Stevie C; Wiley, Jenny L; Yu, Zhihao; Clowers, Brian H; Craft, Rebecca M

    2017-06-01

    Previous studies suggest that cannabidiol (CBD) may potentiate or antagonize Δ 9 -tetrahydrocannabinol's (THC) effects. The current study examined sex differences in CBD modulation of THC-induced antinociception, hypolocomotion, and metabolism. In Experiment 1, CBD (0, 10 or 30mg/kg) was administered 15min before THC (0, 1.8, 3.2, 5.6 or 10mg/kg), and rats were tested for antinociception and locomotion 15-360min post-THC injection. In Experiments 2 and 3, CBD (30mg/kg) was administered 13h or 15min before THC (1.8mg/kg); rats were tested for antinociception and locomotion 30-480min post-THC injection (Experiment 2), or serum samples were taken 30-360min post-THC injection to examine CBD modulation of THC metabolism (Experiment 3). In Experiment 1, CBD alone produced no antinociceptive effects, while enhancing THC-induced paw pressure but not tail withdrawal antinociception 4-6h post-THC injection. CBD alone increased locomotor activity at 6h post-injection, but enhanced THC-induced hypolocomotion 4-6h post-THC injection, at lower THC doses. There were no sex differences in CBD-THC interactions. In Experiments 2 and 3, CBD did not significantly enhance THC's effects when CBD was administered 13h or 15min before THC; however, CBD inhibited THC metabolism, and this effect was greater in females than males. These results suggest that CBD may enhance THC's antinociceptive and hypolocomotive effects, primarily prolonging THC's duration of action; however, these effects were small and inconsistent across experiments. CBD inhibition of THC metabolism as well other mechanisms likely contribute to CBD-THC interactions on behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Autoinducer 2 activity in Escherichia coli culture supernatants can be actively reduced despite maintenance of an active synthase, LuxS.

    PubMed

    Hardie, Kim R; Cooksley, Clare; Green, Andrew D; Winzer, Klaus

    2003-03-01

    Production of the signalling molecule (autoinducer-2) synthesized by LuxS has been proposed to be pivotal to a universal mechanism of inter-species bacterial cell-cell communication (quorum sensing); however recently the function of LuxS has been noted to be integral to central metabolism since it contributes to the activated methyl cycle. This paper shows that when Helicobacter pylori LuxS is overproduced in Escherichia coli, it forms cross-linkable multimers. These multimers persist at comparable levels after 24 h of growth if glucose is omitted from the growth medium; however, the levels of extracellular autoinducer-2 decline (Glucose Retention of AI-2 Levels: GRAIL). Glycerol, maltose, galactose, ribose and L-arabinose could substitute for glucose, but lactose, D-arabinose, acetate, citrate and pyruvate could not. Mutations in (i). metabolic pathways (glycolytic enzymes eno, pgk, pgm; galactose epimerase; the Pta-AckA pathway), (ii). sugar transport (pts components, rbs operon, mgl, trg), and (iii). regulators involved in conventional catabolic repression (crp, cya), cAMP-independent catabolite repression (creC, fruR, rpoS,) the stringent response (relA, spoT) and the global carbon storage regulator (csrA) did not prevent GRAIL. Although the basis of GRAIL remains uncertain, it is clear that the mechanism is distinct from conventional catabolite repression. Moreover, GRAIL is not due to inactivation of the enzymic activity of LuxS, since in E. coli, LuxS contained within stationary-phase cells grown in the absence of glucose maintains its activity in vitro.

  3. Metabolic Functions of Peroxisome Proliferator-Activated Receptor β/δ in Skeletal Muscle

    PubMed Central

    Gaudel, Céline; Grimaldi, Paul A.

    2007-01-01

    Peroxisome proliferator-activated receptors (PPARs) are transcription factors that act as lipid sensors and adapt the metabolic rates of various tissues to the concentration of dietary lipids. PPARs are pharmacological targets for the treatment of metabolic disorders. PPARα and PPARγ are activated by hypolipidemic and insulin-sensitizer compounds, such as fibrates and thiazolidinediones. The roles of PPARβ/δ in metabolic regulations remained unclear until recently. Treatment of obese monkeys and rodents by specific PPARβ/δ agonists promoted normalization of metabolic parameters and reduction of adiposity. Recent evidences strongly suggested that some of these beneficial actions are related to activation of fatty acid catabolism in skeletal muscle and also that PPARβ/δ is involved in the adaptive responses of skeletal muscle to environmental changes, such as long-term fasting or physical exercise, by controlling the number of oxidative myofibers. These observations indicated that PPARβ/δ agonists might have therapeutic usefulness in metabolic syndrome by increasing fatty acid consumption in skeletal muscle and reducing obesity. PMID:17389772

  4. Design and Performance of a Xenobiotic Metabolism Database Manager for Building Metabolic Pathway Databases

    EPA Science Inventory

    A major challenge for scientists and regulators is accounting for the metabolic activation of chemicals that may lead to increased toxicity. Reliable forecasting of chemical metabolism is a critical factor in estimating a chemical’s toxic potential. Research is underway to develo...

  5. Acetate metabolism does not reflect astrocytic activity, contributes directly to GABA synthesis, and is increased by silent information regulator 1 activation.

    PubMed

    Rowlands, Benjamin D; Klugmann, Matthias; Rae, Caroline D

    2017-03-01

    [ 13 C]Acetate is known to label metabolites preferentially in astrocytes rather than neurons and it has consequently been used as a marker for astrocytic activity. Recent discoveries suggest that control of acetate metabolism and its contributions to the synthesis of metabolites in brain is not as simple as first thought. Here, using a Guinea pig brain cortical tissue slice model metabolizing [1- 13 C]D-glucose and [1,2- 13 C]acetate, we investigated control of acetate metabolism and the degree to which it reflects astrocytic activity. Using a range of [1,2- 13 C]acetate concentrations, we found that acetate is a poor substrate for metabolism and will inhibit metabolism of itself and of glucose at concentrations in excess of 2 mmol/L. By activating astrocytes using potassium depolarization, we found that use of [1,2- 13 C]acetate to synthesize glutamine decreases significantly under these conditions showing that acetate metabolism does not necessarily reflect astrocytic activity. By blocking synthesis of glutamine using methionine sulfoximine, we found that significant amount of [1,2- 13 C]acetate are still incorporated into GABA and its metabolic precursors in neurons, with around 30% of the GABA synthesized from [1,2- 13 C]acetate likely to be made directly in neurons rather than from glutamine supplied by astrocytes. Finally, to test whether activity of the acetate metabolizing enzyme acetyl-CoA synthetase is under acetylation control in the brain, we incubated slices with the AceCS1 deacetylase silent information regulator 1 (SIRT1) activator SRT 1720 and showed consequential increased incorporation of [1,2- 13 C]acetate into metabolites. Taken together, these data show that acetate metabolism is not directly nor exclusively related to astrocytic metabolic activity, that use of acetate is related to enzyme acetylation and that acetate is directly metabolized to a significant degree in GABAergic neurons. Changes in acetate metabolism should be interpreted as

  6. Aggregation of Human S100A8 and S100A9 Amyloidogenic Proteins Perturbs Proteostasis in a Yeast Model

    PubMed Central

    Eremenko, Ekaterina; Ben-Zvi, Anat; Morozova-Roche, Ludmilla A.; Raveh, Dina

    2013-01-01

    Amyloid aggregates of the calcium-binding EF-hand proteins, S100A8 and S100A9, have been found in the corpora amylacea of patients with prostate cancer and may play a role in carcinogenesis. Here we present a novel model system using the yeast Saccharomyces cerevisiae to study human S100A8 and S100A9 aggregation and toxicity. We found that S100A8, S100A9 and S100A8/9 cotransfomants form SDS-resistant non-toxic aggregates in yeast cells. Using fluorescently tagged proteins, we showed that S100A8 and S100A9 accumulate in foci. After prolonged induction, S100A8 foci localized to the cell vacuole, whereas the S100A9 foci remained in the cytoplasm when present alone, but entered the vacuole in cotransformants. Biochemical analysis of the proteins indicated that S100A8 and S100A9 alone or coexpressed together form amyloid-like aggregates in yeast. Expression of S100A8 and S100A9 in wild type yeast did not affect cell viability, but these proteins were toxic when expressed on a background of unrelated metastable temperature-sensitive mutant proteins, Cdc53-1p, Cdc34-2p, Srp1-31p and Sec27-1p. This finding suggests that the expression and aggregation of S100A8 and S100A9 may limit the capacity of the cellular proteostasis machinery. To test this hypothesis, we screened a set of chaperone deletion mutants and found that reducing the levels of the heat-shock proteins Hsp104p and Hsp70p was sufficient to induce S100A8 and S100A9 toxicity. This result indicates that the chaperone activity of the Hsp104/Hsp70 bi-chaperone system in wild type cells is sufficient to reduce S100A8 and S100A9 amyloid toxicity and preserve cellular proteostasis. Expression of human S100A8 and S100A9 in yeast thus provides a novel model system for the study of the interaction of amyloid deposits with the proteostasis machinery. PMID:23483999

  7. An in vitro approach to investigate ocular metabolism of a topical, selective β1-adrenergic blocking agent, betaxolol.

    PubMed

    Bushee, Jennifer L; Dunne, Christine E; Argikar, Upendra A

    2015-05-01

    1. Topical glaucoma treatments have often been limited by poor absorption and bioavailability. Betaxolol, a selective β1-blocker, has been well studied for its pharmacokinetics and disposition. Limited ocular, betaxolol metabolism data is available despite a growing number of novel ocular treatments. 2. In vitro ocular fractions indicated the formation of an active metabolite, across rat, rabbit and human, which was only observed historically in the liver. 3. Ocular metabolic profiles of preclinical toxicology species, rat and rabbit, were not predictive of human in vitro ocular data. M1 was specific to human and only captured by the liver data. 4. Liver S9 over predicted the extent of ocular metabolism compared to ocular fractions. Rabbit liver S9 fractions demonstrated extensive glucuronidation and higher parent turn-over in 1 h as compared to other matrices. 5. This research assesses in vitro species and organ differences across preclinical species and human. The complex data set highlights the need for an in vitro ocular system to explore poorly documented ocular metabolism.

  8. Leisure-time exercise, physical activity during work and commuting, and risk of metabolic syndrome.

    PubMed

    Kuwahara, Keisuke; Honda, Toru; Nakagawa, Tohru; Yamamoto, Shuichiro; Akter, Shamima; Hayashi, Takeshi; Mizoue, Tetsuya

    2016-09-01

    Data are limited regarding effect of intensity of leisure-time physical activity on metabolic syndrome. Furthermore, no prospective data are available regarding effect of occupational and commuting physical activity on metabolic syndrome. We compared metabolic syndrome risk by intensity level of leisure-time exercise and by occupational and commuting physical activity in Japanese workers. We followed 22,383 participants, aged 30-64 years, without metabolic syndrome until 2014 March (maximum, 5 years of follow-up). Physical activity was self-reported. Metabolic syndrome was defined by the Joint Statement criteria. We used Cox regression models to estimate the hazard ratios (HRs) and 95 % confidence intervals (CIs) of metabolic syndrome. During a mean follow-up of 4.1 years, 5361 workers developed metabolic syndrome. After adjustment for covariates, compared with engaging in no exercise, the HRs (95 % CIs) for <7.5, 7.5 to <16.5, and ≥16.5 metabolic equivalent hours of exercise per week were 0.99 (0.90, 1.08), 0.99 (0.90, 1.10), and 0.95 (0.83, 1.08), respectively, among individuals engaging in moderate-intensity exercise alone; 0.93 (0.75, 1.14), 0.81 (0.64, 1.02), and 0.84 (0.66, 1.06), among individuals engaging in vigorous-intensity exercise alone; and 0.90 (0.70, 1.17), 0.74 (0.62, 0.89), and 0.81 (0.69, 0.96) among individuals engaging in the two intensities. Higher occupational physical activity was weakly but significantly associated with lower risk of metabolic syndrome. Walking to and from work was not associated with metabolic syndrome. Vigorous-intensity exercise alone or vigorous-intensity combined with moderate-intensity exercise and worksite intervention for physical activity may help prevent metabolic syndrome for Japanese workers.

  9. SMAD4 loss enables EGF, TGFβ1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells

    PubMed Central

    Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H.; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario

    2016-01-01

    Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner. PMID:27655713

  10. Long-term effect of yogic practices on diurnal metabolic rates of healthy subjects.

    PubMed

    Chaya, M S; Nagendra, H R

    2008-01-01

    The metabolic rate is an indicator of autonomic activity. Reduced sympathetic arousal probably resulting in hypometabolic states has been reported in several yogic studies. The main objective of this study was to assess the effect of yoga training on diurnal metabolic rates in yoga practitioners at two different times of the day (at 6 a.m. and 9 p.m.). Eighty eight healthy volunteers were selected and their metabolic rates assessed at 6 a.m. and 9 p.m. using an indirect calorimeter at a yoga school in Bangalore, India. The results show that the average metabolic rate of the yoga group was 12% lower than that of the non-yoga group (P < 0.001) measured at 9 p.m. and 16% lower at 6 a.m. (P < 0.001). The 9 p.m. metabolic rates of the yoga group were almost equal to their predicted basal metabolic rates (BMRs) whereas the metabolic rate was significantly higher than the predicted BMR for the non-yoga group. The 6 a.m. metabolic rate was comparable to their predicted BMR in the non-yoga group whereas it was much lower in the yoga group (P < 0.001). The lower metabolic rates in the yoga group at 6 a.m. and 9 p.m. may be due to coping strategies for day-to-day stress, decreased sympathetic nervous system activity and probably, a stable autonomic nervous system response (to different stressors) achieved due to training in yoga.

  11. First discovery of insecticidal activity of 9,9'-epoxylignane and dihydroguaiaretic acid against houseflies and the structure-activity relationship.

    PubMed

    Wukirsari, Tuti; Nishiwaki, Hisashi; Hasebe, Ayaka; Shuto, Yoshihiro; Yamauchi, Satoshi

    2013-05-08

    The insecticidal activity of (-)-(8R,8'R)-3,3'-dimethoxy-9,9'-epoxylignane-4,4'-diol (1) against houseflies was clarified for the first time. The activities of other stereoisomers were weaker than that of the (8R,8'R)-stereoisomer. In the course of research into structure-activity relationships involving 30 newly synthesized (8R,8'R)-derivatives, 5-fold higher activity (ED50 = 0.91 nmol/fly) was observed for (-)-(8R,8'R)-3,3',4-trimethoxy-9,9'-epoxylignan-4'-ol (21) than for the naturally occurring compound (1). The activity of 1 was weaker than that of (-)-(8R,8'R)-dihydroguaiaretic acid ((-)-DGA) (4); however, compound 21 showed almost the same level of activity as 4.

  12. [The Role of Calcium in the Conformational Changes of the Recombinant S100A8/S100A9].

    PubMed

    Gheibi, N; Asghari, H; Chegini, K G; Sahmani, M; Moghadasi, M

    2016-01-01

    Calprotectin is a member of the EF-hand proteins, composed of two subunits, S100A8 (MRP8) and S100A9 (MRP14). These proteins are involved in important processes including cell signaling, regulation of inflammatory responses, cell cycle control, differentiation, regulation of ion channel activity and defense against microbial agents in a calcium dependent manner. In the present study, recombinant S100A8 and S100A9 were expressed in E. coli BL21 and then purified using Ni-NTA affinity chromatography. The structure of the S100A8/A9 complex in the presence and absence of calcium was assessed by circular dichroism and fluorescence spectroscopy. The intrinsic fluorescence emission spectra of the S100A8/A9 complex in the presence of calcium showed a reduction in fluorescence intensity, reflecting conformational changes within the protein with the exposure of aromatic residues to the protein surface. The far ultraviolet-circular dichroism spectra of the complex in the presence of calcium revealed minor changes in the regular secondary structure of the complex. Also, increased thermal stability of the S100A8/A9 complex in the presence of calcium was indicated.

  13. Effectiveness of physical activity intervention among government employees with metabolic syndrome.

    PubMed

    Huei Phing, Chee; Abu Saad, Hazizi; Barakatun Nisak, M Y; Mohd Nasir, M T

    2017-12-01

    Our study aimed to assess the effects of physical activity interventions via standing banners (point-of-decision prompt) and aerobics classes to promote physical activity among individuals with metabolic syndrome. We conducted a cluster randomized controlled intervention trial (16-week intervention and 8-week follow-up). Malaysian government employees in Putrajaya, Malaysia, with metabolic syndrome were randomly assigned by cluster to a point-of-decision prompt group (n = 44), an aerobics group (n = 42) or a control group (n = 103) based on sample size calculation formula. Step counts were evaluated by Lifecorder e-STEP accelerometers for all participants. Metabolic syndrome was defined according to the 'harmonizing' definition, in which individuals who have at least three of the five metabolic risk factors (waist circumference, high-density lipoprotein cholesterol, triglycerides, fasting glucose levels, systolic and diastolic blood pressure) will be classified as having metabolic syndrome. A total of 80% of the enrolled government employees with metabolic syndrome completed the programme. Data were analyzed using SPSS for Windows (version 20, SPSS, Chicago, IL). There were significantly higher step counts on average in the aerobics group compared to the control group over assessments. Assessments at baseline, post-intervention and follow-up showed a significant difference in step counts between the intervention and control groups. The greatest reductions in the proportions of individuals with metabolic syndrome were observed in the aerobics group with a reduction of 79.4% in the post-intervention assessment compared to the assessment at baseline. The findings of this study suggest that physical activity intervention via aerobics classes is an effective strategy for improving step counts and reducing the prevalence of metabolic syndrome.

  14. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington’s disease in mice

    PubMed Central

    Acuña, Aníbal I.; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A.; Parra, Alejandra V.; Cepeda, Carlos; Toro, Carlos A.; Vidal, René L.; Hetz, Claudio; Concha, Ilona I.; Brauchi, Sebastián; Levine, Michael S.; Castro, Maite A.

    2013-01-01

    Huntington’s disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death. PMID:24336051

  15. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington’s disease in mice

    NASA Astrophysics Data System (ADS)

    Acuña, Aníbal I.; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A.; Parra, Alejandra V.; Cepeda, Carlos; Toro, Carlos A.; Vidal, René L.; Hetz, Claudio; Concha, Ilona I.; Brauchi, Sebastián; Levine, Michael S.; Castro, Maite A.

    2013-12-01

    Huntington’s disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death.

  16. S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-κB activity during disease progression.

    PubMed

    Prieto, Daniel; Sotelo, Natalia; Seija, Noé; Sernbo, Sandra; Abreu, Cecilia; Durán, Rosario; Gil, Magdalena; Sicco, Estefanía; Irigoin, Victoria; Oliver, Carolina; Landoni, Ana Inés; Gabus, Raúl; Dighiero, Guillermo; Oppezzo, Pablo

    2017-08-10

    Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by accumulation of clonal B lymphocytes, resulting from a complex balance between cell proliferation and apoptotic death. Continuous crosstalk between cancer cells and local/distant host environment is required for effective tumor growth. Among the main actors of this dynamic interplay between tumoral cells and their microenvironment are the nano-sized vesicles called exosomes. Emerging evidence indicates that secretion, composition, and functional capacity of exosomes are altered as tumors progress to an aggressive phenotype. In CLL, no data exist exploring the specific changes in the proteomic profile of plasma-derived exosomes from patients during disease evolution. We hereby report for the first time different proteomic profiles of plasma exosomes, both between indolent and progressive CLLs as well as within the individual patients at the onset of disease and during its progression. Next, we focus on the changes of the exosome protein cargoes, which are found exclusively in patients with progressive CLL after disease progression. The alterations in the proteomic cargoes underline different networks specific for leukemia progression related to inflammation, oxidative stress, and NF-κB and phosphatidylinositol 3-kinase/AKT pathway activation. Finally, our results suggest a preponderant role for the protein S100-A9 as an activator of the NFκB pathway during CLL progression and suggest that the leukemic clone can generate an autoactivation loop through S100-A9 expression, NF-κB activation, and exosome secretion. Collectively, our data propose a new pathway for NF-κB activation in CLL and highlight the importance of exosomes as extracellular mediators promoting tumor progression in CLL. © 2017 by The American Society of Hematology.

  17. Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism

    PubMed Central

    Gut, Philipp; Baeza-Raja, Bernat; Andersson, Olov; Hasenkamp, Laura; Hsiao, Joseph; Hesselson, Daniel; Akassoglou, Katerina; Verdin, Eric; Hirschey, Matthew D.; Stainier, Didier Y.R.

    2012-01-01

    Improving the control of energy homeostasis can lower cardiovascular risk in metabolically compromised individuals. To identify new regulators of whole-body energy control, we conducted a high-throughput screen in transgenic reporter zebrafish for small molecules that modulate the expression of the fasting-inducible gluconeogenic gene pck1. We show that this in vivo strategy identified several drugs that impact gluconeogenesis in humans, as well as metabolically uncharacterized compounds. Most notably, we find that the Translocator Protein (TSPO) ligands PK 11195 and Ro5-4864 are glucose lowering agents despite a strong inductive effect on pck1 expression. We show that these drugs are activators of a fasting-like energy state, and importantly that they protect high-fat diet induced obese mice from hepatosteatosis and glucose intolerance, two pathological manifestations of metabolic dysregulation. Thus, using a whole-organism screening strategy, this study has identified new small molecule activators of fasting metabolism. PMID:23201900

  18. Molecular basis for the interaction between Integrator subunits IntS9 and IntS11 and its functional importance.

    PubMed

    Wu, Yixuan; Albrecht, Todd R; Baillat, David; Wagner, Eric J; Tong, Liang

    2017-04-25

    The metazoan Integrator complex (INT) has important functions in the 3'-end processing of noncoding RNAs, including the uridine-rich small nuclear RNA (UsnRNA) and enhancer RNA (eRNA), and in the transcription of coding genes by RNA polymerase II. The INT contains at least 14 subunits, but its molecular mechanism of action is poorly understood, because currently there is little structural information about its subunits. The endonuclease activity of INT is mediated by its subunit 11 (IntS11), which belongs to the metallo-β-lactamase superfamily and is a paralog of CPSF-73, the endonuclease for pre-mRNA 3'-end processing. IntS11 forms a stable complex with Integrator complex subunit 9 (IntS9) through their C-terminal domains (CTDs). Here, we report the crystal structure of the IntS9-IntS11 CTD complex at 2.1-Å resolution and detailed, structure-based biochemical and functional studies. The complex is composed of a continuous nine-stranded β-sheet with four strands from IntS9 and five from IntS11. Highly conserved residues are located in the extensive interface between the two CTDs. Yeast two-hybrid assays and coimmunoprecipitation experiments confirm the structural observations on the complex. Functional studies demonstrate that the IntS9-IntS11 interaction is crucial for the role of INT in snRNA 3'-end processing.

  19. Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer’s disease

    PubMed Central

    De Felice, Fernanda G.; Lourenco, Mychael V.

    2015-01-01

    Brain metabolic dysfunction is known to influence brain activity in several neurological disorders, including Alzheimer’s disease (AD). In fact, deregulation of neuronal metabolism has been postulated to play a key role leading to the clinical outcomes observed in AD. Besides deficits in glucose utilization in AD patients, recent evidence has implicated neuroinflammation and endoplasmic reticulum (ER) stress as components of a novel form of brain metabolic stress that develop in AD and other neurological disorders. Here we review findings supporting this novel paradigm and further discuss how these mechanisms seem to participate in synapse and cognitive impairments that are germane to AD. These deleterious processes resemble pathways that act in peripheral tissues leading to insulin resistance and glucose intolerance, in an intriguing molecular connection linking AD to diabetes. The discovery of detailed mechanisms leading to neuronal metabolic stress may be a key step that will allow the understanding how cognitive impairment develops in AD, thereby offering new avenues for effective disease prevention and therapeutic targeting. PMID:26042036

  20. Who is at risk of chronic disease? Associations between risk profiles of physical activity, sitting and cardio-metabolic disease in Australian adults.

    PubMed

    Engelen, Lina; Gale, Joanne; Chau, Josephine Y; Hardy, Louise L; Mackey, Martin; Johnson, Nathan; Shirley, Debra; Bauman, Adrian

    2017-04-01

    To examine the associations of physical activity (PA) and sitting time (sit) with cardio-metabolic diseases. Cross-sectional data from the Australian National Nutrition and Physical Activity Survey 2011-2012 (n=9,435) were used to classify adults into low and high risk groups based on their physical activity and sitting behaviour profiles. Logistic regression models examined associations between low and high risk classifications (high PA-low sit; high PA-high sit; low PA-low sit; low PA-high sit;) and socio-demographic factors, and associations between low and high risk classifications and the prevalence of cardiovascular disease, Type 2 diabetes and metabolic syndrome. These results characterise chronic disease risk based on both physical activity and sitting behaviour. Adults with the highest risk lifestyle behaviour pattern (low PA-high sit) tended to be middle aged, male, at greater social disadvantage, smoke, report fair health, be abdominally obese and employed in administrative and driver occupations. These individuals had a substantially greater risk of cardiovascular disease and metabolic syndrome (OR=1.41, 95% CI 1.13, 1.75; OR= 2.37, 95% CI 1.63, 3.45, respectively). The findings highlight the importance of both sufficient physical activity and low sitting time for cardio-metabolic health. Implications for public health: Primary prevention focus should consider physical activity and reduced sitting time as well as provision of relevant advice for cardio-metabolic health. © 2017 The Authors.

  1. Leucine Metabolism in T Cell Activation: mTOR Signaling and Beyond123

    PubMed Central

    Powell, Jonathan D; Hutson, Susan M

    2016-01-01

    In connection with the increasing interest in metabolic regulation of the immune response, this review discusses current advances in understanding the role of leucine and leucine metabolism in T lymphocyte (T cell) activation. T cell activation during the development of an immune response depends on metabolic reprogramming to ensure that sufficient nutrients and energy are taken up by the highly proliferating T cells. Leucine has been described as an important essential amino acid and a nutrient signal that activates complex 1 of the mammalian target of rapamycin (mTORC1), which is a critical regulator of T cell proliferation, differentiation, and function. The role of leucine in these processes is further discussed in relation to amino acid transporters, leucine-degrading enzymes, and other metabolites of leucine metabolism. A new model of T cell regulation by leucine is proposed and outlines a chain of events that leads to the activation of mTORC1 in T cells. PMID:27422517

  2. Modifying effects of carboxyl group on the interaction of recombinant S100A8/A9 complex with tyrosinase.

    PubMed

    NematiNiko, Fatemeh; Chegini, Koorosh Goodarzvand; Asghari, Hamideh; Amini, Abbas; Gheibi, Nematollah

    2017-03-01

    Tyrosinase is a determinant enzyme for modulating melanin production as its abnormal activity can result in an increased amount of melanin. Reduction of tyrosinase activity has been targeted for preventing and healing hyperpigmentation of skin, such as melanoma and age related spots. The aim of this systematic study is to investigate whether recombinant S100A8/A9 and its modified form reduce the activity of mushroom tyrosinase (MT) through changing its structure. Recombinant His-Tagged S100A8 and S100A9 are expressed in Escherichia coli BL21 (DE3) and modified using Woodward's reagent K which is a carboxyl group modifier. The structures of S100A8/A9 and its modified form are studied using fluorescence and circular dichroism spectroscopy, and the activity of MT is measured using UV-visible spectrophotometry in the presence of its substrate, L-3,4-dihydroxyphenylalanine (L-DOPA). The results show a lower stability of the modified protein when compared with its unmodified form. The interaction of S100A8/A9 with MT changes the structure and successfully reduces the activity of mushroom tyrosinase. Recombinant S100A8/A9 complex decreases MT activity which can control malignant melanoma, the most dangerous type of skin cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts.

    PubMed

    Feng, Liang-Liang; Li, Guo-Dong; Liu, Yipu; Wu, Yuanyuan; Chen, Hui; Wang, Yun; Zou, Yong-Cun; Wang, Dejun; Zou, Xiaoxin

    2015-01-14

    Splitting water to produce hydrogen requires the development of non-noble-metal catalysts that are able to make this reaction feasible and energy efficient. Herein, we show that cobalt pentlandite (Co9S8) nanoparticles can serve as an electrochemically active, noble-metal-free material toward hydrogen evolution reaction, and they work stably in neutral solution (pH 7) but not in acidic (pH 0) and basic (pH 14) media. We, therefore, further present a carbon-armoring strategy to increase the durability and activity of Co9S8 over a wider pH range. In particular, carbon-armored Co9S8 nanoparticles (Co9S8@C) are prepared by direct thermal treatment of a mixture of cobalt nitrate and trithiocyanuric acid at 700 °C in N2 atmosphere. Trithiocyanuric acid functions as both sulfur and carbon sources in the reaction system. The resulting Co9S8@C material operates well with high activity over a broad pH range, from pH 0 to 14, and gives nearly 100% Faradaic yield during hydrogen evolution reaction under acidic (pH 0), neutral (pH 7), and basic (pH 14) media. To the best of our knowledge, this is the first time that a transition-metal chalcogenide material is shown to have all-pH efficient and durable electrocatalytic activity. Identifying Co9S8 as the catalytically active phase and developing carbon-armoring as the improvement strategy are anticipated to give a fresh impetus to rational design of high-performance noble-metal-free water splitting catalysts.

  4. Vinpocetine modulates metabolic activity and function during retinal ischemia.

    PubMed

    Nivison-Smith, Lisa; O'Brien, Brendan J; Truong, Mai; Guo, Cindy X; Kalloniatis, Michael; Acosta, Monica L

    2015-05-01

    Vinpocetine protects against a range of degenerative conditions and insults of the central nervous system via multiple modes of action. Little is known, however, of its effects on metabolism. This may be highly relevant, as vinpocetine is highly protective against ischemia, a process that inhibits normal metabolic function. This study uses the ischemic retina as a model to characterize vinpocetine's effects on metabolism. Vinpocetine reduced the metabolic demand of the retina following ex vivo hypoxia and ischemia to normal levels based on lactate dehydrogenase activity. Vinpocetine delivered similar effects in an in vivo model of retinal ischemia-reperfusion, possibly through increasing glucose availability. Vinpocetine's effects on glucose also appeared to improve glutamate homeostasis in ischemic Müller cells. Other actions of vinpocetine following ischemia-reperfusion, such as reduced cell death and improved retinal function, were possibly a combination of the drug's actions on metabolism and other retinal pathways. Vinpocetine's metabolic effects appeared independent of its other known actions in ischemia, as it recovered retinal function in a separate metabolic model where the glutamate-to-glutamine metabolic pathway was inhibited in Müller cells. The results of this study indicate that vinpocetine mediates ischemic damage partly through altered metabolism and has potential beneficial effects as a treatment for ischemia of neuronal tissues. Copyright © 2015 the American Physiological Society.

  5. The relationship between physical activity and metabolic syndrome in people with chronic obstructive pulmonary disease.

    PubMed

    Park, Soo Kyung; Larson, Janet L

    2014-01-01

    The prevalence of metabolic syndrome has been reported to be 20% to 50% in people with chronic obstructive pulmonary disease (COPD). Because such people are sedentary and physically inactive, they are at risk of metabolic syndrome. The extent of this problem, however, is not fully understood. This study examined the relationship of sedentary time and physical activity to metabolic syndrome and the components of metabolic syndrome in a population-based sample of people with COPD. This was a secondary analysis of existing cross-sectional data. Subjects with COPD (n = 223) were drawn from the National Health and Nutrition Examination Survey data set (2003-2006). Physical activity was measured by accelerometry. Waist circumference, triglyceride level, high-density lipoprotein cholesterol level, blood pressure, and fasting glucose level were used to describe metabolic syndrome. Descriptive and inferential statistics were used for analysis. Fifty-five percent of the sample had metabolic syndrome. No significant differences in sedentary time and level of physical activity were found in people with COPD and metabolic syndrome and people with COPD only. However, those with a mean activity count of greater than 240 counts per minute had a lower prevalence of metabolic syndrome. Waist circumference and glucose level were significantly associated with the time spent in sedentary, light, and moderate to vigorous physical activity. Metabolic syndrome is highly prevalent in people with COPD, and greater physical activity and less sedentary time are associated with lower rates of metabolic syndrome. This suggests that interventions to decrease the risk of metabolic syndrome in people with COPD should include both reducing sedentary time and increasing the time and intensity of physical activity.

  6. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice.

    PubMed

    Sun, Lei; Yang, Xiaoxiao; Li, Qi; Zeng, Peng; Liu, Ying; Liu, Lipei; Chen, Yuanli; Yu, Miao; Ma, Chuanrui; Li, Xiaoju; Li, Yan; Zhang, Rongxin; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-07-01

    The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator-activated receptor γ) or SREBP2 (sterol regulatory element-binding protein 2). The effects of AdipoR agonists on PCSK9 and LDLR expression, serum lipid profiles, and atherosclerosis remain unknown. At cellular levels, AdipoR agonists (ADP355 and AdipoRon) induced PCSK9 transcription/expression that solely depended on activation of PPAR-responsive element in the PCSK9 promoter. AdipoR agonists induced PPARγ expression; thus, the AdipoR agonist-activated PCSK9 expression/production was impaired in PPARγ deficient hepatocytes. Meanwhile, AdipoR agonists transcriptionally activated LDLR expression by activating SRE in the LDLR promoter. Moreover, AMP-activated protein kinase α (AMPKα) was involved in AdipoR agonist-activated PCSK9 expression. In wild-type mice, ADP355 increased PCSK9 and LDLR expression and serum PCSK9 levels, which was associated with activation of PPARγ, AMPKα and SREBP2 and reduction of LDL-cholesterol levels. In contrast, ADP355 reduced PCSK9 expression/secretion in apoE-deficient (apoE -/- ) mice, but it still activated hepatic LDLR, PPARγ, AMPKα, and SREBP2. More importantly, ADP355 inhibited lesions in en face aortas and sinus lesions in aortic root in apoE -/- mice with amelioration of lipid profiles. Our study demonstrates that AdipoR activation by agonists regulated PCSK9 expression differently in wild-type and apoE -/- mice. However, ADP355 activated hepatic LDLR expression and ameliorated lipid metabolism in both types of mice and inhibited atherosclerosis in apoE -/- mice. © 2017 American Heart Association, Inc.

  7. INCREASED ENDOCRINE ACTIVITY OF XENOBIOTIC CHEMICALS AS MEDIATED BY METABOLIC ACTIVATION

    EPA Science Inventory

    This research is part of an effort to develop in vitro assays and QSARs applicable to untested chemicals on EPA inventories through study of estrogen receptor (ER) binding and estrogen mediated gene expression in fish. The current effort investigates metabolic activation of chemi...

  8. Antimicrobial activity of 9-O-acyl- and 9-O-benzoyl-substituted berberrubines.

    PubMed

    Hong, S W; Kim, S H; Jeun, J A; Lee, S J; Kim, S U; Kim, J H

    2000-05-01

    In the course of a structure-activity relationship study on berberrubine derivatives, a series of compounds bearing 9-O-acyl-(4-6) and 9-O-benzoyl- (7) substituents was synthesized with the expectation of increasing the antimicrobial activity. One of the berberrubine derivatives, 9-lauroylberberrubine chloride was the most active against Gram-positive bacteria Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus luteus, Bacillus subtilis as well as the Gram-negative bacterium Klebsiella pneumoniae in comparison to berberine, the currently used antibiotic in clinic. This result suggested that the presence of lipophilic substituents of certain structures and sizes might be crucial for the optimal antimicrobial activity.

  9. Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes

    PubMed Central

    Yanagawa, Katsunori; Morono, Yuki; de Beer, Dirk; Haeckel, Matthias; Sunamura, Michinari; Futagami, Taiki; Hoshino, Tatsuhiko; Terada, Takeshi; Nakamura, Ko-ichi; Urabe, Tetsuro; Rehder, Gregor; Boetius, Antje; Inagaki, Fumio

    2013-01-01

    Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO2 in the seabed. The emission of CO2 may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO2 and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are. In this study, RNA-based molecular approaches and radioactive tracer-based respiration rate assays were combined to study the density, diversity and metabolic activity of microbial communities in CO2-seep sediment at the Yonaguni Knoll IV hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased sharply with increasing sediment depth and CO2 concentration. Phylogenetic analyses of community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial community became less diverse with increasing sediment depth and CO2 concentration, indicating that microbial activity and community structure are sensitive to CO2 venting. Analyses of RNA-based pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methanotrophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not detected in deeper sediments (13–30 cm in depth) characterized by high CO2. Measurement of the potential sulfate reduction rate at pH conditions of 3–9 with and without methane in the headspace indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate reducers can adapt to the CO2-seep sedimentary environment; however, CO2 and p

  10. Hepatic, metabolic and toxicity evaluation of repeated oral administration of SnS2 nanoflowers in mice.

    PubMed

    Bai, Disi; Li, Qingzhao; Xiong, Yanjie; Wang, Chao; Shen, Peijun; Bai, Liyuan; Yuan, Lu; Wu, Ping

    2018-05-02

    Tin sulphide (SnS2) nanoflowers (NFs) with highly photocatalytic activity for wastewater treatment may lead to potential health hazards via oral routes of human exposure. No studies have reported the hepatic effects of SnS2 NFs on the metabolic function and hepatotoxicity. In this study, we examined the hepatic effects of the oral administration of SnS2 NFs (250-1000 mg/kg) to ICR mice for 14 d, with the particle size ranging from 50 to 200 nm. Serum and liver tissue samples were assayed using biochemical analysis, liver histopathology and metabolic gene expression. The different sizes of SnS2 NFs (250 mg/kg dose), such as 50, 80 and 200 nm, did not induce any adverse hepatic effect related to biochemical parameters or histopathology in the treated mice compared with controls. The oral administration of 50-nm SnS2 NFs at doses of 250, 500 and 1000 mg/kg for 14 d produced dose-dependent hepatotoxicity and inflammatory responses in treated mice. Furthermore, the expression of metabolic genes in the liver tissues was altered, supporting the SnS2 NF-related hepatotoxic phenotype. The oral administration of SnS2 NFs also produced abnormal microstructures in the livers of the treated mice. Taken together, these data indicate that the increased risk of hepatotoxicity in SnS2 NF-treated mice was independent of the particle size but was dependent on their dose. The no-observed-adverse effect level was <250 mg/kg for the 50-nm SnS2 NFs. Our study provides an experimental basis for the safe application of SnS2 NFs.

  11. Characterization of deltamethrin metabolism by rat plasma and liver microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, Sathanandam S.; Bruckner, James V.; Haines, Wendy T.

    2006-04-15

    Deltamethrin, a widely used type II pyrethroid insecticide, is a relatively potent neurotoxicant. While the toxicity has been extensively examined, toxicokinetic studies of deltamethrin and most other pyrethroids are very limited. The aims of this study were to identify, characterize, and assess the relative contributions of esterases and cytochrome P450s (CYP450s) responsible for deltamethrin metabolism by measuring deltamethrin disappearance following incubation of various concentrations (2 to 400 {mu}M) in plasma (esterases) and liver microsomes (esterases and CYP450s) prepared from adult male rats. While the carboxylesterase metabolism in plasma and liver was characterized using an inhibitor, tetra isopropyl pyrophosphoramide (isoOMPA), CYP450more » metabolism was characterized using the cofactor, NADPH. Michaelis-Menten rate constants were calculated using linear and nonlinear regression as applicable. The metabolic efficiency of these pathways was estimated by calculating intrinsic clearance (Vmax/Km). In plasma, isoOMPA completely inhibited deltamethrin biotransformation at concentrations (2 and 20 {mu}M of deltamethrin) that are 2- to 10-fold higher than previously reported peak blood levels in deltamethrin-poisoned rats. For carboxylesterase-mediated deltamethrin metabolism in plasma, Vmax = 325.3 {+-} 53.4 nmol/h/ml and Km = 165.4 {+-} 41.9 {mu}M. Calcium chelation by EGTA did not inhibit deltamethrin metabolism in plasma or liver microsomes, indicating that A-esterases do not metabolize deltamethrin. In liver microsomes, esterase-mediated deltamethrin metabolism was completely inhibited by isoOMPA, confirming the role of carboxylesterases. The rate constants for liver carboxylesterases were Vmax = 1981.8 {+-} 132.3 nmol/h/g liver and Km = 172.5 {+-} 22.5 {mu}M. Liver microsomal CYP450-mediated biotransformation of deltamethrin was a higher capacity (Vmax = 2611.3 {+-} 134.1 nmol/h/g liver) and higher affinity (Km = 74.9 {+-} 5.9 {mu}M) process than

  12. Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells.

    PubMed

    Sasseville, Maxime; Ritter, Lesley J; Nguyen, Thao M; Liu, Fang; Mottershead, David G; Russell, Darryl L; Gilchrist, Robert B

    2010-09-15

    Ovarian folliculogenesis is driven by the combined action of endocrine cues and paracrine factors. The oocyte secretes powerful mitogens, such as growth differentiation factor 9 (GDF9), that regulate granulosa cell proliferation, metabolism, steroidogenesis and differentiation. This study investigated the role of the epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase 1 and 2 (ERK1/2; also known as MAPK3/1) signaling pathway on GDF9 action on granulosa cells. Results show that mitogenic action of the oocyte is prevented by pharmacological inhibition of the EGFR-ERK1/2 pathway. Importantly, EGFR-ERK1/2 activity as well as rous sarcoma oncogene family kinases (SFK) are required for signaling through SMADs, mediating GDF9, activin A and TGFbeta1 mitogenic action in granulosa cells. GDF9 could not activate ERK1/2 or affect EGF-stimulated ERK1/2 in granulosa cells. However, induction of the SMAD3-specific CAGA reporter by GDF9 in granulosa cells required active EGFR, SFKs and ERK1/2 as did GDF9-responsive gene expression. Finally, the EGFR-SFKs-ERK1/2 pathway was shown to be required for the maintenance of phosphorylation of the SMAD3 linker region. Together our results suggest that receptivity of granulosa cells to oocyte-secreted factors, including GDF9, is regulated by the level of activation of the EGFR and resulting ERK1/2 activity, through the requisite permissive phosphorylation of SMAD3 in the linker region. Our results indicate that oocyte-secreted TGFbeta-like ligands and EGFR-ERK1/2 signaling are cooperatively required for the unique granulosa cell response to the signal from oocytes mediating granulosa cell survival and proliferation and hence the promotion of follicle growth and ovulation.

  13. Elevated S100A8/A9 and S100A12 Serum Levels Reflect Intraocular Inflammation in Juvenile Idiopathic Arthritis-Associated Uveitis: Results From a Pilot Study.

    PubMed

    Walscheid, Karoline; Heiligenhaus, Arnd; Holzinger, Dirk; Roth, Johannes; Heinz, Carsten; Tappeiner, Christoph; Kasper, Maren; Foell, Dirk

    2015-12-01

    Juvenile idiopathic arthritis-associated uveitis (JIAU) is the most common uveitis entity in childhood. As S100A8/A9 and S100A12 proteins are valuable biomarkers in childhood arthritis, we investigated the occurrence of these proteins in childhood uveitis. Serum samples from patients with JIAU (n = 79) or idiopathic anterior uveitis (IAU, n = 24), as well as from nonuveitic controls (n = 24), were collected. Furthermore, aqueous humor samples (JIAU n = 17, nonuveitic controls n = 16, IAU n = 12) were obtained. Samples were analyzed for S100A8/A9 and S100A12 protein levels by ELISA. Intergroup comparisons were performed, involving patient data, clinical data, and S100 levels. S100A8/A9 and S100A12 serum levels were elevated in IAU and JIAU patients as compared to nonuveitic controls (all P < 0.05). S100 serum levels in JIAU patients were higher in active arthritis (not significant; P = 0.289 for S100A8/A9 and P = 0.196 for S100A12) and active uveitis (P = 0.010 for S100A8/A9 and P = 0.026 for S100A12) than in controls. No significant differences in S100 levels were found in a subgroup analysis for sex, antinuclear antibody (ANA) status, disease duration, or presence of uveitis complications. In JIAU patients, S100 serum levels correlated with age and age at onset of uveitis. A longitudinal analysis in JIAU patients showed a correlation of serum S100A8/A9 and S100A12 levels with uveitis activity (both P = 0.03). S100A8/A9 levels in aqueous humor of patients with JIAU (P = 0.001) and IAU (P = 0.0002) were increased as compared to nonuveitic controls. Increased S100A8/A9 and S100A12 levels are found in the serum and aqueous humor of patients with autoimmune uveitis. Serum levels reflect activity of joint and eye disease.

  14. Relationship Between Metabolic Syndrome and Cognitive Abilities in U.S. Adolescents.

    PubMed

    Rubens, Muni; Ramamoorthy, Venkataraghavan; Saxena, Anshul; George, Florence; Shehadeh, Nancy; Attonito, Jennifer; McCoy, H Virginia; Beck-Sagué, Consuelo M

    2016-10-01

    Metabolic syndrome is increasingly common in U.S. adolescents and has been linked to cognitive dysfunction. Purpose of this study is to explore associations between metabolic syndrome and cognitive impairment in U.S. adolescents using population-based data. Participants included adolescents aged 12-16 years who participated in the National Health and Nutrition Examination Survey (NHANES) III. The main outcome measures included assessments of cognitive function using Wide Range Achievement Test-Revised (WRAT-R) and Wechsler Intelligence Scale for Children-Revised (WISC-R) tools. The WRAT-R consisted of mathematics and reading tests. The WISC-R consisted of block design test, which measures spatial visualization and motor skills, and digit span test, which measures working memory and attention. Linear regression models were used to examine associations between metabolic syndrome and cognitive function. We used education levels of the family reference person, while controlling for education levels because of missing data. Presence or absence of metabolic syndrome was tested in 1170 of 2216 NHANES III participants aged 12-16 years. Regression models showed that participants with metabolic syndrome scored an average 1.25 [95% confidence interval (CI) = -2.14 to -0.36] points lower in reading examination and an average 0.89 (95% CI = -1.65 to -0.13) points lower in digit span examination, compared to those without metabolic syndrome. In addition, components of metabolic syndrome-elevated systolic blood pressure and increased waist circumference (WC)-were associated with impaired working memory/attention, and higher fasting glucose and increased WC were associated with poorer reading test scores. Metabolic syndrome was associated with impaired reading, working memory, and attention among adolescents.

  15. Metabolic enzyme activities of abyssal and hadal fishes: pressure effects and a re-evaluation of depth-related changes

    NASA Astrophysics Data System (ADS)

    Gerringer, M. E.; Drazen, J. C.; Yancey, P. H.

    2017-07-01

    Metabolic enzyme activities of muscle tissue have been useful and widely-applied indicators of whole animal metabolic capacity, particularly in inaccessible systems such as the deep sea. Previous studies have been conducted at atmospheric pressure, regardless of organism habitat depth. However, maximum reaction rates of some of these enzymes are pressure dependent, complicating the use of metabolic enzyme activities as proxies of metabolic rates. Here, we show pressure-related rate changes in lactate and malate dehydrogenase (LDH, MDH) and pyruvate kinase (PK) in six fish species (2 hadal, 2 abyssal, 2 shallow). LDH maximal reaction rates decreased with pressure for the two shallow species, but, in contrast to previous findings, it increased for the four deep species, suggesting evolutionary changes in LDH reaction volumes. MDH maximal reaction rates increased with pressure in all species (up to 51±10% at 60 MPa), including the tide pool snailfish, Liparis florae (activity increase at 60 MPa 44±9%), suggesting an inherent negative volume change of the reaction. PK was inhibited by pressure in all species tested, including the hadal liparids (up to 34±3% at 60 MPa), suggesting a positive volume change during the reaction. The addition of 400 mM TMAO counteracted this inhibition at both 0.5 and 2.0 mM ADP concentrations for the hadal liparid, Notoliparis kermadecensis. We revisit depth-related trends in metabolic enzyme activities according to these pressure-related rate changes and new data from seven abyssal and hadal species from the Kermadec and Mariana trenches. Results show that, with abyssal and hadal species, pressure-related rate changes are another variable to be considered in the use of enzyme activities as proxies for metabolic rate, in addition to factors such as temperature and body mass. Intraspecific increases in tricarboxylic acid cycle enzymes with depth of capture, independent of body mass, in two hadal snailfishes suggest improved nutritional

  16. Metabolic Thresholds and Validated Accelerometer Cutoff Points for the Actigraph GT1M in Young Children Based on Measurements of Locomotion and Play Activities

    ERIC Educational Resources Information Center

    Jimmy, Gerda; Dossegger, Alain; Seiler, Roland; Mader, Urs

    2012-01-01

    The purpose of the current study was to determine metabolic thresholds and subsequent activity intensity cutoff points for the ActiGraph GT1M with various epochs spanning from 5 to 60 sec in young children. Twenty-two children, aged 4 to 9 years, performed 10 different activities including locomotion and play activities. Energy expenditure was…

  17. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    PubMed Central

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  18. Treatment efficacy of adipose-derived stem cells in experimental osteoarthritis is driven by high synovial activation and reflected by S100A8/A9 serum levels.

    PubMed

    Schelbergen, R F; van Dalen, S; ter Huurne, M; Roth, J; Vogl, T; Noël, D; Jorgensen, C; van den Berg, W B; van de Loo, F A; Blom, A B; van Lent, P L E M

    2014-08-01

    Synovitis is evident in a substantial subpopulation of patients with osteoarthritis (OA) and is associated with development of pathophysiology. Recently we have shown that adipose-derived stem cells (ASC) inhibit joint destruction in collagenase-induced experimental OA (CIOA). In the current study we explored the role of synovitis and alarmins S100A8/A9 in the immunomodulatory capacity of ASCs in experimental OA. CIOA, characterized by synovitis, and surgical DMM (destabilization of medial meniscus) OA were treated locally with ASCs. Synovial activation, cartilage damage and osteophyte size were measured on histological sections. Cytokines in synovial washouts and serum were determined using Luminex or enzyme-linked immunosorbent assay (S100A8/A9), mRNA levels with reverse-transcriptase (RT)-qPCR. Local administration of ASCs at various time-points (days 7 or 14) after DMM induction had no effect on OA pathology. At day 7 of CIOA, already 6 h after ASC injection mRNA expression of pro-inflammatory mediators S100A8/A9, interleukin-1beta (IL-1β) and KC was down-regulated in the synovium. IL-1β protein, although low, was down-regulated by ASC-treatment of CIOA. S100A8/A9 protein levels were very high at 6 and 48 h and were decreased by ASC-treatment. The protective action of ASC treatment in CIOA was only found when high synovial inflammation was present at the time of deposition which was reflected by high serum S100A8/A9 levels. Finally, successful treatment resulted in significantly lower levels of serum S100A8/A9. Our study indicates that synovial activation rapidly drives anti-inflammatory and protective effects of intra-articularly deposited ASCs in experimental OA which is reflected by decreased S100A8/A9 levels. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Amyloid and metabolic PET imaging of cognitively normal adults with Alzheimer’s parents

    PubMed Central

    Mosconi, Lisa; Rinne, Juha O.; Tsui, Wai H.; Murray, John; Li, Yi; Glodzik, Lidia; McHugh, Pauline; Williams, Schantel; Cummings, Megan; Pirraglia, Elizabeth; Goldsmith, Stanley J.; Vallabhajosula, Shankar; Scheinin, Noora; Viljanen, Tapio; Nagren, Kjell; de Leon, Mony J.

    2012-01-01

    This study examines the relationship between fibrillar amyloid-beta (Aβ) deposition and reduced glucose metabolism, a proxy for neuronal dysfunction, in cognitively normal (NL) individuals with a parent affected by late-onset Alzheimer’s disease (AD). Forty-seven 40–80 year-old NL received Positron Emission Tomography (PET) with 11C-Pittsburgh Compund B (PiB) and 18F-fluorodeoxyglucose (FDG). These included 19 NL with a maternal history (MH), 12 NL with a paternal history (PH), and 16 NL with negative family history of AD (NH). Automated regions-of-interest, statistical parametric mapping, voxel-wise inter-modality correlations and logistic regressions were used to examine cerebral-to-cerebellar PiB and FDG standardized uptake value ratios across groups. The MH group showed higher PiB retention and lower metabolism in AD-regions compared to NH and PH, which were negatively correlated in posterior cingulate, frontal and parieto-temporal regions (Pearson r≤−0.57, P≤0.05). No correlations were observed in NH and PH. The combination of Aβ deposition and metabolism yielded accuracy ≥69% for MH vs NH and ≥71% for MH vs PH, with relative risk =1.9–5.1 (P’s≤0.005). NL with AD-affected mothers show co-occurring Aβ increases and hypometabolism in AD-vulnerable regions, suggesting an increased risk for AD. PMID:22503001

  20. Total physical activity volume, physical activity intensity, and metabolic syndrome: 1999-2004 National Health and Nutrition Examination Survey.

    PubMed

    Churilla, James R; Fitzhugh, Eugene C

    2012-02-01

    This study examined the association of total physical activity volume (TPAV) and physical activity (PA) from three domains [leisure-time physical activity (LTPA), domestic, transportation] with metabolic syndrome. We also investigated the relationship between LTPA intensity and metabolic syndrome risk. Sample included adults who participated in the 1999-2004 National Health and Nutrition Examination Survey. Physical activity measures were created for TPAV, LTPA, domestic PA, and transportational PA. For each, a six-level measure based upon no PA (level 1) and quintiles (levels 2-6) of metabolic equivalents (MET)·min·wk(-1) was created. A three-level variable associated with the current Department of Health and Human Services (DHHS) PA recommendation was also created. SAS and SUDAAN were used for the statistical analysis. Adults reporting the greatest volume of TPAV and LTPA were found to be 36% [odds ratio (OR) 0.64; 95% confidence interval (CI) 0.49-0.83] and 42% (OR 0.58; 95% CI 0.43-0.77), respectively, less likely to have metabolic syndrome. Domestic and transportational PA provided no specific level of protection from metabolic syndrome. Those reporting a TPAV that met the DHHS PA recommendation were found to be 33% (OR 0.67; 95%; CI 0.55-0.83) less likely to have metabolic syndrome compared to their sedentary counterparts. Adults reporting engaging in only vigorous-intensity LTPA were found to be 37% (OR 0.63; 95 CI 0.42-0.96) to 56% (OR 0.44; 95% CI 0.29-0.67) less likely to have metabolic syndrome. Volume, intensity, and domain of PA may all play important roles in reducing the prevalence and risk of metabolic syndrome.

  1. Tetraspanin CD9 modulates human lymphoma cellular proliferation via histone deacetylase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herr, Michael J.; Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163; Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163

    2014-05-16

    Highlights: • CD9 is differentially expressed in human Burkitt’s lymphoma cells. • We found that CD9 expression promotes these cells proliferation. • CD9 expression also increases HDAC activity. • HDAC inhibition decreased both cell proliferation and importantly CD9 expression. • CD9 may dictate HDAC efficacy and play a role in HDAC regulation. - Abstract: Non-Hodgkin Lymphoma (NHL) is a type of hematological malignancy that affects two percent of the overall population in the United States. Tetraspanin CD9 is a cell surface protein that has been thoroughly demonstrated to be a molecular facilitator of cellular phenotype. CD9 expression varies in twomore » human lymphoma cell lines, Raji and BJAB. In this report, we investigated the functional relationship between CD9 and cell proliferation regulated by histone deacetylase (HDAC) activity in these two cell lines. Introduction of CD9 expression in Raji cells resulted in significantly increased cell proliferation and HDAC activity compared to Mock transfected Raji cells. The increase in CD9–Raji cell proliferation was significantly inhibited by HDAC inhibitor (HDACi) treatment. Pretreatment of BJAB cells with HDAC inhibitors resulted in a significant decrease in endogenous CD9 mRNA and cell surface expression. BJAB cells also displayed decreased cell proliferation after HDACi treatment. These results suggest a significant relationship between CD9 expression and cell proliferation in human lymphoma cells that may be modulated by HDAC activity.« less

  2. BRAIN FUEL METABOLISM, AGING AND ALZHEIMER’S DISEASE

    PubMed Central

    Cunnane, SC; Nugent, S; Roy, M; Courchesne-Loyer, A; Croteau, E; Tremblay, S; Castellano, A; Pifferi, F; Bocti, C; Paquet, N; Begdouri, H; Bentourkia, M; Turcotte, E; Allard, M; Barberger-Gateau, P; Fulop, T; Rapoport, S

    2012-01-01

    Lower brain glucose metabolism is present before the onset of clinically-measurable cognitive decline in two groups of people at risk of Alzheimer’s disease (AD) - carriers of apoE4, and in those with a maternal family history of AD. Supported by emerging evidence from in vitro and animal studies, these reports suggest that brain hypometabolism may precede and contribute to the neuropathological cascade leading cognitive decline in AD. The reason for brain hypometabolism is unclear but may include defects in glucose transport at the blood-brain barrier, glycolysis, and/or mitochondrial function. Methodological issues presently preclude knowing with certainty whether or not aging in the absence of cognitive impairment is necessarily associated with lower brain glucose metabolism. Nevertheless, aging appears to increase the risk of deteriorating systemic control of glucose utilization which, in turn, may increase the risk of declining brain glucose uptake, at least in some regions. A contributing role of deteriorating glucose availability to or metabolism by the brain in AD does not exclude the opposite effect, i.e. that neurodegenerative processes in AD further decrease brain glucose metabolism because of reduced synaptic functionality and, hence, reduced energy needs, thereby completing a vicious cycle. Strategies to reduce the risk of AD by breaking this cycle should aim to – (i) improve insulin sensitivity by improving systemic glucose utilization, or (ii) bypass deteriorating brain glucose metabolism using approaches that safely induce mild, sustainable ketonemia. PMID:21035308

  3. S100A8/A9 regulates MMP-2 expression and invasion and migration by carcinoma cells.

    PubMed

    Silva, Emmanuel J; Argyris, Prokopios P; Zou, Xianqiong; Ross, Karen F; Herzberg, Mark C

    2014-10-01

    Intracellular calprotectin (S100A8/A9) functions in the control of the cell cycle checkpoint at G2/M. Dysregulation of S100A8/A9 appears to cause loss of the checkpoint, which frequently characterizes head and neck squamous cell carcinoma (HNSCC). In the present study, we analyzed carcinoma cells for other S100A8/A9-directed changes in malignant phenotype. Using a S100A8/A9-negative human carcinoma cell line (KB), transfection to express S100A8 and S100A9 caused selective down-regulation of MMP-2 and inhibited in vitro invasion and migration. Conversely, silencing of endogenous S100A8 and S100A9 expression in TR146 cells, a well-differentiated HNSCC cell line, increased MMP-2 activity and in vitro invasion and migration. When MMP-2 expression was silenced, cells appeared to assume a less malignant phenotype. To more closely model the architecture of cell growth in vivo, cells were grown in a 3D collagen substrate, which was compared to 2D. Growth on 3D substrates caused greater MMP-2 expression. Whereas hypermethylation of CpG islands occurs frequently in HNSCC, S100A8/A9-dependent regulation of MMP-2 could not be explained by modification of the upstream promoters of MMP2 or TIMP2. Collectively, these results suggest that intracellular S100A8/A9 contributes to the cancer cell phenotype by modulating MMP-2 expression and activity to regulate cell migration and mobility. Published by Elsevier Ltd.

  4. S100A8/A9 regulates MMP-2 expression and invasion and migration by carcinoma cells

    PubMed Central

    Silva, Emmanuel J.; Argyris, Prokopios P.; Zou, Xianqiong; Ross, Karen F.; Herzberg, Mark C.

    2014-01-01

    Intracellular calprotectin (S100A8/A9) functions in the control of the cell cycle checkpoint at G2/M. Dysregulation of S100A8/A9 appears to cause loss of the checkpoint, which frequently characterizes head and neck squamous cell carcinoma (HNSCC). In the present study, we analyzed carcinoma cells for other S100A8/A9-directed changes in malignant phenotype. Using a S100A8/A9-negative human carcinoma cell line (KB), transfection to express S100A8 and S100A9 caused selective down-regulation of MMP-2 and inhibited in vitro invasion and migration. Conversely, silencing of endogenous S100A8 and S100A9 expression in TR146 cells, a well-differentiated HNSCC cell line, increased MMP-2 activity and in vitro invasion and migration. When MMP-2 expression was silenced, cells appeared to assume a less malignant phenotype. To more closely model the architecture of cell growth in vivo, cells were grown in a 3D collagen substrate, which was compared to 2D. Growth on 3D substrates caused greater MMP-2 expression. Whereas hypermethylation of CpG islands occurs frequently in HNSCC, S100A8/A9-dependent regulation of MMP-2 could not be explained by modification of the upstream promoters of MMP2 or TIMP2. Collectively, these results suggest that intracellular S100A8/A9 contributes to the cancer cell phenotype by modulating MMP-2 expression and activity to regulate cell migration and mobility. PMID:25236491

  5. (13)C-metabolic flux analysis in S-adenosyl-L-methionine production by Saccharomyces cerevisiae.

    PubMed

    Hayakawa, Kenshi; Kajihata, Shuichi; Matsuda, Fumio; Shimizu, Hiroshi

    2015-11-01

    S-Adenosyl-L-methionine (SAM) is a major biological methyl group donor, and is used as a nutritional supplement and prescription drug. Yeast is used for the industrial production of SAM owing to its high intracellular SAM concentrations. To determine the regulation mechanisms responsible for such high SAM production, (13)C-metabolic flux analysis ((13)C-MFA) was conducted to compare the flux distributions in the central metabolism between Kyokai no. 6 (high SAM-producing) and S288C (control) strains. (13)C-MFA showed that the levels of tricarboxylic acid (TCA) cycle flux in SAM-overproducing strain were considerably increased compared to those in the S228C strain. Analysis of ATP balance also showed that a larger amount of excess ATP was produced in the Kyokai 6 strain because of increased oxidative phosphorylation. These results suggest that high SAM production in Kyokai 6 strains could be attributed to enhanced ATP regeneration with high TCA cycle fluxes and respiration activity. Thus, maintaining high respiration efficiency during cultivation is important for improving SAM production. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Gender-specific differences in the incidence of microalbuminuria in metabolic syndrome patients after treatment with fimasartan: The K-MetS study

    PubMed Central

    Kim, Su-A; Sung, Ki-Chul; Kim, Jang Young

    2017-01-01

    Background The effect of resolving metabolic syndrome on target organ damage in hypertensive patients is not well described. We evaluated whether treating metabolic syndrome (MetS) with an angiotensin receptor blocker subsequently reduced microalbuminuria in the K-MetS cohort. Methods Among 10,601 total metabolic syndrome patients, 3,250 (52.2% male, 56.2±10.0 years) with sufficient data on five specific metabolic components were included in this study. Patients were divided into four groups based on MetS status at baseline and 3 months. All patients received an angiotensin receptor blocker, fimasartan, for these 3 months; thereafter, treatment was modified at the discretion of each patient’s physician. Microalbuminuria and the albumin/creatine ratio were evaluated as a proxy of organ damage. Results Blood pressure and waist circumference decreased from baseline to 3 months and 1 year. The average albumin/creatinine ratio significantly improved during the first three months of the study from 36.0±147.4 to 21.0±74.9 mg/g (p<0.05) and was persistently high in patients with MetS at baseline and 3 months versus other groups. Women in comparison with men showed significantly lower ACR among patients with newly developed MetS at 3-month. Conclusions Treatment of hypertensive patients for one year with the angiotensin receptor blocker fimasartan significantly reduced the albumin/creatine ratio, irrespective of whether the patient had MetS; however, the albumin/creatinine ratio was significantly higher in patents with persistent or newly developed MetS compared to patients without MetS. Additionally, these findings were more prominent in women than in men. PMID:29261715

  7. The effect of Nullomer-derived peptides 9R, 9S1R and 124R on the NCI-60 panel and normal cell lines.

    PubMed

    Alileche, Abdelkrim; Hampikian, Greg

    2017-08-09

    Nullomer peptides are the smallest sequences absent from databases of natural proteins. We first began compiling a list of absent 5-amino acid strings in 2006 (1). We report here the effects of Nullomer-derived peptides 9R, 9S1R and 124R on the NCI-60 panel, derived from human cancers of 9 organs (kidney, ovary, skin melanoma, lung, brain, lung, colon, prostate and the hematopoietic system), and four normal cell lines (endothelial HUVEC, skin fibroblasts BJ, colon epithelial FHC and normal prostate RWPE-1). NCI-60 cancer cell panel and four normal cell lines were cultured in vitro in RPMI1640 supplemented with 10% Hyclone fetal bovine serum and exposed for 48 h to 5 μM, 25 μM and 50 μM of peptides 9R, 9S1R and 124R. Viability was assessed by CCK-8 assay. For peptide ATP depletion effects, one cell line representing each organ in the NCI-60 panel, and four normal cell lines were exposed to 50 μM of peptides 9R, 9S1R and 124R for 3 h. The ATP content was assessed in whole cells, and their supernatants. Peptides 9S1R and 9R are respectively lethal to 95 and 81.6% of the 60 cancer cell lines tested. Control peptide 124R has no effect on the growth of these cells. Especially interesting the fact that peptides 9R and 9S1R are capable of killing drug-resistant and hormone-resistant cell lines, and even cancer stem cells. Peptides 9R and 9S1R have a broader activity spectrum than many cancer drugs in current use, can completely deplete cellular ATP within 3 h, and are less toxic to 3 of the 4 normal cell lines tested than they are to several cancers. Nullomer peptides 9R and 9S1R have a large broad lethal effect on cancer cell lines derived from nine organs represented in the NCI-60 panel. This broad activity crosses many of the categorical divisions used in the general classification of cancers: solid vs liquid cancers, drug sensitive vs drug resistant, hormone sensitive vs hormone resistant, cytokine sensitive vs cytokine non sensitive, slow growing vs rapid

  8. Attenuated activation of macrophage TLR9 by DNA from virulent mycobacteria.

    PubMed

    Kiemer, Alexandra K; Senaratne, Ryan H; Hoppstädter, Jessica; Diesel, Britta; Riley, Lee W; Tabeta, Koichi; Bauer, Stefan; Beutler, Bruce; Zuraw, Bruce L

    2009-01-01

    Alveolar macrophages are the first line of host defence against mycobacteria, but an insufficient host response allows survival of bacteria within macrophages. We aimed to investigate the role of Toll-like receptor 9 (TLR9) activation in macrophage defence against mycobacteria. Human in vitro differentiated macrophages as well as human and mouse alveolar macrophages showed TLR9 mRNA and protein expression. The cells were markedly activated by DNA isolated from attenuated mycobacterial strains (H37Ra and Mycobacterium bovis BCG) as assessed by measuring cytokine expression by real-time PCR, whereas synthetic phosphorothioate-modified oligonucleotides had a much lower potency to activate human macrophages. Intracellular replication of H37Ra was higher in macrophages isolated from TLR9-deficient mice than in macrophages from wild-type mice, whereas H37Rv showed equal survival in cells from wild-type or mutant mice. Increased bacterial survival in mouse macrophages was accompanied by altered cytokine production as determined by Luminex bead assays. In vivo infection experiments also showed differential cytokine production in TLR9-deficient mice compared to wild-type animals. Both human monocyte-derived macrophages as well as human alveolar macrophages showed reduced activation upon treatment with DNA isolated from bacteria from virulent (M. bovis and H37Rv) compared to attenuated mycobacteria. We suggest attenuated TLR9 activation contributes to the insufficient host response against virulent mycobacteria. Copyright 2008 S. Karger AG, Basel.

  9. Hydroquinone stimulates cell invasion through activator protein-1-dependent induction of MMP-9 in HepG2 human hepatoma cells.

    PubMed

    Yu, Mi-Hee; Lee, Syng-Ook

    2016-03-01

    Hydroquinone (HQ) is a well-known environmental carcinogen and exposure of humans to HQ can also occur through plant foods, cosmetics, and tobacco products. Although liver is a major organ metabolizing HQ and susceptible to its toxicity, role of HQ in metastatic progression of human hepatocellular carcinoma (HCC) remains unclear. In this study, we examined the effect of HQ on the invasion of HCC cells and its underlying molecular mechanisms. HQ strongly induced matrix metalloproteinase-9 (MMP-9) expression and secretion in HepG2 human hepatoma cells, which were well correlated with increased cell invasion. Mechanistic studies further demonstrated that HQ induced transcriptional activity of MMP-9 gene by activating activator protein-1 (AP-1), the well-known key element mediating MMP-9 gene expression, via MAP kinase (MAPK) signaling pathways. These results suggest that HQ may promote metastatic progression of HCC, although data on in vivo hydroquinone exposure and risk for HCC are contradictory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Long-term effect of yogic practices on diurnal metabolic rates of healthy subjects

    PubMed Central

    Chaya, M S; Nagendra, H R

    2008-01-01

    Background: The metabolic rate is an indicator of autonomic activity. Reduced sympathetic arousal probably resulting in hypometabolic states has been reported in several yogic studies. Aim: The main objective of this study was to assess the effect of yoga training on diurnal metabolic rates in yoga practitioners at two different times of the day (at 6 a.m. and 9 p.m.). Materials and Methods: Eighty eight healthy volunteers were selected and their metabolic rates assessed at 6 a.m. and 9 p.m. using an indirect calorimeter at a yoga school in Bangalore, India. Results and conclusions: The results show that the average metabolic rate of the yoga group was 12% lower than that of the non-yoga group (P < 0.001) measured at 9 p.m. and 16% lower at 6 a.m. (P < 0.001). The 9 p.m. metabolic rates of the yoga group were almost equal to their predicted basal metabolic rates (BMRs) whereas the metabolic rate was significantly higher than the predicted BMR for the non-yoga group. The 6 a.m. metabolic rate was comparable to their predicted BMR in the non-yoga group whereas it was much lower in the yoga group (P < 0.001). The lower metabolic rates in the yoga group at 6 a.m. and 9 p.m. may be due to coping strategies for day-to-day stress, decreased sympathetic nervous system activity and probably, a stable autonomic nervous system response (to different stressors) achieved due to training in yoga. PMID:21829281

  11. Activity syndromes and metabolism in giant deep-sea isopods

    NASA Astrophysics Data System (ADS)

    Wilson, Alexander D. M.; Szekeres, Petra; Violich, Mackellar; Gutowsky, Lee F. G.; Eliason, Erika J.; Cooke, Steven J.

    2017-03-01

    Despite growing interest, the behavioural ecology of deep-sea organisms is largely unknown. Much of this scarcity in knowledge can be attributed to deepwater animals being secretive or comparatively 'rare', as well as technical difficulties associated with accessing such remote habitats. Here we tested whether two species of giant marine isopod (Bathynomus giganteus, Booralana tricarinata) captured from 653 to 875 m in the Caribbean Sea near Eleuthera, The Bahamas, exhibited an activity behavioural syndrome across two environmental contexts (presence/absence of food stimulus) and further whether this syndrome carried over consistently between sexes. We also measured routine metabolic rate and oxygen consumption in response to a food stimulus in B. giganteus to assess whether these variables are related to individual differences in personality. We found that both species show an activity syndrome across environmental contexts, but the underlying mechanistic basis of this syndrome, particularly in B. giganteus, is unclear. Contrary to our initial predictions, neither B. giganteus nor B. tricarinata showed any differences between mean expression of behavioural traits between sexes. Both sexes of B. tricarinata showed strong evidence of an activity syndrome underlying movement and foraging ecology, whereas only male B. giganteus showed evidence of an activity syndrome. Generally, individuals that were more active and bolder, in a standard open arena test were also more active when a food stimulus was present. Interestingly, individual differences in metabolism were not related to individual differences in behaviour based on present data. Our study provides the first measurements of behavioural syndromes and metabolism in giant deep-sea isopods.

  12. Molecular Interface of S100A8 with Cytochrome b558 and NADPH Oxidase Activation

    PubMed Central

    Berthier, Sylvie; Hograindleur, Marc-André; Paclet, Marie-Hélène; Polack, Benoît; Morel, Françoise

    2012-01-01

    S100A8 and S100A9 are two calcium binding Myeloid Related Proteins, and important mediators of inflammatory diseases. They were recently introduced as partners for phagocyte NADPH oxidase regulation. However, the precise mechanism of their interaction remains elusive. We had for aim (i) to evaluate the impact of S100 proteins on NADPH oxidase activity; (ii) to characterize molecular interaction of either S100A8, S100A9, or S100A8/S100A9 heterocomplex with cytochrome b 558; and (iii) to determine the S100A8 consensus site involved in cytochrome b 558/S100 interface. Recombinant full length or S100A9-A8 truncated chimera proteins and ExoS-S100 fusion proteins were expressed in E. coli and in P. aeruginosa respectively. Our results showed that S100A8 is the functional partner for NADPH oxidase activation contrary to S100A9, however, the loading with calcium and a combination with phosphorylated S100A9 are essential in vivo. Endogenous S100A9 and S100A8 colocalize in differentiated and PMA stimulated PLB985 cells, with Nox2/gp91phox and p22phox. Recombinant S100A8, loaded with calcium and fused with the first 129 or 54 N-terminal amino acid residues of the P. aeruginosa ExoS toxin, induced a similar oxidase activation in vitro, to the one observed with S100A8 in the presence of S100A9 in vivo. This suggests that S100A8 is the essential component of the S100A9/S100A8 heterocomplex for oxidase activation. In this context, recombinant full-length rS100A9-A8 and rS100A9-A8 truncated 90 chimera proteins as opposed to rS100A9-A8 truncated 86 and rS100A9-A8 truncated 57 chimeras, activate the NADPH oxidase function of purified cytochrome b 558 suggesting that the C-terminal region of S100A8 is directly involved in the molecular interface with the hemoprotein. The data point to four strategic 87HEES90 amino acid residues of the S100A8 C-terminal sequence that are involved directly in the molecular interaction with cytochrome b558 and then in the phagocyte NADPH oxidase

  13. Differences in physical activity domains, guideline adherence, and weight history between metabolically healthy and metabolically abnormal obese adults: a cross-sectional study.

    PubMed

    Kanagasabai, Thirumagal; Thakkar, Niels A; Kuk, Jennifer L; Churilla, James R; Ardern, Chris I

    2015-05-16

    Despite the accepted health consequences of obesity, emerging research suggests that a significant segment of adults with obesity are metabolically healthy (MHO). To date, MHO individuals have been shown to have higher levels of physical activity (PA), but little is known about the importance of PA domains or the influence of weight history compared to their metabolically abnormal (MAO) counterpart. To evaluate the relationship between PA domains, PA guideline adherence, and weight history on MHO. Pooled cycles of the National Health and Nutritional Examination Survey (NHANES) 1999-2006 (≥20 y; BMI ≥ 30 kg/m(2); N = 2,753) and harmonized criteria for metabolic syndrome (MetS) were used. Participants were categorized as "inactive" (no reported PA), "somewhat active" (>0 to < 500 metabolic equivalent (MET) min/week), and "active" (PA guideline adherence, ≥ 500 MET min/week) according to each domain of PA (total, recreational, transportation and household). Logistic and multinomial regressions were modelled for MHO and analyses were adjusted for age, sex, education, ethnicity, income, smoking and alcohol intake. Compared to MAO, MHO participants were younger, had lower BMI, and were more likely to be classified as active according to their total and recreational PA level. Based on total PA levels, individuals who were active had a 70% greater likelihood of having the MHO phenotype (OR = 1.70, 95% CI: 1.19-2.43); however, once stratified by age (20-44 y; 45-59 y; and; ≥60 y), the association remained significant only amongst those aged 45-59 y. Although moderate and vigorous PA were inconsistently related to MHO following adjustment for covariates, losing ≥30 kg in the last 10 y and not gaining ≥10 kg since age 25 y were significant predictors of MHO phenotype for all PA domains, even if adherence to the PA guidelines were not met. Although PA is associated with MHO, the beneficial effects of PA may be moderated by longer-term changes in

  14. Microglia activation due to obesity programs metabolic failure leading to type two diabetes.

    PubMed

    Maldonado-Ruiz, R; Montalvo-Martínez, L; Fuentes-Mera, L; Camacho, A

    2017-03-20

    Obesity is an energy metabolism disorder that increases susceptibility to the development of metabolic diseases. Recently, it has been described that obese subjects have a phenotype of chronic inflammation in organs that are metabolically relevant for glucose homeostasis and energy. Altered expression of immune system molecules such as interleukins IL-1, IL-6, IL-18, tumor necrosis factor alpha (TNF-α), serum amyloid A (SAA), and plasminogen activator inhibitor-1 (PAI-1), among others, has been associated with the development of chronic inflammation in obesity. Chronic inflammation modulates the development of metabolic-related comorbidities like metabolic syndrome (insulin resistance, glucose tolerance, hypertension and hyperlipidemia). Recent evidence suggests that microglia activation in the central nervous system (CNS) is a priority in the deregulation of energy homeostasis and promotes increased glucose levels. This review will cover the most significant advances that explore the molecular signals during microglia activation and inflammatory stage in the brain in the context of obesity, and its influence on the development of metabolic syndrome and type two diabetes.

  15. Microglia activation due to obesity programs metabolic failure leading to type two diabetes

    PubMed Central

    Maldonado-Ruiz, R; Montalvo-Martínez, L; Fuentes-Mera, L; Camacho, A

    2017-01-01

    Obesity is an energy metabolism disorder that increases susceptibility to the development of metabolic diseases. Recently, it has been described that obese subjects have a phenotype of chronic inflammation in organs that are metabolically relevant for glucose homeostasis and energy. Altered expression of immune system molecules such as interleukins IL-1, IL-6, IL-18, tumor necrosis factor alpha (TNF-α), serum amyloid A (SAA), and plasminogen activator inhibitor-1 (PAI-1), among others, has been associated with the development of chronic inflammation in obesity. Chronic inflammation modulates the development of metabolic-related comorbidities like metabolic syndrome (insulin resistance, glucose tolerance, hypertension and hyperlipidemia). Recent evidence suggests that microglia activation in the central nervous system (CNS) is a priority in the deregulation of energy homeostasis and promotes increased glucose levels. This review will cover the most significant advances that explore the molecular signals during microglia activation and inflammatory stage in the brain in the context of obesity, and its influence on the development of metabolic syndrome and type two diabetes. PMID:28319103

  16. Impact of a community based health-promotion programme in 2- to 9-year-old children in Europe on markers of the metabolic syndrome, the IDEFICS study.

    PubMed

    Mårild, S; Russo, P; Veidebaum, T; Tornaritis, M; De Henauw, S; De Bourdeaudhuij, I; Molnár, D; Moreno, L A; Bramsved, R; Peplies, J; Ahrens, W

    2015-12-01

    One objective of 'Identification and prevention of Dietary-and lifestyle-induced health EFfects In Children and infantS', the IDEFICS study, was to implement a community-oriented childhood obesity prevention intervention in eight European countries. To assess the effect of an obesity primary prevention programme on metabolic markers. The study had a non-randomized cluster-experimental design. In each country, children were recruited from distinct communities serving as intervention and control regions. Health examinations were done during 2007-2008 before the intervention (T0 ) and during 2009-2010 (T1 ). Children with results available from T0 and T1 on blood pressure, waist circumference and at least one blood-marker (fasting glucose, insulin, HOMA-IR, HbA1c, HDL- and LDL-cholesterol, triglycerides, C-reactive protein) were included. A metabolic syndrome (MetS) score was calculated. A total of 7,406 children (age 2-9.9 years) of the 16,228 participating at T0 provided the necessary data. No effect of the intervention was seen on insulin, HOMA-IR, CRP or the MetS score. Overall fasting glucose increased less in the intervention than in the control region, a pattern driven by three of the eight countries and more pronounced in children of parents with low education. Overall, HbA1c and waist circumference increased more and blood pressure less in the intervention regions. We observed no convincing effect of the intervention on markers of the metabolic syndrome. We identified diverse patterns of change for several markers of uncertain relation to the intervention. © 2015 World Obesity.

  17. TIMP-1 resistant matrix metalloproteinase-9 is the predominant serum active isoform associated with MRI activity in patients with multiple sclerosis.

    PubMed

    Trentini, Alessandro; Manfrinato, Maria C; Castellazzi, Massimiliano; Tamborino, Carmine; Roversi, Gloria; Volta, Carlo A; Baldi, Eleonora; Tola, Maria R; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Fainardi, Enrico

    2015-08-01

    The activity of matrix metalloproteinase-9 (MMP-9) depends on two isoforms, an 82 kDa active MMP-9 modulated by its specific tissue inhibitor (TIMP-1), and a 65 kDa TIMP-1 resistant active MMP-9. The relevance of these two enzymatic isoforms in multiple sclerosis (MS) is still unknown. To investigate the contribution of the TIMP-1 modulated and resistant active MMP-9 isoforms to MS pathogenesis. We measured the serum levels of the 82 kDa and TIMP-1 resistant active MMP-9 isoforms by activity assay systems in 86 relapsing-remitting MS (RRMS) patients, categorized according to clinical and magnetic resonance imaging (MRI) evidence of disease activity, and in 70 inflammatory (OIND) and 69 non-inflammatory (NIND) controls. Serum levels of TIMP-1 resistant MMP-9 were more elevated in MS patients than in OIND and NIND (p < 0.05, p < 0.02, respectively). Conversely, 82 kDa active MMP-9 was higher in NIND than in the OIND and MS patients (p < 0.01 and p < 0.00001, respectively). MRI-active patients had higher levels of TIMP-1 resistant MMP-9 and 82 kDa active MMP-9, than did those with MRI inactive MS (p < 0.01 and p < 0.05, respectively). Our findings suggested that the TIMP-1 resistant MMP-9 seem to be the predominantly active isoform contributing to MS disease activity. © The Author(s), 2015.

  18. Effective Presentation of Metabolic Rate Information for Lunar Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Mackin, Michael A.; Gonia, Philip; Lombay-Gonzalez, Jose

    2010-01-01

    During human exploration of the lunar surface, a suited crewmember needs effective and accurate information about consumable levels remaining in their life support system. The information must be presented in a manner that supports real-time consumable monitoring and route planning. Since consumable usage is closely tied to metabolic rate, the lunar suit must estimate metabolic rate from life support sensors, such as oxygen tank pressures, carbon dioxide partial pressure, and cooling water inlet and outlet temperatures. To provide adequate warnings that account for traverse time for a crewmember to return to a safe haven, accurate forecasts of consumable depletion rates are required. The forecasts must be presented to the crewmember in a straightforward, effective manner. In order to evaluate methods for displaying consumable forecasts, a desktop-based simulation of a lunar Extravehicular Activity (EVA) has been developed for the Constellation lunar suite s life-support system. The program was used to compare the effectiveness of several different data presentation methods.

  19. Metabolic Potential and Activity in Fluids of the Coast Range Ophiolite Microbial Observatory, California, USA

    NASA Technical Reports Server (NTRS)

    Hoehler, T.; Som, S.; Schrenk, M.; McCollom, T.; Cardace, D.

    2016-01-01

    Metabolic potential and activity associated with hydrogen and carbon monoxide were characterized in fluids sampled from the the Coast Range Ophiolite Microbial Observatory (CROMO). CROMO consists of two clusters of science-dedicated wells drilled to varying depths up to 35m in the actively serpentinizing, Jurassic-age Coast Range Ophiolite of Northern California, along with a suite of pre-existing monitoring wells at the same site. Consistent with the fluid chemistry observed in other serpentinizing systems, CROMO fluids are highly alkaline, with pH up to 12.5, high in methane, with concentrations up 1600 micromolar, and low in dissolved inorganic carbon (DIC), with concentrations of 10's to 100's of micromolar. CROMO is conspicuous for fluid H2 concentrations that are consistently sub-micromolar, orders of magnitude lower than is typical of other systems. However, higher H2 concentrations (10's -100's of micromolar) at an earlier stage of fluid chemical evolution are predicted by, or consistent with: thermodynamic models for fluid chemistry based on parent rock composition equivalent to local peridotite and with water:rock ratio constrained by observed pH; the presence of magnetite at several wt% in CROMO drill cores; and concentrations of formate and carbon monoxide that would require elevated H2 if formed in equilibrium with H2 and DIC. Calculated Gibbs energy changes for reaction of H2 and CO in each of several metabolisms, across the range of fluid composition encompassed by the CROMO wells, range from bioenergetically feasible (capable of driving ATP synthesis) to thermodynamically unfavorable. Active consumption relative to killed controls was observed for both CO and H2 during incubation of fluids from the pre-existing monitoring wells; in incubations of freshly cored solids, consumption was only observed in one sample set (corresponding to the lowest pH) out of three. The specific metabolisms by which H2 and CO are consumed remain to be determined.

  20. Cpg-ODN, a TLR9 Agonist, Aggravates Myocardial Ischemia/Reperfusion Injury by Activation of TLR9-P38 MAPK Signaling.

    PubMed

    Xie, Liang; He, Songqing; Kong, Na; Zhu, Ying; Tang, Yi; Li, Jianhua; Liu, Zhengbing; Liu, Jing; Gong, Jianbin

    2018-06-19

    Toll-like receptors (TLRs) have been implicated in myocardial ischemia/ reperfusion (I/R) injury. We examined the effect of CpG-oligodeoxynucleotide (ODN) on myocardial I/R injury. Male Sprague-Dawley rats were treated with either CpG-ODN or control ODN 1 h prior to myocardial ischemia (30 min) followed by reperfusion. Rats treated with phosphate-buffered saline (PBS) served as I/R controls (n = 8/group). Infarct size was determined by 2,3,5-triphenyltetrazolium chloride and Evans blue straining. Cardiac function was examined by echocardiography before and up to 14 days after myocardial I/R. CpG-ODN administration significantly increased infarct size and reduced cardiac function and survival rate after myocardial I/R, compared to the PBS-treated I/R group. Control-ODN did not alter I/R-induced myocardial infarct size, cardiac dysfunction, and survival rate. Additionally, CpG-ODN promoted I/R-induced myocardial apoptosis and cleaved caspase-3 levels in the myocardium. CpG-ODN increased TLR9 activation and p38 phosphorylation in the myocardium. In vitro data also suggested that CpG-ODN treatment induced TLR9 activation and p38 phosphorylation. Importantly, p38 mitogen-activated protein kinase (MAPK) inhibition abolished CpG-ODN-induced cardiac injury. CpG-ODN, the TLR9 ligand, accelerates myocardial I/R injury. The mechanisms involve activation of the TLR9-p38 MAPK signaling pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taxvig, Camilla, E-mail: camta@food.dtu.dk; Olesen, Pelle Thonning; Nellemann, Christine

    2011-02-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenousmore » metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects.« less

  2. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay.

    PubMed

    Taxvig, Camilla; Olesen, Pelle Thonning; Nellemann, Christine

    2011-02-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenous metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Influence of host seed on metabolic activity by Enterobacter cloacae in the spermosphere

    USDA-ARS?s Scientific Manuscript database

    Little is known regarding the influences of nutrients released from plants on the metabolic activity of colonizing microbes. To gain a better understanding of these influences, we used bioluminescence- and oxygen consumption-based methods to compare bacterial metabolic activity expressed during col...

  4. Physical activity and sedentary behavior in metabolically healthy obese young women

    USDA-ARS?s Scientific Manuscript database

    Studies of physical activity (PA) and sedentary behavior (SB) in metabolically healthy obese (MHO) have been limited to postmenopausal white women. We sought to determine whether PA and SB differ between MHO and metabolically abnormal obese (MAO), in young black and white women....

  5. Physical Activity, Metabolic Syndrome, and Overweight in Rural Youth

    ERIC Educational Resources Information Center

    Moore, Justin B.; Davis, Catherine L.; Baxter, Suzanne Domel; Lewis, Richard D.; Yin, Zenong

    2008-01-01

    Background: Research suggests significant health differences between rural dwelling youth and their urban counterparts with relation to cardiovascular risk factors. This study was conducted to (1) determine relationships between physical activity and markers of metabolic syndrome, and (2) to explore factors relating to physical activity in a…

  6. The Association between Breakfast Skipping and Body Weight, Nutrient Intake, and Metabolic Measures among Participants with Metabolic Syndrome

    PubMed Central

    Zhang, Lijuan; Cordeiro, Lorraine S.; Liu, Jinghua; Ma, Yunsheng

    2017-01-01

    The effect of skipping breakfast on health, especially in adults, remains a controversial topic. A secondary data analysis was conducted to examine associations between breakfast eating patterns and weight loss, nutrient intake, and metabolic parameters among participants with metabolic syndrome (MetS) (n = 240). Three randomly selected 24-h dietary recalls were collected from each participant at baseline and at the one-year visit. Skipped breakfast was seen in 32.9% at baseline and in 17.4% at the one-year visit, respectively. At baseline, after adjustment for demographics and physical activity, participants who ate breakfast had a higher thiamin, niacin, and folate intake than did breakfast skippers (p < 0.05); other selected parameters including body weight, dietary quality scores, nutrient intake, and metabolic parameters showed no significant differences between the two groups (p ≥ 0.05). From baseline to one year, after adjustment for covariates, mean fat intake increased by 2.7% (95% confidence intervals (CI): −1.0, 6.5%) of total energy in breakfast skippers in comparison to the 1.2% decrease observed in breakfast eaters (95% CI: −3.4, 1.1%) (p = 0.02). Mean changes in other selected parameters showed no significant differences between breakfast skippers and eaters (p > 0.05). This study did not support the hypothesis that skipping breakfast has impact on body weight, nutrient intakes, and selected metabolic measures in participants with MetS. PMID:28420112

  7. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis.

    PubMed

    van Lent, P L E M; Grevers, L; Blom, A B; Sloetjes, A; Mort, J S; Vogl, T; Nacken, W; van den Berg, W B; Roth, J

    2008-12-01

    To study the active involvement of Myeloid-related proteins S100A8 and S100A9 in joint inflammation and cartilage destruction during antigen-induced arthritis (AIA). Joint inflammation and cartilage destruction was measured with 99mTc uptake and histology. The role of S100A8/A9 was investigated by inducing AIA in S100A9-/- mice that also lack S100A8 at protein level, or after intra-articular injection of rS100A8 in mouse knee joints. Cartilage destruction was measured using immunolocalisation of the neoepitope VDIPEN or NITEGE. mRNA levels of matrix metalloproteinases (MMPs) and cytokines were measured using reverse transcriptase (RT)-PCR. Immunisation of S100A9-/- mice with the antigen mBSA induced normal cellular and humoral responses, not different from wild type (WT) controls. However, joint swelling measured at day 3 and 7 after AIA induction was significantly lower (36 and 70%, respectively). Histologically, at day 7 AIA, cellular mass was much lower (63-80%) and proteoglycan depletion from cartilage layers was significantly reduced (between 50-95%). Cartilage destruction mediated by MMPs was absent in S100A9-/- mice but clearly present in controls. MMP3, 9 and 13 mRNA levels were significantly lowered in arthritic synovia of S100A9-/-. In vitro stimulation of macrophages by the heterodimer S100A8/A9 or S100A8 elevated mRNA levels of MMP3, 9 and in particular MMP13. Intra-articular injection of S100A8 caused prominent joint inflammation and depletion of proteoglycans at day 1. Significant upregulation of mRNA levels of S100A8/A9, cytokines (interleukin 1 (IL1)), MMPs (MMP3, MMP13 and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)4) was found in the synovium and correlated with strong upregulation of NITEGE neoepitopes within the cartilage layers. S100A8/A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis.

  8. A metabolic basis for impaired muscle force production and neuromuscular compensation during sprint cycling.

    PubMed

    Bundle, Matthew W; Ernst, Carrie L; Bellizzi, Matthew J; Wright, Seth; Weyand, Peter G

    2006-11-01

    For both different individuals and modes of locomotion, the external forces determining all-out sprinting performances fall predictably with effort duration from the burst maximums attained for 3 s to those that can be supported aerobically as trial durations extend to roughly 300 s. The common time course of this relationship suggests a metabolic basis for the decrements in the force applied to the environment. However, the mechanical and neuromuscular responses to impaired force production (i.e., muscle fatigue) are generally considered in relation to fractions of the maximum force available, or the maximum voluntary contraction (MVC). We hypothesized that these duration-dependent decrements in external force application result from a reliance on anaerobic metabolism for force production rather than the absolute force produced. We tested this idea by examining neuromuscular activity during two modes of sprint cycling with similar external force requirements but differing aerobic and anaerobic contributions to force production: one- and two-legged cycling. In agreement with previous studies, we found greater peak per leg aerobic metabolic rates [59% (+/-6 SD)] and pedal forces at VO2 peak [30% (+/-9)] during one- vs. two-legged cycling. We also determined downstroke pedal forces and neuromuscular activity by surface electromyography during 15 to 19 all-out constant load sprints lasting from 12 to 400 s for both modes of cycling. In support of our hypothesis, we found that the greater reliance on anaerobic metabolism for force production induced compensatory muscle recruitment at lower pedal forces during two- vs. one-legged sprint cycling. We conclude that impaired muscle force production and compensatory neuromuscular activity during sprinting are triggered by a reliance on anaerobic metabolism for force production.

  9. S-phenylpiracetam, a selective DAT inhibitor, reduces body weight gain without influencing locomotor activity.

    PubMed

    Zvejniece, Liga; Svalbe, Baiba; Vavers, Edijs; Makrecka-Kuka, Marina; Makarova, Elina; Liepins, Vilnis; Kalvinsh, Ivars; Liepinsh, Edgars; Dambrova, Maija

    2017-09-01

    S-phenylpiracetam is an optical isomer of phenotropil, which is a clinically used nootropic drug that improves physical condition and cognition. Recently, it was shown that S-phenylpiracetam is a selective dopamine transporter (DAT) inhibitor that does not influence norepinephrine (NE) or serotonin (5-HT) receptors. The aim of the present study was to study the effects of S-phenylpiracetam treatment on body weight gain, blood glucose and leptin levels, and locomotor activity. Western diet (WD)-fed mice and obese Zucker rats were treated daily with peroral administration of S-phenylpiracetam for 8 and 12weeks, respectively. Weight gain and plasma metabolites reflecting glucose metabolism were measured. Locomotor activity was detected in an open-field test. S-phenylpiracetam treatment significantly decreased body weight gain and fat mass increase in the obese Zucker rats and in the WD-fed mice. In addition, S-phenylpiracetam reduced the plasma glucose and leptin concentration and lowered hyperglycemia in a glucose tolerance test in both the mice and the rats. S-phenylpiracetam did not influence locomotor activity in the obese Zucker rats or in the WD-fed mice. The results demonstrate that S-phenylpiracetam reduces body weight gain and improves adaptation to hyperglycemia without stimulating locomotor activity. Our findings suggest that selective DAT inhibitors, such as S-phenylpiracetam, could be potentially useful for treating obesity in patients with metabolic syndrome with fewer adverse health consequences compared to other anorectic agents. Copyright © 2017. Published by Elsevier Inc.

  10. Substance P activates ADAM9 mRNA expression and induces α-secretase-mediated amyloid precursor protein cleavage.

    PubMed

    Marolda, R; Ciotti, M T; Matrone, C; Possenti, R; Calissano, P; Cavallaro, S; Severini, C

    2012-04-01

    Altered levels of Substance P (SP), a neuropeptide endowed with neuroprotective and anti-apoptotic properties, were found in brain areas and spinal fluid of Alzheimer's disease (AD) patients. One of the hallmarks of AD is the abnormal extracellular deposition of neurotoxic beta amyloid (Aβ) peptides, derived from the proteolytic processing of amyloid precursor protein (APP). In the present study, we confirmed, the neurotrophic action of SP in cultured rat cerebellar granule cells (CGCs) and investigated its effects on APP metabolism. Incubation with low (5 mM) potassium induced apoptotic cell death of CGCs and amyloidogenic processing of APP, whereas treatment with SP (200 nM) reverted these effects via NK1 receptors. The non-amyloidogenic effect of SP consisted of reduction of Aβ(1-42), increase of sAPPα and enhanced α-secretase activity, without a significant change in steady-state levels of cellular APP. The intracellular mechanisms whereby SP alters APP metabolism were further investigated by measuring mRNA and/or steady-state protein levels of key enzymes involved with α-, β- and γ-secretase activity. Among them, Adam9, both at the mRNA and protein level, was the only enzyme to be significantly down-regulated following the induction of apoptosis (K5) and up-regulated after SP treatment. In addition to its neuroprotective properties, this study shows that SP is able to stimulate non-amyloidogenic APP processing, thereby reducing the possibility of generation of toxic Aβ peptides in brain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Metabolic activation of amygdala, lateral septum and accumbens circuits during food anticipatory behavior.

    PubMed

    Olivo, Diana; Caba, Mario; Gonzalez-Lima, Francisco; Rodríguez-Landa, Juan F; Corona-Morales, Aleph A

    2017-01-01

    When food is restricted to a brief fixed period every day, animals show an increase in temperature, corticosterone concentration and locomotor activity for 2-3h before feeding time, termed food anticipatory activity. Mechanisms and neuroanatomical circuits responsible for food anticipatory activity remain unclear, and may involve both oscillators and networks related to temporal conditioning. Rabbit pups are nursed once-a-day so they represent a natural model of circadian food anticipatory activity. Food anticipatory behavior in pups may be associated with neural circuits that temporally anticipate feeding, while the nursing event may produce consummatory effects. Therefore, we used New Zealand white rabbit pups entrained to circadian feeding to investigate the hypothesis that structures related to reward expectation and conditioned emotional responses would show a metabolic rhythm anticipatory of the nursing event, different from that shown by structures related to reward delivery. Quantitative cytochrome oxidase histochemistry was used to measure regional brain metabolic activity at eight different times during the day. We found that neural metabolism peaked before nursing, during food anticipatory behavior, in nuclei of the extended amygdala (basolateral, medial and central nuclei, bed nucleus of the stria terminalis), lateral septum and accumbens core. After pups were fed, however, maximal metabolic activity was expressed in the accumbens shell, caudate, putamen and cortical amygdala. Neural and behavioral activation persisted when animals were fasted by two cycles, at the time of expected nursing. These findings suggest that metabolic activation of amygdala-septal-accumbens circuits involved in temporal conditioning may contribute to food anticipatory activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Comparison of the metabolic and ventilatory response to hypoxia and H2S in unsedated mice and rats.

    PubMed

    Haouzi, Philippe; Bell, Harold J; Notet, Veronique; Bihain, Bernard

    2009-07-31

    Hypoxia alters the control of breathing and metabolism by increasing ventilation through the arterial chemoreflex, an effect which, in small-sized animals, is offset by a centrally mediated reduction in metabolism and respiration. We tested the hypothesis that hydrogen sulfide (H(2)S) is involved in transducing these effects in mammals. The rationale for this hypothesis is twofold. Firstly, inhalation of a 20-80 ppm H(2)S reduces metabolism in small mammals and this effect is analogous to that of hypoxia. Secondly, endogenous H(2)S appears to mediate some of the cardio-vascular effects of hypoxia in non-mammalian species. We, therefore, compared the ventilatory and metabolic effects of exposure to 60 ppm H(2)S and to 10% O(2) in small and large rodents (20g mice and 700g rats) wherein the metabolic response to hypoxia has been shown to differ according to body mass. H(2)S and hypoxia produced profound depression in metabolic rate in the mice, but not in the large rats. The depression was much faster with H(2)S than with hypoxia. The relative hyperventilation produced by hypoxia in the mice was replaced by a depression with H(2)S, which paralleled the drop in metabolic rate. In the larger rats, ventilation was stimulated in hypoxia, with no change in metabolism, while H(2)S affected neither breathing nor metabolism. When mice were simultaneously exposed to H(2)S and hypoxia, the stimulatory effects of hypoxia on breathing were abolished, and a much larger respiratory and metabolic depression was observed than with H(2)S alone. H(2)S had, therefore, no stimulatory effect on the arterial chemoreflex. The ventilatory depression during hypoxia and H(2)S in small mammals appears to be dependent upon the ability to decrease metabolism.

  13. Vapor-Phase Atomic Layer Deposition of Co9S8 and Its Application for Supercapacitors.

    PubMed

    Li, Hao; Gao, Yuanhong; Shao, Youdong; Su, Yantao; Wang, Xinwei

    2015-10-14

    Atomic layer deposition (ALD) of cobalt sulfide (Co9S8) is reported. The deposition process uses bis(N,N'-diisopropylacetamidinato)cobalt(II) and H2S as the reactants and is able to produce high-quality Co9S8 films with an ideal layer-by-layer ALD growth behavior. The Co9S8 films can also be conformally deposited into deep narrow trenches with aspect ratio of 10:1, which demonstrates the high promise of this ALD process for conformally coating Co9S8 on high-aspect-ratio 3D nanostructures. As Co9S8 is a highly promising electrochemical active material for energy devices, we further explore its electrochemical performance by depositing Co9S8 on porous nickel foams for supercapacitor electrodes. Benefited from the merits of ALD for making high-quality uniform thin films, the ALD-prepared electrodes exhibit remarkable electrochemical performance, with high specific capacitance, great rate performance, and long-term cyclibility, which highlights the broad and promising applications of this ALD process for energy-related electrochemical devices, as well as for fabricating complex 3D nanodevices in general.

  14. Cognition, glucose metabolism and amyloid burden in Alzheimer’s disease

    PubMed Central

    Furst, Ansgar J.; Rabinovici, Gil D.; Rostomian, Ara H.; Steed, Tyler; Alkalay, Adi; Racine, Caroline; Miller, Bruce L.; Jagust, William J.

    2010-01-01

    We investigated relationships between glucose metabolism, amyloid load and measures of cognitive and functional impairment in Alzheimer’s disease (AD). Patients meeting criteria for probable AD underwent [11C]PIB and [18F]FDG PET imaging and were assessed on a set of clinical measures. PIB Distribution volume ratios and FDG scans were spatially normalized and average PIB counts from regions-of-interest (ROI) were used to compute a measure of global PIB uptake. Separate voxel-wise regressions explored local and global relationships between metabolism, amyloid burden and clinical measures. Regressions reflected cognitive domains assessed by individual measures, with visuospatial tests associated with more posterior metabolism, and language tests associated with metabolism in the left hemisphere. Correlating regional FDG uptake with these measures confirmed these findings. In contrast, no correlations were found between either voxel-wise or regional PIB uptake and any of the clinical measures. Finally, there were no associations between regional PIB and FDG uptake. We conclude that regional and global amyloid burden does not correlate with clinical status or glucose metabolism in AD. PMID:20417582

  15. PCSK9 at the crossroad of cholesterol metabolism and immune function during infections.

    PubMed

    Paciullo, Francesco; Fallarino, Francesca; Bianconi, Vanessa; Mannarino, Massimo R; Sahebkar, Amirhossein; Pirro, Matteo

    2017-09-01

    Sepsis, a complex and dynamic syndrome resulting from microbial invasion and immune system dysregulation, is associated with an increased mortality, reaching up to 35% worldwide. Cholesterol metabolism is often disturbed during sepsis, with low plasma cholesterol levels being associated with poor prognosis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes degradation of the low-density lipoprotein receptor (LDLR), thus regulating intracellular and plasma cholesterol levels. PCSK9 is often upregulated during sepsis and might have a detrimental effect on immune host response and survival. Accordingly, PCSK9 reduces lipopolysaccharide uptake and clearance by human hepatocytes. Moreover, PCSK9 upregulation exacerbates organ dysfunction and tissue inflammation during sepsis, whereas a protective effect of PCSK9 deficiency has been documented in septic patients. Although a possible detrimental impact of PCSK9 on survival has been described, some beneficial effects of PCSK9 on immune response may be hypothesized. First, PCSK9 is associated with increased plasma cholesterol levels, which might be protective during sepsis. Second, PCSK9, by stimulating LDLR degradation and inhibiting reverse cholesterol transport (RCT), might promote preferential cholesterol accumulation in macrophages and other immune cells; these events might improve lipid raft composition and augment toll-like receptor function thus supporting inflammatory response. Hence, a more clear definition of the role of PCSK9 in septic states might provide additional insight in the understanding of the sepsis-associated immune dysregulation and enhance therapeutic outcomes. © 2017 Wiley Periodicals, Inc.

  16. Specific metabolic activity of ripening bacteria quantified by real-time reverse transcription PCR throughout Emmental cheese manufacture.

    PubMed

    Falentin, Hélène; Postollec, Florence; Parayre, Sandrine; Henaff, Nadine; Le Bivic, Pierre; Richoux, Romain; Thierry, Anne; Sohier, Danièle

    2010-11-15

    Bacterial communities of fermented foods are usually investigated by culture-dependent methods. Real-time quantitative PCR (qPCR) and reverse transcription (RT)-qPCR offer new possibilities to quantify the populations present and their metabolic activity. The aim of this work was to develop qPCR and RT-qPCR methods to assess the metabolic activity and the stress level of the two species used as ripening cultures in Emmental cheese manufacture, Propionibacterium freudenreichii and Lactobacillus paracasei. Three small scale (1/100) microbiologically controlled Emmental cheeses batches were manufactured and inoculated with Lactobacillus helveticus, Streptococcus thermophilus, P. freudenreichii and L. paracasei. At 12 steps of cheese manufacture and ripening, the populations of P. freudenreichii and L. paracasei were quantified by numerations on agar media and by qPCR. 16S, tuf and groL transcript levels were quantified by RT-qPCR. Sampling was carried out in triplicate. qPCR and RT-qPCR assessments were specific, efficient and linear. The quantification limit was 10(3) copies of cells or cDNA/g of cheese. Cell quantifications obtained by qPCR gave similar results than plate count for P. freudenreichii growth and 0.5 to 1 log lower in the stationary phase. Bacterial counts and qPCR quantifications showed that L. paracasei began to grow during the pressing step while P. freudenreichii began to grow from the beginning of ripening (in the cold room). Tuf cDNA quantification results suggested that metabolic activity of L. paracasei reached a maximum during the first part of the ripening (in cold room) and decreased progressively during ripening (in the warm room). Metabolic activity of P. freudenreichii was maximum at the end of cold ripening room and was stable during the first two weeks in warm room. After lactate exhaustion (after two weeks of warm room), the number of tuf cDNA decreased reflecting reduced metabolic activity. For L. paracasei, groL cDNA were stable

  17. SLC2A9 and ZNF518B polymorphisms correlate with gout-related metabolic indices in Chinese Tibetan populations.

    PubMed

    Zhang, X Y; Geng, T T; Liu, L J; Yuan, D Y; Feng, T; Kang, L L; Jin, T B; Chen, C

    2015-08-19

    Current evidence suggests that heredity and metabolic syndrome contribute to gout progression. SLC2A9 and ZNF518B may play a role in gout progression in different populations, but no studies have focused on the Tibetan Chinese population. In this study, we determined whether variations in these 2 genes were correlated with gout-related indices in Chinese-Tibetan gout patients. We detected 6 single nucleotide polymorphisms in SLC2A9 and ZNF518B in 319 Chinese Tibetan gout patients. One-way analysis of variance was used to evaluate the polymorphisms' effects on gout based on mean serum levels of metabolism indicators. Polymorphisms in SLC2A9 and ZNF518B affected multiple risk factors related to gout development. Significant differences in serum triglyceride levels and high-density lipoprotein-cholesterol level were detected between different genotypic groups with SLC2A9 polymorphisms rs13129697 (P = 0.022), rs4447863 (P = 0.018), and rs1014290 (P = 0.045). Similarly in ZNF518B, rs3217 (P = 0.016) and rs10016022 (P = 0.046) were associated with high creatinine and glucose levels, respectively. This study is the first to investigate and identify positive correlations between SLC2A9 and ZNF518B gene polymorphisms and metabolic indices in Tibetan gout patients. We found significant evidence indicating that genetic polymorphisms affect gout-related factors in Chinese Tibetan populations.

  18. Prevalence of metabolic syndrome components in a population of bank employees from St. Petersburg, Russia.

    PubMed

    Konradi, Alexandra O; Rotar, Oxana P; Korostovtseva, Lyudmila S; Ivanenko, Viktoria V; Solntcev, Vladislav N; Anokhin, Sergei B; Bart, Victor A; Shlyakhto, Eugene V

    2011-10-01

    The aim of this study was to assess prevalence of metabolic syndrome and its components according to different criteria in the population of bank employees in St. Petersburg, Russia. A total of 1,600 office workers were screened at their working places from the Sberbank state bank in St. Petersburg. All subjects were interviewed by a special questionnaire that included personal data, smoking status, physical activity, alcohol consumption, and medical history. Anthropometry measurements, vital signs, and fasting blood samples were obtained. Serum lipids and plasma glucose were measured. In all, 1,561 responders were included in the final analysis. Hypertension (HTN) was observed in 35.2% of subjects (64% in males and 25.4% in females), abdominal obesity (AO) according to Internation Diabetes Federation (IDF) criteria in 45.6% (51.5% in males and 44.0% in females), high triglyceride levels in 28.4%, low high-density lipoprotein cholesterol (HDL-C) levels in 23.9%, and elevated fasting glucose over 5.6 mmol/L in 28.4% of subjects. AO associated with HTN was observed in 24.3%. Metabolic syndrome according to IDF criteria was diagnosed in 21.5% (17.9% in females and 34.6% in males, P<0.01), and according to Adult Treatment Panel III (ATP III) (2005) criteria in 18.8% of subjects (16.2% in females and 28.4% in males, P<0.01). The correlation between criteria was ρ(S)=0.79. Low physical activity, smoking, and alcohol abuse were associated with metabolic syndrome. Metabolic syndrome and its distinct components were very prevalent in Russian bank office workers. AO was most prevalent component for females with metabolic syndrome, whereas HTN was most prevalent for males. Coexistence of HTN and AO was the most frequent coupling of metabolic syndrome components. Unhealthy lifestyle characterized the selected group and was associated with metabolic syndrome, especially low physical activity.

  19. The Relationship Between the Metabolic Syndrome and Systolic Inter-Arm Systolic Blood Pressure Difference in Korean Adults.

    PubMed

    Yoon, Hyun; Choi, Seong Woo; Park, Jong; Ryu, So Yeon; Han, Mi Ah; Kim, Gwang Seok; Kim, Sung Gil; Oh, Hye Jong; Choi, Cheol Won

    2015-10-01

    The present study was conducted to assess the relationship between metabolic syndrome and systolic inter-arm blood pressure difference (sIAD) in Korean adults. This study included 410 adults (235 males, 175 females) who were over 30 years old and had undergone a health check from July to December in 2013. The incidence of high sIAD and metabolic syndrome were 23.4% and 23.2%, respectively. Key study results were as follows: First, the sIAD levels increased significantly with an increase in metabolic syndrome score (p<0.001), shown by sIAD levels after adjusted the variables that affect sIAD levels (age, gender, smoking, drinking, exercising, total cholesterol, and body mass index). These were 4.6±0.7 mmHg for metabolic syndrome score (MSS) 0; 5.8±0.5 mmHg for MSS 1; 6.2±0.6 mmHg for MSS 2, 9.2±0.8 mmHg for MSS 3; and 9.9±1.2 mmHg for MSS ≥4 (p<0.001). Second, the sIAD level of the metabolic syndrome group (9.3±0.7 mmHg) was significantly higher (p<0.001) than for the nonmetabolic syndrome group (5.7±0.3 mmHg). In conclusion, metabolic syndrome and an increased number of its components are associated with the sIAD levels in Korean adults.

  20. Systemic Down-Regulation of Delta-9 Desaturase Promotes Muscle Oxidative Metabolism and Accelerates Muscle Function Recovery following Nerve Injury

    PubMed Central

    Henriques, Alexandre; Lequeu, Thiebault; Rene, Frederique; Bindler, Françoise; Dirrig-Grosch, Sylvie; Oudart, Hugues; Palamiuc, Lavinia; Metz-Boutigue, Marie-Helene; Dupuis, Luc; Marchioni, Eric; Gonzalez De Aguilar, Jose-Luis; Loeffler, Jean-Philippe

    2013-01-01

    The progressive deterioration of the neuromuscular axis is typically observed in degenerative conditions of the lower motor neurons, such as amyotrophic lateral sclerosis (ALS). Neurodegeneration in this disease is associated with systemic metabolic perturbations, including hypermetabolism and dyslipidemia. Our previous gene profiling studies on ALS muscle revealed down-regulation of delta-9 desaturase, or SCD1, which is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Interestingly, knocking out SCD1 gene is known to induce hypermetabolism and stimulate fatty acid beta-oxidation. Here we investigated whether SCD1 deficiency can affect muscle function and its restoration in response to injury. The genetic ablation of SCD1 was not detrimental per se to muscle function. On the contrary, muscles in SCD1 knockout mice shifted toward a more oxidative metabolism, and enhanced the expression of synaptic genes. Repressing SCD1 expression or reducing SCD-dependent enzymatic activity accelerated the recovery of muscle function after inducing sciatic nerve crush. Overall, these findings provide evidence for a new role of SCD1 in modulating the restorative potential of skeletal muscles. PMID:23785402

  1. Metabolic activity of microorganisms in evaporites

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.; Giver, L. J.; White, M. R.; Mancinelli, R. L.

    1994-01-01

    Crystalline salt is generally considered so hostile to most forms of life that it has been used for centuries as a preservative. Here, we present evidence that prokaryotes inhabiting a natural evaporite crust of halite and gypsum are metabolically active while inside the evaporite for at least 10 months. In situ measurements demonstrated that some of these "endoevaporitic" microorganisms (probably the cyanobacterium Synechococcus Nageli) fixed carbon and nitrogen. Denitrification was not observed. Our results quantified the slow microbial activity that can occur in salt crystals. Implications of this study include the possibility that microorganisms found in ancient evaporite deposits may have been part of an evaporite community.

  2. The Inner Nuclear Membrane Is a Metabolically Active Territory that Generates Nuclear Lipid Droplets.

    PubMed

    Romanauska, Anete; Köhler, Alwin

    2018-06-13

    The inner nuclear membrane (INM) encases the genome and is fused with the outer nuclear membrane (ONM) to form the nuclear envelope. The ONM is contiguous with the endoplasmic reticulum (ER), the main site of phospholipid synthesis. In contrast to the ER and ONM, evidence for a metabolic activity of the INM has been lacking. Here, we show that the INM is an adaptable membrane territory capable of lipid metabolism. S. cerevisiae cells target enzymes to the INM that can promote lipid storage. Lipid storage involves the synthesis of nuclear lipid droplets from the INM and is characterized by lipid exchange through Seipin-dependent membrane bridges. We identify the genetic circuit for nuclear lipid droplet synthesis and a role of these organelles in regulating this circuit by sequestration of a transcription factor. Our findings suggest a link between INM metabolism and genome regulation and have potential relevance for human lipodystrophy. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Transport mechanisms of a novel antileukemic and antiviral compound 9-norbornyl-6-chloropurine.

    PubMed

    Plačková, Pavla; Hřebabecký, Hubert; Šála, Michal; Nencka, Radim; Elbert, Tomáš; Mertlíková-Kaiserová, Helena

    2015-02-01

    6-Chloropurines substituted at the position 9 with variously modified bicyclic skeletons represent promising antiviral and anticancer agents. This work aimed to investigate the transport mechanisms of 9-[(1R*,2R*,4S*)-bicyclo[2.2.1]hept-2-yl]-6-chloro-9H-purine (9-norbornyl-6-chloropurine, NCP) and their relationship to the metabolism and biological activity of the compound. Transport experiments were conducted in CCRF-CEM cells using radiolabeled compound ([(3)H]NCP). The pattern of the intracellular uptake of [(3)H]NCP in CCRF-CEM cells pointed to a combination of passive and facilitated diffusion as prevailing transport mechanisms. NCP intracellular metabolism was found to enhance its uptake by modifying NCP concentration gradient. The transport kinetics reached steady state under the conditions of MRP and MDR proteins blockade, indicating that NCP is a substrate for these efflux pumps. Their inhibition also increased the cytotoxicity of NCP. Our findings suggest that the novel nucleoside analog NCP has potential to become a new orally available antileukemic agent due to its rapid membrane permeation.

  4. Effects of a Physical Activity Program on Markers of Endothelial Dysfunction, Oxidative Stress, and Metabolic Status in Adolescents with Metabolic Syndrome

    PubMed Central

    Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham

    2012-01-01

    The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450

  5. Soil Microbial Community Structure and Metabolic Activity of Pinus elliottii Plantations across Different Stand Ages in a Subtropical Area.

    PubMed

    Wu, Zeyan; Haack, Stacey Elizabeth; Lin, Wenxiong; Li, Bailian; Wu, Linkun; Fang, Changxun; Zhang, Zhixing

    2015-01-01

    Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P

  6. Soil Microbial Community Structure and Metabolic Activity of Pinus elliottii Plantations across Different Stand Ages in a Subtropical Area

    PubMed Central

    Wu, Zeyan; Haack, Stacey Elizabeth; Lin, Wenxiong; Li, Bailian; Wu, Linkun; Fang, Changxun; Zhang, Zhixing

    2015-01-01

    Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P

  7. Associations of physical activity and sedentary behaviour with metabolic syndrome in rural Australian adults.

    PubMed

    Mitchell, Braden L; Smith, Ashleigh E; Rowlands, Alex V; Parfitt, Gaynor; Dollman, James

    2018-05-22

    Associations between objectively measured sedentary behaviour, physical activity (PA) and metabolic syndrome (MetS)-classified using three different definitions were investigated in an inactive sample of rural Australian adults. Quantitative, cross-sectional. 171 adults (50.7±12.4years) from two rural South Australian regions underwent seven-day accelerometer activity monitoring and MetS classification using the National Cholesterol Education Program, the International Diabetes Federation and the Harmonized definitions. Associations between sedentary and activity variables and MetS (adjusted for age, sex, diet and smoking status) were modelled using logistic regression. In secondary modelling, associations of sedentary and activity outcomes for each MetS definition were assessed, adjusting for other activity and sedentary variables. Prediction differences across the definitions of MetS were directly compared using Akaike's Information Criterion. Sedentary behaviour increased MetS risk, whereas light physical activity (LPA) and moderate-to-vigorous physical activity (MVPA) reduced MetS risk, irrespective of definition. In secondary models, LPA predicted MetS independently of MVPA and total sedentary time. Time spent in sedentary bouts (>30min) predicted MetS independently of MVPA and the number of sedentary bouts predicted MetS independently of LPA and MVPA. Prediction differences for MetS definitions failed to reach the critical threshold for difference (>10). This study highlights the importance of sedentary behaviour and LPA on the prevalence of MetS in an inactive sample of rural Australian adults. Studies assessing the efficacy of increasing LPA on MetS in this population are needed. Minimal predictive differences across the three MetS definitions suggest evidence from previous studies can be considered cumulative. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Diet composition and activity level of at risk and metabolically healthy obese American adults.

    PubMed

    Hankinson, Arlene L; Daviglus, Martha L; Van Horn, Linda; Chan, Queenie; Brown, Ian; Holmes, Elaine; Elliott, Paul; Stamler, Jeremiah

    2013-03-01

    Obesity often clusters with other major cardiovascular disease risk factors, yet a subset of the obese appears to be protected from these risks. Two obesity phenotypes are described, (i) "metabolically healthy" obese, broadly defined as body mass index (BMI) ≥ 30 kg/m(2) and favorable levels of blood pressure, lipids, and glucose; and (ii) "at risk" obese, BMI ≥ 30 with unfavorable levels of these risk factors. More than 30% of obese American adults are metabolically healthy. Diet and activity determinants of obesity phenotypes are unclear. We hypothesized that metabolically healthy obese have more favorable behavioral factors, including less adverse diet composition and higher activity levels than at risk obese in the multi-ethnic group of 775 obese American adults ages 40-59 years from the International Population Study on Macro/Micronutrients and Blood Pressure (INTERMAP) cohort. In gender-stratified analyses, mean values for diet composition and activity behavior variables, adjusted for age, race, and education, were compared between metabolically healthy and at risk obese. Nearly one in five (149/775 or 19%) of obese American INTERMAP participants were classified as metabolically healthy obese. Diet composition and most activity behaviors were similar between obesity phenotypes, although metabolically healthy obese women reported higher sleep duration than at risk obese women. These results do not support hypotheses that diet composition and/or physical activity account for the absence of cardiometabolic abnormalities in metabolically healthy obese. Copyright © 2012 The Obesity Society.

  9. Peroxisome Proliferator Activated Receptor A Ligands as Anticancer Drugs Targeting Mitochondrial Metabolism

    PubMed Central

    Grabacka, Maja; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2011-01-01

    Tumor cells show metabolic features distinctive from normal tissues, with characteristically enhanced aerobic glycolysis, glutaminolysis and lipid synthesis. Peroxisome proliferator activated receptor α (PPAR α) is activated by nutrients (fatty acids and their derivatives) and influences these metabolic pathways acting antagonistically to oncogenic Akt and c-Myc. Therefore PPAR α can be regarded as a candidate target molecule in supplementary anticancer pharmacotherapy as well as dietary therapeutic approach. This idea is based on hitting the cancer cell metabolic weak points through PPAR α mediated stimulation of mitochondrial fatty acid oxidation and ketogenesis with simultaneous reduction of glucose and glutamine consumption. PPAR α activity is induced by fasting and its molecular consequences overlap with the effects of calorie restriction and ketogenic diet (CRKD). CRKD induces increase of NAD+/NADH ratio and drop in ATP/AMP ratio. The first one is the main stimulus for enhanced protein deacetylase SIRT1 activity; the second one activates AMP-dependent protein kinase (AMPK). Both SIRT1 and AMPK exert their major metabolic activities such as fatty acid oxidation and block of glycolysis and protein, nucleotide and fatty acid synthesis through the effector protein peroxisome proliferator activated receptor gamma 1 α coactivator (PGC-1α). PGC-1α cooperates with PPAR α and their activities might contribute to potential anticancer effects of CRKD, which were reported for various brain tumors. Therefore, PPAR α activation can engage molecular interplay among SIRT1, AMPK, and PGC-1α that provides a new, low toxicity dietary approach supplementing traditional anticancer regimen. PMID:21133850

  10. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators

    USDA-ARS?s Scientific Manuscript database

    Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic...

  11. Two-step hydrothermal synthesis of NiCo2S4/Co9S8 nanorods on nickel foam for high energy density asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; Chen, Hongwei; He, Xin; Wang, Yiting; Xu, Zedong

    2018-03-01

    It is still a huge challenge to obtain a high-energy-density asymmetric supercapacitors and develop an active electrode material with excellent electrochemical characteristics. Although NiCo2S4 has been considered as one of the promising positive electrode materials for asymmetric supercapacitors, the electrochemical performance of the NiCo2S4-based positive electrodes is still relatively low and cannot meet the demand in the devices. Herein, NiCo2S4/Co9S8 nanorods with a large capacitance are synthesized via a simple two-step hydrothermal treatment. A high-performance asymmetric supercapacitor operating at 1.6 V is successfully assembled using the NiCo2S4/Co9S8 nanorods as positive electrode and activated carbon as negative electrode in 3 M KOH aqueous electrolyte, which demonstrates a fairly high energy density of 49.6 Wh kg-1 at a power density of 123 W kg-1, an excellent capacitance of 0.91 F cm-2 (139.42 F g-1) at current density of 1 mA cm-2 as well as a remarkable cycling stability due to the high physical strength, the large specific surface area, and the good conductivity for NiCo2S4/Co9S8 nanorods and the brilliant synergistic effect for NiCo2S4 and Co9S8 electrode materials. The as-prepared NiCo2S4/Co9S8 nanorods open up a new platform as positive electrode material for high-energy-density asymmetric supercapacitors in energy-storage.

  12. Physical Activity and Sedentary Behavior Associated with Components of Metabolic Syndrome among People in Rural China.

    PubMed

    Xiao, Jing; Shen, Chong; Chu, Min J; Gao, Yue X; Xu, Guang F; Huang, Jian P; Xu, Qiong Q; Cai, Hui

    2016-01-01

    Metabolic syndrome is prevalent worldwide and its prevalence is related to physical activity, race, and lifestyle. Little data is available for people living in rural areas of China. In this study we examined associations of physical activity and sedentary behaviors with metabolic syndrome components among people in rural China. The Nantong Metabolic Syndrome Study recruited 13,505 female and 6,997 male participants between 2007 and 2008. Data of socio-demographic characteristics and lifestyle were collected. The associations of physical activity and sedentary behaviors with metabolic syndrome components were analyzed. Prevalence of metabolic syndrome was 21.6%. It was significantly lower in men than in women. Low risks of metabolic syndrome were observed in those who did less sitting and engaged in more vigorous physical activity. The highest tertile of vigorous physical activity was associated with 15-40% decreased odds of metabolic syndrome and all of its components, except for low high-density lipoprotein cholesterol in men. Women with the highest tertile of moderate physical activity had 15-30% lower odds of central obesity, high glucose, and high triglycerides compared with those in the lowest tertile. Sitting time >42 hours per week had a 4%-12% attributable risk of metabolic syndrome, central obesity, and high triglycerides in both genders, and abnormal glucose and diastolic blood pressure in women. Sleeping for more than 8 hours per day was associated with risk of high serum glucose and lipids. Our data suggested that physical activity has a preventive effect against metabolic syndrome and all its abnormal components, and that longer sitting time and sleep duration are associated with an increased risk of metabolic syndrome components, including central obesity and high triglycerides, glucose, and diastolic blood pressure. This study could provide information for future investigation into these associations. Also, recommendations are developed to reduce

  13. Microbial metabolic activity in soil as measured by dehydrogenase determinations

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.

    1977-01-01

    The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.

  14. Metabolic capability and in situ activity of microorganisms in an oil reservoir.

    PubMed

    Liu, Yi-Fan; Galzerani, Daniela Domingos; Mbadinga, Serge Maurice; Zaramela, Livia S; Gu, Ji-Dong; Mu, Bo-Zhong; Zengler, Karsten

    2018-01-05

    Microorganisms have long been associated with oxic and anoxic degradation of hydrocarbons in oil reservoirs and oil production facilities. While we can readily determine the abundance of microorganisms in the reservoir and study their activity in the laboratory, it has been challenging to resolve what microbes are actively participating in crude oil degradation in situ and to gain insight into what metabolic pathways they deploy. Here, we describe the metabolic potential and in situ activity of microbial communities obtained from the Jiangsu Oil Reservoir (China) by an integrated metagenomics and metatranscriptomics approach. Almost complete genome sequences obtained by differential binning highlight the distinct capability of different community members to degrade hydrocarbons under oxic or anoxic condition. Transcriptomic data delineate active members of the community and give insights that Acinetobacter species completely oxidize alkanes into carbon dioxide with the involvement of oxygen, and Archaeoglobus species mainly ferment alkanes to generate acetate which could be consumed by Methanosaeta species. Furthermore, nutritional requirements based on amino acid and vitamin auxotrophies suggest a complex network of interactions and dependencies among active community members that go beyond classical syntrophic exchanges; this network defines community composition and microbial ecology in oil reservoirs undergoing secondary recovery. Our data expand current knowledge of the metabolic potential and role in hydrocarbon metabolism of individual members of thermophilic microbial communities from an oil reservoir. The study also reveals potential metabolic exchanges based on vitamin and amino acid auxotrophies indicating the presence of complex network of interactions between microbial taxa within the community.

  15. Metabolic sensor governing bacterial virulence in Staphylococcus aureus.

    PubMed

    Ding, Yue; Liu, Xing; Chen, Feifei; Di, Hongxia; Xu, Bin; Zhou, Lu; Deng, Xin; Wu, Min; Yang, Cai-Guang; Lan, Lefu

    2014-11-18

    An effective metabolism is essential to all living organisms, including the important human pathogen Staphylococcus aureus. To establish successful infection, S. aureus must scavenge nutrients and coordinate its metabolism for proliferation. Meanwhile, it also must produce an array of virulence factors to interfere with host defenses. However, the ways in which S. aureus ties its metabolic state to its virulence regulation remain largely unknown. Here we show that citrate, the first intermediate of the tricarboxylic acid (TCA) cycle, binds to and activates the catabolite control protein E (CcpE) of S. aureus. Using structural and site-directed mutagenesis studies, we demonstrate that two arginine residues (Arg145 and Arg256) within the putative inducer-binding cavity of CcpE are important for its allosteric activation by citrate. Microarray analysis reveals that CcpE tunes the expression of 126 genes that comprise about 4.7% of the S. aureus genome. Intriguingly, although CcpE is a major positive regulator of the TCA-cycle activity, its regulon consists predominantly of genes involved in the pathogenesis of S. aureus. Moreover, inactivation of CcpE results in increased staphyloxanthin production, improved ability to acquire iron, increased resistance to whole-blood-mediated killing, and enhanced bacterial virulence in a mouse model of systemic infection. This study reveals CcpE as an important metabolic sensor that allows S. aureus to sense and adjust its metabolic state and subsequently to coordinate the expression of virulence factors and bacterial virulence.

  16. Metabolic half-life of somatostatin and peptidase activities are altered in Alzheimer's disease.

    PubMed

    Weber, S J; Louis, R B; Trombley, L; Bissette, G; Davies, P; Davis, T P

    1992-01-01

    Several reports have described decreased immunoreactive somatostatin levels in specific regions of post-mortem brain tissue from patients diagnosed with senile dementia of the Alzheimer type (SDAT). In an attempt to determine if the metabolism of somatostatin is also altered as a result of SDAT, we examined the regional metabolic half-life of somatostatin-28 (SS-28) and somatostatin-14 (SS-14). The activity of the following peptidases was also determined: neutral endopeptidase E.C. 3.4.24.11; metalloendopeptidase E.C. 3.4.24.15; carboxypeptidase E (E.C. 3.4.17.10); and trypsin-like serine protease. The metabolic half-life of SS-28 was significantly reduced in post-mortem Brodmann Area 22 of SDAT tissue. This decrease in SS-28 metabolic half-life was correlated with a significant increase in trypsin-like serine protease activity in the same SDAT brain region. The formation rate of SS-14 from SS-28 incubated with Brodmann Area 22 homogenates was also increased in SDAT tissues as compared to controls. A regional variation in neutral endopeptidase E.C. 3.4.24.11 was also noted in both controls and SDAT samples. Although postmortem intervals of samples varied significantly, no effect was seen on any biochemical parameter measured. Results from this study provide evidence that a correlation can be made between changes in metabolic half-life somatostatin and alterations in neuropeptidase activities due to SDAT. As these data show alterations in both proteolytic metabolism and peptidase activities, many other biologically active peptide substrates could also be affected in SDAT.

  17. In Vitro Reconstitution of Metabolic Pathways: Insights into Nature’s Chemical Logic

    PubMed Central

    Lowry, Brian; Walsh, Christopher T.

    2015-01-01

    In vitro analysis of metabolic pathways is becoming a powerful method to gain a deeper understanding of Nature’s core biochemical transformations. With astounding advancements in biotechnology, purification of a metabolic pathway’s constitutive enzymatic components is becoming a tractable problem, and such in vitro studies allow scientists to capture the finer details of enzymatic reaction mechanisms, kinetics, and the identity of organic product molecules. In this review, we present eleven metabolic pathways that have been the subject of in vitro reconstitution studies in the literature in recent years. In addition, we have selected and analyzed subset of four case studies within these eleven examples that exemplify remarkable organic chemistry occurring within biology. These examples serves as tangible reminders that Nature’s biochemical routes obey the fundamental principles of organic chemistry, and the chemical mechanisms are reminiscent of those featured in traditional synthetic organic routes. The illustrations of biosynthetic chemistry depicted in this review may inspire the development of biomimetic chemistries via abiotic chemical techniques. PMID:26207083

  18. Occupation and metabolic syndrome: is there correlation? A cross sectional study in different work activity occupations of German firefighters and office workers.

    PubMed

    Strauß, Markus; Foshag, Peter; Przybylek, Bianca; Horlitz, Marc; Lucia, Alejandro; Sanchis-Gomar, Fabian; Leischik, Roman

    2016-01-01

    The treatment and prevention of the metabolic syndrome (MetS) is currently one of the major challenges in medicine. The impact of working conditions on metabolic risk has not been adequately studied. Our objective was to compare the prevalence of MetS and metabolic risk in two extremely different occupational groups: firefighters and office workers. A total of 143 male subjects (97 firefighters and 46 office workers) from Germany participated in the study. Anthropometric characteristics, metabolic risk parameters as well as laboratory parameters were collected. MetS was diagnosed according to criteria of the International Diabetes Federation. Sedentary occupation showed a significant tendency towards obesity. Abdominal waist circumference was significantly greater in office workers than in firefighters [5.08 CI (1.44-8.71), p = 0.007]. Concerning metabolic risk factors, abnormal HDL, triglycerides, BMI, blood pressure and waist circumference values were more frequently found in office workers than in firefighters. The MetS was detected in almost 33 % of office workers as compared with only 14 % in firefighters (p = 0.015). Regarding MetS in an international comparison, the prevalence of MetS in German office workers was high and in firefighters it was extremely low. Sedentary occupation as an office worker is associated with a high risk of MetS. Both groups need to be made aware of the metabolic risks, and health promoting concepts such as corporate sports activities or education in healthy nutrition need to be implemented to counteract the development of the MetS and cardiovascular risk factors.

  19. Mutational analysis of hepatitis B virus pre-S1 (9–24) fusogenic peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qiushi; Somiya, Masaharu; Shimada, Naohiko

    A hollow nanoparticle known as a bio-nanocapsule (BNC) consisting of hepatitis B virus (HBV) envelope L protein and liposome (LP) can encapsulate drugs and genes and thereby deliver them in vitro and in vivo to human hepatic tissues, specifically by utilizing the HBV-derived infection machinery. Recently, we identified a low pH-dependent fusogenic domain at the N-terminal part of the pre-S1 region of the HBV L protein (amino acid residues 9 to 24; NPLGFFPDHQLDPAFG), which shows membrane destabilizing activity (i.e., membrane fusion, membrane disruption, and payload release) upon interaction with target LPs. In this study, instead of BNC and HBV, we generated LPsmore » displaying a mutated form of the pre-S1 (9–24) peptide, and performed a membrane disruption assay using target LPs containing pyranine (fluorophore) and p-xylene-bis (N-pyridinium bromide) (DPX) as a quencher. The membrane disruption activity was found to correlate with the hydrophobicity of the whole structure, while the peptide retained a random-coil structure even under low pH condition. One large hydrophobic cluster (I) and one small hydrophobic cluster (II) residing in the peptide would be connected by the protonation of residues D16 and D20, and thereby exhibit strong membrane disruption activity in a low pH-dependent manner. Furthermore, the introduction of a positively charged residue enhanced the activity significantly, suggesting that a sole positively charged residue (H17) may be important for the interaction with target LPs by electrostatic interaction. Collectively, these results suggest that the pre-S1 (9–24) peptide may be involved in the endosomal escape of the BNC's payloads, as well as in the HBV uncoating process. -- Highlights: •Low pH-dependent fusogenic domain of hepatitis B virus pre-S1 region is analyzed. •The domain resides in pre-S1 (9–24) region, exhibiting random-coil structure. •Membrane disruption activity of the domain is mainly driven by its

  20. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism

    PubMed Central

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G.; Kuipers, Oscar P.; Vinga, Susana; Neves, Ana R.

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo 13C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence. PMID:26500614

  1. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism.

    PubMed

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G; Kuipers, Oscar P; Vinga, Susana; Neves, Ana R

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo (13)C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence.

  2. Pro-Inflammatory S100A8 and S100A9 Proteins: Self-Assembly into Multifunctional Native and Amyloid Complexes

    PubMed Central

    Vogl, Thomas; Gharibyan, Anna L.; Morozova-Roche, Ludmilla A.

    2012-01-01

    S100A8 and S100A9 are EF-hand Ca2+ binding proteins belonging to the S100 family. They are abundant in cytosol of phagocytes and play critical roles in numerous cellular processes such as motility and danger signaling by interacting and modulating the activity of target proteins. S100A8 and S100A9 expression levels increased in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases and they are implicated in the numerous disease pathologies. The Ca2+ and Zn2+-binding properties of S100A8/A9 have a pivotal influence on their conformation and oligomerization state, including self-assembly into homo- and heterodimers, tetramers and larger oligomers. Here we review how the unique chemical and conformational properties of individual proteins and their structural plasticity at the quaternary level account for S100A8/A9 functional diversity. Additional functional diversification occurs via non-covalent assembly into oligomeric and fibrillar amyloid complexes discovered in the aging prostate and reproduced in vitro. This process is also regulated by Ca2+and Zn2+-binding and effectively competes with the formation of the native complexes. High intrinsic amyloid-forming capacity of S100A8/A9 proteins may lead to their amyloid depositions in numerous ailments characterized by their elevated expression patterns and have additional pathological significance requiring further thorough investigation. PMID:22489132

  3. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria.

    PubMed

    Lee, Joo-Yong; Kapur, Meghan; Li, Ming; Choi, Moon-Chang; Choi, Sujin; Kim, Hak-June; Kim, Inhye; Lee, Eunji; Taylor, J Paul; Yao, Tso-Pang

    2014-11-15

    Fasting and glucose shortage activate a metabolic switch that shifts more energy production to mitochondria. This metabolic adaptation ensures energy supply, but also elevates the risk of mitochondrial oxidative damage. Here, we present evidence that metabolically challenged mitochondria undergo active fusion to suppress oxidative stress. In response to glucose starvation, mitofusin 1 (MFN1) becomes associated with the protein deacetylase HDAC6. This interaction leads to MFN1 deacetylation and activation, promoting mitochondrial fusion. Deficiency in HDAC6 or MFN1 prevents mitochondrial fusion induced by glucose deprivation. Unexpectedly, failure to undergo fusion does not acutely affect mitochondrial adaptive energy production; instead, it causes excessive production of mitochondrial reactive oxygen species and oxidative damage, a defect suppressed by an acetylation-resistant MFN1 mutant. In mice subjected to fasting, skeletal muscle mitochondria undergo dramatic fusion. Remarkably, fasting-induced mitochondrial fusion is abrogated in HDAC6-knockout mice, resulting in extensive mitochondrial degeneration. These findings show that adaptive mitochondrial fusion protects metabolically challenged mitochondria. © 2014. Published by The Company of Biologists Ltd.

  4. AMP-activated protein kinase: Role in metabolism and therapeutic implications.

    PubMed

    Schimmack, Greg; Defronzo, Ralph A; Musi, Nicolas

    2006-11-01

    AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge which becomes activated in situations of energy consumption. AMPK functions to restore cellular ATP levels by modifying diverse metabolic and cellular pathways. In the skeletal muscle, AMPK is activated during exercise and is involved in contraction-stimulated glucose transport and fatty acid oxidation. In the heart, AMPK activity increases during ischaemia and functions to sustain ATP, cardiac function and myocardial viability. In the liver, AMPK inhibits the production of glucose, cholesterol and triglycerides and stimulates fatty acid oxidation. Recent studies have shown that AMPK is involved in the mechanism of action of metformin and thiazolidinediones, and the adipocytokines leptin and adiponectin. These data, along with evidence that pharmacological activation of AMPK in vivo improves blood glucose homeostasis, cholesterol concentrations and blood pressure in insulin-resistant rodents, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes, ischaemic heart disease and other metabolic diseases.

  5. Contribution of three CYP3A isoforms to metabolism of R- and S-warfarin.

    PubMed

    Jones, Drew R; Kim, So-Young; Boysen, Gunnar; Yun, Chul-Ho; Miller, Grover P

    2010-12-01

    Effective coumadin (R/S-warfarin) therapy is complicated by inter-individual variability in metabolism. Recent studies have demonstrated that CYP3A isoforms likely contribute to patient responses and clinical outcomes. Despite a significant focus on CYP3A4, little is known about CYP3A5 and CYP3A7 metabolism of warfarin. Based on our studies, recombinant CYP3A4, CYP3A5 and CYP3A7 metabolized R- and S-warfarin to 10- and 4'-hydroxywarfarin with efficiencies that depended on the individual enzymes. For R-warfarin, CYP3A4, CYP3A7, and CYP3A5 demonstrated decreasing preference for 10-hydroxylation over 4'-hydroxylation. By contrast, there was no regioselectivity toward S-warfarin. While all enzymes preferentially metabolized R-warfarin, CYP3A4 was the most efficient at metabolizing all reactions. Individuals, namely African-Americans and children, with higher relative levels of CYP3A5 and/or CYP3A7, respectively, compared to CYP3A4 may metabolize warfarin less efficiently and thus may require lower doses and be at risk for adverse drug-drug interactions related to the contributions of the respective enzymes.

  6. Effects of Different Exercise Modes on the Urinary Metabolic Fingerprint of Men with and without Metabolic Syndrome.

    PubMed

    Siopi, Aikaterina; Deda, Olga; Manou, Vasiliki; Kellis, Spyros; Kosmidis, Ioannis; Komninou, Despina; Raikos, Nikolaos; Christoulas, Kosmas; Theodoridis, Georgios A; Mougios, Vassilis

    2017-01-26

    Exercise is important in the prevention and treatment of the metabolic syndrome (MetS), a cluster of risk factors that raises morbidity. Metabolomics can facilitate the optimization of exercise prescription. This study aimed to investigate whether the response of the human urinary metabolic fingerprint to exercise depends on the presence of MetS or exercise mode. Twenty-three sedentary men (MetS, n = 9, and Healthy, n = 14) completed four trials: resting, high-intensity interval exercise (HIIE), continuous moderate-intensity exercise (CME), and resistance exercise (RE). Urine samples were collected pre-exercise and at 2, 4, and 24 h for targeted analysis by liquid chromatography-mass spectrometry. Time exerted the strongest differentiating effect, followed by exercise mode and health status. The greatest changes were observed in the first post-exercise samples, with a gradual return to baseline at 24 h. RE caused the greatest responses overall, followed by HIIE, while CME had minimal effect. The metabolic fingerprints of the two groups were separated at 2 h, after HIIE and RE; and at 4 h, after HIIE, with evidence of blunted response to exercise in MetS. Our findings show diverse responses of the urinary metabolic fingerprint to different exercise modes in men with and without metabolic syndrome.

  7. Glutamine activates STAT3 to control cancer cell proliferation independently of glutamine metabolism

    PubMed Central

    Vazeille, Thibaut; Sonveaux, Pierre

    2016-01-01

    Cancer cells can use a variety of metabolic substrates to fulfill the bioenergetic and biosynthetic needs of their oncogenic program. Besides bioenergetics, cancer cell metabolism also directly influences genetic, epigenetic and signaling events associated with tumor progression. Many cancer cells are addicted to glutamine, and this addiction is observed in oxidative as well as in glycolytic cells. While both oxidative and bioreductive glutamine metabolism can contribute to cancer progression and glutamine can further serve to generate peptides (including glutathione) and proteins, we report that glutamine promotes the proliferation of cancer cells independently of its use as a metabolic fuel or as a precursor of glutathione. Extracellular glutamine activates transcription factor STAT3, which is necessary and sufficient to mediate the proliferative effects of glutamine in glycolytic and in oxidative cancer cells. Glutamine also activates transcription factors HIF-1, mTOR and c-Myc, but these factors do not mediate the effects of glutamine on cancer cell proliferation. Our findings shed a new light on the anticancer effects of L-asparaginase that possesses glutaminase activity and converts glutamine into glutamate extracellularly. Conversely, cancer resistance to treatments that block glutamine metabolism could arise from glutamine-independent STAT3 re-activation. PMID:27748760

  8. Glial Activation and Glucose Metabolism in a Transgenic Amyloid Mouse Model: A Triple-Tracer PET Study.

    PubMed

    Brendel, Matthias; Probst, Federico; Jaworska, Anna; Overhoff, Felix; Korzhova, Viktoria; Albert, Nathalie L; Beck, Roswitha; Lindner, Simon; Gildehaus, Franz-Josef; Baumann, Karlheinz; Bartenstein, Peter; Kleinberger, Gernot; Haass, Christian; Herms, Jochen; Rominger, Axel

    2016-06-01

    Amyloid imaging by small-animal PET in models of Alzheimer disease (AD) offers the possibility to track amyloidogenesis and brain energy metabolism. Because microglial activation is thought to contribute to AD pathology, we undertook a triple-tracer small-animal PET study to assess microglial activation and glucose metabolism in association with amyloid plaque load in a transgenic AD mouse model. Groups of PS2APP and C57BL/6 wild-type mice of various ages were examined by small-animal PET. We acquired 90-min dynamic emission data with (18)F-GE180 for imaging activated microglia (18-kD translocator protein ligand [TSPO]) and static 30- to 60-min recordings with (18)F-FDG for energy metabolism and (18)F-florbetaben for amyloidosis. Optimal fusion of PET data was obtained through automatic nonlinear spatial normalization, and SUVRs were calculated. For the novel TSPO tracer (18)F-GE180, we then calculated distribution volume ratios after establishing a suitable reference region. Immunohistochemical analyses with TSPO antisera, methoxy-X04 staining for fibrillary β-amyloid, and ex vivo autoradiography served as terminal gold standard assessments. SUVR at 60-90 min after injection gave robust quantitation of (18)F-GE180, which correlated well with distribution volume ratios calculated from the entire recording and using a white matter reference region. Relative to age-matched wild-type, (18)F-GE180 SUVR was slightly elevated in PS2APP mice at 5 mo (+9%; P < 0.01) and distinctly increased at 16 mo (+25%; P < 0.001). Over this age range, there was a high positive correlation between small-animal PET findings of microglial activation with amyloid load (R = 0.85; P < 0.001) and likewise with metabolism (R = 0.61; P < 0.005). Immunohistochemical and autoradiographic findings confirmed the in vivo small-animal PET data. In this first triple-tracer small-animal PET in a well-established AD mouse model, we found evidence for age-dependent microglial activation. This activation

  9. Physical Inactivity and Unhealthy Metabolic Status Are Associated with Decreased Natural Killer Cell Activity.

    PubMed

    Jung, Yoon Suk; Park, Jung Ho; Park, Dong Il; Sohn, Chong Il; Lee, Jae Myun; Kim, Tae Il

    2018-06-01

    Several studies have reported relationships among physical activity, healthy metabolic status, and increased natural killer (NK) cell activity. However, large-scale data thereon are lacking. Thus, the present study aimed to assess NK cell activity according to physical activity and metabolic status. A cross-sectional study was performed on 12014 asymptomatic examinees. Using a patented stimulatory cytokine, NK cell activity was quantitated by the amount of interferon-γ secreted into the plasma by NK cells. Physical activity levels were assessed using the validated Korean version of the International Physical Activity Questionnaire Short Form. The physically inactive group showed lower NK cell activity than the minimally active group (median, 1461 vs. 1592 pg/mL, p<0.001) and health-enhancing physically active group (median, 1461 vs. 1712 pg/mL, p=0.001). Compared to women with a body mass index (BMI) of 18.5-27.5 kg/m², those with a BMI <18.5 kg/m² had significantly lower NK cell activity (1356 vs. 1024 g/mL, p<0.001), and those with a BMI ≥27.5 kg/m² tended to have lower NK cell activity (1356 vs. 1119 g/mL, p=0.070). Subjects with high hemoglobin A1c levels and low high-density lipoprotein cholesterol levels, as well as men with high blood pressure and women with high triglyceride levels, exhibited lower NK cell activity. Moreover, physical inactivity and metabolic abnormalities were independently associated with low NK cell activity, even after adjusting for confounders. Physical inactivity and metabolic abnormalities are associated with reduced NK cell activity. Immune systems may become altered depending on physical activity and metabolic status. © Copyright: Yonsei University College of Medicine 2018.

  10. Differential regulation of metabolism by nitric oxide and S-nitrosothiols in endothelial cells

    PubMed Central

    Diers, Anne R.; Broniowska, Katarzyna A.; Darley-Usmar, Victor M.

    2011-01-01

    S-nitrosation of thiols in key proteins in cell signaling pathways is thought to be an important contributor to nitric oxide (NO)-dependent control of vascular (patho)physiology. Multiple metabolic enzymes are targets of both NO and S-nitrosation, including those involved in glycolysis and oxidative phosphorylation. Thus it is important to understand how these metabolic pathways are integrated by NO-dependent mechanisms. Here, we compared the effects of NO and S-nitrosation on both glycolysis and oxidative phosphorylation in bovine aortic endothelial cells using extracellular flux technology to determine common and unique points of regulation. The compound S-nitroso-l-cysteine (l-CysNO) was used to initiate intracellular S-nitrosation since it is transported into cells and results in stable S-nitrosation in vitro. Its effects were compared with the NO donor DetaNONOate (DetaNO). DetaNO treatment caused only a decrease in the reserve respiratory capacity; however, l-CysNO impaired both this parameter and basal respiration in a concentration-dependent manner. In addition, DetaNO stimulated extracellular acidification rate (ECAR), a surrogate marker of glycolysis, whereas l-CysNO stimulated ECAR at low concentrations and inhibited it at higher concentrations. Moreover, a temporal relationship between NO- and S-nitrosation-mediated effects on metabolism was identified, whereby NO caused a rapid impairment in mitochondrial function, which was eventually overwhelmed by S-nitrosation-dependent processes. Taken together, these results suggest that severe pharmacological nitrosative stress may differentially regulate metabolic pathways through both intracellular S-nitrosation and NO-dependent mechanisms. Moreover, these data provide insight into the role of NO and related compounds in vascular (patho)physiology. PMID:21685262

  11. Differential regulation of metabolism by nitric oxide and S-nitrosothiols in endothelial cells.

    PubMed

    Diers, Anne R; Broniowska, Katarzyna A; Darley-Usmar, Victor M; Hogg, Neil

    2011-09-01

    S-nitrosation of thiols in key proteins in cell signaling pathways is thought to be an important contributor to nitric oxide (NO)-dependent control of vascular (patho)physiology. Multiple metabolic enzymes are targets of both NO and S-nitrosation, including those involved in glycolysis and oxidative phosphorylation. Thus it is important to understand how these metabolic pathways are integrated by NO-dependent mechanisms. Here, we compared the effects of NO and S-nitrosation on both glycolysis and oxidative phosphorylation in bovine aortic endothelial cells using extracellular flux technology to determine common and unique points of regulation. The compound S-nitroso-L-cysteine (L-CysNO) was used to initiate intracellular S-nitrosation since it is transported into cells and results in stable S-nitrosation in vitro. Its effects were compared with the NO donor DetaNONOate (DetaNO). DetaNO treatment caused only a decrease in the reserve respiratory capacity; however, L-CysNO impaired both this parameter and basal respiration in a concentration-dependent manner. In addition, DetaNO stimulated extracellular acidification rate (ECAR), a surrogate marker of glycolysis, whereas L-CysNO stimulated ECAR at low concentrations and inhibited it at higher concentrations. Moreover, a temporal relationship between NO- and S-nitrosation-mediated effects on metabolism was identified, whereby NO caused a rapid impairment in mitochondrial function, which was eventually overwhelmed by S-nitrosation-dependent processes. Taken together, these results suggest that severe pharmacological nitrosative stress may differentially regulate metabolic pathways through both intracellular S-nitrosation and NO-dependent mechanisms. Moreover, these data provide insight into the role of NO and related compounds in vascular (patho)physiology.

  12. Oligo-carrageenan kappa increases NADPH, ascorbate and glutathione syntheses and TRR/TRX activities enhancing photosynthesis, basal metabolism, and growth in Eucalyptus trees.

    PubMed

    González, Alberto; Moenne, Fabiola; Gómez, Melissa; Sáez, Claudio A; Contreras, Rodrigo A; Moenne, Alejandra

    2014-01-01

    In order to analyze the effect of OC kappa in redox status, photosynthesis, basal metabolism and growth in Eucalyptus globulus, trees were treated with water (control), with OC kappa at 1 mg mL(-1), or treated with inhibitors of NAD(P)H, ascorbate (ASC), and glutathione (GSH) syntheses and thioredoxin reductase (TRR) activity, CHS-828, lycorine, buthionine sulfoximine (BSO), and auranofin, respectively, and with OC kappa, and cultivated for 4 months. Treatment with OC kappa induced an increase in NADPH, ASC, and GSH syntheses, TRR and thioredoxin (TRX) activities, photosynthesis, growth and activities of basal metabolism enzymes such as rubisco, glutamine synthetase (GlnS), adenosine 5'-phosphosulfate reductase (APR), involved in C, N, and S assimilation, respectively, Krebs cycle and purine/pyrimidine synthesis enzymes. Treatment with inhibitors and OC kappa showed that increases in ASC, GSH, and TRR/TRX enhanced NADPH synthesis, increases in NADPH and TRR/TRX enhanced ASC and GSH syntheses, and only the increase in NADPH enhanced TRR/TRX activities. In addition, the increase in NADPH, ASC, GSH, and TRR/TRX enhanced photosynthesis and growth. Moreover, the increase in NADPH, ASC and TRR/TRX enhanced activities of rubisco, Krebs cycle, and purine/pyrimidine synthesis enzymes, the increase in GSH, NADPH, and TRR/TRX enhanced APR activity, and the increase in NADPH and TRR/TRX enhanced GlnS activity. Thus, OC kappa increases NADPH, ASC, and GSH syntheses leading to a more reducing redox status, the increase in NADPH, ASC, GSH syntheses, and TRR/TRX activities are cross-talking events leading to activation of photosynthesis, basal metabolism, and growth in Eucalyptus trees.

  13. Identifying Metabolically Active Chemicals Using a Consensus ...

    EPA Pesticide Factsheets

    Traditional toxicity testing provides insight into the mechanisms underlying toxicological responses but requires a high investment in a large number of resources. The new paradigm of testing approaches involves rapid screening studies able to evaluate thousands of chemicals across hundreds of biological targets through use of in vitro assays. Endocrine disrupting chemicals (EDCs) are of concern due to their ability to alter neurodevelopment, behavior, and reproductive success of humans and other species. A recent integrated computational model examined results across 18 ER-related assays in the ToxCast in vitro screening program to eliminate chemicals that produce a false signal by possibly interfering with the technological attributes of an individual assay. However, in vitro assays can also lead to false negatives when the complex metabolic processes that render a chemical bioactive in a living system might be unable to be replicated in an in vitro environment. In the current study, the influence of metabolism was examined for over 1,400 chemicals considered inactive using the integrated computational model. Over 2,000 first-generation and over 4,000 second-generation metabolites were generated for the inactive chemicals using in silico techniques. Next, a consensus model comprised of individual structure activity relationship (SAR) models was used to predict ER-binding activity for each of the metabolites. Binding activity was predicted for 8-10% of the meta

  14. Metabolic plasticity in resting and thrombin activated platelets.

    PubMed

    Ravi, Saranya; Chacko, Balu; Sawada, Hirotaka; Kramer, Philip A; Johnson, Michelle S; Benavides, Gloria A; O'Donnell, Valerie; Marques, Marisa B; Darley-Usmar, Victor M

    2015-01-01

    Platelet thrombus formation includes several integrated processes involving aggregation, secretion of granules, release of arachidonic acid and clot retraction, but it is not clear which metabolic fuels are required to support these events. We hypothesized that there is flexibility in the fuels that can be utilized to serve the energetic and metabolic needs for resting and thrombin-dependent platelet aggregation. Using platelets from healthy human donors, we found that there was a rapid thrombin-dependent increase in oxidative phosphorylation which required both glutamine and fatty acids but not glucose. Inhibition of fatty acid oxidation or glutamine utilization could be compensated for by increased glycolytic flux. No evidence for significant mitochondrial dysfunction was found, and ATP/ADP ratios were maintained following the addition of thrombin, indicating the presence of functional and active mitochondrial oxidative phosphorylation during the early stages of aggregation. Interestingly, inhibition of fatty acid oxidation and glutaminolysis alone or in combination is not sufficient to prevent platelet aggregation, due to compensation from glycolysis, whereas inhibitors of glycolysis inhibited aggregation approximately 50%. The combined effects of inhibitors of glycolysis and oxidative phosphorylation were synergistic in the inhibition of platelet aggregation. In summary, both glycolysis and oxidative phosphorylation contribute to platelet metabolism in the resting and activated state, with fatty acid oxidation and to a smaller extent glutaminolysis contributing to the increased energy demand.

  15. Metabolic syndrome among overweight and obese adults in Palestinian refugee camps.

    PubMed

    Damiri, Basma; Abualsoud, Mohammed S; Samara, Amjad M; Salameh, Sakhaa K

    2018-01-01

    Metabolic syndrome (MetS) is one of the main reasons for elevated cardiovascular morbidity and mortality worldwide. Obese and overweight individuals are at high risk of developing these chronic diseases. The aim of this study was to characterize and establish sex-adjusted prevalence of metabolic syndrome and its components. A cross-sectional study was conducted in 2015, 689 (329 men and 360 women) aged 18-65 years from three refugee camps in the West Bank. International Diabetes Federation and modified National Cholesterol Education Program-Third Adult Treatment Panel definitions were used to identify MetS. The overall prevalence of obesity and overweight was high, 63.1%; Obesity (42 and 29.2% in women men; respectively and overweight 25.8 and 28.9% in women and men; respectively. The prevalence of MetS among obese and overweight was significantly higher (69.4%) according to IDF than NCEP definition (52%) ( p  < 0.002) with no significant differences between men and women using both definitions; (IDF; 71.8% men vs. 67.6% women, and (NCEP/ATP III; 51.9% men vs. 52.2% women). The prevalence of MetS increased significantly with increasing obesity and age when NCEP criterion is applied but not IDF. The prevalence of individual MetS components was: high waist circumference 81.3% according to IDF and 56.5% according to NCEP, elevated FBS 65.3% according to IDF and 56% according to NCEP, elevated blood pressure 48%, decreased HDL 65.8%, and elevated triglycerides 31.7%. Based on gender differences, waist circumferences were significantly higher in women according to both criteria and only elevated FBS was higher in women according to IDF criteria. Physical activity was inversely associated with MetS prevalence according to NCEP but not IDF. No significant associations were found with gender, smoking, TV watching, and family history of hypertension or diabetes mellitus. In this study, irrespective of the definition used, metabolic syndrome is highly prevalent in obese

  16. Re-engineering of CYP2C9 to probe acid-base substrate selectivity.

    PubMed

    Tai, Guoying; Dickmann, Leslie J; Matovic, Nicholas; DeVoss, James J; Gillam, Elizabeth M J; Rettie, Allan E

    2008-10-01

    A common feature of many CYP2C9 ligands is their weak acidity. As revealed by crystallography, the structural basis for this behavior involves a charge-pairing interaction between an anionic moiety on the substrate and an active site R108 residue. In the present study we attempted to re-engineer CYP2C9 to better accept basic ligands by charge reversal at this key residue. We expressed and purified the R108E and R108E/D293N mutants and compared their ability with that of native CYP2C9 to interact with (S)-warfarin, diclofenac, pyrene, propranolol, and ibuprofen amine. As expected, the R108E mutant maintained all the native enzyme's pyrene 1-hydroxylation activity, but catalytic activity toward diclofenac and (S)-warfarin was abrogated. In contrast, the double mutant displayed much less selectivity in its behavior toward these control ligands. Neither of the mutants displayed significant enhancement of propranolol metabolism, and all three preparations exhibited a type II (inhibitor) rather than type I (substrate) spectrum with ibuprofen amine, although binding became progressively weaker with the single and double mutants. Collectively, these data underscore the importance of the amino acid at position 108 in the acid substrate selectivity of CYP2C9, highlight the accommodating nature of the CYP2C9 active site, and provide a cautionary note regarding facile re-engineering of these complex cytochrome P450 active sites.

  17. Re-engineering of CYP2C9 to Probe Acid-Base Substrate Selectivity

    PubMed Central

    Tai, Guoying; Dickmann, Leslie J.; Matovic, Nicholas; DeVoss, James J.; Gillam, Elizabeth M. J.; Rettie, Allan E.

    2009-01-01

    A common feature of many CYP2C9 ligands is their weak acidity. As revealed by crystallography, the structural basis for this behavior involves a charge-pairing interaction between an anionic moiety on the substrate and an active site R108 residue. In the present study we attempted to re-engineer CYP2C9 to better accept basic ligands by charge reversal at this key residue. We expressed and purified the R108E and R108E/D293N mutants and compared their ability with that of native CYP2C9 to interact with (S)-warfarin, diclofenac, pyrene, propranolol, and ibuprofen amine. As expected, the R108E mutant maintained all the native enzyme's pyrene 1-hydroxylation activity, but catalytic activity toward diclofenac and (S)-warfarin was abrogated. In contrast, the double mutant displayed much less selectivity in its behavior toward these control ligands. Neither of the mutants displayed significant enhancement of propranolol metabolism, and all three preparations exhibited a type II (inhibitor) rather than type I (substrate) spectrum with ibuprofen amine, although binding became progressively weaker with the single and double mutants. Collectively, these data underscore the importance of the amino acid at position 108 in the acid substrate selectivity of CYP2C9, highlight the accommodating nature of the CYP2C9 active site, and provide a cautionary note regarding facile re-engineering of these complex cytochrome P450 active sites. PMID:18606741

  18. Bioirrigation impacts on sediment respiration and microbial metabolic activity

    NASA Astrophysics Data System (ADS)

    Baranov, V. A.; Lewandowski, J.; Romeijn, P.; Krause, S.

    2015-12-01

    Some bioturbators build tubes in the sediment and pump water through their burrows (ventilation). Oxygen is transferred through the burrow walls in the adjacent sediment (bioirrigation). Bioirrigation is playing a pivotal role in the mediation of biogeochemical processes in lake sediments and has the potential to enhance nutrient cycling. The present study investigates the impact of bioirrigation on lake sediment metabolism, respiration rates and in particular, the biogeochemical impacts of bioirrigation intensity as a function of organism density. We therefore apply the bioreactive Resazurin/Resorufin smart tracer system for quantifying the impact of different densities of Chironomidae (Diptera) larvae (0-2112 larvae/m2) on lake sediment respiration in a microcosm experiment. Tracer decay has been found to be proportional to the amount of the aerobic respiration at the sediment-water interface. Tracer transformation was in good agreement with Chironomidae density (correlation, r=0.9). Tracer transformation rates (and sediment respiration) were found to be correlated to Chironomidae density, with highest transformation rates observed in the microcosms with highest density of 2112 larvae/m2. This relationship was not linear though, with sediment respiration rates at the highest larvae densities declining from the linear trend predicted from lower and intermediate larvae density-respiration relationships. We interpret this effect as a density dependent suppression of the Chironomid's metabolic activity. The observations of this study have implications for eutrophied lakes with high densities of bioirrigators. Despite high density of bioirrigirrigating benthos, mineralization of the organic matter in such habitats would likely be lower than in lakes with intermediate densities of the bioturbators.

  19. INFLIGHT - APOLLO 9 (CREW ACTIVITIES)

    NASA Image and Video Library

    1968-03-07

    S69-26698 (March 1969) --- A photograph from a live television transmission from Apollo 9. This view shows the interior of the Lunar Module "Spider." Astronaut James A. McDivitt, Apollo 9 commander, is in right foreground. In left background is astronaut Russell L. Schweickart, lunar module pilot. At this moment Apollo 9 was orbiting Earth with the Command Module docked nose-to-nose with the Lunar Module. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module "Gumdrop" while the other two astronauts checked out the Lunar Module.

  20. Characterization of a lambda-cyhalothrin metabolizing glutathione S-transferase CpGSTd1 from Cydia pomonella (L.).

    PubMed

    Liu, Jiyuan; Yang, Xueqing; Zhang, Yalin

    2014-11-01

    In insects, glutathione S-transferases (GSTs) are enzymes involved in detoxification of insecticides. However, few data are available for the codling moth, Cydia pomonella (L.). In this study, we cloned a delta class GST gene CpGSTd1 from C. pomonella. Real-time quantitative PCR shows that CpGSTd1 was up-regulated with aging, and the mRNA level of CpGSTd1 was higher in the fat body and silk glands than in other tissues. The expression level of CpGSTd1 exposure to insecticide suggests that CpGSTd1 is up-regulated after chlorpyrifos-methyl and lambda-cyhalothrin treatments. Both lambda-cyhalothrin and chlorpyrifos-methyl altered GST activity in vivo. The purified CpGSTd1 protein exhibits a high catalytic efficiency with CDNB and was inhibited by lambda-cyhalothrin and chlorpyrifos-methyl in vitro. Metabolism assays indicate that lambda-cyhalothrin was significantly metabolized while chlorpyrifos-methyl was not metabolized by CpGSTd1. Binding free energy analysis suggests that CpGSTd1 binding is tighter with lambda-cyhalothrin than with chlorpyrifos-methyl. Our study suggests that CpGSTd1 plays a key role in the metabolism of insecticides in C. pomonella.

  1. Regional assessment of energy-producing metabolic activity in the endothelium of donor corneas.

    PubMed

    Greiner, Mark A; Burckart, Kimberlee A; Wagoner, Michael D; Schmidt, Gregory A; Reed, Cynthia R; Liaboe, Chase A; Flamme-Wiese, Miles J; Zimmerman, M Bridget; Mullins, Robert F; Kardon, Randy H; Goins, Kenneth M; Aldrich, Benjamin T

    2015-05-01

    We characterized mitochondrial respiration and glycolysis activity of human corneal endothelium, and compared metabolic activity between central and peripheral regions. Endothelial keratoplasty-suitable corneas were obtained from donors aged 50 to 75 years. The endothelium-Descemet membrane complex (EDM) was isolated, and 3-mm punches were obtained from central and peripheral regions. Endothelium-Descemet membrane punches were assayed for mitochondrial respiration (oxygen consumption) and glycolysis (extracellular acidification) using an extracellular flux analyzer. Enzymatic (citrate synthase, glucose hexokinase) and mitochondrial density (MitoTracker) assays also were performed. Ten corneas were analyzed per assay. Metabolic activity for mitochondrial respiration and glycolysis showed expected changes to assay compounds (P < 0.01, all pairwise comparisons). Basal mitochondrial respiration and glycolysis activity did not differ between regions (P > 0.99). Similarly, central versus peripheral activity after assay compound treatment showed no significant differences (P > 0.99, all time points). The intracorneal coefficient of variation for basal readings between two and four peripheral punches was 18.5% of the mean. Although peripheral samples displayed greater enzymatic activity than central samples (P < 0.05), similar to extracellular flux results, mitochondrial density did not differ between regions (P = 0.78). Extracellular flux analysis of oxygen and pH is a valid technique for characterizing metabolic activity of human corneal endothelium. This technique demonstrates high reproducibility, allows quantification of metabolic parameters using small quantities of live cells, and permits estimation of overall metabolic output. Neither oxygen consumption nor extracellular acidification differed between central and peripheral regions of transplant suitable corneas in this series. Our results show that endothelial cell health can be quantified biochemically in

  2. Integration of metabolic activation with a predictive toxicogenomics signature to classify genotoxic versus nongenotoxic chemicals in human TK6 cells

    PubMed Central

    Buick, Julie K.; Moffat, Ivy; Williams, Andrew; Swartz, Carol D.; Recio, Leslie; Hyduke, Daniel R.; Li, Heng‐Hong; Fornace, Albert J.; Aubrecht, Jiri

    2015-01-01

    The use of integrated approaches in genetic toxicology, including the incorporation of gene expression data to determine the molecular pathways involved in the response, is becoming more common. In a companion article, a genomic biomarker was developed in human TK6 cells to classify chemicals as genotoxic or nongenotoxic. Because TK6 cells are not metabolically competent, we set out to broaden the utility of the biomarker for use with chemicals requiring metabolic activation. Specifically, chemical exposures were conducted in the presence of rat liver S9. The ability of the biomarker to classify genotoxic (benzo[a]pyrene, BaP; aflatoxin B1, AFB1) and nongenotoxic (dexamethasone, DEX; phenobarbital, PB) agents correctly was evaluated. Cells were exposed to increasing chemical concentrations for 4 hr and collected 0 hr, 4 hr, and 20 hr postexposure. Relative survival, apoptosis, and micronucleus frequency were measured at 24 hr. Transcriptome profiles were measured with Agilent microarrays. Statistical modeling and bioinformatics tools were applied to classify each chemical using the genomic biomarker. BaP and AFB1 were correctly classified as genotoxic at the mid‐ and high concentrations at all three time points, whereas DEX was correctly classified as nongenotoxic at all concentrations and time points. The high concentration of PB was misclassified at 24 hr, suggesting that cytotoxicity at later time points may cause misclassification. The data suggest that the use of S9 does not impair the ability of the biomarker to classify genotoxicity in TK6 cells. Finally, we demonstrate that the biomarker is also able to accurately classify genotoxicity using a publicly available dataset derived from human HepaRG cells. Environ. Mol. Mutagen. 56:520–534, 2015. © 2015 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:25733247

  3. S-Adenosylmethionine metabolism and its relation to polyamine synthesis in rat liver. Effect of nutritional state, adrenal function, some drugs and partial hepatectomy

    PubMed Central

    Eloranta, Terho O.; Raina, Aarne M.

    1977-01-01

    S-Adenosylmethionine metabolism and its relation to the synthesis and accumulation of polyamines was studied in rat liver under various nutritional conditions, in adrenalectomized or partially hepatectomized animals and after treatment with cortisol, thioacetamide or methylglyoxal bis(guanylhydrazone) {1,1′-[(methylethanediylidine)dinitrilo]diguanidine}. Starvation for 2 days only slightly affected S-adenosylmethionine metabolism. The ratio of spermidine/spermine decreased markedly, but the concentration of total polyamines did not change significantly. The activity of S-adenosylmethionine decarboxylase initially decreased and then increased during prolonged starvation. This increase was dependent on intact adrenals. Re-feeding of starved animals caused a rapid but transient stimulation of polyamine synthesis and also increased the concentrations of S-adenosylmethionine and S-adenosylhomocysteine. Similarly, cortisol treatment enhanced the synthesis of polyamines, S-adenosylmethionine and S-adenosylhomocysteine. Feeding with a methionine-deficient diet for 7–14 days profoundly increased the concentration of spermidine, whereas the concentrations of total polyamines and of S-adenosylmethionine showed no significant changes. The results show that nutritional state and adrenal function play a significant role in the regulation of hepatic metabolism of S-adenosylmethionine and polyamines. They further indicate that under a variety of physiological and experimental conditions the concentrations of S-adenosylmethionine and of total polyamines remain fairly constant and that changes in polyamine metabolism are not primarily connected with changes in the accumulation of S-adenosylmethionine or S-adenosylhomocysteine. PMID:597268

  4. Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza

    PubMed Central

    León Morcillo, Rafael Jorge; Ocampo, Juan A.; García Garrido, José M.

    2012-01-01

    The establishment of an Arbuscular Mycorrhizal symbiotic interaction (MA) is a successful strategy to substantially promote plant growth, development and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the recognition and establishment of symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, the jasmonates, which are believed to play a major role in AM symbiosis. Jasmonates belong to a diverse class of lipid metabolites known as oxylipins that include other biologically active molecules. Recent transcriptional analyses revealed upregulation of the oxylipin pathway during AM symbiosis in mycorrhizal tomato roots and point a key regulatory feature for oxylipins during AM symbiosis in tomato, particularly these derived from the action of 9-lipoxygenases (9-LOX). In this mini-review we highlight recent progress understanding the function of oxylipins in the establishment of the AM symbiosis and hypothesize that the activation of the 9-LOX pathway might be part of the activation of host defense responses which will then contribute to both, the control of AM fungal spread and the increased resistance to fungal pathogens in mycorrhizal plants. PMID:23073021

  5. Induction of Canonical Wnt Signaling by the Alarmins S100A8/A9 in Murine Knee Joints: Implications for Osteoarthritis.

    PubMed

    van den Bosch, Martijn H; Blom, Arjen B; Schelbergen, Rik F P; Vogl, Thomas; Roth, Johannes P; Slöetjes, Annet W; van den Berg, Wim B; van der Kraan, Peter M; van Lent, Peter L E M

    2016-01-01

    Both alarmins S100A8/A9 and canonical Wnt signaling have been found to play active roles in the development of experimental osteoarthritis (OA). However, what activates canonical Wnt signaling remains unknown. This study was undertaken to investigate whether S100A8 induces canonical Wnt signaling and whether S100 proteins exert their effects via activation of Wnt signaling. Expression of the genes for S100A8/A9 and Wnt signaling pathway members was measured in an experimental OA model. Selected Wnt signaling pathway members were overexpressed, and levels of S100A8/A9 were measured. Activation of canonical Wnt signaling was determined after injection of S100A8 into naive joints and induction of collagenase-induced OA in S100A9-deficient mice. Expression of Wnt signaling pathway members was tested in macrophages and fibroblasts after S100A8 stimulation. Canonical Wnt signaling was inhibited in vivo to determine if the effects of S100A8 injections were dependent on Wnt signaling. The alarmins S100A8/A9 and members of the Wnt signaling pathway showed coinciding expression in synovial tissue in an experimental OA model. Synovial overexpression of selected Wnt signaling pathway members did not result in increased expression of S100 proteins. In contrast, intraarticular injection of S100A8 increased canonical Wnt signaling, whereas canonical Wnt signaling was decreased after induction of experimental OA in S100A9-deficient mice. S100A8 stimulation of macrophages, but not fibroblasts, resulted in increased expression of canonical Wnt signaling members. Overexpression of Dkk-1 to inhibit canonical Wnt signaling decreased the induction of matrix metalloproteinase 3, interleukin-6, and macrophage inflammatory protein 1α after injection of S100A8. Our findings indicate that the alarmin S100A8 induces canonical Wnt signaling in macrophages and murine knee joints. The effects of S100A8 are partially dependent on activation of canonical Wnt signaling. © 2016, American College

  6. METABOLISM AND METABOLIC ACTIVATION OF CHEMICALS: IN-SILICO SIMULATION

    EPA Science Inventory

    The role of metabolism in prioritizing chemicals according to their potential adverse health effects is extremely important because innocuous parents can be transformed into toxic metabolites. This work presents the TIssue MEtabolism Simulator (TIMES) platform for simulating met...

  7. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation

    PubMed Central

    Covarrubias, Anthony J; Aksoylar, Halil Ibrahim; Yu, Jiujiu; Snyder, Nathaniel W; Worth, Andrew J; Iyer, Shankar S; Wang, Jiawei; Ben-Sahra, Issam; Byles, Vanessa; Polynne-Stapornkul, Tiffany; Espinosa, Erika C; Lamming, Dudley; Manning, Brendan D; Zhang, Yijing; Blair, Ian A; Horng, Tiffany

    2016-01-01

    Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation. DOI: http://dx.doi.org/10.7554/eLife.11612.001 PMID:26894960

  8. Rice Koji Extract Enhances Lipid Metabolism through Proliferator-Activated Receptor Alpha (PPARα) Activation in Mouse Liver.

    PubMed

    Takahashi, Haruya; Chi, Hsin-Yi; Mohri, Shinsuke; Kamakari, Kosuke; Nakata, Keiji; Ichijo, Noriyoshi; Nakata, Rieko; Inoue, Hiroyasu; Goto, Tsuyoshi; Kawada, Teruo

    2016-11-23

    Koji is made from grains fermented with Aspergillus oryzae and is essential for the production of many traditional Japanese foods. Many previous studies have shown that koji contributes to the improvement of dyslipidemia. However, little is known regarding the underlying mechanism of this effect. Furthermore, the compound contributing to the activation of lipid metabolism is unknown. We demonstrated that rice koji extract (RKE) induces the mRNA expression of peroxisome proliferator-activated receptor alpha (PPARα) target genes, which promotes lipid metabolism in murine hepatocytes. This effect was not observed in PPARα-KO hepatocytes. We also demonstrated that RKE contained linolenic acid (LIA), oleic acid (OA), and hydroxyoctadecadienoic acids (HODEs), which activate PPARα, using LC-MS analysis. Our findings suggest that RKE, containing LIA, OA, and HODEs, could be valuable in improving dyslipidemia via PPARα activation.

  9. Evaluation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct levels and DNA strand breaks in human peripheral blood lymphocytes exposed in vitro to polycyclic aromatic hydrocarbons with or without animal metabolic activation.

    PubMed

    Isabel, Rodríguez-Romero María; Sandra, Gómez-Arroyo; Rafael, Villalobos-Pietrini; Carmen, Martínez-Valenzuela; Josefina, Cortés-Eslava; del Carmen, Calderón-Ezquerro María; Rocío, García-Martínez; Francisco, Arenas-Huertero; Elena, Calderón-Segura María

    2012-04-01

    The polycyclic aromatic hydrocarbons (PAHs) dibenzo(a,h)anthracene, benzo(ghi)perylene, benzo(b)fluoranthene and benzo(a)pyrene have been identified in urban air from Mexico City and some of them are classified as human carcinogens. In the present study, human peripheral blood lymphocytes were exposed in vitro to different concentrations of PAHs with (+S9) or without (-S9) metabolic activation. The genotoxic and cytotoxic effects of each PAH were examined with an alkaline comet assay and trypan blue dye exclusion, and oxidative DNA damage was determined via the detection of 8-hydroxy-2'-deoxyguanosine (8-OhdG) adduct levels by enzyme-linked immunosorbent assay (ELISA). The DNA damage was evaluated with two genotoxicity parameters: the frequency of comets and the comet tail length. Concentrations of 20, 40, 80, 160 and 320 µM DB(a,h)A-S9; 20, 40, 80, 160 and 240 µM B(ghi)P-S9; 20, 30, 40, 60 and 80 µM B(b)F-S9; and 80 µM B(a)P-S9 for 24 h induced a small but significant increase in the means of comet frequency, in the tail length and in the 8-oHDg levels in relation to the control (0.5% DMSO-S9). However, all PAHs+S9 produced a more significant increase in DNA strand breaks and the level of 8-OHdG compared with the control (0.5% DMSO+S9), with a concentration-effect relationship. The viability of lymphocytes exposed to all PAHs-S9 and PAHs+S9 was not modified compared with the control. The results of this study demonstrate that the comet and ELISA are rapid, suitable and sensitive methods to detect in vitro PAH-induced DNA damage in human peripheral lymphocytes.

  10. Genome Sequence of Pseudomonas sp. Strain S9, an Extracellular Arylsulfatase-Producing Bacterium Isolated from Mangrove Soil ▿

    PubMed Central

    Long, Mengxian; Ruan, Lingwei; Yu, Ziniu; Xu, Xun

    2011-01-01

    Pseudomonas sp. strain S9 was originally isolated from mangrove soil in Xiamen, China. It is an aerobic bacterium which shows extracellular arylsulfatase activity. Here, we describe the 4.8-Mb draft genome sequence of Pseudomonas sp. S9, which exhibits novel cysteine-type sulfatases. PMID:21622746

  11. Influence of cimetidine and diethyldithiocarbamate on the metabolism of halothane and methoxyflurane in vitro.

    PubMed

    Loesch, J; Siegers, C P; Younes, M

    1987-06-01

    The metabolism of halothane and methoxyflurane was measured in vitro by the vial equilibration method using the S-9-fraction from rat liver as source of enzymes. Kinetic values were measured for halothane: Vmax = 11.6 nmol/g.min, KM = 19.6 mumol/l and methoxyflurane: Vmax = 12.0 nmol/g.min, KM = 17.5 mumol/l. Dithiocarb showed strong inhibitory activity on halothane and methoxyflurane metabolism; inhibition constants were calculated as Ki = 0.051 mmol/l and Ki = 0.004 mmol/l, respectively. Cimetidine inhibited the metabolism of both anesthetics to a lesser extent. Inhibition constants were calculated as Ki = 16.2 mmol/l and Ki = 8.2 mmol/l for halothane and methoxyflurane, respectively. The observed inhibitory properties of dithiocarb and cimetidine on the metabolism of halothane and methoxyflurane may be of interest in connection with the problem of toxic liver and kidney injury after anesthesia with these agents.

  12. Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption.

    PubMed

    Dinamarca, M Alejandro; Ibacache-Quiroga, C; Baeza, P; Galvez, S; Villarroel, M; Olivero, P; Ojeda, J

    2010-04-01

    The immobilization of Pseudomonas stutzeri using adsorption on different inorganic supports was studied in relation to the number of adsorbed cells, metabolic activity and biodesulfurization (BDS). The electrophoretic migration (EM) measurements and Tetrazolioum (TTC) method were used to evaluate adsorption and metabolic activity. Results indicate that maximal immobilization was obtained with an initial load of 14 x 10(8) cells mL(-1) for Al and Sep, whereas Ti requires 20 x 10(8) cells mL(-1). The highest interaction was observed in the P. stutzeri/Si and P. stutzeri/Sep biocatalysts. The IEP values and metabolic activities indicate that P. stutzeri change the surface of supports and maintains metabolic activity. A direct relation between BDS activity and the adsorption capacity of the bacterial cells was observed at the adsorption/desorption equilibrium level. The biomodification of inorganic supports by the adsorption process increases the bioavailability of sulphur substrates for bacterial cells, improving BDS activity. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Metabolic network failures in Alzheimer’s disease: A biochemical road map

    PubMed Central

    Toledo, Jon B.; Arnold, Matthias; Kastenmüuller, Gabi; Chang, Rui; Baillie, Rebecca A.; Han, Xianlin; Thambisetty, Madhav; Tenenbaum, Jessica D.; Suhre, Karsten; Thompson, J. Will; St. John-Williams, Lisa; MahmoudianDehkordi, Siamak; Rotroff, Daniel M.; Jack, John R.; Motsinger-Reif, Alison; Risacher, Shannon L.; Blach, Colette; Lucas, Joseph E.; Massaro, Tyler; Louie, Gregory; Zhu, Hongjie; Dallmann, Guido; Klavins, Kristaps; Koal, Therese; Kim, Sungeun; Nho, Kwangsik; Shen, Li; Casanova, Ramon; Varma, Sudhir; Legido-Quigley, Cristina; Moseley, M. Arthur; Zhu, Kuixi; Henrion, Marc Y. R.; van der Lee, Sven J.; Harms, Amy C.; Demirkan, Ayse; Hankemeier, Thomas; van Duijn, Cornelia M.; Trojanowski, John Q.; Shaw, Leslie M.; Saykin, Andrew J.; Weiner, Michael W.; Doraiswamy, P. Murali; Kaddurah-Daouk, Rima

    2018-01-01

    Introduction The Alzheimer’s Disease Research Summits of 2012 and 2015 incorporated experts from academia, industry, and nonprofit organizations to develop new research directions to transform our understanding of Alzheimer’s disease (AD) and propel the development of critically needed therapies. In response to their recommendations, big data at multiple levels are being generated and integrated to study network failures in disease. We used metabolomics as a global biochemical approach to identify peripheral metabolic changes in AD patients and correlate them to cerebrospinal fluid pathology markers, imaging features, and cognitive performance. Methods Fasting serum samples from the Alzheimer’s Disease Neuroimaging Initiative (199 control, 356 mild cognitive impairment, and 175 AD participants) were analyzed using the AbsoluteIDQ-p180 kit. Performance was validated in blinded replicates, and values were medication adjusted. Results Multivariable-adjusted analyses showed that sphingomyelins and ether-containing phosphatidylcholines were altered in preclinical biomarker-defined AD stages, whereas acylcarnitines and several amines, including the branched-chain amino acid valine and α-aminoadipic acid, changed in symptomatic stages. Several of the analytes showed consistent associations in the Rotterdam, Erasmus Rucphen Family, and Indiana Memory and Aging Studies. Partial correlation networks constructed for Aβ1–42, tau, imaging, and cognitive changes provided initial biochemical insights for disease-related processes. Coexpression networks interconnected key metabolic effectors of disease. Discussion Metabolomics identified key disease-related metabolic changes and disease-progression-related changes. Defining metabolic changes during AD disease trajectory and its relationship to clinical phenotypes provides a powerful roadmap for drug and biomarker discovery. PMID:28341160

  14. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    PubMed

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  15. Linking Metabolic Activity, Microbial Identity, and Microscale Spatial Arrangements in Chemosynthetic Seafloor Habitats

    NASA Astrophysics Data System (ADS)

    Marlow, J.; Hatzenpichler, R.; Girguis, P.

    2018-05-01

    With an innovative combination of metabolic tracers, fluorescent probes, and microscopy, we present a novel way to pinpoint the geobiological drivers of metabolic activity at silicate and carbonate-based chemosynthetic seafloor habitats.

  16. Physical activity and metabolic risk among US youth: Mediation by obesity [abstract

    USDA-ARS?s Scientific Manuscript database

    Physical activity has been inversely associated with metabolic risk, although pediatric studies are limited. It has been hypothesized that obesity mediates this relationship. Some studies reported that waist circumference (WC) is more highly related to metabolic risk than BMI, and may be a better me...

  17. Short term exposure to elevated levels of leptin reduces proximal tubule cell metabolic activity.

    PubMed

    Briffa, Jessica F; Grinfeld, Esther; McAinch, Andrew J; Poronnik, Philip; Hryciw, Deanne H

    2014-01-25

    Leptin plays a pathophysiological role in the kidney, however, its acute effects on the proximal tubule cells (PTCs) are unknown. In opossum kidney (OK) cells in vitro, Western blot analysis identified that exposure to leptin increases the phosphorylation of the mitogen-activated protein kinase (MAPK) p44/42 and the mammalian target of rapamycin (mTOR). Importantly leptin (0.05, 0.10, 0.25 and 0.50 μg/ml) significantly reduced the metabolic activity of PTCs, and significantly decreased protein content per cell. Investigation of the role of p44/42 and mTOR on metabolic activity and protein content per cell, demonstrated that in the presence of MAPK inhibitor U0126 and mTOR inhibitor Ku-63794, that the mTOR pathway is responsible for the reduction in PTC metabolic activity in response to leptin. However, p44/42 and mTOR play no role the reduced protein content per cell in OKs exposed to leptin. Therefore, leptin modulates metabolic activity in PTCs via an mTOR regulated pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Involvement of glucocorticoid prereceptor metabolism and signaling in rat visceral adipose tissue lipid metabolism after chronic stress combined with high-fructose diet.

    PubMed

    Bursać, Biljana; Djordjevic, Ana; Veličković, Nataša; Milutinović, Danijela Vojnović; Petrović, Snježana; Teofilović, Ana; Gligorovska, Ljupka; Preitner, Frederic; Tappy, Luc; Matić, Gordana

    2018-05-03

    Both fructose overconsumption and increased glucocorticoids secondary to chronic stress may contribute to overall dyslipidemia. In this study we specifically assessed the effects and interactions of dietary fructose and chronic stress on lipid metabolism in the visceral adipose tissue (VAT) of male Wistar rats. We analyzed the effects of 9-week 20% high fructose diet and 4-week chronic unpredictable stress, separately and in combination, on VAT histology, glucocorticoid prereceptor metabolism, glucocorticoid receptor subcellular redistribution and expression of major metabolic genes. Blood triglycerides and fatty acid composition were also measured to assess hepatic Δ9 desaturase activity. The results showed that fructose diet increased blood triglycerides and Δ9 desaturase activity. On the other hand, stress led to corticosterone elevation, glucocorticoid receptor activation and decrease in adipocyte size, while phosphoenolpyruvate carboxykinase, adipose tissue triglyceride lipase, FAT/CD36 and sterol regulatory element binding protein-1c (SREBP-1c) were increased, pointing to VAT lipolysis and glyceroneogenesis. The combination of stress and fructose diet was associated with marked stimulation of fatty acid synthase and acetyl-CoA carboxylase mRNA level and with increased 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase protein levels, suggesting a coordinated increase in hexose monophosphate shunt and de novo lipogenesis. It however did not influence the level of peroxisome proliferator-activated receptor-gamma, SREBP-1c and carbohydrate responsive element-binding protein. In conclusion, our results showed that only combination of dietary fructose and stress increase glucocorticoid prereceptor metabolism and stimulates lipogenic enzyme expression suggesting that interaction between stress and fructose may be instrumental in promoting VAT expansion and dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Insulin activation of plasma non-esterified fatty acid uptake in metabolic syndrome

    PubMed Central

    Ramos-Roman, Maria A.; Lapidot, Smadar A.; Phair, Robert D.; Parks, Elizabeth J.

    2012-01-01

    Objectives Insulin control of fatty acid metabolism has long been deemed dominated by suppression of adipose lipolysis. This study’s goal was to test the hypothesis that this single role of insulin is insufficient to explain observed fatty acid dynamics. Methods and Results Fatty acid kinetics were measured during a meal-tolerance test and insulin sensitivity assessed by IVGTT in overweight human subjects (n=15, BMI 35.8 ± 7.1 kg/m2). Non-steady state tracer kinetic models were formulated and tested using ProcessDB© software. Suppression of adipose release alone could not account for NEFA concentration changes postprandially, but when combined with insulin activation of fatty acid uptake was consistent with the NEFA data. The observed insulin Km for NEFA uptake was inversely correlated with both insulin sensitivity of glucose uptake (IVGTT Si) (r=−0.626, P=0.01), and whole body fat oxidation after the meal (r=−0.538, P=0.05). Conclusions These results support insulin regulation of fatty acid turnover by both release and uptake mechanisms. Activation of fatty acid uptake is consistent with the human data, has mechanistic precedent in cell culture, and highlights a new potential target for therapies aimed at improving the control of fatty acid metabolism in insulin-resistant disease states. PMID:22723441

  20. Rational Design of Mini-Cas9 for Transcriptional Activation.

    PubMed

    Ma, Dacheng; Peng, Shuguang; Huang, Weiren; Cai, Zhiming; Xie, Zhen

    2018-04-20

    Nuclease dead Cas9 (dCas9) has been widely used for modulating gene expression by fusing with different activation or repression domains. However, delivery of the CRISPR/Cas system fused with various effector domains in a single adeno-associated virus (AAV) remains challenging due to the payload limit. Here, we engineered a set of downsized variants of Cas9 including Staphylococcus aureus Cas9 (SaCas9) that retained DNA binding activity by deleting conserved functional domains. We demonstrated that fusing FokI nuclease domain to the N-terminal of the minimal SaCas9 (mini-SaCas9) or to the middle of the split mini-SaCas9 can trigger efficient DNA cleavage. In addition, we constructed a set of compact transactivation domains based on the tripartite VPR activation domain and self-assembled arrays of split SpyTag:SpyCatch peptides, which are suitable for fusing to the mini-SaCas9. Lastly, we produced a single AAV containing the mini-SaCas9 fused with a downsized transactivation domain along with an optimized gRNA expression cassette, which showed efficient transactivation activity. Our results highlighted a practical approach to generate down-sized CRISPR/Cas9 and gene activation systems for in vivo applications.

  1. Viral Activation of Cellular Metabolism

    PubMed Central

    Sanchez, Erica L.; Lagunoff, Michael

    2015-01-01

    To ensure optimal environments for their replication and spread, viruses have evolved to alter many host cell pathways. In the last decade, metabolomic studies have shown that eukaryotic viruses induce large-scale alterations in host cellular metabolism. Most viruses examined to date induce aerobic glycolysis also known as the Warburg effect. Many viruses tested also induce fatty acid synthesis as well as glutaminolysis. These modifications of carbon source utilization by infected cells can increase available energy for virus replication and virion production, provide specific cellular substrates for virus particles and create viral replication niches while increasing infected cell survival. Each virus species also likely requires unique metabolic changes for successful spread and recent research has identified additional virus-specific metabolic changes induced by many virus species. A better understanding of the metabolic alterations required for each virus may lead to novel therapeutic approaches through targeted inhibition of specific cellular metabolic pathways. PMID:25812764

  2. S100A9 Interaction with TLR4 Promotes Tumor Growth

    PubMed Central

    Källberg, Eva; Vogl, Thomas; Liberg, David; Olsson, Anders; Björk, Per; Wikström, Pernilla; Bergh, Anders; Roth, Johannes; Ivars, Fredrik; Leanderson, Tomas

    2012-01-01

    By breeding TRAMP mice with S100A9 knock-out (S100A9−/−) animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b+ S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68+ macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9−/− and TLR4−/−, but not in RAGE−/− animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b+ cells. Lastly, treatment of mice with a small molecule (ABR-215050) that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies. PMID:22470535

  3. NNMT activation can contribute to the development of fatty liver disease by modulating the NAD + metabolism.

    PubMed

    Komatsu, Motoaki; Kanda, Takeshi; Urai, Hidenori; Kurokochi, Arata; Kitahama, Rina; Shigaki, Shuhei; Ono, Takashi; Yukioka, Hideo; Hasegawa, Kazuhiro; Tokuyama, Hirobumi; Kawabe, Hiroshi; Wakino, Shu; Itoh, Hiroshi

    2018-06-05

    Nicotinamide N-methyltransferase (NNMT) catalyses the reaction between nicotinamide (NAM) and S-adenosylmethionine to produce 1-methylnicotinamide and S-adenosylhomocysteine. Recently, this enzyme has also been reported to modulate hepatic nutrient metabolism, but its role in the liver has not been fully elucidated. We developed transgenic mice overexpressing NNMT to elucidate its role in hepatic nutrient metabolism. When fed a high fat diet containing NAM, a precursor for nicotinamide adenine dinucleotide (NAD) + , these NNMT-overexpressing mice exhibit fatty liver deterioration following increased expression of the genes mediating fatty acid uptake and decreased very low-density lipoprotein secretion. NNMT overactivation decreased the NAD + content in the liver and also decreased gene activity related to fatty acid oxidation by inhibiting NAD + -dependent deacetylase Sirt3 function. Moreover, the transgenic mice showed liver fibrosis, with the induction of inflammatory and fibrosis genes. Induced NNMT expression decreased the tissue methylation capacity, thereby reducing methylation of the connective tissue growth factor (CTGF) gene promoter, resulting in increased CTGF expression. These data indicate that NNMT links the NAD + and methionine metabolic pathways and promotes liver steatosis and fibrosis. Therefore, targeting NNMT may serve as a therapeutic strategy for treating fatty liver and fibrosis.

  4. S-nitrosoglutathione reductase (GSNOR) activity is down-regulated during pepper (Capsicum annuum L.) fruit ripening.

    PubMed

    Rodríguez-Ruiz, Marta; Mioto, Paulo; Palma, José M; Corpas, Francisco J

    2017-08-01

    Pepper (Capsicum annuum L.) is an annual plant species of great agronomic importance whose fruits undergo major metabolic changes through development and ripening. These changes include emission of volatile organic compounds associated with respiration, destruction of chlorophylls and synthesis of new pigments (red/yellow carotenoids plus xanthophylls and anthocyans) responsible for color shift, protein degradation/synthesis and changes in total soluble reducing equivalents. Previous data have shown that, during the ripening of pepper fruit, an enhancement of protein tyrosine nitration takes place. On the other hand, it is well known that S-nitrosoglutathione reductase (GSNOR) activity can modulate the transnitrosylation equilibrium between GSNO and S-nitrosylated proteins and, consequently, regulate cellular NO homeostasis. In this study, GSNOR activity, protein content and gene expression were analyzed in green and red pepper fruits. The content of S-nitrosylated proteins on diaminofluorescein (DAF) gels was also studied. The data show that, while GSNOR activity and protein expression diminished during fruit ripening, S-nitrosylated protein content increased. Some of the protein candidates for S-nitrosylation identified, such as cytochorme c oxidase and peroxiredoxin II E, have previously been described as targets of this posttranslational modification in other plant species. These findings corroborate the important role played by GSNOR activity in the NO metabolism during the process of pepper fruit ripening. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Brain and spinal cord metabolic activity during propofol anaesthesia.

    PubMed

    Cavazzuti, M; Porro, C A; Barbieri, A; Galetti, A

    1991-04-01

    We have investigated the effects of propofol anaesthesia on the metabolic activity pattern of 35 regions of the rat brain and cervical spinal cord using the 14C-2-deoxyglucose technique. Anaesthesia was produced by an i.v. bolus of the commercial preparation of the drug (8 mg kg-1) and maintained with successive bolus administrations of 6 mg kg-1. Functional activity values (expressed as rates of local utilization of glucose) were reduced in 31 grey matter and two white matter structures in a propofol group relative both to saline-injected and vehicle-injected (aqueous emulsion containing 10% soya bean oil, 1.2% egg phosphatide and 2.25% glycerol) controls. Values from the two control groups did not differ significantly. Propofol-induced depression of metabolic activity was present in central nervous system regions belonging to sensory (auditory, visual and somatosensory), motor and limbic systems, including spinal cord grey matter. Mean percentage decreases ranged from 40% (vestibular nuclei) to 76% (cingulate cortex). Although these values may be slightly overestimated because of the modest increase in PaCo2 in the anaesthetized group, propofol appeared to elicit generalized reduction of central nervous system functional activity.

  6. Impaired hippocampal glucose metabolism during and after flurothyl-induced seizures in mice: Reduced phosphorylation coincides with reduced activity of pyruvate dehydrogenase.

    PubMed

    McDonald, Tanya S; Borges, Karin

    2017-07-01

    To determine changes in glucose metabolism and the enzymes involved in the hippocampus ictally and postictally in the acute mouse flurothyl seizure model. [U- 13 C]-Glucose was injected (i.p.) prior to, or following a 5 min flurothyl-induced seizure. Fifteen minutes later, mice were killed and the total metabolite levels and % 13 C enrichment were analyzed in the hippocampal formation using gas chromatography-mass spectrometry. Activities of key metabolic and antioxidant enzymes and the phosphorylation status of pyruvate dehydrogenase were measured, along with lipid peroxidation. During seizures, total lactate levels increased 1.7-fold; however, [M + 3] enrichment of both lactate and alanine were reduced by 30% and 43%, respectively, along with a 28% decrease in phosphofructokinase activity. Postictally the % 13 C enrichments of all measured tricarboxylic acid (TCA) cycle intermediates and the amino acids were reduced by 46-93%. At this time, pyruvate dehydrogenase (PDH) activity was 56% of that measured in controls, and there was a 1.9-fold increase in the phosphorylation of PDH at ser232. Phosphorylation of PDH is known to decrease its activity. Here, we show that the increase of lactate levels during flurothyl seizures is from a source other than [U- 13 C]-glucose, such as glycogen. Surprisingly, although we saw a reduction in phosphofructokinase activity during the seizure, metabolism of [U- 13 C]-glucose into the TCA cycle seemed unaffected. Similar to our recent findings in the chronic phase of the pilocarpine model, postictally the metabolism of glucose by glycolysis and the TCA cycle was impaired along with reduced PDH activity. Although this decrease in activity may be a protective mechanism to reduce oxidative stress, which is observed in the flurothyl model, ATP is critical to the recovery of ion and neurotransmitter balance and return to normal brain function. Thus we identified promising novel strategies to enhance energy metabolism and recovery from

  7. Beneficial association between active travel and metabolic syndrome in Latin-America: A cross-sectional analysis from the Chilean National Health Survey 2009-2010.

    PubMed

    Sadarangani, Kabir P; Von Oetinger, Astrid; Cristi-Montero, Carlos; Cortínez-O'Ryan, Andrea; Aguilar-Farías, Nicolás; Martínez-Gómez, David

    2018-02-01

    There is limited evidence on potential health benefits of active travel, independently of leisure-time physical activity (PA), with metabolic syndrome (MetS) in Latin-America. To investigate the relationship between active travel and metabolic syndrome (MetS) and its components in a national representative sample of Chilean adults. Cross-sectional study of 2864 randomly selected adults' participants enrolled in the 2009-2010 Chilean National Health Survey (CNHS). Self-reported PA was obtained with the validated Global PA Questionnaire and classifying participants into insufficiently active (<150min/week) or active (≥150min/week). MetS was diagnosed from the modified Adult Treatment Panel (ATP) III criteria with national-specific abdominal obesity cut points. Multilevel logistic regression analysis was applied to estimate associations of travel PA with MetS and its components at a regional level, adjusted for socio-demographic characteristics and other types of PA. 46.2% of the sample engaged in 150min/week of active travel and the prevalence of MetS was 33.7%. Mets was significantly lower among active travel participants. Active travel was associated with lower odds of MetS (OR 0.72; 95%CI 0.61-0.86), triglycerides (OR 0.77; 95%CI 0.64-0.92) and abdominal obesity (OR 0.82; 95%CI 0.69-0.97) after controlling for socio-demographics and other types of PA. Active travel was negatively associated with MetS, triglycerides and abdominal obesity. Efforts to increase regional active travel should be addressed as a measure to prevent and reduce the prevalence of MetS and disease burden in middle income countries. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Activity of xanthine oxidase in plasma correlates with indices of insulin resistance and liver dysfunction in Japanese patients with type 2 diabetes mellitus and metabolic syndrome: A pilot exploratory study.

    PubMed

    Sunagawa, Sumito; Shirakura, Takashi; Hokama, Noboru; Kozuka, Chisayo; Yonamine, Masato; Namba, Toyotaka; Morishima, Satoko; Nakachi, Sawako; Nishi, Yukiko; Ikema, Tomomi; Okamoto, Shiki; Matsui, Chieko; Hase, Naoki; Tamura, Mizuho; Shimabukuro, Michio; Masuzaki, Hiroaki

    2018-06-03

    There is a controversy whether hyperuricemia is an independent risk for cardiometabolic diseases. Serum level of uric acid is affected by a wide variety of factors involved in its production and excretion. On the other hand, evidence has accumulated that locally and systemically activated xanthine oxidase (XO), a rate limiting enzyme for production of uric acid, is linked to metabolic derangement in humans and rodents. We therefore explored the clinical implication of plasma XO activity in patients with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS). We enrolled 60 patients with T2DM and MetS. MetS was defined according to the 2005 International Diabetes Federation guidelines. Plasma XO activity was measured by highly sensitive fluorometric assay measuring the conversion of pterin to isoxanthopterin, and explored associations between the value of plasma XO activity and metabolic parameters. Value of plasma XO activity was correlated with indices of insulin resistance and level of circulating liver transaminases. On the other hand, level of serum uric acid was not correlated with indices of insulin resistance. The value of plasma XO activity was not correlated with serum uric acid level. Plasma XO activity correlates with indices of insulin resistance and liver dysfunction in Japanese patients with T2DM and MetS. Through assessing the plasma XO activity, patients demonstrating normal level of serum uric acid with higher activity of XO can be screened, thereby possibly providing a clue to uncover metabolic risks in T2DM and MetS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Quantification of metabolically active transient storage (MATS) in two reaches with contrasting transient storage and ecosystem respiration

    Treesearch

    Alba Argerich; Roy Haggerty; Eugènia Martí; Francesc Sabater; Jay Zarnetske

    2011-01-01

    Water transient storage zones are hotspots for metabolic activity in streams although the contribution of different types of transient storage zones to the whole�]reach metabolic activity is difficult to quantify. In this study we present a method to measure the fraction of the transient storage that is metabolically active (MATS) in two consecutive reaches...

  10. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Metabolism of ginger component [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human.

    PubMed

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-05-01

    There are limited data on the metabolism of [6]-shogaol (6S), a major bioactive component of ginger. This study demonstrates metabolism of 6S in liver microsomes from mouse, rat, dog, monkey, and human. The in vitro metabolism of 6S was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with 6S, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E,4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites, M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than 6S. We conclude that 6S is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning preclinical trials toward 6S chemoprevention. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Prediction of in vivo developmental toxicity by combination of Hand1-Luc embryonic stem cell test and metabolic stability test with clarification of metabolically inapplicable candidates.

    PubMed

    Nagahori, Hirohisa; Suzuki, Noriyuki; Le Coz, Florian; Omori, Takashi; Saito, Koichi

    2016-09-30

    Hand1-Luc Embryonic Stem Cell Test (Hand1-Luc EST) is a promising alternative method for evaluation of developmental toxicity. However, the problems of predictivity have remained due to appropriateness of the solubility, metabolic system, and prediction model. Therefore, we assessed the usefulness of rat liver S9 metabolic stability test using LC-MS/MS to develop new prediction model. A total of 71 chemicals were analyzed by measuring cytotoxicity and differentiation toxicity, and highly reproducible (CV=20%) results were obtained. The first prediction model was developed by discriminant analysis performed on a full dataset using Hand1-Luc EST, and 66.2% of the chemicals were correctly classified by the cross-validated classification. A second model was developed with additional descriptors obtained from the metabolic stability test to calculate hepatic availability, and an accuracy of 83.3% was obtained with applicability domain of 50.7% (=36/71) after exclusion of 22 metabolically inapplicable candidates, which potentially have a metabolic activation property. A step-wise prediction scheme with combination of Hand1-Luc EST and metabolic stability test was therefore proposed. The current results provide a promising in vitro test method for accurately predicting in vivo developmental toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Synthesis, evaluation, and metabolism of novel [6]-shogaol derivatives as potent Nrf2 activators.

    PubMed

    Zhu, Yingdong; Wang, Pei; Zhao, Yantao; Yang, Chun; Clark, Anderson; Leung, TinChung; Chen, Xiaoxin; Sang, Shengmin

    2016-06-01

    Oxidative stress is a central component of many chronic diseases. The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2 p45-related factor 2 (Nrf2) system is a major regulatory pathway of cytoprotective genes against oxidative and electrophilic stress. Activation of the Nrf2 pathway plays crucial roles in the chemopreventive effects of various inducers. In this study, we developed a novel class of potent Nrf2 activators derived from ginger compound, [6]-shogaol (6S), using the Tg[glutathione S-transferase pi 1 (gstp1):green fluorescent protein (GFP)] transgenic zebrafish model. Investigation of structure-activity relationships of 6S derivatives indicates that the combination of an α,β-unsaturated carbonyl entity and a catechol moiety in one compound enhances the Tg(gstp1:GFP) fluorescence signal in zebrafish embryos. Chemical reaction and in vivo metabolism studies of the four most potent 6S derivatives showed that both α,β-unsaturated carbonyl entity and catechol moiety act as major active groups for conjugation with the sulfhydryl groups of the cysteine residues. In addition, we further demonstrated that 6S derivatives increased the expression of Nrf2 downstream target, heme oxygenase-1, in both a dose- and time-dependent manner. These results suggest that α,β-unsaturated carbonyl entity and catechol moiety of 6S derivatives may react with the cysteine residues of Keap1, disrupting the Keap1-Nrf2 complex, thereby liberating and activating Nrf2. Our findings of natural product-derived Nrf2 activators lead to design options of potent Nrf2 activators for further optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Catechol-O-Methyltransferase and UDP-Glucuronosyltransferases in the Metabolism of Baicalein in Different Species.

    PubMed

    Zhang, Ruiya; Cui, Yonglei; Wang, Yan; Tian, Xiangge; Zheng, Lu; Cong, HaiJian; Wu, Bin; Huo, Xiaokui; Wang, Chao; Zhang, BaoJing; Wang, Xiaobo; Yu, Zhonghui

    2017-12-01

    Baicalein is the major bioactive flavonoid in some herb medicines and dietary plants; however, the detailed metabolism pathway of its major metabolite oroxylin A-7-O-β-D-glucuronide in human was not clear. It was important to illustrate the major metabolic enzymes that participate in its elimination for the clinic use of baicalein. We first revealed a two-step metabolism profile for baicalein and illustrated the combination of catechol-O-methyltransferase (COMT) and uridine diphosphate-glucuronosyltransferases (UGTs) in drug metabolism, further evaluated its bioactivity variation during drug metabolism. The metabolism profiles were systematically characterized in different human biology preparations; after then, the anti-inflammatory activities of metabolites were evaluated in LPS-induced RAW264.7 cell. The first-step metabolite of baicalein was isolated and identified as oroxylin A; soluble-bound COMT (S-COMT) was the major enzyme responsible for its biotransformation. Specially, position 108 mutation of S-COMT significantly decreases the elimination. Meantime, oroxylin A was rapidly metabolized by UGTs, UGT1A1, -1A3, -1A6, -1A7, -1A8, -1A9, and -1A10 which were involved in the glucuronidation. Considerable species differences were observed with 1060-fold K m (3.05 ± 1.86-3234 ± 475 μM) and 330-fold CL int (5.93-1973 μL/min/mg) variations for baicalein metabolism. Finally, the middle metabolite oroxylin A exhibited a potent anti-inflammatory activity with the IC 50 value of 28 μM. The detailed kinetic parameters indicated that COMT provide convenience for the next glucuronidation; monkey would be a preferred animal model for the preclinical investigation of baicalein. Importantly, oroxylin A should be reconsidered in evaluating baicalein efficacy against inflammatory diseases.

  15. Metabolic and Co-Metabolic Transformation of Diclofenac by Enterobacter hormaechei D15 Isolated from Activated Sludge.

    PubMed

    Aissaoui, Salima; Ouled-Haddar, Houria; Sifour, Mohamed; Harrouche, Kamel; Sghaier, Haitham

    2017-03-01

    The presence of non-steroidal anti-inflammatory drugs, such as diclofenac (DCF), in the environment, is an emerging problem due to their harmful effects on non-target organisms, even at low concentrations. We studied the biodegradation of DCF by the strain D15 of Enterobacter hormaechei. The strain was isolated from an activated sludge, and identified as E. hormaechei based on its physiological characteristics and its 16 S RNA sequence. Using HPTLC and GC-MS methods, we demonstrated that this strain metabolized DCF at an elimination rate of 52.8%. In the presence of an external carbon source (glucose), the elimination rate increased to approximately 82%. GC-MS analysis detected and identified one metabolite as 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one; it was produced as a consequence of dehydration and lactam formation reactions.

  16. The alternative sigma factor, sigmaS, affects polyhydroxyalkanoate metabolism in Pseudomonas putida.

    PubMed

    Raiger-Iustman, Laura J; Ruiz, Jimena A

    2008-07-01

    To determine whether the stationary sigma factor, sigma(S), influences polyhydroxyalkanoate metabolism in Pseudomonas putida KT2440, an rpoS-negative mutant was constructed to evaluate polyhydroxyalkanoate accumulation and expression of a translational fusion to the promoter region of the genes that code for polyhydroxyalkanoate synthase 1 (phaC1) and polyhydroxyalkanoate depolymerase (phaZ). By comparison with the wild-type, the rpoS mutant showed a higher polyhydroxyalkanoate degradation rate and increased expression of the translational fusion during the stationary growth phase. These results suggest that sigma(S) might control the genes involved in polyhydroxyalkanoate metabolism, possibly in an indirect manner. In addition, survival and oxidative stress assays performed under polyhydroxyalkanoate- and nonpolyhydroxyalkanoate- accumulating conditions demonstrated that the accumulated polyhydroxyalkanoate increased the survival and stress tolerance of the rpoS mutant. According to this, polyhydroxyalkanoate accumulation would help cells to overcome the adverse conditions encountered during the stationary phase in the strain that lacks RpoS.

  17. A low-fat dietary pattern and risk of metabolic syndrome in postmenopausal women: The Women’s Health Initiative

    PubMed Central

    Neuhouser, Marian L.; Howard, Barbara; Lu, Jingmin; Tinker, Lesley F.; Van Horn, Linda; Caan, Bette; Rohan, Thomas; Stefanick, Marcia L.; Thomson, Cynthia A.

    2012-01-01

    Objective Nutrition plays an important role in metabolic syndrome etiology. We examined whether the Women’s Health Initiative (WHI) Dietary Modification Trial influenced metabolic syndrome risk. Materials/Methods 48,835 postmenopausal women aged 50–79 years were randomized to a low-fat (20% energy from fat) diet (intervention) or usual diet (comparison) for a mean of 8.1 years. Blood pressure, waist circumference and fasting blood measures of glucose, HDL-cholesterol and triglycerides were measured on a subsample (n= 2816) at baseline and years 1, 3 and 6 post-randomization. Logistic regression estimated associations of the intervention with metabolic syndrome risk and use of cholesterol-lowering and hypertension medications. Multivariate linear regression tested associations between the intervention and metabolic syndrome components. Results At year 3, but not years 1 or 6, women in the intervention group (vs. comparison) had a non-statistically significant lower risk of metabolic syndrome (OR=0.83, 95% CI 0.59–1.18). Linear regression models simultaneously modeling the five metabolic syndrome components revealed significant associations of the intervention with metabolic syndrome at year 1 (p<0.0001), but not years 3 (p=0.19) and 6 (p=0.17). Analyses restricted to intervention-adherent participants strengthened associations at years 3 (p=0.05) and 6 (p=0.06). Cholesterol-lowering and hypertension medication use was 19% lower at year 1 for intervention vs. comparison group women (OR=0.81, 95% CI 0.60–1.09). Over the entire trial, fewer intervention vs. comparison participants used these medications (26.0% vs. 29.9%), although results were not statistically significant (p=0.89). Conclusions The WHI low-fat diet may influence metabolic syndrome risk and decrease use of hypertension and cholesterol-lowering medications. Findings have potential for meaningful clinical translation. PMID:22633601

  18. [Effects of waterlogging on the growth and energy-metabolic enzyme activities of different tree species].

    PubMed

    Wang, Gui-Bin; Cao, Fu-Liang; Zhang, Xiao-Yan; Zhang, Wang-Xiang

    2010-03-01

    Aimed to understand the waterlogging tolerance and adaptation mechanisms of different tree species, a simulated field experiment was conducted to study the growth and energy-metabolic enzyme activities of one-year-old seedlings of Taxodium distichum, Carya illinoensis, and Sapium sebiferum. Three treatments were installed, i. e., CK, waterlogging, and flooding, with the treatment duration being 60 days. Under waterlogging and flooding, the relative growth of test tree species was in the order of T. distichum > C. illinoensis > S. sebiferum, indicating that T. distichum had the strongest tolerance against waterlogging and flooding, while S. sebiferum had the weakest one. Also under waterlogging and flooding, the root/crown ratio of the three tree species increased significantly, suggesting that more photosynthates were allocated in roots, and the lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) activities of the tree species also had a significant increase. Among the test tree species, T. distichum had the lowest increment of LDH and ADH activities under waterlogging and flooding, but the increment could maintain at a higher level in the treatment duration, while for C. illinoensis and S. sebiferum, the increment was larger during the initial and medium period, but declined rapidly during the later period of treatment. The malate dehydrogenase (MDH), phosphohexose (HPI), and glucose-6-phosphate dehydrogenase (G6PDH) -6-phosphogluconate dehydrogenase (6PGDH) activities of the tree species under waterlogging and flooding had a significant decrease, and the decrement was the largest for T. distichum, being 35.6% for MDH, 21.0% for HPI, and 22.7% for G6PDH - 6PGDH under flooding. It was suggested that under waterlogging and flooding, the tree species with strong waterlogging tolerance had a higher ability to maintain energy-metabolic balance, and thus, its growth could be maintained at a certain level.

  19. Colonization-Induced Host-Gut Microbial Metabolic Interaction

    PubMed Central

    Claus, Sandrine P.; Ellero, Sandrine L.; Berger, Bernard; Krause, Lutz; Bruttin, Anne; Molina, Jérôme; Paris, Alain; Want, Elizabeth J.; de Waziers, Isabelle; Cloarec, Olivier; Richards, Selena E.; Wang, Yulan; Dumas, Marc-Emmanuel; Ross, Alastair; Rezzi, Serge; Kochhar, Sunil; Van Bladeren, Peter; Lindon, John C.; Holmes, Elaine; Nicholson, Jeremy K.

    2011-01-01

    The gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. PMID:21363910

  20. Occupation-related differences in the prevalence of metabolic syndrome.

    PubMed

    Sánchez-Chaparro, Miguel-Angel; Calvo-Bonacho, Eva; González-Quintela, Arturo; Fernández-Labandera, Carlos; Cabrera, Martha; Sáinz, Juan-Carlos; Fernández-Meseguer, Ana; Banegas, José R; Ruilope, Luis-Miguel; Valdivielso, Pedro; Román-García, Javier

    2008-09-01

    To investigate the prevalence of metabolic syndrome in the Spanish working population and determine how the prevalence varies according to occupation and sex. This was a cross-sectional study of 259,014 workers (mean age 36.4 years, range [16-74]; 72.9% male) who underwent a routine medical checkup. The Adult Treatment Panel III (2001) definition for metabolic syndrome was used. The prevalence of metabolic syndrome was 11.6% (95% CI 11.5-11.7) in male subjects and 4.1% (4.0-4.2) in female subjects and increased with age. The prevalence of metabolic syndrome varied in the different categories of occupational activity depending on the sex considered. Among female subjects, the age-adjusted prevalence of metabolic syndrome was higher in blue-collar than in white-collar workers, but this difference was not evident among male workers. The prevalence of metabolic syndrome varies in the different categories of occupational activity in the Spanish working population. This variation also depends on sex.

  1. Activation of CAR and PXR by Dietary, Environmental and Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation

    PubMed Central

    Hernandez, J.P.; Mota, L.C.; Baldwin, W.S.

    2010-01-01

    The constitutive androstane receptor (CAR) and the pregnane × receptor (PXR) are activated by a variety of endogenous and exogenous ligands, such as steroid hormones, bile acids, pharmaceuticals, and environmental, dietary, and occupational chemicals. In turn, they induce phase I–III detoxification enzymes and transporters that help eliminate these chemicals. Because many of the chemicals that activate CAR and PXR are environmentally-relevant (dietary and anthropogenic), studies need to address whether these chemicals or mixtures of these chemicals may increase the susceptibility to adverse drug interactions. In addition, CAR and PXR are involved in hepatic proliferation, intermediary metabolism, and protection from cholestasis. Therefore, activation of CAR and PXR may have a wide variety of implications for personalized medicine through physiological effects on metabolism and cell proliferation; some beneficial and others adverse. Identifying the chemicals that activate these promiscuous nuclear receptors and understanding how these chemicals may act in concert will help us predict adverse drug reactions (ADRs), predict cholestasis and steatosis, and regulate intermediary metabolism. This review summarizes the available data on CAR and PXR, including the environmental chemicals that activate these receptors, the genes they control, and the physiological processes that are perturbed or depend on CAR and PXR action. This knowledge contributes to a foundation that will be necessary to discern interindividual differences in the downstream biological pathways regulated by these key nuclear receptors. PMID:20871735

  2. Synthesis, biological evaluation, and metabolic stability of phenazine derivatives as antibacterial agents.

    PubMed

    Krishnaiah, Maddeboina; de Almeida, Nathalia Rodrigues; Udumula, Venkatareddy; Song, Zhongcheng; Chhonker, Yashpal Singh; Abdelmoaty, Mai M; do Nascimento, Valter Aragao; Murry, Daryl J; Conda-Sheridan, Martin

    2018-01-01

    Drug-resistant pathogens are a major cause of hospital- and community-associated bacterial infections in the United States and around the world. These infections are increasingly difficult to treat due to the development of antibiotic resistance and the formation of bacterial biofilms. In the paper, a series of phenazines were synthesized and evaluated for their in vitro antimicrobial activity against Gram positive (methicillin resistant staphylococcus aureus, MRSA) and Gram negative (Escherichia coli, E. coli) bacteria. The compound 6,9-dichloro-N-(methylsulfonyl)phenazine-1-carboxamide (18c) proved to be the most active molecule (MIC = 16 μg/mL) against MRSA whereas 9-methyl-N-(methylsulfonyl)phenazine-1-carboxamide (30e) showed good activity against both MRSA (MIC = 32 μg/mL) and E. coli (MIC = 32 μg/mL). Molecule 18c also demonstrated significant biofilm dispersion and inhibition against S. aureus. Preliminary studies indicate the molecules do not disturb bacterial membranes and there activity is not directly linked to the generation of reactive oxygen species. Compound 18c displayed minor toxicity against mammalian cells. Metabolic stability studies of the most promising compounds indicate stability towards phase I and phase II metabolizing enzymes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Influence of energy balance on the antimicrobial peptides S100A8 and S100A9 in the endometrium of the post-partum dairy cow.

    PubMed

    Swangchan-Uthai, Theerawat; Chen, Qiusheng; Kirton, Sally E; Fenwick, Mark A; Cheng, Zhangrui; Patton, Joe; Fouladi-Nashta, Ali A; Wathes, D Claire

    2013-05-01

    Uterine inflammation occurs after calving in association with extensive endometrial remodelling and bacterial contamination. If the inflammation persists, it leads to reduced fertility. Chronic endometritis is highly prevalent in high-yielding cows that experience negative energy balance (NEB) in early lactation. This study investigated the effect of NEB on the antimicrobial peptides S100A8 and S100A9 in involuting uteri collected 2 weeks post partum. Holstein-Friesian cows (six per treatment) were randomly allocated to two interventions designed to produce mild or severe NEB (MNEB and SNEB) status. Endometrial samples were examined histologically, and the presence of neutrophils, macrophages, lymphocytes and natural killer cells was confirmed using haematoxylin and eosin and immunostaining. SNEB cows had greater signs of uterine inflammation. Samples of previously gravid uterine horn were used to localise S100A8 and S100A9 by immunohistochemistry. Both S100 proteins were present in bovine endometrium with strong staining in epithelial and stromal cells and in infiltrated leucocytes. Immunostaining was significantly higher in SNEB cows along with increased numbers of segmented neutrophils. These results suggest that the metabolic changes of a post-partum cow suffering from NEB delay uterine involution and promote a chronic state of inflammation. We show that upregulation of S100A8 and S100A9 is clearly a key component of the early endometrial response to uterine infection. Further studies are warranted to link the extent of this response after calving to the likelihood of cows developing endometritis and to their subsequent fertility.

  4. Influence of energy balance on the antimicrobial peptides S100A8 and S100A9 in the endometrium of the post-partum dairy cow

    PubMed Central

    Swangchan-Uthai, Theerawat; Chen, Qiusheng; Kirton, Sally E; Fenwick, Mark A; Cheng, Zhangrui; Patton, Joe; Fouladi-Nashta, Ali A; Wathes, D Claire

    2013-01-01

    Uterine inflammation occurs after calving in association with extensive endometrial remodelling and bacterial contamination. If the inflammation persists, it leads to reduced fertility. Chronic endometritis is highly prevalent in high-yielding cows that experience negative energy balance (NEB) in early lactation. This study investigated the effect of NEB on the antimicrobial peptides S100A8 and S100A9 in involuting uteri collected 2 weeks post partum. Holstein-Friesian cows (six per treatment) were randomly allocated to two interventions designed to produce mild or severe NEB (MNEB and SNEB) status. Endometrial samples were examined histologically, and the presence of neutrophils, macrophages, lymphocytes and natural killer cells was confirmed using haematoxylin and eosin and immunostaining. SNEB cows had greater signs of uterine inflammation. Samples of previously gravid uterine horn were used to localise S100A8 and S100A9 by immunohistochemistry. Both S100 proteins were present in bovine endometrium with strong staining in epithelial and stromal cells and in infiltrated leucocytes. Immunostaining was significantly higher in SNEB cows along with increased numbers of segmented neutrophils. These results suggest that the metabolic changes of a post-partum cow suffering from NEB delay uterine involution and promote a chronic state of inflammation. We show that upregulation of S100A8 and S100A9 is clearly a key component of the early endometrial response to uterine infection. Further studies are warranted to link the extent of this response after calving to the likelihood of cows developing endometritis and to their subsequent fertility. PMID:23533291

  5. A study of inter-individual variability in the Phase II metabolism of xenobiotics in human skin.

    PubMed

    Spriggs, Sandrine; Cubberley, Richard; Loadman, Paul; Sheffield, David; Wierzbicki, Antonia

    2018-08-01

    Understanding skin metabolism is key to improve in vitro to in vivo extrapolations used to inform risk assessments of topically applied products. However, published literature is scarce and usually covers a limited and non-representative number of donors. We developed a protocol to handle and store ex vivo skin samples post-surgery and prepare skin S9 fractions to measure the metabolic activity of Phase II enzymes. Preincubation of an excess of cofactors at 37 °C for fifteen minutes in the S9 before introduction of the testing probe, greatly increased the stability of the enzymes. Using this standardised assay, the rates of sulphation (SULT) and glucuronidation (UGT) of 7-hydroxycoumarin, methylation (COMT) of dopamine and N-acetylation (NAT) of procainamide were measured in the ng/mg protein/h (converted to ng/cm 2 /h) range in eighty-seven individuals. Glutathione conjugation (GST) of 1-chloro-2,4-dinitrobenzene was assessed in a smaller pool of fifty donors; the metabolic rate was much faster and measured over six minutes using a different methodology to express rates in μg/mg protein/min (converted to μg/cm 2 /min). A comprehensive statistical analysis of these results was carried out, separating donors by age, gender and metabolic rate measured. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. S100A8 and S100A9 are messengers in the crosstalk between epidermis and dermis modulating a psoriatic milieu in human skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young; Jang, Sunhyae; Min, Jeong-Ki

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce cytokine production. Black-Right-Pointing-Pointer Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce migration of immune cells. Black-Right-Pointing-Pointer Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce angiogenesis. Black-Right-Pointing-Pointer S100A8 and/or S100A9 may play a role in the crosstalk between epidermis and dermis in psoriasis. -- Abstract: S100A8 and S100A9 are members of the S100A8 protein family that exist as homodimers and heterodimers in neutrophils, monocytes, and macrophages. Recent studies have shown the pivotal roles of S100A8 and S100A9 in the propagation of inflammation and keratinocyte proliferation in psoriasis. We found significant up-regulationmore » of S100A8 and S100A9 secretion from keratinocytes in psoriatic lesions. To mimic the in vivo secretory conditions of S100A8 and S100A9 from psoriatic epidermal keratinocytes, we used the culture medium (CM) of S100A8 and S100A8/A9 adenovirus-transduced keratinocytes to investigate the functions of S100A8 and S100A9. We detected increased levels of various pro-inflammatory cytokines in the CM, including IL-8 and TNF-{alpha}, which are involved in aggravating psoriatic skin lesions, and IL-6 and members of the CXCL family of pro-angiogenic cytokines. The CM increased immune cell migration and increased angiogenesis in human umbilical vein endothelial cells. In conclusion, we found that the upregulated production of S100A8 and S100A9 by psoriatic epidermal keratinocytes activated adjacent keratinocytes to produce several cytokines. Moreover, S100A8 and S100A9 themselves function as pro-angiogenic and chemotactic factors, generating a psoriatic milieu in skin.« less

  7. Metabolic alterations induced in cultured skeletal muscle by stretch-relaxation activity

    NASA Technical Reports Server (NTRS)

    Hatfaludy, Sophia; Shansky, Janet; Vandenburgh, Herman H.

    1989-01-01

    Muscle cells differentiated in vitro are repetitively stretched and relaxed in order to determine the presence of short- and long-term alterations occurring in glucose uptake and lactate efflux that are similar to the metabolic alterations occurring in stimulated organ-cultured muscle and in vivo skeletal muscle during the active state. It is observed that whereas mechanical stimulation increases these metabolic parameters within 4-6 h of starting activity, unstimulated basal rates in control cultures also increase during this period of time, and by 8 h, their rates have reached or exceeded the rates in continuously stimulated cells. Measurements of these parameters in media of different compositions show that activity-induced long-term alterations in the parameters occur independently of growth factors in serium and embryo extracts.

  8. BMP15 Mutations Associated With Primary Ovarian Insufficiency Reduce Expression, Activity, or Synergy With GDF9.

    PubMed

    Patiño, Liliana C; Walton, Kelly L; Mueller, Thomas D; Johnson, Katharine E; Stocker, William; Richani, Dulama; Agapiou, David; Gilchrist, Robert B; Laissue, Paul; Harrison, Craig A

    2017-03-01

    Bone morphogenetic protein (BMP)15 is an oocyte-specific growth factor, which, together with growth differentiation factor (GDF) 9, regulates folliculogenesis and ovulation rate. Multiple mutations in BMP15 have been identified in women with primary ovarian insufficiency (POI), supporting a pathogenic role; however, the underlying biological mechanism of many of these mutants remains unresolved. To determine how mutations associated with ovarian dysfunction alter the biological activity of human BMP15. The effects of 10 mutations in BMP15 on protein production, activation of granulosa cells, and synergy with GDF9 were assessed. Sequencing of 35 patients with POI identified both an unrecognized BMP15 variant (c.986G>A, R329H) and a variant (c.581T>C, F194S) previously associated with the condition. Assessing expression and activity of these and 8 other BMP15 mutants identified: (1) multiple variants, including L148P, F194S, and Y235C, with reduced mature protein production; (2) three variants (R138H, A180T, and R329H) with ∼fourfold lower activity than wild-type BMP15; and (3) 3 variants (R68W, F194S, and N196K) with a significantly reduced ability to synergize with GDF9. Mutations in BMP15 associated with POI reduce mature protein production, activity, or synergy with GDF9. The latter effect is perhaps most interesting given that interactions with GDF9 most likely underlie the physiology of BMP15 in the human ovary. Copyright © 2017 by the Endocrine Society

  9. Mutagenic activities of biochars from pyrolysis.

    PubMed

    Piterina, Anna V; Chipman, J Kevin; Pembroke, J Tony; Hayes, Michael H B

    2017-08-15

    Biochar production, from pyrolysis of lignocellulosic feedstocks, agricultural residues, and animal and poultry manures are emerging globally as novel industrial and commercial products. It is important to develop and to validate a series of suitable protocols for the ecological monitoring of the qualities and properties of biochars. The highly sensitive Salmonella mutagenicity assays (the Ames test) are used widely by the toxicology community and, via the rat liver extract (S9), can reflect the potential for mammalian metabolic activation. We examined the Ames test for analyses of the mutagenic activities of dimethylsulphoxide (DMSO) extracts of biochars using two bacterial models (S. typhimurium strains TA98 and TA100) in the presence and in the absence of the metabolic activation with the S9-mix. Tester strain TA98 was most sensitive in detecting mutagenic biochar products, and the contribution of S9 was established. Temperature and times of pyrolysis are important. Biochar pyrolysed at 400°C for 10min, from a lignocellulose precursor was mutagenic, but not when formed at 800°C for 60min, or at 600°C for 30min. Biochars from poultry litter, and manures of calves fed on grass had low mutagenicities. Biochar from pig manure had high mutagenicity; biochars from manures of cows fed on a grass plus cereals, those of calves fed on mother's milk, and biochars from solid industrial waste had intermediate mutagenicities. The methods outlined can indicate the need for further studies for screening and detection of the mutagenic residuals in a variety of biochar products. Copyright © 2017. Published by Elsevier B.V.

  10. 14 CFR 47.9 - Corporations not U.S. citizens.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Corporations not U.S. citizens. 47.9... AIRCRAFT REGISTRATION General § 47.9 Corporations not U.S. citizens. (a) Each corporation applying for... disregarded. (e) The corporation that registers an aircraft pursuant to 49 U.S.C. 44102 shall maintain, and...

  11. 14 CFR 47.9 - Corporations not U.S. citizens.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Corporations not U.S. citizens. 47.9... AIRCRAFT REGISTRATION General § 47.9 Corporations not U.S. citizens. (a) Each corporation applying for... corporation that registers an aircraft pursuant to 49 U.S.C. 44102 shall maintain, and make available for...

  12. 14 CFR 47.9 - Corporations not U.S. citizens.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Corporations not U.S. citizens. 47.9... AIRCRAFT REGISTRATION General § 47.9 Corporations not U.S. citizens. (a) Each corporation applying for... disregarded. (e) The corporation that registers an aircraft pursuant to 49 U.S.C. 44102 shall maintain, and...

  13. FlpS, the FNR-Like Protein of Streptococcus suis Is an Essential, Oxygen-Sensing Activator of the Arginine Deiminase System.

    PubMed

    Willenborg, Jörg; Koczula, Anna; Fulde, Marcus; de Greeff, Astrid; Beineke, Andreas; Eisenreich, Wolfgang; Huber, Claudia; Seitz, Maren; Valentin-Weigand, Peter; Goethe, Ralph

    2016-07-21

    Streptococcus (S.) suis is a zoonotic pathogen causing septicemia and meningitis in pigs and humans. During infection S. suis must metabolically adapt to extremely diverse environments of the host. CcpA and the FNR family of bacterial transcriptional regulators are important for metabolic gene regulation in various bacteria. The role of CcpA in S. suis is well defined, but the function of the FNR-like protein of S. suis, FlpS, is yet unknown. Transcriptome analyses of wild-type S. suis and a flpS mutant strain suggested that FlpS is involved in the regulation of the central carbon, arginine degradation and nucleotide metabolism. However, isotopologue profiling revealed no substantial changes in the core carbon and amino acid de novo biosynthesis. FlpS was essential for the induction of the arcABC operon of the arginine degrading pathway under aerobic and anaerobic conditions. The arcABC-inducing activity of FlpS could be associated with the level of free oxygen in the culture medium. FlpS was necessary for arcABC-dependent intracellular bacterial survival but redundant in a mice infection model. Based on these results, we propose that the core function of S. suis FlpS is the oxygen-dependent activation of the arginine deiminase system.

  14. FlpS, the FNR-Like Protein of Streptococcus suis Is an Essential, Oxygen-Sensing Activator of the Arginine Deiminase System

    PubMed Central

    Willenborg, Jörg; Koczula, Anna; Fulde, Marcus; de Greeff, Astrid; Beineke, Andreas; Eisenreich, Wolfgang; Huber, Claudia; Seitz, Maren; Valentin-Weigand, Peter; Goethe, Ralph

    2016-01-01

    Streptococcus (S.) suis is a zoonotic pathogen causing septicemia and meningitis in pigs and humans. During infection S. suis must metabolically adapt to extremely diverse environments of the host. CcpA and the FNR family of bacterial transcriptional regulators are important for metabolic gene regulation in various bacteria. The role of CcpA in S. suis is well defined, but the function of the FNR-like protein of S. suis, FlpS, is yet unknown. Transcriptome analyses of wild-type S. suis and a flpS mutant strain suggested that FlpS is involved in the regulation of the central carbon, arginine degradation and nucleotide metabolism. However, isotopologue profiling revealed no substantial changes in the core carbon and amino acid de novo biosynthesis. FlpS was essential for the induction of the arcABC operon of the arginine degrading pathway under aerobic and anaerobic conditions. The arcABC-inducing activity of FlpS could be associated with the level of free oxygen in the culture medium. FlpS was necessary for arcABC-dependent intracellular bacterial survival but redundant in a mice infection model. Based on these results, we propose that the core function of S. suis FlpS is the oxygen-dependent activation of the arginine deiminase system. PMID:27455333

  15. S100A8/A9 as a biomarker for synovial inflammation and joint damage in patients with rheumatoid arthritis.

    PubMed

    Kang, Kwi Young; Woo, Jung-Won; Park, Sung-Hwan

    2014-01-01

    S100A8 and S100A9 are major leukocyte proteins, known as damage-associated molecular patterns, found at high concentrations in the synovial fluid of patients with rheumatoid arthritis (RA). A heterodimeric complex of S100A8/A9 is secreted by activated leukocytes and binds to Toll-like receptor 4, which mediates downstream signaling and promotes inflammation and autoimmunity. Serum and synovial fluid levels of S100A8/A9 are markedly higher in patients with RA than in patients with osteoarthritis or miscellaneous inflammatory arthritis. Serum levels of S100A8/A9 are significantly correlated with clinical and laboratory markers of inflammation, such as C-reactive protein, erythrocyte sedimentation rate, rheumatoid factor, and the Disease Activity Score for 28 joints. Significant correlations have also been found between S100A8/A9 and radiographic and clinical assessments of joint damage, such as hand radiographs and the Rheumatoid Arthritis Articular Damage score. In addition, among known inflammatory markers, S100A8/A9 has the strongest correlation with total sum scores of ultrasonography assessment. Furthermore, baseline levels of S100A8/A9 are independently associated with progression of joint destruction in longitudinal studies and are responsive to change during conventional and biologic treatments. These findings suggest S100A8/A9 to be a valuable diagnostic and prognostic biomarker for RA.

  16. Metabolically Competent Human Skin Models: Activation and Genotoxicity of Benzo[a]pyrene

    PubMed Central

    Henkler, Frank

    2013-01-01

    The polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (BP) is metabolized into a complex pattern of BP derivatives, among which the ultimate carcinogen (+)-anti-BP-7,8-diol-9,10-epoxide (BPDE) is formed to certain extents. Skin is frequently in contact with PAHs and data on the metabolic capacity of skin tissue toward these compounds are inconclusive. We compared BP metabolism in excised human skin, commercially available in vitro 3D skin models and primary 2D skin cell cultures, and analyzed the metabolically catalyzed occurrence of seven different BP follow-up products by means of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). All models investigated were competent to metabolize BP, and the metabolic profiles generated by ex vivo human skin and skin models were remarkably similar. Furthermore, the genotoxicity of BP and its derivatives was monitored in these models via comet assays. In a full-thickness skin, equivalent BP-mediated genotoxic stress was generated via keratinocytes. Cultured primary keratinocytes revealed a level of genotoxicity comparable with that of direct exposure to 50–100nM of BPDE. Our data demonstrate that the metabolic capacity of human skin ex vivo, as well as organotypic human 3D skin models toward BP, is sufficient to cause significant genotoxic stress and thus cutaneous bioactivation may potentially contribute to mutations that ultimately lead to skin cancer. PMID:23148024

  17. Inactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activity.

    PubMed

    LeMieux, Monique J; Ramalingam, Latha; Mynatt, Randall L; Kalupahana, Nishan S; Kim, Jung Han; Moustaïd-Moussa, Naïma

    2016-02-01

    The adipose renin-angiotensin system (RAS) has been linked to obesity-induced inflammation, though mechanisms are not completely understood. In this study, adipose-specific angiotensinogen knockout mice (Agt-KO) were generated to determine whether Agt inactivation reduces inflammation and alters the metabolic profile of the Agt-KO mice compared to wild-type (WT) littermates. Adipose tissue-specific Agt-KO mice were created using the Cre-LoxP system with both Agt-KO and WT littermates fed either a low-fat or high-fat diet to assess metabolic changes. White adipose tissue was used for gene/protein expression analyses and WAT stromal vascular cells for metabolic extracellular flux assays. No significant differences were observed in body weight or fat mass between both genotypes on either diet. However, improved glucose clearance was observed in Agt-KO compared to WT littermates, consistent with higher expression of genes involved in insulin signaling, glucose transport, and fatty acid metabolism. Furthermore, Agt inactivation reduced total macrophage infiltration in Agt-KO mice fed both diets. Lastly, stroma vascular cells from Agt-KO mice revealed higher metabolic activity compared to WT mice. These findings indicate that adipose-specific Agt inactivation leads to reduced adipose inflammation and increased glucose tolerance mediated in part via increased metabolic activity of adipose cells. © 2015 The Obesity Society.

  18. Sulfite Oxidase Activity Is Essential for Normal Sulfur, Nitrogen and Carbon Metabolism in Tomato Leaves

    PubMed Central

    Brychkova, Galina; Yarmolinsky, Dmitry; Batushansky, Albert; Grishkevich, Vladislav; Khozin-Goldberg, Inna; Fait, Aaron; Amir, Rachel; Fluhr, Robert; Sagi, Moshe

    2015-01-01

    Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum Mill. cv. Rheinlands Ruhm). Here we uncover the ramifications of SO impairment on carbon, nitrogen and sulfur (S) metabolites. Current analysis of the wild-type and SO-impaired plants revealed that under controlled conditions, the imbalanced sulfite level resulting from SO impairment conferred a metabolic shift towards elevated reduced S-compounds, namely sulfide, S-amino acids (S-AA), Co-A and acetyl-CoA, followed by non-S-AA, nitrogen and carbon metabolite enhancement, including polar lipids. Exposing plants to dark-induced carbon starvation resulted in a higher degradation of S-compounds, total AA, carbohydrates, polar lipids and total RNA in the mutant plants. Significantly, a failure to balance the carbon backbones was evident in the mutants, indicated by an increase in tricarboxylic acid cycle (TCA) cycle intermediates, whereas a decrease was shown in stressed wild-type plants. These results indicate that the role of SO is not limited to a rescue reaction under elevated sulfite, but SO is a key player in maintaining optimal carbon, nitrogen and sulfur metabolism in tomato plants. PMID:27135342

  19. Dietary patterns as compared with physical activity in relation to metabolic syndrome among Chinese adults.

    PubMed

    He, Y; Li, Y; Lai, J; Wang, D; Zhang, J; Fu, P; Yang, X; Qi, L

    2013-10-01

    To examine the nationally-representative dietary patterns and their joint effects with physical activity on the likelihood of metabolic syndrome (MS) among 20,827 Chinese adults. CNNHS was a nationally representative cross-sectional observational study. Metabolic syndrome was defined according to the Joint Interim Statement definition. The "Green Water" dietary pattern, characterized by high intakes of rice and vegetables and moderate intakes in animal foods was related to the lowest prevalence of MS (15.9%). Compared to the "Green Water" dietary pattern, the "Yellow Earth" dietary pattern, characterized by high intakes of refined cereal products, tubers, cooking salt and salted vegetable was associated with a significantly elevated odds of MS (odds ratio 1.66, 95%CI: 1.40-1.96), after adjustment of age, sex, socioeconomic status and lifestyle factors. The "Western/new affluence" dietary pattern characterized by higher consumption of beef/lamb, fruit, eggs, poultry and seafood also significantly associated with MS (odds ratio: 1.37, 95%CI: 1.13-1.67). Physical activity showed significant interactions with the dietary patterns in relation to MS risk (P for interaction = 0.008). In the joint analysis, participants with the combination of sedentary activity with the "Yellow Earth" dietary pattern or the "Western/new affluence" dietary pattern both had more than three times (95%CI: 2.8-6.1) higher odds of MS than those with active activity and the "Green Water" dietary pattern. Our findings from the large Chinese national representative data indicate that dietary patterns affect the likelihood of MS. Combining healthy dietary pattern with active lifestyle may benefit more in prevention of MS. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. In vitro metabolism of genistein and tangeretin by human and murine cytochrome P450s.

    PubMed

    Breinholt, Vibeke M; Rasmussen, Salka E; Brøsen, Kim; Friedberg, Thomas H

    2003-07-01

    Recombinant cytochrome P450 (CYP) 1A2, 3A4, 2C9 or 2D6 enzymes obtained from Escherichia coli and human liver microsomes samples were used to investigate the ability of human CYP enzymes to metabolize the two dietary flavonoids, genistein and tangeretin. Analysis of the metabolic profile from incubations with genistein and human liver microsomes revealed the production of five different metabolites, of which three were obtained in sufficient amounts to allow a more detailed elucidation of the structure. One of these metabolites was identified as orobol, the 3'-hydroxylated metabolite of genistein. The remaining two metabolites were also hydroxylated metabolites as evidenced by LC/MS. Orobol was the only metabolite formed after incubation with CYP1A2. The two major product peaks after incubation of tangeretin with human microsomes were identical with 4'-hydroxy-5,6,7,8-tetramethoxyflavone and 5,6-dihydroxy-4',7,8-trimethoxyflavone, previously identified in rat urine in our laboratory. By comparison with UV spectra and LC/MS fragmentation patterns of previously obtained standards, the remaining metabolites eluting after 14, 17 and 20 min. were found to be demethylated at the 4',7-, 4',6-positions or hydroxylated at the 3'- and demethylated at the 4'-positions, respectively. Metabolism of tangeretin by recombinant CYP1A2, 3A4, 2D6 and 2C9 resulted in metabolic profiles that qualitatively were identical to those observed in the human microsomes. Inclusion of the CYP1A2 inhibitor fluvoxamine in the incubation mixture with human liver microsomes resulted in potent inhibition of tangeretin and genistein metabolism. Other isozymes-selective CYP inhibitors had only minor effects on tangeretin or genistein metabolism. Overall the presented observations suggest major involvement of CYP1A2 in the hepatic metabolism of these two flavonoids.

  1. Adipokines, Biomarkers of Endothelial Activation, and Metabolic Syndrome in Patients with Ankylosing Spondylitis

    PubMed Central

    López-Mejías, Raquel; Miranda-Filloy, José A.; Ubilla, Begoña; Carnero-López, Beatriz; Blanco, Ricardo; Pina, Trinitario; González-Juanatey, Carlos; Llorca, Javier; González-Gay, Miguel A.

    2014-01-01

    Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease associated with accelerated atherosclerosis and increased risk of cardiovascular (CV) disease. AS patients also display a high prevalence of features clustered under the name of metabolic syndrome (MeS). Anti-TNF-α therapy was found to be effective to treat AS patients by suppressing inflammation and also improving endothelial function. Previously, it was demonstrated that a short infusion of anti-TNF-α monoclonal antibodyinfliximab induced a rapid and dramatic reduction in serum insulin levels and insulin resistance along with a rapid improvement of insulin sensitivity in nondiabetic AS patients. The role of adipokines, MeS-related biomarkers and biomarkers of endothelial cell activation and inflammation seem to be relevant in different chronic inflammatory diseases. However, its implication in AS has not been fully established. Therefore, in this review we summarize the recent advances in the study of the involvement of these molecules in CV disease or MeS in AS. The assessment of adipokines and biomarkers of endothelial cell activation and MeS may be of potential relevance in the stratification of the CV risk of patients with AS. PMID:24757680

  2. Body composition, nutritional status, and endothelial function in physically active men without metabolic syndrome--a 25 year cohort study.

    PubMed

    Pigłowska, Małgorzata; Kostka, Tomasz; Drygas, Wojciech; Jegier, Anna; Leszczyńska, Joanna; Bill-Bielecka, Mirosława; Kwaśniewska, Magdalena

    2016-04-27

    The purpose of this analysis was to investigate the relationship between body composition, metabolic parameters and endothelial function among physically active healthy middle-aged and older men. Out of 101 asymptomatic men prospectively tracked for traditional cardiovascular risk factors (mean observation period 25.1 years), 55 metabolically healthy individuals who maintained stable leisure time physical activity (LTPA) level throughout the observation and agreed to participate in the body composition assessment were recruited (mean age 60.3 ± 9.9 years). Body composition and raw bioelectrical parameters were measured with bioelectrical impedance analysis (BIA). Microvascular endothelial function was evaluated by means of the reactive hyperemia index (RHI) using Endo-PAT2000 system. Strong correlations were observed between lifetime physical activity (PA), aerobic fitness and most of analyzed body composition parameters. The strongest inverse correlation was found for fat mass (p < 0.01) while positive relationship for fat-free mass (p < 0.01), total body water (p < 0.05 for current aerobic capacity and p < 0.01 for historical PA), body cell mass (p < 0.001), muscle mass (p < 0.001), calcium and potassium (p < 0.01 and p < 0.001 for current aerobic capacity and p < 0.001 and p < 0.01 for historical PA, respectively) and glycogen mass (p < 0.001). Among metabolic parameters, HDL cholesterol (HDL-C) and uric acid were significantly associated with most body composition indicators. Regarding endothelial function, a negative correlation was found for RHI and body mass (p < 0.05) while positive relationship for RHI and body cell mass (p < 0.05), calcium (p < 0.05) and potassium mass (p < 0.05). Impaired endothelial function was observed among 8 subjects. Among bioelectrical parameters, impedance (Z) and resistance (R) normalized for subjects' height were negatively related with body mass, body mass index (BMI) and waist circumference (p < 0.001); while reactance (Xc

  3. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARγ directs early activation of T cells

    PubMed Central

    Angela, Mulki; Endo, Yusuke; Asou, Hikari K.; Yamamoto, Takeshi; Tumes, Damon J.; Tokuyama, Hirotake; Yokote, Koutaro; Nakayama, Toshinori

    2016-01-01

    To fulfil the bioenergetic requirements for increased cell size and clonal expansion, activated T cells reprogramme their metabolic signatures from energetically quiescent to activated. However, the molecular mechanisms and essential components controlling metabolic reprogramming in T cells are not well understood. Here, we show that the mTORC1–PPARγ pathway is crucial for the fatty acid uptake programme in activated CD4+ T cells. This pathway is required for full activation and rapid proliferation of naive and memory CD4+ T cells. PPARγ directly binds and induces genes associated with fatty acid uptake in CD4+ T cells in both mice and humans. The PPARγ-dependent fatty acid uptake programme is critical for metabolic reprogramming. Thus, we provide important mechanistic insights into the metabolic reprogramming mechanisms that govern the expression of key enzymes, fatty acid metabolism and the acquisition of an activated phenotype during CD4+ T cell activation. PMID:27901044

  4. One-step hydrothermal synthesis of 3D petal-like Co9S8/RGO/Ni3S2 composite on nickel foam for high-performance supercapacitors.

    PubMed

    Zhang, Zhuomin; Wang, Qian; Zhao, Chongjun; Min, Shudi; Qian, Xiuzhen

    2015-03-04

    Co9S8, Ni3S2, and reduced graphene oxide (RGO) were combined to construct a graphene composite with two mixed metal sulfide components. Co9S8/RGO/Ni3S2 composite films were hydrothermal-assisted synthesized on nickel foam (NF) by using a modified "active metal substrate" route in which nickel foam acted as both a substrate and Ni source for composite films. It is found that the Co9S8/RGO/Ni3S2/NF electrode exhibits superior capacitive performance with high capability (13.53 F cm(-2) at 20 mA cm(-2), i.e., 2611.9 F g(-1) at 3.9 A g(-1)), excellent rate capability, and enhanced electrochemical stability, with 91.7% retention after 1000 continuous charge-discharge cycles even at a high current density of 80 mA cm(-2).

  5. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders

    PubMed Central

    Viollet, Benoit; Foretz, Marc; Guigas, Bruno; Horman, Sandrine; Dentin, Renaud; Bertrand, Luc; Hue, Louis; Andreelli, Fabrizio

    2006-01-01

    It is now becoming evident that the liver has an important role in the control of whole body metabolism of energy nutrients. In this review, we focus on recent findings showing that AMP-activated protein kinase (AMPK) plays a major role in the control of hepatic metabolism. AMPK integrates nutritional and hormonal signals to promote energy balance by switching on catabolic pathways and switching off ATP-consuming pathways, both by short-term effects on phosphorylation of regulatory proteins and by long-term effects on gene expression. Activation of AMPK in the liver leads to the stimulation of fatty acid oxidation and inhibition of lipogenesis, glucose production and protein synthesis. Medical interest in the AMPK system has recently increased with the demonstration that AMPK could mediate some of the effects of the fat cell-derived adiponectin and the antidiabetic drugs metformin and thiazolidinediones. These findings reinforce the idea that pharmacological activation of AMPK may provide, through signalling and metabolic and gene expression effects, a new strategy for the management of metabolic hepatic disorders linked to type 2 diabetes and obesity. PMID:16644802

  6. Differential release and deposition of S100A8/A9 proteins in inflamed upper airway tissue.

    PubMed

    Van Crombruggen, Koen; Vogl, Thomas; Pérez-Novo, Claudina; Holtappels, Gabriele; Bachert, Claus

    2016-01-01

    Intracellular Ca(2+)-binding S100A8/A9 proteins gain novel functions when released during inflammation. The exact outcome of their extracellular function depends on the local tissue environment in which they are released; both anti-inflammatory and pro-inflammatory responses are described, modulating the immune system by binding Toll-like receptor (TLR)-4 or the receptor for advanced glycation end-products (RAGE). However, the contribution of the proteins in the pathophysiology of chronic rhinosinusitis (CRS) remains unclear.Homomeric S100A8 and S100A9, and heteromeric S100A8/A9 proteins were evaluated in CRS with/without nasal polyps (CRSw/sNP) and controls. Functional responses were assessed in polyp tissue stimulated with S100 proteins in the presence of TLR-4 and RAGE blocking antibodies.S100A8, S100A9 and S100A8/A9 protein levels were significantly higher in CRSwNP patients, showing increased deposition on extracellular matrix (ECM) structures of CRSwNP tissue in contrast to CRSsNP and controls. In the presence of Staphylococcus aureus, S100A8/A9 is released from neutrophils and from the ECM. Extracellular S100A8 and S100A9 proteins induced increased levels of diverse inflammatory mediators via TLR-4 engagement.The inflammatory/remodelling characteristics of CRSwNP specifically allow increased retention of S100A8, S100A9 and S100A8/A9 proteins in the ECM of CRSwNP tissue. Upon release, homodimeric proteins act as a local danger signal inducing inflammatory mediators, predominantly via TLR-4 activation. Copyright ©ERS 2016.

  7. Changes in cerebral glucose metabolism during early abstinence from chronic methamphetamine abuse.

    PubMed

    Berman, S M; Voytek, B; Mandelkern, M A; Hassid, B D; Isaacson, A; Monterosso, J; Miotto, K; Ling, W; London, E D

    2008-09-01

    Changes in brain function during the initial weeks of abstinence from chronic methamphetamine abuse may substantially affect clinical outcome, but are not well understood. We used positron emission tomography with [F-18]fluorodeoxyglucose (FDG) to quantify regional cerebral glucose metabolism, an index of brain function, during performance of a vigilance task. A total of 10 methamphetamine-dependent subjects were tested after 5-9 days of abstinence, and after 4 additional weeks of supervised abstinence. A total of 12 healthy control subjects were tested at corresponding times. Global glucose metabolism increased between tests (P=0.01), more in methamphetamine-dependent (10.9%, P=0.02) than control subjects (1.9%, NS). Glucose metabolism did not change in subcortical regions of methamphetamine-dependent subjects, but increased in neocortex, with maximal increase (>20%) in parietal regions. Changes in reaction time and self-reports of negative affect varied more in methamphetamine-dependent than in control subjects, and correlated both with the increase in parietal glucose metabolism, and decrease in relative activity (after scaling to the global mean) in some regions. A robust relationship between change in self-reports of depressive symptoms and relative activity in the ventral striatum may have great relevance to treatment success because of the role of this region in drug abuse-related behaviors. Shifts in cortical-subcortical metabolic balance either reflect new processes that occur during early abstinence, or the unmasking of effects of chronic methamphetamine abuse that are obscured by suppression of cortical glucose metabolism that continues for at least 5-9 days after cessation of methamphetamine self-administration.

  8. Sequential Metabolism of Secondary Alkyl Amines to Metabolic-Intermediate Complexes: Opposing Roles for the Secondary Hydroxylamine and Primary Amine Metabolites of Desipramine, (S)-Fluoxetine, and N-Desmethyldiltiazem

    PubMed Central

    Hanson, Kelsey L.; VandenBrink, Brooke M.; Babu, Kantipudi N.; Allen, Kyle E.; Nelson, Wendel L.

    2010-01-01

    Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine ≫ primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d3-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation. PMID:20200233

  9. Sequential metabolism of secondary alkyl amines to metabolic-intermediate complexes: opposing roles for the secondary hydroxylamine and primary amine metabolites of desipramine, (s)-fluoxetine, and N-desmethyldiltiazem.

    PubMed

    Hanson, Kelsey L; VandenBrink, Brooke M; Babu, Kantipudi N; Allen, Kyle E; Nelson, Wendel L; Kunze, Kent L

    2010-06-01

    Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine > primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.

  10. The activation of peroxisome proliferator-activated receptor γ is regulated by Krüppel-like transcription factors 6 & 9 under steatotic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escalona-Nandez, Ivonne; Guerrero-Escalera, Dafne; Estanes-Hernández, Alma

    2015-03-20

    Liver steatosis is characterised by lipid droplet deposition in hepatocytes that can leads to an inflammatory and fibrotic phenotype. Peroxisome proliferator-activated receptors (PPARs) play key roles in energetic homeostasis by regulating lipid metabolism in hepatic tissue. In adipose tissue PPARγ regulates the adipocyte differentiation by promoting the expression of lipid-associated genes. Within the liver PPARγ is up-regulated under steatotic conditions; however, which transcription factors participate in its expression is not completely understood. Krüppel-like transcription factors (KLFs) regulate various cellular mechanisms, such as cell proliferation and differentiation. KLFs are key components of adipogenesis by regulating the expression of PPARγ and othermore » proteins such as the C-terminal enhancer binding protein (C/EBP). Here, we demonstrate that the transcript levels of Klf6, Klf9 and Pparγ are increased in response to a steatotic insult in vitro. Chromatin immunoprecipitation (ChIp) experiments showed that klf6 and klf9 are actively recruited to the Pparγ promoter region under these conditions. Accordingly, the loss-of-function experiments reduced cytoplasmic triglyceride accumulation. Here, we demonstrated that KLF6 and KLF9 proteins directly regulate PPARγ expression under steatotic conditions. - Highlights: • Palmitic acid promotes expression of KlF6 & KLF9 in HepG2 cells. • KLF6 and KLF9 promote the expression of PPARγ in response to palmitic acid. • Binding of KLF6 and KLF9 to the PPARγ promoter promotes steatosis in HepG2 cells. • KLF6 and KLF9 loss-of function diminishes the steatosis in HepG2 cells.« less

  11. 14 CFR 47.9 - Corporations not U.S. citizens.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Corporations not U.S. citizens. 47.9... AIRCRAFT REGISTRATION General § 47.9 Corporations not U.S. citizens. Link to an amendment published at 75... corporation applying for registration of an aircraft under 49 U.S.C. 44102 must submit to the Registry with...

  12. 14 CFR 47.9 - Corporations not U.S. citizens.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Corporations not U.S. citizens. 47.9... AIRCRAFT REGISTRATION General § 47.9 Corporations not U.S. citizens. Link to an amendment published at 75... corporation applying for registration of an aircraft under 49 U.S.C. 44102 must submit to the Registry with...

  13. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha.

    PubMed

    Li, Guolin; Brocker, Chad N; Yan, Tingting; Xie, Cen; Krausz, Kristopher W; Xiang, Rong; Gonzalez, Frank J

    2018-01-01

    Peroxisome proliferator-activated receptor alpha (PPARA) is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF) has not been investigated. Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting. Ppara-null mice were used to assess the contribution of PPARA activation during the metabolic response to EODF. Livers were collected for histological, biochemical, qRT-PCR, and Western blot analysis. Acute fasting activated PPARA and led to steatosis, whereas EODF protected against fasting-induced hepatic steatosis without affecting PPARA signaling. In contrast, pretreatment with Wy-14,643 did activate PPARA signaling but did not ameliorate acute fasting-induced steatosis and unexpectedly promoted liver injury. Ppara ablation exacerbated acute fasting-induced hypoglycemia, hepatic steatosis, and liver injury in mice, whereas these detrimental effects were absent in response to EODF, which promoted PPARA-independent fatty acid metabolism and normalized serum lipids. These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis. Published by Elsevier GmbH.

  14. Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells

    PubMed Central

    Ma, Li; Sun, Peng; Zhang, Jian-Cheng; Zhang, Qing; Yao, Shang-Long

    2017-01-01

    S100A8/A9, a heterodimer of the two calcium-binding proteins S100A8 and S100A9, has emerged as an important proinflammatory mediator in acute and chronic inflammation. However, whether S100A8/A9 is implicated in microglial-induced neuroinflammatory response remains unclear. Here, we found that S100A8/A9 significantly increased the secretion of proinflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cultured BV-2 microglial cells. Inhibition of the Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end-products (RAGE) with C225 and a RAGE-blocking antibody, respectively significantly reduced the secretion of TNF-α and IL-6 from S100A8/A9-stimulated BV-2 microglial cells. Furthermore, S100A8/A9 markedly enhanced the nuclear translocation of NF-κB p65 and the DNA-binding activities of NF-κB in BV-2 microglial cells, and suppression of ERK and JNK/MAPK signaling pathways by PD98059 or SP600125 significantly inhibited NF-κB activity and the release of TNF-α and IL-6 in the S100A8/A9-treated BV-2 microglial cells. Our data also showed that inhibition of NF-κB with pyrrolidine dithiocarbamate (PDTC) significantly reduced the secretion of TNF-α and IL-6 from BV-2 microglial cells treated with S100A8/A9. Taken together, our data suggest that S100A8/A9 acts directly on BV-2 microglial cells via binding to TLR4 and RAGE on the membrane and then stimulates the secretion of proinflammatory cytokines through ERK and JNK-mediated NF-κB activity in BV-2 microglial cells. Targeting S100A8/A9 may provide a novel therapeutic strategy in microglial-induced neuroinflammatory diseases. PMID:28498464

  15. Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells.

    PubMed

    Ma, Li; Sun, Peng; Zhang, Jian-Cheng; Zhang, Qing; Yao, Shang-Long

    2017-07-01

    S100A8/A9, a heterodimer of the two calcium-binding proteins S100A8 and S100A9, has emerged as an important proinflammatory mediator in acute and chronic inflammation. However, whether S100A8/A9 is implicated in microglial‑induced neuroinflammatory response remains unclear. Here, we found that S100A8/A9 significantly increased the secretion of proinflammatory cytokines inclu-ding tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cultured BV-2 microglial cells. Inhibition of the Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end-products (RAGE) with C225 and a RAGE-blocking antibody, respectively significantly reduced the secretion of TNF-α and IL-6 from S100A8/A9-stimulated BV-2 microglial cells. Furthermore, S100A8/A9 markedly enhanced the nuclear translocation of NF-κB p65 and the DNA-binding activities of NF-κB in BV-2 microglial cells, and suppression of ERK and JNK/MAPK signaling pathways by PD98059 or SP600125 significantly inhibited NF-κB activity and the release of TNF-α and IL-6 in the S100A8/A9-treated BV-2 microglial cells. Our data also showed that inhibition of NF-κB with pyrrolidine dithiocarbamate (PDTC) significantly reduced the secretion of TNF-α and IL-6 from BV-2 microglial cells treated with S100A8/A9. Taken together, our data suggest that S100A8/A9 acts directly on BV-2 microglial cells via binding to TLR4 and RAGE on the membrane and then stimulates the secretion of proinflammatory cytokines through ERK and JNK-mediated NF-κB activity in BV-2 microglial cells. Targeting S100A8/A9 may provide a novel therapeutic strategy in microglial-induced neuroinflammatory diseases.

  16. An association of metabolic syndrome constellation with cellular membrane caveolae

    PubMed Central

    Zhang, Wei-zheng

    2014-01-01

    Metabolic syndrome (MetS) is a cluster of metabolic abnormalities that can predispose an individual to a greater risk of developing type-2 diabetes and cardiovascular diseases. The cluster includes abdominal obesity, dyslipidemia, hypertension, and hyperglycemia – all of which are risk factors to public health. While searching for a link among the aforementioned malaises, clues have been focused on the cell membrane domain caveolae, wherein the MetS-associated active molecules are colocalized and interacted with to carry out designated biological activities. Caveola disarray could induce all of those individual metabolic abnormalities to be present in animal models and humans, providing a new target for therapeutic strategy in the management of MetS. PMID:24563731

  17. Recombinant bovine S100A8 and A9 enhance IL-1β secretion of interferon-gamma primed monocytes.

    PubMed

    Koy, Mirja; Hambruch, Nina; Hussen, Jamal; Pfarrer, Christiane; Seyfert, Hans-Martin; Schuberth, Hans-Joachim

    2013-09-15

    Calgranulin A (S100A8) and B (S100A9) are found at high levels in inflamed tissue and have been associated with acute and chronic inflammatory disorders. Calgranulins are discussed as damage-associated molecular patterns (DAMPs). To analyze the role of calgranulins for inflammatory responses, bovine S100A8 and S100A9 were cloned, successfully expressed and FPLC-purified. Both molecules did not induce NF-κB activation in boTLR4-transfected HEK293 cells and stimulation of bovine monocytes with both proteins did not result in interleukin 1β (IL-1β) secretion or an upregulated mRNA expression of selected genes (IL1B, TNF, CXCL8, IL10, IL12). However, Interferon γ (IFN-γ) primed bovine monocytes released significantly higher amounts of IL-1β after stimulation with S100A8, S100A9, and co-stimulation with adenosine triphosphate (ATP). In IL-4/IL-13-primed monocytes, the IL-1β release was completely abrogated. The results imply that TLR4/MyD88/NF-κB-independent S100A8/A9-mediated activation of the inflammasome in cattle is favored in a Th1 environment and that S100A8 and S100A9 act as a DAMP in cattle. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. CYP2C9 Genotype vs. Metabolic Phenotype for Individual Drug Dosing—A Correlation Analysis Using Flurbiprofen as Probe Drug

    PubMed Central

    Vogl, Silvia; Lutz, Roman W.; Schönfelder, Gilbert; Lutz, Werner K.

    2015-01-01

    Currently, genotyping of patients for polymorphic enzymes responsible for metabolic elimination is considered a possibility to adjust drug dose levels. For a patient to profit from this procedure, the interindividual differences in drug metabolism within one genotype should be smaller than those between different genotypes. We studied a large cohort of healthy young adults (283 subjects), correlating their CYP2C9 genotype to a simple phenotyping metric, using flurbiprofen as probe drug. Genotyping was conducted for CYP2C9*1, *2, *3. The urinary metabolic ratio MR (concentration of CYP2C9-dependent metabolite divided by concentration of flurbiprofen) determined two hours after flurbiprofen (8.75 mg) administration served as phenotyping metric. Linear statistical models correlating genotype and phenotype provided highly significant allele-specific MR estimates of 0.596 for the wild type allele CYP2C9*1, 0.405 for CYP2C9*2 (68 % of wild type), and 0.113 for CYP2C9*3 (19 % of wild type). If these estimates were used for flurbiprofen dose adjustment, taking 100 % for genotype *1/*1, an average reduction to 84 %, 60 %, 68 %, 43 %, and 19 % would result for genotype *1/*2, *1/*3, *2/*2, *2/*3, and *3/*3, respectively. Due to the large individual variation within genotypes with coefficients of variation ≥ 20 % and supposing the normal distribution, one in three individuals would be out of the average optimum dose by more than 20 %, one in 20 would be 40 % off. Whether this problem also applies to other CYPs and other drugs has to be investigated case by case. Our data for the given example, however, puts the benefit of individual drug dosing to question, if it is exclusively based on genotype. PMID:25775139

  19. CYP2C9 genotype vs. metabolic phenotype for individual drug dosing--a correlation analysis using flurbiprofen as probe drug.

    PubMed

    Vogl, Silvia; Lutz, Roman W; Schönfelder, Gilbert; Lutz, Werner K

    2015-01-01

    Currently, genotyping of patients for polymorphic enzymes responsible for metabolic elimination is considered a possibility to adjust drug dose levels. For a patient to profit from this procedure, the interindividual differences in drug metabolism within one genotype should be smaller than those between different genotypes. We studied a large cohort of healthy young adults (283 subjects), correlating their CYP2C9 genotype to a simple phenotyping metric, using flurbiprofen as probe drug. Genotyping was conducted for CYP2C9*1, *2, *3. The urinary metabolic ratio MR (concentration of CYP2C9-dependent metabolite divided by concentration of flurbiprofen) determined two hours after flurbiprofen (8.75 mg) administration served as phenotyping metric. Linear statistical models correlating genotype and phenotype provided highly significant allele-specific MR estimates of 0.596 for the wild type allele CYP2C9*1, 0.405 for CYP2C9*2 (68 % of wild type), and 0.113 for CYP2C9*3 (19 % of wild type). If these estimates were used for flurbiprofen dose adjustment, taking 100 % for genotype *1/*1, an average reduction to 84 %, 60 %, 68 %, 43 %, and 19 % would result for genotype *1/*2, *1/*3, *2/*2, *2/*3, and *3/*3, respectively. Due to the large individual variation within genotypes with coefficients of variation ≥ 20 % and supposing the normal distribution, one in three individuals would be out of the average optimum dose by more than 20 %, one in 20 would be 40 % off. Whether this problem also applies to other CYPs and other drugs has to be investigated case by case. Our data for the given example, however, puts the benefit of individual drug dosing to question, if it is exclusively based on genotype.

  20. Differential CT Attenuation of Metabolically Active and Inactive Adipose Tissues — Preliminary Findings

    PubMed Central

    Hu, Houchun H.; Chung, Sandra A.; Nayak, Krishna S.; Jackson, Hollie A.; Gilsanz, Vicente

    2010-01-01

    This study investigates differences in CT Hounsfield units (HUs) between metabolically active (brown fat) and inactive adipose tissues (white fat) due to variations in their densities. PET/CT data from 101 pediatric and adolescent patients were analyzed. Regions of metabolically active and inactive adipose tissues were identified and standard uptake values (SUVs) and HUs were measured. HUs of active brown fat were more positive (p<0.001) than inactive fat (−62.4±5.3 versus −86.7±7.0) and the difference was observed in both males and females. PMID:21245691

  1. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation.

    PubMed

    Rayssiguier, Yves; Libako, Patrycja; Nowacki, Wojciech; Rock, Edmond

    2010-06-01

    Magnesium (Mg) intake is inadequate in the western diet and metabolic syndrome is highly prevalent in populations around the world. Epidemiological studies suggest that high Mg intake may reduce the risk but the possibility of confounding factors exists, given the strong association between Mg and other beneficial nutriments (vegetables, fibers, cereals). The concept that metabolic syndrome is an inflammatory condition may explain the role of Mg.Mg deficiency results in a stress effect and increased susceptibility to physiological damage produced by stress. Stress activates the hypothalamic-pituitary-adrenal axis (HPA) axis and the sympathetic nervous system. The activation of the renin-angiotensin-aldosterone system is a factor in the development of insulin resistance by increasing oxidative stress. In both humans and rats, aldosteronism results in an immunostimulatory state and leads to an inflammatory phenotype. Stress response induces the release of large quantities of excitatory amino acids and activates the nuclear factor NFkappaB, promoting translation of molecules involved in cell regulation, metabolism and apoptosis. The rise in neuropeptides is also well documented. Stress-induced HPA activation has been identified to play an important role in the preferential body fat accumulation but evidence that Mg is involved in body weight regulation is lacking. One of the earliest events in the acute response to stress is endothelial dysfunction. Endothelial cells actively contribute to inflammation by elaborating cytokines, synthesizing chemical mediators and expressing adhesion molecules. Experimental Mg deficiency in rats induces a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, synthesis of inflammatory cytokines and acute phase proteins, extensive production of free radicals. An increase in extracellular Mg concentration decreases inflammatory effects, while reduction in extracellular Mg results in cell activation. The

  2. [The decolorization and biodegrading metabolism of azo dyes by Pseudomonas S-42].

    PubMed

    Liu, Z P; Yang, H F

    1989-12-01

    Pseudomonas S-42 was capable of decolorizing azo dyes such as Diamira Brilliant Orange RR(DBO-RR), Direct Brown M (DBM), Eriochrome Brown R(EBR) and so on. The cell suspension, cell-free extract and purified enzyme of Pseud. S-42 could decolorize azo dyes under similar conditions: the optimum pH and temperature laid 7.0 and 37 degrees C respectively. The efficiencies of decolorizing of DBO-RR, DBM, EBR by intact cells stood more than 90%. When the cell concentration was 15 mg(wet)/ml and the reaction time was 5 hours, the decolorizing activity for above three azo dyes by intact cells were 1.75, 2.4, 0.95 micrograms dye/mg cell, respectively. Cell-free extract and purified enzyme could well express the decolorizing activity only under the anaerobic condition and added NADH. Purified enzyme belongs to azoreductase, its molecular weight is about 34,000-2000 daltons, and its Vmax and Km for DBO-RR are 13 mumol.mg protein-1.min-1 and 54 mumol/L. The results of the detection of the biodegrading products of DBO-RR by spectrophotometric and NaNO2 reactional methods showed that the biodegradation of azo dyes was initiated by the reduction cleavage of azo bonds. It was hypothesized that biodegrading metabolism pathway of DBO-RR by Pseudomonas S-42.

  3. SCD1 activity in muscle increases triglyceride PUFA content, exercise capacity, and PPARδ expression in mice[S

    PubMed Central

    Rogowski, Michael P.; Flowers, Matthew T.; Stamatikos, Alexis D.; Ntambi, James M.; Paton, Chad M.

    2013-01-01

    Stearoyl-CoA desaturase (SCD)1 converts saturated fatty acids into monounsaturated fatty acids. Using muscle overexpression, we sought to determine the role of SCD1 expression in glucose and lipid metabolism and its effects on exercise capacity in mice. Wild-type C57Bl/6 (WT) and SCD1 muscle transgenic (SCD1-Tg) mice were generated, and expression of the SCD1 transgene was restricted to skeletal muscle. SCD1 overexpression was associated with increased triglyceride (TG) content. The fatty acid composition of the muscle revealed a significant increase in polyunsaturated fatty acid (PUFA) content of TG, including linoleate (18:2n6). Untrained SCD1-Tg mice also displayed significantly increased treadmill exercise capacity (WT = 6.6 ± 3 min, Tg = 71.9 ± 9.5 min; P = 0.0009). SCD1-Tg mice had decreased fasting plasma glucose, glucose transporter (GLUT)1 mRNA, fatty acid oxidation, mitochondrial content, and increased peroxisome proliferator-activated receptor (PPAR)δ and Pgc-1 protein expression in skeletal muscle. In vitro studies in C2C12 myocytes revealed that linoleate (18:2n6) and not oleate (18:1n9) caused a 3-fold increase in PPARδ and a 9-fold increase in CPT-1b with a subsequent increase in fat oxidation. The present model suggests that increasing delta-9 desaturase activity of muscle increases metabolic function, exercise capacity, and lipid oxidation likely through increased PUFA content, which increases PPARδ expression and activity. However, the mechanism of action that results in increased PUFA content of SCD1-Tg mice remains to be elucidated. PMID:23918045

  4. Metabolomics Analysis of Cistus monspeliensis Leaf Extract on Energy Metabolism Activation in Human Intestinal Cells

    PubMed Central

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells. PMID:22523469

  5. Combined effects of fruit and vegetables intake and physical activity on the risk of metabolic syndrome among Chinese adults.

    PubMed

    Li, Xin-Tong; Liao, Wei; Yu, Hong-Jie; Liu, Ming-Wei; Yuan, Shuai; Tang, Bo-Wen; Yang, Xu-Hao; Song, Yong; Huang, Yao; Cheng, Shi-le; Chen, Zhi-Yu; Towne, Samuel D; Mao, Zong-Fu; He, Qi-Qiang

    2017-01-01

    Unbalanced dietary intake and insufficient physical activity (PA) have been recognized as risk factors for metabolic syndrome (MetS). We aimed to examine the independent and combined effects of fruit and vegetables (FV) intake and PA on MetS. A cross-sectional survey was conducted among residents of China in 2009, with fasting blood samples collected. Participants were divided into sufficient/insufficient FV intake and adequate/ inadequate PA groups according to self-reported questionnaires. MetS was defined using the NCEP-ATPIII criteria. The difference of individual MetS components was compared across different PA or FV groups. Multivariable logistic regression was used to assess association between FV/PA and the risk of MetS. A total of 7424 adults were included in the current study. MetS was prevalent in 28.7% of participants, with 24.7% and 32.9% in male and female, respectively. Compared with those with inadequate PA and insufficient FV intake, participants with the combination of adequate PA and sufficient FV intake had the lowest risk of MetS (OR = 0.69,95%CI: 0.59-0.82), following by the group with adequate PA time but insufficient FV intake (OR = 0.74, 95%CI:0.65-0.83). Findings of the current study show that the combination of sufficient FV intake and adequate PA was significantly associated with reduced MetS risk among adult residents of China.

  6. Constraining the Accretion Mode in LINER 1.9s

    NASA Astrophysics Data System (ADS)

    Sabra, Bassem; Der Sahaguian, Elias; Badr, Elie

    2016-01-01

    The accretion mode and the dominant power source in low-ionization nuclear emission-line regions (LINERs), a class of active galactic nuclei (AGN), are still elusive. We focus on a sample of 22 LINER 1.9s (Ho et al. 1997), a subclass of LINERs that show broad Halpha lines, a signature of blackhole-powered accretion, to test the hypothesis that the ionizing continuum emitted by a radiatively inefficient accretion flow (RIAF) could lead to the LINER ultraviolet (UV) emission-line ratios. Optical line-ratio diagrams are a weak diagnostic tool in distinguishing between possible power sources (Sabra et al. 2003). We search the Mikulski Archive for Space Telescopes (MAST) for UV spectra of the objects in the above sample and also perform photoionization simulations using CLOUDY (Ferland et al. 2013). Unfortunately, only one object (NGC 1052; Gabel et al. 2000) of the 22 LINER 1.9s has UV spectra that cover many emission lines; the rest of the objects either do not have any UV spectra, the spectral coverage is in-adequate, or the spectra have very low signal-to-noise ratios. Our photoionization simulations set up two identical grids of clouds with a range of densities and ionization parameters. We illuminate one grid with radiation emitted by a thin accretion disk (AD) and we illuminate the other grid with radiation from a RIAF. We overplot the UV emission-line ratio predictions for AD and RIAF illumination, together with the available line ratios for NGC 1052. Initial results show that UV lines could be used as diagnostics for the accretion mode in AGN. More UV spectral coverage of LINER 1.9s is needed in order to more fully utilize the diagnostic powers of UV emission line ratios.

  7. Cytokine Response to Diet and Exercise Affects Atheromatous Matrix Metalloproteinase-2/9 Activity in Mice.

    PubMed

    Shon, Soo-Min; Jang, Hee Jeong; Schellingerhout, Dawid; Kim, Jeong-Yeon; Ryu, Wi-Sun; Lee, Su-Kyoung; Kim, Jiwon; Park, Jin-Yong; Oh, Ji Hye; Kang, Jeong Wook; Je, Kang-Hoon; Park, Jung E; Kim, Kwangmeyung; Kwon, Ick Chan; Lee, Juneyoung; Nahrendorf, Matthias; Park, Jong-Ho; Kim, Dong-Eog

    2017-09-25

    The aim of this study is to identify the principal circulating factors that modulate atheromatous matrix metalloproteinase (MMP) activity in response to diet and exercise.Methods and Results:Apolipoprotein-E knock-out (ApoE -/- ) mice (n=56) with pre-existing plaque, fed either a Western diet (WD) or normal diet (ND), underwent either 10 weeks of treadmill exercise or had no treatment. Atheromatous MMP activity was visualized using molecular imaging with a MMP-2/9 activatable near-infrared fluorescent (NIRF) probe. Exercise did not significantly reduce body weight, visceral fat, and plaque size in either WD-fed animals or ND-fed animals. However, atheromatous MMP-activity was different; ND animals that did or did not exercise had similarly low MMP activities, WD animals that did not exercise had high MMP activity, and WD animals that did exercise had reduced levels of MMP activity, close to the levels of ND animals. Factor analysis and path analysis showed that soluble vascular cell adhesion molecule (sVCAM)-1 was directly positively correlated to atheromatous MMP activity. Adiponectin was indirectly negatively related to atheromatous MMP activity by way of sVCAM-1. Resistin was indirectly positively related to atheromatous MMP activity by way of sVCAM-1. Visceral fat amount was indirectly positively associated with atheromatous MMP activity, by way of adiponectin reduction and resistin elevation. MMP-2/9 imaging of additional mice (n=18) supported the diet/exercise-related anti-atherosclerotic roles for sVCAM-1. Diet and exercise affect atheromatous MMP activity by modulating the systemic inflammatory milieu, with sVCAM-1, resistin, and adiponectin closely interacting with each other and with visceral fat.

  8. Prediction of intestinal absorption and metabolism of pharmacologically active flavones and flavanones.

    PubMed

    Serra, H; Mendes, T; Bronze, M R; Simplício, Ana Luísa

    2008-04-01

    Three glycosilated flavonoids (diosmin, hesperidin and naringin) and respective aglycones were characterized in terms of their apparent ionisation constants and bidirectional permeability using the cellular model Caco-2 as well as the artificial membrane model PAMPA. Ionisation curves were established by capillary electrophoresis. It was confirmed that significant amounts of the aglycones are ionised at physiological pH whereas the glycosides are in the neutral form. Permeation was not detected for the glycosides in either the apical-to-basolateral or basolateral-to-apical directions confirming the need for metabolism before absorption through the intestinal membrane. The aglycones permeated in both directions with apparent permeabilities (P(app)) in the range of 1-8x10(-5) cm/s. The results from both in vitro methods correlated providing some evidence of passive transport; however, the hypothesis of active transport cannot be excluded particularly in the case of diosmetin. Metabolism of the aglycones was detected with the cell model, more extensively when loading in the apical side. Some of the metabolites were identified as glucuronide conjugates by enzymatic hydrolysis.

  9. Abnormal islet sphingolipid metabolism in type 1 diabetes.

    PubMed

    Holm, Laurits J; Krogvold, Lars; Hasselby, Jane P; Kaur, Simranjeet; Claessens, Laura A; Russell, Mark A; Mathews, Clayton E; Hanssen, Kristian F; Morgan, Noel G; Koeleman, Bobby P C; Roep, Bart O; Gerling, Ivan C; Pociot, Flemming; Dahl-Jørgensen, Knut; Buschard, Karsten

    2018-07-01

    available online at https://www.dropbox.com/s/93mk5tzl5fdyo6b/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%2C%20RNA%20expression.xlsx?dl=0 . A list of SNPs identified is available at https://www.dropbox.com/s/yfojma9xanpp2ju/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%20SNP.xlsx?dl=0 .

  10. S100A9+ MDSC and TAM-mediated EGFR-TKI resistance in lung adenocarcinoma: the role of RELB.

    PubMed

    Feng, Po-Hao; Yu, Chih-Teng; Chen, Kuan-Yuan; Luo, Ching-Shan; Wu, Shen Ming; Liu, Chien-Ying; Kuo, Lu Wei; Chan, Yao-Fei; Chen, Tzu-Tao; Chang, Chih-Cheng; Lee, Chun-Nin; Chuang, Hsiao-Chi; Lin, Chiou-Feng; Han, Chia-Li; Lee, Wei-Hwa; Lee, Kang-Yun

    2018-01-26

    Monocytic myeloid-derived suppressor cells (MDSCs), particularly the S100A9+ subset, has been shown initial clinical relevance. However, its role in EGFR-mutated lung adenocarcinoma, especially to EGFR-tyrosine kinase inhibitor (EGFR-TKI) is not clear. In a clinical setting of EGFR mutated lung adenocarcinoma, a role of the MDSC apart from T cell suppression was also investigated. Blood monocytic S100A9 + MDSC counts were higher in lung cancer patients than healthy donors, and were associated with poor treatment response and shorter progression-free survival (PFS). S100A9 + MDSCs in PBMC were well correlated to tumor infiltrating CD68 + and S100A9 + cells, suggesting an origin of TAMs. Patient's MDMs, mostly from S100A9 + MDSC, similar to primary alveolar macrophages from patients, both expressed S100A9 and CD206, attenuated EGFR-TKI cytotoxicity. Microarray analysis identified up-regulation of the RELB signaling genes, confirmed by Western blotting and functionally by RELB knockdown. In conclusion, blood S100A9 + MDSC is a predictor of poor treatment response to EGFR-TKI, possibly via its derived TAMs through activation of the non-canonical NF-κB RELB pathway. Patients with activating EGFR mutation lung adenocarcinoma receiving first line EGFR TKIs were prospectively enrolled. Peripheral blood mononuclear cells (PBMCs) were collected for MDSCs analysis and for monocyte-derived macrophages (MDMs) and stored tissue for TAM analysis by IHC. A transwell co-culture system of MDMs/macrophages and H827 cells was used to detect the effect of macrophages on H827 and microarray analysis to explore the underlying molecular mechanisms, functionally confirmed by RNA interference.

  11. The Role of CYP2C8 and CYP2C9 Genotypes in Losartan-Dependent Inhibition of Paclitaxel Metabolism in Human Liver Microsomes.

    PubMed

    Mukai, Yuji; Senda, Asuna; Toda, Takaki; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2016-06-01

    The aim of the present study was to further investigate a previously identified metabolic interaction between losartan and paclitaxel, which is one of the marker substrates of CYP2C8, by using human liver microsomes (HLMs) from donors with different CYP2C8 and CYP2C9 genotypes. Although CYP2C8 and CYP2C9 exhibit genetic linkage, previous studies have yet to determine whether losartan or its active metabolite, EXP-3174 which is specifically generated by CYP2C9, is responsible for CYP2C8 inhibition. Concentrations of 6α-hydroxypaclitaxel and EXP-3174 were measured by high-performance liquid chromatography after incubations with paclitaxel, losartan or EXP-3174 in HLMs from seven donors with different CYP2C8 and CYP2C9 genotypes. The half maximal inhibitory concentration (IC50 ) values were not fully dependent on CYP2C8 genotypes. Although the degree of inhibition was small, losartan significantly inhibited the production of 6α-hydroxypaclitaxel at a concentration of 1 μmol/L in only HL20 with the CYP2C8*3/*3 genotype. HLMs with either CYP2C9*2/*2 or CYP2C9*1/*3 exhibited a lower losartan intrinsic clearance (Vmax /Km ) than other HLMs including those with CYP2C9*1/*1 and CYP2C9*1/*2. Significant inhibition of 6α-hydroxypaclitaxel formation by EXP-3174 could only be found at levels that were 50 times higher (100 μmol/L) than the maximum concentration generated in the inhibition study using losartan. These results suggest that the metabolic interaction between losartan and paclitaxel is dependent on losartan itself rather than its metabolite and that the CYP2C8 inhibition by losartan is not affected by the CYP2C9 genotype. Further study is needed to define the effect of CYP2C8 genotypes on losartan-paclitaxel interaction. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  12. S-nitrosylation of GAD65 is implicated in decreased GAD activity and oxygen-induced seizures.

    PubMed

    Gasier, Heath G; Demchenko, Ivan T; Tatro, Lynn G; Piantadosi, Claude A

    2017-07-13

    Breathing oxygen at partial pressures ≥2.5 atmospheres absolute, which can occur in diving and hyperbaric oxygen (HBO 2 ) therapy, can rapidly become toxic to the central nervous system (CNS). This neurotoxicity culminates in generalized EEG epileptiform discharges, tonic-clonic convulsions and ultimately death. Increased production of neuronal nitric oxide (NO) has been implicated in eliciting hyperoxic seizures by altering the equilibrium between glutamatergic and GABAergic synaptic transmission. Inhibition of glutamic acid decarboxylase (GAD) activity in HBO 2 promotes this imbalance; however, the mechanisms by which this occurs is unknown. Therefore, we conducted a series of experiments using mice, a species that is highly susceptible to CNS oxygen toxicity, to explore the possibility that NO modulates GABA metabolism. Mice were exposed to 100% oxygen at 4 ATA for various durations, and brain GAD and GABA transaminase (GABA-T) activity, as well as S-nitrosylation of GAD65 and GAD67 were determined. HBO 2 inhibited GAD activity by 50% and this was negatively correlated with S-nitrosylation of GAD65, whereas GABA-T activity and S-nitrosylation of GAD67 were unaltered. These results suggest a new mechanism by which NO alters GABA metabolism, leading to neuroexcitation and seizures in HBO 2 . Published by Elsevier B.V.

  13. Evaluation of oxidative stress parameters and metabolic activities of nurses working day and night shifts.

    PubMed

    Ulas, Turgay; Buyukhatipoglu, Hakan; Kirhan, Idris; Dal, Mehmet Sinan; Ulas, Sevilay; Demir, Mehmet Emin; Eren, Mehmet Ali; Ucar, Mehmet; Hazar, Abdussamet; Kurkcuoglu, Ibrahim Can; Aksoy, Nurten

    2013-04-01

    The aim of this study was to evaluate the oxidative stress and metabolic activities of nurses working day and night shifts. Intensive care unit (ICU) (n=70) and ordinary service (OS) nurses (n=70) were enrolled in the study. Just before and the end of the shifts, blood samples were obtained to measure the participants' oxidative stress parameters. Metabolic activities were analyzed using the SenseWear Armband. Oxidative stress parameters were increased at the end of the shifts for all OS and ICU nurses compared to the beginning of the shifts. Compared to the OS nurses, the ICU nurses' TAS, TOS, and OSI levels were not significantly different at the end of the day and night shifts. The metabolic activities of the OS and ICU nurses were found to be similar. As a result, the OS and ICU nurses' oxidative stress parameters and metabolic activities were not different, and all of the nurses experienced similar effects from both the day and night shifts.

  14. Metabolic activation of sodium nitroprusside to nitric oxide in vascular smooth muscle.

    PubMed

    Kowaluk, E A; Seth, P; Fung, H L

    1992-09-01

    Sodium nitroprusside (SNP) is thought to exert its vasodilating activity, at least in part, by vascular activation to nitric oxide (NO), but the activation mechanism has not been delineated. This study has examined the potential for vascular metabolism of SNP to NO in bovine coronary arterial smooth muscle subcellular fractions using a sensitive and specific redox-chemiluminescence assay for NO. SNP was readily metabolized to NO in subcellular fractions, and the dominant site of metabolism appeared to be located in the membrane fractions. NO-generating activity was significantly enhanced by, but did not absolutely require, the addition of a NADPH-regenerating system, NADPH per se, NADH or cysteine. A correlation analysis of NO-generating activity (in the presence of a NADPH-regenerating system) with marker enzyme activities indicated that the SNP-directed NO-generating activity was primarily membrane-associated. Radiation inactivation target-size analysis revealed that the microsomal SNP-directed NO-generating activity was relatively insensitive to inactivation by radiation exposure, suggesting that the functioning catalytic unit might be quite small. A molecular weight of 5 to 11 kDa was estimated. NO-generating activity could be solubilized from the crude microsomes with 3-[(3-cholamidopropyl)- dimethylammonio]-1-propane sulfonate, and the solubilized extract was subjected to gel filtration chromatography. NO-generating activity was eluted in two peaks: one peak corresponding to an approximate molecular weight of 4 kDa, thus confirming the existence of a small molecular weight NO-generating activity, and a second activity peak corresponding to a molecular weight of 112 to 169 kDa, the functional significance of which is unclear at present.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. The Sirt1 activator SRT3025 provides atheroprotection in Apoe−/− mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression

    PubMed Central

    Miranda, Melroy X.; van Tits, Lambertus J.; Lohmann, Christine; Arsiwala, Tasneem; Winnik, Stephan; Tailleux, Anne; Stein, Sokrates; Gomes, Ana P.; Suri, Vipin; Ellis, James L.; Lutz, Thomas A.; Hottiger, Michael O.; Sinclair, David A.; Auwerx, Johan; Schoonjans, Kristina; Staels, Bart; Lüscher, Thomas F.; Matter, Christian M.

    2015-01-01

    Aims The deacetylase sirtuin 1 (Sirt1) exerts beneficial effects on lipid metabolism, but its roles in plasma LDL-cholesterol regulation and atherosclerosis are controversial. Thus, we applied the pharmacological Sirt1 activator SRT3025 in a mouse model of atherosclerosis and in hepatocyte culture. Methods and results Apolipoprotein E-deficient (Apoe−/−) mice were fed a high-cholesterol diet (1.25% w/w) supplemented with SRT3025 (3.18 g kg−1 diet) for 12 weeks. In vitro, the drug activated wild-type Sirt1 protein, but not the activation-resistant Sirt1 mutant; in vivo, it increased deacetylation of hepatic p65 and skeletal muscle Foxo1. SRT3025 treatment decreased plasma levels of LDL-cholesterol and total cholesterol and reduced atherosclerosis. Drug treatment did not change mRNA expression of hepatic LDL receptor (Ldlr) and proprotein convertase subtilisin/kexin type 9 (Pcsk9), but increased their protein expression indicating post-translational effects. Consistent with hepatocyte Ldlr and Pcsk9 accumulation, we found reduced plasma levels of Pcsk9 after pharmacological Sirt1 activation. In vitro administration of SRT3025 to cultured AML12 hepatocytes attenuated Pcsk9 secretion and its binding to Ldlr, thereby reducing Pcsk9-mediated Ldlr degradation and increasing Ldlr expression and LDL uptake. Co-administration of exogenous Pcsk9 with SRT3025 blunted these effects. Sirt1 activation with SRT3025 in Ldlr−/− mice reduced neither plasma Pcsk9, nor LDL-cholesterol levels, nor atherosclerosis. Conclusion We identify reduction in Pcsk9 secretion as a novel effect of Sirt1 activity and uncover Ldlr as a prerequisite for Sirt1-mediated atheroprotection in mice. Pharmacological activation of Sirt1 appears promising to be tested in patients for its effects on plasma Pcsk9, LDL-cholesterol, and atherosclerosis. PMID:24603306

  16. A missed Fe-S cluster handoff causes a metabolic shakeup.

    PubMed

    Berteau, Olivier

    2018-05-25

    The general framework of pathways by which iron-sulfur (Fe-S) clusters are assembled in cells is well-known, but the cellular consequences of disruptions to that framework are not fully understood. Crooks et al. report a novel cellular system that creates an acute Fe-S cluster deficiency, using mutants of ISCU, the main scaffold protein for Fe-S cluster assembly. Surprisingly, the resultant metabolic reprogramming leads to the accumulation of lipid droplets, a situation encountered in many poorly understood pathological conditions, highlighting unanticipated links between Fe-S assembly machinery and human disease. © 2018 Berteau.

  17. Susceptibility of Candida albicans biofilms to caspofungin and anidulafungin is not affected by metabolic activity or biomass production.

    PubMed

    Marcos-Zambrano, Laura Judith; Escribano, Pilar; Bouza, Emilio; Guinea, Jesús

    2016-02-01

    Micafungin is more active against biofilms with high metabolic activity; however, it is unknown whether this observation applies to caspofungin and anidulafungin and whether it is also dependent on the biomass production. We compare the antifungal activity of anidulafungin, caspofungin, and micafungin against preformed Candida albicans biofilms with different degrees of metabolic activity and biomass production from 301 isolates causing fungemia in patients admitted to Gregorio Marañon Hospital (January 2007 to September 2014). Biofilms were classified as having low, moderate, or high metabolic activity according XTT reduction assay or having low, moderate, or high biomass according to crystal violet assay. Echinocandin MICs for planktonic and sessile cells were measured using the EUCAST E.Def 7.2 procedure and XTT reduction assay, respectively. Micafungin showed the highest activity against biofilms classified according to the metabolic activity and biomass production (P < .001). The activity of caspofungin and anidulafungin was not dependent on the metabolic activity of the biofilm or the biomass production. These observations were confirmed by scanning electron microscopy. None of the echinocandins produced major changes in the structure of biofilms with low metabolic activity and biomass production when compared with the untreated biofilms. However, biofilm with high metabolic activity or high biomass production was considerably more susceptible to micafungin; this effect was not shown by caspofungin or anidulafungin. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Inflight - Apollo 9 (Crew Activities)

    NASA Image and Video Library

    1969-03-06

    S69-26150 (6 March 1969) --- Television watchers on Earth saw this view of the Apollo 9 Command Module during the second live telecast from Apollo 9 early Thursday afternoon on the fourth day in space. This view is looking through the docking window of the Lunar Module. The cloud-covered Earth can be seen in the background. Inside the Lunar Module "Spider" were Astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. At this moment Apollo 9 was orbiting Earth with the Command and Service Modules docked nose-to-nose with the Lunar Module. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module "Gumdrop" while the other two astronauts checked out the Lunar Module. McDivitt and Schweickart moved into the Lunar Module from the Command Module by way of the docking tunnel.

  19. S100A8/A9, a potent serum and molecular imaging biomarker for synovial inflammation and joint destruction in seronegative experimental arthritis.

    PubMed

    Geven, Edwin J W; van den Bosch, Martijn H J; Di Ceglie, Irene; Ascone, Giuliana; Abdollahi-Roodsaz, Shahla; Sloetjes, Annet W; Hermann, Sven; Schäfers, Michael; van de Loo, Fons A J; van der Kraan, Peter M; Koenders, Marije I; Foell, Dirk; Roth, Johannes; Vogl, Thomas; van Lent, Peter L E M

    2016-10-24

    Seronegative joint diseases are characterized by a lack of well-defined biomarkers since autoantibodies are not elevated. Calprotectin (S100A8/A9) is a damage-associated molecular pattern (DAMP) which is released by activated phagocytes, and high levels are found in seronegative arthritides. In this study, we investigated the biomarker potential of systemic and local levels of these S100 proteins to assess joint inflammation and joint destruction in an experimental model for seronegative arthritis. Serum levels of S100A8/A9 and various cytokines were monitored during disease development in interleukin-1 receptor antagonist (IL-1Ra) -/- mice using ELISA and multiplex bead-based immunoassay, and were correlated to macroscopic and microscopic parameters for joint inflammation, bone erosion, and cartilage damage. Local expression of S100A8 and S100A9 and matrix metalloproteinase (MMP)-mediated cartilage damage in the ankle joints were investigated by immunohistochemistry. In addition, local S100A8 and activated MMPs were monitored in vivo by optical imaging using anti-S100A8-Cy7 and AF489-Cy5.5, a specific tracer for activated MMPs. Serum levels of S100A8/A9 were significantly increased in IL-1Ra -/- mice and correlated with macroscopic joint swelling and histological inflammation, while serum levels of pro-inflammatory cytokines did not correlate with joint swelling. In addition, early serum S100A8/A9 levels were prognostic for disease outcome at a later stage. The increased serum S100A8/A9 levels were reflected by an increased expression of S100A8 and S100A9 within the ankle joint, as visualized by molecular imaging. Next to inflammatory processes, serum S100A8/A9 also correlated with histological parameters for bone erosion and cartilage damage. In addition, arthritic IL-1Ra -/- mice with increased synovial S100A8 and S100A9 expression showed increased cartilage damage that coincided with MMP-mediated neoepitope expression and in vivo imaging of activated MMPs

  20. The BRAF inhibitor vemurafenib activates mitochondrial metabolism and inhibits hyperpolarized pyruvate-lactate exchange in BRAF mutant human melanoma cells

    PubMed Central

    Delgado-Goni, Teresa; Falck Miniotis, Maria; Wantuch, Slawomir; Parkes, Harold G.; Marais, Richard; Workman, Paul; Leach, Martin O.; Beloueche-Babari, Mounia

    2016-01-01

    Understanding the impact of BRAF signaling inhibition in human melanoma on key disease mechanisms is important for developing biomarkers of therapeutic response and combination strategies to improve long term disease control. This work investigates the downstream metabolic consequences of BRAF inhibition with vemurafenib, the molecular and biochemical processes that underpin them, their significance for antineoplastic activity and potential as non-invasive imaging response biomarkers.1H NMR spectroscopy showed that vemurafenib decreases the glycolytic activity of BRAF mutant (WM266.4 and SKMEL28) but not BRAFWT (CHL-1 and D04) human melanoma cells. In WM266.4 cells, this was associated with increased acetate, glycine and myo-inositol levels and decreased fatty acyl signals, while the bioenergetic status was maintained. 13C NMR metabolic flux analysis of treated WM266.4 cells revealed inhibition of de novo lactate synthesis and glucose utilization, associated with increased oxidative and anaplerotic pyruvate carboxylase mitochondrial metabolism and decreased lipid synthesis. This metabolic shift was associated with depletion of HKII, acyl-CoA dehydrogenase 9, 3-phosphoglycerate dehydrogenase and monocarboxylate transporter (MCT) 1 and 4 in BRAF mutant but not BRAFWT cells and, interestingly, decreased BRAF mutant cell dependency on glucose and glutamine for growth. Further, the reduction in MCT1 expression observed led to inhibition of hyperpolarized 13C-pyruvate-lactate exchange, a parameter that is translatable to in vivo imaging studies, in live WM266.4 cells. In conclusion, our data provide new insights into the molecular and metabolic consequences of BRAF inhibition in BRAF-driven human melanoma cells that may have potential for combinatorial therapeutic targeting as well as non-invasive imaging of response. PMID:27765851

  1. Metabolic syndrome among rural Indian adults.

    PubMed

    Barik, Anamitra; Das, Kausik; Chowdhury, Abhijit; Rai, Rajesh Kumar

    2018-02-01

    To prevent an increasing level of mortality due to type 2 diabetes mellitus and cardiovascular disease among the rural Indian population, a management strategy of the metabolic syndrome (MetS) should be devised. This study aims to estimate the burden of MetS and its associated risk factors. Data from the Birbhum Population Project covering 9886 individuals (4810 male and 5076 female population) aged ≥18 years were used. The burden of metabolic syndrome, as defined by the Third Report of the National Cholesterol Education Program Adult Treatment Panel, was determined. Bivariate and multivariate (logistic regression) analyses were used to attain the study objective. Over 10.7% of the males and 20.3% of the females were diagnosed with MetS. Irrespective of sex, older individuals, being overweight/obese (body mass index of ≥23 kg/m 2 ) had higher probability of developing MetS, whereas being underweight is deemed a protective factor against MetS. Low physical activity among women appeared to be a risk factor for MetS. The prevalence of MetS is concerning even in rural India. Any intervention designed to address the issue could emphasize on weight loss, and physical activity, focusing on women and people at an advanced stage of life. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  2. The metabolic profile in early rheumatoid arthritis: a high prevalence of metabolic obesity.

    PubMed

    Müller, Raili; Kull, Mart; Põlluste, Kaja; Aart, Annika; Eglit, Triin; Lember, Margus; Kallikorm, Riina

    2017-01-01

    The aim of the study was to compare the prevalence of metabolic syndrome (MetS) in early RA patients with age-gender-matched population controls focusing on the presence of MetS in different weight categories. The study group consisted of 91 consecutive patients with early RA and 273 age- and gender-matched controls subjects. MetS was diagnosed according to the National Cholesterol Education Program (NCEP-ATP III) criteria. Mean age in both groups was 52 years, and 72.5 % were female. The prevalence of MetS did not differ between the two groups (35.2 % in RA, 34.1 % in control group). Mean systolic blood pressure in the RA group was 137 mmHg, in control group 131 mmHg, P = 0.01, and diastolic blood pressure 85 versus 81 mmHg, respectively (P < 0.01). We found that 20 of 65 (30.8 %) of RA patients compared to 80 of 152 (52.6 %) of the control subjects with elevated blood pressure received antihypertensive treatment (P < 0.01). When comparing subgroups with normal BMI, the odds of having MetS (being metabolically obese) were higher among early RA subjects (OR 5.6, CI 1.3-23.8). Of the individual components of metabolic syndrome, we found increased prevalence of hypertension (OR 2.8, CI 1.3-6.0) and hyperglycemia (OR 2.9, CI 1.0-8.0) in the RA group. Recognition of abnormal metabolic status among normal-weight RA patients who have not yet developed CVD could provide a valuable opportunity for preventative intervention.

  3. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12.

    PubMed

    Morishima, Nobuhiro; Nakanishi, Keiko; Takenouchi, Hiromi; Shibata, Takehiko; Yasuhiko, Yukuto

    2002-09-13

    Activation of caspase-12 from procaspase-12 is specifically induced by insult to the endoplasmic reticulum (ER) (Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. (2000) Nature 403, 98-103), yet the functional consequences of caspase-12 activation have been unclear. We have shown that recombinant caspase-12 specifically cleaves and activates procaspase-9 in cytosolic extracts. The activated caspase-9 catalyzes cleavage of procaspase-3, which is inhibitable by a caspase-9-specific inhibitor. Although cytochrome c released from mitochondria has been believed to be required for caspase-9 activation during apoptosis (Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997) Cell 90, 405-413, Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997) Cell 91, 479-489), caspase-9 as well as caspase-12 and -3 are activated in cytochrome c-free cytosols in murine myoblast cells under ER stress. These results suggest that caspase-12 can activate caspase-9 without involvement of cytochrome c. To examine the role of caspase-12 in the activation of downstream caspases, we used a caspase-12-binding protein, which we identified in a yeast two-hybrid screen, for regulation of caspase-12 activation. The binding protein protects procaspase-12 from processing in vitro. Stable expression of the binding protein renders procaspase-12 insensitive to ER stress, thereby suppressing apoptosis and the activation of caspase-9 and -3. These data suggest that procaspase-9 is a substrate of caspase-12 and that ER stress triggers a specific cascade involving caspase-12, -9, and -3 in a cytochrome c-independent manner.

  4. Cross-sectional surveillance study to phenotype lorry drivers’ sedentary behaviours, physical activity and cardio-metabolic health

    PubMed Central

    Varela-Mato, Veronica; O’Shea, Orlagh; King, James A; Yates, Thomas; Stensel, David J; Biddle, Stuart JH; Nimmo, Myra A; Clemes, Stacy A

    2017-01-01

    Objectives Elevated risk factors for a number of chronic diseases have been identified in lorry drivers. Unhealthy lifestyle behaviours such as a lack of physical activity (PA) and high levels of sedentary behaviour (sitting) likely contribute to this elevated risk. This study behaviourally phenotyped UK lorry drivers’ sedentary and non-sedentary behaviours during workdays and non-workdays and examined markers of drivers cardio-metabolic health. Setting A transport company from the East Midlands, UK. Participants A sample of 159 male heavy goods vehicle drivers (91% white European; (median (range)) age: 50 (24, 67) years) completed the health assessments. 87 (age: 50.0 (25.0, 65.0); body mass index (BMI): 27.7 (19.6, 43.4) kg/m2) provided objective information on sedentary and non-sedentary time. Outcomes Participants self-reported their sociodemographic information. Primary outcomes: sedentary behaviour and PA, assessed over 7 days using an activPAL3 inclinometer. Cardio-metabolic markers included: blood pressure (BP), heart rate, waist circumference (WC), hip circumference, body composition and fasted capillary blood glucose, triglycerides, high-density lipopreotein cholesterol, low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels. These cardio-metabolic markers were treated as secondary outcomes. Results Lorry drivers presented an unhealthy cardio-metabolic health profile (median (IQR) systolic BP: 129 (108.5, 164) mm Hg; diastolic BP: 81 (63, 104) mm Hg; BMI: 29 (20, 47) kg/m2; WC: 102 (77.5, 146.5) cm; LDL-C: 3 (1, 6) mmol/L; TC: 4.9 (3, 7.5) mmol/L). 84% were overweight or obese, 43% had type 2 diabetes or prediabetes and 34% had the metabolic syndrome. The subsample of lorry drivers with objective postural data (n=87) accumulated 13 hours/day and 8 hours/day of sedentary behaviour on workdays and non-workdays (p<0.001), respectively. On average, drivers accrued 12 min/day on workdays and 6 min/day on non-workdays of

  5. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble.

    PubMed

    Jolivet, Renaud; Coggan, Jay S; Allaman, Igor; Magistretti, Pierre J

    2015-02-01

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain's metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  6. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes

    PubMed Central

    Lobel, Lior; Herskovits, Anat A.

    2016-01-01

    Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes) and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY’s regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA) under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes), integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner. PMID:26895237

  7. 9 CFR 592.80 - Political activity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Political activity. 592.80 Section 592.80 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Performance of Services § 592.80 Political activity. All inspection program personnel are...

  8. 9 CFR 592.80 - Political activity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Political activity. 592.80 Section 592.80 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Performance of Services § 592.80 Political activity. All inspection program personnel are...

  9. 9 CFR 592.80 - Political activity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Political activity. 592.80 Section 592.80 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Performance of Services § 592.80 Political activity. All inspection program personnel are...

  10. 9 CFR 592.80 - Political activity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Political activity. 592.80 Section 592.80 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Performance of Services § 592.80 Political activity. All inspection program personnel are...

  11. Oxysterol-binding protein-related protein (ORP) 9 is a PDK-2 substrate and regulates Akt phosphorylation.

    PubMed

    Lessmann, Eva; Ngo, Mike; Leitges, Michael; Minguet, Susana; Ridgway, Neale D; Huber, Michael

    2007-02-01

    The oxysterol-binding protein and oxysterol-binding protein-related protein family has been implicated in lipid transport and metabolism, vesicle trafficking and cell signaling. While investigating the phosphorylation of Akt/protein kinase B in stimulated bone marrow-derived mast cells, we observed that a monoclonal antibody directed against phospho-S473 Akt cross-reacted with oxysterol-binding protein-related protein 9 (ORP9). Further analysis revealed that mast cells exclusively express ORP9S, an N-terminal truncated version of full-length ORP9L. A PDK-2 consensus phosphorylation site in ORP9L and OPR9S at S287 (VPEFS(287)Y) was confirmed by site-directed mutagenesis. In contrast to Akt, increased phosphorylation of ORP9S S287 in stimulated mast cells was independent of phosphatidylinositol 3-kinase but sensitive to inhibition of conventional PKC isotypes. PKC-beta dependence was confirmed by lack of ORP9S phosphorylation at S287 in PKC-beta-deficient, but not PKC-alpha-deficient, mast cells. Moreover, co-immunoprecipitation of PKC-beta and ORP9S, and in vitro phosphorylation of ORP9S in this complex, argued for direct phosphorylation of ORP9S by PKC-beta, introducing ORP9S as a novel PKC-beta substrate. Akt was also detected in a PKC-beta/ORP9S immune complex and phosphorylation of Akt on S473 was delayed in PKC-deficient mast cells. In HEK293 cells, RNAi experiments showed that depletion of ORP9L increased Akt S473 phosphorylation 3-fold without affecting T308 phosphorylation in the activation loop. Furthermore, mammalian target of rapamycin was implicated in ORP9L phosphorylation in HEK293 cells. These studies identify ORP9 as a PDK-2 substrate and negative regulator of Akt phosphorylation at the PDK-2 site.

  12. A microfluidic device for evaluating the dynamics of the metabolism-dependent antioxidant activity of nutrients.

    PubMed

    Lee, Jungwoo; Choi, Jong-ryul; Ha, Sang Keun; Choi, Inwook; Lee, Seung Hwan; Kim, Donghyun; Choi, Nakwon; Sung, Jong Hwan

    2014-08-21

    Various food components are known for their health-promoting effects. However, their biochemical effects are generally evaluated in vitro, and their actual in vivo effect can vary significantly, depending on their metabolic profiles. To evaluate the effect of the liver metabolism on the antioxidant activity, we have developed a two-compartment microfluidic system that integrates the dynamics of liver metabolism and the subsequent antioxidant activity of food components. In the first compartment of the device, human liver enzyme fractions were immobilized inside a poly(ethylene glycol) diacrylate (PEGDA) hydrogel to mimic the liver metabolism. The radical scavenging activity was evaluated by the change of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) absorbance in the second compartment. Reaction engineering and fluid mechanics principles were used to develop a simplified analytical model and a more complex finite element model, which were used to design the chip and determine the optimal flow conditions. For real-time measurements of the reaction on a chip, we developed a custom-made photospectrometer system with an LED light source. The developed microfluidic system showed a linear and dose-dependent antioxidant activity in response to increasing concentration of flavonoid. We also compared the antioxidant activity of flavonoid after various liver metabolic reactions. This microfluidic system can serve as a novel in vitro platform for predicting the antioxidant activity of various food components in a more physiologically realistic manner, as well as for studying the mechanism of action of such food components.

  13. Pretest analysis of Semiscale Mod-3 baseline test S-07-8 and S-07-9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fineman, C.P.; Steiner, J.L.; Snider, D.M.

    This document contains a pretest analysis of the Semiscale Mod-3 system thermal-hydraulic response for the second and third integral tests in Test Series 7 (Tests S-07-8 and S-07-9). Test Series 7 is the first test series to be conducted with the Semiscale Mod-3 system. The design of the Mod-3 system includes an improved representation of certain portions of a pressurized water reactor (PWR) when compared to the previously operated Semiscale Mod-1 system. The improvements include a new vessel which contains a full length (3.66 m) core, a full length upper plenum and upper head, and an external downcomer. An activemore » pump and active steam generator scaled to their pressurized water reactor (PWR) counterparts have been added to the broken loop. The upper head design includes the capability to simulate emergency core coolant (ECC) injection into this region. Test Series 7 is divided into three groups of tests that emphasize the evaluation of the Mod-3 system performance during different phases of the loss-of-coolant experiment (LOCE) transient. The last test group, which includes Tests S-07-8 and S-07-9, will be used to evaluate the integral behavior of the system. The previous two test groups were used to evaluate the blowdown behavior and the reflood behavior of the system. 3 refs., 35 figs., 12 tabs.« less

  14. Mathematical model of the metabolism of 123I-16-iodo-9-hexadecenoic acid in an isolated rat heart. Validation by comparison with experimental measurements.

    PubMed

    Dubois, F; Depresseux, J C; Bontemps, L; Demaison, L; Keriel, C; Mathieu, J P; Pernin, C; Marti-Batlle, D; Vidal, M; Cuchet, P

    1986-01-01

    The aim of the present study was to demonstrate that it is possible to estimate the intracellular metabolism of a fatty acid labelled with iodine using external radioactivity measurements. 123I-16-iodo-9-hexadecenoic acid (IHA) was injected close to the coronary arteries of isolated rat hearts perfused according to the Langendorff technique. The time course of the cardiac radioactivity was measured using an INa crystal coupled to an analyser. The obtained curves were analysed using a four-compartment mathematical model, with the compartments corresponding to the vascular-IHA (O), intramyocardial free-IHA (1), esterified-IHA (2) and iodide (3) pools. Curve analysis using this model demonstrated that, as compared to substrate-free perfusion, the presence of glucose (11 mM) increased IHA storage and decreased its oxidation. These changes were enhanced by the presence of insulin. A comparison of these results with measurements of the radioactivity levels within the various cellular fractions validated our proposed mathematical model. Thus, using only a mathematical analysis of a cardiac time-activity curve, it is possible to obtain quantitative information about IHA distribution in the different intracellular metabolic pathways. This technique is potentially useful for the study of metabolic effects of ischaemia or anoxia, as well as for the study of the influence of various substrates or drugs on IHA metabolism in isolated rat hearts.

  15. A new and highly sensitive method of analyzing metabolic activity using FLIM (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Evers, Michael; Salma, Nunciada; Birngruber, Reginald; Evans, Conor L.; Manstein, Dieter

    2017-02-01

    Traditional assessments of cellular metabolism are often destructive, time consuming and without visual information. Fluorescence lifetime imaging microscopy (FLIM) provides a highly sensitive, non-invasive, and label-free alternative. This study uses FLIM in combination with two-photon microscopy to investigate pharmacological induced metabolic changes of adipocytes via changes in the fluorescence of the metabolic co-factors NADH and FAD. In agreement with recent publications NADH fluorescence suggests the presence of four distinct lifetimes in cell culture and tissue with two unbound and two protein bound states which show different responses to treatment with metabolic modifiers. We evaluated the effects on NADH fluorescence lifetime after systematic manipulations to change the balance between oxidative and glycolytic metabolism using five pharmacological reagents - Oligomycin, 2-DG, FCCP, Rotenone, and Glucose - which interact with different parts of the metabolic pathway. We established several ratios between the four distinct lifetimes of NADH after treatment and compared the results to oxygen consumption rate and extracellular acidification rate. We demonstrated, for the first time, a correlation between the two unbound fluorescence lifetimes components and glycolytic and oxidative metabolic activity with a significant higher sensitivity compared to the commonly used free-to-bound ratio of NADH. Analyzing all four lifetime components of NADH has the potential to become a powerful tool to evaluate metabolic activity of adipocytes with subcellular resolution.

  16. Prevalence and Determinants of Metabolic Health in Subjects with Obesity in Chinese Population.

    PubMed

    Zheng, Ruizhi; Yang, Min; Bao, Yuqian; Li, Hong; Shan, Zhongyan; Zhang, Bo; Liu, Juan; Lv, Qinguo; Wu, Ou; Zhu, Yimin; Lai, Maode

    2015-10-28

    The study was to investigate the prevalence of metabolic health in subjects with obesity in the Chinese population and to identify the determinants related to metabolic abnormality in obese individuals. 5013 subjects were recruited from seven provincial capitals in China. The obesity and metabolic status were classified based on body mass index (BMI) and the number of abnormalities in common components of metabolic syndrome. 27.9% of individuals with obesity were metabolically healthy. The prevalence of the metabolically healthy obese (MHO) phenotype was significantly decreased with age in women (p trend < 0.001), but not significantly in men (p trend = 0.349). Central obesity (odds ratio [OR] = 4.07, 95% confidence interval [CI] = 1.93-8.59), longer sedentary time (OR = 1.97, 95%CI = 1.27-3.06), and with a family history of obesity related diseases (hypertension, diabetes, dyslipidemia) (OR = 1.85, 95%CI = 1.26-2.71) were significantly associated with having metabolic abnormality in obese individuals. Higher levels of physical activity and more fruit/vegetable intake had decreased ORs of 0.67 (95%CI = 0.45-0.98) and 0.44 (95%CI = 0.28-0.70), respectively. 27.9% of obese participants are in metabolic health. Central obesity, physical activity, sedentary time, fruits/vegetables intake and family history of diseases are the determinants associated with metabolic status in obesity.

  17. Salinity effects on viability, metabolic activity and proliferation of three Perkinsus species

    USGS Publications Warehouse

    La, Peyre M.; Casas, S.; La, Peyre J.

    2006-01-01

    Little is known regarding the range of conditions in which many Perkinsus species may proliferate, making it difficult to predict conditions favorable for their expansion, to identify conditions inducing mortality, or to identify instances of potential cross-infectivity among sympatric host species. In this study, the effects of salinity on viability, metabolic activity and proliferation of P. marinus, P. olseni and P. chesapeaki were determined. Specifically, this research examined the effects of 5 salinities (7, 11, 15, 25, 35???), (1) without acclimation, on the viability and metabolic activity of 2 isolates of each Perkinsus species, and (2) with acclimation, on the viability, metabolic activity, size and number of 1 isolate of each species. P. chesapeaki showed the widest range of salinity tolerance of the 3 species, with high viability and cell proliferation at all salinities tested. Although P. chesapeaki originated from low salinity areas (i.e. <15???), several measures (i.e. cell number and metabolic activity) indicated that higher salinities (15, 25???) were more favorable for its growth. P. olseni, originating from high salinity areas, had better viability and proliferation at the higher salinities (15, 25, 35???). Distinct differences in acute salinity response of the 2 P. olseni isolates at lower salinities (7, 11???), however, suggest the need for a more expansive comparison of isolates to better define the lower salinity tolerance. Lastly, P. marinus was more tolerant of the lower salinities (7 and 11???) than P. olseni, but exhibited reduced viability at 7???, even after acclimation. ?? Inter-Research 2006.

  18. META-ANALYSIS OF CYP2D6 METABOLIZER PHENOTYPE AND METOPROLOL PHARMACOKINETICS

    PubMed Central

    Blake, CM; Kharasch, ED; Schwab, M; Nagele, P

    2013-01-01

    Metoprolol, a commonly prescribed beta-blocker, is primarily metabolized by cytochrome P450 2D6 (CYP2D6), an enzyme with substantial genetic heterogeneity. Several smaller studies have shown that metoprolol pharmacokinetics is influenced by CYP2D6 genotype and metabolizer phenotype. To increase robustness of metoprolol pharmacokinetic estimates, a systematic review and meta-analysis of pharmacokinetic studies that administered a single oral dose of immediate release metoprolol was performed. Pooled analysis (n= 264) demonstrated differences in peak plasma metoprolol concentration, area under the concentration-time curve, elimination half-life, and apparent oral clearance that were 2.3-, 4.9-, 2.3-, and 5.9-fold between extensive and poor metabolizers, respectively, and 5.3-, 13-, 2.6-, and 15-fold between ultra-rapid and poor metabolizers (all p<0.001). Enantiomer-specific analysis revealed genotype-dependent enantio-selective metabolism, with nearly 40% greater R- vs S-metoprolol metabolism in ultra-rapid and extensive metabolizers. This study demonstrates a marked effect of CYP2D6 metabolizer phenotype on metoprolol pharmacokinetics and confirms enantiomer specific metabolism of metoprolol. PMID:23665868

  19. Metabolomics-Based Elucidation of Active Metabolic Pathways in Erythrocytes and HSC-Derived Reticulocytes.

    PubMed

    Srivastava, Anubhav; Evans, Krystal J; Sexton, Anna E; Schofield, Louis; Creek, Darren J

    2017-04-07

    A detailed analysis of the metabolic state of human-stem-cell-derived erythrocytes allowed us to characterize the existence of active metabolic pathways in younger reticulocytes and compare them to mature erythrocytes. Using high-resolution LC-MS-based untargeted metabolomics, we found that reticulocytes had a comparatively much richer repertoire of metabolites, which spanned a range of metabolite classes. An untargeted metabolomics analysis using stable-isotope-labeled glucose showed that only glycolysis and the pentose phosphate pathway actively contributed to the biosynthesis of metabolites in erythrocytes, and these pathways were upregulated in reticulocytes. Most metabolite species found to be enriched in reticulocytes were residual pools of metabolites produced by earlier erythropoietic processes, and their systematic depletion in mature erythrocytes aligns with the simplification process, which is also seen at the cellular and the structural level. Our work shows that high-resolution LC-MS-based untargeted metabolomics provides a global coverage of the biochemical species that are present in erythrocytes. However, the incorporation of stable isotope labeling provides a more accurate description of the active metabolic processes that occur in each developmental stage. To our knowledge, this is the first detailed characterization of the active metabolic pathways of the erythroid lineage, and it provides a rich database for understanding the physiology of the maturation of reticulocytes into mature erythrocytes.

  20. Metabolic activities of five botryticides against Botrytis cinerea examined using the Biolog FF MicroPlate.

    PubMed

    Wang, Hancheng; Wang, Jin; Li, Licui; Hsiang, Tom; Wang, Maosheng; Shang, Shenghua; Yu, Zhihe

    2016-08-05

    Tobacco grey mold caused by Botrytis cinerea is an important fungal disease worldwide. Boscalid, carbendazim, iprodione, pyrimethanil and propiconazole are representative botryticides for grey mold management. This research investigated the sensitivities of B. cinerea from tobacco to these chemicals using the Biolog FF Microplate. All five chemicals showed inhibitory activity, with average EC50 values of 0.94, 0.05, 0.50, 0.61 and 0.31 μg ml(-1), respectively. B. cinerea metabolized 96.8% of tested carbon sources, including 29 effectively and 33 moderately, but the metabolic fingerprints differed under pressures imposed by these botryticides. For boscalid, B. cinerea was unable to metabolize many substrates related to tricarboxylic acid cycle. For carbendazim, carbon sources related to glycolysis were not metabolized. For iprodione, use of most carbon substrates was weakly inhibited, and the metabolic profile was similar to that of the control. For propiconazole, no carbon substrates were metabolized and the physiological and biochemical functions of the pathogen were totally inhibited. These findings provide useful information on metabolic activities of these botryticides, and may lead to future applications of the Biolog FF Microplate for examining metabolic effects of other fungicides on other fungi, as well as providing a metabolic fingerprint of B. cinerea that could be useful for identification.