Sample records for sa-mediated defense responses

  1. ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis.

    PubMed

    Cecchini, Nicolás M; Jung, Ho Won; Engle, Nancy L; Tschaplinski, Timothy J; Greenberg, Jean T

    2015-04-01

    Robust immunity requires basal defense machinery to mediate timely responses and feedback cycles to amplify defenses against potentially spreading infections. AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) is needed for the accumulation of the plant defense signal salicylic acid (SA) during the first hours after infection with the pathogen Pseudomonas syringae and is also upregulated by infection and SA. ALD1 is an aminotransferase with multiple substrates and products in vitro. Pipecolic acid (Pip) is an ALD1-dependent bioactive product induced by P. syringae. Here, we addressed roles of ALD1 in mediating defense amplification as well as the levels and responses of basal defense machinery. ALD1 needs immune components PAD4 and ICS1 (an SA synthesis enzyme) to confer disease resistance, possibly through a transcriptional amplification loop between them. Furthermore, ALD1 affects basal defense by controlling microbial-associated molecular pattern (MAMP) receptor levels and responsiveness. Vascular exudates from uninfected ALD1-overexpressing plants confer local immunity to the wild type and ald1 mutants yet are not enriched for Pip. We infer that, in addition to affecting Pip accumulation, ALD1 produces non-Pip metabolites that play roles in immunity. Thus, distinct metabolite signals controlled by the same enzyme affect basal and early defenses versus later defense responses, respectively.

  2. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction.

    PubMed

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de Los Santos, Berta; Arroyo, Francisco T; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.

  3. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction

    PubMed Central

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de los Santos, Berta; Arroyo, Francisco T.; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L.

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen. PMID:27471515

  4. The Mediator Complex Subunits MED14, MED15, and MED16 Are Involved in Defense Signaling Crosstalk in Arabidopsis.

    PubMed

    Wang, Chenggang; Du, Xuezhu; Mou, Zhonglin

    2016-01-01

    Mediator is a highly conserved protein complex that functions as a transcriptional coactivator in RNA polymerase II (RNAPII)-mediated transcription. The Arabidopsis Mediator complex has recently been implicated in plant immune responses. Here, we compared salicylic acid (SA)-, methyl jasmonate (MeJA)-, and the ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-induced defense and/or wound-responsive gene expression in 14 Arabidopsis Mediator subunit mutants. Our results show that MED14, MED15, and MED16 are required for SA-activated expression of the defense marker gene PATHOEGNESIS-RELATED GENE1 , MED25 is required for MeJA-induced expression of the wound-responsive marker gene VEGATATIVE STORAGE PROTEIN1 ( VSP1 ), MED8, MED14, MED15, MED16, MED18, MED20a, MED25, MED31, and MED33A/B (MED33a and MED33B) are required for MeJA-induced expression of the defense maker gene PLANT DEFENSIN1.2 ( PDF1.2 ), and MED8, MED14, MED15, MED16, MED25, and MED33A/B are also required for ACC-triggered expression of PDF1.2 . Furthermore, we investigated the involvement of MED14, MED15, and MED16 in plant defense signaling crosstalk and found that MED14, MED15, and MED16 are required for SA- and ET-mediated suppression of MeJA-induced VSP1 expression. This result suggests that MED14, MED15, and MED16 not only relay defense signaling from the SA and JA/ET defense pathways to the RNAPII transcription machinery, but also fine-tune defense signaling crosstalk. Finally, we show that MED33A/B contributes to the necrotrophic fungal pathogen Botrytis cinerea- induced expression of the defense genes PDF1.2, HEVEIN-LIKE , and BASIC CHITINASE and is required for full-scale basal resistance to B. cinerea , demonstrating a positive role for MED33 in plant immunity against necrotrophic fungal pathogens.

  5. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress.

    PubMed

    Sharma, Marisha; Gupta, Sunil K; Majumder, Baisakhi; Maurya, Vivek K; Deeba, Farah; Alam, Afroz; Pandey, Vivek

    2017-06-23

    Salicylic acid (SA) induced drought tolerance can be a key trait for increasing and stabilizing wheat production. These SA induced traits were studied in two Triticum aestivum L. varieties; drought tolerant, Kundan and drought sensitive, Lok1 under two different water deficit regimes: and rehydration at vegetative and flowering stages. SA alleviated the negative effects of water stress on photosynthesis more in Kundan. SA induced defense responses against drought by increasing antioxidative enzymes and osmolytes (proline and total soluble sugars). Differential proteomics revealed major role of carbon metabolism and signal transduction in enhancing drought tolerance in Kundan which was shifted towards defense, energy production and protection in Lok1. Thioredoxins played important role between SA and redox signaling in activating defense responses. SA showed substantial impact on physiology and carbon assimilation in tolerant variety for better growth under drought. Lok1 exhibited SA induced drought tolerance through enhanced defense system and energy metabolism. Plants after rehydration showed complete recovery of physiological functions under SA treatment. SA mediated constitutive defense against water stress did not compromise yield. These results suggest that exogenously applied SA under drought stress confer growth promoting and stress priming effects on wheat plants thus alleviating yield limitation. Studies have shown morphological, physiological and biochemical aspects associated with the SA mediated drought tolerance in wheat while understanding of molecular mechanism is limited. Herein, proteomics approach has identified significantly changed proteins and their potential relevance to SA mediated drought stress responses in drought tolerant and sensitive wheat varieties. SA regulates wide range of processes such as photosynthesis, carbon assimilation, protein metabolism, amino acid and energy metabolism, redox homeostasis and signal transduction under

  6. Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways.

    PubMed

    Kawagoe, Yumi; Shiraishi, Soma; Kondo, Hiroko; Yamamoto, Shoko; Aoki, Yoshinao; Suzuki, Shunji

    2015-05-15

    Iturin A is the most well studied antifungal cyclic lipopeptide produced by Bacillus species that are frequently utilized as biological control agents. Iturin A not only shows strong antifungal activity against phytopathogens but also induces defense response in plants, thereby reducing plant disease severity. Here we report the defense signaling pathways triggered by iturin A in Arabidopsis salicylic acid (SA) or jasmonic acid (JA)-insensitive mutants. Iturin A activated the transcription of defense genes PR1 and PDF1.2 through the SA and JA signaling pathways, respectively. The role of iturin A as an elicitor was dependent on the cyclization of the seven amino acids and/or the β-hydroxy fatty acid chain. The iturin A derivative peptide, NH2-(L-Asn)-(D-Tyr)-(D-Asn)-(L-Gln)-(L-Pro)-(D-Asn)-(L-Ser)-COOH, completely suppressed PR1 and PDF1.2 gene expression in wild Arabidopsis plants. The identification of target molecules binding to iturin A and its derivative peptide is expected to shed new light on defense response in plants through the SA and JA signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins

    USDA-ARS?s Scientific Manuscript database

    Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling compon...

  8. Investigating Proteome and Transcriptome Defense Response of Apples Induced by Yarrowia lipolytica.

    PubMed

    Zhang, Hongyin; Chen, Liangliang; Sun, Yiwen; Zhao, Lina; Zheng, Xiangfeng; Yang, Qiya; Zhang, Xiaoyun

    2017-04-01

    A better understanding of the mode of action of postharvest biocontrol agents on fruit surfaces is critical for the advancement of successful implementation of postharvest biocontrol products. This is due to the increasing importance of biological control of postharvest diseases over chemical and other control methods. However, most of the mechanisms involved in biological control remain unknown and need to be explored. Yarrowia lipolytica significantly inhibited blue mold decay of apples caused by Penicillium expansum. The findings also demonstrated that Y. lipolytica stimulated the activities of polyphenoloxidase, peroxidase, chitinase, l-phenylalanine ammonia lyase involved in enhancing defense responses in apple fruit tissue. Proteomic and transcriptomic analysis revealed a total of 35 proteins identified as up- and down-regulated in response to the Y. lipolytica inducement. These proteins were related to defense, biotic stimulus, and stress responses, such as pathogenesis-related proteins and dehydrin. The analysis of the transcriptome results proved that the induced resistance was mediated by a crosstalk between salicylic acid (SA) and ethylene/jasmonate (ET/JA) pathways. Y. lipolytica treatment activated the expression of isochorismate synthase gene in the SA pathway, which up-regulates the expression of PR4 in apple. The expression of 1-aminocyclopropane-1-carboxylate oxidase gene and ET-responsive transcription factors 2 and 4, which are involved in the ET pathway, were also activated. In addition, cytochrome oxidase I, which plays an important role in JA signaling for resistance acquisition, was also activated. However, not all of the genes had a positive effect on the SA and ET/JA signal pathways. As transcriptional repressors in JA signaling, TIFY3B and TIFY11B were triggered by the yeast, but the gene expression levels were relatively low. Taken together, Y. lipolytica induced the SA and ET/JA signal mediating the defense pathways by stimulating

  9. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora.

    PubMed

    Norman-Setterblad, C; Vidal, S; Palva, E T

    2000-04-01

    We have characterized the role of salicylic acid (SA)-independent defense signaling in Arabidopsis thaliana in response to the plant pathogen Erwinia carotovora subsp. carotovora. Use of pathway-specific target genes as well as signal mutants allowed us to elucidate the role and interactions of ethylene, jasmonic acid (JA), and SA signal pathways in this response. Gene expression studies suggest a central role for both ethylene and JA pathways in the regulation of defense gene expression triggered by the pathogen or by plant cell wall-degrading enzymes (CF) secreted by the pathogen. Our results suggest that ethylene and JA act in concert in this regulation. In addition, CF triggers another, strictly JA-mediated response inhibited by ethylene and SA. SA does not appear to have a major role in activating defense gene expression in response to CF. However, SA may have a dual role in controlling CF-induced gene expression, by enhancing the expression of genes synergistically induced by ethylene and JA and repressing genes induced by JA alone.

  10. Pseudomonas fluorescens WCS374r-Induced Systemic Resistance in Rice against Magnaporthe oryzae Is Based on Pseudobactin-Mediated Priming for a Salicylic Acid-Repressible Multifaceted Defense Response1[C][OA

    PubMed Central

    De Vleesschauwer, David; Djavaheri, Mohammad; Bakker, Peter A.H.M.; Höfte, Monica

    2008-01-01

    Selected strains of nonpathogenic rhizobacteria can reduce disease in foliar tissues through the induction of a defense state known as induced systemic resistance (ISR). Compared with the large body of information on ISR in dicotyledonous plants, little is known about the mechanisms underlying rhizobacteria-induced resistance in cereal crops. Here, we demonstrate the ability of Pseudomonas fluorescens WCS374r to trigger ISR in rice (Oryza sativa) against the leaf blast pathogen Magnaporthe oryzae. Using salicylic acid (SA)-nonaccumulating NahG rice, an ethylene-insensitive OsEIN2 antisense line, and the jasmonate-deficient mutant hebiba, we show that this WCS374r-induced resistance is regulated by an SA-independent but jasmonic acid/ethylene-modulated signal transduction pathway. Bacterial mutant analysis uncovered a pseudobactin-type siderophore as the crucial determinant responsible for ISR elicitation. Root application of WCS374r-derived pseudobactin (Psb374) primed naive leaves for accelerated expression of a pronounced multifaceted defense response, consisting of rapid recruitment of phenolic compounds at sites of pathogen entry, concerted expression of a diverse set of structural defenses, and a timely hyperinduction of hydrogen peroxide formation putatively driving cell wall fortification. Exogenous SA application alleviated this Psb374-modulated defense priming, while Psb374 pretreatment antagonized infection-induced transcription of SA-responsive PR genes, suggesting that the Psb374- and SA-modulated signaling pathways are mutually antagonistic. Interestingly, in sharp contrast to WCS374r-mediated ISR, chemical induction of blast resistance by the SA analog benzothiadiazole was independent of jasmonic acid/ethylene signaling and involved the potentiation of SA-responsive gene expression. Together, these results offer novel insights into the signaling circuitry governing induced resistance against M. oryzae and suggest that rice is endowed with multiple

  11. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants.

    PubMed

    Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W

    2016-06-01

    Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.

  12. MAPK-dependent JA and SA signalling in Nicotiana attenuata affects plant growth and fitness during competition with conspecifics

    PubMed Central

    2012-01-01

    Background Induced defense responses to herbivores are generally believed to have evolved as cost-saving strategies that defer the fitness costs of defense metabolism until these defenses are needed. The fitness costs of jasmonate (JA)-mediated defenses have been well documented. Those of the early signaling units mediating induced resistance to herbivores have yet to be examined. Early signaling components that mediate herbivore-induced defense responses in Nicotiana attenuata, have been well characterized and here we examine their growth and fitness costs during competition with conspecifics. Two mitogen-activated protein kinases (MAPKs), salicylic acid (SA)-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK) are rapidly activated after perception of herbivory and both kinases regulate herbivory-induced JA levels and JA-mediated defense metabolite accumulations. Since JA-induced defenses result in resource-based trade-offs that compromise plant productivity, we evaluated if silencing SIPK (irSIPK) and WIPK (irWIPK) benefits the growth and fitness of plants competiting with wild type (WT) plants, as has been shown for plants silenced in JA-signaling by the reduction of Lipoxygenase 3 (LOX3) levels. Results As expected, irWIPK and LOX3-silenced plants out-performed their competing WT plants. Surprisingly, irSIPK plants, which have the largest reductions in JA signaling, did not. Phytohormone profiling of leaves revealed that irSIPK plants accumulated higher levels of SA compared to WT. To test the hypothesis that these high levels of SA, and their presumed associated fitness costs of pathogen associated defenses in irSIPK plants had nullified the JA-deficiency-mediated growth benefits in these plants, we genetically reduced SA levels in irSIPK plants. Reducing SA levels partially recovered the biomass and fitness deficits of irSIPK plants. We also evaluated whether the increased fitness of plants with reduced SA or JA levels resulted from

  13. Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae.

    PubMed

    Mammarella, Nicole D; Cheng, Zhenyu; Fu, Zheng Qing; Daudi, Arsalan; Bolwell, G Paul; Dong, Xinnian; Ausubel, Frederick M

    2015-04-01

    Reactive oxygen species (ROS) generated by NADPH oxidases or apoplastic peroxidases play an important role in the plant defense response. Diminished expression of at least two Arabidopsis thaliana peroxidase encoding genes, PRX33 (At3g49110) and PRX34 (At3g49120), as a consequence of anti-sense expression of a heterologous French bean peroxidase gene (asFBP1.1), were previously shown to result in reduced levels of ROS following pathogen attack, enhanced susceptibility to a variety of bacterial and fungal pathogens, and reduced levels of callose production and defense-related gene expression in response to the microbe associated molecular pattern (MAMP) molecules flg22 and elf26. These data demonstrated that the peroxidase-dependent oxidative burst plays an important role in the elicitation of pattern-triggered immunity (PTI). Further work reported in this paper, however, shows that asFBP1.1 antisense plants are not impaired in all PTI-associated responses. For example, some but not all flg22-elicited genes are induced to lower levels by flg22 in asFPB1.1, and callose deposition in asFPB1.1 is similar to wild-type following infiltration with a Pseudomonas syringae hrcC mutant or with non-host P. syringae pathovars. Moreover, asFPB1.1 plants did not exhibit any apparent defect in their ability to mount a hypersensitive response (HR). On the other hand, salicylic acid (SA)-mediated activation of PR1 was dramatically impaired in asFPB1.1 plants. In addition, P. syringae-elicited expression of many genes known to be SA-dependent was significantly reduced in asFBP1.1 plants. Consistent with this latter result, in asFBP1.1 plants the key regulator of SA-mediated responses, NPR1, showed both dramatically decreased total protein abundance and a failure to monomerize, which is required for its translocation into the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis.

    PubMed

    Liu, Jingyan; Yang, Haibian; Bao, Fei; Ao, Kevin; Zhang, Xiaoyan; Zhang, Yuelin; Yang, Shuhua

    2015-10-01

    Plant responses to low temperature are tightly associated with defense responses. We previously characterized the chilling-sensitive mutant chs3-1 resulting from the activation of the Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR)-type resistance (R) protein harboring a C-terminal LIM (Lin-11, Isl-1 and Mec-3 domains) domain. Here we report the identification of a suppressor of chs3, ibr5-7 (indole-3-butyric acid response 5), which largely suppresses chilling-activated defense responses. IBR5 encodes a putative dual-specificity protein phosphatase. The accumulation of CHS3 protein at chilling temperatures is inhibited by the IBR5 mutation. Moreover, chs3-conferred defense phenotypes were synergistically suppressed by mutations in HSP90 and IBR5. Further analysis showed that IBR5, with holdase activity, physically associates with CHS3, HSP90 and SGT1b (Suppressor of the G2 allele of skp1) to form a complex that protects CHS3. In addition to the positive role of IBR5 in regulating CHS3, IBR5 is also involved in defense responses mediated by R genes, including SNC1 (Suppressor of npr1-1, Constitutive 1), RPS4 (Resistance to P. syringae 4) and RPM1 (Resistance to Pseudomonas syringae pv. maculicola 1). Thus, the results of the present study reveal a role for IBR5 in the regulation of multiple R protein-mediated defense responses.

  15. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection.

    PubMed

    Rodriguez, Maria Cecilia; Conti, Gabriela; Zavallo, Diego; Manacorda, Carlos Augusto; Asurmendi, Sebastian

    2014-08-03

    Plant viral infections disturb defense regulatory networks during tissue invasion. Emerging evidence demonstrates that a significant proportion of these alterations are mediated by hormone imbalances. Although the DELLA proteins have been reported to be central players in hormone cross-talk, their role in the modulation of hormone signaling during virus infections remains unknown. This work revealed that TMV-Cg coat protein (CgCP) suppresses the salicylic acid (SA) signaling pathway without altering defense hormone SA or jasmonic acid (JA) levels in Arabidopsis thaliana. Furthermore, it was observed that the expression of CgCP reduces plant growth and delays the timing of floral transition. Quantitative RT-qPCR analysis of DELLA target genes showed that CgCP alters relative expression of several target genes, indicating that the DELLA proteins mediate transcriptional changes produced by CgCP expression. Analyses by fluorescence confocal microscopy showed that CgCP stabilizes DELLA proteins accumulation in the presence of gibberellic acid (GA) and that the DELLA proteins are also stabilized during TMV-Cg virus infections. Moreover, DELLA proteins negatively modulated defense transcript profiles during TMV-Cg infection. As a result, TMV-Cg accumulation was significantly reduced in the quadruple-DELLA mutant Arabidopsis plants compared to wild type plants. Taken together, these results demonstrate that CgCP negatively regulates the salicylic acid-mediated defense pathway by stabilizing the DELLA proteins during Arabidopsis thaliana viral infection, suggesting that CgCP alters the stability of DELLAs as a mechanism of negative modulation of antiviral defense responses.

  16. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic Acid.

    PubMed

    Leon-Reyes, Antonio; Du, Yujuan; Koornneef, Annemart; Proietti, Silvia; Körbes, Ana P; Memelink, Johan; Pieterse, Corné M J; Ritsema, Tita

    2010-02-01

    Cross-talk between jasmonate (JA), ethylene (ET), and Salicylic acid (SA) signaling is thought to operate as a mechanism to fine-tune induced defenses that are activated in response to multiple attackers. Here, 43 Arabidopsis genotypes impaired in hormone signaling or defense-related processes were screened for their ability to express SA-mediated suppression of JA-responsive gene expression. Mutant cev1, which displays constitutive expression of JA and ET responses, appeared to be insensitive to SA-mediated suppression of the JA-responsive marker genes PDF1.2 and VSP2. Accordingly, strong activation of JA and ET responses by the necrotrophic pathogens Botrytis cinerea and Alternaria brassicicola prior to SA treatment counteracted the ability of SA to suppress the JA response. Pharmacological assays, mutant analysis, and studies with the ET-signaling inhibitor 1-methylcyclopropene revealed that ET signaling renders the JA response insensitive to subsequent suppression by SA. The APETALA2/ETHYLENE RESPONSE FACTOR transcription factor ORA59, which regulates JA/ET-responsive genes such as PDF1.2, emerged as a potential mediator in this process. Collectively, our results point to a model in which simultaneous induction of the JA and ET pathway renders the plant insensitive to future SA-mediated suppression of JA-dependent defenses, which may prioritize the JA/ET pathway over the SA pathway during multi-attacker interactions.

  17. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid.

    PubMed

    Halim, Vincentius A; Altmann, Simone; Ellinger, Dorothea; Eschen-Lippold, Lennart; Miersch, Otto; Scheel, Dierk; Rosahl, Sabine

    2009-01-01

    To elucidate the molecular mechanisms underlying pathogen-associated molecular pattern (PAMP)-induced defense responses in potato (Solanum tuberosum), the role of the signaling compounds salicylic acid (SA) and jasmonic acid (JA) was analyzed. Pep-13, a PAMP from Phytophthora, induces the accumulation of SA, JA and hydrogen peroxide, as well as the activation of defense genes and hypersensitive-like cell death. We have previously shown that SA is required for Pep-13-induced defense responses. To assess the importance of JA, RNA interference constructs targeted at the JA biosynthetic genes, allene oxide cyclase and 12-oxophytodienoic acid reductase, were expressed in transgenic potato plants. In addition, expression of the F-box protein COI1 was reduced by RNA interference. Plants expressing the RNA interference constructs failed to accumulate the respective transcripts in response to wounding or Pep-13 treatment, neither did they contain significant amounts of JA after elicitation. In response to infiltration of Pep-13, the transgenic plants exhibited a highly reduced accumulation of reactive oxygen species as well as reduced hypersensitive cell death. The ability of the JA-deficient plants to accumulate SA suggests that SA accumulation is independent or upstream of JA accumulation. These data show that PAMP responses in potato require both SA and JA and that, in contrast to Arabidopsis, these compounds act in the same signal transduction pathway. Despite their inability to fully respond to PAMP treatment, the transgenic RNA interference plants are not altered in their basal defense against Phytophthora infestans.

  18. Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes.

    PubMed

    Caarls, Lotte; Van der Does, Dieuwertje; Hickman, Richard; Jansen, Wouter; Verk, Marcel C Van; Proietti, Silvia; Lorenzo, Oscar; Solano, Roberto; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-02-01

    Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Salicylic acid is required for Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci, but not for basal defense to this insect pest.

    PubMed

    Rodríguez-Álvarez, C I; López-Climent, M F; Gómez-Cadenas, A; Kaloshian, I; Nombela, G

    2015-10-01

    Plant defense to pests or pathogens involves global changes in gene expression mediated by multiple signaling pathways. A role for the salicylic acid (SA) signaling pathway in Mi-1-mediated resistance of tomato (Solanum lycopersicum) to aphids was previously identified and its implication in the resistance to root-knot nematodes is controversial, but the importance of SA in basal and Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci had not been determined. SA levels were measured before and after B. tabaci infestation in susceptible and resistant Mi-1-containing tomatoes, and in plants with the NahG bacterial transgene. Tomato plants of the same genotypes were also screened with B. tabaci (MEAM1 and MED species, before known as B and Q biotypes, respectively). The SA content in all tomato genotypes transiently increased after infestation with B. tabaci albeit at variable levels. Whitefly fecundity or infestation rates on susceptible Moneymaker were not significantly affected by the expression of NahG gene, but the Mi-1-mediated resistance to B. tabaci was lost in VFN NahG plants. Results indicated that whiteflies induce both SA and jasmonic acid accumulation in tomato. However, SA has no role in basal defense of tomato against B. tabaci. In contrast, SA is an important component of the Mi-1-mediated resistance to B. tabaci in tomato.

  20. Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer.

    PubMed

    Shi, Xiaobin; Gao, Yang; Yan, Shuo; Tang, Xin; Zhou, Xuguo; Zhang, Deyong; Liu, Yong

    2016-04-22

    Cucumber mosaic virus (CMV) causes appreciable losses in vegetables, ornamentals and agricultural crops. The green peach aphid, Myzus persicae Sulzer (Aphididae) is one of the most efficient vectors for CMV. The transmission ecology of aphid-vectored CMV has been well investigated. However, the detailed description of the dynamic change in the plant-CMV-aphid interaction associated with plant defense and virus epidemics is not well known. In this report, we investigated the relationship of virus titer with plant defense of salicylic acid (SA) and jasmonic acid (JA) during the different infection time and their interaction with aphids in CMV-infected tobacco plants. Our results showed that aphid performance changed with virus titer and plant defense on CMV-inoculated plants. At first, plant defense was low and aphid number increased gradually. The plant defense of SA signaling pathway was induced when virus titer was at a high level, and aphid performance was correspondingly reduced. Additionally, the winged aphids were increased. Our results showed that aphid performance was reduced due to the induced plant defense mediated by Cucumber mosaic virus titer. Additionally, some wingless aphids became to winged aphids. In this way CMV could be transmitted with the migration of winged aphids. We should take measures to prevent aphids in the early stage of their occurrence in the field to prevent virus outbreak.

  1. Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses.

    PubMed

    Bao, Fei; Huang, Xiaozhen; Zhu, Chipan; Zhang, Xiaoyan; Li, Xin; Yang, Shuhua

    2014-06-01

    Plant defense responses are regulated by temperature. In Arabidopsis, the chilling-sensitive mutant chs2-1 (rpp4-1d) contains a gain-of-function mutation in the TIR-NB-LRR (Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat) gene, RPP4 (RECOGNITION OF PERONOSPORA PARASITICA 4), which leads to constitutive activation of the defense response at low temperatures. Here, we identified and characterized two suppressors of rpp4-1d from a genetic screen, hsp90.2 and hsp90.3, which carry point mutations in the cytosolic heat shock proteins HSP90.2 and HSP90.3, respectively. The hsp90 mutants suppressed the chilling sensitivity of rpp4-1d, including seedling lethality, activation of the defense responses and cell death under chilling stress. The hsp90 mutants exhibited compromised RPM1 (RESISTANCE TO PSEUDOMONAS MACULICOLA 1)-, RPS4 (RESISTANCE TO P. SYRINGAE 4)- and RPP4-mediated pathogen resistance. The wild-type RPP4 and the mutated form rpp4 could interact with HSP90 to form a protein complex. Furthermore, RPP4 and rpp4 proteins accumulated in the cytoplasm and nucleus at normal temperatures, whereas the nuclear accumulation of the mutated rpp4 was decreased at low temperatures. Genetic analysis of the intragenic suppressors of rpp4-1d revealed the important functions of the NB-ARC and LRR domains of RPP4 in temperature-dependent defense signaling. In addition, the rpp4-1d-induced chilling sensitivity was largely independent of the WRKY70 or MOS (modifier of snc1) genes. [Correction added after online publication 11 March 2013: the expansions of TIR-NB-LRR and RPS4 were amended] This study reveals that Arabidopsis HSP90 regulates RPP4-mediated temperature-dependent cell death and defense responses. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid.

    PubMed

    Sanchez, Lisa; Courteaux, Barbara; Hubert, Jane; Kauffmann, Serge; Renault, Jean-Hugues; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan

    2012-11-01

    Plant resistance to phytopathogenic microorganisms mainly relies on the activation of an innate immune response usually launched after recognition by the plant cells of microbe-associated molecular patterns. The plant hormones, salicylic acid (SA), jasmonic acid, and ethylene have emerged as key players in the signaling networks involved in plant immunity. Rhamnolipids (RLs) are glycolipids produced by bacteria and are involved in surface motility and biofilm development. Here we report that RLs trigger an immune response in Arabidopsis (Arabidopsis thaliana) characterized by signaling molecules accumulation and defense gene activation. This immune response participates to resistance against the hemibiotrophic bacterium Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora arabidopsidis, and the necrotrophic fungus Botrytis cinerea. We show that RL-mediated resistance involves different signaling pathways that depend on the type of pathogen. Ethylene is involved in RL-induced resistance to H. arabidopsidis and to P. syringae pv tomato whereas jasmonic acid is essential for the resistance to B. cinerea. SA participates to the restriction of all pathogens. We also show evidence that SA-dependent plant defenses are potentiated by RLs following challenge by B. cinerea or P. syringae pv tomato. These results highlight a central role for SA in RL-mediated resistance. In addition to the activation of plant defense responses, antimicrobial properties of RLs are thought to participate in the protection against the fungus and the oomycete. Our data highlight the intricate mechanisms involved in plant protection triggered by a new type of molecule that can be perceived by plant cells and that can also act directly onto pathogens.

  3. The pearl millet mitogen-activated protein kinase PgMPK4 is involved in responses to downy mildew infection and in jasmonic- and salicylic acid-mediated defense.

    PubMed

    Melvin, Prasad; Prabhu, S Ashok; Veena, Mariswamy; Shailasree, Sekhar; Petersen, Morten; Mundy, John; Shetty, Shekar H; Kini, K Ramachandra

    2015-02-01

    Plant mitogen-activated protein kinases (MPKs) transduce signals required for the induction of immunity triggered by host recognition of pathogen-associated molecular patterns. We isolated a full-length cDNA of a group B MPK (PgMPK4) from pearl millet. Autophosphorylation assay of recombinant PgMPK4 produced in Escherichia coli confirmed it as a kinase. Differential accumulation of PgMPK4 mRNA and kinase activity was observed between pearl millet cultivars 852B and IP18292 in response to inoculation with the downy mildew oomycete pathogen Sclerospora graminicola. This increased accumulation of PgMPK4 mRNA, kinase activity as well as nuclear-localization of PgMPK protein(s) was only detected in the S. graminicola resistant cultivar IP18292 with a ~tenfold peak at 9 h post inoculation. In the susceptible cultivar 852B, PgMPK4 mRNA and immuno-detectable nuclear PgMPK could be induced by application of the chemical elicitor β-amino butyric acid, the non-pathogenic bacteria Pseudomonas fluorescens, or by the phytohormones jasmonic acid (JA) or salicylic acid (SA). Furthermore, kinase inhibitor treatments indicated that PgMPK4 is involved in the JA- and SA-mediated expression of three defense genes, lipoxygenase, catalase 3 and polygalacturonase-inhibitor protein. These findings indicate that PgMPK/s contribute to pearl millet defense against the downy mildew pathogen by activating the expression of defense proteins.

  4. Neonicotinoid insecticides induce salicylate-associated plant defense responses

    PubMed Central

    Ford, Kevin A.; Casida, John E.; Chandran, Divya; Gulevich, Alexander G.; Okrent, Rachel A.; Durkin, Kathleen A.; Sarpong, Richmond; Bunnelle, Eric M.; Wildermuth, Mary C.

    2010-01-01

    Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance. PMID:20876120

  5. Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling.

    PubMed

    Trusov, Yuri; Sewelam, Nasser; Rookes, James Edward; Kunkel, Matt; Nowak, Ekaterina; Schenk, Peer Martin; Botella, José Ramón

    2009-04-01

    Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gβ (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gβ-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4. Quantification of the Fusarium wilt symptoms revealed that Gβ- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gβ-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gβ acts upstream of COI1 and ATMYC2 in JA signaling. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  6. The MAP kinase substrate MKS1 is a regulator of plant defense responses

    PubMed Central

    Andreasson, Erik; Jenkins, Thomas; Brodersen, Peter; Thorgrimsen, Stephan; Petersen, Nikolaj H T; Zhu, Shijiang; Qiu, Jin-Long; Micheelsen, Pernille; Rocher, Anne; Petersen, Morten; Newman, Mari-Anne; Bjørn Nielsen, Henrik; Hirt, Heribert; Somssich, Imre; Mattsson, Ole; Mundy, John

    2005-01-01

    Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used yeast two-hybrid screening to identify the MPK4 substrate MKS1. Analyses of transgenic plants and genome-wide transcript profiling indicated that MKS1 is required for full SA-dependent resistance in mpk4 mutants, and that overexpression of MKS1 in wild-type plants is sufficient to activate SA-dependent resistance, but does not interfere with induction of a defense gene by JA. Further yeast two-hybrid screening revealed that MKS1 interacts with the WRKY transcription factors WRKY25 and WRKY33. WRKY25 and WRKY33 were shown to be in vitro substrates of MPK4, and a wrky33 knockout mutant was found to exhibit increased expression of the SA-related defense gene PR1. MKS1 may therefore contribute to MPK4-regulated defense activation by coupling the kinase to specific WRKY transcription factors. PMID:15990873

  7. Transcriptome analysis reveals key roles of AtLBR-2 in LPS-induced defense responses in plants.

    PubMed

    Iizasa, Sayaka; Iizasa, Ei'ichi; Watanabe, Keiichi; Nagano, Yukio

    2017-12-29

    Lipopolysaccharide (LPS) from Gram-negative bacteria cause innate immune responses in animals and plants. The molecules involved in LPS signaling in animals are well studied, whereas those in plants are not yet as well documented. Recently, we identified Arabidopsis AtLBR-2, which binds to LPS from Pseudomonas aeruginosa (pLPS) directly and regulates pLPS-induced defense responses, such as pathogenesis-related 1 (PR1) expression and reactive oxygen species (ROS) production. In this study, we investigated the pLPS-induced transcriptomic changes in wild-type (WT) and the atlbr-2 mutant Arabidopsis plants using RNA-Seq technology. RNA-Seq data analysis revealed that pLPS treatment significantly altered the expression of 2139 genes, with 605 up-regulated and 1534 down-regulated genes in WT. Gene ontology (GO) analysis on these genes showed that GO terms, "response to bacterium", "response to salicylic acid (SA) stimulus", and "response to abscisic acid (ABA) stimulus" were enriched amongst only in up-regulated genes, as compared to the genes that were down-regulated. Comparative analysis of differentially expressed genes between WT and the atlbr-2 mutant revealed that 65 genes were up-regulated in WT but not in the atlbr-2 after pLPS treatment. Furthermore, GO analysis on these 65 genes demonstrated their importance for the enrichment of several defense-related GO terms, including "response to bacterium", "response to SA stimulus", and "response to ABA stimulus". We also found reduced levels of pLPS-induced conjugated SA glucoside (SAG) accumulation in atlbr-2 mutants, and no differences were observed in the gene expression levels in SA-treated WT and the atlbr-2 mutants. These 65 AtLBR-2-dependent up-regulated genes appear to be important for the enrichment of some defense-related GO terms. Moreover, AtLBR-2 might be a key molecule that is indispensable for the up-regulation of defense-related genes and for SA signaling pathway, which is involved in defense against

  8. Soybean Homologs of MPK4 Negatively Regulate Defense Responses and Positively Regulate Growth and Development1[W][OA

    PubMed Central

    Liu, Jian-Zhong; Horstman, Heidi D.; Braun, Edward; Graham, Michelle A.; Zhang, Chunquan; Navarre, Duroy; Qiu, Wen-Li; Lee, Yeunsook; Nettleton, Dan; Hill, John H.; Whitham, Steven A.

    2011-01-01

    Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species. PMID:21878550

  9. Elicitor-Induced Defense Responses in Solanum lycopersicum against Ralstonia solanacearum

    PubMed Central

    Kar, Itishree; Mukherjee, Arup K.; Acharya, Priyambada

    2013-01-01

    We investigated on important parameters of induced resistance in hydroponic tomato (Solanum lycopersicum) against Ralstonia solanacearum using the elicitors chitosan (CHT), salicylic acid (SA), and jasmonic acid (JA). The increase in total phenolic content of roots by the elicitors was significantly higher than control. Most pronounced increase in lignin synthesis was triggered by SA followed by CHT. At 24 h post-elicitation (hpe), the activity of phenylalanine ammonia lyase was 4.5 times higher than control elicited by CHT. The peroxidase activity was about 86 nkat/mg protein at 24 hpe in case of SA and 78 nkat/mg protein in case of CHT. The activity of polyphenol oxidase increased several folds by the elicitors. Cinnamyl alcohol dehydrogenase activity increased to the maximum at 48 hpe under the influence of CHT. The results indicate that the elicitors SA and CHT induced effective defense responses in tomato plants against R. solanacearum. This was evident from reduced vascular browning and wilting symptoms of tomato plants treated with SA and CHT and challenged subsequently with R. solanacearum. This reduced disease incidence in tomato by SA and CHT may be a result of cell wall strengthening through deposition of lignin and the coincident induction of defense enzymes. PMID:24187521

  10. Distinct Roles of Jasmonates and Aldehydes in Plant-Defense Responses

    PubMed Central

    Chehab, E. Wassim; Kaspi, Roy; Savchenko, Tatyana; Rowe, Heather; Negre-Zakharov, Florence; Kliebenstein, Dan; Dehesh, Katayoon

    2008-01-01

    Background Many inducible plant-defense responses are activated by jasmonates (JAs), C6-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C6-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C6-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae), an insect herbivore (leafminers: Liriomyza trifolii), and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola). We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani), a natural enemy of aphids. Principal Findings This study conclusively establishes that jasmonates and C6-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C6-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C6-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic (plant

  11. Spatiotemporal heterogeneity of tomato induced defense responses affects spider mite performance and behavior

    PubMed Central

    Schimmel, Bernardus C. J.; Ataide, Livia M. S.

    2017-01-01

    ABSTRACT When feeding from tomato (Solanum lycopersicum), the generalist spider mite Tetranychus urticae induces jasmonate (JA)- and salicylate (SA)-regulated defense responses that hamper its performance. The related T. evansi, a Solanaceae-specialist, suppresses these defenses, thereby upholding a high performance. On a shared leaf, T. urticae can be facilitated by T. evansi, likely via suppression of defenses by the latter. Yet, when infesting the same plant, T. evansi outcompetes T. urticae. Recently, we found that T. evansi intensifies suppression of defenses locally, i.e., at its feeding site, after T. urticae mites were introduced onto adjacent leaf tissue. This hyper-suppression is paralleled by an increased oviposition rate of T. evansi, probably promoting its competitive population growth. Here we present additional data that not only provide insight into the spatiotemporal dynamics of defense induction and suppression by mites, but that also suggest T. evansi to manipulate more than JA and SA defenses alone. PMID:28857667

  12. Spatiotemporal heterogeneity of tomato induced defense responses affects spider mite performance and behavior.

    PubMed

    Schimmel, Bernardus C J; Ataide, Livia M S; Kant, Merijn R

    2017-10-03

    When feeding from tomato (Solanum lycopersicum), the generalist spider mite Tetranychus urticae induces jasmonate (JA)- and salicylate (SA)-regulated defense responses that hamper its performance. The related T. evansi, a Solanaceae-specialist, suppresses these defenses, thereby upholding a high performance. On a shared leaf, T. urticae can be facilitated by T. evansi, likely via suppression of defenses by the latter. Yet, when infesting the same plant, T. evansi outcompetes T. urticae. Recently, we found that T. evansi intensifies suppression of defenses locally, i.e., at its feeding site, after T. urticae mites were introduced onto adjacent leaf tissue. This hyper-suppression is paralleled by an increased oviposition rate of T. evansi, probably promoting its competitive population growth. Here we present additional data that not only provide insight into the spatiotemporal dynamics of defense induction and suppression by mites, but that also suggest T. evansi to manipulate more than JA and SA defenses alone.

  13. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.

    PubMed

    Zarate, Sonia I; Kempema, Louisa A; Walling, Linda L

    2007-02-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF.

  14. Plant virus differentially alters the plant's defense response to its closely related vectors.

    PubMed

    Shi, Xiaobin; Pan, Huipeng; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Liu, Yang; Fang, Yong; Chen, Gong; Gao, Xiwu; Zhang, Youjun

    2013-01-01

    The whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is one of the most widely distributed agricultural pests. In recent years, B. tabaci Q has invaded China, and Q has displaced B in many areas now. In a number of regions of the world, invasion by B and/or Q has been followed by outbreaks of tomato yellow leaf curl virus (TYLCV). Our previous study showed TYLCV directly and indirectly modified the feeding behavior of B. tabaci in favor of Q rather than B. In this study, we quantified the salicylic acid (SA) titers and relative gene expression of SA in tomato leaves that were infested with viruliferous or non-viruliferous B and Q. We also measured the impacts of exogenous SA on the performance of B and Q, including the effects on ovary development. SA titer was always higher in leaves that were infested with viruliferous B than with viruliferous Q, whereas the SA titer did not differ between leaves infested with non-viruliferous B and Q. The relative gene expression of SA signaling was increased by feeding of viruliferous B but was not increased by feeding of viruliferous Q. The life history traits of B and Q were adversely affected on SA-treated plants. On SA-treated plants, both B and Q had lower fecundity, shorter longevity, longer developmental time and lower survival rate than on untreated plants. Compared with whiteflies feeding on control plants, those feeding on SA-treated plants had fewer oocytes and slower ovary development. On SA-treated plants, viruliferous B had fewer oocytes than viruliferous Q. These results indicate that TYLCV tends to induce SA-regulated plant defense against B but SA-regulated plant defense against Q was reduced. In other words, Q may have a mutualistic relationship with TYLCV that results in the reduction of the plant's defense response.

  15. High humidity suppresses ssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defense gene expression.

    PubMed

    Zhou, Fasong; Menke, Frank L H; Yoshioka, Keiko; Moder, Wolfgang; Shirano, Yumiko; Klessig, Daniel F

    2004-09-01

    The Arabidopsis ssi4 mutant, which exhibits spontaneous lesion formation, constitutive expression of pathogenesis-related (PR) genes and enhanced resistance to virulent bacterial and oomycete pathogens, contains a gain-of-function mutation in a TIR-NBS-LRR type R gene. Epistatic analyses revealed that both PR gene expression and disease resistance are activated via a salicylic acid (SA)- and EDS1-dependent, but NPR1- and NDR1-independent signaling pathway. In this study, we demonstrate that in moderate relative humidity (RH; 60%), the ssi4 mutant accumulates H(2)O(2) and SA prior to lesion formation and displays constitutive activation of the MAP kinases AtMPK6 and AtMPK3. It also constitutively expresses a variety of defense-associated genes, including those encoding the WRKY transcription factors AtWRKY29 and AtWRKY6, the MAP kinases AtMPK6 and AtMPK3, the powdery mildew R proteins RPW8.1 and RPW8.2, EDS1 and PR proteins. All of these ssi4-induced responses, as well as the chlorotic, stunted morphology and enhanced disease resistance phenotype, are suppressed by high RH (95%) growth conditions. Thus, a humidity sensitive factor (HSF) appears to function at an early point in the ssi4 signaling pathway. All ssi4 phenotypes, except for MAP kinase activation, also were suppressed by the eds1-1 mutation. Thus, ssi4-induced MAP kinase activation occurs downstream of the HSF but either upstream of EDS1 or on a separate branch of the ssi4 signaling pathway. SA is a critical signaling component in ssi4-mediated defense responses. However, exogenously supplied SA failed to restore lesion formation in high RH-grown ssi4 plants, although it induced defense gene expression. Thus, additional signals also are involved.

  16. Induction of salicylic acid-mediated defense response in perennial ryegrass against infection by Magnaporthe oryzae.

    PubMed

    Rahman, Alamgir; Kuldau, Gretchen A; Uddin, Wakar

    2014-06-01

    Incorporation of plant defense activators is an innovative approach to development of an integrated strategy for the management of turfgrass diseases. The effects of salicylic acid (SA), benzothiadiazole (BTH, chemical analog of SA), jasmonic acid (JA), and ethephon (ET, an ethylene-releasing compound) on development of gray leaf spot in perennial ryegrass (Lolium perenne L.) caused by Magnaporthe oryzae were evaluated. Gray leaf spot disease incidence and severity were significantly decreased when plants were treated prior to inoculation with SA, BTH, and partially by ET but not by JA. Accumulation of endogenous SA and elevated expression of pathogenesis-related (PR)-1, PR-3.1, and PR-5 genes were associated with inoculation of plants by M. oryzae. Treatment of plants with SA enhanced expression levels of PR-3.1 and PR-5 but did not affect the PR-1 level, whereas BTH treatment enhanced relative expression levels of all three PR genes. Microscopic observations of leaves inoculated with M. oryzae revealed higher frequencies of callose deposition at the penetration sites in SA- and BTH-treated plants compared with the control plants (treated with water). These results suggest that early and higher induction of these genes by systemic resistance inducers may provide perennial ryegrass with a substantial advantage to defend against infection by M. oryzae.

  17. Contrasting Regulation of NO and ROS in Potato Defense-Associated Metabolism in Response to Pathogens of Different Lifestyles

    PubMed Central

    Floryszak-Wieczorek, Jolanta; Arasimowicz-Jelonek, Magdalena

    2016-01-01

    Our research provides new insights into how the low and steady-state levels of nitric oxide (NO) and reactive oxygen species (ROS) in potato leaves are altered after the challenge with the hemibiotroph Phytophthora infestans or the necrotroph Botrytis cinerea, with the subsequent rapid and invader-dependent modification of defense responses with opposite effects. Mainly in the avirulent (avr) P. infestans–potato system, NO well balanced with the superoxide level was tuned with a battery of SA-dependent defense genes, leading to the establishment of the hypersensitive response (HR) successfully arresting the pathogen. Relatively high levels of S-nitrosoglutathione and S-nitrosothiols concentrated in the main vein of potato leaves indicated the mobile function of these compounds as a reservoir of NO bioactivity. In contrast, low-level production of NO and ROS during virulent (vr) P. infestans-potato interactions might be crucial in the delayed up-regulation of PR-1 and PR-3 genes and compromised resistance to the hemibiotrophic pathogen. In turn, B. cinerea triggered huge NO overproduction and governed inhibition of superoxide production by blunting NADPH oxidase. Nevertheless, a relatively high level of H2O2 was found owing to the germin-like activity in cooperation with NO-mediated HR-like cell death in potato genotypes favorable to the necrotrophic pathogen. Moreover, B. cinerea not only provoked cell death, but also modulated the host redox milieu by boosting protein nitration, which attenuated SA production but not SA-dependent defense gene expression. Finally, based on obtained data the organismal cost of having machinery for HR in plant resistance to biotrophs is also discussed, while emphasizing new efforts to identify other components of the NO/ROS cell death pathway and improve plant protection against pathogens of different lifestyles. PMID:27695047

  18. Relative Roles of the Cellular and Humoral Responses in the Drosophila Host Defense against Three Gram-Positive Bacterial Infections

    PubMed Central

    Cho, Ju Hyun; Lee, Janice; Lafarge, Marie-Céline; Kocks, Christine; Ferrandon, Dominique

    2011-01-01

    Background Two NF-kappaB signaling pathways, Toll and immune deficiency (imd), are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense. Methodology/Principal Findings In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different Gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus), we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival – independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response. Conclusions/Significance Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen. PMID:21390224

  19. Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco.

    PubMed

    Lee, Hyoung Yool; Byeon, Yeong; Back, Kyoungwhan

    2014-10-01

    Melatonin plays pleiotropic roles in both animals and plants. The possible role of melatonin in plant innate immune responses was recently discovered. As an initial study, we employed Arabidopsis to determine whether melatonin is involved in defense against the virulent bacterial pathogen Pseudomonas syringae DC3000. The application of a 10 μM concentration of melatonin on Arabidopsis and tobacco leaves induced various pathogenesis-related (PR) genes, as well as a series of defense genes activated by salicylic acid (SA) and ethylene (ET), two key factors involved in plant defense response, compared to mock-treated leaves. The induction of these defense-related genes in melatonin-treated Arabidopsis matched an increase in resistance against the bacterium by suppressing its multiplication about ten-fold relative to the mock-treated Arabidopsis. Like melatonin, N-acetylserotonin also plays a role in inducing a series of defense genes, although serotonin does not. Furthermore, melatonin-induced PR genes were almost completely or partially suppressed in the npr1, ein2, and mpk6 Arabidopsis mutants, indicative of SA and ET dependency in melatonin-induced plant defense signaling. This suggests that melatonin may be a novel defense signaling molecule in plant-pathogen interactions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses1[W][OA

    PubMed Central

    Zarate, Sonia I.; Kempema, Louisa A.; Walling, Linda L.

    2007-01-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF. PMID:17189328

  1. Deficiencies in Jasmonate-Mediated Plant Defense Reveal Quantitative Variation in Botrytis cinerea Pathogenesis

    PubMed Central

    Rowe, Heather C.; Walley, Justin W.; Corwin, Jason; Chan, Eva K.-F.; Dehesh, Katayoon; Kliebenstein, Daniel J.

    2010-01-01

    Despite the described central role of jasmonate signaling in plant defense against necrotrophic pathogens, the existence of intraspecific variation in pathogen capacity to activate or evade plant jasmonate-mediated defenses is rarely considered. Experimental infection of jasmonate-deficient and jasmonate-insensitive Arabidopsis thaliana with diverse isolates of the necrotrophic fungal pathogen Botrytis cinerea revealed pathogen variation for virulence inhibition by jasmonate-mediated plant defenses and induction of plant defense metabolites. Comparison of the transcriptional effects of infection by two distinct B. cinerea isolates showed only minor differences in transcriptional responses of wild-type plants, but notable isolate-specific transcript differences in jasmonate-insensitive plants. These transcriptional differences suggest B. cinerea activation of plant defenses that require plant jasmonate signaling for activity in response to only one of the two B. cinerea isolates tested. Thus, similar infection phenotypes observed in wild-type plants result from different signaling interactions with the plant that are likely integrated by jasmonate signaling. PMID:20419157

  2. Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice.

    PubMed

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-04-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy.

  3. The Sinorhizobium (Ensifer) fredii HH103 Type 3 Secretion System Suppresses Early Defense Responses to Effectively Nodulate Soybean.

    PubMed

    Jiménez-Guerrero, Irene; Pérez-Montaño, Francisco; Monreal, José Antonio; Preston, Gail M; Fones, Helen; Vioque, Blanca; Ollero, Francisco Javier; López-Baena, Francisco Javier

    2015-07-01

    Plants that interact with pathogenic bacteria in their natural environments have developed barriers to block or contain the infection. Phytopathogenic bacteria have evolved mechanisms to subvert these defenses and promote infection. Thus, the type 3 secretion system (T3SS) delivers bacterial effectors directly into the plant cells to alter host signaling and suppress defenses, providing an appropriate environment for bacterial multiplication. Some rhizobial strains possess a symbiotic T3SS that seems to be involved in the suppression of host defenses to promote nodulation and determine the host range. In this work, we show that the inactivation of the Sinorhizobium (Ensifer) fredii HH103 T3SS negatively affects soybean nodulation in the early stages of the symbiotic process, which is associated with a reduction of the expression of early nodulation genes. This symbiotic phenotype could be the consequence of the bacterial triggering of soybean defense responses associated with the production of salicylic acid (SA) and the impairment of the T3SS mutant to suppress these responses. Interestingly, the early induction of the transcription of GmMPK4, which negatively regulates SA accumulation and defense responses in soybean via WRKY33, could be associated with the differential defense responses induced by the parental and the T3SS mutant strain.

  4. Specificity of herbivore-induced hormonal signaling and defensive traits in five closely related milkweeds (Asclepias spp.).

    PubMed

    Agrawal, Anurag A; Hastings, Amy P; Patrick, Eamonn T; Knight, Anna C

    2014-07-01

    Despite the recognition that phytohormonal signaling mediates induced responses to herbivory, we still have little understanding of how such signaling varies among closely related species and may generate herbivore-specific induced responses. We studied closely related milkweeds (Asclepias) to link: 1) plant damage by two specialist chewing herbivores (milkweed leaf beetles Labidomera clivicolis and monarch caterpillars Danaus plexippus); 2) production of the phytohormones jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA); 3) induction of defensive cardenolides and latex; and 4) impacts on Danaus caterpillars. We first show that A. syriaca exhibits induced resistance following monarch herbivory (i.e., reduced monarch growth on previously damaged plants), while the defensively dissimilar A. tuberosa does not. We next worked with a broader group of five Asclepias, including these two species, that are highly divergent in defensive traits yet from the same clade. Three of the five species showed herbivore-induced changes in cardenolides, while induced latex was found in four species. Among the phytohormones, JA and ABA showed specific responses (although they generally increased) to insect species and among the plant species. In contrast, SA responses were consistent among plant and herbivore species, showing a decline following herbivore attack. Jasmonic acid showed a positive quantitative relationship only with latex, and this was strongest in plants damaged by D. plexippus. Although phytohormones showed qualitative tradeoffs (i.e., treatments that enhanced JA reduced SA), the few significant individual plant-level correlations among hormones were positive, and these were strongest between JA and ABA in monarch damaged plants. We conclude that: 1) latex exudation is positively associated with endogenous JA levels, even among low-latex species; 2) correlations among milkweed hormones are generally positive, although herbivore damage induces a

  5. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

    PubMed

    Mur, Luis A J; Prats, Elena; Pierre, Sandra; Hall, Michael A; Hebelstrup, Kim H

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  6. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways

    PubMed Central

    Mur, Luis A. J.; Prats, Elena; Pierre, Sandra; Hall, Michael A.; Hebelstrup, Kim H.

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used. PMID:23818890

  7. GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana.

    PubMed

    Giri, Mrunmay K; Singh, Nidhi; Banday, Zeeshan Z; Singh, Vijayata; Ram, Hathi; Singh, Deepjyoti; Chattopadhyay, Sudip; Nandi, Ashis K

    2017-09-01

    G-BOX BINDING FACTOR 1 (GBF1) influences light-regulated seedling development in Arabidopsis, and inhibits CATALASE 2 (CAT2) expression during senescence. CAT2 functions as a scavenger of hydrogen peroxide. The role of GBF1 in the defense response is not known. We report here that GBF1 positively influences the defense against virulent and avirulent strains of Pseudomonas syringae. The gbf1 mutants are susceptible, whereas GBF1 over-expresser transgenic plants are resistant to bacterial pathogens. GBF1 negatively regulates pathogen-induced CAT2 expression and thereby positively regulates the hypersensitive response. In addition to CAT2 promoter, GBF1 binds to the G-box-like element present in the intron of PHYTOALEXIN DEFICIENT 4 (PAD4). This association of GBF1 with PAD4 intron is enhanced upon pathogenesis. GBF1 positively regulates PAD4 transcription in an intron-dependent manner. GBF1-mediated positive regulation of PAD4 expression is also evident in gbf1 mutant and GBF1 over-expression lines. Similar to pad4 mutants, pathogen-induced camalexin and salicylic acid (SA) accumulation, and expression of SA-inducible PATHOGENESIS RELATED1 (PR1) gene are compromised in the gbf1 mutant. Exogenous application of SA rescues the loss-of-defense phenotypes of gbf1 mutant. Thus, altogether, our results demonstrate that GBF1 is an important component of the plant defense response that functions upstream of SA accumulation and, by oppositely regulating CAT2 and PAD4, promotes disease resistance in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Reducing Defensive Responses to Thoughts of Death: Meditation, Mindfulness, and Buddhism.

    PubMed

    Park, Young Chin; Pyszczynski, Tom

    2017-08-24

    Three studies investigated the effects of meditation on responses to reminders of death. Study 1 took a quasi-experimental approach, comparing defensive responses to mortality salience (MS) of South Korean participants with varying levels of experience with Buddhism and meditation. Whereas non-Buddhists without meditation showed the typical increase in worldview defense after mortality salience (MS), this effect was not found among non-Buddhists immediately after an initial meditation experience, nor among lay Buddhists who meditated regularly or Buddhist monks with intensive meditation experience. Study 2, a fully randomized experiment, showed that MS increased worldview defense among South Koreans at a meditation training who were assessed before meditating but not among participants assessed after their first meditation experience. Study 3 showed that whereas American students without prior meditation experience showed increased worldview defense and suppression of death-related thoughts after MS, these effects were eliminated immediately after an initial meditation experience. Death thought accessibility mediated the effect of MS on worldview defense without meditation, but meditation eliminated this mediation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity

    PubMed Central

    Argueso, Cristiana T.; Ferreira, Fernando J.; Epple, Petra; To, Jennifer P. C.; Hutchison, Claire E.; Schaller, G. Eric; Dangl, Jeffery L.; Kieber, Joseph J.

    2012-01-01

    Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant–pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, ultimately influencing the outcome of plant–pathogen interactions. We show that high concentrations of cytokinin lead to increased defense responses to a virulent oomycete pathogen, through a process that is dependent on salicylic acid (SA) accumulation and activation of defense gene expression. Surprisingly, treatment with lower concentrations of cytokinin results in increased susceptibility. These functions for cytokinin in plant immunity require a host phosphorelay system and are mediated in part by type-A response regulators, which act as negative regulators of basal and pathogen-induced SA–dependent gene expression. Our results support a model in which cytokinin up-regulates plant immunity via an elevation of SA–dependent defense responses and in which SA in turn feedback-inhibits cytokinin signaling. The crosstalk between cytokinin and SA signaling networks may help plants fine-tune defense responses against pathogens. PMID:22291601

  10. Maternal programming of defensive responses through sustained effects on gene expression.

    PubMed

    Zhang, Tie-Yuan; Bagot, Rose; Parent, Carine; Nesbitt, Cathy; Bredy, Timothy W; Caldji, Christian; Fish, Eric; Anisman, Hymie; Szyf, Moshe; Meaney, Michael J

    2006-07-01

    There are profound maternal effects on individual differences in defensive responses and reproductive strategies in species ranging literally from plants to insects to birds. Maternal effects commonly reflect the quality of the environment and are most likely mediated by the quality of the maternal provision (egg, propagule, etc.), which in turn determines growth rates and adult phenotype. In this paper we review data from the rat that suggest comparable forms of maternal effects on defensive responses stress, which are mediated by the effects of variations in maternal behavior on gene expression. Under conditions of environmental adversity maternal effects enhance the capacity for defensive responses in the offspring. In mammals, these effects appear to 'program' emotional, cognitive and endocrine systems towards increased sensitivity to adversity. In environments with an increased level of adversity, such effects can be considered adaptive, enhancing the probability of offspring survival to sexual maturity; the cost is that of an increased risk for multiple forms of pathology in later life.

  11. Jasmonic acid and salicylic acid activate a common defense system in rice.

    PubMed

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-06-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice.

  12. Prophage-mediated defense against viral attack and viral counter-defense

    PubMed Central

    Dedrick, Rebekah M.; Jacobs-Sera, Deborah; Guerrero Bustamante, Carlos A.; Garlena, Rebecca A.; Mavrich, Travis N.; Pope, Welkin H.; Reyes, Juan C Cervantes; Russell, Daniel A.; Adair, Tamarah; Alvey, Richard; Bonilla, J. Alfred; Bricker, Jerald S.; Brown, Bryony R.; Byrnes, Deanna; Cresawn, Steven G.; Davis, William B.; Dickson, Leon A.; Edgington, Nicholas P.; Findley, Ann M.; Golebiewska, Urszula; Grose, Julianne H.; Hayes, Cory F.; Hughes, Lee E.; Hutchison, Keith W.; Isern, Sharon; Johnson, Allison A.; Kenna, Margaret A.; Klyczek, Karen K.; Mageeney, Catherine M.; Michael, Scott F.; Molloy, Sally D.; Montgomery, Matthew T.; Neitzel, James; Page, Shallee T.; Pizzorno, Marie C.; Poxleitner, Marianne K.; Rinehart, Claire A.; Robinson, Courtney J.; Rubin, Michael R.; Teyim, Joseph N.; Vazquez, Edwin; Ware, Vassie C.; Washington, Jacqueline; Hatfull, Graham F.

    2017-01-01

    Temperate phages are common and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses infecting mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity, and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages reveals at least five distinct prophage-expressed viral defense systems that interfere with infection of lytic and temperate phages that are either closely-related (homotypic defense) or unrelated (heterotypic defense). Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defense systems include a single-subunit restriction system, a heterotypic exclusion system, and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival, and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, that acts as a highly effective counter-defense system. Prophage-mediated viral defense offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defense promotes phage co-evolution. PMID:28067906

  13. Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice1[C][W][OA

    PubMed Central

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-01-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy. PMID:22353574

  14. Malus hupehensis miR168 Targets to ARGONAUTE1 and Contributes to the Resistance against Botryosphaeria dothidea Infection by Altering Defense Responses.

    PubMed

    Yu, Xinyi; Hou, Yingjun; Chen, Weiping; Wang, Sanhong; Wang, Peihong; Qu, Shenchun

    2017-09-01

    MicroRNA (miRNA)-mediated post-transcriptional regulation plays a fundamental role in various plant physiological processes, including responses to pathogens. MicroRNA168 has been implicated as an essential factor of miRNA pathways by targeting ARGONAUTE1 (AGO1), the core component of the RNA-induced silencing complex (RISC). A fluctuation in AGO1 expression influences various plant-pathogen interactions, and the homeostasis of AGO1 and miR168 accumulation is maintained by a complicated feedback regulatory loop. In this study, the connection between miR168 and the resistance of Malus hupehensis to Botryosphaeria dothidea is revealed. The induction of both the mature miR168 and its precursor in plants subjected to B. dothidea infection indicate the transcriptional activation of MIR168a. MIR168a promoter analysis demonstrates that the promoter can be activated by B. dothidea and salicylic acid (SA). However, the direct target of miR168, M. hupehensis ARGONAUTE1 (MhAGO1), is shown to be induced under the infection. Expression and transcription activity analysis demonstrate the transcriptional activation and the post-transcriptional suppression of MhAGO1 in response to B. dothidea infection. By inhibiting reactive oxygen species (ROS) production and enhancing SA-mediated defense responses, miR168a delays the symptom development of leaves inoculated with B. dothidea and impedes the pathogen growth, while MhAGO1 is found to have the opposite effects. Collectively, these findings suggest that the expression of miR168 and MhAGO1 in M. hupehensis in response to B. dothidea infection is regulated by a complicated mechanism. Targeting to MhAGO1, a negative regulator, miR168 plays a positive role in the resistance by alterations in diverse defense responses. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Metabolomic analysis of primary metabolites in citrus leaf during defense responses.

    PubMed

    Asai, Tomonori; Matsukawa, Tetsuya; Kajiyama, Shin'ichiro

    2017-03-01

    Mechanical damage is one of the unavoidable environmental stresses to plant growth and development. Plants induce a variety of reactions which defend against natural enemies and/or heal the wounded sites. Jasmonic acid (JA) and salicylic acid (SA), defense-related plant hormones, are well known to be involved in induction of defense reactions and play important roles as signal molecules. However, defense related metabolites are so numerous and diverse that roles of individual compounds are still to be elucidated. In this report, we carried out a comprehensive analysis of metabolic changes during wound response in citrus plants which are one of the most commercially important fruit tree families. Changes in amino acid, sugar, and organic acid profiles in leaves were surveyed after wounding, JA and SA treatments using gas chromatography-mass spectrometry (GC/MS) in seven citrus species, Citrus sinensis, Citrus limon, Citrus paradisi, Citrus unshiu, Citrus kinokuni, Citrus grandis, and Citrus hassaku. GC/MS data were applied to multivariate analyses including hierarchical cluster analysis (HCA), primary component analysis (PCA), and orthogonal partial least squares-discriminant analysis (OPLS-DA) to extract stress-related compounds. HCA showed the amino acid cluster including phenylalanine and tryptophan, suggesting that amino acids in this cluster are concertedly regulated during responses against treatments. OPLS-DA exhibited that tryptophan was accumulated after wounding and JA treatments in all species tested, while serine was down regulated. Our results suggest that tryptophan and serine are common biomarker candidates in citrus plants for wound stress. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. The Arabidopsis Rho of Plants GTPase AtROP6 Functions in Developmental and Pathogen Response Pathways1[C][W][OA

    PubMed Central

    Poraty-Gavra, Limor; Zimmermann, Philip; Haigis, Sabine; Bednarek, Paweł; Hazak, Ora; Stelmakh, Oksana Rogovoy; Sadot, Einat; Schulze-Lefert, Paul; Gruissem, Wilhelm; Yalovsky, Shaul

    2013-01-01

    How plants coordinate developmental processes and environmental stress responses is a pressing question. Here, we show that Arabidopsis (Arabidopsis thaliana) Rho of Plants6 (AtROP6) integrates developmental and pathogen response signaling. AtROP6 expression is induced by auxin and detected in the root meristem, lateral root initials, and leaf hydathodes. Plants expressing a dominant negative AtROP6 (rop6DN) under the regulation of its endogenous promoter are small and have multiple inflorescence stems, twisted leaves, deformed leaf epidermis pavement cells, and differentially organized cytoskeleton. Microarray analyses of rop6DN plants revealed that major changes in gene expression are associated with constitutive salicylic acid (SA)-mediated defense responses. In agreement, their free and total SA levels resembled those of wild-type plants inoculated with a virulent powdery mildew pathogen. The constitutive SA-associated response in rop6DN was suppressed in mutant backgrounds defective in SA signaling (nonexpresser of PR genes1 [npr1]) or biosynthesis (salicylic acid induction deficient2 [sid2]). However, the rop6DN npr1 and rop6DN sid2 double mutants retained the aberrant developmental phenotypes, indicating that the constitutive SA response can be uncoupled from ROP function(s) in development. rop6DN plants exhibited enhanced preinvasive defense responses to a host-adapted virulent powdery mildew fungus but were impaired in preinvasive defenses upon inoculation with a nonadapted powdery mildew. The host-adapted powdery mildew had a reduced reproductive fitness on rop6DN plants, which was retained in mutant backgrounds defective in SA biosynthesis or signaling. Our findings indicate that both the morphological aberrations and altered sensitivity to powdery mildews of rop6DN plants result from perturbations that are independent from the SA-associated response. These perturbations uncouple SA-dependent defense signaling from disease resistance execution. PMID

  17. Overcompensation of herbivore reproduction through hyper-suppression of plant defenses in response to competition.

    PubMed

    Schimmel, Bernardus C J; Ataide, Livia M S; Chafi, Rachid; Villarroel, Carlos A; Alba, Juan M; Schuurink, Robert C; Kant, Merijn R

    2017-06-01

    Spider mites are destructive arthropod pests on many crops. The generalist herbivorous mite Tetranychus urticae induces defenses in tomato (Solanum lycopersicum) and this constrains its fitness. By contrast, the Solanaceae-specialist Tetranychus evansi maintains a high reproductive performance by suppressing tomato defenses. Tetranychus evansi outcompetes T. urticae when infesting the same plant, but it is unknown whether this is facilitated by the defenses of the plant. We assessed the extent to which a secondary infestation by a competitor affects local plant defense responses (phytohormones and defense genes), mite gene expression and mite performance. We observed that T. evansi switches to hyper-suppression of defenses after its tomato host is also invaded by its natural competitor T. urticae. Jasmonate (JA) and salicylate (SA) defenses were suppressed more strongly, albeit only locally at the feeding site of T. evansi, upon introduction of T. urticae to the infested leaflet. The hyper-suppression of defenses coincided with increased expression of T. evansi genes coding for salivary defense-suppressing effector proteins and was paralleled by an increased reproductive performance. Together, these observations suggest that T. evansi overcompensates its reproduction through hyper-suppression of plant defenses in response to nearby competitors. We hypothesize that the competitor-induced overcompensation promotes competitive population growth of T. evansi on tomato. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice.

    PubMed

    He, Yuqing; Zhang, Hehong; Sun, Zongtao; Li, Junmin; Hong, Gaojie; Zhu, Qisong; Zhou, Xuebiao; MacFarlane, Stuart; Yan, Fei; Chen, Jianping

    2017-04-01

    Plant hormones play a vital role in plant immune responses. However, in contrast to the relative wealth of information on hormone-mediated immunity in dicot plants, little information is available on monocot-virus defense systems. We used a high-throughput-sequencing approach to compare the global gene expression of Rice black-streaked dwarf virus (RBSDV)-infected rice plants with that of healthy plants. Exogenous hormone applications and transgenic rice were used to test RBSDV infectivity and pathogenicity. Our results revealed that the jasmonic acid (JA) pathway was induced while the brassinosteroid (BR) pathway was suppressed in infected plants. Foliar application of methyl jasmonate (MeJA) or brassinazole (BRZ) resulted in a significant reduction in RBSDV incidence, while epibrassinolide (BL) treatment increased RBSDV infection. Infection studies using coi1-13 and Go mutants demonstrated JA-mediated resistance and BR-mediated susceptibility to RBSDV infection. A mixture of MeJA and BL treatment resulted in a significant reduction in RBSDV infection compared with a single BL treatment. MeJA application efficiently suppressed the expression of BR pathway genes, and this inhibition depended on the JA coreceptor OsCOI1. Collectively, our results reveal that JA-mediated defense can suppress the BR-mediated susceptibility to RBSDV infection. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Arabidopsis WRKY33 Is a Key Transcriptional Regulator of Hormonal and Metabolic Responses toward Botrytis cinerea Infection1[W

    PubMed Central

    Birkenbihl, Rainer P.; Diezel, Celia; Somssich, Imre E.

    2012-01-01

    The Arabidopsis (Arabidopsis thaliana) transcription factor WRKY33 is essential for defense toward the necrotrophic fungus Botrytis cinerea. Here, we aimed at identifying early transcriptional responses mediated by WRKY33. Global expression profiling on susceptible wrky33 and resistant wild-type plants uncovered massive differential transcriptional reprogramming upon B. cinerea infection. Subsequent detailed kinetic analyses revealed that loss of WRKY33 function results in inappropriate activation of the salicylic acid (SA)-related host response and elevated SA levels post infection and in the down-regulation of jasmonic acid (JA)-associated responses at later stages. This down-regulation appears to involve direct activation of several jasmonate ZIM-domain genes, encoding repressors of the JA-response pathway, by loss of WRKY33 function and by additional SA-dependent WRKY factors. Moreover, genes involved in redox homeostasis, SA signaling, ethylene-JA-mediated cross-communication, and camalexin biosynthesis were identified as direct targets of WRKY33. Genetic studies indicate that although SA-mediated repression of the JA pathway may contribute to the susceptibility of wrky33 plants to B. cinerea, it is insufficient for WRKY33-mediated resistance. Thus, WRKY33 apparently directly targets other still unidentified components that are also critical for establishing full resistance toward this necrotroph. PMID:22392279

  20. Elucidation of defense-related signaling responses to spot blotch infection in bread wheat (Triticum aestivum L.).

    PubMed

    Sahu, Ranabir; Sharaff, Murali; Pradhan, Maitree; Sethi, Avinash; Bandyopadhyay, Tirthankar; Mishra, Vinod K; Chand, Ramesh; Chowdhury, Apurba K; Joshi, Arun K; Pandey, Shree P

    2016-04-01

    Spot blotch disease, caused by Bipolaris sorokiniana, is an important threat to wheat, causing an annual loss of ~17%. Under epidemic conditions, these losses may be 100%, yet the molecular responses of wheat to spot blotch remain almost uncharacterized. Moreover, defense-related phytohormone signaling genes have been poorly characterized in wheat. Here, we have identified 18 central components of salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and enhanced disease susceptibility 1 (EDS1) signaling pathways as well as the genes of the phenylpropanoid pathway in wheat. In time-course experiments, we characterized the reprogramming of expression of these pathways in two contrasting genotypes: Yangmai #6 (resistant to spot blotch) and Sonalika (susceptible to spot blotch). We further evaluated the performance of a population of recombinant inbred lines (RILs) by crossing Yangmai#6 and Sonalika (parents) and subsequent selfing to F10 under field conditions in trials at multiple locations. We characterized the reprogramming of defense-related signaling in these RILs as a consequence of spot blotch attack. During resistance to spot blotch attack, wheat strongly elicits SA signaling (SA biogenesis as well as the NPR1-dependent signaling pathway), along with WRKY33 transcription factor, followed by an enhanced expression of phenylpropanoid pathway genes. These may lead to accumulation of phenolics-based defense metabolites that may render resistance against spot blotch. JA signaling may synergistically contribute to the resistance. Failure to elicit SA (and possibly JA) signaling may lead to susceptibility against spot blotch infection in wheat. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato.

    PubMed

    Liao, Yangwenke; Tian, Miaoying; Zhang, Huan; Li, Xin; Wang, Yu; Xia, Xiaojian; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Shi, Kai; Klessig, Daniel F

    2015-02-01

    Salicylic acid (SA) plays a critical role in plant defense against pathogen invasion. SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense and involves a specific pathway mediated by mitochondria; however, the underlying mechanisms remain largely unknown. The SA-binding activity of the recombinant tomato (Solanum lycopersicum) alpha-ketoglutarate dehydrogenase (Slα-kGDH) E2 subunit of the tricarboxylic acid (TCA) cycle was characterized. The biological role of this binding in plant defenses against tobacco mosaic virus (TMV) was further investigated via Slα-kGDH E2 silencing and transient overexpression in plants. Slα-kGDH E2 was found to bind SA in two independent assays. SA treatment, as well as Slα-kGDH E2 silencing, increased resistance to TMV. SA did not further enhance TMV defense in Slα-kGDH E2-silenced tomato plants but did reduce TMV susceptibility in Nicotiana benthamiana plants transiently overexpressing Slα-kGDH E2. Furthermore, Slα-kGDH E2-silencing-induced TMV resistance was fully blocked by bongkrekic acid application and alternative oxidase 1a silencing. These results indicated that binding by Slα-kGDH E2 of SA acts upstream of and affects the mitochondrial electron transport chain, which plays an important role in basal defense against TMV. The findings of this study help to elucidate the mechanisms of SA-induced viral defense. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways.

    PubMed

    Wathugala, Deepthi L; Hemsley, Piers A; Moffat, Caroline S; Cremelie, Pieter; Knight, Marc R; Knight, Heather

    2012-07-01

    • Arabidopsis SENSITIVE TO FREEZING6 (SFR6) controls cold- and drought-inducible gene expression and freezing- and osmotic-stress tolerance. Its identification as a component of the MEDIATOR transcriptional co-activator complex led us to address its involvement in other transcriptional responses. • Gene expression responses to Pseudomonas syringae, ultraviolet-C (UV-C) irradiation, salicylic acid (SA) and jasmonic acid (JA) were investigated in three sfr6 mutant alleles by quantitative real-time PCR and susceptibility to UV-C irradiation and Pseudomonas infection were assessed. • sfr6 mutants were more susceptible to both Pseudomonas syringae infection and UV-C irradiation. They exhibited correspondingly weaker PR (pathogenesis-related) gene expression than wild-type Arabidopsis following these treatments or after direct application of SA, involved in response to both UV-C and Pseudomonas infection. Other genes, however, were induced normally in the mutants by these treatments. sfr6 mutants were severely defective in expression of plant defensin genes in response to JA; ectopic expression of defensin genes was provoked in wild-type but not sfr6 by overexpression of ERF5. • SFR6/MED16 controls both SA- and JA-mediated defence gene expression and is necessary for tolerance of Pseudomonas syringae infection and UV-C irradiation. It is not, however, a universal regulator of stress gene transcription and is likely to mediate transcriptional activation of specific regulons only. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  3. A Defensive Kicking Behavior in Response to Mechanical Stimuli Mediated by Drosophila Wing Margin Bristles.

    PubMed

    Li, Jiefu; Zhang, Wei; Guo, Zhenhao; Wu, Sophia; Jan, Lily Yeh; Jan, Yuh-Nung

    2016-11-02

    Mechanosensation, one of the fastest sensory modalities, mediates diverse behaviors including those pertinent for survival. It is important to understand how mechanical stimuli trigger defensive behaviors. Here, we report that Drosophila melanogaster adult flies exhibit a kicking response against invading parasitic mites over their wing margin with ultrafast speed and high spatial precision. Mechanical stimuli that mimic the mites' movement evoke a similar kicking behavior. Further, we identified a TRPV channel, Nanchung, and a specific Nanchung-expressing neuron under each recurved bristle that forms an array along the wing margin as being essential sensory components for this behavior. Our electrophysiological recordings demonstrated that the mechanosensitivity of recurved bristles requires Nanchung and Nanchung-expressing neurons. Together, our results reveal a novel neural mechanism for innate defensive behavior through mechanosensation. We discovered a previously unknown function for recurved bristles on the Drosophila melanogaster wing. We found that when a mite (a parasitic pest for Drosophila) touches the wing margin, the fly initiates a swift and accurate kick to remove the mite. The fly head is dispensable for this behavior. Furthermore, we found that a TRPV channel, Nanchung, and a specific Nanchung-expressing neuron under each recurved bristle are essential for its mechanosensitivity and the kicking behavior. In addition, touching different regions of the wing margin elicits kicking directed precisely at the stimulated region. Our experiments suggest that recurved bristles allow the fly to sense the presence of objects by touch to initiate a defensive behavior (perhaps analogous to touch-evoked scratching; Akiyama et al., 2012). Copyright © 2016 the authors 0270-6474/16/3611275-08$15.00/0.

  4. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis.

    PubMed

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Mörgelin, Matthias; van der Plas, Mariena J A; Rydengård, Victoria; Malmsten, Martin; Albiger, Barbara; Schmidtchen, Artur

    2012-01-01

    Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin in vitro and in vivo. Furthermore, they interfere with coagulation by modulating contact activation and tissue factor-mediated clotting in vitro, leading to normalization of coagulation responses in vivo, a previously unknown function of host defense peptides. In a mouse model of Pseudomonas aeruginosa sepsis, the peptide GKY25, while mediating a modest antimicrobial effect, significantly inhibited the pro-inflammatory response, decreased fibrin deposition and leakage in the lungs, as well as reduced mortality. Taken together, the capacity of such thrombin-derived peptides to simultaneously modulate bacterial levels, pro-inflammatory responses, and coagulation, renders them attractive therapeutic candidates for the treatment of invasive infections and sepsis.

  5. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways

    PubMed Central

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. PMID:26672068

  6. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways.

    PubMed

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses.

    PubMed

    Chung, Seung Ho; Scully, Erin D; Peiffer, Michelle; Geib, Scott M; Rosa, Cristina; Hoover, Kelli; Felton, Gary W

    2017-01-03

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore's ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants.

  8. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    PubMed Central

    Chung, Seung Ho; Scully, Erin D.; Peiffer, Michelle; Geib, Scott M.; Rosa, Cristina; Hoover, Kelli; Felton, Gary W.

    2017-01-01

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants. PMID:28045052

  9. The pepper cysteine/histidine-rich DC1 domain protein CaDC1 binds both RNA and DNA and is required for plant cell death and defense response.

    PubMed

    Hwang, In Sun; Choi, Du Seok; Kim, Nak Hyun; Kim, Dae Sung; Hwang, Byung Kook

    2014-01-01

    Plant defense against microbial pathogens is coordinated by a complex regulatory network. Cysteine/histidine-rich DC1 domain proteins mediate a variety of cellular processes involved in plant growth, development and stress responses. We identified a pepper (Capsicum annuum) cysteine/histidine-rich DC1 domain protein gene, CaDC1, which positively regulates plant defense during microbial infection, based on gene silencing and transient expression in pepper, as well as ectopic expression in Arabidopsis. Induction of CaDC1 by avirulent Xanthomonas campestris pv vesicatoria (Xcv) infection was pronounced at both transcriptional and translational levels in pepper leaves. Purified CaDC1 protein bound to both DNA and RNA in vitro, especially in the presence of Zn(2+). CaDC1 was localized to both the nucleus and the cytoplasm, which was required for plant cell death signaling. The nuclear localization of CaDC1 was dependent on the divergent C1 (DC1) domain. CaDC1 silencing in pepper conferred increased susceptibility to Xcv infection, which was accompanied by reduced salicylic acid accumulation and defense-related gene expression. Ectopic expression of CaDC1 in Arabidopsis enhanced resistance to Hyaloperonospora arabidopsidis. CaDC1 binds both RNA and DNA and functions as a positive regulator of plant cell death and SA-dependent defense responses. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Fibrin facilitates both innate and T cell-mediated defense against Yersinia pestis.1

    PubMed Central

    Luo, Deyan; Lin, Shiuan; Parent, Michelle A.; Kanevsky, Isis Mullarky; Szaba, Frank M.; Kummer, Lawrence W.; Duso, Debra K.; Tighe, Michael; Hill, Jim; Gruber, Andras; Mackman, Nigel; Gailani, David; Smiley, Stephen T.

    2013-01-01

    The gram-negative bacterium Yersinia pestis causes plague, a rapidly progressing and often fatal disease. The formation of fibrin at sites of Y. pestis infection supports innate host defense against plague, perhaps by providing a non-diffusible spatial cue that promotes the accumulation of inflammatory cells expressing fibrin-binding integrins. This report demonstrates that fibrin is an essential component of T cell-mediated defense against plague but can be dispensable for antibody-mediated defense. Genetic or pharmacologic depletion of fibrin abrogated innate and T cell-mediated defense in mice challenged intranasally with Y. pestis. The fibrin-deficient mice displayed reduced survival, increased bacterial burden, and exacerbated hemorrhagic pathology. They also showed fewer neutrophils within infected lung tissue and reduced neutrophil viability at sites of liver infection. Depletion of neutrophils from wild type mice weakened T cell-mediated defense against plague. The data suggest that T cells combat plague in conjunction with neutrophils, which require help from fibrin in order to withstand Y. pestis encounters and effectively clear bacteria. PMID:23487423

  11. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses.

    PubMed

    Song, Junqi; Bent, Andrew F

    2014-04-01

    Immune responses and DNA damage repair are two fundamental processes that have been characterized extensively, but the links between them remain largely unknown. We report that multiple bacterial, fungal and oomycete plant pathogen species induce double-strand breaks (DSBs) in host plant DNA. DNA damage detected by histone γ-H2AX abundance or DNA comet assays arose hours before the disease-associated necrosis caused by virulent Pseudomonas syringae pv. tomato. Necrosis-inducing paraquat did not cause detectable DSBs at similar stages after application. Non-pathogenic E. coli and Pseudomonas fluorescens bacteria also did not induce DSBs. Elevation of reactive oxygen species (ROS) is common during plant immune responses, ROS are known DNA damaging agents, and the infection-induced host ROS burst has been implicated as a cause of host DNA damage in animal studies. However, we found that DSB formation in Arabidopsis in response to P. syringae infection still occurs in the absence of the infection-associated oxidative burst mediated by AtrbohD and AtrbohF. Plant MAMP receptor stimulation or application of defense-activating salicylic acid or jasmonic acid failed to induce a detectable level of DSBs in the absence of introduced pathogens, further suggesting that pathogen activities beyond host defense activation cause infection-induced DNA damage. The abundance of infection-induced DSBs was reduced by salicylic acid and NPR1-mediated defenses, and by certain R gene-mediated defenses. Infection-induced formation of γ-H2AX still occurred in Arabidopsis atr/atm double mutants, suggesting the presence of an alternative mediator of pathogen-induced H2AX phosphorylation. In summary, pathogenic microorganisms can induce plant DNA damage. Plant defense mechanisms help to suppress rather than promote this damage, thereby contributing to the maintenance of genome integrity in somatic tissues.

  12. Defense Styles Mediate the Association Between Empathy and Burnout Among Nurses.

    PubMed

    Fitzgerald-Yau, Natasha; Egan, Jonathan

    2018-06-14

    Research has extensively identified empathic skills as essential in health trainings, policies, and recommendations. However, there have been conflicting views of the impact of empathy on burnout. Some studies contend that empathy serves a protective role, whereas other studies have shown that burnout leads to a diminished capacity to empathize. To date, studies have not yet explored whether defense styles mediate associations between empathy and burnout. A total of 442 nurses completed questionnaire measures of empathy, burnout, and defense mechanisms as part of a large-scale research study on nurse burnout. Findings reflected very high levels of emotional exhaustion and depersonalization among the nursing staff. The nurses in this study endorsed a predominantly immature defense style. In addition, immature defense styles mediated the association between empathy and emotional exhaustion and between empathy and depersonalization. The study provides further knowledge about the role of defense styles in nurse burnout and empathy.

  13. Peripheral and central mediators of lipopolysaccharide induced suppression of defensive rage behavior in the cat.

    PubMed

    Bhatt, S; Bhatt, R S; Zalcman, S S; Siegel, A

    2009-11-10

    Based upon recent findings in our laboratory that cytokines microinjected into the medial hypothalamus or periaqueductal gray (PAG) powerfully modulate defensive rage behavior in cat, the present study determined the effects of peripherally released cytokines following lipopolysaccharide (LPS) challenge upon defensive rage. The study involved initial identification of the effects of peripheral administration of LPS upon defensive rage by electrical stimulation from PAG and subsequent determination of the peripheral and central mechanisms governing this process. The results revealed significant elevation in response latencies for defensive rage from 60 to 300 min, post LPS injection, with no detectable signs of sickness behavior present at 60 min. In contrast, head turning behavior elicited by stimulation of adjoining midbrain sites was not affected by LPS administration, suggesting a specificity of the effects of LPS upon defensive rage. Direct administration of LPS into the medial hypothalamus had no effect on defensive rage, suggesting that the effects of LPS were mediated by peripheral cytokines rather than by any direct actions upon hypothalamic neurons. Complete blockade of the suppressive effects of LPS by peripheral pretreatment with an Anti-tumor necrosis factor-alpha (TNFalpha) antibody but not with an anti- interleukin-1 (IL-1) antibody demonstrated that the effects of LPS were mediated through TNF-alpha rather than through an IL-1 mechanism. A determination of the central mechanisms governing LPS suppression revealed that pretreatment of the medial hypothalamus with PGE(2) or 5-HT(1A) receptor antagonists each completely blocked the suppressive effects of LPS, while microinjections of a TNF-alpha antibody into the medial hypothalamus were ineffective. Microinjections of -Iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) benzamide monohydrochloride (p-MPPI) into lateral hypothalamus (to test for anatomical specificity) had no effect upon

  14. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract1[OPEN

    PubMed Central

    Schmiesing, André; Gouhier-Darimont, Caroline

    2016-01-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. PMID:26884488

  15. A PR-4 gene identified from Malus domestica is involved in the defense responses against Botryosphaeria dothidea.

    PubMed

    Bai, Suhua; Dong, Chaohua; Li, Baohua; Dai, Hongyi

    2013-01-01

    Pathogenesis-related protein-4 (PR-4) family is a group of proteins with a Barwin domain in C-terminus and generally thought to be involved in plant defense responses. However, their detailed roles are poorly understood in defense of apple plant against pathogenic infection. In the present study, a new PR-4 gene (designated as MdPR-4) was identified from Malus domestica, and its roles in defense responses of apple were investigated. The open reading frame of MdPR-4 gene is of 447 bp encoding a protein of 148 amino acids with a Barwin domain in C-terminus and a signal peptide of 26 amino acids in N-terminus. Sequence and structural analysis indicated that MdPR-4 protein belongs to class II of PR-4 family. The high-level expression of MdPR-4 was observed in flowers and leaves as revealed by quantitative real time PCR. The temporal expression analysis demonstrated that MdPR-4 expression could be up-regulated by Botryosphaeria dothidea infection and salicylic acid (SA) or methyl jasmonate (MeJA) treatment, but suppressed by diethyldithiocarbamic acid (DIECA). In vitro assays, recombinant MdPR-4 protein exhibited ribonuclease activity specific for single strand RNA and significant inhibition to hyphal growth of three apple pathogenic fungi B. dothidea, Valsa ceratosperma and Glomerella cingulata. Moreover, the inhibition was reduced by the presence of 5'-ADP. Taken all together, the results indicate that MdPR-4 protein is involved in the defense responses of apple against pathogenic attack by directly inhibiting hyphal growth, and the inhibition is correlated with its ribonuclease activity, where as MdPR-4 expression is regulated by both SA and JA signaling pathway. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. Sulforaphane protects Microcystin-LR-induced toxicity through activation of the Nrf2-mediated defensive response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan Nanqin; Mi Lixin; Sun Xiaoyun

    2010-09-01

    Microcystins (MCs), a cyclic heptapeptide hepatotoxins, are mainly produced by the bloom-forming cyanobacerium Microcystis, which has become an environmental hazard worldwide. Long term consumption of MC-contaminated water may induce liver damage, liver cancer, and even human death. Therefore, in addition to removal of MCs in drinking water, novel strategies that prevent health damages are urgently needed. Sulforaphane (SFN), a natural-occurring isothiocyanate from cruciferous vegetables, has been reported to reduce and eliminate toxicities from xenobiotics and carcinogens. The purpose of the present study was to provide mechanistic insights into the SFN-induced antioxidative defense system against MC-LR-induced cytotoxicity. We performed cell viabilitymore » assays, including MTS assay, colony formation assay and apoptotic cell sorting, to study MC-LR-induced cellular damage and the protective effects by SFN. The results showed that SFN protected MC-LR-induced damages at a nontoxic and physiological relevant dose in HepG2, BRL-3A and NIH 3 T3 cells. The protection was Nrf2-mediated as evident by transactivation of Nrf2 and activation of its downstream genes, including NQO1 and HO-1, and elevated intracellular GSH level. Results of our studies indicate that pretreatment of cells with 10 {mu}M SFN for 12 h significantly protected cells from MC-LR-induced damage. SFN-induced protective response was mediated through Nrf2 pathway.« less

  17. Polyamines Attenuate Ethylene-Mediated Defense Responses to Abrogate Resistance to Botrytis cinerea in Tomato1[C][W][OA

    PubMed Central

    Nambeesan, Savithri; AbuQamar, Synan; Laluk, Kristin; Mattoo, Autar K.; Mickelbart, Michael V.; Ferruzzi, Mario G.; Mengiste, Tesfaye; Handa, Avtar K.

    2012-01-01

    Transgenic tomato (Solanum lycopersicum) lines overexpressing yeast spermidine synthase (ySpdSyn), an enzyme involved in polyamine (PA) biosynthesis, were developed. These transgenic lines accumulate higher levels of spermidine (Spd) than the wild-type plants and were examined for responses to the fungal necrotrophs Botrytis cinerea and Alternaria solani, bacterial pathogen Pseudomonas syringae pv tomato DC3000, and larvae of the chewing insect tobacco hornworm (Manduca sexta). The Spd-accumulating transgenic tomato lines were more susceptible to B. cinerea than the wild-type plants; however, responses to A. solani, P. syringae, or M. sexta were similar to the wild-type plants. Exogenous application of ethylene precursors, S-adenosyl-Met and 1-aminocyclopropane-1-carboxylic acid, or PA biosynthesis inhibitors reversed the response of the transgenic plants to B. cinerea. The increased susceptibility of the ySpdSyn transgenic tomato to B. cinerea was associated with down-regulation of gene transcripts involved in ethylene biosynthesis and signaling. These data suggest that PA-mediated susceptibility to B. cinerea is linked to interference with the functions of ethylene in plant defense. PMID:22128140

  18. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.

    PubMed

    Schmiesing, André; Emonet, Aurélia; Gouhier-Darimont, Caroline; Reymond, Philippe

    2016-04-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. The Mediator Complex Subunit PFT1 Is a Key Regulator of Jasmonate-Dependent Defense in Arabidopsis[C][W

    PubMed Central

    Kidd, Brendan N.; Edgar, Cameron I.; Kumar, Krish K.; Aitken, Elizabeth A.; Schenk, Peer M.; Manners, John M.; Kazan, Kemal

    2009-01-01

    Jasmonate signaling plays an important role in both plant defense and development. Here, we have identified a subunit of the Mediator complex as a regulator of the jasmonate signaling pathway in Arabidopsis thaliana. The Mediator complex is a conserved multiprotein complex that acts as a universal adaptor between transcription factors and the RNA polymerase II transcriptional machinery. We report that the PHYTOCHROME AND FLOWERING TIME1 (PFT1) gene, which encodes the MEDIATOR25 subunit of Mediator, is required for jasmonate-dependent defense gene expression and resistance to leaf-infecting necrotrophic fungal pathogens. Conversely, PFT1 appears to confer susceptibility to Fusarium oxysporum, a root-infecting hemibiotrophic fungal pathogen known to hijack jasmonate responses for disease development. Consistent with this, jasmonate gene expression was suppressed in the pft1 mutant during infection with F. oxysporum. In addition, a wheat (Triticum aestivum) homolog of PFT1 complemented the defense and the developmental phenotypes of the pft1 mutant, suggesting that the jasmonate signaling functions of PFT1 may be conserved in higher plants. Overall, our results identify an important control point in the regulation of the jasmonate signaling pathway within the transcriptional machinery. PMID:19671879

  20. Chamomile confers protection against hydrogen peroxide-induced toxicity through activation of Nrf2-mediated defense response.

    PubMed

    Bhaskaran, Natarajan; Srivastava, Janmejai K; Shukla, Sanjeev; Gupta, Sanjay

    2013-01-01

    Oxidative stress plays an important role in the development of various human diseases. Aqueous chamomile extract is used as herbal medicine, in the form of tea, demonstrated to possess antiinflammatory and antioxidant properties. We demonstrate the cytoprotective effects of chamomile on hydrogen peroxide (H₂O₂)-induced cellular damage in macrophage RAW 264.7 cells. Pretreatment of cells with chamomile markedly attenuated H₂O₂-induced cell viability loss in a dose-dependent manner. The mechanisms by which chamomile-protected macrophages from oxidative stress was through the induction of several antioxidant enzymes including NAD(P)H:quinone oxidoreductase, superoxide dismutase, and catalase and increase nuclear accumulation of the transcription factor Nrf2 and its binding to antioxidant response elements. Furthermore, chamomile dose-dependently reduced H₂O₂-mediated increase in the intracellular levels of reactive oxygen species. Our results, for the first time, demonstrate that chamomile has protective effects against oxidative stress and might be beneficial to provide defense against cellular damage. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Chamomile Confers Protection against Hydrogen Peroxide-Induced Toxicity through Activation of Nrf2-Mediated Defense Response

    PubMed Central

    Bhaskaran, Natarajan; Srivastava, Janmejai K.; Shukla, Sanjeev; Gupta, Sanjay

    2014-01-01

    Oxidative stress plays an important role in the development of various human diseases. Aqueous chamomile extract is used as herbal medicine, in the form of tea, demonstrated to possess antiinflammatory and antioxidant properties. We demonstrate the cytoprotective effects of chamomile on hydrogen peroxide (H2O2)-induced cellular damage in macrophage RAW 264.7 cells. Pretreatment of cells with chamomile markedly attenuated H2O2-induced cell viability loss in a dose-dependent manner. The mechanisms by which chamomile-protected macrophages from oxidative stress was through the induction of several antioxidant enzymes including NAD (P)H:quinone oxidoreductase, superoxide dismutase, and catalase and increase nuclear accumulation of the transcription factor Nrf2 and its binding to antioxidant response elements. Furthermore, chamomile dose-dependently reduced H2O2-mediated increase in the intracellular levels of reactive oxygen species. Our results, for the first time, demonstrate that chamomile has protective effects against oxidative stress and might be beneficial to provide defense against cellular damage. PMID:22511316

  2. ScMED7, a sugarcane mediator subunit gene, acts as a regulator of plant immunity and is responsive to diverse stress and hormone treatments.

    PubMed

    Zhang, Xu; Yang, Yuting; Zou, Jiake; Chen, Yun; Wu, Qibin; Guo, Jinlong; Que, Youxiong; Xu, Liping

    2017-12-01

    The Mediator complex, is an essential component of the RNA polymerase II general transcriptional machinery in eukaryotes. Mediator subunit 7 (MED7), a key subunit in the central module of this complex, plays an important role in gene transcriptional regulation. The present study isolated the full-length cDNA of the MED7 gene of sugarcane, hereby designated as ScMED7, which was characterized to harbor a 525-bp open reading frame that is predicted to encode a 174-amino acid protein with a molecular mass of 19.9 kDa and was localized to the nucleus and cytoplasm. ScMED7 contains one typical conserved domain of MED7 proteins and shares 98% homology with that from Sorghum bicolor (XP_002447862.1). ScMED7 was constitutively expressed, yet significantly higher in bud tissues. ScMED7 transcription was obviously induced by heavy metal (CdCl 2 ), low temperature (4 °C), and hormone (SA and MeJA) treatments, while inhibited by osmotic stresses of NaCl and PEG. The role of ScMED7 in plant immunity was demonstrated by transient overexpression in tobacco, which in turn induces the expression of six out of nine defense-related marker genes, including all the three hypersensitive response genes. The responses of defense-related marker genes in the mock and in the ScMED7 transiently overexpressed leaves challenged by pathogenic Pseudomonas solanacearum and Fusarium solani var. coeruleum suggest that ScMED7 acts as a negative regulator during pathogen infections, whereas only fungal infection was clearly phenotypically expressed. In sum, ScMED7 plays an important role in modulating sugarcane responses to biotic and abiotic stresses, and may have dual roles in hypersensitive responses and basal defense against pathogens.

  3. Regulated nuclear trafficking of rpL10A mediated by NIK1 represents a defense strategy of plant cells against virus.

    PubMed

    Carvalho, Claudine M; Santos, Anésia A; Pires, Silvana R; Rocha, Carolina S; Saraiva, Daniela I; Machado, João Paulo B; Mattos, Eliciane C; Fietto, Luciano G; Fontes, Elizabeth P B

    2008-12-01

    The NSP-interacting kinase (NIK) receptor-mediated defense pathway has been identified recently as a virulence target of the geminivirus nuclear shuttle protein (NSP). However, the NIK1-NSP interaction does not fit into the elicitor-receptor model of resistance, and hence the molecular mechanism that links this antiviral response to receptor activation remains obscure. Here, we identified a ribosomal protein, rpL10A, as a specific partner and substrate of NIK1 that functions as an immediate downstream effector of NIK1-mediated response. Phosphorylation of cytosolic rpL10A by NIK1 redirects the protein to the nucleus where it may act to modulate viral infection. While ectopic expression of normal NIK1 or a hyperactive NIK1 mutant promotes the accumulation of phosphorylated rpL10A within the nuclei, an inactive NIK1 mutant fails to redirect the protein to the nuclei of co-transfected cells. Likewise, a mutant rpL10A defective for NIK1 phosphorylation is not redirected to the nucleus. Furthermore, loss of rpL10A function enhances susceptibility to geminivirus infection, resembling the phenotype of nik1 null alleles. We also provide evidence that geminivirus infection directly interferes with NIK1-mediated nuclear relocalization of rpL10A as a counterdefensive measure. However, the NIK1-mediated defense signaling neither activates RNA silencing nor promotes a hypersensitive response but inhibits plant growth and development. Although the virulence function of the particular geminivirus NSP studied here overcomes this layer of defense in Arabidopsis, the NIK1-mediated signaling response may be involved in restricting the host range of other viruses.

  4. Parasitism by Cuscuta pentagona attenuates host plant defenses against insect herbivores.

    PubMed

    Runyon, Justin B; Mescher, Mark C; De Moraes, Consuelo M

    2008-03-01

    Considerable research has examined plant responses to concurrent attack by herbivores and pathogens, but the effects of attack by parasitic plants, another important class of plant-feeding organisms, on plant defenses against other enemies has not been explored. We investigated how attack by the parasitic plant Cuscuta pentagona impacted tomato (Solanum lycopersicum) defenses against the chewing insect beet armyworm (Spodoptera exigua; BAW). In response to insect feeding, C. pentagona-infested (parasitized) tomato plants produced only one-third of the antiherbivore phytohormone jasmonic acid (JA) produced by unparasitized plants. Similarly, parasitized tomato, in contrast to unparasitized plants, failed to emit herbivore-induced volatiles after 3 d of BAW feeding. Although parasitism impaired antiherbivore defenses, BAW growth was slower on parasitized tomato leaves. Vines of C. pentagona did not translocate JA from BAW-infested plants: amounts of JA in parasite vines grown on caterpillar-fed and control plants were similar. Parasitized plants generally contained more salicylic acid (SA), which can inhibit JA in some systems. Parasitized mutant (NahG) tomato plants deficient in SA produced more JA in response to insect feeding than parasitized wild-type plants, further suggesting cross talk between the SA and JA defense signaling pathways. However, JA induction by BAW was still reduced in parasitized compared to unparasitized NahG, implying that other factors must be involved. We found that parasitized plants were capable of producing induced volatiles when experimentally treated with JA, indicating that resource depletion by the parasite does not fully explain the observed attenuation of volatile response to herbivore feeding. Collectively, these findings show that parasitic plants can have important consequences for host plant defense against herbivores.

  5. DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis.

    PubMed

    Tsutsui, Tomokazu; Kato, Wataru; Asada, Yutaka; Sako, Kaori; Sato, Takeo; Sonoda, Yutaka; Kidokoro, Satoshi; Yamaguchi-Shinozaki, Kazuko; Tamaoki, Masanori; Arakawa, Keita; Ichikawa, Takanari; Nakazawa, Miki; Seki, Motoaki; Shinozaki, Kazuo; Matsui, Minami; Ikeda, Akira; Yamaguchi, Junji

    2009-11-01

    Plants have evolved intricate mechanisms to respond and adapt to a wide variety of biotic and abiotic stresses in their environment. The Arabidopsis DEAR1 (DREB and EAR motif protein 1; At3g50260) gene encodes a protein containing significant homology to the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) domain and the EAR (ethylene response factor-associated amphiphilic repression) motif. We show here that DEAR1 mRNA accumulates in response to both pathogen infection and cold treatment. Transgenic Arabidopsis overexpressing DEAR1 (DEAR1ox) showed a dwarf phenotype and lesion-like cell death, together with constitutive expression of PR genes and accumulation of salicylic acid. DEAR1ox also showed more limited P. syringae pathogen growth compared to wild-type, consistent with an activated defense phenotype. In addition, transient expression experiments revealed that the DEAR1 protein represses DRE/CRT (dehydration-responsive element/C-repeat)-dependent transcription, which is regulated by low temperature. Furthermore, the induction of DREB1/CBF family genes by cold treatment was suppressed in DEAR1ox, leading to a reduction in freezing tolerance. These results suggest that DEAR1 has an upstream regulatory role in mediating crosstalk between signaling pathways for biotic and abiotic stress responses.

  6. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice.

    PubMed

    Lu, Jing; Ju, Hongping; Zhou, Guoxin; Zhu, Chuanshu; Erb, Matthias; Wang, Xiaopeng; Wang, Peng; Lou, Yonggen

    2011-11-01

    Ethylene responsive factors (ERFs) are a large family of plant-specific transcription factors that are involved in the regulation of plant development and stress responses. However, little to nothing is known about their role in herbivore-induced defense. We discovered a nucleus-localized ERF gene in rice (Oryza sativa), OsERF3, that was rapidly up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis. Antisense and over-expression of OsERF3 revealed that it positively affects transcript levels of two mitogen-activated protein kinases (MAPKs) and two WRKY genes as well as concentrations of jasmonate (JA), salicylate (SA) and the activity of trypsin protease inhibitors (TrypPIs). OsERF3 was also found to mediate the resistance of rice to SSB. On the other hand, OsERF3 was slightly suppressed by the rice brown planthopper (BPH) Nilaparvata lugens (Stål) and increased susceptibility to this piercing sucking insect, possibly by suppressing H(2)O(2) biosynthesis. We propose that OsERF3 affects early components of herbivore-induced defense responses by suppressing MAPK repressors and modulating JA, SA, ethylene and H(2)O(2) pathways as well as plant resistance. Our results also illustrate that OsERF3 acts as a central switch that gears the plant's metabolism towards an appropriate response to chewing or piercing/sucking insects. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  7. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    PubMed Central

    Runyon, Justin B; Mescher, Mark C

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens—notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)—also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across kingdoms. PMID:20495380

  8. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens.

    PubMed

    Runyon, Justin B; Mescher, Mark C; De Moraes, Consuelo M

    2010-08-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling, and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens--notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)--also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across Kingdoms.

  9. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants.

    PubMed

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-06-29

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the Delta CEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effects on bacterial virulence in their host plants by unknown mechanisms. We found that the loss of virulence in Delta CEL and dspA/E mutants was linked to their inability to suppress cell wall-based defenses and to cause normal disease necrosis in Arabidopsis and apple host plants. The Delta CEL mutant activated SA-dependent callose deposition in wild-type Arabidopsis but failed to elicit high levels of callose-associated defense in Arabidopsis plants blocked in SA accumulation or synthesis. This mutant also multiplied more aggressively in SA-deficient plants than in wild-type plants. The hopPtoM and avrE genes in the CEL of P. syringae were found to encode suppressors of this SA-dependent basal defense. The widespread conservation of the HopPtoM and AvrE families of effectors in various bacteria suggests that suppression of SA-dependent basal immunity and promotion of host cell death are important virulence strategies for bacterial infection of plants.

  10. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants.

    PubMed

    Okada, Kazunori; Abe, Hiroshi; Arimura, Gen-ichiro

    2015-01-01

    Jasmonic acid (JA) and its derivatives (jasmonates, JAs) are phytohormones with essential roles in plant defense against pathogenesis and herbivorous arthropods. Both the up- and down-regulation of defense responses are dependent on signaling pathways mediated by JAs as well as other stress hormones (e.g. salicylic acid), generally those involving the transcriptional and post-transcriptional regulation of transcription factors via protein modification and epigenetic regulation. In addition to the typical model plant Arabidopsis (a dicotyledon), advances in genetics research have made rice a model monocot in which innovative pest control traits can be introduced and whose JA signaling pathway can be studied. In this review, we introduce the dynamic functions of JAs in plant defense strategy using defensive substances (e.g. indole alkaloids and terpenoid phytoalexins) and airborne signals (e.g. green leaf volatiles and volatile terpenes) in response to biotrophic and necrotrophic pathogens as well as above-ground and below-ground herbivores. We then discuss the important issue of how the mutualism of herbivorous arthropods with viruses or bacteria can cause cross-talk between JA and other phytohormones to counter the defense systems. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Suppression or knockout of SaF/SaM overcomes the Sa-mediated hybrid male sterility in rice.

    PubMed

    Xie, Yongyao; Niu, Baixiao; Long, Yunming; Li, Gousi; Tang, Jintao; Zhang, Yaling; Ren, Ding; Liu, Yao-Guang; Chen, Letian

    2017-09-01

    Hybrids between the indica and japonica subspecies of rice (Oryza sativa) are usually sterile, which hinders utilization of heterosis in the inter-subspecific hybrid breeding. The complex locus Sa comprises two adjacently located genes, SaF and SaM, which interact to cause abortion of pollen grains carrying the japonica allele in japonica-indica hybrids. Here we showed that silencing of SaF or SaM by RNA interference restored male fertility in indica-japonica hybrids with heterozygous Sa. We further used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing to knockout the SaF and SaM alleles, respectively, of an indica rice line to create hybrid-compatible lines. The resultant artificial neutral alleles did not affect pollen viability and other agricultural traits, but did break down the reproductive barrier in the hybrids. We found that some rice lines have natural neutral allele Sa-n, which was compatible with the typical japonica or indica Sa alleles in hybrids. Our results demonstrate that SaF and SaM are required for hybrid male sterility, but are not essential for pollen development. This study provides effective approaches for the generation of hybrid-compatible lines by knocking out the Sa locus or using the natural Sa-n allele to overcome hybrid male sterility in rice breeding. © 2017 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc. © 2017 Institute of Botany, Chinese Academy of Sciences.

  12. Protease inhibitor (PI) mediated defense in leaves and flowers of pigeonpea (protease inhibitor mediated defense in pigeonpea).

    PubMed

    Padul, Manohar V; Tak, Rajesh D; Kachole, Manvendra S

    2012-03-01

    More than 200 insect pests are found growing on pigeonpea. Insects lay eggs, attack and feed on leaves, flowers and developing pods. Plants have developed elaborate defenses against these insect pests. The present work evaluates protease inhibitor (PI) based defense of pigeonpea in leaves and flowers. PIs in the extracts of these tender tissues were detected by using gel X-ray film contact print method. Up to three PIs (PI-3, PI-4 and PI-5) were detected in these tissues as against nine (PI-1-PI-9) in mature seeds. PI-3 is the major component of these tissues. Mechanical wounding, insect chewing, fungal pathogenesis and application of salicylic acid induced PIs in pigeonpea in these tissues. Induction was found to be local as well as systemic but local response was stronger than systemic response. During both local and systemic induction, PI-3 appeared first. In spite of the presence and induction of PIs in these tender tissues and seeds farmers continue to suffer yield loses. This is due to the weak expression of PIs. However the ability of the plant to respond to external stimuli by producing defense proteins does not seem to be compromised. This study therefore indicates that PIs are components of both constitutive and inducible defense and provide a ground for designing stronger inducible defense (PIs or other insect toxin based) in pigeonpea. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  13. Plant growth regulator-mediated anti-herbivore responses of cabbage (Brassica oleracea) against cabbage looper Trichoplusia ni Hübner (Lepidoptera: Noctuidae).

    PubMed

    Scott, Ian M; Samara, R; Renaud, J B; Sumarah, M W

    2017-09-01

    Plant elicitors can be biological or chemical-derived stimulators of jasmonic acid (JA) or salicylic acid (SA) pathways shown to prime the defenses in many crops. Examples of chemical elicitors of the JA and SA pathways include methyl-jasmonate and 1,2,3-benzothiadiazole-7-carbothioate (BTH or the commercial plant activator Actigard 50WG, respectively). The use of specific elicitors has been observed to affect the normal interaction between JA and SA pathways causing one to be upregulated and the other to be suppressed, often, but not always, at the expense of the plant's herbivore or pathogen defenses. The objective of this study was to determine whether insects feeding on Brassica crops might be negatively affected by SA inducible defenses combined with an inhibitor of detoxification and anti-oxidant enzymes that regulate the insect response to the plant's defenses. The relative growth rate of cabbage looper Trichoplusia ni Hübner (Lepidoptera: Noctuidae) fed induced cabbage Brassica oleraceae leaves with the inhibitor, quercetin, was significantly less than those fed control cabbage with and without the inhibitor. The reduced growth was related to the reduction of glutathione S-transferases (GSTs) by the combination of quercetin and increased levels of indole glucosinolates in the cabbage treated with BTH at 2.6× the recommended application rate. These findings may offer a novel combination of elicitor and synergist that can provide protection from plant disease and herbivores in cabbage and other Brassica crops. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  14. Regulation of water, salinity, and cold stress responses by salicylic acid

    PubMed Central

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant–pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed. PMID:24478784

  15. Parasitism by Cuscuta pentagona Attenuates Host Plant Defenses against Insect Herbivores1

    PubMed Central

    Runyon, Justin B.; Mescher, Mark C.; De Moraes, Consuelo M.

    2008-01-01

    Considerable research has examined plant responses to concurrent attack by herbivores and pathogens, but the effects of attack by parasitic plants, another important class of plant-feeding organisms, on plant defenses against other enemies has not been explored. We investigated how attack by the parasitic plant Cuscuta pentagona impacted tomato (Solanum lycopersicum) defenses against the chewing insect beet armyworm (Spodoptera exigua; BAW). In response to insect feeding, C. pentagona-infested (parasitized) tomato plants produced only one-third of the antiherbivore phytohormone jasmonic acid (JA) produced by unparasitized plants. Similarly, parasitized tomato, in contrast to unparasitized plants, failed to emit herbivore-induced volatiles after 3 d of BAW feeding. Although parasitism impaired antiherbivore defenses, BAW growth was slower on parasitized tomato leaves. Vines of C. pentagona did not translocate JA from BAW-infested plants: amounts of JA in parasite vines grown on caterpillar-fed and control plants were similar. Parasitized plants generally contained more salicylic acid (SA), which can inhibit JA in some systems. Parasitized mutant (NahG) tomato plants deficient in SA produced more JA in response to insect feeding than parasitized wild-type plants, further suggesting cross talk between the SA and JA defense signaling pathways. However, JA induction by BAW was still reduced in parasitized compared to unparasitized NahG, implying that other factors must be involved. We found that parasitized plants were capable of producing induced volatiles when experimentally treated with JA, indicating that resource depletion by the parasite does not fully explain the observed attenuation of volatile response to herbivore feeding. Collectively, these findings show that parasitic plants can have important consequences for host plant defense against herbivores. PMID:18165323

  16. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling.

    PubMed

    Wang, Zheng; Tan, Xiaoli; Zhang, Zhiyan; Gu, Shoulai; Li, Guanying; Shi, Haifeng

    2012-03-01

    Signaling pathways mediated by salicylic acid (SA) and jasmonic acid (JA) are widely studied in various host-pathogen interactions. For oilseed rape (Brassica napus)-Sclerotinia sclerotiorum interaction, little information of the two signaling molecules has been described in detail. In this study, we showed that the level of SA and JA in B. napus leaves was increased with a distinct temporal profile, respectively, after S. sclerotiorum infection. The application of SA or methyl jasmonate enhanced the resistance to the pathogen. Furthermore, a set of SA and JA signaling marker genes were identified from B. napus and were used to monitor the signaling responses to S. sclerotiorum infection by examining the temporal expression profiles of these marker genes. The SA signaling was activated within 12h post inoculation (hpi) followed by the JA signaling which was activated around 24 hpi. In addition, SA-JA crosstalk genes were activated during this process. These results suggested that defense against S. sclerotiorum in oilseed rape is associated with a sequential activation of SA signaling and JA signaling, which provide important clues for designing strategies to curb diseases caused by S. sclerotioru. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato

    PubMed Central

    Baebler, Š.; Witek, K.; Gruden, K.; Hennig, J.

    2014-01-01

    The purpose of the study was to investigate the role of salicylic acid (SA) signalling in Ny-1-mediated hypersensitive resistance (HR) of potato (Solanum tuberosum L.) to Potato virus Y (PVY). The responses of the Ny-1 allele in the Rywal potato cultivar and transgenic NahG-Rywal potato plants that do not accumulate SA were characterized at the cytological, biochemical, transcriptome, and proteome levels. Analysis of noninoculated and inoculated leaves revealed that HR lesions started to develop from 3 d post inoculation and completely restricted the virus spread. At the cytological level, features of programmed cell death in combination with reactive oxygen species burst were observed. In response to PVY infection, SA was synthesized de novo. The lack of SA accumulation in the NahG plants led to the disease phenotype due to unrestricted viral spreading. Grafting experiments show that SA has a critical role in the inhibition of PVY spreading in parenchymal tissue, but not in vascular veins. The whole transcriptome analysis confirmed the central role of SA in orchestrating Ny-1-mediated responses and showed that the absence of SA leads to significant changes at the transcriptome level, including a delay in activation of expression of genes known to participate in defence responses. Moreover, perturbations in the expression of hormonal signalling genes were detected, shown as a switch from SA to jasmonic acid/ethylene signalling. Viral multiplication in the NahG plants was accompanied by downregulation of photosynthesis genes and activation of multiple energy-producing pathways. PMID:24420577

  18. Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato.

    PubMed

    Baebler, Š; Witek, K; Petek, M; Stare, K; Tušek-Žnidarič, M; Pompe-Novak, M; Renaut, J; Szajko, K; Strzelczyk-Żyta, D; Marczewski, W; Morgiewicz, K; Gruden, K; Hennig, J

    2014-03-01

    The purpose of the study was to investigate the role of salicylic acid (SA) signalling in Ny-1-mediated hypersensitive resistance (HR) of potato (Solanum tuberosum L.) to Potato virus Y (PVY). The responses of the Ny-1 allele in the Rywal potato cultivar and transgenic NahG-Rywal potato plants that do not accumulate SA were characterized at the cytological, biochemical, transcriptome, and proteome levels. Analysis of noninoculated and inoculated leaves revealed that HR lesions started to develop from 3 d post inoculation and completely restricted the virus spread. At the cytological level, features of programmed cell death in combination with reactive oxygen species burst were observed. In response to PVY infection, SA was synthesized de novo. The lack of SA accumulation in the NahG plants led to the disease phenotype due to unrestricted viral spreading. Grafting experiments show that SA has a critical role in the inhibition of PVY spreading in parenchymal tissue, but not in vascular veins. The whole transcriptome analysis confirmed the central role of SA in orchestrating Ny-1-mediated responses and showed that the absence of SA leads to significant changes at the transcriptome level, including a delay in activation of expression of genes known to participate in defence responses. Moreover, perturbations in the expression of hormonal signalling genes were detected, shown as a switch from SA to jasmonic acid/ethylene signalling. Viral multiplication in the NahG plants was accompanied by downregulation of photosynthesis genes and activation of multiple energy-producing pathways.

  19. Positive and negative roles for soybean MPK6 in regulating defense responses.

    PubMed

    Liu, Jian-Zhong; Braun, Edward; Qiu, Wen-Li; Shi, Ya-Fei; Marcelino-Guimarães, Francismar C; Navarre, Duroy; Hill, John H; Whitham, Steven A

    2014-08-01

    It has been well established that MPK6 is a positive regulator of defense responses in model plants such as Arabidopsis and tobacco. However, the functional importance of soybean MPK6 in disease resistance has not been investigated. Here, we showed that silencing of GmMPK6 in soybean using virus-induced gene silencing mediated by Bean pod mottle virus (BPMV) caused stunted growth and spontaneous cell death on the leaves, a typical phenotype of activated defense responses. Consistent with this phenotype, expression of pathogenesis-related (PR) genes and the conjugated form of salicylic acid were significantly increased in GmMPK6-silenced plants. As expected, GmMPK6-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants, indicating a negative role of GmMPK6 in disease resistance. Interestingly, overexpression of GmMPK6, either transiently in Nicotiana benthamiana or stably in Arabidopsis, resulted in hypersensitive response (HR)-like cell death. The HR-like cell death was accompanied by increased PR gene expression, suggesting that GmMPK6, like its counterpart in other plant species, also plays a positive role in cell death induction and defense response. Using bimolecular fluorescence complementation analysis, we determined that GmMKK4 might function upstream of GmMPK6 and GmMKK4 could interact with GmMPK6 independent of its phosphorylation status. Taken together, our results indicate that GmMPK6 functions as both repressor and activator in defense responses of soybean.

  20. Pain and the defense response: structural equation modeling reveals a coordinated psychophysiological response to increasing painful stimulation.

    PubMed

    Donaldson, Gary W; Chapman, C Richard; Nakamura, Yoshi; Bradshaw, David H; Jacobson, Robert C; Chapman, Christopher N

    2003-03-01

    The defense response theory implies that individuals should respond to increasing levels of painful stimulation with correlated increases in affectively mediated psychophysiological responses. This paper employs structural equation modeling to infer the latent processes responsible for correlated growth in the pain report, evoked potential amplitudes, pupil dilation, and skin conductance of 92 normal volunteers who experienced 144 trials of three levels of increasingly painful electrical stimulation. The analysis assumed a two-level model of latent growth as a function of stimulus level. The first level of analysis formulated a nonlinear growth model for each response measure, and allowed intercorrelations among the parameters of these models across individuals. The second level of analysis posited latent process factors to account for these intercorrelations. The best-fitting parsimonious model suggests that two latent processes account for the correlations. One of these latent factors, the activation threshold, determines the initial threshold response, while the other, the response gradient, indicates the magnitude of the coherent increase in response with stimulus level. Collectively, these two second-order factors define the defense response, a broad construct comprising both subjective pain evaluation and physiological mechanisms.

  1. Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi.

    PubMed

    Berr, Alexandre; McCallum, Emily J; Alioua, Abdelmalek; Heintz, Dimitri; Heitz, Thierry; Shen, Wen-Hui

    2010-11-01

    As sessile organisms, plants have to endure a wide variety of biotic and abiotic stresses, and accordingly they have evolved intricate and rapidly inducible defense strategies associated with the activation of a battery of genes. Among other mechanisms, changes in chromatin structure are thought to provide a flexible, global, and stable means for the regulation of gene transcription. In support of this idea, we demonstrate here that the Arabidopsis (Arabidopsis thaliana) histone methyltransferase SET DOMAIN GROUP8 (SDG8) plays a crucial role in plant defense against fungal pathogens by regulating a subset of genes within the jasmonic acid (JA) and/or ethylene signaling pathway. We show that the loss-of-function mutant sdg8-1 displays reduced resistance to the necrotrophic fungal pathogens Alternaria brassicicola and Botrytis cinerea. While levels of JA, a primary phytohormone involved in plant defense, and camalexin, a major phytoalexin against fungal pathogens, remain unchanged or even above normal in sdg8-1, induction of several defense genes within the JA/ethylene signaling pathway is severely compromised in response to fungal infection or JA treatment in mutant plants. Both downstream genes and, remarkably, also upstream mitogen-activated protein kinase kinase genes MKK3 and MKK5 are misregulated in sdg8-1. Accordingly, chromatin immunoprecipitation analysis shows that sdg8-1 impairs dynamic changes of histone H3 lysine 36 methylation at defense marker genes as well as at MKK3 and MKK5, which normally occurs upon infection with fungal pathogens or methyl JA treatment in wild-type plants. Our data indicate that SDG8-mediated histone H3 lysine 36 methylation may serve as a memory of permissive transcription for a subset of defense genes, allowing rapid establishment of transcriptional induction.

  2. MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection.

    PubMed

    Gupta, Om Prakash; Permar, Vipin; Koundal, Vikas; Singh, Uday Dhari; Praveen, Shelly

    2012-02-01

    Plants have evolved diverse mechanism to recognize pathogen attack and triggers defense responses. These defense responses alter host cellular function regulated by endogenous, small, non-coding miRNAs. To understand the mechanism of miRNAs regulated cellular functions during stem rust infection in wheat, we investigated eight different miRNAs viz. miR159, miR164, miR167, miR171, miR444, miR408, miR1129 and miR1138, involved in three different independent cellular defense response to infection. The investigation reveals that at the initiation of disease, accumulation of miRNAs might be playing a key role in hypersensitive response (HR) from host, which diminishes at the maturation stage. This suggests a possible host-fungal synergistic relation leading to susceptibility. Differential expression of these miRNAs in presence and absence of R gene provides a probable explanation of miRNA regulated R gene mediated independent pathways.

  3. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants

    PubMed Central

    Vera, Jeannette; Castro, Jorge; Gonzalez, Alberto; Moenne, Alejandra

    2011-01-01

    Plants interact with the environment by sensing “non-self” molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae) corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA), jasmonic acid (JA) and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i) Pathogenesis-Related (PR) proteins with antifungal and antibacterial activities; (ii) defense enzymes such as pheylalanine ammonia lyase (PAL) and lipoxygenase (LOX) which determine accumulation of phenylpropanoid compounds (PPCs) and oxylipins with antiviral, antifugal and antibacterial activities and iii) enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants. PMID:22363237

  4. Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants.

    PubMed

    Vera, Jeannette; Castro, Jorge; Gonzalez, Alberto; Moenne, Alejandra

    2011-12-01

    Plants interact with the environment by sensing "non-self" molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae) corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA), jasmonic acid (JA) and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i) Pathogenesis-Related (PR) proteins with antifungal and antibacterial activities; (ii) defense enzymes such as pheylalanine ammonia lyase (PAL) and lipoxygenase (LOX) which determine accumulation of phenylpropanoid compounds (PPCs) and oxylipins with antiviral, antifugal and antibacterial activities and iii) enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants.

  5. Parameters affecting plant defense pathway mediated recruitment of entomopathogenic nematodes

    USDA-ARS?s Scientific Manuscript database

    Entomopathogenic nematodes are natural enemies and effective biological control agents of subterranean insect herbivores. Interactions between her bivores, plants, and entomopathogenic nematodes are mediated by plant defense pathways that can induce release of volatiles that recruit entomopathogenic...

  6. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex.

    PubMed

    Miyakawa, Hitoshi; Sato, Masanao; Colbourne, John K; Iguchi, Taisen

    2015-01-01

    Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, "neckteeth," in response to chemical cues or signals, referred to as "kairomones," in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH), which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms underlying the recognition

  7. Ionotropic Glutamate Receptors Mediate Inducible Defense in the Water Flea Daphnia pulex

    PubMed Central

    Miyakawa, Hitoshi; Sato, Masanao; Colbourne, John K.; Iguchi, Taisen

    2015-01-01

    Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, “neckteeth,” in response to chemical cues or signals, referred to as “kairomones,” in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH), which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms underlying the

  8. Extracellular Alkalinization as a Defense Response in Potato Cells.

    PubMed

    Moroz, Natalia; Fritch, Karen R; Marcec, Matthew J; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists ( Phytophthora infestans and Spongospora subterranea ) and fungi ( Verticillium dahliae and Colletotrichum coccodes ). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes.

  9. The relationship between the plant-encoded RNA-dependent RNA polymerase 1 and alternative oxidase in tomato basal defense against Tobacco mosaic virus.

    PubMed

    Liao, Yang-Wen-Ke; Liu, Ya-Ru; Liang, Jia-Yang; Wang, Wen-Ping; Zhou, Jie; Xia, Xiao-Jian; Zhou, Yan-Hong; Yu, Jing-Quan; Shi, Kai

    2015-03-01

    Salicylic acid (SA) plays a critical role in plant defense against pathogen attack. The SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense, which is pathogenesis-related protein-independent but involves an RNA-dependent RNA polymerase 1 (RDR1)-mediated RNA silencing mechanism and/or an alternative oxidase (AOX)-associated defense pathway. However, the relationship between these two viral defense-related pathways remains unclear. In this study, Tobacco mosaic virus (TMV) inoculation onto Solanum lycopersicum (tomato) leaves induced a rapid induction of the SlAOX1a transcript level as well as the total and CN-resistant respiration at 0.5 dpi, followed by an increase in SlRDR1 gene expression at 1 dpi in the upper uninoculated leaves. Silencing SlRDR1 using virus-induced gene silencing system significantly reduced SlRDR1 expression and tomato defense against TMV but had no evident effect on SlAOX1a transcription. Conversely, silencing SlAOX1a not only effectively reduced the AOX1a transcript level, but also blocked the TMV-induced SlRDR1 expression and decreased the basal defense against TMV. Furthermore, the application of an exogenous AOX activator on empty vector-silenced control plants greatly induced the accumulation of SlRDR1 and SlAOX1a transcript and reduced TMV viral RNA accumulation, but failed to have such effects on SlRDR1-silenced plants. Moreover, RDR1-overexpressed transgenic Nicotiana benthamiana plants enhanced defense against TMV than the empty vector-transformed plants, but these effects were not affected by the exogenous AOX activator or inhibitor. These results indicate that RDR1 is involved in the AOX-mediated defense pathway against TMV infection and plays a crucial role in enhancing RNA silencing to limit virus systemic spread.

  10. Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway.

    PubMed

    Vivancos, Julien; Labbé, Caroline; Menzies, James G; Bélanger, Richard R

    2015-08-01

    On absorption by plants, silicon (Si) offers protection against many fungal pathogens, including powdery mildews. The mechanisms by which Si exerts its prophylactic role remain enigmatic, although a prevailing hypothesis suggests that Si positively influences priming. Attempts to decipher Si properties have been limited to plants able to absorb Si, which excludes the model plant Arabidopsis because it lacks Si influx transporters. In this work, we were able to engineer Arabidopsis plants with an Si transporter from wheat (TaLsi1) and to exploit mutants (pad4 and sid2) deficient in salicylic acid (SA)-dependent defence responses to study their phenotypic response and changes in defence expression against Golovinomyces cichoracearum (Gc) following Si treatment. Our results showed that TaLsi1 plants contained significantly more Si and were significantly more resistant to Gc infection than control plants when treated with Si, the first such demonstration in a plant transformed with a heterologous Si transporter. The resistant plants accumulated higher levels of SA and expressed higher levels of transcripts encoding defence genes, thus suggesting a role for Si in the process. However, TaLsi1 pad4 and TaLsi1 sid2 plants were also more resistant to Gc than were pad4 and sid2 plants following Si treatment. Analysis of the resistant phenotypes revealed a significantly reduced production of SA and expression of defence genes comparable with susceptible controls. These results indicate that Si contributes to Arabidopsis defence priming following pathogen infection, but highlight that Si will confer protection even when priming is altered. We conclude that Si-mediated protection involves mechanisms other than SA-dependent defence responses. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  11. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens

    PubMed Central

    Ponce de León, Inés; Oliver, Juan Pablo; Castro, Alexandra; Gaggero, Carina; Bentancor, Marcel; Vidal, Sabina

    2007-01-01

    type of cell death in vascular plants, our results suggest that E.c. carotovora CFSCC1 containing HrpN and B. cinerea could also induce this type of cell death in Physcomitrella. Our studies thus establish Physcomitrella as an experimental host for investigation of plant-pathogen interactions and B. cinerea and elicitors of E.c. carotovora as promising tools for understanding the mechanisms involved in defense responses and in pathogen-mediated cell death in this simple land plant. PMID:17922917

  12. Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana.

    PubMed

    Kovacs, Izabella; Durner, Jörg; Lindermayr, Christian

    2015-11-01

    Nitric oxide (NO) is a ubiquitous signaling molecule involved in a wide range of physiological and pathophysiological processes in animals and plants. Although its significant influence on plant immunity is well known, information about the exact regulatory mechanisms and signaling pathways involved in the defense response to pathogens is still limited. We used genetic, biochemical, pharmacological approaches in combination with infection experiments to investigate the NO-triggered salicylic acid (SA)-dependent defense response in Arabidopsis thaliana. The NO donor S-nitrosoglutathione (GSNO) promoted the nuclear accumulation of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) protein accompanied by an elevated SA concentration and the activation of pathogenesis-related (PR) genes, leading to induced resistance of A. thaliana against Pseudomonas infection. Moreover, NO induced a rapid change in the glutathione status, resulting in increased concentrations of glutathione, which is required for SA accumulation and activation of the NPR1-dependent defense response. Our data imply crosstalk between NO and glutathione, which is integral to the NPR1-dependent defense signaling pathway, and further demonstrate that glutathione is not only an important cellular redox buffer but also a signaling molecule in the plant defense response. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Defensive behaviors of the Oriental armyworm Mythimna separata in response to different parasitoid species (Hymenoptera: Braconidae).

    PubMed

    Zhou, Jincheng; Meng, Ling; Li, Baoping

    2017-01-01

    This study examined defensive behaviors of Mythimna separata (Lepidoptera: Noctuidae) larvae varying in body size in response to two parasitoids varying in oviposition behavior; Microplitis mediator females sting the host with the ovipositor after climbing onto it while Meteorus pulchricornis females make the sting by standing at a close distance from the host. Mythimna separata larvae exhibited evasive (escaping and dropping) and aggressive (thrashing) behaviors to defend themselves against parasitoids M. mediator and M. pulchricornis . Escaping and dropping did not change in probability with host body size or parasitoid species. Thrashing did not vary in frequency with host body size, yet performed more frequently in response to M. mediator than to M. pulchricornis . Parasitoid handling time and stinging likelihood varied depending not only on host body size but also on parasitoid species. Parasitoid handling time increased with host thrashing frequency, similar in slope for both parasitoids yet on a higher intercept for M. mediator than for M. pulchricornis . Handling time decreased with host size for M. pulchricornis but not for M. mediator . The likelihood of realizing an ovipositor sting decreased with thrashing frequency of both small and large hosts for M. pulchricornis , while this was true only for large hosts for M. mediator . Our results suggest that the thrashing behavior of M. separata larvae has a defensive effect on parasitism, depending on host body size and parasitoid species with different oviposition behaviors.

  14. Defensive behaviors of the Oriental armyworm Mythimna separata in response to different parasitoid species (Hymenoptera: Braconidae)

    PubMed Central

    Zhou, Jincheng; Meng, Ling

    2017-01-01

    This study examined defensive behaviors of Mythimna separata (Lepidoptera: Noctuidae) larvae varying in body size in response to two parasitoids varying in oviposition behavior; Microplitis mediator females sting the host with the ovipositor after climbing onto it while Meteorus pulchricornis females make the sting by standing at a close distance from the host. Mythimna separata larvae exhibited evasive (escaping and dropping) and aggressive (thrashing) behaviors to defend themselves against parasitoids M. mediator and M. pulchricornis. Escaping and dropping did not change in probability with host body size or parasitoid species. Thrashing did not vary in frequency with host body size, yet performed more frequently in response to M. mediator than to M. pulchricornis. Parasitoid handling time and stinging likelihood varied depending not only on host body size but also on parasitoid species. Parasitoid handling time increased with host thrashing frequency, similar in slope for both parasitoids yet on a higher intercept for M. mediator than for M. pulchricornis. Handling time decreased with host size for M. pulchricornis but not for M. mediator. The likelihood of realizing an ovipositor sting decreased with thrashing frequency of both small and large hosts for M. pulchricornis, while this was true only for large hosts for M. mediator. Our results suggest that the thrashing behavior of M. separata larvae has a defensive effect on parasitism, depending on host body size and parasitoid species with different oviposition behaviors. PMID:28852593

  15. Benzoylsalicylic acid derivatives as defense activators in tobacco and Arabidopsis.

    PubMed

    Kamatham, Samuel; Pallu, Reddanna; Pasupulati, Anil Kumar; Singh, Surya Satyanarayana; Gudipalli, Padmaja

    2017-11-01

    Systemic acquired resistance (SAR) is a long lasting inducible whole plant immunity often induced by either pathogens or chemical elicitors. Salicylic acid (SA) is a known SAR signal against a broad spectrum of pathogens in plants. In a recent study, we have reported that benzoylsalicylic acid (BzSA) is a SAR inducer in tobacco and Arabidopsis plants. Here, we have synthesized BzSA derivatives using SA and benzoyl chlorides of various moieties as substrates. The chemical structures of BzSA derivatives were elucidated using Infrared spectroscopy (IR), Nuclear magnetic spectroscopy (NMR) and High-resolution mass spectrometer (HRMS) analysis. The bioefficacy of BzSA derivatives in inducing defense response against tobacco mosaic virus (TMV) was investigated in tobacco and SA abolished transgenic NahG Arabidopsis plants. Interestingly, pre-treatment of local leaves of tobacco with BzSA derivatives enhanced the expression of SAR genes such as NPR1 [Non-expressor of pathogenesis-related (PR) genes 1], PR and other defense marker genes (HSR203, SIPK, WIPK) in systemic leaves. Pre-treatment of BzSA derivatives reduced the spread of TMV infection to uninfected areas by restricting lesion number and diameter both in local and systemic leaves of tobacco in a dose-dependent manner. Furthermore, pre-treatment of BzSA derivatives in local leaves of SA deficient Arabidopsis NahG plants induced SAR through AtPR1 and AtPR5 gene expression and reduced leaf necrosis and curling symptoms in systemic leaves as compared to BzSA. These results suggest that BzSA derivatives are potent SAR inducers against TMV in tobacco and Arabidopsis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Resistance to Hemi-Biotrophic F. graminearum Infection Is Associated with Coordinated and Ordered Expression of Diverse Defense Signaling Pathways

    PubMed Central

    Yi, Hongying; Yang, Liming; Kong, Zhongxin; Zhang, Lixia; Xue, Shulin; Jia, Haiyan; Ma, Zhengqiang

    2011-01-01

    Fusarium species cause serious diseases in cereal staple food crops such as wheat and maize. Currently, the mechanisms underlying resistance to Fusarium-caused diseases are still largely unknown. In the present study, we employed a combined proteomic and transcriptomic approach to investigate wheat genes responding to F. graminearum infection that causes Fusarium head blight (FHB). We found a total of 163 genes and 37 proteins that were induced by infection. These genes and proteins were associated with signaling pathways mediated by salicylic acid (SA), jasmonic acid (JA), ethylene (ET), calcium ions, phosphatidic acid (PA), as well as with reactive oxygen species (ROS) production and scavenging, antimicrobial compound synthesis, detoxification, and cell wall fortification. We compared the time-course expression profiles between FHB-resistant Wangshuibai plants and susceptible Meh0106 mutant plants of a selected set of genes that are critical to the plants' resistance and defense reactions. A biphasic phenomenon was observed during the first 24 h after inoculation (hai) in the resistant plants. The SA and Ca2+ signaling pathways were activated within 6 hai followed by the JA mediated defense signaling activated around 12 hai. ET signaling was activated between these two phases. Genes for PA and ROS synthesis were induced during the SA and JA phases, respectively. The delayed activation of the SA defense pathway in the mutant was associated with its susceptibility. After F. graminearum infection, the endogenous contents of SA and JA in Wangshuibai and the mutant changed in a manner similar to the investigated genes corresponding to the individual pathways. A few genes for resistance-related cell modification and phytoalexin production were also identified. This study provided important clues for designing strategies to curb diseases caused by Fusarium. PMID:21533105

  17. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    PubMed Central

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  18. Rutin-Mediated Priming of Plant Resistance to Three Bacterial Pathogens Initiating the Early SA Signal Pathway

    PubMed Central

    Li, Yang; Wang, Yingzi; Li, Ming; Wang, Yong; Ding, Xinhua; Chu, Zhaohui

    2016-01-01

    Flavonoids are ubiquitous in the plant kingdom and have many diverse functions, including UV protection, auxin transport inhibition, allelopathy, flower coloring and insect resistance. Here we show that rutin, a proud member of the flavonoid family, could be functional as an activator to improve plant disease resistances. Three plant species pretreated with 2 mM rutin were found to enhance resistance to Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Pseudomonas syringae pv. tomato strain DC3000 in rice, tobacco and Arabidopsis thaliana respectively. While they were normally propagated on the cultural medium supplemented with 2 mM rutin for those pathogenic bacteria. The enhanced resistance was associated with primed expression of several pathogenesis-related genes. We also demonstrated that the rutin-mediated priming resistance was attenuated in npr1, eds1, eds5, pad4-1, ndr1 mutants, and NahG transgenic Arabidopsis plant, while not in either snc1-11, ein2-5 or jar1 mutants. We concluded that the rutin-priming defense signal was modulated by the salicylic acid (SA)-dependent pathway from an early stage upstream of NDR1 and EDS1. PMID:26751786

  19. Chaoborus and gasterosteus anti-predator responses in Daphnia pulex are mediated by independent cholinergic and gabaergic neuronal signals.

    PubMed

    Weiss, Linda C; Kruppert, Sebastian; Laforsch, Christian; Tollrian, Ralph

    2012-01-01

    Many prey species evolved inducible defense strategies that protect effectively against predation threats. Especially the crustacean Daphnia emerged as a model system for studying the ecology and evolution of inducible defenses. Daphnia pulex e.g. shows different phenotypic adaptations against vertebrate and invertebrate predators. In response to the invertebrate phantom midge larvae Chaoborus (Diptera) D. pulex develops defensive morphological defenses (neckteeth). Cues originating from predatory fish result in life history changes in which resources are allocated from somatic growth to reproduction. While there are hints that responses against Chaoborus cues are transmitted involving cholinergic neuronal pathways, nothing is known about the neurophysiology underlying the transmission of fish related cues. We investigated the neurophysiological basis underlying the activation of inducible defenses in D. pulex using induction assays with the invertebrate predator Chaoborus and the three-spined stickleback Gasterosteus aculeatus. Predator-specific cues were combined with neuro-effective substances that stimulated or inhibited the cholinergic and gabaergic nervous system. We show that cholinergic-dependent pathways are involved in the perception and transmission of Chaoborus cues, while GABA was not involved. Thus, the cholinergic nervous system independently mediates the development of morphological defenses in response to Chaoborus cues. In contrast, only the inhibitory effect of GABA significantly influence fish-induced life history changes, while the application of cholinergic stimulants had no effect in combination with fish related cues. Our results show that cholinergic stimulation mediates signal transmission of Chaoborus cues leading to morphological defenses. Fish cues, which are responsible for predator-specific life history adaptations involve gabaergic control. Our study shows that both pathways are independent and thus potentially allow for adjustment

  20. Civil Defense, U. S. A.: A Programmed Orientation to Civil Defense. Unit 5. Governmental Responsibilities for Civil Defense.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Battle Creek, MI.

    A description of the laws and orders that provide necessary legal authorization for civil defense activities is provided. In addition, an outline of the responsibilities of all governments and the role of the private sector in civil defense is presented. Topics discussed include: (1) Legal authority for civil defense, (2) Civil defense…

  1. Being present in the face of existential threat: The role of trait mindfulness in reducing defensive responses to mortality salience.

    PubMed

    Niemiec, Christopher P; Brown, Kirk Warren; Kashdan, Todd B; Cozzolino, Philip J; Breen, William E; Levesque-Bristol, Chantal; Ryan, Richard M

    2010-08-01

    Terror management theory posits that people tend to respond defensively to reminders of death, including worldview defense, self-esteem striving, and suppression of death thoughts. Seven experiments examined whether trait mindfulness-a disposition characterized by receptive attention to present experience-reduced defensive responses to mortality salience (MS). Under MS, less mindful individuals showed higher worldview defense (Studies 1-3) and self-esteem striving (Study 5), yet more mindful individuals did not defend a constellation of values theoretically associated with mindfulness (Study 4). To explain these findings through proximal defense processes, Study 6 showed that more mindful individuals wrote about their death for a longer period of time, which partially mediated the inverse association between trait mindfulness and worldview defense. Study 7 demonstrated that trait mindfulness predicted less suppression of death thoughts immediately following MS. The discussion highlights the relevance of mindfulness to theories that emphasize the nature of conscious processing in understanding responses to threat.

  2. Capsicum annuum homeobox 1 (CaHB1) is a nuclear factor that has roles in plant development, salt tolerance, and pathogen defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sang-Keun; Yoon, Joonseon; Choi, Gyung Ja

    Highlights: •The CaHB1 is a nuclear factor, belonging to HD-Zip proteins. •SA and ET, as signal molecules, modulate CaHB1-mediated responses. •Overexpression of CaHB1 in tomato resulted in a thicker cell wall. •CaHB1-transgenic tomato confers resistance to Phytophthora infestans. •CaHB1 enhanced tolerance to saline stress in tomato. -- Abstract: Homeodomain-leucine zipper (HD-Zip) family proteins are unique to plants, but little is known about their role in defense responses. CaHB1 is a nuclear factor in peppers, belonging to subfamily II of HD-Zip proteins. Here, we determined the role of CaHB1 in the defense response. CaHB1 expression was induced when pepper plants weremore » challenged with Phytophthora capsici, a plant pathogen to which peppers are susceptible, or environmental stresses such as drought and salt stimuli. CaHB1 was also highly expressed in pepper leaves following application of SA, whereas ethephon and MeJA had a moderate effect. To further investigate the function of CaHB1 in plants, we performed gain-of-function study by overexpression of CaHB1 in tomato. CaHB1-transgenic tomatoes showed significant growth enhancement including increased leaf thickness and enlarged cell size (1.8-fold larger than control plants). Microscopic analysis revealed that leaves from CaHB1-transgenic plants had thicker cell walls and cuticle layers than those from controls. Moreover, CaHB1-transgenic plants displayed enhanced resistance against Phytophthora infestans and increased tolerance to salt stress. Additionally, RT-PCR analysis of CaHB1-transgenic tomatoes revealed constitutive up-regulation of multiple genes involved in plant defense and osmotic stress. Therefore, our findings suggest roles for CaHB1 in development, salt stress, and pathogen defense.« less

  3. RNA-Seq identification of candidate defense genes targeted by endophytic Bacillus cereus-mediated induced systemic resistance against Meloidogyne incognita in tomato.

    PubMed

    Hu, Haijing; Wang, Cong; Li, Xia; Tang, Yunyun; Wang, Yufang; Chen, Shuanglin; Yan, Shuzhen

    2018-05-08

    The endophytic bacteria Bacillus cereus BCM2 has shown great potential as a defense against the parasitic nematode Meloidogyne incognita. Here, we studied the endophytic bacteria-mediated plant defense against M. incognita and searched for defense-related candidate genes using RNA-Seq. The induced systemic resistance of BCM2 against M. incognita was tested using the split-root method. Pre-inoculated BCM2 on the inducer side was associated with a dramatic reduction in galls and egg masses at the responder side, but inoculated BCM2 alone did not produce the same effect. In order to investigate which plant defense-related genes are specifically activated by BCM2, four RNA samples from tomato roots were sequenced, and four high quality total clean bases were obtained, ranging from 6.64 to 6.75 Gb, with an average of 21558 total genes. The 34 candidate defense-related genes were identified by pair-wise comparison among libraries, representing the targets for BCM2 priming resistance against M. incognita. Functional characterization revealed that the plant-pathogen interaction pathway (ID: ko04626) was significantly enriched for BCM2-mediated M. incognita resistance. This study demonstrates that B. cereus BCM2 maintains a harmonious host-microbe relationship with tomato, but appeared to prime the plant, resulting in more vigorous defense response toward the infection nematode. This article is protected by copyright. All rights reserved.

  4. Integrated omics analyses of retrograde signaling mutant delineate interrelated stress-response strata.

    PubMed

    Bjornson, Marta; Balcke, Gerd Ulrich; Xiao, Yanmei; de Souza, Amancio; Wang, Jin-Zheng; Zhabinskaya, Dina; Tagkopoulos, Ilias; Tissier, Alain; Dehesh, Katayoon

    2017-07-01

    To maintain homeostasis in the face of intrinsic and extrinsic insults, cells have evolved elaborate quality control networks to resolve damage at multiple levels. Interorganellar communication is a key requirement for this maintenance, however the underlying mechanisms of this communication have remained an enigma. Here we integrate the outcome of transcriptomic, proteomic, and metabolomics analyses of genotypes including ceh1, a mutant with constitutively elevated levels of both the stress-specific plastidial retrograde signaling metabolite methyl-erythritol cyclodiphosphate (MEcPP) and the defense hormone salicylic acid (SA), as well as the high MEcPP but SA deficient genotype ceh1/eds16, along with corresponding controls. Integration of multi-omic analyses enabled us to delineate the function of MEcPP from SA, and expose the compartmentalized role of this retrograde signaling metabolite in induction of distinct but interdependent signaling cascades instrumental in adaptive responses. Specifically, here we identify strata of MEcPP-sensitive stress-response cascades, among which we focus on selected pathways including organelle-specific regulation of jasmonate biosynthesis; simultaneous induction of synthesis and breakdown of SA; and MEcPP-mediated alteration of cellular redox status in particular glutathione redox balance. Collectively, these integrated multi-omic analyses provided a vehicle to gain an in-depth knowledge of genome-metabolism interactions, and to further probe the extent of these interactions and delineate their functional contributions. Through this approach we were able to pinpoint stress-mediated transcriptional and metabolic signatures and identify the downstream processes modulated by the independent or overlapping functions of MEcPP and SA in adaptive responses. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Hepatocyte-mediated cytotoxicity and host defense mechanisms in the alcohol-injured liver.

    PubMed

    McVicker, Benita L; Thiele, Geoffrey M; Tuma, Dean J; Casey, Carol A

    2014-09-01

    The consumption of alcohol is associated with many health issues including alcoholic liver disease (ALD). The natural history of ALD involves the development of steatosis, inflammation (steatohepatitis), fibrosis and cirrhosis. During the stage of steatohepatitis, the combination of inflammation and cellular damage can progress to a severe condition termed alcoholic hepatitis (AH). Unfortunately, the pathogenesis of AH remains uncharacterized. Some modulations have been identified in host defense and liver immunity mechanisms during AH that highlight the role of intrahepatic lymphocyte accumulation and associated inflammatory cytokine responses. Also, it is hypothesized that alcohol-induced injury to liver cells may significantly contribute to the aberrant lymphocytic distribution that is seen in AH. In particular, the regulation of lymphocytes by hepatocytes may be disrupted in the alcoholic liver resulting in altered immunologic homeostasis and perpetuation of disease. In recent studies, it was demonstrated that the direct killing of activated T lymphocytes by hepatocytes is facilitated by the asialoglycoprotein receptor (ASGPR). The ASGPR is a well-characterized glycoprotein receptor that is exclusively expressed by hepatocytes. This hepatic receptor is known for its role in the clearance of desialylated glycoproteins or cells, yet neither its physiological function nor its role in disease states has been determined. Interestingly, alcohol markedly impairs ASGPR function; however, the effect alcohol has on ASGPR-mediated cytotoxicity of lymphocytes remains to be elucidated. This review discusses the contribution of hepatocytes in immunological regulation and, importantly, how pathological effects of ethanol disrupt hepatocellular-mediated defense mechanisms.

  6. Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis.

    PubMed

    Proietti, Silvia; Caarls, Lotte; Coolen, Silvia; Van Pelt, Johan A; Van Wees, Saskia C M; Pieterse, Corné M J

    2018-05-31

    Jasmonic acid (JA) regulates plant defenses against necrotrophic pathogens and insect herbivores. Salicylic acid (SA) and abscisic acid (ABA) can antagonize JA-regulated defenses, thereby modulating pathogen or insect resistance. We performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis thaliana for the effect of SA and ABA on the JA pathway. We treated 349 Arabidopsis accessions with methyl JA (MeJA), or a combination of MeJA and either SA or ABA, after which expression of the JA-responsive marker gene PDF1.2 was quantified as a readout for GWA analysis. Both hormones antagonized MeJA-induced PDF1.2 in the majority of the accessions, but with a large variation in magnitude. GWA mapping of the SA- and ABA-affected PDF1.2 expression data revealed loci associated with crosstalk. GLYI4 (encoding a glyoxalase) and ARR11 (encoding an Arabidopsis response regulator involved in cytokinin signaling) were confirmed by T-DNA insertion mutant analysis to affect SA-JA crosstalk and resistance against the necrotroph Botrytis cinerea. In addition, At1g16310 (encoding a cation efflux family protein) was confirmed to affect ABA-JA crosstalk and susceptibility to Mamestra brassicae herbivory. Collectively, this GWA study identified novel players in JA hormone crosstalk with potential roles in the regulation of pathogen or insect resistance. This article is protected by copyright. All rights reserved.

  7. Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions.

    PubMed

    Moscarello, Justin M; LeDoux, Joseph E

    2013-02-27

    Signaled active avoidance (AA) paradigms train subjects to prevent an aversive outcome by performing a learned behavior during the presentation of a conditioned cue. This complex form of conditioning involves pavlovian and instrumental components, which produce competing behavioral responses that must be reconciled for the subject to successfully avoid an aversive stimulus. In signaled AA paradigm for rat, we tested the hypothesis that the instrumental component of AA training recruits infralimbic prefrontal cortex (ilPFC) to inhibit central amygdala (CeA)-mediated Pavlovian reactions. Pretraining lesions of ilPFC increased conditioned freezing while causing a corresponding decrease in avoidance; lesions of CeA produced opposite effects, reducing freezing and facilitating avoidance behavior. Pharmacological inactivation experiments demonstrated that ilPFC is relevant to both acquisition and expression phases of AA learning. Inactivation experiments also revealed that AA produces an ilPFC-mediated diminution of pavlovian reactions that extends beyond the training context, even when the conditioned stimulus is presented in an environment that does not allow the avoidance response. Finally, injection of a protein synthesis inhibitor into either ilPFC or CeA impaired or facilitated AA, respectively, showing that avoidance training produces two opposing memory traces in these regions. These data support a model in which AA learning recruits ilPFC to inhibit CeA-mediated defense behaviors, leading to a robust suppression of freezing that generalizes across environments. Thus, ilPFC functions as an inhibitory interface, allowing instrumental control over an aversive outcome to attenuate the expression of freezing and other reactions to conditioned threat.

  8. Directing an appropriate immune response: the role of defense collagens and other soluble pattern recognition molecules.

    PubMed

    Fraser, D A; Tenner, A J

    2008-02-01

    Defense collagens and other soluble pattern recognition receptors contain the ability to recognize and bind molecular patterns associated with pathogens (PAMPs) or apoptotic cells (ACAMPs) and signal appropriate effector-function responses. PAMP recognition by defense collagens C1q, MBL and ficolins leads to rapid containment of infection via complement activation. However, in the absence of danger, such as during the clearance of apoptotic cells, defense collagens such as C1q, MBL, ficolins, SP-A, SP-D and even adiponectin have all been shown to facilitate enhanced phagocytosis and modulate induction of cytokines towards an anti-inflammatory profile. In this way, cellular debris can be removed without provoking an inflammatory immune response which may be important in the prevention of autoimmunity and/or resolving inflammation. Indeed, deficiencies and/or knock-out mouse studies have highlighted critical roles for soluble pattern recognition receptors in the clearance of apoptotic bodies and protection from autoimmune diseases along with mediating protection from specific infections. Understanding the mechanisms involved in defense collagen and other soluble pattern recognition receptor modulation of the immune response may provide important novel insights into therapeutic targets for infectious and/or autoimmune diseases and additionally may identify avenues for more effective vaccine design.

  9. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms.

    PubMed

    Shirasu, K; Nakajima, H; Rajasekhar, V K; Dixon, R A; Lamb, C

    1997-02-01

    The phenylpropanoid-derived natural product salicylic acid (SA) plays a key role in disease resistance. However, SA administered in the absence of a pathogen is a paradoxically weak inductive signal, often requiring concentrations of 0.5 to 5 mM to induce acquired resistance or related defense mechanisms or to precondition signal systems. In contrast, endogenous SA accumulates to concentrations of < 70 microM at the site of attempted infection. Here, we show that although 10 to 100 microM SA had negligible effects when administered to soybean cell suspensions in the absence of a pathogen, physiological concentrations of SA markedly enhanced the induction of defense gene transcripts, H2O2 accumulation, and hypersensitive cell death by an avirulent strain of Pseudomonas syringae pv glycinea, with optimal effects being at approximately 50 microM. SA also synergistically enhanced H2O2 accumulation in response to the protein phosphatase type 2A inhibitor cantharidin in the absence of a pathogen. The synergistic effect of SA was potent, rapid, and insensitive to the protein synthesis inhibitor cycloheximide, and we conclude that SA stimulates an agonist-dependent gain control operating at an early step in the signal pathway for induction of the hypersensitive response. This fine control mechanism differs from previously described time-dependent, inductive coarse control mechanisms for SA action in the absence of a pathogen. Induction of H2O2 accumulation and hypersensitive cell death by avirulent P. s. glycinea was blocked by the phenylpropanoid synthesis inhibitor alpha-aminooxy-beta-phenylpropionic acid, and these responses could be rescued by exogenous SA. Because the agonist-dependent gain control operates at physiological levels of SA, we propose that rapid fine control signal amplification makes an important contribution to SA function in the induction of disease resistance mechanisms.

  10. Crosstalk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses.

    PubMed

    Yang, You-Xin; Ahammed, Golam J; Wu, Caijun; Fan, Shu-ying; Zhou, Yan-Hong

    2015-01-01

    Phytohormone crosstalk is crucial for plant defenses against pathogens and insects in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. These low molecular mass signals critically trigger and modulate plant resistance against biotrophic as well as necrotrophic pathogens through a complex signaling network that even involves participation of other hormones. Crosstalk among SA, JA and ET is mediated by different molecular players, considered as integral part of these crosscommunicating signal transduction pathways. Recent progress has revealed that the positive versus negative interactions among those pathways ultimately enable a plant to fine-tune its defense against specific aggressors. On the other hand, pathogens have evolved strategies to manipulate the signaling network to their favour in order to intensify virulence on host plant. Here we review recent advances and current knowledge on the role of classical primary defense hormones SA, JA and ET as well as their synergistic and antagonistic interaction in plant disease and immune responses. Crosstalk with other hormones such as abscisic acid, auxin, brassinosteroids, cytokinins and melatonin is also discussed mainly in plant disease resistance. In addition to our keen focus on hormonal crosstalk, this review also highlights potential implication of positive and negative regulatory interactions for developing an efficient disease management strategy through manipulation of hormone signaling in plant.

  11. Characterizing the stress/defense transcriptome of Arabidopsis

    PubMed Central

    Mahalingam, Ramamurthy; Gomez-Buitrago, AnaMaria; Eckardt, Nancy; Shah, Nigam; Guevara-Garcia, Angel; Day, Philip; Raina, Ramesh; Fedoroff, Nina V

    2003-01-01

    Background To understand the gene networks that underlie plant stress and defense responses, it is necessary to identify and characterize the genes that respond both initially and as the physiological response to the stress or pathogen develops. We used PCR-based suppression subtractive hybridization to identify Arabidopsis genes that are differentially expressed in response to ozone, bacterial and oomycete pathogens and the signaling molecules salicylic acid (SA) and jasmonic acid. Results We identified a total of 1,058 differentially expressed genes from eight stress cDNA libraries. Digital northern analysis revealed that 55% of the stress-inducible genes are rarely transcribed in unstressed plants and 17% of them were not previously represented in Arabidopsis expressed sequence tag databases. More than two-thirds of the genes in the stress cDNA collection have not been identified in previous studies as stress/defense response genes. Several stress-responsive cis-elements showed a statistically significant over-representation in the promoters of the genes in the stress cDNA collection. These include W- and G-boxes, the SA-inducible element, the abscisic acid response element and the TGA motif. Conclusions The stress cDNA collection comprises a broad repertoire of stress-responsive genes encoding proteins that are involved in both the initial and subsequent stages of the physiological response to abiotic stress and pathogens. This set of stress-, pathogen- and hormone-modulated genes is an important resource for understanding the genetic interactions underlying stress signaling and responses and may contribute to the characterization of the stress transcriptome through the construction of standardized specialized arrays. PMID:12620105

  12. In Silico Identification of Mimicking Molecules as Defense Inducers Triggering Jasmonic Acid Mediated Immunity against Alternaria Blight Disease in Brassica Species

    PubMed Central

    Pathak, Rajesh K.; Baunthiyal, Mamta; Shukla, Rohit; Pandey, Dinesh; Taj, Gohar; Kumar, Anil

    2017-01-01

    Alternaria brassicae and Alternaria brassicicola are two major phytopathogenic fungi which cause Alternaria blight, a recalcitrant disease on Brassica crops throughout the world, which is highly destructive and responsible for significant yield losses. Since no resistant source is available against Alternaria blight, therefore, efforts have been made in the present study to identify defense inducer molecules which can induce jasmonic acid (JA) mediated defense against the disease. It is believed that JA triggered defense response will prevent necrotrophic mode of colonization of Alternaria brassicae fungus. The JA receptor, COI1 is one of the potential targets for triggering JA mediated immunity through interaction with JA signal. In the present study, few mimicking compounds more efficient than naturally occurring JA in terms of interaction with COI1 were identified through virtual screening and molecular dynamics simulation studies. A high quality structural model of COI1 was developed using the protein sequence of Brassica rapa. This was followed by virtual screening of 767 analogs of JA from ZINC database for interaction with COI1. Two analogs viz. ZINC27640214 and ZINC43772052 showed more binding affinity with COI1 as compared to naturally occurring JA. Molecular dynamics simulation of COI1 and COI1-JA complex, as well as best screened interacting structural analogs of JA with COI1 was done for 50 ns to validate the stability of system. It was found that ZINC27640214 possesses efficient, stable, and good cell permeability properties. Based on the obtained results and its physicochemical properties, it is capable of mimicking JA signaling and may be used as defense inducers for triggering JA mediated resistance against Alternaria blight, only after further validation through field trials. PMID:28487711

  13. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae.

    PubMed

    Ellis, Christine; Karafyllidis, Ioannis; Turner, John G

    2002-10-01

    In Arabidopsis spp., the jasmonate (JA) response pathway generally is required for defenses against necrotrophic pathogens and chewing insects, while the salicylic acid (SA) response pathway is generally required for specific, resistance (R) gene-mediated defenses against both biotrophic and necrotrophic pathogens. For example, SA-dependent defenses are required for resistance to the biotrophic fungal pathogen Erysiphe cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. maculicola, and also are expressed during response to the green peach aphid Myzus persicae. However, recent evidence indicates that the expression of JA-dependent defenses also may confer resistance to E. cichoracearum. To confirm and to extend this observation, we have compared the disease and pest resistance of wild-type Arabidopsis plants with that of the mutants coil, which is insensitive to JA, and cev1, which has constitutive JA signaling. Measurements of the colonization of these plants by E. cichoracearum, P. syringae pv. maculicola, and M. persicae indicated that activation of the JA signal pathway enhanced resistance, and was associated with the activation of JA-dependent defense genes and the suppression of SA-dependent defense genes. We conclude that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.

  14. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore.

    PubMed

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.

  15. Salicylic Acid, a Plant Defense Hormone, Is Specifically Secreted by a Molluscan Herbivore

    PubMed Central

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T.; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding. PMID:24466122

  16. 32 CFR 13.4 - Duties and responsibilities of the defense.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Duties and responsibilities of the defense. 13.4 Section 13.4 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE MILITARY... be directed by the Appointing Authority or the General Counsel of the Department of Defense. ...

  17. 32 CFR 13.4 - Duties and responsibilities of the defense.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Duties and responsibilities of the defense. 13.4 Section 13.4 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE MILITARY... be directed by the Appointing Authority or the General Counsel of the Department of Defense. ...

  18. 32 CFR 13.4 - Duties and responsibilities of the defense.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Duties and responsibilities of the defense. 13.4 Section 13.4 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE MILITARY... be directed by the Appointing Authority or the General Counsel of the Department of Defense. ...

  19. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling.

    PubMed

    Rossi, Franco Rubén; Gárriz, Andrés; Marina, María; Romero, Fernando Matías; Gonzalez, María Elisa; Collado, Isidro González; Pieckenstain, Fernando Luis

    2011-08-01

    Botrytis cinerea, as a necrotrophic fungus, kills host tissues and feeds on the remains. This fungus is able to induce the hypersensitive response (HR) on its hosts, thus taking advantage on the host's defense machinery for generating necrotic tissues. However, the identity of HR effectors produced by B. cinerea is not clear. The aim of this work was to determine whether botrydial, a phytotoxic sesquiterpene produced by B. cinerea, is able to induce the HR on plant hosts, using Arabidopsis thaliana as a model. Botrydial induced the expression of the HR marker HSR3, callose deposition, and the accumulation of reactive oxygen species and phenolic compounds. Botrydial also induced the expression of PR1 and PDF1.2, two pathogenesis-related proteins involved in defense responses regulated by salicylic acid (SA) and jasmonic acid (JA), respectively. A. thaliana and tobacco plants defective in SA signaling were more resistant to botrydial than wild-type plants, as opposed to A. thaliana plants defective in JA signaling, which were more sensitive. It can be concluded that botrydial induces the HR on its hosts and its effects are modulated by host signaling pathways mediated by SA and JA.

  20. Peptidoglycan from Fermentation By-Product Triggers Defense Responses in Grapevine

    PubMed Central

    Chen, Yang; Takeda, Taito; Aoki, Yoshinao; Fujita, Keiko; Suzuki, Shunji; Igarashi, Daisuke

    2014-01-01

    Plants are constantly under attack from a variety of microorganisms, and rely on a series of complex detection and response systems to protect themselves from infection. Here, we found that a by-product of glutamate fermentation triggered defense responses in grapevine, increasing the expression of defense response genes in cultured cells, foliar chitinase activity, and resistance to infection by downy mildew in leaf explants. To identify the molecule that triggered this innate immunity, we fractionated and purified candidates extracted from Corynebacterium glutamicum, a bacterium used in the production of amino acids by fermentation. Using hydrolysis by lysozyme, a silkworm larva plasma detection system, and gel filtration analysis, we identified peptidoglycan as inducing the defense responses. Peptidoglycans of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus also generated similar defensive responses. PMID:25427192

  1. Dynamic extrafloral nectar production: the timing of leaf damage affects the defensive response in Senna mexicana var. chapmanii (Fabaceae).

    PubMed

    Jones, Ian M; Koptur, Suzanne

    2015-01-01

    • Extrafloral nectar (EFN) mediates food for protection mutualisms between plants and defensive insects. Understanding sources of variation in EFN production is important because such variations may affect the number and identity of visitors and the effectiveness of plant defense. We investigated the influence of plant developmental stage, time of day, leaf age, and leaf damage on EFN production in Senna mexicana var. chapmanii. The observed patterns of variation in EFN production were compared with those predicted by optimal defense theory.• Greenhouse experiments with potted plants were conducted to determine how plant age, time of day, and leaf damage affected EFN production. A subsequent field study was conducted to determine how leaf damage, and the resulting increase in EFN production, affected ant visitation in S. chapmanii.• More nectar was produced at night and by older plants. Leaf damage resulted in increased EFN production, and the magnitude of the response was greater in plants damaged in the morning than those damaged at night. Damage to young leaves elicited a stronger defensive response than damage to older leaves, in line with optimal defense theory. Damage to the leaves of S. chapmanii also resulted in significantly higher ant visitation in the field.• Extrafloral nectar is an inducible defense in S. chapmanii. Developmental variations in its production support the growth differentiation balance hypothesis, while within-plant variations and damage responses support optimal defense theory. © 2015 Botanical Society of America, Inc.

  2. Social stimuli increase physiological reactivity but not defensive responses.

    PubMed

    Kosonogov, Vladimir; Sanchez-Navarro, Juan Pedro; Martinez-Selva, Jose Maria; Torrente, Ginesa; Carrillo-Verdejo, Eduvigis

    2016-10-01

    Emotional reactions are crucial in survival because they provide approach and withdrawal behaviors. However, an unsolved question is whether the social content of the affective stimuli has a specific effect on emotional responses. We studied whether the social content of affective pictures influenced the defensive response and response mobilization. For this purpose, we recorded startle blink reflex (a defensive response) and skin conductance responses (a measure of unspecific physiological reactivity or arousal) in 73 participants while they viewed a series of 81 pictures of varying affective valence and social content. Our results revealed that defense response, as indicated by increases in the magnitude of the startle blink reflex, was mainly dependent on threatening or unpleasant cues, but was unrelated to the social content of the pictures. The social content, however, had an influence on pleasant stimuli, provoking an increase in resource mobilization, as reflected by changes in electrodermal activity. Hence, the social content of the affective stimuli may increase the physiological arousal elicited by pleasant stimuli, and it appears to be unrelated to the defense reactivity provoked by unpleasant stimuli. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  3. Proteomics and Functional Analyses of Pepper Abscisic Acid–Responsive 1 (ABR1), Which Is Involved in Cell Death and Defense Signaling[C][W

    PubMed Central

    Choi, Du Seok; Hwang, Byung Kook

    2011-01-01

    Abscisic acid (ABA) is a key regulator of plant growth and development, as well as plant defense responses. A high-throughput in planta proteome screen identified the pepper (Capsicum annuum) GRAM (for glucosyltransferases, Rab-like GTPase activators, and myotubularins) domain-containing ABA-RESPONSIVE1 (ABR1), which is highly induced by infection with avirulent Xanthomonas campestris pv vesicatoria and also by treatment with ABA. The GRAM domain is essential for the cell death response and for the nuclear localization of ABR1. ABR1 is required for priming cell death and reactive oxygen species production, as well as ABA-salicylic acid (SA) antagonism. Silencing of ABR1 significantly compromised the hypersensitive response but enhanced bacterial pathogen growth and ABA levels in pepper. High levels of ABA in ABR1-silenced plants antagonized the SA levels induced by pathogen infection. Heterologous transgenic expression of ABR1 in Arabidopsis thaliana conferred enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis infection. The susceptibility of the Arabidopsis ABR1 putative ortholog mutant, abr1, to these pathogens also supports the involvement of ABR1 in disease resistance. Together, these results reveal ABR1 as a novel negative regulator of ABA signaling and suggest that the nuclear ABR1 pool is essential for the cell death induction associated with ABA-SA antagonism. PMID:21335377

  4. Systemic acquired tolerance to virulent bacterial pathogens in tomato.

    PubMed

    Block, Anna; Schmelz, Eric; O'Donnell, Phillip J; Jones, Jeffrey B; Klee, Harry J

    2005-07-01

    Recent studies on the interactions between plants and pathogenic microorganisms indicate that the processes of disease symptom development and pathogen growth can be uncoupled. Thus, in many instances, the symptoms associated with disease represent an active host response to the presence of a pathogen. These host responses are frequently mediated by phytohormones. For example, ethylene and salicylic acid (SA) mediate symptom development but do not influence bacterial growth in the interaction between tomato (Lycopersicon esculentum) and virulent Xanthomonas campestris pv vesicatoria (Xcv). It is not apparent why extensive tissue death is integral to a defense response if it does not have the effect of limiting pathogen proliferation. One possible function for this hormone-mediated response is to induce a systemic defense response. We therefore assessed the systemic responses of tomato to Xcv. SA- and ethylene-deficient transgenic lines were used to investigate the roles of these phytohormones in systemic signaling. Virulent and avirulent Xcv did induce a systemic response as evidenced by expression of defense-associated pathogenesis-related genes in an ethylene- and SA-dependent manner. This systemic response reduced cell death but not bacterial growth during subsequent challenge with virulent Xcv. This systemic acquired tolerance (SAT) consists of reduced tissue damage in response to secondary challenge with a virulent pathogen with no effect upon pathogen growth. SAT was associated with a rapid ethylene and pathogenesis-related gene induction upon challenge. SAT was also induced by infection with Pseudomonas syringae pv tomato. These data show that SAT resembles systemic acquired resistance without inhibition of pathogen growth.

  5. Proteomic analysis of the defense response of wheat to the powdery mildew fungus, Blumeria graminis f. sp. tritici.

    PubMed

    Mandal, Md Siddikun Nabi; Fu, Ying; Zhang, Sheng; Ji, Wanquan

    2014-12-01

    Powdery mildew of wheat is caused by Blumeria graminis f. sp. tritici (Bgt). Although many wheat cultivars resistant to this disease have been developed, little is known about their resistance mechanisms. The aim of this study was to identify proteins showing changes in abundance during the resistance response of the wheat line N0308 infected by Bgt. In two-dimensional electrophoresis analyses, 45 spots on the gels showed significant changes in abundance at 24, 48, and 72 h after inoculation, as compared to non-inoculated plants. Of these 45 proteins, 44 were identified by mass spectrometry analysis using the NCBInr database of Triticum aestivum (26 spots) and closely related species in the Triticum genus (18 spots). These proteins were associated with the defense response, photosynthesis, metabolism, and other cellular processes in wheat. Most of the up-regulated proteins were identified as stress- and defense-related proteins. In particular, the product of a specific powdery mildew resistance gene (Pm3b and its homolog) and some other defense- and pathogenesis-related proteins were overexpressed. The resistance gene product mediates the immune response and coordinates other cellular processes during the resistance response to Bgt.

  6. Identification of Biomarkers for Defense Response to Plasmopara viticola in a Resistant Grape Variety.

    PubMed

    Chitarrini, Giulia; Soini, Evelyn; Riccadonna, Samantha; Franceschi, Pietro; Zulini, Luca; Masuero, Domenico; Vecchione, Antonella; Stefanini, Marco; Di Gaspero, Gabriele; Mattivi, Fulvio; Vrhovsek, Urska

    2017-01-01

    Downy mildew ( Plasmopara viticola ) is one of the most destructive diseases of the cultivated species Vitis vinifera . The use of resistant varieties, originally derived from backcrosses of North American Vitis spp., is a promising solution to reduce disease damage in the vineyards. To shed light on the type and the timing of pathogen-triggered resistance, this work aimed at discovering biomarkers for the defense response in the resistant variety Bianca, using leaf discs after inoculation with a suspension of P. viticola . We investigated primary and secondary metabolism at 12, 24, 48, and 96 h post-inoculation (hpi). We used methods of identification and quantification for lipids (LC-MS/MS), phenols (LC-MS/MS), primary compounds (GC-MS), and semi-quantification for volatile compounds (GC-MS). We were able to identify and quantify or semi-quantify 176 metabolites, among which 53 were modulated in response to pathogen infection. The earliest changes occurred in primary metabolism at 24-48 hpi and involved lipid compounds, specifically unsaturated fatty acid and ceramide; amino acids, in particular proline; and some acids and sugars. At 48 hpi, we also found changes in volatile compounds and accumulation of benzaldehyde, a promoter of salicylic acid-mediated defense. Secondary metabolism was strongly induced only at later stages. The classes of compounds that increased at 96 hpi included phenylpropanoids, flavonols, stilbenes, and stilbenoids. Among stilbenoids we found an accumulation of ampelopsin H + vaticanol C, pallidol, ampelopsin D + quadrangularin A, Z -miyabenol C, and α-viniferin in inoculated samples. Some of these compounds are known as phytoalexins, while others are novel biomarkers for the defense response in Bianca. This work highlighted some important aspects of the host response to P. viticola in a commercial variety under controlled conditions, providing biomarkers for a better understanding of the mechanism of plant defense and a potential

  7. Carnivore Attractant or Plant Elicitor? Multifunctional Roles of Methyl Salicylate Lures in Tomato Defense.

    PubMed

    Rowen, Elizabeth; Gutensohn, Michael; Dudareva, Natalia; Kaplan, Ian

    2017-06-01

    Synthetic plant volatile lures attract natural enemies, but may have non-target effects due to the multifunctional nature of volatile signals. For example, methyl salicylate (MeSA) is used to attract predators, yet also serves as a signaling hormone involved in plant pathogen defense. We investigated the consequences of deploying MeSA lures to attract predators for tomato (Solanum lycopersicum) defense against herbivores. To understand the spatial distribution of the lure's effect, we exposed tomatoes in the field to MeSA along a linear distance gradient and induced defenses by simulating feeding by hornworm caterpillars in a fully crossed factorial design (+/- MeSA, +/- herbivory). Subsequently, we analyzed activity of several defensive proteins (protease inhibitors, polyphenol oxidase, peroxidase), development of hornworm larvae (Manduca sexta), growth of fungal pathogens (Cladosporium and Alternaria), and attractiveness to herbivores and predators. Overall, MeSA-exposed plants were more resistant to both insects and pathogens. Secondary pathogen infection was reduced by 25% in MeSA exposed plants, possibly due to elevated polyphenol oxidase activity. Interestingly, we found that lures affected plant pathogen defenses equivalently across all distances (up to 4 m away) indicating that horizontal diffusion of a synthetic volatile may be greater than previously assumed. While thrips avoided colonizing hornworm- damaged tomato plants, this induced resistance was not observed upon pre-exposure to MeSA, suggesting that MeSA suppresses the repellant effect induced by herbivory. Thus, using MeSA lures in biological control may inadvertently protect crops from pathogens, but has mixed effects on plant resistance to insect herbivores.

  8. Limited response of ponderosa pine bole defenses to wounding and fungi.

    PubMed

    Gaylord, Monica L; Hofstetter, Richard W; Kolb, Thomas E; Wagner, Michael R

    2011-04-01

    Tree defense against bark beetles (Curculionidae: Scolytinae) and their associated fungi generally comprises some combination of constitutive (primary) and induced (secondary) defenses. In pines, the primary constitutive defense against bark beetles consists of preformed resin stored in resin ducts. Induced defenses at the wound site (point of beetle entry) in pines may consist of an increase in resin flow and necrotic lesion formation. The quantity and quality of both induced and constitutive defenses can vary by species and season. The inducible defense response in ponderosa pine is not well understood. Our study examined the inducible defense response in ponderosa pine using traumatic mechanical wounding, and wounding with and without fungal inoculations with two different bark beetle-associated fungi (Ophiostoma minus and Grosmannia clavigera). Resin flow did not significantly increase in response to any treatment. In addition, necrotic lesion formation on the bole after fungal inoculation was minimal. Stand thinning, which has been shown to increase water availability, had no, or inconsistent, effects on inducible tree defense. Our results suggest that ponderosa pine bole defense against bark beetles and their associated fungi is primarily constitutive and not induced.

  9. Transcriptional profile of sweet orange in response to chitosan and salicylic acid.

    PubMed

    Coqueiro, Danila Souza Oliveira; de Souza, Alessandra Alves; Takita, Marco Aurélio; Rodrigues, Carolina Munari; Kishi, Luciano Takeshi; Machado, Marcos Antonio

    2015-04-12

    Resistance inducers have been used in annual crops as an alternative for disease control. Wood perennial fruit trees, such as those of the citrus species, are candidates for treatment with resistance inducers, such as salicylic acid (SA) and chitosan (CHI). However, the involved mechanisms in resistance induced by elicitors in citrus are currently few known. In the present manuscript, we report information regarding the transcriptional changes observed in sweet orange in response to exogenous applications of SA and CHI using RNA-seq technology. More genes were induced by SA treatment than by CHI treatment. In total, 1,425 differentially expressed genes (DEGs) were identified following treatment with SA, including the important genes WRKY50, PR2, and PR9, which are known to participate in the salicylic acid signaling pathway, and genes involved in ethylene/Jasmonic acid biosynthesis (ACS12, AP2 domain-containing transcription factor, and OPR3). In addition, SA treatment promoted the induction of a subset of genes involved in several metabolic processes, such as redox states and secondary metabolism, which are associated with biotic stress. For CHI treatment, there were 640 DEGs, many of them involved in secondary metabolism. For both SA and CHI treatments, the auxin pathway genes were repressed, but SA treatment promoted induction in the ethylene and jasmonate acid pathway genes, in addition to repressing the abscisic acid pathway genes. Chitosan treatment altered some hormone metabolism pathways. The DEGs were validated by quantitative Real-Time PCR (qRT-PCR), and the results were consistent with the RNA-seq data, with a high correlation between the two analyses. We expanded the available information regarding induced defense by elicitors in a species of Citrus that is susceptible to various diseases and identified the molecular mechanisms by which this defense might be mediated.

  10. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses.

    PubMed

    Heo, W D; Lee, S H; Kim, M C; Kim, J C; Chung, W S; Chun, H J; Lee, K J; Park, C Y; Park, H C; Choi, J Y; Cho, M J

    1999-01-19

    The Ca2+ signal is essential for the activation of plant defense responses, but downstream components of the signaling pathway are still poorly defined. Here we demonstrate that specific calmodulin (CaM) isoforms are activated by infection or pathogen-derived elicitors and participate in Ca2+-mediated induction of plant disease resistance responses. Soybean CaM (SCaM)-4 and SCaM-5 genes, which encode for divergent CaM isoforms, were induced within 30 min by a fungal elicitor or pathogen, whereas other SCaM genes encoding highly conserved CaM isoforms did not show such response. This pathogen-triggered induction of these genes specifically depended on the increase of intracellular Ca2+ level. Constitutive expression of SCaM-4 and SCaM-5 in transgenic tobacco plants triggered spontaneous induction of lesions and induces an array of systemic acquired resistance (SAR)-associated genes. Surprisingly, these transgenic plants have normal levels of endogenous salicylic acid (SA). Furthermore, coexpression of nahG gene did not block the induction of SAR-associated genes in these transgenic plants, indicating that SA is not involved in the SAR gene induction mediated by SCaM-4 or SCaM-5. The transgenic plants exhibit enhanced resistance to a wide spectrum of virulent and avirulent pathogens, including bacteria, fungi, and virus. These results suggest that specific CaM isoforms are components of a SA-independent signal transduction chain leading to disease resistance.

  11. Neonatal innate TLR-mediated responses are distinct from those of adults.

    PubMed

    Kollmann, Tobias R; Crabtree, Juliet; Rein-Weston, Annie; Blimkie, Darren; Thommai, Francis; Wang, Xiu Yu; Lavoie, Pascal M; Furlong, Jeff; Fortuno, Edgardo S; Hajjar, Adeline M; Hawkins, Natalie R; Self, Steven G; Wilson, Christopher B

    2009-12-01

    The human neonate and infant are unduly susceptible to infection with a wide variety of microbes. This susceptibility is thought to reflect differences from adults in innate and adaptive immunity, but the nature of these differences is incompletely characterized. The innate immune response directs the subsequent adaptive immune response after integrating information from TLRs and other environmental sensors. We set out to provide a comprehensive analysis defining differences in response to TLR ligation between human neonates and adults. In response to most TLR ligands, neonatal innate immune cells, including monocytes and conventional and plasmacytoid dendritic cells produced less IL-12p70 and IFN-alpha (and consequently induced less IFN-gamma), moderately less TNF-alpha, but as much or even more IL-1beta, IL-6, IL-23, and IL-10 than adult cells. At the single-cell level, neonatal innate cells generally were less capable of producing multiple cytokines simultaneously, i.e., were less polyfunctional. Overall, our data suggest a robust if not enhanced capacity of the neonate vs the adult white-blood cell TLR-mediated response to support Th17- and Th2-type immunity, which promotes defense against extracellular pathogens, but a reduced capacity to support Th1-type responses, which promote defense against intracellular pathogens.

  12. Sa-Lrp from Sulfolobus acidocaldarius is a versatile, glutamine-responsive, and architectural transcriptional regulator

    PubMed Central

    Vassart, Amelia; Wolferen, Marleen; Orell, Alvaro; Hong, Ye; Peeters, Eveline; Albers, Sonja-Verena; Charlier, Daniel

    2013-01-01

    Sa-Lrp is a member of the leucine-responsive regulatory protein (Lrp)-like family of transcriptional regulators in Sulfolobus acidocaldarius. Previously, we demonstrated the binding of Sa-Lrp to the control region of its own gene in vitro. However, the function and cofactor of Sa-Lrp remained an enigma. In this work, we demonstrate that glutamine is the cofactor of Sa-Lrp by inducing the formation of octamers and increasing the DNA-binding affinity and sequence specificity. In vitro protein-DNA interaction assays indicate that Sa-Lrp binds to promoter regions of genes with a variety of functions including ammonia assimilation, transcriptional control, and UV-induced pili synthesis. DNA binding occurs with a specific affinity for AT-rich binding sites, and the protein induces DNA bending and wrapping upon binding, indicating an architectural role of the regulator. Furthermore, by analyzing an Sa-lrp deletion mutant, we demonstrate that the protein affects transcription of some of the genes of which the promoter region is targeted and that it is an important determinant of the cellular aggregation phenotype. Taking all these results into account, we conclude that Sa-Lrp is a glutamine-responsive global transcriptional regulator with an additional architectural role. PMID:23255531

  13. Constitutively Elevated Salicylic Acid Signals Glutathione-Mediated Nickel Tolerance in Thlaspi Nickel Hyperaccumulators1

    PubMed Central

    Freeman, John L.; Garcia, Daniel; Kim, Donggiun; Hopf, Amber; Salt, David E.

    2005-01-01

    Progress is being made in understanding the biochemical and molecular basis of nickel (Ni)/zinc (Zn) hyperaccumulation in Thlaspi; however, the molecular signaling pathways that control these mechanisms are not understood. We observed that elevated concentrations of salicylic acid (SA), a molecule known to be involved in signaling induced pathogen defense responses in plants, is a strong predictor of Ni hyperaccumulation in the six diverse Thlaspi species investigated, including the hyperaccumulators Thlaspi goesingense, Thlaspi rosulare, Thlaspi oxyceras, and Thlaspi caerulescens and the nonaccumulators Thlaspi arvense and Thlaspi perfoliatum. Furthermore, the SA metabolites phenylalanine, cinnamic acid, salicyloyl-glucose, and catechol are also elevated in the hyperaccumulator T. goesingense when compared to the nonaccumulators Arabidopsis (Arabidopsis thaliana) and T. arvense. Elevation of free SA levels in Arabidopsis, both genetically and by exogenous feeding, enhances the specific activity of serine acetyltransferase, leading to elevated glutathione and increased Ni resistance. Such SA-mediated Ni resistance in Arabidopsis phenocopies the glutathione-based Ni tolerance previously observed in Thlaspi, suggesting a biochemical linkage between SA and Ni tolerance in this genus. Intriguingly, the hyperaccumulator T. goesingense also shows enhanced sensitivity to the pathogen powdery mildew (Erysiphe cruciferarum) and fails to induce SA biosynthesis after infection. Nickel hyperaccumulation reverses this pathogen hypersensitivity, suggesting that the interaction between pathogen resistance and Ni tolerance and hyperaccumulation may have played a critical role in the evolution of metal hyperaccumulation in the Thlaspi genus. PMID:15734913

  14. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    PubMed Central

    Yang, Yanyan; Yu, Tao; Sung, Gi-Ho; Yoo, Byong Chul

    2014-01-01

    Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases. PMID:24771982

  15. Response of Sunflower (Helianthus annuus L.) Leaf Surface Defenses to Exogenous Methyl Jasmonate

    PubMed Central

    Rowe, Heather C.; Ro, Dae-kyun; Rieseberg, Loren H.

    2012-01-01

    Helianthus annuus, the common sunflower, produces a complex array of secondary compounds that are secreted into glandular trichomes, specialized structures found on leaf surfaces and anther appendages of flowers. The primary components of these trichome secretions are sesquiterpene lactones (STL), a diverse class of compounds produced abundantly by the plant family Compositae and believed to contribute to plant defense against herbivory. We treated wild and cultivated H. annuus accessions with exogenous methyl jasmonate, a plant hormone that mediates plant defense against insect herbivores and certain classes of fungal pathogens. The wild sunflower produced a higher density of glandular trichomes on its leaves than the cultivar. Comparison of the profiles of glandular trichome extracts obtained by liquid chromatography–mass spectroscopy (LC-MS) showed that wild and cultivated H. annuus were qualitatively similar in surface chemistry, although differing in the relative size and proportion of various compounds detected. Despite observing consistent transcriptional responses to methyl jasmonate treatment, we detected no significant effect on glandular trichome density or LC-MS profile in cultivated or wild sunflower, with wild sunflower exhibiting a declining trend in overall STL production and foliar glandular trichome density of jasmonate-treated plants. These results suggest that glandular trichomes and associated compounds may act as constitutive defenses or require greater levels of stimulus for induction than the observed transcriptional responses to exogenous jasmonate. Reduced defense investment in domesticated lines is consistent with predicted tradeoffs caused by selection for increased yield; future research will focus on the development of genetic resources to explicitly test the ecological roles of glandular trichomes and associated effects on plant growth and fitness. PMID:22623991

  16. Response of sunflower (Helianthus annuus L.) leaf surface defenses to exogenous methyl jasmonate.

    PubMed

    Rowe, Heather C; Ro, Dae-kyun; Rieseberg, Loren H

    2012-01-01

    Helianthus annuus, the common sunflower, produces a complex array of secondary compounds that are secreted into glandular trichomes, specialized structures found on leaf surfaces and anther appendages of flowers. The primary components of these trichome secretions are sesquiterpene lactones (STL), a diverse class of compounds produced abundantly by the plant family Compositae and believed to contribute to plant defense against herbivory. We treated wild and cultivated H. annuus accessions with exogenous methyl jasmonate, a plant hormone that mediates plant defense against insect herbivores and certain classes of fungal pathogens. The wild sunflower produced a higher density of glandular trichomes on its leaves than the cultivar. Comparison of the profiles of glandular trichome extracts obtained by liquid chromatography-mass spectroscopy (LC-MS) showed that wild and cultivated H. annuus were qualitatively similar in surface chemistry, although differing in the relative size and proportion of various compounds detected. Despite observing consistent transcriptional responses to methyl jasmonate treatment, we detected no significant effect on glandular trichome density or LC-MS profile in cultivated or wild sunflower, with wild sunflower exhibiting a declining trend in overall STL production and foliar glandular trichome density of jasmonate-treated plants. These results suggest that glandular trichomes and associated compounds may act as constitutive defenses or require greater levels of stimulus for induction than the observed transcriptional responses to exogenous jasmonate. Reduced defense investment in domesticated lines is consistent with predicted tradeoffs caused by selection for increased yield; future research will focus on the development of genetic resources to explicitly test the ecological roles of glandular trichomes and associated effects on plant growth and fitness.

  17. Phytohormone priming elevates the accumulation of defense-related gene transcripts and enhances bacterial blight disease resistance in cassava.

    PubMed

    Yoodee, Sunisa; Kobayashi, Yohko; Songnuan, Wisuwat; Boonchird, Chuenchit; Thitamadee, Siripong; Kobayashi, Issei; Narangajavana, Jarunya

    2018-01-01

    Cassava bacterial blight (CBB) disease caused by Xanthomonas axonopodis pv. manihotis (Xam) is a severe disease in cassava worldwide. In addition to causing significant cassava yield loss, CBB disease has not been extensively studied, especially in terms of CBB resistance genes. The present research demonstrated the molecular mechanisms underlining the defense response during Xam infection in two cassava cultivars exhibiting different degrees of disease resistance, Huay Bong60 (HB60) and Hanatee (HN). Based on gene expression analysis, ten of twelve putative defense-related genes including, leucine-rich repeat receptor-like kinases (LRR-RLKs), resistance (R), WRKY and pathogenesis-related (PR) genes, were differentially expressed between these two cassava cultivars during Xam infection. The up-regulation of defense-related genes observed in HB60 may be the mechanism required for the reduction of disease severity in the resistant cultivar. Interestingly, priming with salicylic acid (SA) or methyl jasmonate (MeJA) for 24 h before Xam inoculation could enhance the defense response in both cassava cultivars. The disease severity was decreased 10% in the resistant cultivar (HB60) and was remarkably reduced 21% in the susceptible cultivar (HN) by SA/MeJA priming. Priming with Xam inoculation modulated cassava4.1_013417, cassava4.1_030866 and cassava4.1_020555 (highest similarity to MeWRKY59, MePR1 and AtPDF2.2, respectively) expression and led to enhanced resistance of the susceptible cultivar in the second infection. The putative cis-regulatory elements were predicted in an upstream region of these three defense-related genes. The different gene expression levels in these genes between the two cultivars were due to the differences in cis-regulatory elements in their promoter regions. Taken together, our study strongly suggested that the induction of defense-related genes correlated with defense resistance against Xam infection, and exogenous application of SA or Me

  18. INFLUENCE OF ROOT COLONIZING BACTERIA ON THE DEFENSE RESPONSES OF BEAN

    EPA Science Inventory

    Colonization of plant roots by fluorescent pseudomonads has been correlated with disease suppression. ne mechanism may involve altered defense responses in the plant upon colonization. ltered defense responses were observed in bean (Phaseolus vulgaris) inoculated with fluorescent...

  19. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms.

    PubMed

    Rajjou, Loïc; Belghazi, Maya; Huguet, Romain; Robin, Caroline; Moreau, Adrien; Job, Claudette; Job, Dominique

    2006-07-01

    The influence of salicylic acid (SA) on elicitation of defense mechanisms in Arabidopsis (Arabidopsis thaliana) seeds and seedlings was assessed by physiological measurements combined with global expression profiling (proteomics). Parallel experiments were carried out using the NahG transgenic plants expressing the bacterial gene encoding SA hydroxylase, which cannot accumulate the active form of this plant defense elicitor. SA markedly improved germination under salt stress. Proteomic analyses disclosed a specific accumulation of protein spots regulated by SA as inferred by silver-nitrate staining of two-dimensional gels, detection of carbonylated (oxidized) proteins, and neosynthesized proteins with [35S]-methionine. The combined results revealed several processes potentially affected by SA. This molecule enhanced the reinduction of the late maturation program during early stages of germination, thereby allowing the germinating seeds to reinforce their capacity to mount adaptive responses in environmental water stress. Other processes affected by SA concerned the quality of protein translation, the priming of seed metabolism, the synthesis of antioxidant enzymes, and the mobilization of seed storage proteins. All the observed effects are likely to improve seed vigor. Another aspect revealed by this study concerned the oxidative stress entailed by SA in germinating seeds, as inferred from a characterization of the carbonylated (oxidized) proteome. Finally, the proteomic data revealed a close interplay between abscisic signaling and SA elicitation of seed vigor.

  20. Citrus leprosis virus C Infection Results in Hypersensitive-Like Response, Suppression of the JA/ET Plant Defense Pathway and Promotion of the Colonization of Its Mite Vector

    PubMed Central

    Arena, Gabriella D.; Ramos-González, Pedro L.; Nunes, Maria A.; Ribeiro-Alves, Marcelo; Camargo, Luis E. A.; Kitajima, Elliot W.; Machado, Marcos A.; Freitas-Astúa, Juliana

    2016-01-01

    Leprosis is a serious disease of citrus caused by Citrus leprosis virus C (CiLV-C, genus Cilevirus) whose transmission is mediated by false spider mites of the genus Brevipalpus. CiLV-C infection does not systemically spread in any of its known host plants, thus remaining restricted to local lesions around the feeding sites of viruliferous mites. To get insight into this unusual pathosystem, we evaluated the expression profiles of genes involved in defense mechanisms of Arabidopsis thaliana and Citrus sinensis upon infestation with non-viruliferous and viruliferous mites by using reverse-transcription qPCR. These results were analyzed together with the production of reactive oxygen species (ROS) and the appearance of dead cells as assessed by histochemical assays. After interaction with non-viruliferous mites, plants locally accumulated ROS and triggered the salicylic acid (SA) and jasmonate/ethylene (JA/ET) pathways. ERF branch of the JA/ET pathways was highly activated. In contrast, JA pathway genes were markedly suppressed upon the CiLV-C infection mediated by viruliferous mites. Viral infection also intensified the ROS burst and cell death, and enhanced the expression of genes involved in the RNA silencing mechanism and SA pathway. After 13 days of infestation of two sets of Arabidopsis plants with non-viruliferous and viruliferous mites, the number of mites in the CiLV-C infected Arabidopsis plants was significantly higher than in those infested with the non-viruliferous ones. Oviposition of the viruliferous mites occurred preferentially in the CiLV-C infected leaves. Based on these results, we postulated the first model of plant/Brevipalpus mite/cilevirus interaction in which cells surrounding the feeding sites of viruliferous mites typify the outcome of a hypersensitive-like response, whereas viral infection induces changes in the behavior of its vector. PMID:27933078

  1. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis.

    PubMed

    Lu, Hua; Zhang, Chong; Albrecht, Ute; Shimizu, Rena; Wang, Guanfeng; Bowman, Kim D

    2013-01-01

    Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of Arabidopsis and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The Arabidopsis gene NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of NDR1 from citrus, CsNDR1. Overexpression of CsNDR1 complemented susceptibility conferred by the Arabidopsis ndr1-1 mutant to Pseudomonas syringae strains and also led to enhanced resistance to an oomycete pathogen Hyaloperonospora arabidopsidis. Such heightened resistance is associated with increased SA production and expression of the defense marker gene PATHOGENESIS RELATED 1 (PR1). In addition, we found that expression of PR1 and accumulation of SA were induced to modest levels in citrus infected with Candidatus Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that CsNDR1 is a functional ortholog of Arabidopsis NDR1. Since Ca. L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production.

  2. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis

    PubMed Central

    Lu, Hua; Zhang, Chong; Albrecht, Ute; Shimizu, Rena; Wang, Guanfeng; Bowman, Kim D.

    2013-01-01

    Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of Arabidopsis and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The Arabidopsis gene NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of NDR1 from citrus, CsNDR1. Overexpression of CsNDR1 complemented susceptibility conferred by the Arabidopsis ndr1-1 mutant to Pseudomonas syringae strains and also led to enhanced resistance to an oomycete pathogen Hyaloperonospora arabidopsidis. Such heightened resistance is associated with increased SA production and expression of the defense marker gene PATHOGENESIS RELATED 1 (PR1). In addition, we found that expression of PR1 and accumulation of SA were induced to modest levels in citrus infected with Candidatus Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that CsNDR1 is a functional ortholog of Arabidopsis NDR1. Since Ca. L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production. PMID:23761797

  3. Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum - reassessing the role of salicylic acid in the interaction with a necrotroph.

    PubMed

    Nováková, Miroslava; Sašek, Vladimír; Dobrev, Petre I; Valentová, Olga; Burketová, Lenka

    2014-07-01

    According to general model, jasmonic acid (JA) and ethylene (ET) signaling pathways are induced in Arabidopsis after an attack of necrotroph, Sclerotinia sclerotiorum (Lib.) de Bary. However, abscisic acid (ABA) and salicylic acid (SA) also seem to play a role. While signaling events in Arabidopsis have been intensively studied recently, information for the natural host Brassica napus is limited. In this study, multiple plant hormone quantification and expression analysis of marker genes of the signaling pathways was used to gain a complete view of the interaction of B. napus with S. sclerotiorum. Strong response of ET biosynthetic gene ACS2 was observed, accompanied by increases of SA and JA levels that correspond to the elevated expression of marker genes PR1 and LOX3. Interestingly, the level of ABA and the expression of its marker gene RD26 were also elevated. Furthermore, induction of the SA-dependent defense decreased disease symptoms. In addition, SA signaling is suggested as a possible target for manipulation by S. sclerotiorum. A gene for putative chorismate mutase SS1G_14320 was identified that is highly expressed during infection but not in vitro. Our results bring the evidence of SA involvement in the interaction of plant with the necrotroph that conflict with the current model. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Going Beyond the Norm: The Case for Incorporating Evaluative Mediation into Department of Defense Employment Discrimination Complaints

    DTIC Science & Technology

    2017-03-01

    Incorporating Evaluative Mediation into Department of Defense Employment Discrimination Complaints By Thomas A...to resolve the dispute and does not evaluate the actual merits of a complaint. This can be problematic when an employee has filed a workplace...complaint based on illegal discrimination with the Equal Opportunity Office. Evaluative mediation involves having a mediator with expertise in labor and

  5. Regulation of Stomatal Defense by Air Relative Humidity.

    PubMed

    Panchal, Shweta; Chitrakar, Reejana; Thompson, Blaine K; Obulareddy, Nisita; Roy, Debanjana; Hambright, W Sealy; Melotto, Maeli

    2016-11-01

    It has long been observed that environmental conditions play crucial roles in modulating immunity and disease in plants and animals. For instance, many bacterial plant disease outbreaks occur after periods of high humidity and rain. A critical step in bacterial infection is entry into the plant interior through wounds and natural openings, such as stomata, which are adjustable microscopic pores in the epidermal tissue. Several studies have shown that stomatal closure is an integral part of the plant immune response to reduce pathogen invasion. In this study, we found that high humidity can effectively compromise Pseudomonas syringae-triggered stomatal closure in both Phaseolus vulgaris and Arabidopsis (Arabidopsis thaliana), which is accompanied by early up-regulation of the jasmonic acid (JA) pathway and simultaneous down-regulation of salicylic acid (SA) pathway in guard cells. Furthermore, SA-dependent response, but not JA-dependent response, is faster in guard cells than in whole leaves, suggesting that the SA signaling in guard cells may be independent from other cell types. Thus, we conclude that high humidity, a well-known disease-promoting environmental condition, acts in part by suppressing stomatal defense and is linked to hormone signaling in guard cells. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid1[OPEN

    PubMed Central

    Louis, Joe; Basu, Saumik; Varsani, Suresh; Castano-Duque, Lina; Jiang, Victoria; Williams, W. Paul; Felton, Gary W.; Luthe, Dawn S.

    2015-01-01

    Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for accumulation of the maize insect resistance1 (mir1) gene product, a cysteine (Cys) proteinase that is a key defensive protein against chewing insect pests in maize (Zea mays). However, this study suggests that mir1-mediated resistance to corn leaf aphid (CLA; Rhopalosiphum maidis), a phloem sap-sucking insect pest, is independent of JA but regulated by the ET-signaling pathway. Feeding by CLA triggers the rapid accumulation of mir1 transcripts in the resistant maize genotype, Mp708. Furthermore, Mp708 provided elevated levels of antibiosis (limits aphid population)- and antixenosis (deters aphid settling)-mediated resistance to CLA compared with B73 and Tx601 maize susceptible inbred lines. Synthetic diet aphid feeding trial bioassays with recombinant Mir1-Cys Protease demonstrates that Mir1-Cys Protease provides direct toxicity to CLA. Furthermore, foliar feeding by CLA rapidly sends defensive signal(s) to the roots that trigger belowground accumulation of the mir1, signifying a potential role of long-distance signaling in maize defense against the phloem-feeding insects. Collectively, our data indicate that ET-regulated mir1 transcript accumulation, uncoupled from JA, contributed to heightened resistance to CLA in maize. In addition, our results underscore the significance of ET acting as a central node in regulating mir1 expression to different feeding guilds of insect herbivores. PMID:26253737

  7. Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation

    PubMed Central

    Meng, Fansen; Zhou, Ruyuan; Wu, Shiying; Zhang, Qian; Jin, Qiuheng; Zhou, Yao; Plouffe, Steven W.; Liu, Shengduo; Song, Hai; Xia, Zongping; Zhao, Bin; Ye, Sheng; Feng, Xin-Hua; Guan, Kun-Liang; Zou, Jian

    2016-01-01

    Cytosolic RNA/DNA sensing elicits primary defense against viral pathogens. Interferon regulatory factor 3 (IRF3), a key signal mediator/transcriptional factor of the antiviral-sensing pathway, is indispensible for interferon production and antiviral defense. However, how the status of IRF3 activation is controlled remains elusive. Through a functional screen of the human kinome, we found that mammalian sterile 20-like kinase 1 (Mst1), but not Mst2, profoundly inhibited cytosolic nucleic acid sensing. Mst1 associated with IRF3 and directly phosphorylated IRF3 at Thr75 and Thr253. This Mst1-mediated phosphorylation abolished activated IRF3 homodimerization, its occupancy on chromatin, and subsequent IRF3-mediated transcriptional responses. In addition, Mst1 also impeded virus-induced activation of TANK-binding kinase 1 (TBK1), further attenuating IRF3 activation. As a result, Mst1 depletion or ablation enabled an enhanced antiviral response and defense in cells and mice. Therefore, the identification of Mst1 as a novel physiological negative regulator of IRF3 activation provides mechanistic insights into innate antiviral defense and potential antiviral prevention strategies. PMID:27125670

  8. Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic Acid, jasmonic Acid and ethylene.

    PubMed

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-09-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

  9. Logistics Response Time for the Direct Vendor Delivery Process, Defense Supply Center, Columbus

    DTIC Science & Technology

    1999-03-04

    SECRETARY OF DEFENSE (MATERIEL AND DISTRIBUTION MANAGEMENT ) DIRECTOR, DEFENSE LOGISTICS AGENCY SUBJECT: Audit Report on the Logistics Response Time for...Under Secretary of Defense (Materiel and Distribution Management ) about whether the direct vendor delivery process is unfavorably affecting the logistics...was requested by the Office of the Assistant Deputy Under Secretary of Defense (Materiel and Distribution Management ). DoD corporate goals in response

  10. A salivary EF-hand calcium-binding protein of the brown planthopper Nilaparvata lugens functions as an effector for defense responses in rice

    PubMed Central

    Ye, Wenfeng; Yu, Haixin; Jian, Yukun; Zeng, Jiamei; Ji, Rui; Chen, Hongdan; Lou, Yonggen

    2017-01-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a major pest of rice in Asia, is able to successfully puncture sieve tubes in rice with its piercing stylet and then to ingest phloem sap. How BPH manages to continuously feed on rice remains unclear. Here, we cloned the gene NlSEF1, which is highly expressed in the salivary glands of BPH. The NlSEF1 protein has EF-hand Ca2+-binding activity and can be secreted into rice plants when BPH feed. Infestation of rice by BPH nymphs whose NlSEF1 was knocked down elicited higher levels of Ca2+ and H2O2 but not jasmonic acid, jasmonoyl-isoleucine (JA-Ile) and SA in rice than did infestation by control nymphs; Consistently, wounding plus the recombination protein NlSEF1 suppressed the production of H2O2 in rice. Bioassays revealed that NlSEF1-knockdown BPH nymphs had a higher mortality rate and lower feeding capacity on rice than control nymphs. These results indicate that the salivary protein in BPH, NlSEF1, functions as an effector and plays important roles in interactions between BPH and rice by mediating the plant’s defense responses. PMID:28098179

  11. Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum Colonizing the Lettuce Rhizosphere Enhance Plant Defense Responses Toward the Bottom Rot Pathogen Rhizoctonia solani.

    PubMed

    Chowdhury, Soumitra Paul; Uhl, Jenny; Grosch, Rita; Alquéres, Sylvia; Pittroff, Sabrina; Dietel, Kristin; Schmitt-Kopplin, Philippe; Borriss, Rainer; Hartmann, Anton

    2015-09-01

    The commercially available inoculant Bacillus amyloliquefaciens FZB42 is able to considerably reduce lettuce bottom rot caused by Rhizoctonia solani. To understand the interaction between FZB42 and R. solani in the rhizosphere of lettuce, we used an axenic system with lettuce bacterized with FZB42 and inoculated with R. solani. Confocal laser scanning microscopy showed that FZB42 could delay the initial establishment of R. solani on the plants. To show which secondary metabolites of FZB42 are produced under these in-situ conditions, we developed an ultra-high performance liquid chromatography coupled to time of flight mass spectrometry-based method and identified surfactin, fengycin, and bacillomycin D in the lettuce rhizosphere. We hypothesized that lipopeptides and polyketides play a role in enhancing the plant defense responses in addition to the direct antagonistic effect toward R. solani and used a quantitative real-time polymerase chain reaction-based assay for marker genes involved in defense signaling pathways in lettuce. A significant higher expression of PDF 1.2 observed in the bacterized plants in response to subsequent pathogen challenge showed that FZB42 could enhance the lettuce defense response toward the fungal pathogen. To identify if surfactin or other nonribosomally synthesized secondary metabolites could elicit the observed enhanced defense gene expression, we examined two mutants of FZB42 deficient in production of surfactin and the lipopetides and polyketides, by expression analysis and pot experiments. In the absence of surfactin and other nonribosomally synthesized secondary metabolites, there was no enhanced PDF 1.2-mediated response to the pathogen challenge. Pot experiment results showed that the mutants failed to reduce disease incidence in lettuce as compared with the FZB42 wild type, indicating, that surfactin as well as other nonribosomally synthesized secondary metabolites play a role in the actual disease suppression and on lettuce

  12. Unmanned and Unattended Response Capability for Homeland Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENNETT, PHIL C.

    2002-11-01

    An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologiesmore » supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.« less

  13. Response of tobacco to the Pseudomonas syringae pv. Tomato DC3000 is mainly dependent on salicylic acid signaling pathway.

    PubMed

    Liu, Yang; Wang, Li; Cai, Guohua; Jiang, Shanshan; Sun, Liping; Li, Dequan

    2013-07-01

    Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) was the first pathogen to be demonstrated to infect Arabidopsis and to cause disease symptoms in the laboratory setting. However, the defense response to Pst DC3000 was unclear in tobacco. In this report, the expression profiles of twelve defense response-related genes were analyzed after treatment with salicylic acid (SA), jasmonic acid (JA), and pathogen Pst DC3000 by qRT-PCR. According to our results, it could be presented that the genes primarily induced by SA were also induced to higher levels after Pst DC3000 infection. SA accumulation could be induced to a higher level than that of JA after Pst DC3000 infection. In addition, SA could result in hypersensitive response (HR), which did not completely depend on accumulation of reactive oxygen species. These results indicated that tobacco mainly depended on SA signaling pathway rather than on JA signaling pathway in response to Pst DC3000. Further study demonstrated that JA could significantly inhibit the accumulation of SA and the generation of the HR induced by Pst DC3000. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. 7 CFR 601.3 - Defense responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Defense responsibilities. 601.3 Section 601.3 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... selection and use of land for agricultural production. (2) The harvesting of crops. (3) The use of crops...

  15. 7 CFR 601.3 - Defense responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Defense responsibilities. 601.3 Section 601.3 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... selection and use of land for agricultural production. (2) The harvesting of crops. (3) The use of crops...

  16. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection.

    PubMed

    Huh, Sung Un; Choi, La Mee; Lee, Gil-Je; Kim, Young Jin; Paek, Kyung-Hee

    2012-12-01

    WRKY transcription factors regulate biotic, abiotic, and developmental processes. In terms of plant defense, WRKY factors have important roles as positive and negative regulators via transcriptional regulation or protein-protein interaction. Here, we report the characterization of the gene encoding Capsicum annuum WRKY transcription factor d (CaWRKYd) isolated from microarray analysis in the Tobacco mosaic virus (TMV)-P(0)-inoculated hot pepper plants. CaWRKYd belongs to the WRKY IIa group, a very small clade in the WRKY subfamily, and WRKY IIa group has positive/negative regulatory roles in Arabidopsis and rice. CaWRKYd transcripts were induced by various plant defense-related hormone treatments and TMV-P(0) inoculation. Silencing of CaWRKYd affected TMV-P(0)-mediated hypersensitive response (HR) cell death and accumulation of TMV-P(0) coat protein in local and systemic leaves. Furthermore, expression of some pathogenesis-related (PR) genes and HR-related genes was reduced in the CaWRKYd-silenced plants compared with TRV2 vector control plants upon TMV-P(0) inoculation. CaWRKYd was confirmed to bind to the W-box. Thus CaWRKYd is a newly identified Capsicum annuum WRKY transcription factor that appears to be involved in TMV-P(0)-mediated HR cell death by regulating downstream gene expression. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Constitutively elevated salicylic acid levels alter photosynthesis and oxidative state but not growth in transgenic populus.

    PubMed

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O; Nyamdari, Batbayar; Wilson, Mark C; Frost, Christopher J; Chen, Han-Yi; Babst, Benjamin A; Harding, Scott A; Tsai, Chung-Jui

    2013-07-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained.

  18. Soybean defense responses to the soybean aphid.

    PubMed

    Li, Yan; Zou, Jijun; Li, Min; Bilgin, Damla D; Vodkin, Lila O; Hartman, Glen L; Clough, Steven J

    2008-01-01

    Transcript profiles in aphid (Aphis glycines)-resistant (cv. Dowling) and -susceptible (cv. Williams 82) soybean (Glycine max) cultivars using soybean cDNA microarrays were investigated. Large-scale soybean cDNA microarrays representing approx. 18 000 genes or c. 30% of the soybean genome were compared at 6 and 12 h post-application of aphids. In a separate experiment utilizing clip cages, expression of three defense-related genes were examined at 6, 12, 24, 48, and 72 h in both cultivars by quantitative real-time PCR. One hundred and forty genes showed specific responses for resistance; these included genes related to cell wall, defense, DNA/RNA, secondary metabolism, signaling and other processes. When an extended time period of sampling was investigated, earlier and greater induction of three defense-related genes was observed in the resistant cultivar; however, the induction declined after 24 or 48 h in the resistant cultivar but continued to increase in the susceptible cultivar after 24 h. Aphid-challenged resistant plants showed rapid differential gene expression patterns similar to the incompatible response induced by avirulent Pseudomonas syringae. Five genes were identified as differentially expressed between the two genotypes in the absence of aphids.

  19. Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection.

    PubMed

    Choi, Bosung; Ghosh, Ritesh; Gururani, Mayank Anand; Shanmugam, Gnanendra; Jeon, Junhyun; Kim, Jonggeun; Park, Soo-Chul; Jeong, Mi-Jeong; Han, Kyung-Hwan; Bae, Dong-Won; Bae, Hanhong

    2017-05-30

    Sound vibration (SV), a mechanical stimulus, can trigger various molecular and physiological changes in plants like gene expression, hormonal modulation, induced antioxidant activity and calcium spiking. It also alters the seed germination and growth of plants. In this study, we investigated the effects of SV on the resistance of Arabidopsis thaliana against Botrytis cinerea infection. The microarray analysis was performed on infected Arabidopsis plants pre-exposed to SV of 1000 Hertz with 100 decibels. Broadly, the transcriptomic analysis revealed up-regulation of several defense and SA-responsive and/or signaling genes. Quantitative real-time PCR (qRT-PCR) analysis of selected genes also validated the induction of SA-mediated response in the infected Arabidopsis plants pre-exposed to SV. Corroboratively, hormonal analysis identified the increased concentration of salicylic acid (SA) in the SV-treated plants after pathogen inoculation. In contrast, jasmonic acid (JA) level in the SV-treated plants remained stable but lower than control plants during the infection. Based on these findings, we propose that SV treatment invigorates the plant defense system by regulating the SA-mediated priming effect, consequently promoting the SV-induced resistance in Arabidopsis against B. cinerea.

  20. SaRNA-mediated activation of TRPV5 reduces renal calcium oxalate deposition in rat via decreasing urinary calcium excretion.

    PubMed

    Zeng, Tao; Duan, Xiaolu; Zhu, Wei; Liu, Yang; Wu, Wenqi; Zeng, Guohua

    2018-06-01

    Hypercalciuria is a main risk factor for kidney stone  formation. TRPV5 is the gatekeeper protein for mediating calcium transport and reabsorption in the kidney. In the present study, we tested the effect of TRPV5 activation with small activating RNA (saRNA), which could induce gene expression by targeting the promoter of the gene, on ethylene glycol (EG)-induced calcium oxalate (CaOx) crystals formation in rat kidney. Five pairs of RNA activation sequences targeting the promoter of rat TRPV5 were designed and synthesized. The synthesized saRNA with the strongest activating effect was selected, and transcellular calcium transportation was tested by Fura-2 analysis. Subsequently, Sprague-Dawley rats were equally divided into three groups and fed with water, 1% EG for 28 days after injecting the negative control saRNA, 1% EG for 28 days after injecting the selected TRPV5-saRNA, respectively. The CaOx crystal formation and the 24-h urine components were assessed. In vitro study, saRNA ds-320 could significantly activate the expression of TRPV5 and transcellular calcium transportation. In vivo study, after 28 days treatment of EG, rats pre-infected with saRNA ds-320 had lower urinary calcium excretion and renal CaOx crystals formation as compared to that pre-infected with negative control saRNA. Activation of TRVP5 with saRNA ds-320 could inhibit EG-induced calcium oxalate crystals formation via promoting urine calcium reabsorption and decreasing urine calcium excretion in rats.

  1. Light-dependent expression of flg22-induced defense genes in Arabidopsis.

    PubMed

    Sano, Satoshi; Aoyama, Mayu; Nakai, Kana; Shimotani, Koji; Yamasaki, Kanako; Sato, Masa H; Tojo, Daisuke; Suwastika, I Nengah; Nomura, Hironari; Shiina, Takashi

    2014-01-01

    Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants. Whole-transcriptome analysis of flg22-treated Arabidopsis thaliana seedlings under light and dark conditions for 30 min revealed that a number of (30%) genes strongly induced by flg22 (>4.0) require light for their rapid expression, whereas flg22-repressed genes include a significant number of genes that are down-regulated by light. Furthermore, light is responsible for the flg22-induced accumulation of salicylic acid (SA), indicating that light is indispensable for basal defense responses in plants. To elucidate the role of photosynthesis in defense, we further examined flg22-induced defense gene expression in the presence of specific inhibitors of photosynthetic electron transport: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB). Light-dependent expression of defense genes was largely suppressed by DBMIB, but only partially suppressed by DCMU. These findings suggest that photosynthetic electron flow plays a role in controlling the light-dependent expression of flg22-inducible defense genes.

  2. Priming of Wheat with the Green Leaf Volatile Z-3-Hexenyl Acetate Enhances Defense against Fusarium graminearum But Boosts Deoxynivalenol Production1

    PubMed Central

    Ameye, Maarten; Audenaert, Kris; De Zutter, Nathalie; Steppe, Kathy; Van Meulebroek, Lieven; Vanhaecke, Lynn; De Vleesschauwer, David; Haesaert, Geert; Smagghe, Guy

    2015-01-01

    Priming refers to a mechanism whereby plants are sensitized to respond faster and/or more strongly to future pathogen attack. Here, we demonstrate that preexposure to the green leaf volatile Z-3-hexenyl acetate (Z-3-HAC) primed wheat (Triticum aestivum) for enhanced defense against subsequent infection with the hemibiotrophic fungus Fusarium graminearum. Bioassays showed that, after priming with Z-3-HAC, wheat ears accumulated up to 40% fewer necrotic spikelets. Furthermore, leaves of seedlings showed significantly smaller necrotic lesions compared with nonprimed plants, coinciding with strongly reduced fungal growth in planta. Additionally, we found that F. graminearum produced more deoxynivalenol, a mycotoxin, in the primed treatment. Expression analysis of salicylic acid (SA) and jasmonic acid (JA) biosynthesis genes and exogenous methyl salicylate and methyl jasmonate applications showed that plant defense against F. graminearum is sequentially regulated by SA and JA during the early and later stages of infection, respectively. Interestingly, analysis of the effect of Z-3-HAC pretreatment on SA- and JA-responsive gene expression in hormone-treated and pathogen-inoculated seedlings revealed that Z-3-HAC boosts JA-dependent defenses during the necrotrophic infection stage of F. graminearum but suppresses SA-regulated defense during its biotrophic phase. Together, these findings highlight the importance of temporally separated hormone changes in molding plant health and disease and support a scenario whereby the green leaf volatile Z-3-HAC protects wheat against Fusarium head blight by priming for enhanced JA-dependent defenses during the necrotrophic stages of infection. PMID:25713338

  3. Relaxation of herbivore-mediated selection drives the evolution of genetic covariances between plant competitive and defense traits.

    PubMed

    Uesugi, Akane; Connallon, Tim; Kessler, André; Monro, Keyne

    2017-06-01

    Insect herbivores are important mediators of selection on traits that impact plant defense against herbivory and competitive ability. Although recent experiments demonstrate a central role for herbivory in driving rapid evolution of defense and competition-mediating traits, whether and how herbivory shapes heritable variation in these traits remains poorly understood. Here, we evaluate the structure and evolutionary stability of the G matrix for plant metabolites that are involved in defense and allelopathy in the tall goldenrod, Solidago altissima. We show that G has evolutionarily diverged between experimentally replicated populations that evolved in the presence versus the absence of ambient herbivory, providing direct evidence for the evolution of G by natural selection. Specifically, evolution in an herbivore-free habitat altered the orientation of G, revealing a negative genetic covariation between defense- and competition-related metabolites that is typically masked in herbivore-exposed populations. Our results may be explained by predictions of classical quantitative genetic theory, as well as the theory of acquisition-allocation trade-offs. The study provides compelling evidence that herbivory drives the evolution of plant genetic architecture. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  4. Oleic Acid–Dependent Modulation of NITRIC OXIDE ASSOCIATED1 Protein Levels Regulates Nitric Oxide–Mediated Defense Signaling in Arabidopsis[C][W

    PubMed Central

    Mandal, Mihir Kumar; Chandra-Shekara, A.C.; Jeong, Rae-Dong; Yu, Keshun; Zhu, Shifeng; Chanda, Bidisha; Navarre, Duroy; Kachroo, Aardra; Kachroo, Pradeep

    2012-01-01

    The conserved cellular metabolites nitric oxide (NO) and oleic acid (18:1) are well-known regulators of disease physiologies in diverse organism. We show that NO production in plants is regulated via 18:1. Reduction in 18:1 levels, via a genetic mutation in the 18:1-synthesizing gene SUPPRESSOR OF SA INSENSITIVITY OF npr1-5 (SSI2) or exogenous application of glycerol, induced NO accumulation. Furthermore, both NO application and reduction in 18:1 induced the expression of similar sets of nuclear genes. The altered defense signaling in the ssi2 mutant was partially restored by a mutation in NITRIC OXIDE ASSOCIATED1 (NOA1) and completely restored by double mutations in NOA1 and either of the nitrate reductases. Biochemical studies showed that 18:1 physically bound NOA1, in turn leading to its degradation in a protease-dependent manner. In concurrence, overexpression of NOA1 did not promote NO-derived defense signaling in wild-type plants unless 18:1 levels were lowered. Subcellular localization showed that NOA1 and the 18:1 synthesizing SSI2 proteins were present in close proximity within the nucleoids of chloroplasts. Indeed, pathogen-induced or low-18:1-induced accumulation of NO was primarily detected in the chloroplasts and their nucleoids. Together, these data suggest that 18:1 levels regulate NO synthesis, and, thereby, NO-mediated signaling, by regulating NOA1 levels. PMID:22492810

  5. Parasitism by Cuscuta pentagona sequentially induces JA and SA defence pathways in tomato.

    PubMed

    Runyon, Justin B; Mescher, Mark C; Felton, Gary W; De Moraes, Consuelo M

    2010-02-01

    While plant responses to herbivores and pathogens are well characterized, responses to attack by other plants remain largely unexplored. We measured phytohormones and C(18) fatty acids in tomato attacked by the parasitic plant Cuscuta pentagona, and used transgenic and mutant plants to explore the roles of the defence-related phytohormones salicylic acid (SA) and jasmonic acid (JA). Parasite attachment to 10-day-old tomato plants elicited few biochemical changes, but a second attachment 10 d later elicited a 60-fold increase in JA, a 30-fold increase in SA and a hypersensitive-like response (HLR). Host age also influenced the response: neither Cuscuta seedlings nor established vines elicited a HLR in 10-day-old hosts, but both did in 20-day-old hosts. Parasites grew larger on hosts deficient in SA (NahG) or insensitive to JA [jasmonic acid-insensitive1 (jai1)], suggesting that both phytohormones mediate effective defences. Moreover, amounts of JA peaked 12 h before SA, indicating that defences may be coordinated via sequential induction of these hormones. Parasitism also induced increases in free linolenic and linoleic acids and abscisic acid. These findings provide the first documentation of plant hormonal signalling induced by a parasitic plant and show that tomato responses to C. pentagona display characteristics similar to both herbivore- and pathogen-induced responses.

  6. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation.

    PubMed

    Koch, J R; Creelman, R A; Eshita, S M; Seskar, M; Mullet, J E; Davis, K R

    2000-06-01

    Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response.

  7. Ozone Sensitivity in Hybrid Poplar Correlates with Insensitivity to Both Salicylic Acid and Jasmonic Acid. The Role of Programmed Cell Death in Lesion Formation1

    PubMed Central

    Koch, Jennifer Riehl; Creelman, Robert A.; Eshita, Steven M.; Seskar, Mirjana; Mullet, John E.; Davis, Keith R.

    2000-01-01

    Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response. PMID:10859179

  8. Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721; Tao, Shasha

    2012-12-15

    Exposure to arsenic is associated with an increased risk of lung disease. Novel strategies are needed to reduce the adverse health effects associated with arsenic exposure in the lung. Nrf2, a transcription factor that mediates an adaptive cellular defense response, is effective in detoxifying environmental insults and prevents a broad spectrum of diseases induced by environmental exposure to harmful substances. In this report, we tested whether Nrf2 activation protects mice from arsenic-induced toxicity. We used an in vivo arsenic inhalation model that is highly relevant to low environmental human exposure to arsenic-containing dusts. Two-week exposure to arsenic-containing dust resulted inmore » pathological alterations, oxidative DNA damage, and mild apoptotic cell death in the lung; all of which were blocked by sulforaphane (SF) in an Nrf2-dependent manner. Mechanistically, SF-mediated activation of Nrf2 alleviated inflammatory responses by modulating cytokine production. This study provides strong evidence that dietary intervention targeting Nrf2 activation is a feasible approach to reduce adverse health effects associated with arsenic exposure. -- Highlights: ► Exposed to arsenic particles and/or SF have elevated Nrf2 and its target genes. ► Sulforaphane prevents pathological alterations, oxidative damage and cell death. ► Sulforaphane alleviates infiltration of inflammatory cells into the lungs. ► Sulforaphane suppresses arsenic-induced proinflammatory cytokine production.« less

  9. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    PubMed

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.

  10. AtsPLA2-alpha nuclear relocalization by the Arabidopsis transcription factor AtMYB30 leads to repression of the plant defense response.

    PubMed

    Froidure, Solène; Canonne, Joanne; Daniel, Xavier; Jauneau, Alain; Brière, Christian; Roby, Dominique; Rivas, Susana

    2010-08-24

    The hypersensitive response (HR), characterized by a rapid and localized cell death at the inoculation site, is one of the most efficient resistance reactions to pathogen attack in plants. The transcription factor AtMYB30 was identified as a positive regulator of the HR and resistance responses during interactions between Arabidopsis and bacteria. Here, we show that AtMYB30 and the secreted phospholipase AtsPLA(2)-alpha physically interact in vivo, following the AtMYB30-mediated specific relocalization of AtsPLA(2)-alpha from cytoplasmic vesicles to the plant cell nucleus. This protein interaction leads to repression of AtMYB30 transcriptional activity and negative regulation of plant HR. Moreover, Atspla(2)-alpha mutant plants are more resistant to bacterial inoculation, whereas AtsPLA(2)-alpha overexpression leads to decreased resistance, confirming that AtsPLA(2)-alpha is a negative regulator of AtMYB30-mediated defense. These data underline the importance of cellular dynamics and, particularly, protein translocation to the nucleus, for defense-associated gene regulation in plants.

  11. Blufensin1 Negatively Impacts Basal Defense in Response to Barley Powdery Mildew

    USDA-ARS?s Scientific Manuscript database

    Plants have evolved complex regulatory mechanisms to control the defense response against microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSIN1 (BLN1), a small peptide ...

  12. Defensive responses of cuttlefish to different teleost predators.

    PubMed

    Staudinger, Michelle D; Buresch, Kendra C; Mäthger, Lydia M; Fry, Charlie; McAnulty, Sarah; Ulmer, Kimberly M; Hanlon, Roger T

    2013-12-01

    We evaluated cuttlefish (Sepia officinalis) responses to three teleost predators: bluefish (Pomatomus saltatrix), summer flounder (Paralichthys dentatus), and black seabass (Centropristis striata). We hypothesized that the distinct body shapes, swimming behaviors, and predation tactics exhibited by the three fishes would elicit markedly different antipredator responses by cuttlefish. Over the course of 25 predator-prey behavioral trials, 3 primary and 15 secondary defense behaviors of cuttlefish were shown to predators. In contrast, secondary defenses were not shown during control trials in which predators were absent. With seabass-a benthic, sit-and-pursue predator-cuttlefish used flight and spent more time swimming in the water column than with other predators. With bluefish-an active, pelagic searching predator-cuttlefish remained closely associated with the substrate and relied more on cryptic behaviors. Startle (deimatic) displays were the most frequent secondary defense shown to seabass and bluefish, particularly the Dark eye ring and Deimatic spot displays. We were unable to evaluate secondary defenses by cuttlefish to flounder-a lie-and-wait predator-because flounder did not pursue cuttlefish or make attacks. Nonetheless, cuttlefish used primary defense during flounder trials, alternating between cryptic still and moving behaviors. Overall, our results suggest that cuttlefish may vary their behavior in the presence of different teleost predators: cryptic behaviors may be more important in the presence of active searching predators (e.g., bluefish), while conspicuous movements such as swimming in the water column and startle displays may be more prevalent with relatively sedentary, bottom-associated predators (e.g., seabass).

  13. Metabolomic Response to Huanglongbing: Role of Carboxylic Compounds in Citrus sinensis Response to 'Candidatus Liberibacter asiaticus' and Its Vector, Diaphorina citri.

    PubMed

    Killiny, Nabil; Nehela, Yasser

    2017-08-01

    Huanglongbing, a destructive disease of citrus, is caused by the fastidious bacterium 'Candidatus Liberibacter asiaticus' and transmitted by Asian citrus psyllid, Diaphorina citri. The impact of 'Ca. L. asiaticus' infection or D. citri infestation on Valencia sweet orange (Citrus sinensis) leaf metabolites was investigated using gas chromatography mass spectrometry, followed by gene expression analysis for 37 genes involved in jasmonic acid (JA), salicylic acid (SA), and proline-glutamine pathways. The total amino acid abundance increased after 'Ca. L. asiaticus' infection, while the total fatty acids increased dramatically after infestation with D. citri, compared with control plants. Seven amino acids (glycine, l-isoleucine, l-phenylalanine, l-proline, l-serine, l-threonine, and l-tryptophan) and five organic acids (benzoic acid, citric acid, fumaric acid, SA, and succinic acid) increased in 'Ca. L. asiaticus'-infected plants. On the other hand, the abundance of trans-JA and its precursor α-linolenic increased in D. citri-infested plants. Surprisingly, the double attack of both D. citri infestation and 'Ca. L. asiaticus' infection moderated the metabolic changes in all chemical classes studied. In addition, the gene expression analysis supported these results. Based on these findings, we suggest that, although amino acids such as phenylalanine are involved in citrus defense against 'Ca. L. asiaticus' infection through the activation of an SA-mediated pathway, fatty acids, especially α-linolenic acid, are involved in defense against D. citri infestation via the induction of a JA-mediated pathway.

  14. Ectopic Expression of JcWRKY Confers Enhanced Resistance in Transgenic Tobacco Against Macrophomina phaseolina.

    PubMed

    Agarwal, Parinita; Patel, Khantika; Agarwal, Pradeep K

    2018-04-01

    Plants possess an innate immune system comprising of a complex network of closely regulated defense responses involving differential gene expression mediated by transcription factors (TFs). The WRKYs comprise of an important plant-specific TF family, which is involved in regulation of biotic and abiotic defenses. The overexpression of JcWRKY resulted in improved resistance in transgenic tobacco against Macrophomina phaseolina. The production of reactive oxygen species (ROS) and its detoxification through antioxidative system in the transgenics facilitates defense against Macrophomina. The enhanced catalase activity on Macrophomina infection limits the spread of infection. The transcript expression of antioxidative enzymes gene (CAT and SOD) and salicylic acid (SA) biosynthetic gene ICS1 showed upregulation during Macrophomina infection and combinatorial stress. The enhanced transcript of pathogenesis-related genes PR-1 indicates the accumulation of SA during different stresses. The PR-2 and PR-5 highlight the activation of defense responses comprising of activation of hydrolytic cleavage of glucanases and thaumatin-like proteins causing disruption of fungal cells. The ROS homeostasis in coordination with signaling molecules regulate the defense responses and inhibit fungal growth.

  15. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism.

    PubMed

    Robert-Seilaniantz, Alexandre; Grant, Murray; Jones, Jonathan D G

    2011-01-01

    Until recently, most studies on the role of hormones in plant-pathogen interactions focused on salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). It is now clear that pathogen-induced modulation of signaling via other hormones contributes to virulence. A picture is emerging of complex crosstalk and induced hormonal changes that modulate disease and resistance, with outcomes dependent on pathogen lifestyles and the genetic constitution of the host. Recent progress has revealed intriguing similarities between hormone signaling mechanisms, with gene induction responses often achieved by derepression. Here, we report on recent advances, updating current knowledge on classical defense hormones SA, JA, and ET, and the roles of auxin, abscisic acid (ABA), cytokinins (CKs), and brassinosteroids in molding plant-pathogen interactions. We highlight an emerging theme that positive and negative regulators of these disparate hormone signaling pathways are crucial regulatory targets of hormonal crosstalk in disease and defense. Copyright © 2011 by Annual Reviews. All rights reserved.

  16. CRISPR-mediated defense mechanisms in the hyperthermophilic archaeal genus Sulfolobus

    PubMed Central

    Manica, Andrea; Schleper, Christa

    2013-01-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-mediated virus defense based on small RNAs is a hallmark of archaea and also found in many bacteria. Archaeal genomes and, in particular, organisms of the extremely thermoacidophilic genus Sulfolobus, carry extensive CRISPR loci each with dozens of sequence signatures (spacers) able to mediate targeting and degradation of complementary invading nucleic acids. The diversity of CRISPR systems and their associated protein complexes indicates an extensive functional breadth and versatility of this adaptive immune system. Sulfolobus solfataricus and S. islandicus represent two of the best characterized genetic model organisms in the archaea not only with respect to the CRISPR system. Here we address and discuss in a broader context particularly recent progress made in understanding spacer recruitment from foreign DNA, production of small RNAs, in vitro activity of CRISPR-associated protein complexes and attack of viruses and plasmids in in vivo test systems. PMID:23535277

  17. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease.

    PubMed

    Zehra, Andleeb; Meena, Mukesh; Dubey, Manish Kumar; Aamir, Mohd; Upadhyay, R S

    2017-11-02

    Plant defense against their pathogens can be induced by a complex network of different inducers. The present study investigates the synergistic effect of Trichoderma harzianum, exogenous salicylic acid (SA) and methyl jasmonate (MeJA) over the response and regulation of the antioxidant defense mechanisms and lipid peroxidation in tomato plants against Fusarium wilt disease. In the present work, tomato plants were infected by Fusarium oxysporum f. sp. lycopersici 3 days after inoculated with T. harzianum and/or sprayed daily for 3 days with chemical inducers (SA and MeJA). Plants were analysed at 0, 24, 48, 72 and 96 h after inoculation with Fusarium oxysporum f. sp. lycopersici. Infection of tomato plants by pathogen led to strong reduction in the dry weight of roots and shoots with the enhanced concentration of H 2 O 2 and varying degree of lipid peroxidation. Concurrently, exogenous SA, when applied with pathogen greatly enhanced H 2 O 2 content as well as activities of antioxidant enzymes except catalase (CAT) and ascorbate peroxidase (APx). The pathogen challenged plants pretreated with T. harzianum and MeJA together exhibited less lipid peroxidation and as well as the elevated level of ascorbic acid and enhanced activities of antioxidant enzymes. All applied treatments protected tomato seedlings against Fusarium wilt disease but the percentage of protection was found higher in plants pretreated with the combination of T. harzianum and chemical inducers.

  18. How to induce defense responses in wild plant populations? Using bilberry (Vaccinium myrtillus) as example.

    PubMed

    Seldal, Tarald; Hegland, Stein Joar; Rydgren, Knut; Rodriguez-Saona, Cesar; Töpper, Joachim Paul

    2017-03-01

    Inducible plant defense is a beneficial strategy for plants, which imply that plants should allocate resources from growth and reproduction to defense when herbivores attack. Plant ecologist has often studied defense responses in wild populations by biomass clipping experiments, whereas laboratory and greenhouse experiments in addition apply chemical elicitors to induce defense responses. To investigate whether field ecologists could benefit from methods used in laboratory and greenhouse studies, we established a randomized block-design in a pine-bilberry forest in Western Norway. We tested whether we could activate defense responses in bilberry ( Vaccinium myrtillus ) by nine different treatments using clipping (leaf tissue or branch removal) with or without chemical treatment by methyljasmonate (MeJA). We subsequently measured consequences of induced defenses through vegetative growth and insect herbivory during one growing season. Our results showed that only MeJA-treated plants showed consistent defense responses through suppressed vegetative growth and reduced herbivory by leaf-chewing insects, suggesting an allocation of resources from growth to defense. Leaf tissue removal reduced insect herbivory equal to the effect of the MeJa treatments, but had no negative impact on growth. Branch removal did not reduce insect herbivory or vegetative growth. MeJa treatment and clipping combined did not give an additional defense response. In this study, we investigated how to induce defense responses in wild plant populations under natural field conditions. Our results show that using the chemical elicitor MeJA, with or without biomass clipping, may be a better method to induce defense response in field experiments than clipping of leaves or branches that often has been used in ecological field studies.

  19. Systemic Acquired Resistance and Salicylic Acid: Past, Present and Future.

    PubMed

    Klessig, Daniel F; Choi, Hyong Woo; Dempsey, D'Maris Amick

    2018-05-21

    Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development, as well as the activation of defenses against biotic and abiotic stress. Here we present a historical overview of the progress that has been made to date in elucidating SA's role in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this time-frame, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets/receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself, but rather as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself, as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on identity of the attacking pathogen.

  20. Insect response to plant defensive protease inhibitors.

    PubMed

    Zhu-Salzman, Keyan; Zeng, Rensen

    2015-01-07

    Plant protease inhibitors (PIs) are natural plant defense proteins that inhibit proteases of invading insect herbivores. However, their anti-insect efficacy is determined not only by their potency toward a vulnerable insect system but also by the response of the insect to such a challenge. Through the long history of coevolution with their host plants, insects have developed sophisticated mechanisms to circumvent antinutritional effects of dietary challenges. Their response takes the form of changes in gene expression and the protein repertoire in cells lining the alimentary tract, the first line of defense. Research in insect digestive proteases has revealed the crucial roles they play in insect adaptation to plant PIs and has brought about a new appreciation of how phytophagous insects employ this group of molecules in both protein digestion and counterdefense. This review provides researchers in related fields an up-to-date summary of recent advances.

  1. Cranberry Resistance to Dodder Parasitism: Induced Chemical Defenses and Behavior of a Parasitic Plant.

    PubMed

    Tjiurutue, Muvari Connie; Sandler, Hilary A; Kersch-Becker, Monica F; Theis, Nina; Adler, Lynn A

    2016-02-01

    Parasitic plants are common in many ecosystems, where they can structure community interactions and cause major economic damage. For example, parasitic dodder (Cuscuta spp.) can cause up to 80-100 % yield loss in heavily infested cranberry (Vaccinium macrocarpon) patches. Despite their ecological and economic importance, remarkably little is known about how parasitic plants affect, or are affected by, host chemistry. To examine chemically-mediated interactions between dodder and its cranberry host, we conducted a greenhouse experiment asking whether: (1) dodder performance varies with cranberry cultivar; (2) cultivars differ in levels of phytohormones, volatiles, or phenolics, and whether such variation correlates with dodder parasitism; (3) dodder parasitism induced changes in phytohormones, volatiles, or phenolics, and whether the level of inducible response varied among cultivars. We used five cranberry cultivars to assess host attractiveness to dodder and dodder performance. Dodder performance did not differ across cultivars, but there were marginally significant differences in host attractiveness to dodder, with fewer dodder attaching to Early Black than to any other cultivar. Dodder parasitism induced higher levels of salicylic acid (SA) across cultivars. Cultivars differed in overall levels of flavonols and volatile profiles, but not phenolic acids or proanthocyanidins, and dodder attachment induced changes in several flavonols and volatiles. While cultivars differed slightly in resistance to dodder attachment, we did not find evidence of chemical defenses that mediate these interactions. However, induction of several defenses indicates that parasitism alters traits that could influence subsequent interactions with other species, thus shaping community dynamics.

  2. Fear and the Defense Cascade: Clinical Implications and Management.

    PubMed

    Kozlowska, Kasia; Walker, Peter; McLean, Loyola; Carrive, Pascal

    2015-01-01

    Evolution has endowed all humans with a continuum of innate, hard-wired, automatically activated defense behaviors, termed the defense cascade. Arousal is the first step in activating the defense cascade; flight or fight is an active defense response for dealing with threat; freezing is a flight-or-fight response put on hold; tonic immobility and collapsed immobility are responses of last resort to inescapable threat, when active defense responses have failed; and quiescent immobility is a state of quiescence that promotes rest and healing. Each of these defense reactions has a distinctive neural pattern mediated by a common neural pathway: activation and inhibition of particular functional components in the amygdala, hypothalamus, periaqueductal gray, and sympathetic and vagal nuclei. Unlike animals, which generally are able to restore their standard mode of functioning once the danger is past, humans often are not, and they may find themselves locked into the same, recurring pattern of response tied in with the original danger or trauma. Understanding the signature patterns of these innate responses--the particular components that combine to yield the given pattern of defense-is important for developing treatment interventions. Effective interventions aim to activate or deactivate one or more components of the signature neural pattern, thereby producing a shift in the neural pattern and, with it, in mind-body state. The process of shifting the neural pattern is the necessary first step in unlocking the patient's trauma response, in breaking the cycle of suffering, and in helping the patient to adapt to, and overcome, past trauma.

  3. Mechanisms of plant defense against insect herbivores

    PubMed Central

    War, Abdul Rashid; Paulraj, Michael Gabriel; Ahmad, Tariq; Buhroo, Abdul Ahad; Hussain, Barkat; Ignacimuthu, Savarimuthu; Sharma, Hari Chand

    2012-01-01

    Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production. PMID:22895106

  4. Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus[C][W

    PubMed Central

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O.; Nyamdari, Batbayar; Wilson, Mark C.; Frost, Christopher J.; Chen, Han-Yi; Babst, Benjamin A.; Harding, Scott A.; Tsai, Chung-Jui

    2013-01-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained. PMID:23903318

  5. Prefrontal cortical glutathione-dependent defense and proinflammatory mediators in chronically isolated rats: Modulation by fluoxetine or clozapine.

    PubMed

    Todorović, Nevena; Filipović, Dragana

    2017-07-04

    Chronic psychosocial stress modulates brain antioxidant systems and causes neuroinflammation that plays a role in the pathophysiology of depression. Although the antidepressant fluoxetine (FLX) represents the first-line treatment for depression and the atypical antipsychotic clozapine (CLZ) is considered as a second-line treatment for psychotic disorders, the downstream mechanisms of action of these treatments, beyond serotonergic or dopaminergic signaling, remain elusive. We examined behavioral changes, glutathione (GSH)-dependent defense and levels of proinflammatory mediators in the prefrontal cortex (PFC) of adult male Wistar rats exposed to 21days of chronic social isolation (CSIS). We also tested the ability of FLX (15mg/kg/day) or CLZ (20mg/kg/day), applied during CSIS, to prevent stress-induced changes. CSIS caused depressive- and anxiety-like behaviors, compromised GSH-dependent defense, and induced nuclear factor-kappa B (NF-κB) activation with a concomitant increase in cytosolic levels of proinflammatory mediators cyclooxigenase-2, interleukin-1beta and tumor necrosis factor-alpha in the PFC. NF-κB activation and proinflammatory response in the PFC were not found in CSIS rats treated with FLX or CLZ. In contrast, only FLX preserved GSH content in CSIS rats. CLZ not only failed to protect against CSIS-induced GSH depletion, but it diminished its levels when applied to non-stressed rats. In conclusion, prefrontal cortical GSH depletion and the proinflammatory response underlying depressive- and anxiety-like states induced by CSIS were prevented by FLX. The protective effect of CLZ, which was equally effective as FLX on the behavioral level, was limited to proinflammatory components. Hence, different mechanisms underlie the protective effects of these two drugs in CSIS rats. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. A translational study on looming-evoked defensive response and the underlying subcortical pathway in autism.

    PubMed

    Hu, Yu; Chen, Zhuoming; Huang, Lu; Xi, Yue; Li, Bingxiao; Wang, Hong; Yan, Jiajian; Lee, Tatia M C; Tao, Qian; So, Kwok-Fai; Ren, Chaoran

    2017-11-07

    Rapidly approaching objects indicating threats can induce defensive response through activating a subcortical pathway comprising superior colliculus (SC), lateral posterior nucleus (LP), and basolateral amygdala (BLA). Abnormal defensive response has been reported in autism, and impaired synaptic connections could be the underlying mechanism. Whether the SC-LP-BLA pathway processes looming stimuli abnormally in autism is not clear. Here, we found that looming-evoked defensive response is impaired in a subgroup of the valproic acid (VPA) mouse model of autism. By combining the conventional neurotracer and transneuronal rabies virus tracing techniques, we demonstrated that synaptic connections in the SC-LP-BLA pathway were abnormal in VPA mice whose looming-evoked defensive responses were absent. Importantly, we further translated the finding to children with autism and observed that they did not present looming-evoked defensive response. Furthermore, the findings of the DTI with the probabilistic tractography showed that the structural connections of SC-pulvinar-amygdala in autism children were weak. The pulvinar is parallel to the LP in a mouse. Because looming-evoked defensive response is innate in humans and emerges much earlier than do social and language functions, the absence of defensive response could be an earlier sign of autism in children.

  7. Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae.

    PubMed

    Shubchynskyy, Volodymyr; Boniecka, Justyna; Schweighofer, Alois; Simulis, Justinas; Kvederaviciute, Kotryna; Stumpe, Michael; Mauch, Felix; Balazadeh, Salma; Mueller-Roeber, Bernd; Boutrot, Freddy; Zipfel, Cyril; Meskiene, Irute

    2017-02-01

    Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Characterization of rice lesion mimic mutants of 93-11 for a better understanding of general host defense response to both rice blast and sheath blight diseases

    USDA-ARS?s Scientific Manuscript database

    Rice lesion mimic mutants (LMM) exhibit necrotic lesions resembling programmed cell death (PCD). PCD is one of the significant hallmarks of disease resistance genes mediated defense responses. LMM can be used to study the mechanisms of plant disease resistance. In the present study, a total of 133 ...

  9. Arabidopsis thaliana defense response to the ochratoxin A-producing strain (Aspergillus ochraceus 3.4412).

    PubMed

    Hao, Junran; Wu, Weihong; Wang, Yan; Yang, Zhuojun; Liu, Yang; Lv, Yangjun; Zhai, Yanan; Yang, Jing; Liang, Zhihong; Huang, Kunlun; Xu, Wentao

    2015-05-01

    OTA-producing strain Aspergillus ochraceus induced necrotic lesions, ROS accumulation and defense responses in Arabidopsis . Primary metabolic and defense-related proteins changed in proteomics. Ascorbate-glutathione cycle and voltage-dependent anion-selective channel proteins fluctuated. Mycotoxigenic fungi, as widespread contaminants by synthesizing mycotoxins in pre-/post-harvest infected plants and even stored commercial cereals, could usually induce plant-fungi defense responses. Notably, ochratoxin A (OTA) is a nephrotoxic, hepatotoxic, teratogenic, immunotoxic and phytotoxic mycotoxin. Herein, defense responses of model system Arabidopsis thaliana detached leaves to infection of Aspergillus ochraceus 3.4412, an OTA high-producing strain, were studied from physiological, proteomic and transcriptional perspectives. During the first 72 h after inoculation (hai), the newly formed hypersensitive responses-like lesions, decreased chlorophyll content, accumulated reactive oxygen species and upregulated defense genes expressions indicated the defense response was induced in the leaves with the possible earlier motivated jasmonic acid/ethylene signaling pathways and the later salicylic acid-related pathway. Moreover, proteomics using two-dimensional gel electrophoresis 72 hai showed 16 spots with significantly changed abundance and 13 spots corresponding to 12 unique proteins were successfully identified by MALDI-TOF/TOF MS/MS. Of these, six proteins were involved in basic metabolism and four in defense-related processes, which included glutathione-S-transferase F7, voltage-dependent anion-selective channel protein 3 (VDAC-3), osmotin-like protein OSM34 and blue copper-binding protein. Verified from proteomic and/or transcriptional perspectives, it is concluded that the primary metabolic pathways were suppressed with the ascorbate-glutathione cycle fluctuated in response to A. ochraceus and the modulation of VDACs suggested the possibility of structural damage and

  10. Loss of Function of FATTY ACID DESATURASE7 in Tomato Enhances Basal Aphid Resistance in a Salicylate-Dependent Manner1[W][OA

    PubMed Central

    Avila, Carlos A.; Arévalo-Soliz, Lirio M.; Jia, Lingling; Navarre, Duroy A.; Chen, Zhaorigetu; Howe, Gregg A.; Meng, Qing-Wei; Smith, Jonathon E.; Goggin, Fiona L.

    2012-01-01

    We report here that disruption of function of the ω-3 FATTY ACID DESATURASE7 (FAD7) enhances plant defenses against aphids. The suppressor of prosystemin-mediated responses2 (spr2) mutation in tomato (Solanum lycopersicum), which eliminates the function of FAD7, reduces the settling behavior, survival, and fecundity of the potato aphid (Macrosiphum euphorbiae). Likewise, the antisense suppression of LeFAD7 expression in wild-type tomato plants reduces aphid infestations. Aphid resistance in the spr2 mutant is associated with enhanced levels of salicylic acid (SA) and mRNA encoding the pathogenesis-related protein P4. Introduction of the Naphthalene/salicylate hydroxylase transgene, which suppresses SA accumulation, restores wild-type levels of aphid susceptibility to spr2. Resistance in spr2 is also lost when we utilize virus-induced gene silencing to suppress the expression of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), a positive regulator of many SA-dependent defenses. These results indicate that FAD7 suppresses defenses against aphids that are mediated through SA and NPR1. Although loss of function of FAD7 also inhibits the synthesis of jasmonate (JA), the effects of this desaturase on aphid resistance are not dependent on JA; other mutants impaired in JA synthesis (acx1) or perception (jai1-1) show wild-type levels of aphid susceptibility, and spr2 retains aphid resistance when treated with methyl jasmonate. Thus, FAD7 may influence JA-dependent defenses against chewing insects and SA-dependent defenses against aphids through independent effects on JA synthesis and SA signaling. The Arabidopsis (Arabidopsis thaliana) mutants Atfad7-2 and Atfad7-1fad8 also show enhanced resistance to the green peach aphid (Myzus persicae) compared with wild-type controls, indicating that FAD7 influences plant-aphid interactions in at least two plant families. PMID:22291202

  11. Drought stress promotes the colonization success of a herbivorous mite that manipulates plant defenses.

    PubMed

    Ximénez-Embún, Miguel G; Glas, Joris J; Ortego, Felix; Alba, Juan M; Castañera, Pedro; Kant, Merijn R

    2017-12-01

    Climate change is expected to bring longer periods of drought and this may affect the plant's ability to resist pests. We assessed if water deficit affects the tomato russet mite (TRM; Aculops lycopersici), a key tomato-pest. TRM thrives on tomato by suppressing the plant's jamonate defenses while these defenses typically are modulated by drought stress. We observed that the TRM population grows faster and causes more damage on drought-stressed plants. To explain this observation we measured several nutrients, phytohormones, defense-gene expression and the activity of defensive proteins in plants with or without drought stress or TRM. TRM increased the levels of total protein and several free amino acids. It also promoted the SA-response and upregulated the accumulation of jasmonates but down-regulated the downstream marker genes while promoting the activity of cysteine-but not serine-protease inhibitors, polyphenol oxidase and of peroxidase (POD). Drought stress, in turn, retained the down regulation of JA-marker genes and reduced the activity of serine protease inhibitors and POD, and altered the levels of some free-amino acids. When combined, drought stress antagonized the accumulation of POD and JA by TRM and synergized accumulation of free sugars and SA. Our data show that drought stress interacts with pest-induced primary and secondary metabolic changes and promotes pest performance.

  12. The Evolving View of IL-17-Mediated Immunity in Defense Against Mucocutaneous Candidiasis in Humans.

    PubMed

    Soltész, Beáta; Tóth, Beáta; Sarkadi, Adrien Katalin; Erdős, Melinda; Maródi, László

    2015-01-01

    The discovery of interleukin (IL)-17-mediated immunity has provided a robust framework upon which our current understanding of the mechanism involved in host defense against mucocutaneous candidiasis (CMC) has been built. Studies have shed light on how pattern recognition receptors expressed by innate immune cells recognize various components of Candida cell wall. Inborn errors of immunity affecting IL-17+ T cell differentiation have recently been defined, such as deficiencies of signal transducer and activator of transcription (STAT)3, STAT1, IL-12Rβ1 and IL-12p40, and caspase recruitment domain 9. Impaired receptor-ligand coupling was identified in patients with IL-17F and IL-17 receptor A (IL17RA) deficiency and autoimmune polyendocrine syndrome (APS) type 1. Mutation in the nuclear factor kappa B activator (ACT) 1 was described as a cause of impaired IL-17R-mediated signaling. CMC may be part of a complex clinical phenotype like in patients with deficiencies of STAT3, IL-12Rβ1/IL-12p40 and APS-1 or may be the only or dominant phenotypic manifestation of disease which is referred to as CMC disease. CMCD may result from deficiencies of STAT1, IL-17F, IL-17RA and ACT1. In this review we discuss how recent research on IL-17-mediated immunity shed light on host defense against mucocutaneous infection by Candida and how the discovery of various germ-line mutations and the characterization of associated clinical phenotypes have provided insights into the role of CD4+IL-17+ lymphocytes in the regulation of anticandidal defense of body surfaces.

  13. Hemolin-A lepidopteran anti-viral defense factor?

    PubMed

    Terenius, Olle

    2008-01-01

    Immunity in insects has largely focused on responses towards bacteria and fungi, but recently the study of immune responses against viral infections has also received attention. In Lepidoptera, phagocytosis and encapsulation mediated by hemocytes, and apoptosis are part of the response against virus infection; however, many studies also suggest the presence of unknown factors involved in the anti-viral defense. An up-regulation of the lepidopteran-specific pattern recognition protein Hemolin after baculovirus infection in the Chinese oak silkmoth and discovery of putative virus responsive elements in the up-stream regions of Hemolin in the Cecropia moth and the Tobacco horn worm could suggest that Hemolin is involved in virus defense. In this paper, a number of studies investigating baculovirus pathogenesis, and others analyzing Hemolin expression have been revisited leading to the speculation that Hemolin could be engaged in several anti-viral processes.

  14. Defense response in Nopal Cladodes infiltrated with Salmonella Typhimurium

    USDA-ARS?s Scientific Manuscript database

    Foodborne outbreaks associated with fresh produce have increased in recent years. Pre-harvest contamination of fresh produce via irrigation water, soil, or other animal vectors may be responsible for many of these outbreaks. We evaluated defense response of nopal plants when contaminated in intern...

  15. Report of the Defense Science Board 1980 Summer Study Panel on Industrial Responsiveness

    DTIC Science & Technology

    1981-01-01

    Encourage Investment H- Improving Productivity Re c ommen da t i on Modify current legislation, regulations and practices to permit greater...Ensure that National Defense needs are properly considered in application of non-defense government regulations . Attachment 1 Page 2 Responsible...views known in the development and application of non-defense government regulations — which later directly influence defense procurements. o

  16. Th17 cell cytokine secretion profile in host defense and autoimmunity.

    PubMed

    Graeber, Kristen E; Olsen, Nancy J

    2012-02-01

    The goal of this review is to examine the effector functions of Th17 cells in host defense and autoimmunity. Published literature on Th17 cells was reviewed with a focus on the secreted products that mediate effector activities of these cells. Th17 cells secrete an array of cytokines that contribute to host defense and that bridge the innate and adaptive arms of the immune response. When this subset of T cells is dysregulated, autoimmune phenomena develop that contribute to the manifestations of many autoimmune diseases. Th17 cells are positioned at a crossroads between innate and adaptive immunity and provide mediators that are essential for host defense. Current interest in harnessing this system for treatment of autoimmune disease will be challenged by the need to avoid abrogating these many protective functions.

  17. Plant innate immunity: an updated insight into defense mechanism.

    PubMed

    Muthamilarasan, Mehanathan; Prasad, Manoj

    2013-06-01

    Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.

  18. Cis-12-oxo-phytodienoic acid stimulates rice defense response to a piercing-sucking insect.

    PubMed

    Guo, Hui-Min; Li, Hai-Chao; Zhou, Shi-Rong; Xue, Hong-Wei; Miao, Xue-Xia

    2014-11-01

    The brown planthopper (BPH, Nilaparvata lugens) is a destructive, monophagous, piercing-sucking insect pest of rice. Previous studies indicated that jasmonic acid (JA) positively regulates rice defense against chewing insect pests but negatively regulates it against the piercing-sucking insect of BPH. We here demonstrated that overexpression of allene oxide cyclase (AOC) but not OPR3 (cis-12-oxo-phytodienoic acid (OPDA) reductase 3, an enzyme adjacent to AOC in the JA synthetic pathway) significantly increased rice resistance to BPH, mainly by reducing the feeding activity and survival rate. Further analysis revealed that plant response to BPH under AOC overexpression was independent of the JA pathway and that significantly higher OPDA levels stimulated rice resistance to BPH. Microarray analysis identified multiple candidate resistance-related genes under AOC overexpression. OPDA treatment stimulated the resistance of radish seedlings to green peach aphid Myzus persicae, another piercing-sucking insect. These results imply that rice resistance to chewing insects and to sucking insects can be enhanced simultaneously through AOC-mediated increases of JA and OPDA and provide direct evidence of the potential application of OPDA in stimulating plant defense responses to piercing-sucking insect pests in agriculture. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  19. Fear and the Defense Cascade: Clinical Implications and Management

    PubMed Central

    Kozlowska, Kasia; Walker, Peter; McLean, Loyola; Carrive, Pascal

    2015-01-01

    Abstract Evolution has endowed all humans with a continuum of innate, hard-wired, automatically activated defense behaviors, termed the defense cascade. Arousal is the first step in activating the defense cascade; flight or fight is an active defense response for dealing with threat; freezing is a flight-or-fight response put on hold; tonic immobility and collapsed immobility are responses of last resort to inescapable threat, when active defense responses have failed; and quiescent immobility is a state of quiescence that promotes rest and healing. Each of these defense reactions has a distinctive neural pattern mediated by a common neural pathway: activation and inhibition of particular functional components in the amygdala, hypothalamus, periaqueductal gray, and sympathetic and vagal nuclei. Unlike animals, which generally are able to restore their standard mode of functioning once the danger is past, humans often are not, and they may find themselves locked into the same, recurring pattern of response tied in with the original danger or trauma. Understanding the signature patterns of these innate responses—the particular components that combine to yield the given pattern of defense—is important for developing treatment interventions. Effective interventions aim to activate or deactivate one or more components of the signature neural pattern, thereby producing a shift in the neural pattern and, with it, in mind-body state. The process of shifting the neural pattern is the necessary first step in unlocking the patient’s trauma response, in breaking the cycle of suffering, and in helping the patient to adapt to, and overcome, past trauma. PMID:26062169

  20. ORA59 and EIN3 interaction couples jasmonate-ethylene synergistic action to antagonistic salicylic acid regulation of PDF expression.

    PubMed

    He, Xiang; Jiang, Jishan; Wang, Chang-Quan; Dehesh, Katayoon

    2017-04-01

    Hormonal crosstalk is central for tailoring plant responses to the nature of challenges encountered. The role of antagonism between the two major defense hormones, salicylic acid (SA) and jasmonic acid (JA), and modulation of this interplay by ethylene (ET) in favor of JA signaling pathway in plant stress responses is well recognized, but the underlying mechanism is not fully understood. Here, we show the opposing function of two transcription factors, ethylene insensitive3 (EIN3) and EIN3-Like1 (EIL1), in SA-mediated suppression and JA-mediated activation of PLANT DEFENSIN1.2 (PDF1.2). This functional duality is mediated via their effect on protein, not transcript levels of the PDF1.2 transcriptional activator octadecanoid-responsive Arabidopsis59 (ORA59). Specifically, JA induces ORA59 protein levels independently of EIN3/EIL1, whereas SA reduces the protein levels dependently of EIN3/EIL1. Co-infiltration assays revealed nuclear co-localization of ORA59 and EIN3, and split-luciferase together with yeast-two-hybrid assays established their physical interaction. The functional ramification of the physical interaction is EIN3-dependent degradation of ORA59 by the 26S proteasome. These findings allude to SA-responsive reduction of ORA59 levels mediated by EIN3 binding to and targeting of ORA59 for degradation, thus nominating ORA59 pool as a coordination node for the antagonistic function of ET/JA and SA. © 2017 Institute of Botany, Chinese Academy of Sciences.

  1. Disease Interactions in a Shared Host Plant: Effects of Pre-Existing Viral Infection on Cucurbit Plant Defense Responses and Resistance to Bacterial Wilt Disease

    PubMed Central

    Mauck, Kerry E.; Pulido, Hannier; De Moraes, Consuelo M.; Stephenson, Andrew G.; Mescher, Mark C.

    2013-01-01

    Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana) contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila) at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV). We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA) in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host-plant quality for (and

  2. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    ERIC Educational Resources Information Center

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  3. Arabidopsis Transcriptome Analysis Reveals Key Roles of Melatonin in Plant Defense Systems

    PubMed Central

    Weeda, Sarah; Zhang, Na; Zhao, Xiaolei; Ndip, Grace; Guo, Yangdong; Buck, Gregory A.; Fu, Conggui; Ren, Shuxin

    2014-01-01

    Melatonin is a ubiquitous molecule and exists across kingdoms including plant species. Studies on melatonin in plants have mainly focused on its physiological influence on growth and development, and on its biosynthesis. Much less attention has been drawn to its affect on genome-wide gene expression. To comprehensively investigate the role(s) of melatonin at the genomics level, we utilized mRNA-seq technology to analyze Arabidopsis plants subjected to a 16-hour 100 pM (low) and 1 mM (high) melatonin treatment. The expression profiles were analyzed to identify differentially expressed genes. 100 pM melatonin treatment significantly affected the expression of only 81 genes with 51 down-regulated and 30 up-regulated. However, 1 mM melatonin significantly altered 1308 genes with 566 up-regulated and 742 down-regulated. Not all genes altered by low melatonin were affected by high melatonin, indicating different roles of melatonin in regulation of plant growth and development under low and high concentrations. Furthermore, a large number of genes altered by melatonin were involved in plant stress defense. Transcript levels for many stress receptors, kinases, and stress-associated calcium signals were up-regulated. The majority of transcription factors identified were also involved in plant stress defense. Additionally, most identified genes in ABA, ET, SA and JA pathways were up-regulated, while genes pertaining to auxin responses and signaling, peroxidases, and those associated with cell wall synthesis and modifications were mostly down-regulated. Our results indicate critical roles of melatonin in plant defense against various environmental stresses, and provide a framework for functional analysis of genes in melatonin-mediated signaling pathways. PMID:24682084

  4. Perception of the plant immune signal salicylic acid

    PubMed Central

    Yan, Shunping; Dong, Xinnian

    2014-01-01

    Salicylic acid (SA) plays a central role in plant innate immunity. The diverse functions of this simple phenolic compound suggest that plants may have multiple SA receptors. Several SA-binding proteins have been identified using biochemical approaches. However, genetic evidence supporting that they are the bona fide SA receptors has not been forthcoming. Mutant screens revealed that NPR1 is a master regulator of SA-mediated responses. Although NPR1 cannot bind SA in a conventional ligand-binding assay, its homologs NPR3 and NPR4 bind SA and function as SA receptors. During pathogen challenge, the SA gradient generated at the infection site is sensed by NPR3 and NPR4, which serve as the adaptors for the Cullin 3-based E3 ubiquitin ligase to regulate NPR1 degradation. Consequently, NPR1 is degraded at the infection site to remove its inhibition on effector-triggered cell death and defense, whereas NPR1 accumulates in neighboring cells to promote cell survival and SA-mediated resistance. PMID:24840293

  5. Stress Marker Signatures in Lesion Mimic Single and Double Mutants Identify a Crucial Leaf Age-Dependent Salicylic Acid Related Defense Signal.

    PubMed

    Kaurilind, Eve; Brosché, Mikael

    2017-01-01

    Plants are exposed to abiotic and biotic stress conditions throughout their lifespans that activates various defense programs. Programmed cell death (PCD) is an extreme defense strategy the plant uses to manage unfavorable environments as well as during developmentally induced senescence. Here we investigated the role of leaf age on the regulation of defense gene expression in Arabidopsis thaliana. Two lesion mimic mutants with misregulated cell death, catalase2 (cat2) and defense no death1 (dnd1) were used together with several double mutants to dissect signaling pathways regulating defense gene expression associated with cell death and leaf age. PCD marker genes showed leaf age dependent expression, with the highest expression in old leaves. The salicylic acid (SA) biosynthesis mutant salicylic acid induction deficient2 (sid2) had reduced expression of PCD marker genes in the cat2 sid2 double mutant demonstrating the importance of SA biosynthesis in regulation of defense gene expression. While the auxin- and jasmonic acid (JA)- insensitive auxin resistant1 (axr1) double mutant cat2 axr1 also led to decreased expression of PCD markers; the expression of several marker genes for SA signaling (ISOCHORISMATE SYNTHASE 1, PR1 and PR2) were additionally decreased in cat2 axr1 compared to cat2. The reduced expression of these SA markers genes in cat2 axr1 implicates AXR1 as a regulator of SA signaling in addition to its known role in auxin and JA signaling. Overall, the current study reinforces the important role of SA signaling in regulation of leaf age-related transcript signatures.

  6. Stage-Related Defense Response Induction in Tomato Plants by Nesidiocoris tenuis

    PubMed Central

    Naselli, Mario; Urbaneja, Alberto; Siscaro, Gaetano; Jaques, Josep A.; Zappalà, Lucia; Flors, Víctor; Pérez-Hedo, Meritxell

    2016-01-01

    The beneficial effects of direct predation by zoophytophagous biological control agents (BCAs), such as the mirid bug Nesidiocoris tenuis, are well-known. However, the benefits of zoophytophagous BCAs’ relation with host plants, via induction of plant defensive responses, have not been investigated until recently. To date, only the females of certain zoophytophagous BCAs have been demonstrated to induce defensive plant responses in tomato plants. The aim of this work was to determine whether nymphs, adult females, and adult males of N. tenuis are able to induce defense responses in tomato plants. Compared to undamaged tomato plants (i.e., not exposed to the mirid), plants on which young or mature nymphs, or adult males or females of N. tenuis fed and developed were less attractive to the whitefly Bemisia tabaci, but were more attractive to the parasitoid Encarsia formosa. Female-exposed plants were more repellent to B. tabaci and more attractive to E. formosa than were male-exposed plants. When comparing young- and mature-nymph-exposed plants, the same level of repellence was obtained for B. tabaci, but mature-nymph-exposed plants were more attractive to E. formosa. The repellent effect is attributed to the signaling pathway of abscisic acid, which is upregulated in N. tenuis-exposed plants, whereas the parasitoid attraction was attributed to the activation of the jasmonic acid signaling pathway. Our results demonstrate that all motile stages of N. tenuis can trigger defensive responses in tomato plants, although these responses may be slightly different depending on the stage considered. PMID:27472328

  7. Evolution of Hormone Signaling Networks in Plant Defense.

    PubMed

    Berens, Matthias L; Berry, Hannah M; Mine, Akira; Argueso, Cristiana T; Tsuda, Kenichi

    2017-08-04

    Studies with model plants such as Arabidopsis thaliana have revealed that phytohormones are central regulators of plant defense. The intricate network of phytohormone signaling pathways enables plants to activate appropriate and effective defense responses against pathogens as well as to balance defense and growth. The timing of the evolution of most phytohormone signaling pathways seems to coincide with the colonization of land, a likely requirement for plant adaptations to the more variable terrestrial environments, which included the presence of pathogens. In this review, we explore the evolution of defense hormone signaling networks by combining the model plant-based knowledge about molecular components mediating phytohormone signaling and cross talk with available genome information of other plant species. We highlight conserved hubs in hormone cross talk and discuss evolutionary advantages of defense hormone cross talk. Finally, we examine possibilities of engineering hormone cross talk for improvement of plant fitness and crop production.

  8. Agrobacterium tumefaciens Promotes Tumor Induction by Modulating Pathogen Defense in Arabidopsis thaliana[W

    PubMed Central

    Lee, Chil-Woo; Efetova, Marina; Engelmann, Julia C; Kramell, Robert; Wasternack, Claus; Ludwig-Müller, Jutta; Hedrich, Rainer; Deeken, Rosalia

    2009-01-01

    Agrobacterium tumefaciens causes crown gall disease by transferring and integrating bacterial DNA (T-DNA) into the plant genome. To examine the physiological changes and adaptations during Agrobacterium-induced tumor development, we compared the profiles of salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and auxin (indole-3-acetic acid [IAA]) with changes in the Arabidopsis thaliana transcriptome. Our data indicate that host responses were much stronger toward the oncogenic strain C58 than to the disarmed strain GV3101 and that auxin acts as a key modulator of the Arabidopsis–Agrobacterium interaction. At initiation of infection, elevated levels of IAA and ET were associated with the induction of host genes involved in IAA, but not ET signaling. After T-DNA integration, SA as well as IAA and ET accumulated, but JA did not. This did not correlate with SA-controlled pathogenesis-related gene expression in the host, although high SA levels in mutant plants prevented tumor development, while low levels promoted it. Our data are consistent with a scenario in which ET and later on SA control virulence of agrobacteria, whereas ET and auxin stimulate neovascularization during tumor formation. We suggest that crosstalk among IAA, ET, and SA balances pathogen defense launched by the host and tumor growth initiated by agrobacteria. PMID:19794116

  9. Phytohormone mediation of interactions between herbivores and plant pathogens.

    PubMed

    Lazebnik, Jenny; Frago, Enric; Dicke, Marcel; van Loon, Joop J A

    2014-07-01

    Induced plant defenses against either pathogens or herbivore attackers are regulated by phytohormones. These phytohormones are increasingly recognized as important mediators of interactions between organisms associated with plants. In this review, we discuss the role of plant defense hormones in sequential tri-partite interactions among plants, pathogenic microbes, and herbivorous insects, based on the most recent literature. We discuss the importance of pathogen trophic strategy in the interaction with herbivores that exhibit different feeding modes. Plant resistance mechanisms also affect plant quality in future interactions with attackers. We discuss exemplary evidence for the hypotheses that (i) biotrophic pathogens can facilitate chewing herbivores, unless plants exhibit effector-triggered immunity, but (ii) facilitate or inhibit phloem feeders. (iii) Necrotrophic pathogens, on the other hand, can inhibit both phloem feeders and chewers. We also propose herbivore feeding mode as predictor of effects on pathogens of different trophic strategies, providing evidence for the hypotheses that (iv) phloem feeders inhibit pathogen attack by increasing SA induction, whereas (v) chewing herbivores tend not to affect necrotrophic pathogens, while they may either inhibit or facilitate biotrophic pathogens. Putting these hypotheses to the test will increase our understanding of phytohormonal regulation of plant defense to sequential attack by plant pathogens and insect herbivores. This will provide valuable insight into plant-mediated ecological interactions among members of the plant-associated community.

  10. Carbachol-induced agonistic behavior in cats: aggressive or defensive response.

    PubMed

    Brudzyński, S M

    1981-01-01

    The effects of intrahypothalamic carbachol microinjections were investigated in unprovoked cats. The carbachol evoked mydriasis, attention, vocalization, and piloerection, i.e. features of a typical defense were usually concomitant in evoked response, while the clear-cut aggressive or escape patterns appeared only once. No basic differences were observed in the set of manifestations induced by low (1-2.5 micrograms) and high (20-40 micrograms) doses of carbachol, and from left and right hypothalamus as well as from medial and lateral portion of the hypothalamus. It is concluded that carbachol-induced response does not represent an aggressive pattern but corresponds to the cat’s defense and threat behavior.

  11. RING-Domain E3 Ligase-Mediated Host–Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses

    PubMed Central

    Zhang, Yuexiu; Li, Lian-Feng; Munir, Muhammad; Qiu, Hua-Ji

    2018-01-01

    The RING-domain E3 ligases (RING E3s), a group of E3 ligases containing one or two RING finger domains, are involved in various cellular processes such as cell proliferation, immune regulation, apoptosis, among others. In the host, a substantial number of the RING E3s have been implicated to inhibit viral replication through regulating immune responses, including activation and inhibition of retinoic acid-inducible gene I-like receptors, toll-like receptors, and DNA receptor signaling pathways, modulation of cell-surface expression of major histocompatibility complex, and co-stimulatory molecules. During the course of evolution and adaptation, viruses encode RING E3s to antagonize host immune defense, such as the infected cell protein 0 of herpes simplex virus type 1, the non-structural protein 1 of rotavirus, and the K3 and K5 of Kaposi’s sarcoma-associated herpesvirus. In addition, recent studies suggest that viruses can hijack the host RING E3s to facilitate viral replication. Based on emerging and interesting discoveries, the RING E3s present novel links among the host and viruses. Herein, we focus on the latest research progresses in the RING E3s-mediated host–virus interactions and discuss the outlooks of the RING E3s for future research. PMID:29872431

  12. 34 CFR 685.206 - Borrower responsibilities and defenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Borrower responsibilities and defenses. 685.206 Section 685.206 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION WILLIAM D. FORD FEDERAL DIRECT LOAN PROGRAM Borrower Provisions...

  13. Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59[C][W][OA

    PubMed Central

    Van der Does, Dieuwertje; Leon-Reyes, Antonio; Koornneef, Annemart; Van Verk, Marcel C.; Rodenburg, Nicole; Pauwels, Laurens; Goossens, Alain; Körbes, Ana P.; Memelink, Johan; Ritsema, Tita; Van Wees, Saskia C.M.; Pieterse, Corné M.J.

    2013-01-01

    Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCFCOI1, which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCFCOI1-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59. PMID:23435661

  14. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59.

    PubMed

    Van der Does, Dieuwertje; Leon-Reyes, Antonio; Koornneef, Annemart; Van Verk, Marcel C; Rodenburg, Nicole; Pauwels, Laurens; Goossens, Alain; Körbes, Ana P; Memelink, Johan; Ritsema, Tita; Van Wees, Saskia C M; Pieterse, Corné M J

    2013-02-01

    Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCF(COI1), which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCF(COI1)-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59.

  15. The Pepper Extracellular Xyloglucan-Specific Endo-β-1,4-Glucanase Inhibitor Protein Gene, CaXEGIP1, Is Required for Plant Cell Death and Defense Responses1[C][W][OA

    PubMed Central

    Choi, Hyong Woo; Kim, Nak Hyun; Lee, Yeon Kyeong; Hwang, Byung Kook

    2013-01-01

    Plants produce various proteinaceous inhibitors to protect themselves against microbial pathogen attack. A xyloglucan-specific endo-β-1,4-glucanase inhibitor1 gene, CaXEGIP1, was isolated and functionally characterized in pepper (Capsicum annuum) plants. CaXEGIP1 was rapidly and strongly induced in pepper leaves infected with avirulent Xanthomonas campestris pv vesicatoria, and purified CaXEGIP1 protein significantly inhibited the hydrolytic activity of the glycoside hydrolase74 family xyloglucan-specific endo-β-1,4-glucanase from Clostridium thermocellum. Soluble-modified green fluorescent protein-tagged CaXEGIP1 proteins were mainly localized to the apoplast of onion (Allium cepa) epidermal cells. Agrobacterium tumefaciens-mediated overexpression of CaXEGIP1 triggered pathogen-independent, spontaneous cell death in pepper and Nicotiana benthamiana leaves. CaXEGIP1 silencing in pepper conferred enhanced susceptibility to virulent and avirulent X. campestris pv vesicatoria, accompanied by a compromised hypersensitive response and lowered expression of defense-related genes. Overexpression of dexamethasone:CaXEGIP1 in Arabidopsis (Arabidopsis thaliana) enhanced resistance to Hyaloperonospora arabidopsidis infection. Comparative histochemical and proteomic analyses revealed that CaXEGIP1 overexpression induced a spontaneous cell death response and also increased the expression of some defense-related proteins in transgenic Arabidopsis leaves. This response was also accompanied by cell wall thickening and darkening. Together, these results suggest that pathogen-inducible CaXEGIP1 positively regulates cell death-mediated defense responses in plants. PMID:23093361

  16. Elicitors and defense gene induction in plants with altered lignin compositions.

    PubMed

    Gallego-Giraldo, Lina; Posé, Sara; Pattathil, Sivakumar; Peralta, Angelo Gabriel; Hahn, Michael G; Ayre, Brian G; Sunuwar, Janak; Hernandez, Jonathan; Patel, Monika; Shah, Jyoti; Rao, Xiaolan; Knox, J Paul; Dixon, Richard A

    2018-06-27

    A reduction in the lignin content in transgenic plants induces the ectopic expression of defense genes, but the importance of altered lignin composition in such phenomena remains unclear. Two Arabidopsis lines with similar lignin contents, but strikingly different lignin compositions, exhibited different quantitative and qualitative transcriptional responses. Plants with lignin composed primarily of guaiacyl units overexpressed genes responsive to oomycete and bacterial pathogen attack, whereas plants with lignin composed primarily of syringyl units expressed a far greater number of defense genes, including some associated with cis-jasmone-mediated responses to aphids; these plants exhibited altered responsiveness to bacterial and aphid inoculation. Several of the defense genes were differentially induced by water-soluble extracts from cell walls of plants of the two lines. Glycome profiling, fractionation and enzymatic digestion studies indicated that the different lignin compositions led to differential extractability of a range of heterogeneous oligosaccharide epitopes, with elicitor activity originating from different cell wall polymers. Alteration of lignin composition affects interactions with plant cell wall matrix polysaccharides to alter the sequestration of multiple latent defense signal molecules with an impact on biotic stress responses. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  17. Lignin metabolism involves Botrytis cinerea BcGs1- induced defense response in tomato.

    PubMed

    Yang, Chenyu; Liang, Yingbo; Qiu, Dewen; Zeng, Hongmei; Yuan, Jingjing; Yang, Xiufen

    2018-06-04

    BcGs1, a cell wall-degrading enzyme (CWDE), was originally derived from Botrytis cinerea. Our previous study revealed that BcGs1 could trigger defense responses and protect plants against various pathogens. We researched the defense response mechanism underlying this BcGs1 elicitation in tomato. We revealed that the two domains were required for BcGs1's full necrosis activity. According to analysis and quantitative real-time PCR of the up-regulated proteins and genes filtered by iTRAQ-based quantitative proteome approach, oxidative metabolism and phenylpropanoid metabolism were speculated to be involved in BcGs1-triggered defense response in tomato. Furthermore, experimental evidence showed that BcGs1 triggered reactive oxygen species (ROS) burst and increased the level of phenylalanine-ammonia lyase (PAL) and peroxidase (POD) enzyme activity, as well as lignin accumulation. Moreover, histochemical analysis revealed that infiltration of BcGs1 in tomato leaves exhibited cell wall thickening compared with untreated plants. The results suggested that BcGs1 activated the basal defense response included lignin metabolism contributed to BcGs1-induced resistance to Botrytis. cinerea infection in tomato.

  18. Defense-related proteins involved in sugarcane responses to biotic stress

    PubMed Central

    Souza, Thais P.; Dias, Renata O.; Silva-Filho, Marcio C.

    2017-01-01

    Abstract Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives. PMID:28222203

  19. The receptor-like cytoplasmic kinase BSR1 mediates chitin-induced defense signaling in rice cells.

    PubMed

    Kanda, Yasukazu; Yokotani, Naoki; Maeda, Satoru; Nishizawa, Yoko; Kamakura, Takashi; Mori, Masaki

    2017-08-01

    Broad-Spectrum Resistance 1 (BSR1) encodes a rice receptor-like cytoplasmic kinase, and enhances disease resistance when overexpressed. Rice plants overexpressing BSR1 are highly resistant to diverse pathogens, including rice blast fungus. However, the mechanism responsible for this resistance has not been fully characterized. To analyze the BSR1 function, BSR1-knockout (BSR1-KO) plants were generated using a clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system. Experiments using suspension-cultured cells revealed that defense responses including H 2 O 2 production (i.e. oxidative burst) and expression of defense-related genes induced by autoclaved conidia of the rice blast fungus significantly decreased in BSR1-KO cells. Furthermore, a treatment with chitin oligomers which function as microbe-associated molecular patterns (MAMPs) of the rice blast fungus resulted in considerably suppressed defense responses in BSR1-KO cells. These results suggest that BSR1 is important for the rice innate immunity triggered by the perception of chitin.

  20. Mechanisms and strategies of plant defense against Botrytis cinerea.

    PubMed

    AbuQamar, Synan; Moustafa, Khaled; Tran, Lam Son

    2017-03-01

    Biotic factors affect plant immune responses and plant resistance to pathogen infections. Despite the considerable progress made over the past two decades in manipulating genes, proteins and their levels from diverse sources, no complete genetic tolerance to environmental stresses has been developed so far in any crops. Plant defense response to pathogens, including Botrytis cinerea, is a complex biological process involving various changes at the biochemical, molecular (i.e. transcriptional) and physiological levels. Once a pathogen is detected, effective plant resistance activates signaling networks through the generation of small signaling molecules and the balance of hormonal signaling pathways to initiate defense mechanisms to the particular pathogen. Recently, studies using Arabidopsis thaliana and crop plants have shown that many genes are involved in plant responses to B. cinerea infection. In this article, we will review our current understanding of mechanisms regulating plant responses to B. cinerea with a particular interest on hormonal regulatory networks involving phytohormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA). We will also highlight some potential gene targets that are promising for improving crop resistance to B. cinerea through genetic engineering and breeding programs. Finally, the role of biological control as a complementary and alternative disease management will be overviewed.

  1. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens.

    PubMed

    Choi, Hyong Woo; Kim, Young Jin; Lee, Sung Chul; Hong, Jeum Kyu; Hwang, Byung Kook

    2007-11-01

    Reactive oxygen species (ROS) are responsible for mediating cellular defense responses in plants. Controversy has existed over the origin of ROS in plant defense. We have isolated a novel extracellular peroxidase gene, CaPO2, from pepper (Capsicum annuum). Local or systemic expression of CaPO2 is induced in pepper by avirulent Xanthomonas campestris pv vesicatoria (Xcv) infection. We examined the function of the CaPO2 gene in plant defense using the virus-induced gene silencing technique and gain-of-function transgenic plants. CaPO2-silenced pepper plants were highly susceptible to Xcv infection. Virus-induced gene silencing of the CaPO2 gene also compromised hydrogen peroxide (H(2)O(2)) accumulation and hypersensitive cell death in leaves, both locally and systemically, during avirulent Xcv infection. In contrast, overexpression of CaPO2 in Arabidopsis (Arabidopsis thaliana) conferred enhanced disease resistance accompanied by cell death, H(2)O(2) accumulation, and PR gene induction. In CaPO2-overexpression Arabidopsis leaves infected by Pseudomonas syringae pv tomato, H(2)O(2) generation was sensitive to potassium cyanide (a peroxidase inhibitor) but insensitive to diphenylene iodonium (an NADPH oxidase inhibitor), suggesting that H(2)O(2) generation depends on peroxidase in Arabidopsis. Together, these results indicate that the CaPO2 peroxidase is involved in ROS generation, both locally and systemically, to activate cell death and PR gene induction during the defense response to pathogen invasion.

  2. Rapid innate defensive responses of mice to looming visual stimuli.

    PubMed

    Yilmaz, Melis; Meister, Markus

    2013-10-21

    Much of brain science is concerned with understanding the neural circuits that underlie specific behaviors. While the mouse has become a favorite experimental subject, the behaviors of this species are still poorly explored. For example, the mouse retina, like that of other mammals, contains ∼20 different circuits that compute distinct features of the visual scene [1, 2]. By comparison, only a handful of innate visual behaviors are known in this species--the pupil reflex [3], phototaxis [4], the optomotor response [5], and the cliff response [6]--two of which are simple reflexes that require little visual processing. We explored the behavior of mice under a visual display that simulates an approaching object, which causes defensive reactions in some other species [7, 8]. We show that mice respond to this stimulus either by initiating escape within a second or by freezing for an extended period. The probability of these defensive behaviors is strongly dependent on the parameters of the visual stimulus. Directed experiments identify candidate retinal circuits underlying the behavior and lead the way into detailed study of these neural pathways. This response is a new addition to the repertoire of innate defensive behaviors in the mouse that allows the detection and avoidance of aerial predators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Overexpression of NtPR-Q Up-Regulates Multiple Defense-Related Genes in Nicotiana tabacum and Enhances Plant Resistance to Ralstonia solanacearum.

    PubMed

    Tang, Yuanman; Liu, Qiuping; Liu, Ying; Zhang, Linli; Ding, Wei

    2017-01-01

    Various classes of plant pathogenesis-related proteins have been identified in the past several decades. PR-Q, a member of the PR3 family encoding chitinases, has played an important role in regulating plant resistance and preventing pathogen infection. In this paper, we functionally characterized NtPR-Q in tobacco plants and found that the overexpression of NtPR-Q in tobacco Yunyan87 resulted in higher resistance to Ralstonia solanacearum inoculation. Surprisingly, overexpression of NtPR-Q led to the activation of many defense-related genes, such as salicylic acid (SA)-responsive genes NtPR1a/c , NtPR2 and NtCHN50 , JA-responsive gene NtPR1b and ET production-associated genes NtACC Oxidase and NtEFE26 . Consistent with the role of NtPR-Q in multiple stress responses, NtPR-Q transcripts were induced by the exogenous hormones SA, ethylene and methyl jasmonate, which could enhance the resistance of tobacco to R. solanacearum . Collectively, our results suggested that NtPR-Q overexpression led to the up-regulation of defense-related genes and enhanced plant resistance to R. solanacearum infection.

  4. The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses.

    PubMed

    Zhu, Xiuliang; Qi, Lin; Liu, Xin; Cai, Shibin; Xu, Huijun; Huang, Rongfeng; Li, Jiarui; Wei, Xuening; Zhang, Zengyan

    2014-03-01

    Sharp eyespot disease (primarily caused by the pathogen Rhizoctonia cerealis) and freezing stress are important yield limitations for the production of wheat (Triticum aestivum). Here, we report new insights into the function and underlying mechanisms of an ethylene response factor (ERF) in wheat, Pathogen-Induced ERF1 (TaPIE1), in host responses to R. cerealis and freezing stresses. TaPIE1-overexpressing transgenic wheat exhibited significantly enhanced resistance to both R. cerealis and freezing stresses, whereas TaPIE1-underexpressing wheat plants were more susceptible to both stresses relative to control plants. Following both stress treatments, electrolyte leakage and hydrogen peroxide content were significantly reduced, and both proline and soluble sugar contents were elevated in TaPIE1-overexpressing wheat, whereas these physiological traits in TaPIE1-underexpressing wheat exhibited the opposite trend. Microarray and quantitative reverse transcription-polymerase chain reaction analyses of TaPIE1-overexpressing and -underexpressing wheat plants indicated that TaPIE1 activated a subset of defense- and stress-related genes. Assays of DNA binding by electrophoretic mobility shift and transient expression in tobacco (Nicotiana tabacum) showed that the GCC boxes in the promoters of TaPIE1-activated genes were essential for transactivation by TaPIE1. The transactivation activity of TaPIE1 and the expression of TaPIE1-activated defense- and stress-related genes were significantly elevated following R. cerealis, freezing, and exogenous ethylene treatments. TaPIE1-mediated responses to R. cerealis and freezing were positively modulated by ethylene biosynthesis. These data suggest that TaPIE1 positively regulates the defense responses to R. cerealis and freezing stresses by activating defense- and stress-related genes downstream of the ethylene signaling pathway and by modulating related physiological traits in wheat.

  5. Defense Enzyme Responses in Dormant Wild Oat and Wheat Caryopses Challenged with a Seed Decay Pathogen.

    PubMed

    Fuerst, E Patrick; James, Matthew S; Pollard, Anne T; Okubara, Patricia A

    2017-01-01

    Seeds have well-established passive physical and chemical defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. However, there are few studies evaluating potential biochemical defenses of dormant seeds against pathogens. Caryopsis decay by the pathogenic Fusarium avenaceum strain F.a .1 was relatively rapid in wild oat ( Avena fatua L.) isoline "M73," with >50% decay after 8 days with almost no decay in wheat ( Triticum aestivum L.) var. RL4137. Thus, this fungal strain has potential for selective decay of wild oat relative to wheat. To study defense enzyme activities, wild oat and wheat caryopses were incubated with F.a .1 for 2-3 days. Whole caryopses were incubated in assay reagents to measure extrinsic defense enzyme activities. Polyphenol oxidase, exochitinase, and peroxidase were induced in whole caryopses, but oxalate oxidase was reduced, in response to F.a .1 in both species. To evaluate whether defense enzyme activities were released from the caryopsis surface, caryopses were washed with buffer and enzyme activity was measured in the leachate. Significant activities of polyphenol oxidase, exochitinase, and peroxidase, but not oxalate oxidase, were leached from caryopses. Defense enzyme responses were qualitatively similar in the wild oat and wheat genotypes evaluated. Although the absolute enzyme activities were generally greater in whole caryopses than in leachates, the relative degree of induction of polyphenol oxidase, exochitinase, and peroxidase by F.a .1 was greater in caryopsis leachates, indicating that a disproportionate quantity of the induced activity was released into the environment from the caryopsis surface, consistent with their assumed role in defense. It is unlikely that the specific defense enzymes studied here play a key role in the differential susceptibility to decay by F.a .1 in these two genotypes since defense enzyme activities were greater in the more susceptible wild oat, compared to

  6. Herbivore Diet Breadth and Host Plant Defense Mediate the Tri-Trophic Effects of Plant Toxins on Multiple Coccinellid Predators.

    PubMed

    Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A

    2016-01-01

    Host plant defenses are known to cascade up food chains to influence herbivores and their natural enemies, but how herbivore and predator traits and identity mediate such tri-trophic dynamics is largely unknown. We assessed the influence of plant defense on aphid and coccinellid performance in laboratory trials with low- vs. high-glucosinolate varieties of Brassica napus, a dietary specialist (Brevicoryne brassicae) and generalist (Myzus persicae) aphid, and five species of aphidophagous coccinellids. The performance of the specialist and generalist aphids was similar and unaffected by variation in plant defense. Aphid glucosinolate concentration and resistance to predators differed by aphid species and host plant defense, and these effects acted independently. With respect to aphid species, the dietary generalist aphid (vs. specialist) had 14% lower glucosinolate concentration and coccinellid predators ate three-fold more aphids. With respect to host plant variety, the high-glucosinolate plants (vs. low) increased aphid glucosinolate concentration by 21%, but had relatively weak effects on predation by coccinellids and these effects varied among coccinellid species. In turn, coccinellid performance was influenced by the interactive effects of plant defense and aphid species, as the cascading, indirect effect of plant defense was greater when feeding upon the specialist than generalist aphid. When feeding upon specialist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by 78% and accelerated development by 14%. In contrast, when feeding upon generalist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by only 11% and had no detectable effect on development time. These interactive effects of plant defense and aphid diet breadth on predator performance also varied among coccinellid species; the indirect negative effects of plant defenses on predator performance was consistent among the five predators when

  7. Arsenic alters transcriptional responses to Pseudomonas aeruginosa infection and decreases antimicrobial defense of human airway epithelial cells.

    PubMed

    Goodale, Britton C; Rayack, Erica J; Stanton, Bruce A

    2017-09-15

    Arsenic contamination of drinking water and food threatens the health of hundreds of millions of people worldwide by increasing the risk of numerous diseases. Arsenic exposure has been associated with infectious lung disease in epidemiological studies, but it is not yet understood how ingestion of low levels of arsenic increases susceptibility to bacterial infection. Accordingly, the goal of this study was to examine the effect of arsenic on gene expression in primary human bronchial epithelial (HBE) cells and to determine if arsenic altered epithelial cell responses to Pseudomonas aeruginosa, an opportunistic pathogen. Bronchial epithelial cells line the airway surface, providing a physical barrier and serving critical roles in antimicrobial defense and signaling to professional immune cells. We used RNA-seq to define the transcriptional response of HBE cells to Pseudomonas aeruginosa, and investigated how arsenic affected HBE gene networks in the presence and absence of the bacterial challenge. Environmentally relevant levels of arsenic significantly changed the expression of genes involved in cellular redox homeostasis and host defense to bacterial infection, and decreased genes that code for secreted antimicrobial factors such as lysozyme. Using pathway analysis, we identified Sox4 and Nrf2-regulated gene networks that are predicted to mediate the arsenic-induced decrease in lysozyme secretion. In addition, we demonstrated that arsenic decreased lysozyme in the airway surface liquid, resulting in reduced lysis of Microccocus luteus. Thus, arsenic alters the expression of genes and proteins in innate host defense pathways, thereby decreasing the ability of the lung epithelium to fight bacterial infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ethylene contributes to mir1-mediated maize defense against the phloem-sap sucking insect Rhopalosiphum maidis.

    USDA-ARS?s Scientific Manuscript database

    Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for providing maize insect resistance1 (mir1), a key endogenous defense sign...

  9. Self-defense or assertiveness training and women's responses to sexual attacks.

    PubMed

    Brecklin, Leanne R; Ullman, Sarah E

    2005-06-01

    Self-defense classes aim to prevent violence against women by strengthening women's capacity to defend themselves; however, little research has examined the effects of self-defense training on women's attempts to fight back during actual attacks. This study investigated the relationship of self-defense or assertiveness training and women's physical and psychological responses to subsequent rape attacks (N = 1,623). Multivariate analyses showed that victims with preassault training were more likely to say that their resistance stopped the offender or made him less aggressive than victims without training. Women with training before their assaults were angrier and less scared during the incident than women without training, consistent with the teachings of self-defense training. Preassault training participants rated their degree of non-consent or resistance as lower than did nonparticipants, perhaps because they held themselves to a higher standard. Suggestions for future research on women's self-defense training and rape prevention are offered.

  10. Of pheromones and kairomones: what receptors mediate innate emotional responses?

    PubMed

    Fortes-Marco, Lluis; Lanuza, Enrique; Martinez-Garcia, Fernando

    2013-09-01

    Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation. Copyright © 2013 Wiley Periodicals, Inc.

  11. Beyond SaGMRotI: Conversion to SaArb, SaSN, and SaMaxRot

    USGS Publications Warehouse

    Watson-Lamprey, J. A.; Boore, D.M.

    2007-01-01

    In the seismic design of structures, estimates of design forces are usually provided to the engineer in the form of elastic response spectra. Predictive equations for elastic response spectra are derived from empirical recordings of ground motion. The geometric mean of the two orthogonal horizontal components of motion is often used as the response value in these predictive equations, although it is not necessarily the most relevant estimate of forces within the structure. For some applications it is desirable to estimate the response value on a randomly chosen single component of ground motion, and in other applications the maximum response in a single direction is required. We give adjustment factors that allow converting the predictions of geometric-mean ground-motion predictions into either of these other two measures of seismic ground-motion intensity. In addition, we investigate the relation of the strike-normal component of ground motion to the maximum response values. We show that the strike-normal component of ground motion seldom corresponds to the maximum horizontal-component response value (in particular, at distances greater than about 3 km from faults), and that focusing on this case in exclusion of others can result in the underestimation of the maximum component. This research provides estimates of the maximum response value of a single component for all cases, not just near-fault strike-normal components. We provide modification factors that can be used to convert predictions of ground motions in terms of the geometric mean to the maximum spectral acceleration (SaMaxRot) and the random component of spectral acceleration (SaArb). Included are modification factors for both the mean and the aleatory standard deviation of the logarithm of the motions.

  12. Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1.

    PubMed

    Nakad, Rania; Snoek, L Basten; Yang, Wentao; Ellendt, Sunna; Schneider, Franziska; Mohr, Timm G; Rösingh, Lone; Masche, Anna C; Rosenstiel, Philip C; Dierking, Katja; Kammenga, Jan E; Schulenburg, Hinrich

    2016-04-11

    The invertebrate immune system comprises physiological mechanisms, physical barriers and also behavioral responses. It is generally related to the vertebrate innate immune system and widely believed to provide nonspecific defense against pathogens, whereby the response to different pathogen types is usually mediated by distinct signalling cascades. Recent work suggests that invertebrate immune defense can be more specific at least at the phenotypic level. The underlying genetic mechanisms are as yet poorly understood. We demonstrate in the model invertebrate Caenorhabditis elegans that a single gene, a homolog of the mammalian neuropeptide Y receptor gene, npr-1, mediates contrasting defense phenotypes towards two distinct pathogens, the Gram-positive Bacillus thuringiensis and the Gram-negative Pseudomonas aeruginosa. Our findings are based on combining quantitative trait loci (QTLs) analysis with functional genetic analysis and RNAseq-based transcriptomics. The QTL analysis focused on behavioral immune defense against B. thuringiensis, using recombinant inbred lines (RILs) and introgression lines (ILs). It revealed several defense QTLs, including one on chromosome X comprising the npr-1 gene. The wildtype N2 allele for the latter QTL was associated with reduced defense against B. thuringiensis and thus produced an opposite phenotype to that previously reported for the N2 npr-1 allele against P. aeruginosa. Analysis of npr-1 mutants confirmed these contrasting immune phenotypes for both avoidance behavior and nematode survival. Subsequent transcriptional profiling of C. elegans wildtype and npr-1 mutant suggested that npr-1 mediates defense against both pathogens through p38 MAPK signaling, insulin-like signaling, and C-type lectins. Importantly, increased defense towards P. aeruginosa seems to be additionally influenced through the induction of oxidative stress genes and activation of GATA transcription factors, while the repression of oxidative stress genes

  13. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism

    PubMed Central

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-01-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence. PMID:23959884

  14. Determination of proteins induced in response to jasmonic acid and salicylic acid in resistant and susceptible cultivars of tomato.

    PubMed

    Afroz, Amber; Khan, Muhammad Rashid; Komatsu, Setsuko

    2010-07-01

    Jasmonic acid (JA) and salicylic acid (SA) are signaling molecules that play key roles in the regulation of metabolic processes, reproduction, and defense against pathogens. The proteomics approach was used to identify proteins that are induced by JA and SA in the tomato cultivars Roma and Pant Bahr, which are susceptible and resistant to bacterial wilt, respectively. Threonine deaminase and leucine amino peptidase were upregulated, and ribulose-1,5-bisphosphate carboxylase/oxygenase small chain was downregulated by time-course application of JA. Translationally controlled tumor protein was upregulated by time-course application of SA. Protein disulfide isomerase was upregulated by application of either JA or SA. Proteins related to defense, energy, and protein destination/storage are suspected to be responsible for the susceptibility or resistance of the cultivars. Furthermore, in Roma, iron ABC transporter was upregulated by JA and down-regulated by SA. Iron ABC transporter plays a part in the signal transduction of both JA and SA in cultivars of tomato that are resistant to bacterial wilt.

  15. Cell death-inducing stresses are required for defense activation in DS1-phosphatidic acid phosphatase-silenced Nicotiana benthamiana.

    PubMed

    Nakano, Masahito; Yoshioka, Hirofumi; Ohnishi, Kouhei; Hikichi, Yasufumi; Kiba, Akinori

    2015-07-20

    We previously identified DS1 plants that showed resistance to compatible Ralstonia solanacearum with accelerated defense responses. Here, we describe activation mechanisms of defense responses in DS1 plants. After inoculation with incompatible R. solanacearum 8107, DS1 plants showed hyperinduction of hypersensitive response (HR) and reactive oxygen species (ROS) generation. Transient expression of PopP1 and AvrA induced hyperinduction of HR and ROS generation. Furthermore, Pseudomonas cichorii (Pc) and a type III secretion system (TTSS)-deficient mutant of P. cichorii showed accelerated induction of HR and ROS generation. Chitin and flg22 did not induce either HR or ROS hyperaccumulation; however, INF1 accelerated HR and ROS in DS1 plants. Activation of these defense responses was closely associated with increased phosphatidic acid (PA) content. Our results show that DS1 plants exhibit PA-mediated sensitization of plant defenses and that cell death-inducing stress is required to achieve full activation of defense responses. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling.

    PubMed

    Shim, Jae Sung; Jung, Choonkyun; Lee, Sangjoon; Min, Kyunghun; Lee, Yin-Won; Choi, Yeonhee; Lee, Jong Seob; Song, Jong Tae; Kim, Ju-Kon; Choi, Yang Do

    2013-02-01

    The role of AtMYB44, an R2R3 MYB transcription factor, in signaling mediated by jasmonic acid (JA) and salicylic acid (SA) is examined. AtMYB44 is induced by JA through CORONATINE INSENSITIVE 1 (COI1). AtMYB44 over-expression down-regulated defense responses against the necrotrophic pathogen Alternaria brassicicola, but up-regulated WRKY70 and PR genes, leading to enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv. tomato DC3000. The knockout mutant atmyb44 shows opposite effects. Induction of WRKY70 by SA is reduced in atmyb44 and npr1-1 mutants, and is totally abolished in atmyb44 npr1-1 double mutants, showing that WRKY70 is regulated independently through both NPR1 and AtMYB44. AtMYB44 over-expression does not change SA content, but AtMYB44 over-expression phenotypes, such as retarded growth, up-regulated PR1 and down-regulated PDF1.2 are reversed by SA depletion. The wrky70 mutation suppressed AtMYB44 over-expression phenotypes, including up-regulation of PR1 expression and down-regulation of PDF1.2 expression. β-estradiol-induced expression of AtMYB44 led to WRKY70 activation and thus PR1 activation. AtMYB44 binds to the WRKY70 promoter region, indicating that AtMYB44 acts as a transcriptional activator of WRKY70 by directly binding to a conserved sequence element in the WRKY70 promoter. These results demonstrate that AtMYB44 modulates antagonistic interaction by activating SA-mediated defenses and repressing JA-mediated defenses through direct control of WRKY70. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  17. Defense Enzyme Responses in Dormant Wild Oat and Wheat Caryopses Challenged with a Seed Decay Pathogen

    PubMed Central

    Fuerst, E. Patrick; James, Matthew S.; Pollard, Anne T.; Okubara, Patricia A.

    2018-01-01

    Seeds have well-established passive physical and chemical defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. However, there are few studies evaluating potential biochemical defenses of dormant seeds against pathogens. Caryopsis decay by the pathogenic Fusarium avenaceum strain F.a.1 was relatively rapid in wild oat (Avena fatua L.) isoline “M73,” with >50% decay after 8 days with almost no decay in wheat (Triticum aestivum L.) var. RL4137. Thus, this fungal strain has potential for selective decay of wild oat relative to wheat. To study defense enzyme activities, wild oat and wheat caryopses were incubated with F.a.1 for 2–3 days. Whole caryopses were incubated in assay reagents to measure extrinsic defense enzyme activities. Polyphenol oxidase, exochitinase, and peroxidase were induced in whole caryopses, but oxalate oxidase was reduced, in response to F.a.1 in both species. To evaluate whether defense enzyme activities were released from the caryopsis surface, caryopses were washed with buffer and enzyme activity was measured in the leachate. Significant activities of polyphenol oxidase, exochitinase, and peroxidase, but not oxalate oxidase, were leached from caryopses. Defense enzyme responses were qualitatively similar in the wild oat and wheat genotypes evaluated. Although the absolute enzyme activities were generally greater in whole caryopses than in leachates, the relative degree of induction of polyphenol oxidase, exochitinase, and peroxidase by F.a.1 was greater in caryopsis leachates, indicating that a disproportionate quantity of the induced activity was released into the environment from the caryopsis surface, consistent with their assumed role in defense. It is unlikely that the specific defense enzymes studied here play a key role in the differential susceptibility to decay by F.a.1 in these two genotypes since defense enzyme activities were greater in the more susceptible wild oat, compared to

  18. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses.

    PubMed

    de Torres Zabala, Marta; Bennett, Mark H; Truman, William H; Grant, Murray R

    2009-08-01

    The importance of phytohormone balance is increasingly recognized as central to the outcome of plant-pathogen interactions. Recently it has been demonstrated that abscisic acid signalling pathways are utilized by the bacterial phytopathogen Pseudomonas syringae to promote pathogenesis. In this study, we examined the dynamics, inter-relationship and impact of three key acidic phytohormones, salicylic acid, abscisic acid and jasmonic acid, and the bacterial virulence factor, coronatine, during progression of P. syringae infection of Arabidopsis thaliana. We show that levels of SA and ABA, but not JA, appear to play important early roles in determining the outcome of the infection process. SA is required in order to mount a full innate immune responses, while bacterial effectors act rapidly to activate ABA biosynthesis. ABA suppresses inducible innate immune responses by down-regulating SA biosynthesis and SA-mediated defences. Mutant analyses indicated that endogenous ABA levels represent an important reservoir that is necessary for effector suppression of plant-inducible innate defence responses and SA synthesis prior to subsequent pathogen-induced increases in ABA. Enhanced susceptibility due to loss of SA-mediated basal resistance is epistatically dominant over acquired resistance due to ABA deficiency, although ABA also contributes to symptom development. We conclude that pathogen-modulated ABA signalling rapidly antagonizes SA-mediated defences. We predict that hormonal perturbations, either induced or as a result of environmental stress, have a marked impact on pathological outcomes, and we provide a mechanistic basis for understanding priming events in plant defence.

  19. Phosphorylation of the Nicotiana benthamiana WRKY8 Transcription Factor by MAPK Functions in the Defense Response[C][W][OA

    PubMed Central

    Ishihama, Nobuaki; Yamada, Reiko; Yoshioka, Miki; Katou, Shinpei; Yoshioka, Hirofumi

    2011-01-01

    Mitogen-activated protein kinase (MAPK) cascades have pivotal roles in plant innate immunity. However, downstream signaling of plant defense-related MAPKs is not well understood. Here, we provide evidence that the Nicotiana benthamiana WRKY8 transcription factor is a physiological substrate of SIPK, NTF4, and WIPK. Clustered Pro-directed Ser residues (SP cluster), which are conserved in group I WRKY proteins, in the N-terminal region of WRKY8 were phosphorylated by these MAPKs in vitro. Antiphosphopeptide antibodies indicated that Ser residues in the SP cluster of WRKY8 are phosphorylated by SIPK, NTF4, and WIPK in vivo. The interaction of WRKY8 with MAPKs depended on its D domain, which is a MAPK-interacting motif, and this interaction was required for effective phosphorylation of WRKY8 in plants. Phosphorylation of WRKY8 increased its DNA binding activity to the cognate W-box sequence. The phospho-mimicking mutant of WRKY8 showed higher transactivation activity, and its ectopic expression induced defense-related genes, such as 3-hydroxy-3-methylglutaryl CoA reductase 2 and NADP-malic enzyme. By contrast, silencing of WRKY8 decreased the expression of defense-related genes and increased disease susceptibility to the pathogens Phytophthora infestans and Colletotrichum orbiculare. Thus, MAPK-mediated phosphorylation of WRKY8 has an important role in the defense response through activation of downstream genes. PMID:21386030

  20. Transfer RNA Derived Small RNAs Targeting Defense Responsive Genes Are Induced during Phytophthora capsici Infection in Black Pepper (Piper nigrum L.)

    PubMed Central

    Asha, Srinivasan; Soniya, Eppurath V.

    2016-01-01

    Small RNAs derived from transfer RNAs were recently assigned as potential gene regulatory candidates for various stress responses in eukaryotes. In this study, we report on the cloning and identification of tRNA derived small RNAs from black pepper plants in response to the infection of the quick wilt pathogen, Phytophthora capsici. 5′tRFs cloned from black pepper were validated as highly expressed during P. capsici infection. A high-throughput systematic analysis of the small RNAome (sRNAome) revealed the predominance of 5′tRFs in the infected leaf and root. The abundance of 5′tRFs in the sRNAome and the defense responsive genes as their potential targets indicated their regulatory role during stress response in black pepper. The 5′AlaCGC tRF mediated cleavage was experimentally mapped at the tRF binding sites on the mRNA targets of Non-expresser of pathogenesis related protein (NPR1), which was down-regulated during pathogen infection. Comparative sRNAome further demonstrated sequence conservation of 5′Ala tRFs across the angiosperm plant groups, and many important genes in the defense response were identified in silico as their potential targets. Our findings uncovered the diversity, differential expression and stress responsive functional role of tRNA-derived small RNAs during Phytophthora infection in black pepper. PMID:27313593

  1. Transfer RNA Derived Small RNAs Targeting Defense Responsive Genes Are Induced during Phytophthora capsici Infection in Black Pepper (Piper nigrum L.).

    PubMed

    Asha, Srinivasan; Soniya, Eppurath V

    2016-01-01

    Small RNAs derived from transfer RNAs were recently assigned as potential gene regulatory candidates for various stress responses in eukaryotes. In this study, we report on the cloning and identification of tRNA derived small RNAs from black pepper plants in response to the infection of the quick wilt pathogen, Phytophthora capsici. 5'tRFs cloned from black pepper were validated as highly expressed during P. capsici infection. A high-throughput systematic analysis of the small RNAome (sRNAome) revealed the predominance of 5'tRFs in the infected leaf and root. The abundance of 5'tRFs in the sRNAome and the defense responsive genes as their potential targets indicated their regulatory role during stress response in black pepper. The 5'Ala(CGC) tRF mediated cleavage was experimentally mapped at the tRF binding sites on the mRNA targets of Non-expresser of pathogenesis related protein (NPR1), which was down-regulated during pathogen infection. Comparative sRNAome further demonstrated sequence conservation of 5'Ala tRFs across the angiosperm plant groups, and many important genes in the defense response were identified in silico as their potential targets. Our findings uncovered the diversity, differential expression and stress responsive functional role of tRNA-derived small RNAs during Phytophthora infection in black pepper.

  2. Plant defense induced in in vitro propagated banana (Musa paradisiaca) plantlets by Fusarium derived elicitors.

    PubMed

    Patel, Miral; Kothari, I L; Mohan, J S S

    2004-07-01

    Perception of microbial signal molecules is part of the strategy evolved by plants to survive attacks by potential pathogens. To gain a more complete understanding of the early signaling events involved in these responses, we used fungal components of Fusarium under in vitro condition and checked the rise in signal molecule, salicylic acid (SA), and marker enzymes in defense reactions against the pathogen. SA level increased by 21 folds in elicitor treated plantlets as compared to that of control plantlets and there was marked increase in phenylalanine ammonia-lyase(PAL), peroxidase(POX), polyphenol oxidase(PPO) along with higher total phenolic content. Present results indicated that use of fungal components had successfully induced systemic resistance in in vitro cultured banana plantlets.

  3. Extracellular ATP Acts on Jasmonate Signaling to Reinforce Plant Defense.

    PubMed

    Tripathi, Diwaker; Zhang, Tong; Koo, Abraham J; Stacey, Gary; Tanaka, Kiwamu

    2018-01-01

    Damaged cells send various signals to stimulate defense responses. Recent identification and genetic studies of the plant purinoceptor, P2K1 (also known as DORN1), have demonstrated that extracellular ATP is a signal involved in plant stress responses, including wounding, perhaps to evoke plant defense. However, it remains largely unknown how extracellular ATP induces plant defense responses. Here, we demonstrate that extracellular ATP induces plant defense mediated through activation of the intracellular signaling of jasmonate (JA), a well-characterized defense hormone. In Arabidopsis ( Arabidopsis thaliana ) leaves, ATP pretreatment induced resistance against the necrotrophic fungus, Botrytis cinerea The induced resistance was enhanced in the P2K1 receptor overexpression line, but reduced in the receptor mutant, dorn1 - 3 Mining the transcriptome data revealed that ATP induces a set of JA-induced genes. In addition, the P2K1-associated coexpression network contains defense-related genes, including those encoding jasmonate ZIM-domain (JAZ) proteins, which play key roles as repressors of JA signaling. We examined whether extracellular ATP impacts the stability of JAZ1 in Arabidopsis. The results showed that the JAZ1 stability decreased in response to ATP addition in a proteasome-dependent manner. This reduction required intracellular signaling via second messengers-cytosolic calcium, reactive oxygen species, and nitric oxide. Interestingly, the ATP-induced JAZ1 degradation was attenuated in the JA receptor mutant, coi1 , but not in the JA biosynthesis mutant, aos , or upon addition of JA biosynthesis inhibitors. Immunoprecipitation analysis demonstrated that ATP increases the interaction between COI1 and JAZ1, suggesting direct cross talk between extracellular ATP and JA in intracellular signaling events. Taken together, these results suggest that extracellular ATP signaling directly impacts the JA signaling pathway to maximize plant defense responses. © 2018

  4. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.

    PubMed

    Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H

    2017-01-01

    Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (<300 amino acids), secreted proteins, with no predicted functions were selected for the HR suppression assay using Nicotiana benthamiana, in which each of the proteins were transiently expressed and evaluated for their ability to suppress HR caused by four cytotoxic effector-R gene combinations (Cp/Rx, ATR13/RPP13, Rpt2/RPS-2, and GPA/RBP-1) and one mutated R gene-Pto(Y207D). Nine out of twenty proteins, designated Shr1 to Shr9 (suppressors of hypersensitive response), were found to suppress HR in N. benthamiana. These effectors varied in the effector-R gene defenses they suppressed, indicating these pathogens can interfere with a variety of host defense pathways. In addition to HR suppression, effector Shr7 also suppressed PAMP-triggered immune response triggered by flg22. Finally, delivery of Shr7 through Pseudomonas fluorescens EtHAn suppressed nonspecific HR induced by Pseudomonas syringae DC3000 in wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.

  5. Copper Contamination Impairs Herbivore Initiation of Seaweed Inducible Defenses and Decreases Their Effectiveness

    PubMed Central

    2015-01-01

    Seaweed-herbivore interactions are often mediated by environmental conditions, yet the roles of emerging anthropogenic stressors on these interactions are poorly understood. For example, chemical contaminants have unknown consequences on seaweed inducible resistance and herbivore response to these defenses despite known deleterious effects of contaminants on animal inducible defenses. Here, we investigated the effect of copper contamination on the interactions between a snail herbivore and a brown seaweed that displays inducible resistance to grazing. We examined seaweed inducible resistance and its effectiveness for organisms exposed to copper at two time points, either during induction or after herbivores had already induced seaweed defenses. Under ambient conditions, non-grazed tissues were more palatable than grazed tissues. However, copper additions negated the preference for non-grazed tissues regardless of the timing of copper exposure, suggesting that copper decreased both how herbivores initiated these inducible defenses and their subsequent effectiveness. Copper decreased stimulation of defenses, at least in part, by suppressing snail grazing pressure—the cue that turns inducible defenses on. Copper decreased effectiveness of defenses by preventing snails from preferentially consuming non-grazed seaweed. Thus, contaminants can potentially stress communities by changing seaweed-herbivore interactions mediated via inducible defenses. Given the ubiquity of seaweed inducible resistance and their potential influence on herbivores, we hypothesize that copper contamination may change the impact of these resistant traits on herbivores. PMID:26274491

  6. Cellular Immune Responses to Live Attenuated Japanese Encephalitis (JE) Vaccine SA14-14-2 in Adults in a JE/Dengue Co-Endemic Area.

    PubMed

    Turtle, Lance; Tatullo, Filippo; Bali, Tanushka; Ravi, Vasanthapuram; Soni, Mohammed; Chan, Sajesh; Chib, Savita; Venkataswamy, Manjunatha M; Fadnis, Prachi; Yaïch, Mansour; Fernandez, Stefan; Klenerman, Paul; Satchidanandam, Vijaya; Solomon, Tom

    2017-01-01

    Japanese encephalitis (JE) virus (JEV) causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV), which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV. We used live attenuated JE vaccine SA14-14-2 as a model for studying T cell responses to JEV infection in adults, and to determine whether these T cell responses are cross-reactive with DENV, and other flaviviruses. We conducted a single arm, open label clinical trial (registration: clinicaltrials.gov NCT01656200) to study T cell responses to SA14-14-2 in adults in South India, an area endemic for JE and dengue. Ten out of 16 (62.5%) participants seroconverted to JEV SA14-14-2, and geometric mean neutralising antibody (NAb) titre was 18.5. Proliferation responses were commonly present before vaccination in the absence of NAb, indicating a likely high degree of previous flavivirus exposure. Thirteen of 15 (87%) participants made T cell interferon-gamma (IFNγ) responses against JEV proteins. In four subjects tested, at least some T cell epitopes mapped cross-reacted with DENV and other flaviviruses. JEV SA14-14-2 was more immunogenic for T cell IFNγ than for NAb in adults in this JE/DENV co-endemic area. The proliferation positive, NAb negative combination may represent a new marker of long term immunity/exposure to JE. T cell responses can cross-react between JE vaccine and DENV in a co-endemic area, illustrating a need for greater knowledge on such responses to inform the development of next-generation vaccines effective against both diseases. clinicaltrials.gov (NCT01656200).

  7. Induction of Jasmonic Acid-Associated Defenses by Thrips Alters Host Suitability for Conspecifics and Correlates with Increased Trichome Densities in Tomato

    PubMed Central

    Klinkhamer, Peter G.L.; Leiss, Kirsten A.

    2017-01-01

    Plant defenses inducible by herbivorous arthropods can determine performance of subsequent feeding herbivores. We investigated how infestation of tomato (Solanum lycopersicum) plants with the Western flower thrips (Frankliniella occidentalis) alters host plant suitability and foraging decisions of their conspecifics. We explored the role of delayed-induced jasmonic acid (JA)-mediated plant defense responses in thrips preference by using the tomato mutant def-1, impaired in JA biosynthesis. In particular, we investigated the effect of thrips infestation on trichome-associated tomato defenses. The results showed that when offered a choice, thrips preferred non-infested plants over infested wild-type plants, while no differences were observed in def-1. Exogenous application of methyl jasmonate restored the repellency effect in def-1. Gene expression analysis showed induction of the JA defense signaling pathway in wild-type plants, while activating the ethylene signaling pathway in both genotypes. Activation of JA defenses led to increases in type-VI leaf glandular trichome densities in the wild type, augmenting the production of trichome-associated volatiles, i.e. terpenes. Our study revealed that plant-mediated intraspecific interactions between thrips are determined by JA-mediated defenses in tomato. We report that insects can alter not only trichome densities but also the allelochemicals produced therein, and that this response might depend on the magnitude and/or type of the induction. PMID:28158865

  8. Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance

    PubMed Central

    Chen, Yi Chung; Wong, Chin Lin; Muzzi, Frederico; Vlaardingerbroek, Ido; Kidd, Brendan N.; Schenk, Peer M.

    2014-01-01

    Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels. PMID:24998294

  9. Ventromedial hypothalamic neurons control a defensive emotion state

    PubMed Central

    Kunwar, Prabhat S; Zelikowsky, Moriel; Remedios, Ryan; Cai, Haijiang; Yilmaz, Melis; Meister, Markus; Anderson, David J

    2015-01-01

    Defensive behaviors reflect underlying emotion states, such as fear. The hypothalamus plays a role in such behaviors, but prevailing textbook views depict it as an effector of upstream emotion centers, such as the amygdala, rather than as an emotion center itself. We used optogenetic manipulations to probe the function of a specific hypothalamic cell type that mediates innate defensive responses. These neurons are sufficient to drive multiple defensive actions, and required for defensive behaviors in diverse contexts. The behavioral consequences of activating these neurons, moreover, exhibit properties characteristic of emotion states in general, including scalability, (negative) valence, generalization and persistence. Importantly, these neurons can also condition learned defensive behavior, further refuting long-standing claims that the hypothalamus is unable to support emotional learning and therefore is not an emotion center. These data indicate that the hypothalamus plays an integral role to instantiate emotion states, and is not simply a passive effector of upstream emotion centers. DOI: http://dx.doi.org/10.7554/eLife.06633.001 PMID:25748136

  10. Constitutive Expression of Mammalian Nitric Oxide Synthase in Tobacco Plants Triggers Disease Resistance to Pathogens

    PubMed Central

    Chun, Hyun Jin; Park, Hyeong Cheol; Koo, Sung Cheol; Lee, Ju Huck; Park, Chan Young; Choi, Man Soo; Kang, Chang Ho; Baek, Dongwon; Cheong, Yong Hwa; Yun, Dae-Jin; Chung, Woo Sik; Cho, Moo Je; Kim, Min Chul

    2012-01-01

    Nitric oxide (NO) is known for its role in the activation of plant defense responses. To examine the involvement and mode of action of NO in plant defense responses, we introduced calmodulin-dependent mammalian neuronal nitric oxide synthase (nNOS), which controls the CaMV35S promoter, into wild-type and NahG tobacco plants. Constitutive expression of nNOS led to NO production and triggered spontaneous induction of leaf lesions. Transgenic plants accumulated high amounts of H2O2, with catalase activity lower than that in the wild type. nNOS transgenic plants contained high levels of salicylic acid (SA), and they induced an array of SA-, jasmonic acid (JA)-, and/or ethylene (ET)-related genes. Consequently, NahG co-expression blocked the induction of systemic acquired resistance (SAR)-associated genes in transgenic plants, implying SA is involved in NO-mediated induction of SAR genes. The transgenic plants exhibited enhanced resistance to a spectrum of pathogens, including bacteria, fungi, and viruses. Our results suggest a highly ranked regulatory role for NO in SA-, JA-, and/or ET-dependent pathways that lead to disease resistance. PMID:23124383

  11. Suppression of nuclear factor erythroid‑2‑related factor 2‑mediated antioxidative defense in the lung injury induced by chronic exposure to methamphetamine in rats.

    PubMed

    Bai, Yang; Wang, Yun; Liu, Ming; Gu, Yu-Han; Jiang, Bin; Wu, Xu; Wang, Huai-Liang

    2017-05-01

    The imbalance between oxidative stress and antioxidant defense is important in the pathogenesis of lung diseases. Nuclear factor erythroid‑2‑related factor 2 (Nrf2) is a key transcriptional factor that regulates the antioxidant response. The purpose of the present study was to investigate whether Nrf2‑mediated antioxidative defense is involved in methamphetamine (MA)‑induced lung injury in rats. Following establishment of chronic MA toxicity in rats, Doppler ultrasonic detection was used to measure the changes of physiological indexes, followed by hematoxylin and eosin staining, ELISA and western blot analysis. MA was demonstrated to increase the heart rate and peak blood flow velocity of pulmonary arterial valves and to decrease the survival rate of rats, and resulted in lung injury characterized by perivascular exudates, airspace edema, slight hemorrhage and inflammatory cell infiltration. MA significantly inhibited the expression of nuclear Nrf2 protein and its target genes (glutamate‑cysteine ligase catalytic subunit C and heme oxygenase‑1), and dose‑dependently reduced glutathione (GSH) levels and the ratio of GSH/oxidized glutathione, accompanied by increases in reactive oxygen species (ROS) levels in rat lungs. Linear regression analysis revealed that there was a positive correlation between lung ROS level and lung injury indexes. These findings suggested that chronic exposure to MA led to lung injury by suppression of Nrf2‑mediated antioxidative defense, suggesting that Nrf2 may be an important therapeutic target for MA‑induced chronic lung toxicity.

  12. Two sensory channels mediate perception of fingertip force.

    PubMed

    Brothers, Trevor; Hollins, Mark

    2014-01-01

    In two experiments we examined the ability of humans to exert forces accurately with the fingertips, and to perceive those forces. In experiment 1 participants used visual feedback to apply a range of fingertip forces with the distal pad of the thumb. Participants made magnitude discriminations regarding these forces, and their just noticeable differences were calculated at a series of standards by means of a two-interval, forced-choice tracking paradigm. As the standard increased, participants demonstrated a relative improvement in force discrimination; and the presence of a possible inflection point, at approximately 400 g, suggested that two sensory channels may contribute to performance. If this is the case, the operative channel at low forces is almost certainly the slowly adapting type I (SA-I) channel, while another mechanoreceptor class, the SA-II nail unit, is a plausible mediator of the more accurate performance seen at high force levels. To test this two-channel hypothesis in experiment 2, we hydrated participants' thumbnails in order to reduce nail rigidity and thus prevent stimulation of underlying SA-II mechanoreceptors. This technique was found to reduce sensory accuracy in a force-matching task at high forces (1000 g) while leaving low force matching (100 g) unimpaired. Taken together, these results suggest that two sensory channels mediate the perception of fingertip forces in humans: one channel predominating at low forces (below approximately 400 g) and another responsible for perceiving high forces which is likely mediated by the SA-II nail unit.

  13. Multiple functions of the S-phase checkpoint mediator.

    PubMed

    Tanaka, Katsunori

    2010-01-01

    There is mounting evidence that replication defects are the major source of spontaneous genomic instability in cells, and that S-phase checkpoints are the principal defense against such instability. The S-phase checkpoint mediator protein Mrc1/Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of effector kinase by a sensor kinase. In this review, the multiple functions and the regulation of the S-phase checkpoint mediator are discussed.

  14. Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid

    PubMed Central

    Heil, Martin; Koch, Thomas; Hilpert, Andrea; Fiala, Brigitte; Boland, Wilhelm; Linsenmair, K. Eduard

    2001-01-01

    Plant species in at least 66 families produce extrafloral nectar (EFN) on their leaves or shoots and therewith attract predators and parasitoids, such as ants and wasps, which in turn defend them against herbivores. We investigated whether EFN secretion is induced by herbivory and/or artificial damage, and thus can be regarded as an induced defensive response. In addition, we studied the underlying signaling pathway. EFN secretion by field-grown Macaranga tanarius increased after herbivory, artificial leaf damage, and exogenous jasmonic acid (JA) application. Artificial damage strongly enhanced endogenous JA concentrations. The response in EFN production to artificial damage was much less pronounced in those leaves that were treated with phenidone to inhibit endogenous JA synthesis. Quantitative dose–response relations were found between the increase in nectar production and both the intensity of leaf damage and the amounts of exogenously applied JA. The amount of endogenously produced JA was positively correlated with the intensity of leaf damage. Increased numbers of defending insects and decreased numbers of herbivores were observed on leaves after inducing EFN production by exogenous JA treatment. Over 6 weeks, repeatedly applied JA or artificial damage resulted in a ten-fold reduction in herbivory. These results demonstrate that EFN production represents an alternative mechanism for induced, indirect defensive plant responses that are mediated via the octadecanoid signal transduction cascade. PMID:11158598

  15. A Benzothiadiazole Primes Parsley Cells for Augmented Elicitation of Defense Responses

    PubMed Central

    Katz, Vera A.; Thulke, Oliver U.; Conrath, Uwe

    1998-01-01

    Systemic acquired resistance is an important component of the disease-resistance arsenal of plants, and is associated with an enhanced potency for activating local defense responses upon pathogen attack. Here we demonstrate that pretreatment with benzothiadiazole (BTH), a synthetic activator of acquired resistance in plants, augmented the sensitivity for low-dose elicitation of coumarin phytoalexin secretion by cultured parsley (Petroselinum crispum L.) cells. Enhanced coumarin secretion was associated with potentiated activation of genes encoding Phe ammonia-lyase (PAL). The augmentation of PAL gene induction was proportional to the length of pretreatment with BTH, indicating time-dependent priming of the cells. In contrast to the PAL genes, those for anionic peroxidase were directly induced by BTH in the absence of elicitor, thus confirming a dual role for BTH in the activation of plant defenses. Strikingly, the ability of various chemicals to enhance plant disease resistance correlated with their capability to potentiate parsley PAL gene elicitation, emphasizing an important role for defense response potentiation in acquired plant disease resistance. PMID:9701589

  16. Abscisic acid promotes proteasome-mediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana.

    PubMed

    Ding, Yezhang; Dommel, Matthew; Mou, Zhonglin

    2016-04-01

    Proteasome-mediated turnover of the transcription coactivator NPR1 is pivotal for efficient activation of the broad-spectrum plant immune responses known as localized acquired resistance (LAR) and systemic acquired resistance (SAR) in adjacent and systemic tissues, respectively, and requires the CUL3-based E3 ligase and its adaptor proteins, NPR3 and NPR4, which are receptors for the signaling molecule salicylic acid (SA). It has been shown that SA prevents NPR1 turnover under non-inducing and LAR/SAR-inducing conditions, but how cellular NPR1 homeostasis is maintained remains unclear. Here, we show that the phytohormone abscisic acid (ABA) and SA antagonistically influence cellular NPR1 protein levels. ABA promotes NPR1 degradation via the CUL3(NPR) (3/) (NPR) (4) complex-mediated proteasome pathway, whereas SA may protect NPR1 from ABA-promoted degradation through phosphorylation. Furthermore, we demonstrate that the timing and strength of SA and ABA signaling are critical in modulating NPR1 accumulation and target gene expression. Perturbing ABA or SA signaling in adjacent tissues alters the temporal dynamic pattern of NPR1 accumulation and target gene transcription. Finally, we show that sequential SA and ABA treatment leads to dynamic changes in NPR1 protein levels and target gene expression. Our results revealed a tight correlation between sequential SA and ABA signaling and dynamic changes in NPR1 protein levels and NPR1-dependent transcription in plant immune responses. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  17. Insights into salicylic acid responses in cucumber (Cucumis sativus L.) cotyledons based on a comparative proteomic analysis.

    PubMed

    Hao, J H; Dong, C J; Zhang, Z G; Wang, X L; Shang, Q M

    2012-05-01

    To investigate the response of cucumber seedlings to exogenous salicylic acid (SA) and gain a better understanding of SA action mechanism, we generated a proteomic profile of cucumber (Cucumis sativus L.) cotyledons treated with exogenous SA. Analysis of 1500 protein spots from each gel revealed 63 differentially expressed proteins, 59 of which were identified successfully. Of the identified proteins, 97% matched cucumber proteins using a whole cucumber protein database based on the newly completed genome established by our laboratory. The identified proteins were involved in various cellular responses and metabolic processes, including antioxidative reactions, cell defense, photosynthesis, carbohydrate metabolism, respiration and energy homeostasis, protein folding and biosynthesis. The two largest functional categories included proteins involved in antioxidative reactions (23.7%) and photosynthesis (18.6%). Furthermore, the SA-responsive protein interaction network revealed 13 key proteins, suggesting that the expression changes of these proteins could be critical for SA-induced resistance. An analysis of these changes suggested that SA-induced resistance and seedling growth might be regulated in part through pathways involving antioxidative reactions and photosynthesis. © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. From emotional abuse in childhood to psychopathology in adulthood: a path mediated by immature defense mechanisms and self-esteem.

    PubMed

    Finzi-Dottan, Ricky; Karu, Toby

    2006-08-01

    The present study examined the course traveled from childhood emotional abuse to adulthood psychopathology. One hundred ninety-six undergraduate students age 20 to 45 (M = 27; SD = 8.17), answered self-report questionnaires assessing emotional abuse in childhood (Childhood Trauma Questionnaire), parental attitudes (Parental Bonding Instrument), psychopathological symptomatology (Brief Symptom Inventory), self-esteem (Rosenberg Self-Esteem Scale), and defense mechanism organization (Defense Style Questionnaire). Results indicated that reported psychopathological symptomatology highly exceeded the Israeli norm. Structure Equation Modeling provided a statistically significant explanation (52%) of the target variable of psychopathological symptomatology. According to the path model, emotional abuse in childhood and perceptions of controlling and noncaring parents had an indirect effect on the psychopathology. This was mediated by immature defenses and low self-esteem. We conclude that the manifest psychopathology among adults who suffered emotional abuse in childhood is produced by the detrimental effect of abuse on personality, and takes the form of immature defense organization and damaged self-representation.

  19. M-CSF Mediates Host Defense during Bacterial Pneumonia by Promoting the Survival of Lung and Liver Mononuclear Phagocytes.

    PubMed

    Bettina, Alexandra; Zhang, Zhimin; Michels, Kathryn; Cagnina, R Elaine; Vincent, Isaah S; Burdick, Marie D; Kadl, Alexandra; Mehrad, Borna

    2016-06-15

    Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells, and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. M-CSF has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden, and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, proliferation of precursors, or recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and antimicrobial functions of both lung and liver mononuclear phagocytes during pneumonia, and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and antimicrobial functions of mononuclear phagocytes in the lungs and liver. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. M-CSF mediates host defense during bacterial pneumonia by promoting the survival of lung and liver mononuclear phagocytes

    PubMed Central

    Bettina, Alexandra; Zhang, Zhimin; Michels, Kathryn; Cagnina, R. Elaine; Vincent, Isaah S.; Burdick, Marie D.; Kadl, Alexandra; Mehrad, Borna

    2016-01-01

    Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. Macrophage-colony stimulating factor (M-CSF) has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, the proliferation of precursors or the recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and anti-microbial functions of both lung and liver mononuclear phagocytes during pneumonia and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and anti-microbial functions of mononuclear phagocytes in the lungs and liver. PMID:27183631

  1. Induction of plant virus defense response by brassinosteroids and brassinosteroid signaling in Arabidopsis thaliana.

    PubMed

    Zhang, Da-Wei; Deng, Xing-Guang; Fu, Fa-Qiong; Lin, Hong-Hui

    2015-04-01

    Our study demonstrated that CMV resistance was upregulated by brassinosteroids (BRs) treatment, and BR signaling was needed for this BRs-induced CMV tolerance. Plant steroid hormones, brassinosteroids (BRs), play essential roles in variety of plant developmental processes and adaptation to various biotic and abiotic stresses. BR signal through plasma membrane-localized receptor and other components to modulate several transcription factors that modulate thousands of target genes including certain stress-responsive genes. To study the effects of BRs on plant virus defense and how BRs induce plant virus stress tolerance, we manipulated the BRs levels in Arabidopsis thaliana and found that BRs levels were positively correlated with the tolerance to Cucumber mosaic virus (CMV). We also showed that BRs treatment alleviated photosystem damage, enhanced antioxidant enzymes activity and induced defense-associated genes expression under CMV stress in Arabidopsis. To see whether BR signaling is essential for the plant virus defense response, we made use of BR signaling mutants (a weak allele of the BRs receptor mutant bri1-5 and constitutive BRs response mutant bes1-D). Compared with wild-type Arabidopsis plants, bri1-5 displayed reversed tolerance to CMV, but the resistance was enhanced in bes1-D. Together our results suggest that BRs can induce plant virus defense response through BR signaling.

  2. Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation.

    PubMed

    Romero, A; Novoa, B; Figueras, A

    2016-09-01

    The Mediterranean sea urchin (Paracentrotus lividus) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm's immunological defense mechanisms reported so far have used the sea urchin Strongylocentrotus purpuratus as a model, and information on the immunological defense mechanisms of Paracentrotus lividus and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in P. lividus coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in P. lividus and their modulation after PAMP stimulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Sucrose and invertases, a part of the plant defense response to the biotic stresses

    PubMed Central

    Tauzin, Alexandra S.; Giardina, Thierry

    2014-01-01

    Sucrose is the main form of assimilated carbon which is produced during photosynthesis and then transported from source to sink tissues via the phloem. This disaccharide is known to have important roles as signaling molecule and it is involved in many metabolic processes in plants. Essential for plant growth and development, sucrose is engaged in plant defense by activating plant immune responses against pathogens. During infection, pathogens reallocate the plant sugars for their own needs forcing the plants to modify their sugar content and triggering their defense responses. Among enzymes that hydrolyze sucrose and alter carbohydrate partitioning, invertases have been reported to be affected during plant-pathogen interactions. Recent highlights on the role of invertases in the establishment of plant defense responses suggest a more complex regulation of sugar signaling in plant-pathogen interaction. PMID:25002866

  4. IL-17 Contributes to Cell-Mediated Defense against Pulmonary Yersinia pestis Infection1

    PubMed Central

    Lin, Jr-Shiuan; Kummer, Lawrence W.; Szaba, Frank M.; Smiley, Stephen T.

    2010-01-01

    Pneumonic plague is one of the world’s most deadly infectious diseases. The causative bacterium, Yersinia pestis, has the potential to be exploited as a biological weapon and no vaccine is available. Vaccinating B cell-deficient mice with D27-pLpxL, a live attenuated Y. pestis strain, induces cell-mediated protection against lethal pulmonary Y. pestis challenge. Here we demonstrate that prime/boost vaccination with D27-pLpxL confers better protection than prime-only vaccination. The improved survival does not result from enhanced bacterial clearance, but is associated with increased levels of IL-17 mRNA and protein in the lungs of challenged mice. The boost also increases pulmonary numbers of IL-17-producing CD4 T cells. Interestingly, the vast majority of these cells simultaneously produce canonical type 1 and type 17 cytokines; most produce IL-17 and TNFα, and many produce IL-17, TNFα and IFNγ. Neutralizing IL-17 counteracts the improved survival associated with prime/boost vaccination without significantly impacting bacterial burden. Thus, IL-17 appears to mediate the enhanced protection conferred by booster immunization. Although neutralizing IL-17 significantly reduces neutrophil recruitment to the lungs of mice challenged with Y. pestis, this impact is equally evident in mice that receive one or two immunizations with D27-pLpxL, suggesting it cannot suffice to account for the improved survival that results from booster immunization. We conclude that IL-17 plays a yet to be identified role in host defense that enhances protection against pulmonary Y. pestis challenge, and we suggest that pneumonic plague vaccines should aim to induce mixed type 1 and type 17 cellular responses. PMID:21172869

  5. The Calcium-Dependent Protein Kinase CPK28 Regulates Development by Inducing Growth Phase-Specific, Spatially Restricted Alterations in Jasmonic Acid Levels Independent of Defense Responses in Arabidopsis[OPEN

    PubMed Central

    Matschi, Susanne; Hake, Katharina; Herde, Marco; Hause, Bettina; Romeis, Tina

    2015-01-01

    Phytohormones play an important role in development and stress adaptations in plants, and several interacting hormonal pathways have been suggested to accomplish fine-tuning of stress responses at the expense of growth. This work describes the role played by the CALCIUM-DEPENDENT PROTEIN KINASE CPK28 in balancing phytohormone-mediated development in Arabidopsis thaliana, specifically during generative growth. cpk28 mutants exhibit growth reduction solely as adult plants, coinciding with altered balance of the phytohormones jasmonic acid (JA) and gibberellic acid (GA). JA-dependent gene expression and the levels of several JA metabolites were elevated in a growth phase-dependent manner in cpk28, and accumulation of JA metabolites was confined locally to the central rosette tissue. No elevated resistance toward herbivores or necrotrophic pathogens was detected for cpk28 plants, either on the whole-plant level or specifically within the tissue displaying elevated JA levels. Abolishment of JA biosynthesis or JA signaling led to a full reversion of the cpk28 growth phenotype, while modification of GA signaling did not. Our data identify CPK28 as a growth phase-dependent key negative regulator of distinct processes: While in seedlings, CPK28 regulates reactive oxygen species-mediated defense signaling; in adult plants, CPK28 confers developmental processes by the tissue-specific balance of JA and GA without affecting JA-mediated defense responses. PMID:25736059

  6. Orienting-defense responses and psychophysiological reactivity in isolated clinic versus sustained hypertension.

    PubMed

    García-Vera, María Paz; Sanz, Jesús; Labrador, Francisco J

    2007-04-01

    This study sought to determine whether patients with white-coat or isolated clinic hypertension (ICH) show, in comparison to patients with sustained hypertension (SH), a defense response pattern to novel stimuli and an enhanced psychophysiological reactivity to stress. Forty-three patients with essential hypertension were divided into two groups after 16 days of self-monitoring blood pressure (BP): ICH (24 men; self-measured BP < 135/85 mmHg) and SH (19 men; self-measured BP >or= 135/85 mmHg). Defense responses were measured as the cardiac changes to phasic non-aversive auditory stimuli. Psychophysiological reactivity (heart and breath rate, blood volume pulse, electromyography, and skin conductance) was measured during mental arithmetic and video game tasks. The standard deviation of self-measured BPs and the difference between mean BPs at work and at home were used as indicators of cardiovascular reactivity to daily stress. No significant differences were seen in defense responses or psychophysiological reactivity to laboratory or naturally occurring stressors. These results do not support the hypothesis that ICH can be explained in terms of a generalized hyperreactivity to novel or stressful stimuli.

  7. Interaction between Pseudomonas aeruginosa and host defenses in cystic fibrosis.

    PubMed

    Marshall, B C; Carroll, K C

    1991-03-01

    The major causes of morbidity and mortality in cystic fibrosis are chronic pulmonary obstruction and infection. Mucoid Pseudomonas aeruginosa is the primary pathogen in up to 90% of these patients. Once Pseudomonas organisms colonize the airways, they are virtually never eradicated. No defect in systemic host defense has been elucidated, however, several mechanisms contribute to the breakdown in host defenses that allow persistence of this organism in the endobronchial space. These mechanisms involve both bacterial adaptation to an unfavorable host environment and impaired host response. P aeruginosa adapts to the host by expressing excessive mucoid exopolysaccharide and a less virulent form of lipopolysaccharide. These features make it less likely to cause systemic infection, yet still enable it to resist local host defenses. Mucociliary clearance becomes impaired due to abnormal viscoelastic properties of sputum, squamous metaplasia of the respiratory epithelium, and bronchiectasis. Despite a brisk antibody response to a variety of Pseudomonas antigens, several defects in antibody-mediated opsonophagocytosis have been identified. These include (1) development of antibody isotypes that are suboptimal at promoting phagocytosis, (2) formation of immune complexes that inhibit phagocytosis, and (3) proteolytic fragmentation of immunoglobulins in the endobronchial space. Complement-mediated opsonophagocytosis is also compromised by proteolytic cleavage of complement receptors from the cell surface of neutrophils and complement opsonins from the surface of Pseudomonas. The resultant chronic inflammation and infection lead to eventual obliteration of the airways.

  8. Transient Receptor Potential Channel 1 Deficiency Impairs Host Defense and Proinflammatory Responses to Bacterial Infection by Regulating Protein Kinase Cα Signaling.

    PubMed

    Zhou, Xikun; Ye, Yan; Sun, Yuyang; Li, Xuefeng; Wang, Wenxue; Privratsky, Breanna; Tan, Shirui; Zhou, Zongguang; Huang, Canhua; Wei, Yu-Quan; Birnbaumer, Lutz; Singh, Brij B; Wu, Min

    2015-08-01

    Transient receptor potential channel 1 (TRPC1) is a nonselective cation channel that is required for Ca(2+) homeostasis necessary for cellular functions. However, whether TRPC1 is involved in infectious disease remains unknown. Here, we report a novel function for TRPC1 in host defense against Gram-negative bacteria. TRPC1(-/-) mice exhibited decreased survival, severe lung injury, and systemic bacterial dissemination upon infection. Furthermore, silencing of TRPC1 showed decreased Ca(2+) entry, reduced proinflammatory cytokines, and lowered bacterial clearance. Importantly, TRPC1 functioned as an endogenous Ca(2+) entry channel critical for proinflammatory cytokine production in both alveolar macrophages and epithelial cells. We further identified that bacterium-mediated activation of TRPC1 was dependent on Toll-like receptor 4 (TLR4), which induced endoplasmic reticulum (ER) store depletion. After activation of phospholipase Cγ (PLC-γ), TRPC1 mediated Ca(2+) entry and triggered protein kinase Cα (PKCα) activity to facilitate nuclear translocation of NF-κB/Jun N-terminal protein kinase (JNK) and augment the proinflammatory response, leading to tissue damage and eventually mortality. These findings reveal that TRPC1 is required for host defense against bacterial infections through the TLR4-TRPC1-PKCα signaling circuit. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Salicylic acid-mediated establishment of the compatibility between Alternaria brassicicola and Brassica juncea is mitigated by abscisic acid in Sinapis alba.

    PubMed

    Mazumder, Mrinmoy; Das, Srirupa; Saha, Upala; Chatterjee, Madhuvanti; Bannerjee, Kaushik; Basu, Debabrata

    2013-09-01

    This work addresses the changes in the phytohormonal signature in the recognition of the necrotrophic fungal pathogen Alternaria brassicicola by susceptible Brassica juncea and resistant Sinapis alba. Although B. juncea, S. alba and Arabidopsis all belong to the same family, Brassicaceae, the phytohormonal response of susceptible B. juncea towards this pathogen is unique because the latter two species express non-host resistance. The differential expression of the PR1 gene and the increased level of salicylic acid (SA) indicated that an SA-mediated biotrophic mode of defence response was triggered in B. juncea upon challenge with the pathogen. Compared to B. juncea, resistant S. alba initiated enhanced abscisic acid (ABA) and jasmonic acid (JA) responses following challenge with this pathogen, as revealed by monitoring the expression of ABA-related genes along with the concentration of ABA and JA. Furthermore, these results were verified by the exogenous application of ABA on B. juncea leaves prior to challenge with A. brassicicola, which resulted in a delayed disease progression, followed by the inhibition of the pathogen-mediated increase in SA response and enhanced JA levels. Therefore, it seems that A. brassicicola is steering the defence response towards a biotrophic mode by mounting an SA response in susceptible B. juncea, whereas the enhanced ABA response of S. alba not only counteracts the SA response but also restores the necrotrophic mode of resistance by enhancing JA biosynthesis. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Control of Carbon Assimilation and Partitioning by Jasmonate: An Accounting of Growth-Defense Tradeoffs.

    PubMed

    Havko, Nathan E; Major, Ian T; Jewell, Jeremy B; Attaran, Elham; Browse, John; Howe, Gregg A

    2016-01-15

    Plant growth is often constrained by the limited availability of resources in the microenvironment. Despite the continuous threat of attack from insect herbivores and pathogens, investment in defense represents a lost opportunity to expand photosynthetic capacity in leaves and absorption of nutrients and water by roots. To mitigate the metabolic expenditure on defense, plants have evolved inducible defense strategies. The plant hormone jasmonate (JA) is a key regulator of many inducible defenses. Synthesis of JA in response to perceived danger leads to the deployment of a variety of defensive structures and compounds, along with a potent inhibition of growth. Genetic studies have established an important role for JA in mediating tradeoffs between growth and defense. However, several gaps remain in understanding of how JA signaling inhibits growth, either through direct transcriptional control of JA-response genes or crosstalk with other signaling pathways. Here, we highlight recent progress in uncovering the role of JA in controlling growth-defense balance and its relationship to resource acquisition and allocation. We also discuss tradeoffs in the context of the ability of JA to promote increased leaf mass per area (LMA), which is a key indicator of leaf construction costs and leaf life span.

  11. What happens in the pith stays in the pith: tissue-localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores.

    PubMed

    Lee, Gisuk; Joo, Youngsung; Kim, Sang-Gyu; Baldwin, Ian T

    2017-11-01

    Herbivore attack is known to elicit systemic defense responses that spread throughout the host plant and influence the performance of other herbivores. While these plant-mediated indirect competitive interactions are well described, and the co-existence of herbivores from different feeding guilds is common, the mechanisms of co-existence are poorly understood. In both field and glasshouse experiments with a native tobacco, Nicotiana attenuata, we found no evidence of negative interactions when plants were simultaneously attacked by two spatially separated herbivores: a leaf chewer Manduca sexta and a stem borer Trichobaris mucorea. T. mucorea attack elicited jasmonic acid (JA) and jasmonoyl-l-isoleucine bursts in the pith of attacked stems similar to those that occur in leaves when M. sexta attacks N. attenuata leaves. Pith chlorogenic acid (CGA) levels increased 1000-fold to levels 6-fold higher than leaf levels after T. mucorea attack; these increases in pith CGA levels, which did not occur in M. sexta-attacked leaves, required JA signaling. With plants silenced in CGA biosynthesis (irHQT plants), CGA, as well as other caffeic acid conjugates, was demonstrated in both glasshouse and field experiments to function as a direct defense protecting piths against T. mucorea attack, but not against leaf chewers or sucking insects. T. mucorea attack does not systemically activate JA signaling in leaves, while M. sexta leaf-attack transiently induces detectable but minor pith JA levels that are dwarfed by local responses. We conclude that tissue-localized defense responses allow tissue-specialized herbivores to share the same host and occupy different chemical defense niches in the same hostplant. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Simultaneous induction of jasmonic acid and disease-responsive genes signifies tolerance of American elm to Dutch elm disease

    PubMed Central

    Sherif , S. M.; Shukla, M. R.; Murch, S. J.; Bernier, L.; Saxena, P. K.

    2016-01-01

    Dutch elm disease (DED), caused by three fungal species in the genus Ophiostoma, is the most devastating disease of both native European and North American elm trees. Although many tolerant cultivars have been identified and released, the tolerance mechanisms are not well understood and true resistance has not yet been achieved. Here we show that the expression of disease-responsive genes in reactions leading to tolerance or susceptibility is significantly differentiated within the first 144 hours post-inoculation (hpi). Analysis of the levels of endogenous plant defense molecules such as jasmonic acid (JA) and salicylic acid (SA) in tolerant and susceptible American elm saplings suggested SA and methyl-jasmonate as potential defense response elicitors, which was further confirmed by field observations. However, the tolerant phenotype can be best characterized by a concurrent induction of JA and disease-responsive genes at 96 hpi. Molecular investigations indicated that the expression of fungal genes (i.e. cerato ulmin) was also modulated by endogenous SA and JA and this response was unique among aggressive and non-aggressive fungal strains. The present study not only provides better understanding of tolerance mechanisms to DED, but also represents a first, verified template for examining simultaneous transcriptomic changes during American elm-fungus interactions. PMID:26902398

  13. CRYPTOCHROME 2 and PHOTOTROPIN 2 regulate resistance protein mediated viral 2 defense by negatively regulating a E3 ubiquitin ligase

    USDA-ARS?s Scientific Manuscript database

    Light harvested by plants is essential for the survival of most life forms. This light perception ability requires the activities of proteins termed photoreceptors. We report a function for photoreceptors in mediating resistance (R) protein-derived plant defense. The blue-light photoreceptors, crypt...

  14. Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride.

    PubMed

    Navazio, Lorella; Baldan, Barbara; Moscatiello, Roberto; Zuppini, Anna; Woo, Sheridan L; Mariani, Paola; Lorito, Matteo

    2007-07-30

    Calcium is commonly involved as intracellular messenger in the transduction by plants of a wide range of biotic stimuli, including signals from pathogenic and symbiotic fungi. Trichoderma spp. are largely used in the biological control of plant diseases caused by fungal phytopathogens and are able to colonize plant roots. Early molecular events underlying their association with plants are relatively unknown. Here, we investigated the effects on plant cells of metabolite complexes secreted by Trichoderma atroviride wild type P1 and a deletion mutant of this strain on the level of cytosolic free Ca2+ and activation of defense responses. Trichoderma culture filtrates were obtained by growing the fungus alone or in direct antagonism with its fungal host, the necrotrophic pathogen Botrytis cinerea, and then separated in two fractions (>3 and <3 kDa). When applied to aequorin-expressing soybean (Glycine max L.) cell suspension cultures, Trichoderma and Botrytis metabolite mixtures were distinctively perceived and activated transient intracellular Ca2+ elevations with different kinetics, specific patterns of intracellular accumulation of reactive oxygen species and induction of cell death. Both Ca2+ signature and cellular effects were modified by the culture medium from the knock-out mutant of Trichoderma, defective for the production of the secreted 42 kDa endochitinase. New insights are provided into the mechanism of interaction between Trichoderma and plants, indicating that secreted fungal molecules are sensed by plant cells through intracellular Ca2+ changes. Plant cells are able to discriminate signals originating in the single or two-fungal partner interaction and modulate defense responses.

  15. Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus.

    PubMed

    Xiong, Xiaorui R; Liang, Feixue; Zingg, Brian; Ji, Xu-ying; Ibrahim, Leena A; Tao, Huizhong W; Zhang, Li I

    2015-06-11

    Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities.

  16. Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus

    PubMed Central

    Xiong, Xiaorui R.; Liang, Feixue; Zingg, Brian; Ji, Xu-ying; Ibrahim, Leena A.; Tao, Huizhong W.; Zhang, Li I.

    2015-01-01

    Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities. PMID:26068082

  17. The function of the Mediator complex in plant immunity.

    PubMed

    An, Chuanfu; Mou, Zhonglin

    2013-03-01

    Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.

  18. Personality and defensive reactions: fear, trait anxiety, and threat magnification.

    PubMed

    Perkins, Adam M; Cooper, Andrew; Abdelall, Maura; Smillie, Luke D; Corr, Philip J

    2010-06-01

    The revised Reinforcement Sensitivity Theory (rRST) of personality (Gray & McNaughton, 2000) maintains that trait individual differences in the operation of defensive systems relate to facets of human personality, most notably anxiety and fear. We investigated this theory in 2 separate studies (total N=270) using a threat scenario research strategy (Blanchard, Hynd, Minke, Minemoto, & Blanchard, 2001). Consistent with rRST, results showed that individuals with high fear questionnaire scores tended to select defensive responses entailing orientation away from threat (e.g., run away) and that fear-prone individuals also tended to perceive threats as magnified. The extent of this threat magnification mediated the positive association observed between fear and orientation away from threat. Overall, results suggest that interindividual variance in defensive reactions is associated with a variety of existing personality constructs but that further research is required to determine the precise relationship between personality and defensive reactions.

  19. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response

    PubMed Central

    2013-01-01

    Background Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development. Results We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication. Conclusions We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies. PMID:24314063

  20. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response.

    PubMed

    Shi, Zi; Zhang, Yufan; Maximova, Siela N; Guiltinan, Mark J

    2013-12-06

    Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development. We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication. We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies.

  1. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46's role in a nicotine-mediated antipredator herbivore defense.

    PubMed

    Kumar, Pavan; Pandit, Sagar S; Steppuhn, Anke; Baldwin, Ian T

    2014-01-28

    Manduca sexta (Ms) larvae are known to efficiently excrete ingested nicotine when feeding on their nicotine-producing native hostplant, Nicotiana attenuata. Here we describe how ingested nicotine is co-opted for larval defense by a unique mechanism. Plant-mediated RNAi was used to silence a midgut-expressed, nicotine-induced cytochrome P450 6B46 (CYP6B46) in larvae consuming transgenic N. attenuata plants producing MsCYP6B46 dsRNA. These and transgenic nicotine-deficient plants were planted into native habitats to study the phenotypes of larvae feeding on these plants and the behavior of their predators. The attack-behavior of a native wolf spider (Camptocosa parallela), a major nocturnal predator, provided the key to understanding MsCYP6B46's function: spiders clearly preferred CYP6B46-silenced larvae, just as they had preferred larvae fed nicotine-deficient plants. MsCYP6B46 redirects a small amount (0.65%) of ingested nicotine from the midgut into hemolymph, from which nicotine is exhaled through the spiracles as an antispider signal. CYP6B46-silenced larvae were more susceptible to spider-attack because they exhaled less nicotine because of lower hemolymph nicotine concentrations. CYP6B46-silenced larvae were impaired in distributing ingested nicotine from midgut to hemolymph, but not in the clearing of hemolymph nicotine or in the exhalation of nicotine from hemolymph. MsCYP6B46 could be a component of a previously hypothesized pump that converts nicotine to a short-lived, transportable, metabolite. Other predators, big-eyed bugs, and antlion larvae were insensitive to this defense. Thus, chemical defenses, too toxic to sequester, can be repurposed for defensive functions through respiration as a form of defensive halitosis, and predators can assist the functional elucidation of herbivore genes.

  2. The Wheat Ethylene Response Factor Transcription Factor PATHOGEN-INDUCED ERF1 Mediates Host Responses to Both the Necrotrophic Pathogen Rhizoctonia cerealis and Freezing Stresses1[C][W][OPEN

    PubMed Central

    Zhu, Xiuliang; Qi, Lin; Liu, Xin; Cai, Shibin; Xu, Huijun; Huang, Rongfeng; Li, Jiarui; Wei, Xuening; Zhang, Zengyan

    2014-01-01

    Sharp eyespot disease (primarily caused by the pathogen Rhizoctonia cerealis) and freezing stress are important yield limitations for the production of wheat (Triticum aestivum). Here, we report new insights into the function and underlying mechanisms of an ethylene response factor (ERF) in wheat, Pathogen-Induced ERF1 (TaPIE1), in host responses to R. cerealis and freezing stresses. TaPIE1-overexpressing transgenic wheat exhibited significantly enhanced resistance to both R. cerealis and freezing stresses, whereas TaPIE1-underexpressing wheat plants were more susceptible to both stresses relative to control plants. Following both stress treatments, electrolyte leakage and hydrogen peroxide content were significantly reduced, and both proline and soluble sugar contents were elevated in TaPIE1-overexpressing wheat, whereas these physiological traits in TaPIE1-underexpressing wheat exhibited the opposite trend. Microarray and quantitative reverse transcription-polymerase chain reaction analyses of TaPIE1-overexpressing and -underexpressing wheat plants indicated that TaPIE1 activated a subset of defense- and stress-related genes. Assays of DNA binding by electrophoretic mobility shift and transient expression in tobacco (Nicotiana tabacum) showed that the GCC boxes in the promoters of TaPIE1-activated genes were essential for transactivation by TaPIE1. The transactivation activity of TaPIE1 and the expression of TaPIE1-activated defense- and stress-related genes were significantly elevated following R. cerealis, freezing, and exogenous ethylene treatments. TaPIE1-mediated responses to R. cerealis and freezing were positively modulated by ethylene biosynthesis. These data suggest that TaPIE1 positively regulates the defense responses to R. cerealis and freezing stresses by activating defense- and stress-related genes downstream of the ethylene signaling pathway and by modulating related physiological traits in wheat. PMID:24424323

  3. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.

    PubMed

    Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio

    2018-02-01

    Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Regulation of miR163 and its targets in defense against Pseudomonas syringae in Arabidopsis thaliana.

    PubMed

    Chow, Hiu Tung; Ng, Danny W-K

    2017-04-12

    Small RNAs are important regulators for a variety of biological processes, including leaf development, flowering-time, embryogenesis and defense responses. miR163 is a non-conserved miRNA and its locus has evolved recently through inverted duplication of its target genes to which they belong to the SABATH family of related small-molecule methyltransferases (MTs). In Arabidopsis thaliana, previous study demonstrated that miR163 accumulation was induced by alamethicin treatment, suggesting its roles in defense response pathways. Enhanced resistance against Pseudomonas syringae pv. tomato (Pst) was observed in the mir163 mutant, whereas transgenic lines overexpressing miR163 showed increase sensitivity to Pst, suggesting that miR163 is a negative regulator of defense response. Elevated level of miR163 and its targets in A. thaliana were observed upon Pst treatment, suggesting a modulating relationship between miR163 and its targets. In addition, miR163 and histone deacetylase were found to act cooperatively in mediating defense against Pst. Transgenic plants overexpressing miR163-resistant targets suggested their different contributions in defense. Results from this study revealed that the stress-inducible miR163 and its targets act in concert to modulate defense responses against bacterial pathogen in A. thaliana.

  5. Plant hormone-mediated regulation of stress responses.

    PubMed

    Verma, Vivek; Ravindran, Pratibha; Kumar, Prakash P

    2016-04-14

    Being sessile organisms, plants are often exposed to a wide array of abiotic and biotic stresses. Abiotic stress conditions include drought, heat, cold and salinity, whereas biotic stress arises mainly from bacteria, fungi, viruses, nematodes and insects. To adapt to such adverse situations, plants have evolved well-developed mechanisms that help to perceive the stress signal and enable optimal growth response. Phytohormones play critical roles in helping the plants to adapt to adverse environmental conditions. The elaborate hormone signaling networks and their ability to crosstalk make them ideal candidates for mediating defense responses. Recent research findings have helped to clarify the elaborate signaling networks and the sophisticated crosstalk occurring among the different hormone signaling pathways. In this review, we summarize the roles of the major plant hormones in regulating abiotic and biotic stress responses with special focus on the significance of crosstalk between different hormones in generating a sophisticated and efficient stress response. We divided the discussion into the roles of ABA, salicylic acid, jasmonates and ethylene separately at the start of the review. Subsequently, we have discussed the crosstalk among them, followed by crosstalk with growth promoting hormones (gibberellins, auxins and cytokinins). These have been illustrated with examples drawn from selected abiotic and biotic stress responses. The discussion on seed dormancy and germination serves to illustrate the fine balance that can be enforced by the two key hormones ABA and GA in regulating plant responses to environmental signals. The intricate web of crosstalk among the often redundant multitudes of signaling intermediates is just beginning to be understood. Future research employing genome-scale systems biology approaches to solve problems of such magnitude will undoubtedly lead to a better understanding of plant development. Therefore, discovering additional crosstalk

  6. Plant Mediator complex and its critical functions in transcription regulation.

    PubMed

    Yang, Yan; Li, Ling; Qu, Li-Jia

    2016-02-01

    The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted. © 2015 Institute of Botany, Chinese Academy of Sciences.

  7. Identification and functional characterization of the pepper CaDRT1 gene involved in the ABA-mediated drought stress response.

    PubMed

    Baek, Woonhee; Lim, Sohee; Lee, Sung Chul

    2016-05-01

    Plants are constantly challenged by various environmental stresses, including high salinity and drought, and they have evolved defense mechanisms to counteract the deleterious effects of these stresses. The plant hormone abscisic acid (ABA) regulates plant growth and developmental processes and mediates abiotic stress responses. Here, we identified the Capsicum annuum DRought Tolerance 1 (CaDRT1) gene from pepper leaves treated with ABA. CaDRT1 was strongly expressed in pepper leaves in response to environmental stresses and after ABA treatment, suggesting that the CaDRT1 protein functions in the abiotic stress response. Knockdown expression of CaDRT1 via virus-induced gene silencing resulted in a high level of drought susceptibility, and this was characterized by increased transpirational water loss via decreased stomatal closure. CaDRT1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative, seedling, and adult stages. Additionally, these CaDRT1-OX plants exhibited a drought-tolerant phenotype characterized by low levels of transpirational water loss, high leaf temperatures, increased stomatal closure, and enhanced expression levels of drought-responsive genes. Taken together, our results suggest that CaDRT1 is a positive regulator of the ABA-mediated drought stress response.

  8. Interplays between Soil-Borne Plant Viruses and RNA Silencing-Mediated Antiviral Defense in Roots

    PubMed Central

    Andika, Ida Bagus; Kondo, Hideki; Sun, Liying

    2016-01-01

    Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots. PMID:27695446

  9. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses.

    PubMed

    Schwessinger, Benjamin; Bahar, Ofir; Thomas, Nicholas; Thomas, Nicolas; Holton, Nicolas; Nekrasov, Vladimir; Ruan, Deling; Canlas, Patrick E; Daudi, Arsalan; Petzold, Christopher J; Singan, Vasanth R; Kuo, Rita; Chovatia, Mansi; Daum, Christopher; Heazlewood, Joshua L; Zipfel, Cyril; Ronald, Pamela C

    2015-03-01

    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.

  10. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses

    DOE PAGES

    Schwessinger, Benjamin; Bahar, Ofir; Thomas, Nicolas; ...

    2015-03-30

    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistancemore » to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.« less

  11. Transgenic Expression of the Dicotyledonous Pattern Recognition Receptor EFR in Rice Leads to Ligand-Dependent Activation of Defense Responses

    PubMed Central

    Thomas, Nicolas; Holton, Nicolas; Nekrasov, Vladimir; Ruan, Deling; Canlas, Patrick E.; Daudi, Arsalan; Petzold, Christopher J.; Singan, Vasanth R.; Kuo, Rita; Chovatia, Mansi; Daum, Christopher; Heazlewood, Joshua L.; Zipfel, Cyril; Ronald, Pamela C.

    2015-01-01

    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components. PMID:25821973

  12. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwessinger, Benjamin; Bahar, Ofir; Thomas, Nicolas

    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistancemore » to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.« less

  13. Involvement of the Electrophilic Isothiocyanate Sulforaphane in Arabidopsis Local Defense Responses1

    PubMed Central

    Andersson, Mats X.; Nilsson, Anders K.; Johansson, Oskar N.; Boztaş, Gülin; Adolfsson, Lisa E.; Pinosa, Francesco; Petit, Christel Garcia; Aronsson, Henrik; Mackey, David; Tör, Mahmut; Hamberg, Mats; Ellerström, Mats

    2015-01-01

    Plants defend themselves against microbial pathogens through a range of highly sophisticated and integrated molecular systems. Recognition of pathogen-secreted effector proteins often triggers the hypersensitive response (HR), a complex multicellular defense reaction where programmed cell death of cells surrounding the primary site of infection is a prominent feature. Even though the HR was described almost a century ago, cell-to-cell factors acting at the local level generating the full defense reaction have remained obscure. In this study, we sought to identify diffusible molecules produced during the HR that could induce cell death in naive tissue. We found that 4-methylsulfinylbutyl isothiocyanate (sulforaphane) is released by Arabidopsis (Arabidopsis thaliana) leaf tissue undergoing the HR and that this compound induces cell death as well as primes defense in naive tissue. Two different mutants impaired in the pathogen-induced accumulation of sulforaphane displayed attenuated programmed cell death upon bacterial and oomycete effector recognition as well as decreased resistance to several isolates of the plant pathogen Hyaloperonospora arabidopsidis. Treatment with sulforaphane provided protection against a virulent H. arabidopsidis isolate. Glucosinolate breakdown products are recognized as antifeeding compounds toward insects and recently also as intracellular signaling and bacteriostatic molecules in Arabidopsis. The data presented here indicate that these compounds also trigger local defense responses in Arabidopsis tissue. PMID:25371552

  14. Inducible defenses in Olympia oysters in response to an invasive predator.

    PubMed

    Bible, Jillian M; Griffith, Kaylee R; Sanford, Eric

    2017-03-01

    The prey naiveté hypothesis suggests that native prey may be vulnerable to introduced predators because they have not evolved appropriate defenses. However, recent evidence suggests that native prey sometimes exhibit induced defenses to introduced predators, as a result of rapid evolution or other processes. We examined whether Olympia oysters (Ostrea lurida) display inducible defenses in the presence of an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea), and whether these responses vary among oyster populations from estuaries with and without this predator. We spawned oysters from six populations distributed among three estuaries in northern California, USA, and raised their offspring through two generations under common conditions to minimize effects of environmental history. We exposed second-generation oysters to cue treatments: drills eating oysters, drills eating barnacles, or control seawater. Oysters from all populations grew smaller shells when exposed to drill cues, and grew thicker and harder shells when those drills were eating oysters. Oysters exposed to drills eating other oysters were subsequently preyed upon at a slower rate. Although all oyster populations exhibited inducible defenses, oysters from the estuary with the greatest exposure to drills grew the smallest shells suggesting that oyster populations have evolved adaptive differences in the strength of their responses to predators. Our findings add to a growing body of literature that suggests that marine prey may be less likely to exhibit naiveté in the face of invasive predators than prey in communities that are more isolated from native predators, such as many freshwater and terrestrial island ecosystems.

  15. Defense Science Board Task Force Report on Cyber Defense Management

    DTIC Science & Technology

    2016-09-01

    manage cyber security is often a verymanual and labor intensive process. When a crisis hits, DoD responses range from highly automatedand instrumented...DSB Task Force Report on Cyber Defense Management September 2016 (U) This page intentionally blank REPORT OF THE DEFENSE SCIENCE BOARD STUDY ON Cyber ...DEFENSE FOR ACQUISITION, TECHNOLOGY & LOGISTICS SUBJECT: Final Report of the Defense Science Board (DSB) Task Force on Cyber Defense Management I am

  16. Elongator Plays a Positive Role in Exogenous NAD-Induced Defense Responses in Arabidopsis.

    PubMed

    An, Chuanfu; Ding, Yezhang; Zhang, Xudong; Wang, Chenggang; Mou, Zhonglin

    2016-05-01

    Extracellular NAD is emerging as an important signal molecule in animal cells, but its role in plants has not been well-established. Although it has been shown that exogenous NAD(+) activates defense responses in Arabidopsis, components in the exogenous NAD(+)-activated defense pathway remain to be fully discovered. In a genetic screen for mutants insensitive to exogenous NAD(+) (ien), we isolated a mutant named ien2. Map-based cloning revealed that IEN2 encodes ELONGATA3 (ELO3)/AtELP3, a subunit of the Arabidopsis Elongator complex, which functions in multiple biological processes, including histone modification, DNA (de)methylation, and transfer RNA modification. Mutations in the ELO3/AtELP3 gene compromise exogenous NAD(+)-induced expression of pathogenesis-related (PR) genes and resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326, and transgenic expression of the coding region of ELO3/AtELP3 in elo3/Atelp3 restores NAD(+) responsiveness to the mutant plants, demonstrating that ELO3/AtELP3 is required for exogenous NAD(+)-induced defense responses. Furthermore, mutations in genes encoding the other five Arabidopsis Elongator subunits (ELO2/AtELP1, AtELP2, ELO1/AtELP4, AtELP5, and AtELP6) also compromise exogenous NAD(+)-induced PR gene expression and resistance to P. syringae pv. maculicola ES4326. These results indicate that the Elongator complex functions as a whole in exogenous NAD(+)-activated defense signaling in Arabidopsis.

  17. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice.

    PubMed

    Qi, Jinfeng; Li, Jiancai; Han, Xiu; Li, Ran; Wu, Jianqiang; Yu, Haixin; Hu, Lingfei; Xiao, Yutao; Lu, Jing; Lou, Yonggen

    2016-06-01

    Jasmonic acid (JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase (JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate (MeJA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene, OsJMT1, whose encoding protein was localized in the cytosol, we found that the recombinant OsJMT1 protein catalyzed JA to MeJA. OsJMT1 is up-regulated in response to infestation with the brown planthopper (BPH; Nilaparvata lugens). Plants in which OsJMT1 had been overexpressed (oe-JMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased MeJA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine (JA-Ile). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs, probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H2 O2 and MeJA in oe-JMT plants. These results indicate that OsJMT1, by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice. © 2015 Institute of Botany, Chinese Academy of Sciences.

  18. Physiological-Cognitive-Emotional Responses to Defense-Arousing Communication: Overview and Sex Differences.

    ERIC Educational Resources Information Center

    Gordon, Ronald D.

    A 328-item checklist, suitable for the self-reporting of responses to any stimulus event, was administered to 107 upper division college students in an attempt to investigate the physiological-cognitive-emotional responses to defense arousing communication and to discover a greater range of the key features of the phenomena of…

  19. Comparative transcriptional profiling of Gracilariopsis lemaneiformis in response to salicylic acid- and methyl jasmonate-mediated heat resistance

    PubMed Central

    Wang, Chongbin; Zou, Tonglei; Xu, Nianjun; Sun, Xue

    2017-01-01

    Culturing the economically important macroalga Gracilariopsis lemaneiformis (Rhodophyta) is limited due to the high temperatures in the summertime on the southern Chinese coast. Previous studies have demonstrated that two phytohormones, salicylic acid (SA) and methyl jasmonate (MJ), can alleviate the adverse effects of high-temperature stress on Gp. lemaneiformis. To elucidate the molecular mechanisms underlying SA- and MJ-mediated heat tolerance, we performed comprehensive analyses of transcriptome-wide gene expression profiles using RNA sequencing (RNA-seq) technology. A total of 14,644 unigenes were assembled, and 10,501 unigenes (71.71%) were annotated to the reference databases. In the SA, MJ and SA/MJ treatment groups, 519, 830, and 974 differentially expressed unigenes were detected, respectively. Unigenes related to photosynthesis and glycometabolism were enriched by SA, while unigenes associated with glycometabolism, protein synthesis, heat shock and signal transduction were increased by MJ. A crosstalk analysis revealed that 216 genes were synergistically regulated, while 18 genes were antagonistically regulated by SA and MJ. The results indicated that the two phytohormones could mitigate the adverse effects of heat on multiple pathways, and they predominantly acted synergistically to resist heat stress. These results will provide new insights into how SA and MJ modulate the molecular mechanisms that counteract heat stress in algae. PMID:28464018

  20. Abiotic elicitors mediated elicitation of innate immunity in tomato: an ex vivo comparison.

    PubMed

    Chakraborty, Nilanjan; Ghosh, Sudeepa; Chandra, Swarnendu; Sengupta, Sarban; Acharya, Krishnendu

    2016-07-01

    Improvement of the host resistance by using hazard free chemical elicitors is emerging as an alternative approach in the field of plant disease management. In our present work, we have screened the efficacy and possible mechanism of abiogenic elicitors like Dipotassium hydrogen orthophosphate ( K 2 HPO 4 ), Oxalic acid (OA), Isonicotinic acid (INA), Salicylic acid (SA), Acetylsalicylate (AS), Arachidonic acid (AA) and Calcium chloride (CaCl 2 ) to stimulate innate immune responses in Lycopersicum esculentum Mill. Excised tomato leaves, treated with elicitors at three different concentrations, were found to stimulate defense and antioxidative enzymes, total phenol and flavonoid content after 24 h of incubation. CaCl 2 (0.5 %) followed by INA (2.5 mM) were found most effective in activation of all such defense molecules in tomato leaves. Furthermore, nitric oxide (NO), a key gaseous mediator in plant defense signaling, was also measured after subsequent elicitor application. Higher doses of elicitors showed an elevated level of reactive oxygen species (ROS) generation, enhanced lipid peroxidation rate and proline content, which indicates the extent of abiotic stress generation on the leaves. However, ROS production, lipid peroxidation rate and proline concentration remain significantly reduced as a result of CaCl 2 (0.5 %) and INA (2.5 mM) application. A sharp increase of total chlorophyll content was also recorded due to treatment of CaCl 2 (0.5 %). These results demonstrate the effects of different abiogenic elicitors to regulate the production of defense molecules. Results also suggest that among all such chemicals, CaCl 2 (0.5 %) and INA (2.5 mM) can be used as a potential elicitor in organic farming of tomato.

  1. Remote sensing of future competitors: Impacts on plant defenses

    PubMed Central

    Izaguirre, Miriam M.; Mazza, Carlos A.; Biondini, Mariela; Baldwin, Ian T.; Ballaré, Carlos L.

    2006-01-01

    Far-red radiation (FR) reflected by green tissues is a key signal that plants use to detect the proximity of future competitors. Perception of increased levels of FR elicits a suite of responses collectively known as the shade-avoidance syndrome, which includes increased stem elongation, production of erect leaves, and reduced lateral branching. These responses improve the access to light for plants that occur in crowded populations. Responses to the proximity of competitors are known to affect the susceptibility to disease and predation in several organisms, including social animals. However, the impacts of warning signals of competition on the expression of defenses have not been explicitly investigated in plants. In the experiments reported here, we show that reflected FR induced a dramatic down-regulation of chemical defenses in wild tobacco (Nicotiana longiflora). FR altered the expression of several defense-related genes, inhibited the accumulation of herbivore-induced phenolic compounds, and augmented the performance of the specialist herbivore Manduca sexta. Complementary studies with tomato suggested that the effects of FR on defenses are mediated by the photoreceptor phytochrome B. The central implication of these results is that shade-intolerant species such as wild tobacco and tomato activate functional changes that affect their ability to cope with herbivore attack in response to phytochrome signals of future competition, even in the absence of real competition for resources. These findings suggest that competition overshadowed herbivory during the evolution of this group of species and add a new axis to the definition of the shade-avoidance syndrome. PMID:16632610

  2. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum)

    PubMed Central

    Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan

    2017-01-01

    Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways. PMID:28222174

  3. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum).

    PubMed

    Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan

    2017-01-01

    Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.

  4. Effects of internal and external factors on the budgeting between defensive and non-defensive responses in Aplysia.

    PubMed

    Leod, Kaitlyn A Mac; Seas, Alexandra; Wainwright, Marcy L; Mozzachiodi, Riccardo

    2018-04-25

    Following exposure to aversive stimuli, organisms budget their behaviors by augmenting defensive responses and reducing/suppressing non-defensive behaviors. This budgeting process must be flexible to accommodate modifications in the animal's internal and/or external state that require the normal balance between defensive and non-defensive behaviors to be adjusted. When exposed to aversive stimuli, the mollusk Aplysia budgets its behaviors by concurrently enhancing defensive withdrawal reflexes (an elementary form of learning known as sensitization) and suppressing feeding. Sensitization and feeding suppression are consistently co-expressed following different training protocols and share common temporal domains, suggesting that they are interlocked. In this study, we attempted to uncouple the co-expression of sensitization and feeding suppression using: 1) manipulation of the animal's motivational state through prolonged food deprivation and 2) extended training with aversive stimuli that induces sensitization lasting for weeks. Both manipulations uncoupled the co-expression of the above behavioral changes. Prolonged food deprivation prevented the expression of sensitization, but not of feeding suppression. Following the extended training, sensitization and feeding suppression were co-expressed only for a limited time (i.e., 24 h), after which feeding returned to baseline levels as sensitization persisted for up to seven days. These findings indicate that sensitization and feeding suppression are not interlocked and that their co-expression can be uncoupled by internal (prolonged food deprivation) and external (extended aversive training) factors. The different strategies, by which the co-expression of sensitization and feeding suppression was altered, provide an example of how budgeting strategies triggered by an identical aversive experience can vary depending on the state of the organism. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. FITNESS, a CCT domain-containing protein, deregulates reactive oxygen species levels and leads to fine-tuning trade-offs between reproductive success and defense responses in Arabidopsis.

    PubMed

    Osella, Ana Virginia; Mengarelli, Diego Alberto; Mateos, Julieta; Dong, Shuchao; Yanovsky, Marcelo J; Balazadeh, Salma; Valle, Estela Marta; Zanor, María Inés

    2018-05-31

    Environmental stresses are the major factors that limit productivity in plants. Here, we report on the function of an uncharacterized gene At1g07050, encoding a CCT domain-containing protein, from Arabidopsis thaliana. At1g07050 expression is highly repressed by oxidative stress. We used metabolomics, biochemical and genomic approaches to analyze performance of transgenic lines with altered expression of At1g07050 under normal and oxidative stress conditions. At1g07050 overexpressing lines showed increased levels of reactive oxygen species (ROS) while knock-out mutants exhibited decreased levels of ROS and higher tolerance to oxidative stress generated in the chloroplast. Our results uncover a role for At1g07050 in cellular redox homeostasis controlling H 2 O 2 levels, due to changes in enzymes, metabolites and transcripts related to ROS detoxification. Therefore, we call this gene FITNESS. Additionally, several genes such as ACD6, PCC1, and ICS1 related to SA signalling and defense were found differentially expressed among the lines. Notably, FITNESS absence significantly improved seed yield suggesting an effective fine-tuning trade-off between reproductive success and defense responses. This article is protected by copyright. All rights reserved.

  6. Control of Carbon Assimilation and Partitioning by Jasmonate: An Accounting of Growth–Defense Tradeoffs

    PubMed Central

    Havko, Nathan E.; Major, Ian T.; Jewell, Jeremy B.; Attaran, Elham; Browse, John; Howe, Gregg A.

    2016-01-01

    Plant growth is often constrained by the limited availability of resources in the microenvironment. Despite the continuous threat of attack from insect herbivores and pathogens, investment in defense represents a lost opportunity to expand photosynthetic capacity in leaves and absorption of nutrients and water by roots. To mitigate the metabolic expenditure on defense, plants have evolved inducible defense strategies. The plant hormone jasmonate (JA) is a key regulator of many inducible defenses. Synthesis of JA in response to perceived danger leads to the deployment of a variety of defensive structures and compounds, along with a potent inhibition of growth. Genetic studies have established an important role for JA in mediating tradeoffs between growth and defense. However, several gaps remain in understanding of how JA signaling inhibits growth, either through direct transcriptional control of JA-response genes or crosstalk with other signaling pathways. Here, we highlight recent progress in uncovering the role of JA in controlling growth-defense balance and its relationship to resource acquisition and allocation. We also discuss tradeoffs in the context of the ability of JA to promote increased leaf mass per area (LMA), which is a key indicator of leaf construction costs and leaf life span. PMID:27135227

  7. Temporary inactivation of the anterior part of the bed nucleus of the stria terminalis blocks alarm pheromone-induced defensive behavior in rats

    PubMed Central

    Breitfeld, Tino; Bruning, Johann E. A.; Inagaki, Hideaki; Takeuchi, Yukari; Kiyokawa, Yasushi; Fendt, Markus

    2015-01-01

    Rats emit an alarm pheromone in threatening situations. Exposure of rats to this alarm pheromone induces defensive behaviors, such as head out behavior, and increases c-Fos expression in brain areas involved in the mediation of defensive behaviors. One of these brain areas is the anterior bed nucleus of the stria terminalis (aBNST). The goal of the present study was to investigate if pharmacological inactivation of the aBNST by local microinjections of the GABAA receptor-agonist muscimol modulates alarm pheromone-induced defensive behaviors. We first established the behavioral paradigm of alarm pheromone-induced defensive behaviors in Sprague-Dawley rats in our laboratory. In a second experiment, we inactivated the aBNST, then exposed rats to one of four different odors (neck odor, female urine, alarm pheromone, fox urine) and tested the effects of the aBNST inactivation on the behavior in response to these odors. Our data show that temporary inactivation of the aBNST blocked head out behavior in response to the alarm pheromone. This indicates that the aBNST plays an important role in the mediation of the alarm pheromone-induced defensive behavior in rats. PMID:26441496

  8. Predator-induced defenses in tadpoles confound body stoichiometry predictions of the general stress paradigm.

    PubMed

    Costello, David M; Michel, Matt J

    2013-10-01

    Predation is known to have both direct and indirect effects on nutrient cycling in terrestrial and aquatic ecosystems, and the general stress paradigm (GSP) has been promoted as a theory for describing predator-mediated indirect effects on nutrient cycling. The GSP predicts that prey exposed to predators will produce glucocorticosteroids, which have a host of physiological effects including gluconeogenesis, increased respiration, excretion of N and P, and increases in body C:N. We tested the nutrient predictions of the GSP using anuran larvae, which exhibit morphological defenses in addition to behavioral defenses for which the GSP was conceived. Genetically similar Hyla versicolor tadpoles were placed in mesocosms either in the presence or absence of a fed predator (Dytiscus verticalis), and after two weeks, tadpoles exposed to predators exhibited strong induced defenses with large, tubular bodies, larger tails, and reduced activity. Tadpole body %C and N:P increased with no change in C:N, which is contrary to expectations from the GSP. Statistical models suggested that changes in body morphology (e.g., tail muscle width) rather than behavioral defenses (i.e., reduced activity) were most likely responsible for predator-mediated differences in body stoichiometry. This study suggests that strong morphological defenses may overwhelm or counteract the nutrient predictions of the GSP.

  9. Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao.

    PubMed

    Fister, Andrew S; Landherr, Lena; Maximova, Siela N; Guiltinan, Mark J

    2018-01-01

    Theobroma cacao , the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao Non-Expressor of Pathogenesis-Related 3 (TcNPR3) gene, a suppressor of the defense response. After demonstrating activity of designed single-guide RNAs (sgRNA) in vitro , we used Agrobacterium to introduce a CRISPR/Cas9 system into leaf tissue, and identified the presence of deletions in 27% of TcNPR3 copies in the treated tissues. The edited tissue exhibited an increased resistance to infection with the cacao pathogen Phytophthora tropicalis and elevated expression of downstream defense genes. Analysis of off-target mutagenesis in sequences similar to sgRNA target sites using high-throughput sequencing did not reveal mutations above background sequencing error rates. These results confirm the function of NPR3 as a repressor of the cacao immune system and demonstrate the application of CRISPR/Cas9 as a powerful functional genomics tool for cacao. Several stably transformed and genome edited somatic embryos were obtained via Agrobacterium -mediated transformation, and ongoing work will test the effectiveness of this approach at a whole plant level.

  10. Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao

    PubMed Central

    Fister, Andrew S.; Landherr, Lena; Maximova, Siela N.; Guiltinan, Mark J.

    2018-01-01

    Theobroma cacao, the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao Non-Expressor of Pathogenesis-Related 3 (TcNPR3) gene, a suppressor of the defense response. After demonstrating activity of designed single-guide RNAs (sgRNA) in vitro, we used Agrobacterium to introduce a CRISPR/Cas9 system into leaf tissue, and identified the presence of deletions in 27% of TcNPR3 copies in the treated tissues. The edited tissue exhibited an increased resistance to infection with the cacao pathogen Phytophthora tropicalis and elevated expression of downstream defense genes. Analysis of off-target mutagenesis in sequences similar to sgRNA target sites using high-throughput sequencing did not reveal mutations above background sequencing error rates. These results confirm the function of NPR3 as a repressor of the cacao immune system and demonstrate the application of CRISPR/Cas9 as a powerful functional genomics tool for cacao. Several stably transformed and genome edited somatic embryos were obtained via Agrobacterium-mediated transformation, and ongoing work will test the effectiveness of this approach at a whole plant level. PMID:29552023

  11. Priming of jasmonate-mediated anti-herbivore defense responses in rice by silicon

    USDA-ARS?s Scientific Manuscript database

    While the function of silicon (Si) in plant physiology has long been debated, its beneficial effects on plant resistance against abiotic and biotic stresses, ¬including insect herbivory, have been well-documented. In addition, the jasmonate (JA) signaling pathway plays a crucial role in mediating an...

  12. The role of NDR1 in pathogen perception and plant defense signaling.

    PubMed

    Knepper, Caleb; Savory, Elizabeth A; Day, Brad

    2011-08-01

    The biochemical and cellular function of NDR1 in plant immunity and defense signaling has long remained elusive. Herein, we describe a novel role for NDR1 in both pathogen perception and plant defense signaling, elucidated by exploring a broader, physiological role for NDR1 in general stress responses and cell wall adhesion. Based on our predictive homology modeling, coupled with a structure-function approach, we found that NDR1 shares a striking similarity to mammalian integrins, well-characterized for their role in mediating the interaction between the extracellular matrix and stress signaling. ndr1-1 mutant plants exhibit higher electrolyte leakage following pathogen infection, compared to wild type Col-0. In addition, we observed an altered plasmolysis phenotype, supporting a role for NDR1 in maintaining cell wall-plasma membrane adhesions through mediating fluid loss under stress. 

  13. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses.

    PubMed

    Nürnberger, T; Nennstiel, D; Jabs, T; Sacks, W R; Hahlbrock, K; Scheel, D

    1994-08-12

    An oligopeptide of 13 amino acids (Pep-13) identified within a 42 kDa glycoprotein elicitor from P. mega-sperma was shown to be necessary and sufficient to stimulate a complex defense response in parsley cells comprising H+/Ca2+ influxes, K+/Cl- effluxes, an oxidative burst, defense-related gene activation, and phytoalexin formation. Binding of radiolabeled Pep-13 to parsley microsomes and protoplasts was specific, reversible, and saturable. Identical structural features of Pep-13 were found to be responsible for specific binding and initiation of all plant responses analyzed. The high affinity binding site recognizing the peptide ligand (KD = 2.4 nM) may therefore represent a novel class of receptors in plants, and the rapidly induced ion fluxes may constitute elements of the signal transduction cascade triggering pathogen defense in plants.

  14. Glutamate Receptor-Like Channel3.3 Is Involved in Mediating Glutathione-Triggered Cytosolic Calcium Transients, Transcriptional Changes, and Innate Immunity Responses in Arabidopsis1[W][OA

    PubMed Central

    Li, Feng; Wang, Jing; Ma, Chunli; Zhao, Yongxiu; Wang, Yingchun; Hasi, Agula; Qi, Zhi

    2013-01-01

    The tripeptide reduced glutathione (GSH; γ-glutamate [Glu]-cysteine [Cys]-glycine) is a major endogenous antioxidant in both animal and plant cells. It also functions as a neurotransmitter mediating communication among neurons in the central nervous system of animals through modulating specific ionotropic Glu receptors (GLRs) in the membrane. Little is known about such signaling roles in plant cells. Here, we report that transient rises in cytosolic calcium triggered by exogenous GSH in Arabidopsis (Arabidopsis thaliana) leaves were sensitive to GLR antagonists and abolished in loss-of-function atglr3.3 mutants. Like the GSH biosynthesis-defective mutant PHYTOALEXIN DEFICIENT2, atglr3.3 showed enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv tomato DC3000. Pathogen-induced defense marker gene expression was also decreased in atglr3.3 mutants. Twenty-seven percent of genes that were rapidly responsive to GSH treatment of seedlings were defense genes, most of which were dependent on functional AtGLR3.3, while GSH suppressed pathogen propagation through the AtGLR3.3-dependent pathway. Eight previously identified putative AtGLR3.3 ligands, GSH, oxidized glutathione, alanine, asparagine, Cys, Glu, glycine, and serine, all elicited the AtGLR3.3-dependent cytosolic calcium transients, but only GSH and Cys induced the defense response, with the Glu-induced AtGLR3.3-dependent transcription response being much less apparent than that triggered by GSH. Together, these observations suggest that AtGLR3.3 is required for several signaling effects mediated by extracellular GSH, even though these effects may not be causally related. PMID:23656893

  15. Variation in plant defense against invasive herbivores: evidence for a hypersensitive response in eastern hemlocks (Tsuga canadensis).

    PubMed

    Radville, Laura; Chaves, Arielle; Preisser, Evan L

    2011-06-01

    Herbivores can trigger a wide array of morphological and chemical changes in their host plants. Feeding by some insects induces a defensive hypersensitive response, a defense mechanism consisting of elevated H(2)O(2) levels and tissue death at the site of herbivore feeding. The invasive hemlock woolly adelgid Adelges tsugae ('HWA') and elongate hemlock scale Fiorinia externa ('EHS') feed on eastern hemlocks; although both are sessile sap feeders, HWA causes more damage than EHS. The rapid rate of tree death following HWA infestation has led to the suggestion that feeding induces a hypersensitive response in hemlock trees. We assessed the potential for an herbivore-induced hypersensitive response in eastern hemlocks by measuring H(2)O(2) levels in foliage from HWA-infested, EHS-infested, and uninfested trees. Needles with settled HWA or EHS had higher H(2)O(2) levels than control needles, suggesting a localized hypersensitive plant response. Needles with no direct contact to settled HWA also had high H(2)O(2) levels, suggesting that HWA infestation may induce a systemic defense response in eastern hemlocks. There was no similar systemic defensive response in the EHS treatment. Our results showed that two herbivores in the same feeding guild had dramatically different outcomes on the health of their shared host.

  16. Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells.

    PubMed

    Xu, Maojun; Dong, Jufang; Wang, Huizhong; Huang, Luqi

    2009-08-01

    The antagonistic action between jasmonic acid (JA) and salicylic acid (SA) in plant defence responses has been well documented. However, their relationship in secondary metabolite production is largely unknown. Here, we report that PB90, a protein elicitor from Phytophthora boehmeriae, triggers JA generation, SA accumulation and flavonol glycoside production of Ginkgo biloba cells. JA inhibitors suppress not only PB90-triggered JA generation, but also the elicitor-induced flavonol glycoside production. However, the elicitor can still enhance flavonol glycoside production even though the JA generation is totally inhibited. Over-expression of SA hydrolase gene NahG not only abolishes SA accumulation, but also suppresses the elicitor-induced flavonol glycoside production when JA signalling is inhibited. Interestingly, expression of NahG does not inhibit the elicitor-induced flavonol glycoside accumulation in the absence of JA inhibitors. Moreover, JA levels are significantly enhanced when SA accumulation is impaired in the transgenic cells. Together, the data suggest that both JA and SA are involved in PB90-induced flavonol glycoside production. Furthermore, we demonstrate that JA signalling might be enhanced to substitute for SA to mediate the elicitor-induced flavonol glycoside accumulation when SA signalling is impaired, which reveals an unusual complementary relationship between JA and SA in mediating plant secondary metabolite production.

  17. Cyber Defense Management

    DTIC Science & Technology

    2016-09-01

    manage cyber security is often a verymanual and labor intensive process. When a crisis hits, DoD responses range from highly automatedand instrumented...DSB Task Force Report on Cyber Defense Management September 2016 (U) This page intentionally blank REPORT OF THE DEFENSE SCIENCE BOARD STUDY ON Cyber ...DEFENSE FOR ACQUISITION, TECHNOLOGY & LOGISTICS SUBJECT: Final Report of the Defense Science Board (DSB) Task Force on Cyber Defense Management I am

  18. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity.

    PubMed

    Návarová, Hana; Bernsdorff, Friederike; Döring, Anne-Christin; Zeier, Jürgen

    2012-12-01

    Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid-induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR.

  19. Dose-dependent transitions in Nrf2-mediated adaptive response and related stress responses to hypochlorous acid in mouse macrophages

    PubMed Central

    Woods, Courtney G.; Fu, Jingqi; Xue, Peng; Hou, Yongyong; Pluta, Linda J.; Yang, Longlong; Zhang, Qiang; Thomas, Russell S.; Andersen, Melvin E.; Pi, Jingbo

    2009-01-01

    Hypochlorous acid (HOCl) is potentially an important source of cellular oxidative stress. Human HOCl exposure can occur from chlorine gas inhalation or from endogenous sources of HOCl, such as respiratory burst by phagocytes. Transcription factor Nrf2 is a key regulator of cellular redox status and serves as a primary source of defense against oxidative stress. We recently demonstrated that HOCl activates Nrf2-mediated antioxidant response in cultured mouse macrophages in a biphasic manner. In an effort to determine whether Nrf2 pathways overlap with other stress pathways, gene expression profiling was performed in RAW 264.7 macrophages exposed to HOCl using whole genome mouse microarrays. Benchmark dose (BMD) analysis on gene expression data revealed that Nrf2-mediated antioxidant response and protein ubiquitination were the most sensitive biological pathways that were activated in response to low concentrations of HOCl (< 0.35 mM). Genes involved in chromatin architecture maintenance and DNA-dependent transcription were also sensitive to very low doses. Moderate concentrations of HOCl (0.35 to 1.4 mM) caused maximal activation of the Nrf2-pathway and innate immune response genes, such as IL-1β, IL-6, IL-10 and chemokines. At even higher concentrations of HOCl (2.8 to 3.5 mM) there was a loss of Nrf2-target gene expression with increased expression of numerous heat shock and histone cluster genes, AP-1-family genes, cFos and Fra1 and DNA damage-inducible Gadd45 genes. These findings confirm an Nrf2-centric mechanism of action of HOCl in mouse macrophages and provide evidence of interactions between Nrf2, inflammatory, and other stress pathways. PMID:19376150

  20. The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defenses.

    PubMed

    Quentin, Michaël; Baurès, Isabelle; Hoefle, Caroline; Caillaud, Marie-Cécile; Allasia, Valérie; Panabières, Franck; Abad, Pierre; Hückelhoven, Ralph; Keller, Harald; Favery, Bruno

    2016-03-01

    The oomycete Hyaloperonospora arabidopsidis and the ascomycete Erysiphe cruciferarum are obligate biotrophic pathogens causing downy mildew and powdery mildew, respectively, on Arabidopsis. Upon infection, the filamentous pathogens induce the formation of intracellular bulbous structures called haustoria, which are required for the biotrophic lifestyle. We previously showed that the microtubule-associated protein AtMAP65-3 plays a critical role in organizing cytoskeleton microtubule arrays during mitosis and cytokinesis. This renders the protein essential for the development of giant cells, which are the feeding sites induced by root knot nematodes. Here, we show that AtMAP65-3 expression is also induced in leaves upon infection by the downy mildew oomycete and the powdery mildew fungus. Loss of AtMAP65-3 function in the map65-3 mutant dramatically reduced infection by both pathogens, predominantly at the stages of leaf penetration. Whole-transcriptome analysis showed an over-represented, constitutive activation of genes involved in salicylic acid (SA) biosynthesis, signaling, and defense execution in map65-3, whereas jasmonic acid (JA)-mediated signaling was down-regulated. Preventing SA synthesis and accumulation in map65-3 rescued plant susceptibility to pathogens, but not the developmental phenotype caused by cytoskeleton defaults. AtMAP65-3 thus has a dual role. It positively regulates cytokinesis, thus plant growth and development, and negatively interferes with plant defense against filamentous biotrophs. Our data suggest that downy mildew and powdery mildew stimulate AtMAP65-3 expression to down-regulate SA signaling for infection. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. The ubiquitin ligase SEVEN IN ABSENTIA (SINA) ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling.

    PubMed

    Miao, Min; Niu, Xiangli; Kud, Joanna; Du, Xinran; Avila, Julian; Devarenne, Timothy P; Kuhl, Joseph C; Liu, Yongsheng; Xiao, Fangming

    2016-07-01

    We recently identified a defense-related tomato (Solanum lycopersicum) NAC (NAM, ATAF1,2, CUC2) transcription factor, NAC1, that is subjected to ubiquitin-proteasome system-dependent degradation in plant cells. In this study, we identified a tomato ubiquitin ligase (termed SEVEN IN ABSENTIA3; SINA3) that ubiquitinates NAC1, promoting its degradation. We conducted coimmunoprecipitation and bimolecular fluorescence complementation to determine that SINA3 specifically interacts with the NAC1 transcription factor in the nucleus. Moreover, we found that SINA3 ubiquitinates NAC1 in vitro and promotes NAC1 degradation via polyubiquitination in vivo, indicating that SINA3 is a ubiquitin ligase that ubiquitinates NAC1, promoting its degradation. Our real-time PCR analysis indicated that, in contrast to our previous finding that NAC1 mRNA abundance increases upon Pseudomonas infection, the SINA3 mRNA abundance decreases in response to Pseudomonas infection. Moreover, using Agrobacterium-mediated transient expression, we found that overexpression of SINA3 interferes with the hypersensitive response cell death triggered by multiple plant resistance proteins. These results suggest that SINA3 ubiquitinates a defense-related NAC transcription factor for degradation and plays a negative role in defense signaling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Nitrogen Supply Influences Herbivore-Induced Direct and Indirect Defenses and Transcriptional Responses in Nicotiana attenuata[w

    PubMed Central

    Lou, Yonggen; Baldwin, Ian T.

    2004-01-01

    Although nitrogen (N) availability is known to alter constitutive resistance against herbivores, its influence on herbivore-induced responses, including signaling pathways, transcriptional signatures, and the subsequently elicited chemical defenses is poorly understood. We used the native tobacco, Nicotiana attenuata, which germinates in the postfire environment and copes with large changes in soil N during postfire succession, to compare a suite of Manduca sexta- and elicitor-induced responses in plants grown under high- and low-N (LN) supply rates. LN supply decreased relative growth rates and biomass by 35% at 40 d compared to high-N plants; furthermore, it also attenuated (by 39 and 60%) the elicitor-induced jasmonate and salicylate bursts, two N-intensive direct defenses (nicotine and trypsin proteinase inhibitors, albeit by different mechanisms), and carbon-containing nonvolatile defenses (rutin, chlorogenic acid, and diterpene glycosides), but did not affect the induced release of volatiles (cis-α-bergamotene and germacrene A), which function as indirect defenses. M. sexta and methyl jasmonate-induced transcriptional responses measured with a microarray enriched in herbivore-induced genes were also substantially reduced in plants grown under LN supply rates. In M. sexta-attacked LN plants, only 36 (45%) up-regulated and 46 (58%) down-regulated genes showed the same regulation as those in attacked high-N plants. However, transcriptional responses frequently directly countered the observed metabolic changes. Changes in a leaf's sensitivity to elicitation, an attacked leaf's waning ability to export oxylipin wound signals, and/or resource limitations in LN plants can account for the observed results, underscoring the conclusion that defense activation is a resource-intensive response. PMID:15133153

  3. Threat prompts defensive brain responses independently of attentional control.

    PubMed

    Pichon, Swann; de Gelder, Beatrice; Grèzes, Julie

    2012-02-01

    Negative emotional signals are known to influence task performance, but so far, investigations have focused on how emotion interacts with perceptual processes by mobilizing attentional resources. The attention-independent effects of negative emotional signals are less well understood. Here, we show that threat signals trigger defensive responses independently of what observers pay attention to. Participants were scanned using functional magnetic resonance imaging while watching short video clips of threatening actions and performed either color or emotion judgments. Seeing threatening actions interfered with performance in both tasks. Amygdala activation reflected both stimulus and task conditions. In contrast, threat stimuli prompted a constant activity in a network underlying reflexive defensive behavior (periaqueductal gray, hypothalamus, and premotor cortex). Threat stimuli also disrupted ongoing behavior and provoked motor conflict in prefrontal regions during both tasks. The present results are consistent with the view that emotions trigger adaptive action tendencies independently of task settings.

  4. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice.

    PubMed

    Jiang, Chang-Jie; Shimono, Masaki; Maeda, Satoru; Inoue, Haruhiko; Mori, Masaki; Hasegawa, Morifumi; Sugano, Shoji; Takatsuji, Hiroshi

    2009-07-01

    Fatty acids and their derivatives play important signaling roles in plant defense responses. It has been shown that suppressing a gene for stearoyl acyl carrier protein fatty-acid desaturase (SACPD) enhances the resistance of Arabidopsis (SSI2) and soybean to multiple pathogens. In this study, we present functional analyses of a rice homolog of SSI2 (OsSSI2) in disease resistance of rice plants. A transposon insertion mutation (Osssi2-Tos17) and RNAi-mediated knockdown of OsSSI2 (OsSSI2-kd) reduced the oleic acid (18:1) level and increased that of stearic acid (18:0), indicating that OsSSI2 is responsible for fatty-acid desaturase activity. These plants displayed spontaneous lesion formation in leaf blades, retarded growth, slight increase in endogenous free salicylic acid (SA) levels, and SA/benzothiadiazole (BTH)-specific inducible genes, including WRKY45, a key regulator of SA/BTH-induced resistance, in rice. Moreover, the OsSSI2-kd plants showed markedly enhanced resistance to the blast fungus Magnaporthe grisea and leaf-blight bacteria Xanthomonas oryzae pv. oryzae. These results suggest that OsSSI2 is involved in the negative regulation of defense responses in rice, as are its Arabidopsis and soybean counterparts. Microarray analyses identified 406 genes that were differentially expressed (>or=2-fold) in OsSSI2-kd rice plants compared with wild-type rice and, of these, approximately 39% were BTH responsive. Taken together, our results suggest that induction of SA-responsive genes, including WRKY45, is likely responsible for enhanced disease resistance in OsSSI2-kd rice plants.

  5. Nrf2-Mediated Antioxidant Defense and Peroxiredoxin 6 Are Linked to Biosynthesis of Palmitic Acid Ester of 9-Hydroxystearic Acid.

    PubMed

    Kuda, Ondrej; Brezinova, Marie; Silhavy, Jan; Landa, Vladimir; Zidek, Vaclav; Dodia, Chandra; Kreuchwig, Franziska; Vrbacky, Marek; Balas, Laurence; Durand, Thierry; Hübner, Norbert; Fisher, Aron B; Kopecky, Jan; Pravenec, Michal

    2018-06-01

    Fatty acid esters of hydroxy fatty acids (FAHFAs) are lipid mediators with promising antidiabetic and anti-inflammatory properties that are formed in white adipose tissue (WAT) via de novo lipogenesis, but their biosynthetic enzymes are unknown. Using a combination of lipidomics in WAT, quantitative trait locus mapping, and correlation analyses in rat BXH/HXB recombinant inbred strains, as well as response to oxidative stress in murine models, we elucidated the potential pathway of biosynthesis of several FAHFAs. Comprehensive analysis of WAT samples identified ∼160 regioisomers, documenting the complexity of this lipid class. The linkage analysis highlighted several members of the nuclear factor, erythroid 2 like 2 ( Nrf2 )-mediated antioxidant defense system ( Prdx6, Mgst1, Mgst3 ), lipid-handling proteins ( Cd36, Scd6, Acnat1, Acnat2, Baat ), and the family of flavin containing monooxygenases ( Fmo ) as the positional candidate genes. Transgenic expression of Nrf2 and deletion of Prdx6 genes resulted in reduction of palmitic acid ester of 9-hydroxystearic acid (9-PAHSA) and 11-PAHSA levels, while oxidative stress induced by an inhibitor of glutathione synthesis increased PAHSA levels nonspecifically. Our results indicate that the synthesis of FAHFAs via carbohydrate-responsive element-binding protein-driven de novo lipogenesis depends on the adaptive antioxidant system and suggest that FAHFAs may link activity of this system with insulin sensitivity in peripheral tissues. © 2018 by the American Diabetes Association.

  6. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense.

    PubMed

    Walters, Edgar T

    2014-08-01

    Neuropathic pain after spinal cord injury (SCI) is common, often intractable, and can be severely debilitating. A number of mechanisms have been proposed for this pain, which are discussed briefly, along with methods for revealing SCI pain in animal models, such as the recently applied conditioned place preference test. During the last decade, studies of animal models have shown that both central neuroinflammation and behavioral hypersensitivity (indirect reflex measures of pain) persist chronically after SCI. Interventions that reduce neuroinflammation have been found to ameliorate pain-related behavior, such as treatment with agents that inhibit the activation states of microglia and/or astroglia (including IL-10, minocycline, etanercept, propentofylline, ibudilast, licofelone, SP600125, carbenoxolone). Reversal of pain-related behavior has also been shown with disruption by an inhibitor (CR8) and/or genetic deletion of cell cycle-related proteins, deletion of a truncated receptor (trkB.T1) for brain-derived neurotrophic factor (BDNF), or reduction by antisense knockdown or an inhibitor (AMG9810) of the activity of channels (TRPV1 or Nav1.8) important for electrical activity in primary nociceptors. Nociceptor activity is known to drive central neuroinflammation in peripheral injury models, and nociceptors appear to be an integral component of host defense. Thus, emerging results suggest that spinal and systemic effects of SCI can activate nociceptor-mediated host defense responses that interact via neuroinflammatory signaling with complex central consequences of SCI to drive chronic pain. This broader view of SCI-induced neuroinflammation suggests new targets, and additional complications, for efforts to develop effective treatments for neuropathic SCI pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Molecular cloning of a defense-response-related cytochrome P450 gene from tobacco.

    PubMed

    Takemoto, D; Hayashi, M; Doke, N; Nishimura, M; Kawakita, K

    1999-12-01

    Plant defenses against pathogen attack involve a series of inducible responses that contribute to resistance. Tobacco leaves injected with HWC (hyphal wall components prepared from Phytophthora infestans) elicitor showed typical defense responses, including the induction of localized necrosis and the accumulation of pathogenesis-related proteins. In order to elucidate the molecular mechanisms by which plant defense systems are activated, we screened tobacco plants for genes differentially expressed in response to HWC. We performed differential screening by RT-PCR with random primers and obtained PCR products specific to HWC-treated leaf RNA. Northern hybridization using the PCR products as probes confirmed that one transcript was actually induced by HWC treatment. As the deduced amino acid sequence of this clone showed the highest degree of similarity to elicitor-induced soybean cytochrome P450 CYP82A4, it was designated CYP82E1. The expression of CYP82E1 was strongly induced in tobacco by the soybean pathogen Pseudomonas syringae pv. glycinea (nonpathogenic on tobacco), but it was activated only slightly and in a delayed fashion by the tobacco pathogen P. syringae pv. tabaci (pathogenic on tobacco), implying that the product of CYP82E1 may be involved in disease resistance in tobacco.

  8. Expression analysis of chitinase upon challenge inoculation to Alternaria wounding and defense inducers in Brassica juncea.

    PubMed

    Rawat, Sandhya; Ali, Sajad; Mittra, Bhabatosh; Grover, Anita

    2017-03-01

    Chitinases are the hydrolytic enzymes which belong to the pathogenesis-related (PR) protein family and play an important role not only in plant defense but also in various abiotic stresses. However, only a limited number of chitinase genes have been characterised in B. juncea . In this study, we have characterised B. juncea class IV chitinase gene (accession no EF586206) in response to fungal infection, salicylic acid (SA), jasmonic acid (JA) treatments and wounding. Gene expression studies revealed that the transcript levels of Bjchitinase ( BjChp ) gene increases significantly both in local and distal tissues after Alternaria infection. Bjchitinase gene was also induced by jasmonic acid and wounding but moderately by salicylic acid. A 2.5 kb class IV chitinase promoter of this gene was isolated from B. juncea by Genome walking (accession no KF055403.1). In-silico analysis of this promoter revealed a number of conserved cis -regulatory elements related to defense, wounding and signalling molecules like SA, and JA. For validation, chitinase promoter was fused to the GUS gene, and the resultant construct was then introduced into Arabidopsis plants. Histochemical analysis of T 2 transgenic Arabidopsis plants showed that higher GUS activity in leaves after fungal infection, wounding and JA treatment but weakly by SA. GUS activity was seen in meristematic tissues, young leaves, seeds and siliques. Finally investigation has led to the identification of a pathogen-inducible, developmentally regulated and organ-specific promoter. Present study revealed that Bjchitinase ( BjChp ) promoter is induced during biotic and environmental stress and it can be used in developing finely tuned transgenics.

  9. Cutaneous defenses against dermatophytes and yeasts.

    PubMed Central

    Wagner, D K; Sohnle, P G

    1995-01-01

    Predispositions to the superficial mycoses include warmth and moisture, natural or iatrogenic immunosuppression, and perhaps some degree of inherited susceptibility. Some of these infections elicit a greater inflammatory response than others, and the noninflammatory ones are generally more chronic. The immune system is involved in the defense against these infections, and cell-mediated immunity appears to be particularly important. The mechanisms involved in generating immunologic reactions in the skin are complex, with epidermal Langerhans cells, other dendritic cells, lymphocytes, microvascular endothelial cells, and the keratinocytes themselves all participating in one way or another. A variety of defects in the immunologic response to the superficial mycoses have been described. In some cases the defect may be preexistent, whereas in others the infection itself may interfere with protective cell-mediated immune responses against the organisms. A number of different mechanisms may underlie these immunologic defects and lead to the development of chronic superficial fungal infection in individual patients. Although the immunologic defects appear to be involved in the chronicity of certain types of cutaneous fungal infections, treatment of these defects remains experimental at the present time. PMID:7553568

  10. Exogenous application of methyl jasmonate and salicylic acid on citrus foliage: Effecs on foliar volatiles and aggregation behavior of Asian citrus psyllid (Diaphorina citri)

    USDA-ARS?s Scientific Manuscript database

    Methyl jasmonate (MeJA) and salicylic acid (SA) are well-known activators of chemical defenses in plants. The SA pathway is involved in citrus response to infection by Candidatus Liberibacter asiaticus (CLas); less is known about the role of jasmonates in citrus defense response. We examined the eff...

  11. Temporal global expression data reveal known and novel salicylate-impacted processes and regulators mediating powdery mildew growth and reproduction on Arabidopsis.

    PubMed

    Chandran, Divya; Tai, Yu Chuan; Hather, Gregory; Dewdney, Julia; Denoux, Carine; Burgess, Diane G; Ausubel, Frederick M; Speed, Terence P; Wildermuth, Mary C

    2009-03-01

    Salicylic acid (SA) is a critical mediator of plant innate immunity. It plays an important role in limiting the growth and reproduction of the virulent powdery mildew (PM) Golovinomyces orontii on Arabidopsis (Arabidopsis thaliana). To investigate this later phase of the PM interaction and the role played by SA, we performed replicated global expression profiling for wild-type and SA biosynthetic mutant isochorismate synthase1 (ics1) Arabidopsis from 0 to 7 d after infection. We found that ICS1-impacted genes constitute 3.8% of profiled genes, with known molecular markers of Arabidopsis defense ranked very highly by the multivariate empirical Bayes statistic (T(2) statistic). Functional analyses of T(2)-selected genes identified statistically significant PM-impacted processes, including photosynthesis, cell wall modification, and alkaloid metabolism, that are ICS1 independent. ICS1-impacted processes include redox, vacuolar transport/secretion, and signaling. Our data also support a role for ICS1 (SA) in iron and calcium homeostasis and identify components of SA cross talk with other phytohormones. Through our analysis, 39 novel PM-impacted transcriptional regulators were identified. Insertion mutants in one of these regulators, PUX2 (for plant ubiquitin regulatory X domain-containing protein 2), results in significantly reduced reproduction of the PM in a cell death-independent manner. Although little is known about PUX2, PUX1 acts as a negative regulator of Arabidopsis CDC48, an essential AAA-ATPase chaperone that mediates diverse cellular activities, including homotypic fusion of endoplasmic reticulum and Golgi membranes, endoplasmic reticulum-associated protein degradation, cell cycle progression, and apoptosis. Future work will elucidate the functional role of the novel regulator PUX2 in PM resistance.

  12. Physcomitrella patens Activates Defense Responses against the Pathogen Colletotrichum gloeosporioides.

    PubMed

    Reboledo, Guillermo; Del Campo, Raquel; Alvarez, Alfonso; Montesano, Marcos; Mara, Héctor; Ponce de León, Inés

    2015-09-15

    The moss Physcomitrella patens is a suitable model plant to analyze the activation of defense mechanisms after pathogen assault. In this study, we show that Colletotrichum gloeosporioides isolated from symptomatic citrus fruit infects P. patens and cause disease symptoms evidenced by browning and maceration of tissues. After C. gloeosporioides infection, P. patens reinforces the cell wall by the incorporation of phenolic compounds and induces the expression of a Dirigent-protein-like encoding gene that could lead to the formation of lignin-like polymers. C. gloeosporioides-inoculated protonemal cells show cytoplasmic collapse, browning of chloroplasts and modifications of the cell wall. Chloroplasts relocate in cells of infected tissues toward the initially infected C. gloeosporioides cells. P. patens also induces the expression of the defense genes PAL and CHS after fungal colonization. P. patens reporter lines harboring the auxin-inducible promoter from soybean (GmGH3) fused to β-glucuronidase revealed an auxin response in protonemal tissues, cauloids and leaves of C. gloeosporioides-infected moss tissues, indicating the activation of auxin signaling. Thus, P. patens is an interesting plant to gain insight into defense mechanisms that have evolved in primitive land plants to cope with microbial pathogens.

  13. Physcomitrella patens Activates Defense Responses against the Pathogen Colletotrichum gloeosporioides

    PubMed Central

    Reboledo, Guillermo; del Campo, Raquel; Alvarez, Alfonso; Montesano, Marcos; Mara, Héctor; Ponce de León, Inés

    2015-01-01

    The moss Physcomitrella patens is a suitable model plant to analyze the activation of defense mechanisms after pathogen assault. In this study, we show that Colletotrichum gloeosporioides isolated from symptomatic citrus fruit infects P. patens and cause disease symptoms evidenced by browning and maceration of tissues. After C. gloeosporioides infection, P. patens reinforces the cell wall by the incorporation of phenolic compounds and induces the expression of a Dirigent-protein-like encoding gene that could lead to the formation of lignin-like polymers. C. gloeosporioides-inoculated protonemal cells show cytoplasmic collapse, browning of chloroplasts and modifications of the cell wall. Chloroplasts relocate in cells of infected tissues toward the initially infected C. gloeosporioides cells. P. patens also induces the expression of the defense genes PAL and CHS after fungal colonization. P. patens reporter lines harboring the auxin-inducible promoter from soybean (GmGH3) fused to β-glucuronidase revealed an auxin response in protonemal tissues, cauloids and leaves of C. gloeosporioides-infected moss tissues, indicating the activation of auxin signaling. Thus, P. patens is an interesting plant to gain insight into defense mechanisms that have evolved in primitive land plants to cope with microbial pathogens. PMID:26389888

  14. A conserved mitochondrial surveillance pathway is required for defense against Pseudomonas aeruginosa.

    PubMed

    Tjahjono, Elissa; Kirienko, Natalia V

    2017-06-01

    All living organisms exist in a precarious state of homeostasis that requires constant maintenance. A wide variety of stresses, including hypoxia, heat, and infection by pathogens perpetually threaten to imbalance this state. Organisms use a battery of defenses to mitigate damage and restore normal function. Previously, we described a Caenorhabditis elegans-Pseudomonas aeruginosa assay (Liquid Killing) in which toxicity to the host is dependent upon the secreted bacterial siderophore pyoverdine. Although pyoverdine is also indispensable for virulence in mammals, its cytological effects are unclear. We used genetics, transcriptomics, and a variety of pathogen and chemical exposure assays to study the interactions between P. aeruginosa and C. elegans. Although P. aeruginosa can kill C. elegans through at least 5 different mechanisms, the defense responses activated by Liquid Killing are specific and selective and have little in common with innate defense mechanisms against intestinal colonization. Intriguingly, the defense response utilizes the phylogenetically-conserved ESRE (Ethanol and Stress Response Element) network, which we and others have previously shown to mitigate damage from a variety of abiotic stresses. This is the first report of this networks involvement in innate immunity, and indicates that host innate immune responses overlap with responses to abiotic stresses. The upregulation of the ESRE network in C. elegans is mediated in part by a family of bZIP proteins (including ZIP-2, ZIP-4, CEBP-1, and CEBP-2) that have overlapping and unique functions. Our data convincingly show that, following exposure to P. aeruginosa, the ESRE defense network is activated by mitochondrial damage, and that mitochondrial damage also leads to ESRE activation in mammals. This establishes a role for ESRE in a phylogenetically-conserved mitochondrial surveillance system important for stress response and innate immunity.

  15. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway

    PubMed Central

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A.; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J.

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway. PMID:27313596

  16. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway.

  17. MEDIATOR25 Acts as an Integrative Hub for the Regulation of Jasmonate-Responsive Gene Expression in Arabidopsis1[C][W

    PubMed Central

    Çevik, Volkan; Kidd, Brendan N.; Zhang, Peijun; Hill, Claire; Kiddle, Steve; Denby, Katherine J.; Holub, Eric B.; Cahill, David M.; Manners, John M.; Schenk, Peer M.; Beynon, Jim; Kazan, Kemal

    2012-01-01

    The PHYTOCHROME AND FLOWERING TIME1 gene encoding the MEDIATOR25 (MED25) subunit of the eukaryotic Mediator complex is a positive regulator of jasmonate (JA)-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Based on the function of the Mediator complex as a bridge between DNA-bound transcriptional activators and the RNA polymerase II complex, MED25 has been hypothesized to function in association with transcriptional regulators of the JA pathway. However, it is currently not known mechanistically how MED25 functions to regulate JA-responsive gene expression. In this study, we show that MED25 physically interacts with several key transcriptional regulators of the JA signaling pathway, including the APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factors OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59 and ERF1 as well as the master regulator MYC2. Physical interaction detected between MED25 and four group IX AP2/ERF transcription factors was shown to require the activator interaction domain of MED25 as well as the recently discovered Conserved Motif IX-1/EDLL transcription activation motif of MED25-interacting AP2/ERFs. Using transcriptional activation experiments, we also show that OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59- and ERF1-dependent activation of PLANT DEFENSIN1.2 as well as MYC2-dependent activation of VEGETATIVE STORAGE PROTEIN1 requires a functional MED25. In addition, MED25 is required for MYC2-dependent repression of pathogen defense genes. These results suggest an important role for MED25 as an integrative hub within the Mediator complex during the regulation of JA-associated gene expression. PMID:22822211

  18. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress

    PubMed Central

    Thatcher, Louise F.; Kamphuis, Lars G.; Hane, James K.; Oñate-Sánchez, Luis; Singh, Karam B.

    2015-01-01

    Glutathione S-transferases (GSTs) play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1) mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060). Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA) mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA) regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses. PMID:25985302

  19. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress.

    PubMed

    Thatcher, Louise F; Kamphuis, Lars G; Hane, James K; Oñate-Sánchez, Luis; Singh, Karam B

    2015-01-01

    Glutathione S-transferases (GSTs) play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1) mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060). Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA) mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA) regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses.

  20. Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance

    PubMed Central

    Chen, Qin-Fang; Xu, Le; Tan, Wei-Juan; Chen, Liang; Qi, Hua; Xie, Li-Juan; Chen, Mo-Xian; Liu, Bin-Yi; Yu, Lu-Jun; Yao, Nan; Zhang, Jian-Hua; Shu, Wensheng; Xiao, Shi

    2017-01-01

    In Arabidopsis, three lipase-like regulators, SAG101, EDS1, and PAD4, act downstream of resistance protein-associated defense signaling. Although the roles of SAG101, EDS1, and PAD4 in biotic stress have been extensively studied, little is known about their functions in plant responses to abiotic stresses. Here, we show that SAG101, EDS1, and PAD4 are involved in the regulation of freezing tolerance in Arabidopsis. With or without cold acclimation, the sag101, eds1, and pad4 single mutants, as well as their double mutants exhibited similarly enhanced tolerance to freezing temperatures. Upon cold exposure, the sag101, eds1, and pad4 mutants showed increased transcript levels of C-REPEAT/DRE BINDING FACTORs and their regulons, compared with wild type. Moreover, freezing-induced cell death and accumulation of hydrogen peroxide were ameliorated in sag101, eds1, and pad4 mutants. The sag101, eds1, and pad4 mutants had much lower salicylic acid (SA) and diacylglycerol (DAG) contents than wild type and exogenous application of SA and DAG compromised the freezing tolerance of the mutants. Furthermore, SA suppressed the cold-induced expression of DGATs and DGKs in wild-type leaves. These findings indicate that SAG101, EDS1, and PAD4 are involved in freezing response in Arabidopsis, at least in part, by modulating the homeostasis of SA and DAG. PMID:26149542

  1. Arabidopsis Defense against Botrytis cinerea: Chronology and Regulation Deciphered by High-Resolution Temporal Transcriptomic Analysis[C][W

    PubMed Central

    Windram, Oliver; Madhou, Priyadharshini; McHattie, Stuart; Hill, Claire; Hickman, Richard; Cooke, Emma; Jenkins, Dafyd J.; Penfold, Christopher A.; Baxter, Laura; Breeze, Emily; Kiddle, Steven J.; Rhodes, Johanna; Atwell, Susanna; Kliebenstein, Daniel J.; Kim, Youn-sung; Stegle, Oliver; Borgwardt, Karsten; Zhang, Cunjin; Tabrett, Alex; Legaie, Roxane; Moore, Jonathan; Finkenstadt, Bärbel; Wild, David L.; Mead, Andrew; Rand, David; Beynon, Jim; Ott, Sascha; Buchanan-Wollaston, Vicky; Denby, Katherine J.

    2012-01-01

    Transcriptional reprogramming forms a major part of a plant’s response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea. Approximately one-third of the Arabidopsis genome is differentially expressed during the first 48 h after infection, with the majority of changes in gene expression occurring before significant lesion development. We used computational tools to obtain a detailed chronology of the defense response against B. cinerea, highlighting the times at which signaling and metabolic processes change, and identify transcription factor families operating at different times after infection. Motif enrichment and network inference predicted regulatory interactions, and testing of one such prediction identified a role for TGA3 in defense against necrotrophic pathogens. These data provide an unprecedented level of detail about transcriptional changes during a defense response and are suited to systems biology analyses to generate predictive models of the gene regulatory networks mediating the Arabidopsis response to B. cinerea. PMID:23023172

  2. 78 FR 4404 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On September 28, 2012 the Defense Nuclear Facilities Safety Board submitted...

  3. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    PubMed

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Induced Plant Defense Responses against Chewing Insects. Ethylene Signaling Reduces Resistance of Arabidopsis against Egyptian Cotton Worm But Not Diamondback Moth1

    PubMed Central

    Stotz, Henrik U.; Pittendrigh, Barry R.; Kroymann, Jürgen; Weniger, Kerstin; Fritsche, Jacqueline; Bauke, Antje; Mitchell-Olds, Thomas

    2000-01-01

    The induction of plant defenses by insect feeding is regulated via multiple signaling cascades. One of them, ethylene signaling, increases susceptibility of Arabidopsis to the generalist herbivore Egyptian cotton worm (Spodoptera littoralis; Lepidoptera: Noctuidae). The hookless1 mutation, which affects a downstream component of ethylene signaling, conferred resistance to Egyptian cotton worm as compared with wild-type plants. Likewise, ein2, a mutant in a central component of the ethylene signaling pathway, caused enhanced resistance to Egyptian cotton worm that was similar in magnitude to hookless1. Moreover, pretreatment of plants with ethephon (2-chloroethanephosphonic acid), a chemical that releases ethylene, elevated plant susceptibility to Egyptian cotton worm. By contrast, these mutations in the ethylene-signaling pathway had no detectable effects on diamondback moth (Plutella xylostella) feeding. It is surprising that this is not due to nonactivation of defense signaling, because diamondback moth does induce genes that relate to wound-response pathways. Of these wound-related genes, jasmonic acid regulates a novel β-glucosidase 1 (BGL1), whereas ethylene controls a putative calcium-binding elongation factor hand protein. These results suggest that a specialist insect herbivore triggers general wound-response pathways in Arabidopsis but, unlike a generalist herbivore, does not react to ethylene-mediated physiological changes. PMID:11080278

  5. Intercellular salicylic acid accumulation during compatible and incompatible Arabidopsis-Pseudomonas syringae interactions

    PubMed Central

    Wilson, Daniel C; Carella, Philip; Cameron, Robin K

    2014-01-01

    The phytohormone salicylic acid (SA) plays an important role in several disease resistance responses. During the Age-Related Resistance (ARR) response that occurs in mature Arabidopsis responding to Pseudomonas syringae pv tomato (Pst), SA accumulates in the intercellular space where it may act as an antimicrobial agent. Recently we measured intracellular and intercellular SA levels in young, ARR-incompetent plants responding to virulent and avirulent strains of Pst to determine if intercellular SA accumulation is a component of additional defense responses to Pst. In young plants virulent Pst suppressed both intra- and intercellular SA accumulation in a coronatine-dependent manner. In contrast, high levels of intra- and intercellular SA accumulated in response to avirulent Pst. Our results support the idea that SA accumulation in the intercellular space is an important component of multiple defense responses. Future research will include understanding how mature plants counteract the effects of coronatine during the ARR response. PMID:25763618

  6. Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response.

    PubMed

    Bonfig, Katharina B; Gabler, Andrea; Simon, Uwe K; Luschin-Ebengreuth, Nora; Hatz, Martina; Berger, Susanne; Muhammad, Naseem; Zeier, Jürgen; Sinha, Alok K; Roitsch, Thomas

    2010-11-01

    a role for extracellular invertase in plant defense. The acarbose-mediated increase in susceptibility was also detectable in sid2 and cpr6 mutants and resulted in slightly elevated levels of salicylic acid, demonstrating that the effect is independent of the salicylic acid-regulated defense pathway. These findings provide an explanation for high extractable invertase activity found in source leaves that is kept inhibited in situ by post-translational interaction between invertase and the invertase inhibitor proteins. Upon pathogen infection, the invertase activity is released by repression of invertase inhibitor expression, thus linking the local induction of sink strength to the plant defense response.

  7. Identification of novel substrates of Shigella T3SA through analysis of its virulence plasmid-encoded secretome

    PubMed Central

    Pinaud, Laurie; Ferrari, Mariana L.; Friedman, Robin; Jehmlich, Nico; von Bergen, Martin; Phalipon, Armelle; Sansonetti, Philippe J.

    2017-01-01

    Many human Gram-negative bacterial pathogens express a Type Three Secretion Apparatus (T3SA), including among the most notorious Shigella spp., Salmonella enterica, Yersinia enterocolitica and enteropathogenic Escherichia coli (EPEC). These bacteria express on their surface multiple copies of the T3SA that mediate the delivery into host cells of specific protein substrates critical to pathogenesis. Shigella spp. are Gram-negative bacterial pathogens responsible for human bacillary dysentery. The effector function of several Shigella T3SA substrates has largely been studied but their potential cellular targets are far from having been comprehensively delineated. In addition, it is likely that some T3SA substrates have escaped scrutiny as yet. Indeed, sequencing of the virulence plasmid of Shigella flexneri has revealed numerous open reading frames with unknown functions that could encode additional T3SA substrates. Taking advantage of label-free mass spectrometry detection of proteins secreted by a constitutively secreting strain of S. flexneri, we identified five novel substrates of the T3SA. We further confirmed their secretion through the T3SA and translocation into host cells using β-lactamase assays. The coding sequences of two of these novel T3SA substrates (Orf13 and Orf131a) have a guanine-cytosine content comparable to those of T3SA components and effectors. The three other T3SA substrates identified (Orf48, Orf86 and Orf176) have significant homology with antitoxin moieties of type II Toxin-Antitoxin systems usually implicated in the maintenance of low copy plasmids. While Orf13 and Orf131a might constitute new virulence effectors contributing to S. flexneri pathogenicity, potential roles for the translocation into host cells of antitoxins or antitoxin-like proteins during Shigella infection are discussed. PMID:29073283

  8. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    PubMed Central

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.; de Oliveira Ferreira, Dalton; Weraduwage, Sarathi M.; Froehlich, John E.; Johnson, Brendan F.; Kramer, David M.; Jander, Georg; Sharkey, Thomas D.; Howe, Gregg A.

    2016-01-01

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant (jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates from growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. The ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways. PMID:27573094

  9. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    DOE PAGES

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.; ...

    2016-08-30

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant ( jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates frommore » growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. Furthermore, the ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways.« less

  10. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, Marcelo L.; Yoshida, Yuki; Major, Ian T.

    Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant ( jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates frommore » growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. Furthermore, the ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways.« less

  11. Variation in short-term and long-term responses of photosynthesis and isoprenoid-mediated photoprotection to soil water availability in four Douglas-fir provenances

    DOE PAGES

    Junker, Laura Verena; Kleiber, Anita; Jansen, Kirstin; ...

    2017-01-10

    For long-lived forest tree species, the understanding of intraspecific variation among populations and their response to water availability can reveal their ability to cope with and adapt to climate change. Dissipation of excess excitation energy, mediated by photoprotective isoprenoids, is an important defense mechanism against drought and high light when photosynthesis is hampered. We used 50-year-old Douglas-fir trees of four provenances at two common garden experiments to characterize provenance-specific variation in photosynthesis and photoprotective mechanisms mediated by essential and non-essential isoprenoids in response to soil water availability and solar radiation. All provenances revealed uniform photoprotective responses to high solar radiation,more » including increased de-epoxidation of photoprotective xanthophyll cycle pigments and enhanced emission of volatile monoterpenes. In contrast, we observed differences between provenances in response to drought, where provenances sustaining higher CO2 assimilation rates also revealed increased water-use efficiency, carotenoid-chlorophyll ratios, pools of xanthophyll cycle pigments, β-carotene and stored monoterpenes. Our results demonstrate that local adaptation to contrasting habitats affected chlorophyll-carotenoid ratios, pool sizes of photoprotective xanthophylls, β-carotene, and stored volatile isoprenoids. We conclude that intraspecific variation in isoprenoid-mediated photoprotective mechanisms contributes to the adaptive potential of Douglas-fir provenances to climate change.« less

  12. Variation in short-term and long-term responses of photosynthesis and isoprenoid-mediated photoprotection to soil water availability in four Douglas-fir provenances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junker, Laura Verena; Kleiber, Anita; Jansen, Kirstin

    For long-lived forest tree species, the understanding of intraspecific variation among populations and their response to water availability can reveal their ability to cope with and adapt to climate change. Dissipation of excess excitation energy, mediated by photoprotective isoprenoids, is an important defense mechanism against drought and high light when photosynthesis is hampered. We used 50-year-old Douglas-fir trees of four provenances at two common garden experiments to characterize provenance-specific variation in photosynthesis and photoprotective mechanisms mediated by essential and non-essential isoprenoids in response to soil water availability and solar radiation. All provenances revealed uniform photoprotective responses to high solar radiation,more » including increased de-epoxidation of photoprotective xanthophyll cycle pigments and enhanced emission of volatile monoterpenes. In contrast, we observed differences between provenances in response to drought, where provenances sustaining higher CO2 assimilation rates also revealed increased water-use efficiency, carotenoid-chlorophyll ratios, pools of xanthophyll cycle pigments, β-carotene and stored monoterpenes. Our results demonstrate that local adaptation to contrasting habitats affected chlorophyll-carotenoid ratios, pool sizes of photoprotective xanthophylls, β-carotene, and stored volatile isoprenoids. We conclude that intraspecific variation in isoprenoid-mediated photoprotective mechanisms contributes to the adaptive potential of Douglas-fir provenances to climate change.« less

  13. Variation in short-term and long-term responses of photosynthesis and isoprenoid-mediated photoprotection to soil water availability in four Douglas-fir provenances

    PubMed Central

    Junker, Laura Verena; Kleiber, Anita; Jansen, Kirstin; Wildhagen, Henning; Hess, Moritz; Kayler, Zachary; Kammerer, Bernd; Schnitzler, Jörg-Peter; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo

    2017-01-01

    For long-lived forest tree species, the understanding of intraspecific variation among populations and their response to water availability can reveal their ability to cope with and adapt to climate change. Dissipation of excess excitation energy, mediated by photoprotective isoprenoids, is an important defense mechanism against drought and high light when photosynthesis is hampered. We used 50-year-old Douglas-fir trees of four provenances at two common garden experiments to characterize provenance-specific variation in photosynthesis and photoprotective mechanisms mediated by essential and non-essential isoprenoids in response to soil water availability and solar radiation. All provenances revealed uniform photoprotective responses to high solar radiation, including increased de-epoxidation of photoprotective xanthophyll cycle pigments and enhanced emission of volatile monoterpenes. In contrast, we observed differences between provenances in response to drought, where provenances sustaining higher CO2 assimilation rates also revealed increased water-use efficiency, carotenoid-chlorophyll ratios, pools of xanthophyll cycle pigments, β-carotene and stored monoterpenes. Our results demonstrate that local adaptation to contrasting habitats affected chlorophyll-carotenoid ratios, pool sizes of photoprotective xanthophylls, β-carotene, and stored volatile isoprenoids. We conclude that intraspecific variation in isoprenoid-mediated photoprotective mechanisms contributes to the adaptive potential of Douglas-fir provenances to climate change. PMID:28071755

  14. Endoplasmic reticulum stress responses function in the HRT-mediated hypersensitive response in Nicotiana benthamiana.

    PubMed

    Moon, Ju Yeon; Lee, Jeong Hee; Oh, Chang-Sik; Kang, Hong-Gu; Park, Jeong Mee

    2016-12-01

    HRT is a plant coiled-coil, nucleotide-binding and leucine-rich repeat (CC-NB-LRR) disease resistance protein that triggers the hypersensitive response (HR) on recognition of Turnip crinkle virus (TCV) coat protein (CP). The molecular mechanism and significance of HR-mediated cell death for TCV resistance have not been fully elucidated. To identify the genes involved in HRT/TCV CP-mediated HR in Nicotiana benthamiana, we performed virus-induced gene silencing (VIGS) of 459 expressed sequence tags (ESTs) of pathogen-responsive Capsicum annuum genes. VIGS of CaBLP5, which encodes an endoplasmic reticulum (ER)-associated immunoglobulin-binding protein (BiP), silenced NbBiP4 and NbBiP5 and significantly reduced HRT-mediated HR. The induction of ER stress-responsive genes and the accumulation of ER-targeted BiPs in response to HRT-mediated HR suggest that ER is involved in HR in N. benthamiana. BiP4/5 silencing significantly down-regulated HRT at the mRNA and protein levels, and affected SGT1 and HSP90 expression. Co-expression of TCV CP in BiP4/5-silenced plants completely abolished HRT induction. Transient expression of TCV CP alone induced selected ER stress-responsive gene transcripts only in Tobacco rattle virus (TRV)-infected plants, and most of these genes were induced by HRT/TCV CP, except for bZIP60, which was induced specifically in response to HRT/TCV CP. TCV CP-mediated induction of ER stress-responsive genes still occurred in BiP4/5-silenced plants, but HRT/TCV CP-mediated induction of these genes was defective. Tunicamycin, a chemical that inhibits protein N-glycosylation, inhibited HRT-mediated HR, suggesting that ER has a role in HR regulation. These results indicate that BiP and ER, which modulate pattern recognition receptors in innate immunity, also regulate R protein-mediated resistance. © 2016 BSPP and John Wiley & Sons Ltd.

  15. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    PubMed

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages

  16. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana.

    PubMed

    Duan, Yanjiao; Jiang, Yuanzhong; Ye, Shenglong; Karim, Abdul; Ling, Zhengyi; He, Yunqiu; Yang, Siqi; Luo, Keming

    2015-05-01

    A salicylic acid-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa , was isolated and characterized. Overexpression of PtrWRKY73 in Arabidopsis thaliana increased resistance to biotrophic pathogens but reduced resistance against necrotrophic pathogens. WRKY transcription factors are commonly involved in plant defense responses. However, limited information is available about the roles of the WRKY genes in poplar defense. In this study, we isolated a salicylic acid (SA)-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa, belonging to group I family and containing two WRKY domains, a D domain and an SP cluster. PtrWRKY73 was expressed predominantly in roots, old leaves, sprouts and stems, especially in phloem and its expression was induced in response to treatment with exogenous SA. PtrWRKY73 was localized to the nucleus of plant cells and exhibited transcriptional activation. Overexpression of PtrWRKY73 in Arabidopsis thaliana resulted in increased resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae (PstDC3000), but more sensitivity to the necrotrophic fungal pathogen Botrytis cinerea. The SA-mediated defense-associated genes, such as PR1, PR2 and PAD4, were markedly up-regulated in transgenic plants overexpressing PtrWRKY73. Arabidopsis non-expressor of PR1 (NPR1) was not affected, whereas a defense-related gene PAL4 had reduced in PtrWRKY73 overexpressor plants. Together, these results indicated that PtrWRKY73 plays a positive role in plant resistance to biotrophic pathogens but a negative effect on resistance against necrotrophic pathogens.

  17. Self/nonself perception in plants in innate immunity and defense

    PubMed Central

    Sanabria, Natasha M; Huang, Ju-Chi

    2010-01-01

    The ability to distinguish ‘self’ from ‘nonself’ is the most fundamental aspect of any immune system. The evolutionary solution in plants to the problems of perceiving and responding to pathogens involves surveillance of nonself, damaged-self and altered-self as danger signals. This is reflected in basal resistance or non-host resistance, which is the innate immune response that protects plants against the majority of pathogens. In the case of surveillance of nonself, plants utilize receptor-like proteins or -kinases (RLP/Ks) as pattern recognition receptors (PRRs), which can detect conserved pathogen/microbe-associated molecular pattern (P/MAMP) molecules. P/MAMP detection serves as an early warning system for the presence of a wide range of potential pathogens and the timely activation of plant defense mechanisms. However, adapted microbes express a suite of effector proteins that often interfere or act as suppressors of these defenses. In response, plants have evolved a second line of defense that includes intracellular nucleotide binding leucine-rich repeat (NB-LRR)-containing resistance proteins, which recognize isolate-specific pathogen effectors once the cell wall has been compromised. This host-immunity acts within the species level and is controlled by polymorphic host genes, where resistance protein-mediated activation of defense is based on an ‘altered-self’ recognition mechanism. PMID:21559176

  18. 76 FR 42686 - DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities Safety Board, Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities... Nuclear Facilities Safety Board, Office of Health, Safety and Security, U.S. Department of Energy, 1000... Department of Energy (DOE) acknowledges receipt of Defense Nuclear Facilities Safety Board (Board...

  19. Development of disease-resistant rice using regulatory components of induced disease resistance

    PubMed Central

    Takatsuji, Hiroshi

    2014-01-01

    Infectious diseases cause huge crop losses annually. In response to pathogen attacks, plants activate defense systems that are mediated through various signaling pathways. The salicylic acid (SA) signaling pathway is the most powerful of these pathways. Several regulatory components of the SA signaling pathway have been identified, and are potential targets for genetic manipulation of plants’ disease resistance. However, the resistance associated with these regulatory components is often accompanied by fitness costs; that is, negative effects on plant growth and crop yield. Chemical defense inducers, such as benzothiadiazole and probenazole, act on the SA pathway and induce strong resistance to various pathogens without major fitness costs, owing to their ‘priming effect.’ Studies on how benzothiadiazole induces disease resistance in rice have identified WRKY45, a key transcription factor in the branched SA pathway, and OsNPR1/NH1. Rice plants overexpressing WRKY45 were extremely resistant to rice blast disease caused by the fungus Magnaporthe oryzae and bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo), the two major rice diseases. Disease resistance is often accompanied by fitness costs; however, WRKY45 overexpression imposed relatively small fitness costs on rice because of its priming effect. This priming effect was similar to that of chemical defense inducers, although the fitness costs were amplified by some environmental factors. WRKY45 is degraded by the ubiquitin–proteasome system, and the dual role of this degradation partly explains the priming effect. The synergistic interaction between SA and cytokinin signaling that activates WRKY45 also likely contributes to the priming effect. With a main focus on these studies, I review the current knowledge of SA-pathway-dependent defense in rice by comparing it with that in Arabidopsis, and discuss potential strategies to develop disease-resistant rice using signaling components

  20. Nuclear Disarmament and the Insanity Defense: What Happened to Political Responsiveness?

    ERIC Educational Resources Information Center

    Fleming, John H.; Shaver, Kelly G.

    A study which explored the degree to which belief in a politically responsive/unresponsive world might be related to opinions concerning nuclear disarmament, the insanity defense, and women's rights is described. A total of 206 male and female undergraduates completed a 63-item questionnaire consisting of 46 Likert-format I-E items and 17 attitude…

  1. Interplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula

    PubMed Central

    Chen, Tao; Duan, Liujian; Zhou, Bo; Yu, Haixiang; Zhu, Hui; Cao, Yangrong; Zhang, Zhongming

    2017-01-01

    Suppression of host innate immunity appears to be required for the establishment of symbiosis between rhizobia and host plants. In this study, we established a system that included a host plant, a bacterial pathogen and a symbiotic rhizobium to study the role of innate immunity during symbiotic interactions. A pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000), was shown to cause chlorosis in Medicago truncatula A17. Sinorhizobium meliloti strain Sm2011 (Sm2011) and Pst DC3000 strain alone induced similar defense responses in M. truncatula. However, when co-inoculated, Sm2011 specifically suppressed the defense responses induced by Pst DC3000, such as MAPK activation and ROS production. Inoculation with Sm2011 suppressed the transcription of defense-related genes triggered by Pst DC3000 infection, including the receptor of bacterial flagellin (FLS2), pathogenesis-related protein 10 (PR10), and the transcription factor WRKY33. Interestingly, inoculation with Pst DC3000 specifically inhibited the expression of the symbiosis marker genes nodule inception and nodulation pectate lyase and reduced the numbers of infection threads and nodules on M. truncatula A17 roots, indicating that Pst DC3000 inhibits the establishment of symbiosis in M. truncatula. In addition, defense-related genes, such as MAPK3/6, RbohC, and WRKY33, exhibited a transient increase in their expression in the early stage of symbiosis with Sm2011, but the expression dropped down to normal levels at later symbiotic stages. Our results suggest that plant innate immunity plays an antagonistic role in symbiosis by directly reducing the numbers of infection threads and nodules. PMID:28611764

  2. Soft mechanical stimulation induces a defense response against Botrytis cinerea in strawberry.

    PubMed

    Tomas-Grau, Rodrigo Hernán; Requena-Serra, Fernando José; Hael-Conrad, Verónica; Martínez-Zamora, Martín Gustavo; Guerrero-Molina, María Fernanda; Díaz-Ricci, Juan Carlos

    2018-02-01

    Genes associated with plant mechanical stimulation were found in strawberry genome. A soft mechanical stimulation (SMS) induces molecular and biochemical changes in strawberry plants, conferring protection against Botrytis cinerea. Plants have the capacity to induce a defense response after exposure to abiotic stresses acquiring resistance towards pathogens. It was reported that when leaves of Arabidopsis thaliana were wounded or treated with a soft mechanical stimulation (SMS), they could resist much better the attack of the fungal pathogen Botrytis cinerea, and this effect was accompanied by an oxidative burst and the expression of touch-inducible genes (TCH). However, no further work was carried out to better characterize the induced defense response. In this paper, we report that TCH genes were identified for first time in the genomes of the strawberry species Fragaria ananassa (e.g. FaTCH2, FaTCH3, FaTCH4 and FaCML39) and Fragaria vesca (e.g. FvTCH2, FvTCH3, FvTCH4 and FvCML39). Phylogenetic studies revealed that F. ananassa TCH genes exhibited high similarity with the orthologous of F. vesca and lower with A. thaliana ones. We also present evidence that after SMS treatment on strawberry leaves, plants activate a rapid oxidative burst, callose deposition, and the up-regulation of TCH genes as well as plant defense genes such as FaPR1, FaCHI2-2, FaCAT, FaACS1 and FaOGBG-5. The latter represents the first report showing that TCH- and defense-induced genes participate in SMS-induced resistance in plants, bringing a rational explanation why plants exposed to a SMS treatment acquired an enhance resistance toward B. cinerea.

  3. Defense Response in Slash Pine: Chitosan Treatment Alters the Abundance of Specific mRNAs

    Treesearch

    Mary E. Mason; John M. Davis

    1997-01-01

    We used differential display to identify chitosan responsive cDNAs in slashpine cell cultures. Two clones that showed increased mRNA abundance had sequence similarity to genes with roles in major plant defense responses, clone 18 to cinnamic acid 4-hydroxylase, and clone 30 to chitinase.

  4. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis

    PubMed Central

    Rovetta, Ana I; Peña, Delfina; Hernández Del Pino, Rodrigo E; Recalde, Gabriela M; Pellegrini, Joaquín; Bigi, Fabiana; Musella, Rosa M; Palmero, Domingo J; Gutierrez, Marisa; Colombo, María I; García, Verónica E

    2015-01-01

    Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen. PMID:25426782

  5. Defensive responses to threat scenarios in Brazilians reproduce the pattern of Hawaiian Americans and non-human mammals.

    PubMed

    Shuhama, R; Del-Ben, C M; Loureiro, S R; Graeff, F G

    2008-04-01

    A former study with scenarios conducted in Hawaii has suggested that humans share with non-human mammals the same basic defensive strategies - risk assessment, freezing, defensive threat, defensive attack, and flight. The selection of the most adaptive strategy is strongly influenced by features of the threat stimulus - magnitude, escapability, distance, ambiguity, and availability of a hiding place. Aiming at verifying if these strategies would be consistent in a different culture, 12 defensive scenarios were translated into Portuguese and adapted to the Brazilian culture. The sample consisted of male and female undergraduate students divided into two groups: 76 students, who evaluated the five dimensions of each scenario and 248 medical students, who chose the most likely response for each scenario. In agreement with the findings from studies of non-human mammal species, the scenarios were able to elicit different defensive behavioral responses, depending on features of the threat. "Flight" was chosen as the most likely response in scenarios evaluated as an unambiguous and intense threat, but with an available route of escape, whereas "attack" was chosen in an unambiguous, intense and close dangerous situation without an escape route. Less urgent behaviors, such as "check out", were chosen in scenarios evaluated as less intense, more distant and more ambiguous. Moreover, the results from the Brazilian sample were similar to the results obtained in the original study with Hawaiian students. These data suggest that a basic repertoire of defensive strategies is conserved along the mammalian evolution because they share similar functional benefits in maintaining fitness.

  6. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots.

    PubMed

    Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús

    2014-01-01

    Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA) against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH) cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets), many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR) experiments aiming to: (1) validate the induction of these genes, and (2) shed light on their expression pattern along time (from 1 to 15 days). Induction of olive genes potentially coding for lipoxygenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase, and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e., JERF, bHLH, WRKY), as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mounts a wide array of systemic defense responses in distant tissues (stems, leaves). This sheds light on how olive plants respond to the "non-hostile" colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7.

  7. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots

    PubMed Central

    Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús

    2014-01-01

    Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA) against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH) cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets), many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR) experiments aiming to: (1) validate the induction of these genes, and (2) shed light on their expression pattern along time (from 1 to 15 days). Induction of olive genes potentially coding for lipoxygenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase, and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e., JERF, bHLH, WRKY), as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mounts a wide array of systemic defense responses in distant tissues (stems, leaves). This sheds light on how olive plants respond to the “non-hostile” colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7. PMID:25250017

  8. Molecular dissection of the response of the rice Systemic Acquired Resistance Deficient 1 (SARD1) gene to different types of ionizing radiation.

    PubMed

    Jung, In Jung; Hwang, Jung Eun; Han, Sung Min; Kim, Dong Sub; Ahn, Joon-Woo; Choi, Hong-Il; Kwon, Soon-Jae; Kang, Si-Yong; Kim, Jin-Baek

    2017-07-01

    Exposure to ionizing radiation induces plant defenses by regulating the expression of response genes. The systemic acquired resistance deficient 1 (SARD1) is a key gene in plant defense response. In this study, the function of Oryza sativa SARD1 (OsSARD1) was investigated after exposure of seeds/plants to ionizing radiation, jasmonic acid (JA) or salicylic acid (SA). Rice seeds exposed to two types of ionizing radiations (gamma ray [GR] and ion beam [IB]) were analyzed by quantitative reverse transcription PCR (qRT-PCR) to identify the genes that are altered in response to ionizing radiation. Then, OsSARD1-overexpressing homozygous Arabidopsis plants were generated to assess the effects of OsSARD1 in the response to irradiation. The phenotypes of these transgenic plants, as well as control plants, were monitored after GR irradiation at doses of 200 and 300 Gray (Gy). The OsSARD1 transcript was strongly downregulated after exposure to GR and IB irradiation. Previous phylogenetic analysis showed that the Arabidopsis SARD1 (AtSARD1) protein is closely related to Arabidopsis calmodulin-binding protein 60g (AtCBP60g), which is known to be required for activation of SA biosynthesis. In this study, phylogenetic analysis showed that OsSARD1 was grouped with AtSARD1. The OsSARD1 gene was induced after exposure to SA and JA. The biological phenotype of OsSARD1-overexpressing Arabidopsis plants was examined. OsSARD1-overexpressing plants displayed resistance to GR; in comparison with wild-type plants, the height and weight of OsSARD1-overexpressing plants were significantly greater after GR irradiation. In addition, OsSARD1 protein was abundantly accumulated in the nucleus. The results indicate that OsSARD1 plays an important role in the regulation of the defense responses to GR and IB irradiation and exhibits phytohormone induced expression.

  9. Hypervirulent Diuraphis noxia (Hemiptera: Aphididae) biotype SAM avoids triggering defenses in its host (Triticum aestivum) (Poales: Poaceae) during feeding.

    PubMed

    Botha, Anna-Maria; Burger, N Francois V; Van Eck, Leon

    2014-06-01

    In the molecular arms race between aphids and plants, both organisms rely on adaptive strategies to outcompete their evolutionary rival. In the current study, we investigated the difference in elicited defense responses of wheat (Triticum aestivum L.) near-isogenic lines with different Dn resistance genes, upon feeding by an avirulent and hypervirulent Diuraphis noxia Kurdjumov biotype. After measuring the activity of a suite of enzymes associated with plant defense, it became apparent that the host does not recognize the invasion by the hypervirulent aphid because none of these were induced, while feeding by the avirulent biotype did result in induction of enzyme activity. Genomic plasticity in D. noxia may be a likely explanation for the observed differences in virulence between D. noxia biotype SA1 and SAM, as demonstrated in the current study.

  10. Whiteflies interfere with indirect plant defense against spider mites in Lima bean

    PubMed Central

    Zhang, Peng-Jun; Zheng, Si-Jun; van Loon, Joop J. A.; Boland, Wilhelm; David, Anja; Mumm, Roland; Dicke, Marcel

    2009-01-01

    Plants under herbivore attack are able to initiate indirect defense by synthesizing and releasing complex blends of volatiles that attract natural enemies of the herbivore. However, little is known about how plants respond to infestation by multiple herbivores, particularly if these belong to different feeding guilds. Here, we report the interference by a phloem-feeding insect, the whitefly Bemisia tabaci, with indirect plant defenses induced by spider mites (Tetranychus urticae) in Lima bean (Phaseolus lunatus) plants. Additional whitefly infestation of spider-mite infested plants resulted in a reduced attraction of predatory mites (Phytoseiulus persimilis) compared to attraction to plants infested by spider mites only. This interference is shown to result from the reduction in (E)-β-ocimene emission from plants infested by both spider mites and whiteflies. When using exogenous salicylic acid (SA) application to mimic B. tabaci infestation, we observed similar results in behavioral and chemical analyses. Phytohormone and gene-expression analyses revealed that B. tabaci infestation, as well as SA application, inhibited spider mite-induced jasmonic acid (JA) production and reduced the expression of two JA-regulated genes, one of which encodes for the P. lunatus enzyme β-ocimene synthase that catalyzes the synthesis of (E)-β-ocimene. Remarkably, B. tabaci infestation concurrently inhibited SA production induced by spider mites. We therefore conclude that in dual-infested Lima bean plants the suppression of the JA signaling pathway by whitefly feeding is not due to enhanced SA levels. PMID:19965373

  11. 77 FR 43583 - DOE Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah River Site Building 235-F Safety AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On May 8, 2012, the Defense Nuclear Facilities Safety Board submitted Recommendation 2012-1...

  12. Functional analysis of MeCIPK23 and MeCBL1/9 in cassava defense response against Xanthomonas axonopodis pv. manihotis.

    PubMed

    Yan, Yu; He, Xinyi; Hu, Wei; Liu, Guoyin; Wang, Peng; He, Chaozu; Shi, Haitao

    2018-06-01

    MeCIPK23 interacts with MeCBL1/9, and they confer improved defense response, providing potential genes for further genetic breeding in cassava. Cassava (Manihot esculenta) is an important food crop in tropical area, but its production is largely affected by cassava bacterial blight. However, the information of defense-related genes in cassava is very limited. Calcium ions play essential roles in plant development and stress signaling pathways. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) are crucial components of calcium signals. In this study, systematic expression profile of 25MeCIPKs in response to Xanthomonas axonopodis pv. manihotis (Xam) infection was examined, by which seven candidate MeCIPKs were chosen for functional investigation. Through transient expression in Nicotiana benthamiana leaves, we found that six MeCIPKs (MeCIPK5, MeCIPK8, MeCIPK12, MeCIPK22, MeCIPK23 and MeCIPK24) conferred improved defense response, via regulating the transcripts of several defense-related genes. Notably, we found that MeCIPK23 interacted with MeCBL1 and MeCBL9, and overexpression of these genes conferred improved defense response. On the contrary, virus-induced gene silencing of either MeCIPK23 or MeCBL1/9 or both genes resulted in disease sensitive in cassava. To our knowledge, this is the first study identifying MeCIPK23 as well as MeCBL1 and MeCBL9 that confer enhanced defense response against Xam.

  13. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice

    PubMed Central

    Shinya, Tomonori; Hojo, Yuko; Desaki, Yoshitake; Christeller, John T.; Okada, Kazunori; Shibuya, Naoto; Galis, Ivan

    2016-01-01

    Induced plant defense responses against insect herbivores are triggered by wounding and/or perception of herbivore elicitors from their oral secretions (OS) and/or saliva. In this study, we analyzed OS isolated from two rice chewing herbivores, Mythimna loreyi and Parnara guttata. Both types of crude OS had substantial elicitor activity in rice cell system that allowed rapid detection of early and late defense responses, i.e. accumulation of reactive oxygen species (ROS) and defense secondary metabolites, respectively. While the OS from M. loreyi contained large amounts of previously reported insect elicitors, fatty acid-amino acid conjugates (FACs), the elicitor-active P. guttata’s OS contained no detectable FACs. Subsequently, elicitor activity associated with the high molecular mass fraction in OS of both herbivores was identified, and shown to promote ROS and metabolite accumulations in rice cells. Notably, the application of N-linolenoyl-Gln (FAC) alone had only negligible elicitor activity in rice cells; however, the activity of isolated elicitor fraction was substantially promoted by this FAC. Our results reveal that plants integrate various independent signals associated with their insect attackers to modulate their defense responses and reach maximal fitness in nature. PMID:27581373

  14. Evasion of Human Neutrophil-Mediated Host Defense during Toxoplasma gondii Infection

    PubMed Central

    Lima, Tatiane S.; Gov, Lanny

    2018-01-01

    ABSTRACT Neutrophils are a major player in host immunity to infection; however, the mechanisms by which human neutrophils respond to the intracellular protozoan parasite Toxoplasma gondii are still poorly understood. In the current study, we found that, whereas primary human monocytes produced interleukin-1beta (IL-1β) in response to T. gondii infection, human neutrophils from the same blood donors did not. Moreover, T. gondii inhibited lipopolysaccharide (LPS)-induced IL-1β synthesis in human peripheral blood neutrophils. IL-1β suppression required active parasite invasion, since heat-killed or mycalolide B-treated parasites did not inhibit IL-1β release. By investigating the mechanisms involved in this process, we found that T. gondii infection of neutrophils treated with LPS resulted in reduced transcript levels of IL-1β and NLRP3 and reduced protein levels of pro-IL-1β, mature IL-1β, and the inflammasome sensor NLRP3. In T. gondii-infected neutrophils stimulated with LPS, the levels of MyD88, TRAF6, IKKα, IKKβ, and phosphorylated IKKα/β were not affected. However, LPS-induced IκBα degradation and p65 phosphorylation were reduced in T. gondii-infected neutrophils, and degradation of IκBα was reversed by treatment with the proteasome inhibitor MG-132. Finally, we observed that T. gondii inhibited the cleavage and activity of caspase-1 in human neutrophils. These results indicate that T. gondii suppression of IL-1β involves a two-pronged strategy whereby T. gondii inhibits both NF-κB signaling and activation of the NLRP3 inflammasome. These findings represent a novel mechanism of T. gondii evasion of human neutrophil-mediated host defense by targeting the production of IL-1β. PMID:29440572

  15. Pipecolic Acid, an Endogenous Mediator of Defense Amplification and Priming, Is a Critical Regulator of Inducible Plant Immunity[W

    PubMed Central

    Návarová, Hana; Bernsdorff, Friederike; Döring, Anne-Christin; Zeier, Jürgen

    2012-01-01

    Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid–induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR. PMID:23221596

  16. The role of automatic defensive responses in the development of posttraumatic stress symptoms in police recruits: protocol of a prospective study.

    PubMed

    Koch, Saskia B J; Klumpers, Floris; Zhang, Wei; Hashemi, Mahur M; Kaldewaij, Reinoud; van Ast, Vanessa A; Smit, Annika S; Roelofs, Karin

    2017-01-01

    Background : Control over automatic tendencies is often compromised in challenging situations when people fall back on automatic defensive reactions, such as freeze - fight - flight responses. Stress-induced lack of control over automatic defensive responses constitutes a problem endemic to high-risk professions, such as the police. Difficulties controlling automatic defensive responses may not only impair split-second decisions under threat, but also increase the risk for and persistence of posttraumatic stress disorder (PTSD) symptoms. However, the significance of these automatic defensive responses in the development and maintenance of trauma-related symptoms remains unclear due to a shortage of large-scale prospective studies. Objective : The 'Police-in-Action' study is conducted to investigate the role of automatic defensive responses in the development and maintenance of PTSD symptomatology after trauma exposure. Methods : In this prospective study, 340 police recruits from the Dutch Police Academy are tested before (wave 1; pre-exposure) and after (wave 2; post-exposure) their first emergency aid experiences as police officers. The two waves of data assessment are separated by approximately 15 months. To control for unspecific time effects, a well-matched control group of civilians ( n  = 85) is also tested twice, approximately 15 months apart, but without being frequently exposed to potentially traumatic events. Main outcomes are associations between (changes in) behavioural, psychophysiological, endocrine and neural markers of automatic defensive responses and development of trauma-related symptoms after trauma exposure in police recruits. Discussion : This prospective study in a large group of primary responders enables us to distinguish predisposing from acquired neurobiological abnormalities in automatic defensive responses, associated with the development of trauma-related symptoms. Identifying neurobiological correlates of (vulnerability for

  17. Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses

    PubMed Central

    Yi, Young-Su; Son, Young-Jin; Ryou, Chongsuk; Sung, Gi-Ho; Kim, Jong-Hoon; Cho, Jae Youl

    2014-01-01

    Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases. PMID:25045209

  18. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling.

    PubMed

    Xu, Enjun; Brosché, Mikael

    2014-06-04

    Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.

  19. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling

    PubMed Central

    2014-01-01

    Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling. PMID:24898702

  20. Report of the Defense Science Board Summer Study Task Force on Defense Manufacturing Enterprise Strategy

    DTIC Science & Technology

    1993-09-01

    mapped against the desired results. "What To Do" Recomendations PrawnProe Based on reviw of 28 prior sh"(Sa Pki gffs f’orce reconmendafins a’: Q𔃺 Oak...sponsored by the UndAr Secretary of Defense (Acquisition). Mr. Edwin L. Big•ers and Mr. Gordon K . England will serve as Co-Chairmen. ARPA will provide the...sectors, and identify key pilot programs where acquisition and management reforms can be applied. C-8 "What To Do" Rcu-manedadow 1.%% k ~r Tedduce

  1. Political orientation moderates worldview defense in response to Osama bin Laden’s death

    PubMed Central

    Chopik, William J.; Konrath, Sara H.

    2016-01-01

    The current study examines Americans’ psychological responses to Osama bin Laden’s death. We tracked changes in how different participants responded to dissimilar others from the night of bin Laden’s death for five weeks. Liberal participants reported lower worldview defense (i.e., a defensive reaction to uphold one’s cultural worldview) immediately after bin Laden’s death but then returned to similar levels as their conservative counterparts over time. Conservative participants reported greater worldview defense during each point of the study and did not significantly change over time. These temporal differences between liberals and conservatives were only present in the year of bin Laden’s death and not one year prior before. The current findings demonstrate that liberals and conservatives may react differently after major societal events in predictable ways considering their moral foundations. PMID:28239251

  2. Nest defense- Grassland bird responses to snakes

    USGS Publications Warehouse

    Ellison, Kevin S.; Ribic, Christine

    2012-01-01

    Predation is the primary source of nest mortality for most passerines; thus, behaviors to reduce the impacts of predation are frequently quantified to study learning, adaptation, and coevolution among predator and prey species. Video surveillance of nests has made it possible to examine real-time parental nest defense. During 1999-2009, we used video camera systems to monitor 518 nests of grassland birds. We reviewed video of 48 visits by snakes to 34 nests; 37 of these visits resulted in predation of active nests. When adult birds encountered snakes at the nest (n = 33 visits), 76% of the encounters resulted in a form of nest defense (nonaggressive or aggressive); in 47% of the encounters, birds physically struck snakes. When defending nests, most birds pecked at the snakes; Eastern Meadowlarks (Sturnella magna) and Bobolinks (Dolichonyx oryzivorus) pecked most frequently in anyone encounter. Also, two Eastern Meadowlarks ran around snakes, frequently with wings spread, and three Bobolinks struck at snakes from the air. Nest defense rarely appeared to alter snake behavior; the contents of seven nests defended aggressively and two nests defended nonaggressively were partially depredated, whereas the contents of six nests defended each way were consumed completely. One fledgling was produced at each of three nests that had been aggressively defended. During aggressive defense, one snake appeared to be driven away and one was wounded. Our findings should be a useful starting point for further research. For example, future researchers may be able to determine whether the behavioral variation we observed in nest defense reflects species differences, anatomic or phylogenetic constraints, or individual differences related to a bird's prior experience. There appears to be much potential for studying nest defense behavior using video recording of both real and simulated encounters. 

  3. CRYPTOCHROME mediates behavioral executive choice in response to UV light

    PubMed Central

    Baik, Lisa S.; Fogle, Keri J.; Roberts, Logan; Galschiodt, Alexis M.; Chevez, Joshua A.; Recinos, Yocelyn; Nguy, Vinh; Holmes, Todd C.

    2017-01-01

    Drosophila melanogaster CRYPTOCHROME (CRY) mediates behavioral and electrophysiological responses to blue light coded by circadian and arousal neurons. However, spectroscopic and biochemical assays of heterologously expressed CRY suggest that CRY may mediate functional responses to UV-A (ultraviolet A) light as well. To determine the relative contributions of distinct phototransduction systems, we tested mutants lacking CRY and mutants with disrupted opsin-based phototransduction for behavioral and electrophysiological responses to UV light. CRY and opsin-based external photoreceptor systems cooperate for UV light-evoked acute responses. CRY mediates behavioral avoidance responses related to executive choice, consistent with its expression in central brain neurons. PMID:28062690

  4. The DELLA Protein SLR1 Integrates and Amplifies Salicylic Acid- and Jasmonic Acid-Dependent Innate Immunity in Rice1

    PubMed Central

    De Vleesschauwer, David; Seifi, Hamed Soren; Haeck, Ashley; Huu, Son Nguyen; Demeestere, Kristof

    2016-01-01

    Gibberellins are a class of tetracyclic plant hormones that are well known to promote plant growth by inducing the degradation of a class of nuclear growth-repressing proteins, called DELLAs. In recent years, GA and DELLAs are also increasingly implicated in plant responses to pathogen attack, although our understanding of the underlying mechanisms is still limited, especially in monocotyledonous crop plants. Aiming to further decipher the molecular underpinnings of GA- and DELLA-modulated plant immunity, we studied the dynamics and impact of GA and DELLA during infection of the model crop rice (Oryza sativa) with four different pathogens exhibiting distinct lifestyles and infection strategies. Opposite to previous findings in Arabidopsis (Arabidopsis thaliana), our findings reveal a prominent role of the DELLA protein Slender Rice1 (SLR1) in the resistance toward (hemi)biotrophic but not necrotrophic rice pathogens. Moreover, contrary to the differential effect of DELLA on the archetypal defense hormones salicylic acid (SA) and jasmonic acid (JA) in Arabidopsis, we demonstrate that the resistance-promoting effect of SLR1 is due at least in part to its ability to boost both SA- and JA-mediated rice defenses. In a reciprocal manner, we found JA and SA treatment to interfere with GA metabolism and stabilize SLR1. Together, these findings favor a model whereby SLR1 acts as a positive regulator of hemibiotroph resistance in rice by integrating and amplifying SA- and JA-dependent defense signaling. Our results highlight the differences in hormone defense networking between rice and Arabidopsis and underscore the importance of GA and DELLA in molding disease outcomes. PMID:26829979

  5. Plant Responses to Pathogen Attack: Small RNAs in Focus.

    PubMed

    Islam, Waqar; Noman, Ali; Qasim, Muhammad; Wang, Liande

    2018-02-08

    Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in plant defense processes via different pathways include both short interfering RNA (siRNA) and microRNA (miRNA) that actively regulate immunity in response to pathogenic attack via tackling pathogen-associated molecular patterns (PAMPs) and other effectors. In response to pathogen attack, plants protect themselves with the help of sRNA-dependent immune systems. That sRNA-mediated plant defense responses play a role during infections is an established fact. However, the regulations of several sRNAs still need extensive research. In this review, we discussed the topical advancements and findings relevant to pathogen attack and plant defense mediated by sRNAs. We attempted to point out diverse sRNAs as key defenders in plant systems. It is hoped that sRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases.

  6. Plant Responses to Pathogen Attack: Small RNAs in Focus

    PubMed Central

    2018-01-01

    Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in plant defense processes via different pathways include both short interfering RNA (siRNA) and microRNA (miRNA) that actively regulate immunity in response to pathogenic attack via tackling pathogen-associated molecular patterns (PAMPs) and other effectors. In response to pathogen attack, plants protect themselves with the help of sRNA-dependent immune systems. That sRNA-mediated plant defense responses play a role during infections is an established fact. However, the regulations of several sRNAs still need extensive research. In this review, we discussed the topical advancements and findings relevant to pathogen attack and plant defense mediated by sRNAs. We attempted to point out diverse sRNAs as key defenders in plant systems. It is hoped that sRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases. PMID:29419801

  7. Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2

    PubMed Central

    Li, Qiong; Kumar, Ashok; Gui, Jian-Fang; Yu, Fu-Shin X.

    2008-01-01

    Bacterial lipoproteins (LP) are a family of cell wall components found in a wide variety of bacteria. In this study, we characterized the response of HUCL, a telomerase-immortalized human corneal epithelial cell (HCEC) line, to LP isolated from Staphylococcus (S) aureus. S. aureus LP (saLP) prepared by Triton X-114 extraction stimulated the activation of NF-κB, JNK, and P38 signaling pathways in HUCL cells. The extracts failed to stimulate NF-κB activation in HUCL cells after lipoprotein lipase treatment and in cell lines expressing TLR4 or TLR9, but TLR2, indicating lipoprotein nature of the extracts. saLP induced the up-regulation of a variety of inflammatory cytokines and chemokines (IL-6, IL-8, ICAM-1) and antimicrobial molecules (hBD-2, LL-37, and iNOS), and homeostasis genes (Mn-SOD) at both the mRNA level and protein level. Similar inflammatory response to saLP was also observed in primarily cultured HCECs using the production of IL-6 as readout. Moreover, TLR2 neutralizing antibody blocked the saLP-induced secretion of IL-6, IL-8 and hBD2 in HUCL cells. Our findings suggest that saLP activates TLR2 and contributes to innate immune response in the cornea to S. aureus infection via production of proinflammatory cytokines and defense molecules. PMID:18191935

  8. Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2.

    PubMed

    Li, Qiong; Kumar, Ashok; Gui, Jian-Fang; Yu, Fu-Shin X

    2008-05-01

    Bacterial lipoproteins (LP) are a family of cell wall components found in a wide variety of bacteria. In this study, we characterized the response of HUCL, a telomerase-immortalized human corneal epithelial cell (HCEC) line, to LP isolated from Staphylococcus (S) aureus. S. aureus LP (saLP) prepared by Triton X-114 extraction stimulated the activation of NF-kappaB, JNK, and P38 signaling pathways in HUCL cells. The extracts failed to stimulate NF-kappaB activation in HUCL cells after lipoprotein lipase treatment and in cell lines expressing TLR4 or TLR9, but not TLR2, indicating lipoprotein nature of the extracts. saLP induced the up-regulation of a variety of inflammatory cytokines and chemokines (IL-6, IL-8, ICAM-1), antimicrobial molecules (hBD-2, LL-37, and iNOS), and homeostasis genes (Mn-SOD) at both the mRNA level and protein level. Similar inflammatory response to saLP was also observed in primarily cultured HCECs using the production of IL-6 as readout. Moreover, TLR2 neutralizing antibody blocked the saLP-induced secretion of IL-6, IL-8 and hBD2 in HUCL cells. Our findings suggest that saLP activates TLR2 and triggers innate immune response in the cornea to S. aureus infection via production of proinflammatory cytokines and defense molecules.

  9. A Host-Pathogen Interaction Screen Identifies ada2 as a Mediator of Candida glabrata Defenses Against Reactive Oxygen Species.

    PubMed

    Kounatidis, Ilias; Ames, Lauren; Mistry, Rupal; Ho, Hsueh-Lui; Haynes, Ken; Ligoxygakis, Petros

    2018-05-04

    Candida glabrata ( C. glabrata ) forms part of the normal human gut microbiota but can cause life-threatening invasive infections in immune-compromised individuals. C. glabrata displays high resistance to common azole antifungals, which necessitates new treatments. In this investigation, we identified five C. glabrata deletion mutants ( ∆ada2 , ∆bas1 , ∆ hir3, ∆ino2 and ∆met31 ) from a library of 196 transcription factor mutants that were unable to grow and activate an immune response in Drosophila larvae. This highlighted the importance of these transcription factors in C. glabrata infectivity. Further ex vivo investigation into these mutants revealed the requirement of C. glabrata ADA2 for oxidative stress tolerance. We confirmed this observation in vivo whereby growth of the C. glabrata Δada2 strain was permitted only in flies with suppressed production of reactive oxygen species (ROS). Conversely, overexpression of ADA2 promoted C. glabrata replication in infected wild type larvae resulting in larval killing. We propose that ADA2 orchestrates the response of C. glabrata against ROS-mediated immune defenses during infection. With the need to find alternative antifungal treatment for C. glabrata infections, genes required for survival in the host environment, such as ADA2 , provide promising potential targets. Copyright © 2018 Kounatidis et al.

  10. Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses.

    PubMed

    Raja, Priya; Jackel, Jamie N; Li, Sizhun; Heard, Isaac M; Bisaro, David M

    2014-03-01

    Arabidopsis encodes five double-stranded RNA binding (DRB) proteins. DRB1 and DRB2 are involved in microRNA (miRNA) biogenesis, while DRB4 functions in cytoplasmic posttranscriptional small interfering RNA (siRNA) pathways. DRB3 and DRB5 are not involved in double-stranded RNA (dsRNA) processing but assist in silencing transcripts targeted by DRB2-associated miRNAs. The goal of this study was to determine which, if any, of the DRB proteins might also participate in a nuclear siRNA pathway that leads to geminivirus genome methylation. Here, we demonstrate that DRB3 functions with Dicer-like 3 (DCL3) and Argonaute 4 (AGO4) in methylation-mediated antiviral defense. Plants employ repressive viral genome methylation as an epigenetic defense against geminiviruses, using an RNA-directed DNA methylation (RdDM) pathway similar to that used to suppress endogenous invasive DNAs such as transposons. Chromatin methylation inhibits virus replication and transcription, and methylation-deficient host plants are hypersusceptible to geminivirus infection. Using a panel of drb mutants, we found that drb3 plants uniquely exhibit a similar hypersensitivity and that viral genome methylation is substantially reduced in drb3 compared to wild-type plants. In addition, like dcl3 and ago4 mutants, drb3 plants fail to recover from infection and cannot accomplish the viral genome hypermethylation that is invariably observed in asymptomatic, recovered tissues. Small RNA analysis, bimolecular fluorescence complementation, and coimmunoprecipitation experiments show that DRB3 acts downstream of siRNA biogenesis and suggest that it associates with DCL3 and AGO4 in distinct subnuclear compartments. These studies reveal that in addition to its previously established role in the miRNA pathway, DRB3 also functions in antiviral RdDM. Plants use RNA-directed DNA methylation (RdDM) as an epigenetic defense against geminiviruses. RNA silencing pathways in Arabidopsis include five double-stranded RNA

  11. Platelets Mediate Host Defense against Staphylococcus aureus through Direct Bactericidal Activity and by Enhancing Macrophage Activities.

    PubMed

    Ali, Ramadan A; Wuescher, Leah M; Dona, Keith R; Worth, Randall G

    2017-01-01

    Platelets are the chief effector cells in hemostasis. However, recent evidence suggests they have multiple roles in host defense against infection. Reports by us and others showed that platelets functionally contribute to protection against Staphylococcus aureus infection. In the current study, the capacity of mouse platelets to participate in host defense against S. aureus infection was determined by assessing two possibilities. First, we determined the ability of platelets to kill S. aureus directly; and, second, we tested the possibility that platelets enhance macrophage phagocytosis and intracellular killing of S. aureus In this study we report evidence in support of both mechanisms. Platelets effectively killed two different strains of S. aureus. A clinical isolate of methicillin-resistant S. aureus was killed by platelets (>40% killing in 2 h) in a thrombin-dependent manner whereas a methicillin-sensitive strain was killed to equal extent but did not require thrombin. Interestingly, thrombin-stimulated platelets also significantly enhanced peritoneal macrophage phagocytosis of both methicillin-resistant S. aureus and methicillin-sensitive S. aureus by >70%, and restricted intracellular growth by >40%. Enhancement of macrophage anti-S. aureus activities is independent of contact with platelets but is mediated through releasable products, namely IL-1β. These data confirm our hypothesis that platelets participate in host defense against S. aureus both through direct killing of S. aureus and enhancing the antimicrobial function of macrophages in protection against S. aureus infection. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. UV-B Irradiation Changes Specifically the Secondary Metabolite Profile in Broccoli Sprouts: Induced Signaling Overlaps with Defense Response to Biotic Stressors

    PubMed Central

    Mewis, Inga; Schreiner, Monika; Nguyen, Chau Nhi; Krumbein, Angelika; Ulrichs, Christian; Lohse, Marc; Zrenner, Rita

    2012-01-01

    Only a few environmental factors have such a pronounced effect on plant growth and development as ultraviolet light (UV). Concerns have arisen due to increased UV-B radiation reaching the Earth’s surface as a result of stratospheric ozone depletion. Ecologically relevant low to moderate UV-B doses (0.3–1 kJ m–2 d–1) were applied to sprouts of the important vegetable crop Brassica oleracea var. italica (broccoli), and eco-physiological responses such as accumulation of non-volatile secondary metabolites were related to transcriptional responses with Agilent One-Color Gene Expression Microarray analysis using the 2×204 k format Brassica microarray. UV-B radiation effects have usually been linked to increases in phenolic compounds. As expected, the flavonoids kaempferol and quercetin accumulated in broccoli sprouts (the aerial part of the seedlings) 24 h after UV-B treatment. A new finding is the specific UV-B-mediated induction of glucosinolates (GS), especially of 4-methylsulfinylbutyl GS and 4-methoxy-indol-3-ylmethyl GS, while carotenoids and Chl levels remained unaffected. Accumulation of defensive GS metabolites was accompanied by increased expression of genes associated with salicylate and jasmonic acid signaling defense pathways and up-regulation of genes responsive to fungal and bacterial pathogens. Concomitantly, plant pre-exposure to moderate UV-B doses had negative effects on the performance of the caterpillar Pieris brassicae (L.) and on the population growth of the aphid Myzus persicae (Sulzer). Moreover, insect-specific induction of GS in broccoli sprouts was affected by UV-B pre-treatment. PMID:22773681

  13. Exploring the Structure of Human Defensive Responses from Judgments of Threat Scenarios

    PubMed Central

    Harrison, Laura A.; Ahn, Curie; Adolphs, Ralph

    2015-01-01

    How humans react to threats is a topic of broad theoretical importance, and also relevant for understanding anxiety disorders. Many animal threat reactions exhibit a common structure, a finding supported by human evaluations of written threat scenarios that parallel patterns of rodent defensive behavior to actual threats. Yet the factors that underlie these shared behavioral patterns remain unclear. Dimensional accounts rooted in Darwin’s conception of antithesis explain many defensive behaviors. Across species, it is also clear that defensive reactions depend on specific situational factors, a feature long emphasized by psychological appraisal theories. Our study sought to extend prior investigations of human judgments of threat to a broader set of threats, including natural disasters, threats from animals, and psychological (as opposed to physical) threats. Our goal was to test whether dimensional and specific patterns of threat evaluation replicate across different threat classes. 85 healthy adult subjects selected descriptions of defensive behaviors that indicated how they would react to 29 threatening scenarios. Scenarios differed with respect to ten factors, e.g., perceived dangerousness or escapability. Across scenarios, we correlated these factor ratings with the pattern of defensive behaviors subjects endorsed. A decision tree hierarchically organized these correlation patterns to successfully predict each scenario’s most common reaction, both for the original sample of subjects and a separate replication group (n = 22). At the top of the decision tree, degree of dangerousness interacted with threat type (physical or psychological) to predict dimensional approach/avoidance behavior. Subordinate nodes represented specific defensive responses evoked by particular contexts. Our ecological approach emphasizes the interplay of situational factors in evoking a broad range of threat reactions. Future studies could test predictions made by our results to help

  14. Positive and negative roles for soybean MPK6 in regulating defense responses

    USDA-ARS?s Scientific Manuscript database

    It has been well established that MPK6 is a positive regulator of defense responses in model plants such as Arabidopsis and tobacco. However, the functional importance of soybean MPK6 in disease resistance has not been investigated. Here, we showed that silencing of GmMPK6 in soybean using virus-ind...

  15. HEXIM1 and NEAT1 Long Non-coding RNA Form a Multi-subunit Complex that Regulates DNA-Mediated Innate Immune Response.

    PubMed

    Morchikh, Mehdi; Cribier, Alexandra; Raffel, Raoul; Amraoui, Sonia; Cau, Julien; Severac, Dany; Dubois, Emeric; Schwartz, Olivier; Bennasser, Yamina; Benkirane, Monsef

    2017-08-03

    The DNA-mediated innate immune response underpins anti-microbial defenses and certain autoimmune diseases. Here we used immunoprecipitation, mass spectrometry, and RNA sequencing to identify a ribonuclear complex built around HEXIM1 and the long non-coding RNA NEAT1 that we dubbed the HEXIM1-DNA-PK-paraspeckle components-ribonucleoprotein complex (HDP-RNP). The HDP-RNP contains DNA-PK subunits (DNAPKc, Ku70, and Ku80) and paraspeckle proteins (SFPQ, NONO, PSPC1, RBM14, and MATRIN3). We show that binding of HEXIM1 to NEAT1 is required for its assembly. We further demonstrate that the HDP-RNP is required for the innate immune response to foreign DNA, through the cGAS-STING-IRF3 pathway. The HDP-RNP interacts with cGAS and its partner PQBP1, and their interaction is remodeled by foreign DNA. Remodeling leads to the release of paraspeckle proteins, recruitment of STING, and activation of DNAPKc and IRF3. Our study establishes the HDP-RNP as a key nuclear regulator of DNA-mediated activation of innate immune response through the cGAS-STING pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mediating Effects of Global Negative Effect Expectancies on the Association between Problematic Cannabis Use and Social Anxiety.

    PubMed

    Di Blasi, Maria; Cavani, Paola; Pavia, Laura; Tosto, Crispino; La Grutta, Sabina; Lo Baido, Rosa; Giordano, Cecilia; Schimmenti, Adriano

    2017-01-01

    The relationship between social anxiety (SA) and cannabis use among adolescents and young adults is a highly debated topic. In this cross-sectional study, we tested whether cannabis use expectancies mediated the association between SA and cannabis use severity in a sample of 343 young adults (74.3% male) who used cannabis. They completed self-report measures for the screening of problematic cannabis use (Cannabis Use Problems Identification Test) and SA symptoms (Social Interaction Anxiety Scale and Social Phobia Scale). A multiple mediation analysis was used to test whether marijuana effect expectancies mediate SA effect on problematic cannabis use. SA was negatively associated with cannabis use severity in this sample, and we found evidence that cannabis use expectancies fully mediated this relationship. Specifically, global negative effect expectancies influence the relationship between SA and problematic cannabis use. These findings may inform current prevention strategies and clinical intervention for young adults who use cannabis.

  17. Mediating Effects of Global Negative Effect Expectancies on the Association between Problematic Cannabis Use and Social Anxiety

    PubMed Central

    Di Blasi, Maria; Cavani, Paola; Pavia, Laura; Tosto, Crispino; La Grutta, Sabina; Lo Baido, Rosa; Giordano, Cecilia; Schimmenti, Adriano

    2017-01-01

    The relationship between social anxiety (SA) and cannabis use among adolescents and young adults is a highly debated topic. In this cross-sectional study, we tested whether cannabis use expectancies mediated the association between SA and cannabis use severity in a sample of 343 young adults (74.3% male) who used cannabis. They completed self-report measures for the screening of problematic cannabis use (Cannabis Use Problems Identification Test) and SA symptoms (Social Interaction Anxiety Scale and Social Phobia Scale). A multiple mediation analysis was used to test whether marijuana effect expectancies mediate SA effect on problematic cannabis use. SA was negatively associated with cannabis use severity in this sample, and we found evidence that cannabis use expectancies fully mediated this relationship. Specifically, global negative effect expectancies influence the relationship between SA and problematic cannabis use. These findings may inform current prevention strategies and clinical intervention for young adults who use cannabis. PMID:29213247

  18. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells.

    PubMed

    Deng, Xiaobei; Rui, Wei; Zhang, Fang; Ding, Wenjun

    2013-06-01

    It has been well documented in in vitro studies that ambient airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM(2.5)) is capable of inducing oxidative stress, which plays a key role in PM(2.5)-mediated cytotoxicity. Although nuclear factor erythroid-2-related factor 2 (Nrf2) has been shown to regulate the intracellular defense mechanisms against oxidative stress, a potential of the Nrf2-mediated cellular defense against oxidative stress induced by PM(2.5) remains to be determined. This study was aimed to explore the potential signaling pathway of Nrf2-mediated defense mechanisms against PM(2.5)-induced oxidative stress in human type II alveolar epithelial A549 cells. We exposed A549 cells to PM(2.5) particles collected from Beijing at a concentration of 16 μg/cm(2). We observed that PM(2.5) triggered an increase of intracellular reactive oxygen species (ROS) in a time-dependent manner during a period of 2 h exposure. We also found that Nrf2 overexpression suppressed and Nrf2 knockdown increased PM(2.5)-induced ROS generation. Using Western blot and confocal microscopy, we found that PM(2.5) exposure triggered significant translocation of Nrf2 into nucleus, resulting in AKT phosphorylation and significant transcription of ARE-driven phases II enzyme genes, such as NAD(P)H:quinone oxidoreductase (NQO-1), heme oxygenase-1 (HO-1), and glutamate-cysteine ligase catalytic subunit (GCLC) in A549 cells. Evaluation of signaling pathways showed that a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), but not an ERK 1/2 inhibitor (PD98059) or a p38 MAPK (SB203580), significantly down-regulated PM(2.5)-induced Nrf2 nuclear translocation and HO-1 mRNA expression, indicating PI3K/AKT is involved in the signaling pathway leads to the PM(2.5)-induced nuclear translocation of Nrf2 and subsequent Nrf2-mediated HO-1 transcription. Taken together, our results suggest that PM(2.5)-induced ROS may function as signaling molecules to activate Nrf

  19. Comparative analysis of protein-protein interactions in the defense response of rice and wheat.

    PubMed

    Cantu, Dario; Yang, Baoju; Ruan, Randy; Li, Kun; Menzo, Virginia; Fu, Daolin; Chern, Mawsheng; Ronald, Pamela C; Dubcovsky, Jorge

    2013-03-12

    Despite the importance of wheat as a major staple crop and the negative impact of diseases on its production worldwide, the genetic mechanisms and gene interactions involved in the resistance response in wheat are still poorly understood. The complete sequence of the rice genome has provided an extremely useful parallel road map for genetic and genomics studies in wheat. The recent construction of a defense response interactome in rice has the potential to further enhance the translation of advances in rice to wheat and other grasses. The objective of this study was to determine the degree of conservation in the protein-protein interactions in the rice and wheat defense response interactomes. As entry points we selected proteins that serve as key regulators of the rice defense response: the RAR1/SGT1/HSP90 protein complex, NPR1, XA21, and XB12 (XA21 interacting protein 12). Using available wheat sequence databases and phylogenetic analyses we identified and cloned the wheat orthologs of these four rice proteins, including recently duplicated paralogs, and their known direct interactors and tested 86 binary protein interactions using yeast-two-hybrid (Y2H) assays. All interactions between wheat proteins were further tested using in planta bimolecular fluorescence complementation (BiFC). Eighty three percent of the known rice interactions were confirmed when wheat proteins were tested with rice interactors and 76% were confirmed using wheat protein pairs. All interactions in the RAR1/SGT1/ HSP90, NPR1 and XB12 nodes were confirmed for the identified orthologous wheat proteins, whereas only forty four percent of the interactions were confirmed in the interactome node centered on XA21. We hypothesize that this reduction may be associated with a different sub-functionalization history of the multiple duplications that occurred in this gene family after the divergence of the wheat and rice lineages. The observed high conservation of interactions between proteins that

  20. 32 CFR 776.38 - Mediation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Mediation. 776.38 Section 776.38 National... Professional Conduct § 776.38 Mediation. (a) Mediation: (1) A covered attorney may act as a mediator between... mediation, including the advantages and risks involved, and the effect on the attorney-client...

  1. Immune Responses of HIV-1 Tat Transgenic Mice to Mycobacterium Tuberculosis W-Beijing SA161

    PubMed Central

    Honda, Jennifer R; Shang, Shaobin; Shanley, Crystal A; Caraway, Megan L; Henao-Tamayo, Marcela; Chan, Edward D; Basaraba, Randall J; Orme, Ian M; Ordway, Diane J; Flores, Sonia C

    2011-01-01

    Background: Mycobacterium tuberculosis remains among the leading causes of death from an infectious agent in the world and exacerbates disease caused by the human immunodeficiency virus (HIV). HIV infected individuals are prone to lung infections by a variety of microbial pathogens, including M. tuberculosis. While the destruction of the adaptive immune response by HIV is well understood, the actual pathogenesis of tuberculosis in co-infected individuals remains unclear. Tat is an HIV protein essential for efficient viral gene transcription, is secreted from infected cells, and is known to influence a variety of host inflammatory responses. We hypothesize Tat contributes to pathophysiological changes in the lung microenvironment, resulting in impaired host immune responses to infection by M. tuberculosis. Results: Herein, we show transgenic mice that express Tat by lung alveolar cells are more susceptible than non-transgenic control littermates to a low-dose aerosol infection of M. tuberculosis W-Beijing SA161. Survival assays demonstrate accelerated mortality rates of the Tat transgenic mice compared to non-transgenics. Tat transgenic mice also showed poorly organized lung granulomata-like lesions. Analysis of the host immune response using quantitative RT-PCR, flow cytometry for surface markers, and intracellular cytokine staining showed increased expression of pro-inflammatory cytokines in the lungs, increased numbers of cells expressing ICAM1, increased numbers of CD4+CD25+Foxp3+ T regulatory cells, and IL-4 producing CD4+ T cells in the Tat transgenics compared to infected non-tg mice. Conclusions: Our data show quantitative differences in the inflammatory response to the SA161 clinical isolate of M. tuberculosis W-Beijing between Tat transgenic and non-transgenic mice, suggesting Tat contributes to the pathogenesis of tuberculosis. PMID:22046211

  2. Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants.

    PubMed

    Zhou, Jie; Jia, Feifei; Shao, Shujun; Zhang, Huan; Li, Guiping; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Shi, Kai

    2015-01-01

    Jasmonic acid (JA) and nitric oxide (NO) are well-characterized signaling molecules in plant defense responses. However, their roles in plant defense against root-knot nematode (RKN, Meloidogyne incognita) infection are largely unknown. In this study, we found that the transcript levels of the JA- and NO-related biosynthetic and signaling component genes were induced after RKN infection. Application of exogenous JA and sodium nitroprusside (SNP; a NO donor) significantly decreased the number of egg masses in tomato roots after RKN infection and partially alleviated RKN-induced decreases in plant fresh weight and net photosynthetic rate. These molecules also alleviated RKN-induced increases in root electrolyte leakage and membrane peroxidation. Importantly, NO scavenger partially inhibited JA-induced RKN defense. The pharmacological inhibition of JA biosynthesis significantly increased the plants' susceptibility to RKNs, which was effectively alleviated by SNP application, showing that NO may be involved in the JA-dependent RKN defense pathway. Furthermore, both JA and SNP induced increases in protease inhibitor 2 (PI2) gene expression after RKN infestation. Silencing of PI2 compromised both JA- and SNP-induced RKN defense responses, suggesting that the PI2 gene mediates JA- and NO-induced defense against RKNs. This work will be important for deepening the understanding of the mechanisms involved in basal defense against RKN attack in plants.

  3. Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants

    PubMed Central

    Zhou, Jie; Jia, Feifei; Shao, Shujun; Zhang, Huan; Li, Guiping; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Shi, Kai

    2015-01-01

    Jasmonic acid (JA) and nitric oxide (NO) are well-characterized signaling molecules in plant defense responses. However, their roles in plant defense against root-knot nematode (RKN, Meloidogyne incognita) infection are largely unknown. In this study, we found that the transcript levels of the JA- and NO-related biosynthetic and signaling component genes were induced after RKN infection. Application of exogenous JA and sodium nitroprusside (SNP; a NO donor) significantly decreased the number of egg masses in tomato roots after RKN infection and partially alleviated RKN-induced decreases in plant fresh weight and net photosynthetic rate. These molecules also alleviated RKN-induced increases in root electrolyte leakage and membrane peroxidation. Importantly, NO scavenger partially inhibited JA-induced RKN defense. The pharmacological inhibition of JA biosynthesis significantly increased the plants’ susceptibility to RKNs, which was effectively alleviated by SNP application, showing that NO may be involved in the JA-dependent RKN defense pathway. Furthermore, both JA and SNP induced increases in protease inhibitor 2 (PI2) gene expression after RKN infestation. Silencing of PI2 compromised both JA- and SNP-induced RKN defense responses, suggesting that the PI2 gene mediates JA- and NO-induced defense against RKNs. This work will be important for deepening the understanding of the mechanisms involved in basal defense against RKN attack in plants. PMID:25914698

  4. Dectin-1 plays an important role in host defense against systemic Candida glabrata infection.

    PubMed

    Chen, Si Min; Shen, Hui; Zhang, Teng; Huang, Xin; Liu, Xiao Qi; Guo, Shi Yu; Zhao, Jing Jun; Wang, Chun Fang; Yan, Lan; Xu, Guo Tong; Jiang, Yuan Ying; An, Mao Mao

    2017-11-17

    Candida glabrata is the second most common pathogen of severe candidiasis in immunocompromised hosts, following C. albicans. Although C. glabrata and C. albicans belong to the same genus, they are phylogenetically distinct. C-type lectin receptors (CLRs), acting as pattern-recognition receptors (PRRs), play critical roles in host defense against C. albicans infections. However, our understanding of the specific roles of CLRs in host defense against C. glabrata is limited. Here, we explored the potential roles of the C-type lectins Dectin-1 and Dectin-2 in host defense against C. glabrata. We found that both Dectin-1-deficient mice (Dectin-1 -/- ) and Dectin-2-deficient mice (Dectin-2 -/- ) are more susceptible to C. glabrata infection. Dectin-1confers host higher sensitivity for sensing C. glabrata infections, while the effect of Dectin-2 in the host defense against C. glabrata is infection dose dependent. Dectin-1 is required for host myeloid cells recognition, killing of C. glabrata, and development of subsequent Th1 and Th17 cell-mediated adaptive immune response. Significantly impaired inflammatory responses such as inflammatory cells recruitment and cytokines release that were induced by C. glabrata were manifested in Dectin-1-deficient mice. Together, our study demonstrates that Dectin-1 plays an important role in host defense against systemic Candida glabrata infections, indicating a previous unknown control mechanism for this particular type of infection in host. Our study, therefore, provides new insights into the host defense against C. glabrata.

  5. Ca2+/Calmodulin-Dependent AtSR1/CAMTA3 Plays Critical Roles in Balancing Plant Growth and Immunity.

    PubMed

    Yuan, Peiguo; Du, Liqun; Poovaiah, B W

    2018-06-14

    During plant-pathogen interactions, plants have to relocate their resources including energy to defend invading organisms; as a result, plant growth and development are usually reduced. Arabidopsis signal responsive1 (AtSR1) has been documented as a negative regulator of plant immune responses and could serve as a positive regulator of plant growth and development. However, the mechanism by which AtSR1 balances plant growth and immunity is poorly understood. Here, we performed a global gene expression profiling using Affymetrix microarrays to study how AtSR1 regulates defense- and growth-related genes in plants with and without bacterial pathogen infection. Results revealed that AtSR1 negatively regulates most of the immune-related genes involved in molecular pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and in salicylic acid (SA)- and jasmonate (JA)-mediated signaling pathways. AtSR1 may rigidly regulate several steps of the SA-mediated pathway, from the activation of SA synthesis to the perception of SA signal. Furthermore, AtSR1 may also regulate plant growth through its involvement in regulating auxin- and BRs-related pathways. Although microarray data revealed that expression levels of defense-related genes induced by pathogens are higher in wild-type (WT) plants than that in atsr1 mutant plants, WT plants are more susceptible to the infection of virulent pathogen as compared to atsr1 mutant plants. These observations indicate that the AtSR1 functions in suppressing the expression of genes induced by pathogen attack and contributes to the rapid establishment of resistance in WT background. Results of electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR assays suggest that AtSR1 acts as transcription factor in balancing plant growth and immunity, through interaction with the “CGCG” containing CG-box in the promotors of its target genes.

  6. Chemical recognition of kingsnakes by crotalines: effects of size on the ophiophage defensive response.

    PubMed

    Gutzke, W H; Tucker, C; Mason, R T

    1993-01-01

    When confronted by an ophiophagous (snake-eating) kingsnake, venomous snakes of the subfamily Crotalinae exhibit a suite of defensive responses including head hiding, thrashing, and an unusual response termed 'body bridging'. Other responses observed, such as biting and 'freezing', are more general in nature and can occur in a variety of contexts. Various crotalines of differing sizes were tested for their responses to kingsnakes (Lampropeltis getulus). Responses of individuals were recorded for up to 18 months. The results indicate that, if habituation can be overcome by periodically allowing a kingsnake to confront but not harm the crotaline, the response is dependent on the size of the crotaline, in that smaller specimens (< 0.9 m) respond readily, while larger snakes (> 1.0 m) tend not to respond. The size of the kingsnake apparently does not have an effect on the crotaline response. These data appear to resolve apparent conflicts in the literature regarding whether certain species respond to ophidian ophiophages. In addition, hexane extracts of kingsnake skin were fractionated using an alumina column. The various fractions obtained were tested to determine which elicited the defensive response. Activity was found only in the most non-polar fraction. Preliminary analysis by gas chromatography/mass spectrometry indicated that this fraction contained straight and branched, saturated and polyunsaturated long-chain hydrocarbons.

  7. Dilemmas of Japanese Defense.

    ERIC Educational Resources Information Center

    Kiyoshi, Nasu

    1978-01-01

    Traces Japan's attitude toward and preparation for national defense from the 1930s to 1978. Topics discussed include Japan's indifference to defense since World War II, America's responsibility to defend Japan in case of military attack, the possibility of a Soviet attack on Japan, and public opinion about defense in Japan. Journal availability:…

  8. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley.

    PubMed

    Santamaria, M E; Diaz, Isabel; Martinez, Manuel

    2018-01-01

    Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit) treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production.

  9. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley

    PubMed Central

    Santamaria, M. E.; Diaz, Isabel; Martinez, Manuel

    2018-01-01

    Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit) treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production. PMID:29681917

  10. Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes.

    PubMed

    Mathioni, Sandra M; Patel, Nrupali; Riddick, Bianca; Sweigard, James A; Czymmek, Kirk J; Caplan, Jeffrey L; Kunjeti, Sridhara G; Kunjeti, Saritha; Raman, Vidhyavathi; Hillman, Bradley I; Kobayashi, Donald Y; Donofrio, Nicole M

    2013-01-01

    Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.

  11. Automated analysis of calcium spiking profiles with CaSA software: two case studies from root-microbe symbioses.

    PubMed

    Russo, Giulia; Spinella, Salvatore; Sciacca, Eva; Bonfante, Paola; Genre, Andrea

    2013-12-26

    Repeated oscillations in intracellular calcium (Ca2+) concentration, known as Ca2+ spiking signals, have been described in plants for a limited number of cellular responses to biotic or abiotic stimuli and most notably the common symbiotic signaling pathway (CSSP) which mediates the recognition by their plant hosts of two endosymbiotic microbes, arbuscular mycorrhizal (AM) fungi and nitrogen fixing rhizobia. The detailed analysis of the complexity and variability of the Ca2+ spiking patterns which have been revealed in recent studies requires both extensive datasets and sophisticated statistical tools. As a contribution, we have developed automated Ca2+ spiking analysis (CaSA) software that performs i) automated peak detection, ii) statistical analyses based on the detected peaks, iii) autocorrelation analysis of peak-to-peak intervals to highlight major traits in the spiking pattern.We have evaluated CaSA in two experimental studies. In the first, CaSA highlighted unpredicted differences in the spiking patterns induced in Medicago truncatula root epidermal cells by exudates of the AM fungus Gigaspora margarita as a function of the phosphate concentration in the growth medium of both host and fungus. In the second study we compared the spiking patterns triggered by either AM fungal or rhizobial symbiotic signals. CaSA revealed the existence of different patterns in signal periodicity, which are thought to contribute to the so-called Ca2+ signature. We therefore propose CaSA as a useful tool for characterizing oscillatory biological phenomena such as Ca2+ spiking.

  12. A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants.

    PubMed

    Zhang, Huajian; Wu, Qun; Cao, Shun; Zhao, Tongyao; Chen, Ling; Zhuang, Peitong; Zhou, Xiuhong; Gao, Zhimou

    2014-11-01

    In this study, we report the cloning of the SsCut gene encoding cutinase from Sclerotinia sclerotiorum. We isolated a 609-bp cDNA encoding a polypeptide of 202 amino acids with a molecular weight of 20.4 kDa. Heterologous expression of SsCut in Escherichia coli (His-SsCut) caused the formation of lesions in tobacco that closely resembled hypersensitive response lesions. Mutational analysis identified the C-terminal-half peptide and the same amino acids indispensable for both enzyme and elicitor activity. His-SsCut was caused cell death in Arabidopsis, soybean (Glycine max), oilseed rape (Brassica napus), rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum), indicating that both dicot and monocot species are responsive to the elicitor. Furthermore, the elicitation of tobacco was effective in the induction of the activities of hydrogen peroxide, phenylalanine ammonia-lyase, peroxides, and polyphenol oxidase. His-SsCut-treated plants exhibited enhanced resistance as indicated by a significant reduction in the number and size of S. sclerotiorum, Phytophthora sojae, and P. nicotianae lesions on leaves relative to controls. Real-time PCR results indicated that the expression of defense-related genes and genes involved in signal transduction were induced by His-SsCut. Our results demonstrate that SsCut is an elicitor that triggers defense responses in plants and will help to clarify its relationship to downstream signaling pathways that induce defense responses.

  13. Dose-response approaches for nuclear receptor-mediated ...

    EPA Pesticide Factsheets

    A public workshop, organized by a Steering Committee of scientists from government, industry, universities, and research organizations, was held at the National Institute of Environmental Health Sciences (NIEHS) in September, 2010. The workshop explored the dose-response implications of toxicant modes of action (MOA) mediated by nuclear receptors. The dominant paradigm in human health risk assessment has been linear extrapolation without a threshold for cancer, and estimation of sub-threshold doses for non-cancer and (in appropriate cases) cancer endpoints. However, recent publications question the application of dose-response modeling approaches with a threshold. The growing body of molecular toxicology information and computational toxicology tools has allowed for exploration of the presence or absence of subthreshold doses for a number of receptor-mediated MOPs. The workshop explored the development of dose-response approaches for nuclear receptor-mediated liver cancer, within a MOA Human Relevance framework (HRF). Case studies addressed activation of the AHR; the CAR/PXR, and the PPARa. This paper describes the workshop process, key issues discussed, and conclusions. The value of an interactive workshop approach to apply current MOA/HRF frameworks was demonstrated. The results may help direct research on the MOA and dose-response of receptor-based toxicity, since there are commonalities for many receptors in the basic pathways involved for late steps in the

  14. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco

    PubMed Central

    Vogel-Adghough, Drissia; Stahl, Elia; Návarová, Hana; Zeier, Jürgen

    2013-01-01

    Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and α-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance. PMID:24025239

  15. The Impact of Competition and Allelopathy on the Trade-Off between Plant Defense and Growth in Two Contrasting Tree Species

    PubMed Central

    Fernandez, Catherine; Monnier, Yogan; Santonja, Mathieu; Gallet, Christiane; Weston, Leslie A.; Prévosto, Bernard; Saunier, Amélie; Baldy, Virginie; Bousquet-Mélou, Anne

    2016-01-01

    In contrast to plant-animal interactions, the conceptual framework regarding the impact of secondary metabolites in mediating plant-plant interference is currently less well defined. Here, we address hypotheses about the role of chemically-mediated plant-plant interference (i.e., allelopathy) as a driver of Mediterranean forest dynamics. Growth and defense abilities of a pioneer (Pinus halepensis) and a late-successional (Quercus pubescens) Mediterranean forest species were evaluated under three different plant interference conditions: (i) allelopathy simulated by application of aqueous needle extracts of Pinus, (ii) resource competition created by the physical presence of a neighboring species (Pinus or Quercus), and (iii) a combination of both allelopathy and competition. After 24 months of experimentation in simulated field conditions, Quercus was more affected by plant interference treatments than was Pinus, and a hierarchical response to biotic interference (allelopathy < competition < allelopathy + competition) was observed in terms of relative impact on growth and plant defense. Both species modulated their respective metabolic profiles according to plant interference treatment and thus their inherent chemical defense status, resulting in a physiological trade-off between plant growth and production of defense metabolites. For Quercus, an increase in secondary metabolite production and a decrease in plant growth were observed in all treatments. In contrast, this trade-off in Pinus was only observed in competition and allelopathy + competition treatments. Although Pinus and Quercus expressed differential responses when subjected to a single interference condition, either allelopathy or competition, species responses were similar or positively correlated when strong interference conditions (allelopathy + competition) were imposed. PMID:27200062

  16. Bodily ownership modulation in defensive responses: physiological evidence in brain-damaged patients with pathological embodiment of other's body parts.

    PubMed

    Fossataro, C; Gindri, P; Mezzanato, T; Pia, L; Garbarini, F

    2016-06-13

    Do conscious beliefs about the body affect defensive mechanisms within the body? To answer this question we took advantage from a monothematic delusion of bodily ownership, in which brain-damaged patients misidentify alien limbs as their own. We investigated whether the delusional belief that an alien hand is their own hand modulates a subcortical defensive response, such as the hand-blink reflex. The blink, dramatically increases when the threated hand is inside the defensive peripersonal-space of the face. In our between-subjects design, including patients and controls, the threat was brought near the face either by the own hand or by another person's hand. Our results show an ownership-dependent modulation of the defensive response. In controls, as well as in the patients' intact-side, the response enhancement is significantly greater when the threat was brought near the face by the own than by the alien hand. Crucially, in the patients' affected-side (where the pathological embodiment occurs), the alien (embodied) hand elicited a response enhancement comparable to that found when the threat is brought near the face by the real hand. These findings suggest the existence of a mutual interaction between our conscious beliefs about the body and the physiological mechanisms within the body.

  17. Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana.

    PubMed

    Swarupa, V; Ravishankar, K V; Rekha, A

    2014-04-01

    Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars.

  18. Effects of dietary L-glutamine supplementation on specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine.

    PubMed

    Chen, Shuai; Liu, Shuping; Zhang, Fengmei; Ren, Wenkai; Li, Nengzhang; Yin, Jie; Duan, Jielin; Peng, Yuanyi; Liu, Gang; Yin, Yulong; Wu, Guoyao

    2014-10-01

    Little is known about effects of dietary glutamine supplementation on specific and general defense responses in a vaccine-immunized animal model. Thus, this study determined roles for dietary glutamine supplementation in specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. The measured variables included: (1) the production of pathogen-specific antibodies; (2) mRNA levels for pro-inflammatory cytokines, toll-like receptors and anti-oxidative factors; and (3) the distribution of P. multocida in tissues and the expression of its major virulence factors in vivo. Dietary supplementation with 0.5 % glutamine had a better protective role than 1 or 2 % glutamine against P. multocida infection in vaccine-immunized mice, at least partly resulting from its effects in modulation of general defense responses. Dietary glutamine supplementation had little effects on the production of P. multocida-specific antibodies. Compared to the non-supplemented group, dietary supplementation with 0.5 % glutamine had no effect on bacterial burden in vivo but decreased the expression of major virulence factors in the spleen. Collectively, supplementing 0.5 % glutamine to a conventional diet provides benefits in vaccine-immunized mice by enhancing general defense responses and decreasing expression of specific virulence factors.

  19. Salicylic acid improves root antioxidant defense system and total antioxidant capacities of flax subjected to cadmium.

    PubMed

    Belkadhi, Aïcha; De Haro, Antonio; Soengas, Pilar; Obregon, Sara; Cartea, Maria Elena; Djebali, Wahbi; Chaïbi, Wided

    2013-07-01

    Cadmium (Cd) disrupts the normal growth and development of plants, depending on their tolerance to this toxic element. The present study was focused on the impacts of exogenous salicylic acid (SA) on the response and regulation of the antioxidant defense system and membrane lipids to 16-day-old flax plantlets under Cd stress. Exposure of flax to high Cd concentrations led to strong inhibition of root growth and enhanced lipid peroxides, membrane permeability, protein oxidation, and hydrogen peroxide (H2O2) production to varying degrees. Concomitantly, activities of the antioxidant enzymes catalase (CAT, EC 1.11.1.6), guaïcol peroxydase (GPX, EC 1.11.1.7), ascorbate peroxydase (APX, EC 1.11.1.11), and superoxide dismutase (SOD, EC 1.15.1.1), and the total antioxidant capacities (2,2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and ferric reducing antioxidant power (FRAP)) were significantly altered by Cd. In contrast, exogenous SA greatly reduced the toxic effects of Cd on the root growth, antioxidant system, and membrane lipid content. The Cd-treated plantlets pre-soaked with SA exhibited less lipid and protein oxidation and membrane alteration, as well as a high level of total antioxidant capacities and increased activities of antioxidant enzymes except of CAT. These results may suggest that SA plays an important role in triggering the root antioxidant system, thereby preventing membrane damage as well as the denaturation of its components.

  20. Density-dependent adjustment of inducible defenses.

    PubMed

    Tollrian, Ralph; Duggen, Sonja; Weiss, Linda C; Laforsch, Christian; Kopp, Michael

    2015-08-03

    Predation is a major factor driving evolution, and organisms have evolved adaptations increasing their survival chances. However, most defenses incur trade-offs between benefits and costs. Many organisms save costs by employing inducible defenses as responses to fluctuating predation risk. The level of defense often increases with predator densities. However, individual predation risk should not only depend on predator density but also on the density of conspecifics. If the predator has a saturating functional response one would predict a negative correlation between prey density and individual predation risk and hence defense expression. Here, we tested this hypothesis using six model systems, covering a taxonomic range from protozoa to rotifers and crustaceans. In all six systems, we found that the level of defense expression increased with predator density but decreased with prey density. In one of our systems, i.e. in Daphnia, we further show that the response to prey density is triggered by a chemical cue released by conspecifics and congeners. Our results indicate that organisms adjust the degree of defense to the acute predation risk, rather than merely to predators' densities. Our study suggests that density-dependent defense expression reflects accurate predation-risk assessment and is a general principle in many inducible-defense systems.

  1. Density-dependent adjustment of inducible defenses

    PubMed Central

    Tollrian, Ralph; Duggen, Sonja; Weiss, Linda C.; Laforsch, Christian; Kopp, Michael

    2015-01-01

    Predation is a major factor driving evolution, and organisms have evolved adaptations increasing their survival chances. However, most defenses incur trade-offs between benefits and costs. Many organisms save costs by employing inducible defenses as responses to fluctuating predation risk. The level of defense often increases with predator densities. However, individual predation risk should not only depend on predator density but also on the density of conspecifics. If the predator has a saturating functional response one would predict a negative correlation between prey density and individual predation risk and hence defense expression. Here, we tested this hypothesis using six model systems, covering a taxonomic range from protozoa to rotifers and crustaceans. In all six systems, we found that the level of defense expression increased with predator density but decreased with prey density. In one of our systems, i.e. in Daphnia, we further show that the response to prey density is triggered by a chemical cue released by conspecifics and congeners. Our results indicate that organisms adjust the degree of defense to the acute predation risk, rather than merely to predators’ densities. Our study suggests that density-dependent defense expression reflects accurate predation-risk assessment and is a general principle in many inducible-defense systems. PMID:26235428

  2. The DELLA Protein SLR1 Integrates and Amplifies Salicylic Acid- and Jasmonic Acid-Dependent Innate Immunity in Rice.

    PubMed

    De Vleesschauwer, David; Seifi, Hamed Soren; Filipe, Osvaldo; Haeck, Ashley; Huu, Son Nguyen; Demeestere, Kristof; Höfte, Monica

    2016-03-01

    Gibberellins are a class of tetracyclic plant hormones that are well known to promote plant growth by inducing the degradation of a class of nuclear growth-repressing proteins, called DELLAs. In recent years, GA and DELLAs are also increasingly implicated in plant responses to pathogen attack, although our understanding of the underlying mechanisms is still limited, especially in monocotyledonous crop plants. Aiming to further decipher the molecular underpinnings of GA- and DELLA-modulated plant immunity, we studied the dynamics and impact of GA and DELLA during infection of the model crop rice (Oryza sativa) with four different pathogens exhibiting distinct lifestyles and infection strategies. Opposite to previous findings in Arabidopsis (Arabidopsis thaliana), our findings reveal a prominent role of the DELLA protein Slender Rice1 (SLR1) in the resistance toward (hemi)biotrophic but not necrotrophic rice pathogens. Moreover, contrary to the differential effect of DELLA on the archetypal defense hormones salicylic acid (SA) and jasmonic acid (JA) in Arabidopsis, we demonstrate that the resistance-promoting effect of SLR1 is due at least in part to its ability to boost both SA- and JA-mediated rice defenses. In a reciprocal manner, we found JA and SA treatment to interfere with GA metabolism and stabilize SLR1. Together, these findings favor a model whereby SLR1 acts as a positive regulator of hemibiotroph resistance in rice by integrating and amplifying SA- and JA-dependent defense signaling. Our results highlight the differences in hormone defense networking between rice and Arabidopsis and underscore the importance of GA and DELLA in molding disease outcomes. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway.

    PubMed

    Ghanta, Srijani; Bhattacharyya, Dipto; Sinha, Ragini; Banerjee, Anindita; Chattopadhyay, Sharmila

    2011-05-01

    The elaborate networks and the crosstalk of established signaling molecules like salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), reactive oxygen species (ROS) and glutathione (GSH) play key role in plant defense response. To obtain further insight into the mechanism through which GSH is involved in this crosstalk to mitigate biotic stress, transgenic Nicotiana tabacum overexpressing Lycopersicon esculentum gamma-glutamylcysteine synthetase (LeECS) gene (NtGB lines) were generated with enhanced level of GSH in comparison with wild-type plants exhibiting resistance to pathogenesis as well. The expression levels of non-expressor of pathogenesis-related genes 1 (NPR1)-dependent genes like pathogenesis-related gene 1 (NtPR1), mitogen-activated protein kinase kinase (NtMAPKK), glutamine synthetase (NtGLS) were significantly enhanced along with NtNPR1. However, the expression levels of NPR1-independent genes like NtPR2, NtPR5 and short-chain dehydrogenase/reductase family protein (NtSDRLP) were either insignificant or were downregulated. Additionally, increase in expression of thioredoxin (NtTRXh), S-nitrosoglutathione reductase 1 (NtGSNOR1) and suppression of isochorismate synthase 1 (NtICS1) was noted. Comprehensive analysis of GSH-fed tobacco BY2 cell line in a time-dependent manner reciprocated the in planta results. Better tolerance of NtGB lines against biotrophic Pseudomonas syringae pv. tabaci was noted as compared to necrotrophic Alternaria alternata. Through two-dimensional gel electrophoresis (2-DE) and image analysis, 48 differentially expressed spots were identified and through identification as well as functional categorization, ten proteins were found to be SA-related. Collectively, our results suggest GSH to be a member in cross-communication with other signaling molecules in mitigating biotic stress likely through NPR1-dependent SA-mediated pathway.

  4. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/Botrytis Pathosystem[OPEN

    PubMed Central

    Eshbaugh, Robert; Chen, Fang; Atwell, Susana

    2017-01-01

    To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis thaliana-Botrytis cinerea pathosystem to test how the host’s defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1, individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in B. cinerea. This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen. PMID:29042403

  5. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/Botrytis Pathosystem.

    PubMed

    Zhang, Wei; Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Eshbaugh, Robert; Chen, Fang; Atwell, Susana; Kliebenstein, Daniel J

    2017-11-01

    To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis thaliana - Botrytis cinerea pathosystem to test how the host's defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1 , individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in B. cinerea This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen. © 2017 American Society of Plant Biologists. All rights reserved.

  6. Defensive mobilization in specific phobia: fear specificity, negative affectivity, and diagnostic prominence.

    PubMed

    McTeague, Lisa M; Lang, Peter J; Wangelin, Bethany C; Laplante, Marie-Claude; Bradley, Margaret M

    2012-07-01

    Understanding of exaggerated responsivity in specific phobia-its physiology and neural mediators-has advanced considerably. However, despite strong phenotypic evidence that prominence of specific phobia relative to co-occurring conditions (i.e., principal versus nonprincipal disorder) is associated with dramatic differences in subjective distress, there is yet no consideration of such comorbidity issues on objective defensive reactivity. A community sample of specific phobia (n = 74 principal; n = 86 nonprincipal) and control (n = 76) participants imagined threatening and neutral events while acoustic startle probes were presented and eyeblinks (orbicularis occuli) recorded. Changes in heart rate, skin conductance level, and facial expressivity were also measured. Principal specific phobia patients far exceeded control participants in startle reflex and autonomic reactivity during idiographic fear imagery. Distinguishing between single and multiple phobias within principal phobia and comparing these with nonprincipal phobia revealed a continuum of decreasing defensive mobilization: single patients were strongly reactive, multiple patients were intermediate, and nonprincipal patients were attenuated-the inverse of measures of pervasive anxiety and dysphoria (i.e., negative affectivity). Further, as more disorders supplanted specific phobia from principal disorder, overall defensive mobilization was systematically more impaired. The exaggerated responsivity characteristic of specific phobia is limited to those patients for whom circumscribed fear is the most impairing condition and coincident with little additional affective psychopathology. As specific phobia is superseded in severity by broad and chronic negative affectivity, defensive reactivity progressively diminishes. Focal fears may still be clinically significant but not reflected in objective defensive mobilization. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights

  7. Periaqueductal gray glutamatergic, cannabinoid and vanilloid receptor interplay in defensive behavior and aversive memory formation.

    PubMed

    Back, Franklin P; Carobrez, Antonio P

    2018-06-01

    Stimulation of the midbrain periaqueductal gray matter (PAG) in humans elicits sensations of fear and impending terror, and mediates predator defensive responses in rodents. In rats, pharmacological stimulation of the dorsolateral portion of the PAG (dlPAG) with N-Methyl-d-Aspartate (NMDA) induces aversive conditioning that acts as an unconditioned stimulus (US). In the present work, we investigated the interplay between the vanilloid TRPV1 and cannabinoid CB1 receptors in the NMDA-dlPAG defensive response and in subsequent aversive learning. Rats were subjected to dlPAG NMDA infusion in an olfactory conditioned stimulus (CS) task allowing the evaluation of immediate and long-term defensive behavioral responses during CS presentation. The results indicated that an intermediate dose of NMDA (50 pmol) induced both immediate and long-term effects. A sub-effective dose of NMDA (25 pmol) was potentiated by the TRPV1 receptor agonist capsaicin (CAP, 1 nmol) and the CB1 receptor antagonist, AM251 (200 pmol). CAP (10 nmol) or the combination of CAP (1 nmol) and AM251 (200 pmol) induced long-term effects without increasing immediate defensive responses. The glutamate release inhibitor riluzole (2 or 4 nmol) and the AMPA/kainate receptor antagonist DNQX (2 or 4 nmol) potentiated the immediate effects but blocked the long-term effects. The results showed that immediate defensive responses rely on NMDA receptors, and aversive learning on the fine-tuning of TRPV1, CB1, metabotropic glutamate and AMPA receptors located in pre- and postsynaptic membranes. In conclusion, the activity of the dlPAG determines core affective aspects of aversive memory formation controlled by local TRPV1/CB1 balance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Progranulin Plays a Central Role in Host Defense during Sepsis by Promoting Macrophage Recruitment.

    PubMed

    Song, Zhixin; Zhang, Xuemei; Zhang, Liping; Xu, Fang; Tao, Xintong; Zhang, Hua; Lin, Xue; Kang, Lihua; Xiang, Yu; Lai, Xaiofei; Zhang, Qun; Huang, Kun; Dai, Yubing; Yin, Yibing; Cao, Ju

    2016-11-15

    Progranulin, a widely expressed protein, has multiple physiological functions. The functional role of progranulin in the host response to sepsis remains unknown. To assess the role of progranulin in the host response to sepsis. Effects of progranulin on host response to sepsis were determined. Progranulin concentrations were significantly elevated in adult (n = 74) and pediatric (n = 26) patients with sepsis relative to corresponding healthy adult (n = 36) and pediatric (n = 17) control subjects, respectively. By using a low-lethality model of nonsevere sepsis, we observed that progranulin deficiency not only increased mortality but also decreased bacterial clearance during sepsis. The decreased host defense to sepsis in progranulin-deficient mice was associated with reduced macrophage recruitment, with correspondingly impaired chemokine CC receptor ligand 2 (CCL2) production in peritoneal lavages during the early phase of sepsis. Progranulin derived from hematopoietic cells contributed to host defense in sepsis. Therapeutic administration of recombinant progranulin not only rescued impaired host defense in progranulin-deficient mice after nonsevere sepsis but also protected wild-type mice against a high-lethality model of severe sepsis. Progranulin-mediated protection against sepsis was closely linked to improved peritoneal macrophage recruitment. In addition, CCL2 treatment of progranulin-deficient mice improved survival and decreased peritoneal bacterial loads during sepsis, at least in part through promotion of peritoneal macrophage recruitment. This proof-of-concept study supports a central role of progranulin-dependent macrophage recruitment in host defense to sepsis, opening new opportunities to host-directed therapeutic strategy that manipulate host immune response in the treatment of sepsis.

  9. Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling.

    PubMed

    Zhang, Peng-Jun; Li, Wei-Di; Huang, Fang; Zhang, Jin-Ming; Xu, Fang-Cheng; Lu, Yao-Bin

    2013-05-01

    Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their "success" is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.

  10. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance

    PubMed Central

    Mao, Ying-Bo; Liu, Yao-Qian; Chen, Dian-Yang; Chen, Fang-Yan; Fang, Xin; Hong, Gao-Jie; Wang, Ling-Jian; Wang, Jia-Wei; Chen, Xiao-Ya

    2017-01-01

    Immunity deteriorates with age in animals but comparatively little is known about the temporal regulation of plant resistance to herbivores. The phytohormone jasmonate (JA) is a key regulator of plant insect defense. Here, we show that the JA response decays progressively in Arabidopsis. We show that this decay is regulated by the miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9) group of proteins, which can interact with JA ZIM-domain (JAZ) proteins, including JAZ3. As SPL9 levels gradually increase, JAZ3 accumulates and the JA response is attenuated. We provide evidence that this pathway contributes to insect resistance in young plants. Interestingly however, despite the decay in JA response, older plants are still comparatively more resistant to both the lepidopteran generalist Helicoverpa armigera and the specialist Plutella xylostella, along with increased accumulation of glucosinolates. We propose a model whereby constitutive accumulation of defense compounds plays a role in compensating for age-related JA-response attenuation during plant maturation. PMID:28067238

  11. Nucleoporin MOS7/Nup88 contributes to plant immunity and nuclear accumulation of defense regulators.

    PubMed

    Wiermer, Marcel; Germain, Hugo; Cheng, Yu Ti; García, Ana V; Parker, Jane E; Li, Xin

    2010-01-01

    Controlled nucleocytoplasmic trafficking is an important feature for fine-tuning signaling pathways in eukaryotic organisms. Nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups) are essential for the exchange of macromolecules across the nuclear envelope. A recent genetic screen in our laboratory identified a partial loss-of-function mutation in Arabidopsis MOS7/Nup88 that causes defects in basal immunity, Resistance (R) protein-mediated defense and systemic acquired resistance. In Drosophila and mammalian cells, exportin-mediated nuclear export of activated Rel/NFκB transcription factors is enhanced in nup88 mutants resulting in immune response failure. Consistent with Nup88 promoting nuclear retention of NFκB, our functional analyses revealed that MOS7/Nup88 is required for appropriate nuclear accumulation of the autoactivated R protein snc1, as well as the key immune regulators EDS1 and NPR1. These results suggest that controlling the nuclear concentrations of specific immune regulators is fundamental for defining defense outputs.

  12. The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition.

    PubMed

    Chin, Kimberley; DeFalco, Thomas A; Moeder, Wolfgang; Yoshioka, Keiko

    2013-10-01

    Arabidopsis (Arabidopsis thaliana) cyclic nucleotide-gated ion channels (CNGCs) form a large family consisting of 20 members and have been implicated in Ca(2+) signaling related to various physiological processes, such as pathogen defense, development, and thermotolerance. The null mutant of AtCNGC2, defense, no death (dnd1), exhibits autoimmune phenotypes, while it is impaired in mounting the hypersensitive response, which is a hallmark of effector-triggered (i.e. RESISTANCE-gene mediated) resistance. It has been suggested that AtCNGC2 is involved in defense responses and likely other aspects of physiology through its role as a Ca(2+)-conducting channel. However, the downstream signaling components and its relation with AtCNGC4, which is the closest paralog of AtCNGC2, remain elusive. Despite the fact that cngc4 mutants display almost identical phenotypes to those seen in cngc2 mutants, not much is known about their relationship. Here, we report the identification and characterization of the Arabidopsis mutant repressor of defense no death1 (rdd1), obtained from a suppressor screen of a transfer DNA insertion knockout mutant of AtCNGC2 in order to identify downstream components of dnd1-mediated signal transduction. rdd1 suppressed the majority of dnd1-mediated phenotypes except Ca(2+) hypersensitivity. In addition, rdd1 also suppressed the dnd1-mediated late-flowering phenotype that was discovered in this study. Our genetic analysis conducted to elucidate the relationship between AtCNGC2 and AtCNGC4 indicates that RDD1 is also involved in AtCNGC4-mediated signal transduction. Lastly, bimolecular fluorescence complementation analysis suggests that AtCNGC2 and AtCNGC4 are likely part of the same channel complex.

  13. Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins

    PubMed Central

    Yano, Junko; Noverr, Mairi C.; Fidel, Paul L.

    2011-01-01

    Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects a significant number of women during their reproductive years. More than two decades of research have been focused on the mechanisms associated with susceptibility or resistance to symptomatic infection. Adaptive immunity by Th1-type CD4+ T cells and downstream cytokine responses are considered the predominant host defense mechanisms against mucosal Candida infections. However, numerous clinical and animal studies have indicated no or limited protective role of cells and cytokines of the Th1 or Th2 lineage against vaginal infection. The role for Th17 is only now begun to be investigated in-depth for VVC with results already showing significant controversy. On the other hand, a clinical live-challenge study and an established animal model have shown that a symptomatic condition is intimately associated with the vaginal infiltration of polymorphonuclear leukocytes (PMNs) but with no effect on vaginal fungal burden. Subsequent studies identified S100A8 and S100A9 Alarmins as key chemotactic mediators of the acute PMN response. These chemotactic danger signals appear to be secreted by vaginal epithelial cells upon interaction and early adherence of Candida. Thus, instead of a putative immunodeficiency against Candida involving classical immune cells and cytokines of the adaptive response, the pathological inflammation in VVC is now considered a consequence of a non-productive innate response initiated by non-classical immune mediators. PMID:22182685

  14. Assessing Defense Structure in School-Age Children Using the Response Evaluation Measure-71-Youth Version (REM-Y-71)

    ERIC Educational Resources Information Center

    Araujo, Katy B.; Medic, Sanja; Yasnovsky, Jessica; Steiner, Hans

    2006-01-01

    This study used the Response Evaluation Measure-Youth (REM-Y-71), a self-report measure of 21 defense reactions, among school-age children. Participants were elementary and middle school students (n=290; grades 3-8; age range: 8-15; mean=11.73). Factor analysis revealed a 2-factor defense structure consistent with structure among high school and…

  15. SA1 and TRF1 synergistically bind to telomeric DNA and promote DNA-DNA pairing

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Lin, Jiangguo; Countryman, Preston; Pan, Hai; Parminder Kaur Team; Robert Riehn Team; Patricia Opresko Team; Jane Tao Team; Susan Smith Team

    Impaired telomere cohesion leads to increased aneuploidy and early onset of tumorigenesis. Cohesion is thought to occur through the entrapment of two DNA strands within tripartite cohesin ring(s), along with a fourth subunit (SA1/SA2). Surprisingly, cohesion rings are not essential for telomere cohesion, which instead requires SA1 and shelterin proteins including TRF1. However, neither this unique cohesion mechanism at telomeres or DNA-binding properties of SA1 is understood. Here, using single-molecule fluorescence imaging of quantum dot-labeled proteins on DNA we discover that while SA1 diffuses across multiple telomeric and non-telomeric regions, the diffusion mediated through its N-terminal domain is slower at telomeric regions. However, addition of TRF1 traps SA1 within telomeric regions, which form longer DNA-DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy. Together, these experimental results and coarse-grained molecular dynamics simulations suggest that TRF1 and SA1 synergistically interact with DNA to support telomere cohesion without cohesin rings.

  16. Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres

    PubMed Central

    Remeseiro, Silvia; Cuadrado, Ana; Carretero, María; Martínez, Paula; Drosopoulos, William C; Cañamero, Marta; Schildkraut, Carl L; Blasco, María A; Losada, Ana

    2012-01-01

    Cohesin is a protein complex originally identified for its role in sister chromatid cohesion, although increasing evidence portrays it also as a major organizer of interphase chromatin. Vertebrate cohesin consists of Smc1, Smc3, Rad21/Scc1 and either stromal antigen 1 (SA1) or SA2. To explore the functional specificity of these two versions of cohesin and their relevance for embryonic development and cancer, we generated a mouse model deficient for SA1. Complete ablation of SA1 results in embryonic lethality, while heterozygous animals have shorter lifespan and earlier onset of tumourigenesis. SA1-null mouse embryonic fibroblasts show decreased proliferation and increased aneuploidy as a result of chromosome segregation defects. These defects are not caused by impaired centromeric cohesion, which depends on cohesin-SA2. Instead, they arise from defective telomere replication, which requires cohesion mediated specifically by cohesin-SA1. We propose a novel mechanism for aneuploidy generation that involves impaired telomere replication upon loss of cohesin-SA1, with clear implications in tumourigenesis. PMID:22415365

  17. Resource allocation to defense and growth are driven by different responses to generalist and specialist herbivory in an invasive plant

    USDA-ARS?s Scientific Manuscript database

    Invasive plants often have novel biotic interactions in their introduced ranges. These interactions, including less frequent herbivore attacks, may convey a competitive advantage over native plants. However, herbivores vary in their responses to different plant defenses and plants vary their defense...

  18. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis.

    PubMed

    Song, Geun C; Choi, Hye K; Ryu, Choong-Min

    2015-01-01

    3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  19. Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula

    PubMed Central

    Castillejo, Ma Ángeles; Maldonado, Ana M; Dumas-Gaudot, Eliane; Fernández-Aparicio, Mónica; Susín, Rafael; Diego, Rubiales; Jorrín, Jesús V

    2009-01-01

    Background Parasitic angiosperm Orobanche crenata infection represents a major constraint for the cultivation of legumes worldwide. The level of protection achieved to date is either incomplete or ephemeral. Hence, an efficient control of the parasite requires a better understanding of its interaction and associated resistance mechanisms at molecular levels. Results In order to study the plant response to this parasitic plant and the molecular basis of the resistance we have used a proteomic approach. The root proteome of two accessions of the model legume Medicago truncatula displaying differences in their resistance phenotype, in control as well as in inoculated plants, over two time points (21 and 25 days post infection), has been compared. We report quantitative as well as qualitative differences in the 2-DE maps between early- (SA 27774) and late-resistant (SA 4087) genotypes after Coomassie and silver-staining: 69 differential spots were observed between non-inoculated genotypes, and 42 and 25 spots for SA 4087 and SA 27774 non-inoculated and inoculated plants, respectively. In all, 49 differential spots were identified by peptide mass fingerprinting (PMF) following MALDI-TOF/TOF mass spectrometry. Many of the proteins showing significant differences between genotypes and after parasitic infection belong to the functional category of defense and stress-related proteins. A number of spots correspond to proteins with the same function, and might represent members of a multigenic family or post-transcriptional forms of the same protein. Conclusion The results obtained suggest the existence of a generic defense mechanism operating during the early stages of infection and differing in both genotypes. The faster response to the infection observed in the SA 27774 genotype might be due to the action of proteins targeted against key elements needed for the parasite's successful infection, such as protease inhibitors. Our data are discussed and compared with those

  20. Norcantharidin Facilitates LPS-Mediated Immune Responses by Up-Regulation of AKT/NF-κB Signaling in Macrophages

    PubMed Central

    Li, Ruimei; Tan, Binghe; Han, Honghui; Liu, Mingyao; Qian, Min; Du, Bing

    2012-01-01

    Norcantharidin (NCTD), a demethylated analog of cantharidin, is a common used clinical drug to inhibit proliferation and metastasis of cancer cells. But the role of NCTD in modulating immune responses remains unknown. Here, we investigated the function and mechanism of NCTD in regulation of TLR4 associated immune response in macrophages. We evaluated the influence of NCTD on host defense against invaded pathogens by acute peritonitis mouse model, ELISA, Q-PCR, nitrite quantification, phagocytosis assay and gelatin zymography assay. Our data showed that the survival and the serum concentrations of IL-6 and TNF-α were all enhanced by NCTD significantly in peritonitis mouse model. Accordingly, LPS-induced cytokine, nitric oxide and MMP-9 production as well as the phagocytosis of bacteria were all up-regulated by NCTD in a dose dependent manner in both RAW264.7 cells and bone marrow-derived macrophages (BMMs). Then we further analyzed TLR4 associated signaling pathway by Western blot, Immunofluorescence and EMSA in the presence or absence of LPS. The phosphorylation of AKT and p65 at serine 536 but not serine 468 was enhanced obviously by NCTD in a dose dependent manner, whereas the degradation of IκBα was little effected. Consequently, the nuclear translocation and DNA binding ability of NF-κB was also increased by NCTD obviously in RAW264.7 cells. Our results demonstrated that NCTD could facilitate LPS-mediated immune response through promoting the phosphorylation of AKT/p65 and transcriptional activity of NF-κB, thus reprofiling the traditional anti-tumor drug NCTD as a novel immune regulator in promoting host defense against bacterial infection. PMID:22984593

  1. Symptomless endophytic fungi suppress endogenous levels of salicylic acid and interact with the jasmonate-dependent indirect defense traits of their host, lima bean (Phaseolus lunatus).

    PubMed

    Navarro-Meléndez, Ariana L; Heil, Martin

    2014-07-01

    Symptomless ‘type II’ fungal endophytes colonize their plant host horizontally and exert diverse effects on its resistance phenotype. Here, we used wild Lima bean (Phaseolus lunatus) plants that were experimentally colonized with one of three strains of natural endophytes (Bartalinia pondoensis, Fusarium sp., or Cochliobolus lunatus) to investigate the effects of fungal colonization on the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) and on two JA-dependent indirect defense traits. Colonization with Fusarium sp. enhanced JA levels in intact leaves, whereas B. pondoensis suppressed the induction of endogenous JA in mechanically damaged leaves. Endogenous SA levels in intact leaves were significantly decreased by all strains and B. pondoensis and Fusarium sp. decreased SA levels after mechanical damage. Colonization with Fusarium sp. or C. lunatus enhanced the number of detectable volatile organic compounds (VOCs) emitted from intact leaves, and all three strains enhanced the relative amount of several VOCs emitted from intact leaves as well as the number of detectable VOCs emitted from slightly damaged leaves. All three strains completely suppressed the induced secretion of extrafloral nectar (EFN) after the exogenous application of JA. Symptomless endophytes interact in complex and strain-specific ways with the endogenous levels of SA and JA and with the defense traits that are controlled by these hormones. These interactions can occur both upstream and downstream of the defense hormones.

  2. Automated analysis of calcium spiking profiles with CaSA software: two case studies from root-microbe symbioses

    PubMed Central

    2013-01-01

    Background Repeated oscillations in intracellular calcium (Ca2+) concentration, known as Ca2+ spiking signals, have been described in plants for a limited number of cellular responses to biotic or abiotic stimuli and most notably the common symbiotic signaling pathway (CSSP) which mediates the recognition by their plant hosts of two endosymbiotic microbes, arbuscular mycorrhizal (AM) fungi and nitrogen fixing rhizobia. The detailed analysis of the complexity and variability of the Ca2+ spiking patterns which have been revealed in recent studies requires both extensive datasets and sophisticated statistical tools. Results As a contribution, we have developed automated Ca2+ spiking analysis (CaSA) software that performs i) automated peak detection, ii) statistical analyses based on the detected peaks, iii) autocorrelation analysis of peak-to-peak intervals to highlight major traits in the spiking pattern. We have evaluated CaSA in two experimental studies. In the first, CaSA highlighted unpredicted differences in the spiking patterns induced in Medicago truncatula root epidermal cells by exudates of the AM fungus Gigaspora margarita as a function of the phosphate concentration in the growth medium of both host and fungus. In the second study we compared the spiking patterns triggered by either AM fungal or rhizobial symbiotic signals. CaSA revealed the existence of different patterns in signal periodicity, which are thought to contribute to the so-called Ca2+ signature. Conclusions We therefore propose CaSA as a useful tool for characterizing oscillatory biological phenomena such as Ca2+ spiking. PMID:24369773

  3. Pandemic influenza preparedness and response in Israel: a unique model of civilian-defense collaboration.

    PubMed

    Kohn, Sivan; Barnett, Daniel J; Leventhal, Alex; Reznikovich, Shmuel; Oren, Meir; Laor, Danny; Grotto, Itamar; Balicer, Ran D

    2010-07-01

    In April 2009, the World Health Organization announced the emergence of a novel influenza A(H1N1-09) virus and in June 2009 declared the outbreak a pandemic. The value of military structures in responding to pandemic influenza has become widely acknowledged in recent years. In 2005, the Israeli Government appointed the Ministry of Defense to be in charge of national preparedness and response for a severe pandemic influenza scenario. The Israeli case offers a unique example of civilian-defense partnership where the interface between the governmental, military and civilian spheres has formed a distinctive structure. The Israeli pandemic preparedness protocols represent an example of a collaboration in which aspects of an inherently medical problem can be managed by the defense sector. Although distinctive concepts of the model are not applicable to all countries, it offers a unique forum for governments and international agencies to evaluate this interface within the context of pandemic influenza.

  4. A Plant-Feeding Nematode Indirectly Increases the Fitness of an Aphid

    PubMed Central

    Hoysted, Grace A.; Lilley, Catherine J.; Field, Katie J.; Dickinson, Michael; Hartley, Sue E.; Urwin, Peter E.

    2017-01-01

    Plants suffer multiple, simultaneous assaults from above and below ground. In the laboratory, pests and/or pathogen attack are commonly studied on an individual basis. The molecular response of the plant to attack from multiple organisms and the interaction of different defense pathways is unclear. The inducible systemic responses of the potato (Solanum tuberosum L.) host plant were analyzed to characterize the plant-mediated indirect interactions between a sedentary, endoparasitic nematode (Globodera pallida), and a phloem-sucking herbivore (Myzus persicae). The reproductive success of M. persicae was greater on potato plants pre-infected with G. pallida compared to control plants. Salicylic acid (SA) increased systemically in the leaves of potato plants following nematode and aphid infection singly with a corresponding increase in expression of SA-mediated marker genes. An increase in jasmonic acid associated with aphid infection was suppressed when plants were co-infected with nematodes. Our data suggests a positive, asymmetric interaction between a sedentary endoparasitic nematode and a sap-sucking insect. The systemic response of the potato plant following infection with G. pallida indirectly influences the performance of M. persicae. This work reveals additional secondary benefits of controlling individual crop pests. PMID:29209337

  5. The endochitinase VDECH from Verticillium dahliae inhibits spore germination and activates plant defense responses

    USDA-ARS?s Scientific Manuscript database

    Chitinases function in the digestion of chitin molecules, which are present principally in insects and fungi. In plants, chitinase genes play important roles in defense, and their expression can be triggered in response to both biotic and abiotic stresses. In this study, we cloned and characterized ...

  6. Neuro-immune interactions in inflammation and host defense: Implications for transplantation.

    PubMed

    Chavan, Sangeeta S; Ma, Pingchuan; Chiu, Isaac M

    2018-03-01

    Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. Identification of a Novel Small Cysteine-Rich Protein in the Fraction from the Biocontrol Fusarium oxysporum Strain CS-20 that Mitigates Fusarium Wilt Symptoms and Triggers Defense Responses in Tomato

    PubMed Central

    Shcherbakova, Larisa A.; Odintsova, Tatyana I.; Stakheev, Alexander A.; Fravel, Deborah R.; Zavriev, Sergey K.

    2016-01-01

    The biocontrol effect of the non-pathogenic Fusarium oxysporum strain CS-20 against the tomato wilt pathogen F. oxysporum f. sp. lycopersici (FOL) has been previously reported to be primarily plant-mediated. This study shows that CS-20 produces proteins, which elicit defense responses in tomato plants. Three protein-containing fractions were isolated from CS-20 biomass using size exclusion chromatography. Exposure of seedling roots to one of these fractions prior to inoculation with pathogenic FOL strains significantly reduced wilt severity. This fraction initiated an ion exchange response in cultured tomato cells resulting in a reversible alteration of extracellular pH; increased tomato chitinase activity, and induced systemic resistance by enhancing PR-1 expression in tomato leaves. Two other protein fractions were inactive in seedling protection. The main polypeptide (designated CS20EP), which was specifically present in the defense-inducing fraction and was not detected in inactive protein fractions, was identified. The nucleotide sequence encoding this protein was determined, and its complete amino acid sequence was deduced from direct Edman degradation (25 N-terminal amino acid residues) and DNA sequencing. The CS20EP was found to be a small basic cysteine-rich protein with a pI of 9.87 and 23.43% of hydrophobic amino acid residues. BLAST search in the NCBI database showed that the protein is new; however, it displays 48% sequence similarity with a hypothetical protein FGSG_10784 from F. graminearum strain PH-1. The contribution of CS20EP to elicitation of tomato defense responses resulting in wilt mitigating is discussed. PMID:26779237

  8. Trichoderma harzianum enhances tomato indirect defense against aphids.

    PubMed

    Coppola, Mariangela; Cascone, Pasquale; Chiusano, Maria Luisa; Colantuono, Chiara; Lorito, Matteo; Pennacchio, Francesco; Rao, Rosa; Woo, Sheridan Lois; Guerrieri, Emilio; Digilio, Maria Cristina

    2017-12-01

    Many fungal root symbionts of the genus Trichoderma are well-known for their beneficial effects on agronomic performance and protection against plant pathogens; moreover, they may enhance protection from insect pests, by triggering plant resistance mechanisms. Defense barriers against insects are induced by the activation of metabolic pathways involved in the production of defense-related plant compounds, either directly active against herbivore insects, or exerting an indirect effect, by increasing the attraction of herbivore natural enemies. In a model system composed of the tomato plant, the aphid Macrosiphum euphorbiae and the parasitoid Aphidius ervi, plant metabolic changes induced by Trichoderma harzianum and their effects on higher trophic levels have been assessed. T. harzianum T22 treatments induce a primed state that upon aphid attacks leads to an increased attraction of aphid parasitoids, mediated by the enhanced production of volatile organic compounds (VOCs) that are known to induce Aphidius ervi flight. Transcriptome sequencing of T22-treated plants infested by aphids showed a remarkable upregulation of genes involved in terpenoids biosynthesis and salicylic acid pathway, which are consistent with the observed flight response of A. ervi and the VOC bouquet profile underlying this behavioral response. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  9. Investigating Relationships between Reproduction, Immune Defenses, and Cortisol in Dall Sheep.

    PubMed

    Downs, Cynthia J; Boan, Brianne V; Lohuis, Thomas D; Stewart, Kelley M

    2018-01-01

    Life-history theory is fundamental to understanding how animals allocate resources among survival, development, and reproduction, and among traits within these categories. Immediate trade-offs occur within a short span of time and, therefore, are more easily detected. Trade-offs, however, can also manifest across stages of the life cycle, a phenomenon known as carryover effects. We investigated trade-offs on both time scales in two populations of Dall sheep ( Ovis dalli dalli ) in Southcentral Alaska. Specifically, we (i) tested for glucocorticoid-mediated carryover effects from the breeding season on reproductive success and immune defenses during parturition and (ii) tested for trade-offs between immune defenses and reproduction within a season. We observed no relationship between cortisol during mating and pregnancy success; however, we found marginal support for a negative relationship between maternal cortisol and neonate birth weights. Low birth weights, resulting from high maternal cortisol, may result in low survival or low fecundity for the neonate later in life, which could result in overall population decline. We observed a negative relationship between pregnancy and bacterial killing ability, although we observed no relationship between pregnancy and haptoglobin. Study site affected bactericidal capacity and the inflammatory response, indicating the influence of external factors on immune responses, although we could not test hypotheses about the cause of those differences. This study helps advance our understanding of the plasticity and complexity of the immune system and provides insights into the how individual differences in physiology may mediate differences in fitness.

  10. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong [Columbia, MO; Stacey, Gary [Columbia, MO; Stacey, Minviluz [Columbia, MO; Zhang, Xuecheng [Columbia, MO

    2012-01-17

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  11. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2013-10-15

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  12. An S-Type Anion Channel SLAC1 Is Involved in Cryptogein-Induced Ion Fluxes and Modulates Hypersensitive Responses in Tobacco BY-2 Cells

    PubMed Central

    Horikoshi, Sonoko; Hanamata, Shigeru; Negi, Juntaro; Yagi, Chikako; Kitahata, Nobutaka; Iba, Koh; Kuchitsu, Kazuyuki

    2013-01-01

    Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl− and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl− efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl− efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network. PMID:23950973

  13. An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 cells.

    PubMed

    Kurusu, Takamitsu; Saito, Katsunori; Horikoshi, Sonoko; Hanamata, Shigeru; Negi, Juntaro; Yagi, Chikako; Kitahata, Nobutaka; Iba, Koh; Kuchitsu, Kazuyuki

    2013-01-01

    Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl(-) and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl(-) efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl(-) efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.

  14. Role of the parabrachial complex in the cardiorespiratory response evoked from hypothalamic defense area stimulation in the anesthetized rat.

    PubMed

    Díaz-Casares, Amelia; López-González, Manuel Víctor; Peinado-Aragonés, Carlos Antonio; Lara, José Pablo; González-Barón, Salvador; Dawid-Milner, Marc Stefan

    2009-07-07

    To analyze the role of parabrachial complex (PBc) in the modulation of cardiorespiratory response evoked from the hypothalamic defense area (HDA), cardiorespiratory changes were analyzed in spontaneously breathing anesthetised rats in response to electrical stimulation of the HDA (1 ms pulses, 30-50 microA, 100 Hz for 5 s) before and after the microinjection of muscimol (50 nl, 0.25 nmol, 5 s) within the PBc. HDA stimulation evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (p<0.001) due to a decrease in expiratory time (p<0.01). The respiratory response was accompanied by a pressor (p<0.001) and a tachycardic (p<0.001) response. Muscimol microinjection within the lateral parabrachial region (lPB) abolished the respiratory response to HDA stimulation (p<0.01) and decreased the pressor response (p<0.05). Muscimol within the medial parabrachial region and Kölliker-Fuse (mPB-KF) decreased the magnitude of the pressor (p<0.01) and tachycardic (p<0.05) responses to HDA stimulation. The respiratory response persisted unchanged. Finally, extracellular recording of putative neurons from these regions were obtained during HDA stimulation to confirm functional interaction between HDA and parabrachial regions. 105 pontine cells were recorded during HDA stimulation, 57 from the lPB and 48 from the mPB-KF. In mPB-KF 34/48 (71%) and in lPB 38/57 (67%) cells were influenced from HDA. The results indicate that neurons from different regions of the PBc have an important function in mediating the cardiorespiratory response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.

  15. Expectancy bias mediates the link between social anxiety and memory bias for social evaluation

    PubMed Central

    Caouette, Justin D.; Ruiz, Sarah K.; Lee, Clinton C.; Anbari, Zainab; Schriber, Roberta A.; Guyer, Amanda E.

    2014-01-01

    Social anxiety (SA) involves a multitude of cognitive symptoms related to fear of evaluation, including expectancy and memory biases. We examined whether memory biases are influenced by expectancy biases for social feedback in SA. We hypothesized that, faced with a socially evaluative event, people with higher SA would show a negative expectancy bias for future feedback. Furthermore, we predicted that memory bias for feedback in SA would be mediated by expectancy bias. Ninety-four undergraduate students (55 women, mean age = 19.76 years) underwent a two-visit task that measured expectations about (Visit 1) and memory of (Visit 2) feedback from unknown peers. Results showed that higher levels of SA were associated with negative expectancy bias. An indirect relationship was found between SA and memory bias that was mediated by expectancy bias. The results suggest that expectancy biases are in the causal path from SA to negative memory biases for social evaluation. PMID:25252925

  16. An Extracellular Subtilase Switch for Immune Priming in Arabidopsis

    PubMed Central

    Mauch-Mani, Brigitte; Gil, Ma José; Vera, Pablo

    2013-01-01

    In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity. PMID:23818851

  17. An extracellular subtilase switch for immune priming in Arabidopsis.

    PubMed

    Ramírez, Vicente; López, Ana; Mauch-Mani, Brigitte; Gil, Ma José; Vera, Pablo

    2013-01-01

    In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity.

  18. Synchronization of developmental processes and defense signaling by growth regulating transcription factors.

    PubMed

    Liu, Jinyi; Rice, J Hollis; Chen, Nana; Baum, Thomas J; Hewezi, Tarek

    2014-01-01

    Growth regulating factors (GRFs) are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways.

  19. Good neighbors make good defenses: associational refuges reduce defense investment in African savanna plants.

    PubMed

    Coverdale, Tyler C; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M

    2018-06-25

    Intraspecific variation in plant defense phenotype is common and has wide-ranging ecological consequences. Yet prevailing theories of plant defense allocation, which primarily account for interspecific differences in defense phenotype, often fail to predict intraspecific patterns. Furthermore, although individual variation in defense phenotype is often attributed to ecological interactions, few general mechanisms have been proposed to explain the ubiquity of variable defense phenotype within species. Here, we show experimentally that associational refuges and induced resistance interact to create predictable intraspecific variation in defense phenotype in African savanna plants. Physically defended species from four families (Acanthaceae, Asparagaceae, Cactaceae, and Solanaceae) growing in close association with spinescent Acacia trees had 39-78% fewer spines and thorns than did isolated conspecifics. For a subset of these species, we used a series of manipulative experiments to show that this variability is maintained primarily by a reduction in induced responses among individuals that seldom experience mammalian herbivory, whether due to association with Acacia trees or to experimental herbivore exclusion. Unassociated plants incurred 4- to 16-fold more browsing damage than did associated individuals and increased spine density by 16-38% within one month following simulated browsing. In contrast, experimental clipping induced no net change in spine density among plants growing beneath Acacia canopies or inside long-term herbivore exclosures. Associated and unassociated individuals produced similar numbers of flowers and seeds, but seedling recruitment and survival were vastly greater in refuge habitats, suggesting a net fitness benefit of association. We conclude that plant-plant associations consistently decrease defense investment in this system by reducing both the frequency of herbivory and the intensity of induced responses, and that inducible responses

  20. Protective effect of coconut water concentrate and its active component shikimic acid against hydroperoxide mediated oxidative stress through suppression of NF-κB and activation of Nrf2 pathway.

    PubMed

    Manna, Krishnendu; Khan, Amitava; Kr Das, Dipesh; Bandhu Kesh, Swaraj; Das, Ujjal; Ghosh, Sayan; Sharma Dey, Rakhi; Das Saha, Krishna; Chakraborty, Anindita; Chattopadhyay, Sreya; Dey, Sanjit; Chattopadhyay, Debprasad

    2014-08-08

    Conventionally coconut water has been used as an 'excellent hydrating' drink that maintain the electrolyte balance and help in treating diverse ailments related to oxidative stress including liver function. The present study was aimed to elucidate whether and how the coconut water concentrate (CWC) and its major active phytoconstituent shikimic acid (SA) can effectively protect murine hepatocytes from the deleterious effect of hydroperoxide-mediated oxidative stress. Bioactivity guided fractionation of CWC resulted in the isolation of a couple of known compounds. Freshly isolated murine hepatocytes were exposed to hydrogen peroxide (H2O2) (1 and 3mM) in the presence or absence of CWC (200 and 400 μg/ml) and SA (40 μM) for the determination of antioxidative, DNA protective, cellular ROS level by modern methods, including immunoblot and flowcytometry to find out the possible mechanism of action. Pre-treatment of hepatocyte with CWC and SA showed significant prevention of H2O2-induced intracellular ROS generation, nuclear DNA damage along with the formation of hepatic TBARS and cellular nitrite. Further, the H2O2 induced cell death was arrested in the presence of CWC through the inhibition of CDC42 mediated SAPK/JNK pathways and activation of other molecules of apoptotic pathways, including Bax and caspase3. Moreover, CWC and SA help in maintaining the GSH level and endogenous antioxidants like Mn-SOD, to support intracellular defense mechanisms, probably through the transcriptional activation of Nrf2; and inhibition of nuclear translocation of NF-κB. CWC and its active components SA reversed the H2O2 induced oxidative damage in hepatocytes, probably through the inhibition of NF-κB, with the activation of PI3K/Akt/Nrf2 pathway and reduction of apoptosis by interfering the SAPK/JNK/Bax pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Capsicum annuum homeobox 1 (CaHB1) is a nuclear factor that has roles in plant development, salt tolerance, and pathogen defense.

    PubMed

    Oh, Sang-Keun; Yoon, Joonseon; Choi, Gyung Ja; Jang, Hyun A; Kwon, Suk-Yoon; Choi, Doil

    2013-12-06

    Homeodomain-leucine zipper (HD-Zip) family proteins are unique to plants, but little is known about their role in defense responses. CaHB1 is a nuclear factor in peppers, belonging to subfamily II of HD-Zip proteins. Here, we determined the role of CaHB1 in the defense response. CaHB1 expression was induced when pepper plants were challenged with Phytophthora capsici, a plant pathogen to which peppers are susceptible, or environmental stresses such as drought and salt stimuli. CaHB1 was also highly expressed in pepper leaves following application of SA, whereas ethephon and MeJA had a moderate effect. To further investigate the function of CaHB1 in plants, we performed gain-of-function study by overexpression of CaHB1 in tomato. CaHB1-transgenic tomatoes showed significant growth enhancement including increased leaf thickness and enlarged cell size (1.8-fold larger than control plants). Microscopic analysis revealed that leaves from CaHB1-transgenic plants had thicker cell walls and cuticle layers than those from controls. Moreover, CaHB1-transgenic plants displayed enhanced resistance against Phytophthora infestans and increased tolerance to salt stress. Additionally, RT-PCR analysis of CaHB1-transgenic tomatoes revealed constitutive up-regulation of multiple genes involved in plant defense and osmotic stress. Therefore, our findings suggest roles for CaHB1 in development, salt stress, and pathogen defense. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Defense Institution Building: An Assessment

    DTIC Science & Technology

    2016-01-01

    collectively responsible for national-level defense oversight, governance, and management. Study Objectives and Research Questions The objectives of...Defense Studies , in this case) posts a per- manent representative with the command to help recruit for resident courses, suggest courses to be...foreign military officers to conduct study and research on security-related topics Program 2 Defense institutions/ education and training

  3. Can-miRn37a mediated suppression of ethylene response factors enhances the resistance of chilli against anthracnose pathogen Colletotrichum truncatum L.

    PubMed

    Mishra, Rukmini; Mohanty, Jatindra Nath; Chand, Subodh Kumar; Joshi, Raj Kumar

    2018-02-01

    Pepper anthracnose, caused by Colletotrichum species complex is the most destructive disease of chilli (Capsicum annuum L.). miRNAs are key modulators of transcriptional and post- transcriptional expression of genes during defense responses. In the present study, we performed a comparative miRNA profiling of susceptible (Arka Lohit-AL) and resistant (Punjab Lal-PL) chilli cultivars to identify 35 differentially expressed miRNAs that could be classified as positive, negative or basal regulators of defense against C. truncatum, the most potent anthracnose pathogen. Interestingly, a novel microRNA can-miRn37a was significantly induced in PL but largely repressed in AL genotype post pathogen attack. Subsequent over-expression of can-miRn37a in AL showed enhanced resistance to anthracnose, as evidenced by decreased fungal growth and induced expression of defense-related genes. Consequently, the expression of its three target genes encoding the ethylene response factors (ERFs) was down-regulated in PL as well as in the over-expression lines of AL genotypes. The ability of these targets to be regulated by can-miRn37a was further confirmed by transient co-expression in Nicotiana benthamiana. Additionally, the virus-induced silencing of the three targets in the susceptible AL cultivar revealed their role in fungal colonization and induction of C. truncatum pathogenicity in chilli. Taken together, our study suggests that can-miRn37a provides a potential miRNA mediated approach of engineering anthracnose resistance in chilli by repressing ERFs and preventing fungal colonization. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4.

    PubMed

    Pearson-Leary, J; Jahagirdar, V; Sage, J; McNay, E C

    2018-02-15

    The insulin-regulated glucose transporter, GluT4, is a key molecule in peripheral insulin signaling. Although GluT4 is abundantly expressed in neurons of specific brain regions such as the hippocampus, the functional role of neuronal GluT4 is unclear. Here, we used pharmacological inhibition of GluT4-mediated glucose uptake to determine whether GluT4 mediates insulin-mediated glucose uptake in the hippocampus. Consistent with previous reports, we found that glucose utilization increased in the dorsal hippocampus of male rats during spontaneous alternation (SA), a hippocampally-mediated spatial working memory task. We previously showed that insulin signaling within the hippocampus is required for processing this task, and that administration of exogenous insulin enhances performance. At baseline levels of hippocampal insulin, inhibition of GluT4-mediated glucose uptake did not affect SA performance. However, inhibition of an upstream regulator of GluT4, Akt, did impair SA performance. Conversely, when a memory-enhancing dose of insulin was delivered to the hippocampus prior to SA-testing, inhibition of GluT4-mediated glucose transport prevented cognitive enhancement. These data suggest that baseline hippocampal cognitive processing does not require functional hippocampal GluT4, but that cognitive enhancement by supra-baseline insulin does. Consistent with these findings, we found that in neuronal cell culture, insulin increases glucose utilization in a GluT4-dependent manner. Collectively, these data demonstrate a key role for GluT4 in transducing the procognitive effects of elevated hippocampal insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host.

    PubMed

    Chi, Myoung-Hwan; Park, Sook-Young; Kim, Soonok; Lee, Yong-Hwan

    2009-04-01

    For successful colonization and further reproduction in host plants, pathogens need to overcome the innate defenses of the plant. We demonstrate that a novel pathogenicity gene, DES1, in Magnaporthe oryzae regulates counter-defenses against host basal resistance. The DES1 gene was identified by screening for pathogenicity-defective mutants in a T-DNA insertional mutant library. Bioinformatic analysis revealed that this gene encodes a serine-rich protein that has unknown biochemical properties, and its homologs are strictly conserved in filamentous Ascomycetes. Targeted gene deletion of DES1 had no apparent effect on developmental morphogenesis, including vegetative growth, conidial germination, appressorium formation, and appressorium-mediated penetration. Conidial size of the mutant became smaller than that of the wild type, but the mutant displayed no defects on cell wall integrity. The Deltades1 mutant was hypersensitive to exogenous oxidative stress and the activity and transcription level of extracellular enzymes including peroxidases and laccases were severely decreased in the mutant. In addition, ferrous ion leakage was observed in the Deltades1 mutant. In the interaction with a susceptible rice cultivar, rice cells inoculated with the Deltades1 mutant exhibited strong defense responses accompanied by brown granules in primary infected cells, the accumulation of reactive oxygen species (ROS), the generation of autofluorescent materials, and PR gene induction in neighboring tissues. The Deltades1 mutant displayed a significant reduction in infectious hyphal extension, which caused a decrease in pathogenicity. Notably, the suppression of ROS generation by treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, resulted in a significant reduction in the defense responses in plant tissues challenged with the Deltades1 mutant. Furthermore, the Deltades1 mutant recovered its normal infectious growth in DPI-treated plant tissues. These results

  6. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens

    PubMed Central

    Qamar, Aarzoo; Mysore, Kirankumar S.; Senthil-Kumar, Muthappa

    2015-01-01

    Pyrroline-5-carboxylate (P5C) is an intermediate product of both proline biosynthesis and catabolism. Recent evidences indicate that proline-P5C metabolism is tightly regulated in plants, especially during pathogen infection and abiotic stress. However, role of P5C and its metabolism in plants has not yet been fully understood. Studies indicate that P5C synthesized in mitochondria has a role in both resistance (R)-gene-mediated and non-host resistance against invading pathogens. Proline dehydrogenase and delta-ornithine amino transferase-encoding genes, both involved in P5C synthesis in mitochondria are implicated in defense response of Nicotiana benthamiana and Arabidopsis thaliana against bacterial pathogens. Such defense response is proposed to involve salicylic acid-dependent pathway, reactive oxygen species (ROS) and hypersensitive response (HR)-associated cell death. Recently HR, a form of programmed cell death (PCD), has been proposed to be induced by changes in mitochondrial P5C synthesis or the increase in P5C levels per se in plants inoculated with either a host pathogen carrying suitable avirulent (Avr) gene or a non-host pathogen. Consistently, A. thaliana mutant plants deficient in P5C catabolism showed HR like cell death when grown in external P5C or proline supplemented medium. Similarly, yeast and plant cells under oxidative stress were shown to increase ROS production and PCD due to increase in P5C levels. Similar mechanism has also been reported as one of the triggers for apoptosis in mammalian cells. This review critically analyzes results from various studies and enumerates the pathways for regulation of P5C levels in the plant cell, especially in mitochondria, during pathogen infection. Further, mechanisms regulating P5C- mediated defense responses, namely HR are outlined. This review also provides new insights into the differential role of proline-P5C metabolism in plants exposed to pathogen infection. PMID:26217357

  7. Tree-mediated interactions between the jack pine budworm and a mountain pine beetle fungal

    Treesearch

    Nadir Erbilgin; Jessie Colgan

    2012-01-01

    Coniferous trees deploy a combination of constitutive (pre-existing) and induced (post-invasion) structural and biochemical defenses against invaders. Induced responses can also alter host suitability for other organisms sharing the same host, which may result in indirect, plant-mediated, interactions between different species of attacking organisms. Current range and...

  8. Inducible defense against pathogens and parasites: optimal choice among multiple options.

    PubMed

    Shudo, E; Iwasa, Y

    2001-03-21

    Defense against pathogen, parasites and herbivores is often enhanced after their invasion into the host's body. Sometimes different options are adopted depending on the identity and the quantity of the pathogen, exemplified by the switch between Th1 and Th2 systems in mammalian immunity. In this paper, we study the optimal defense of the host when two alternative responses are available, which differ in the effectiveness of suppressing the growth of pathogen (parasite, or herbivore), the damage to the host caused by the defense response, and the magnitude of time delay before the defense response becomes fully effective. The optimal defense is the one that minimizes the sum of the damages caused by the pathogen and the cost due to defense activities. The damage by pathogens increases in proportion to the time integral of the pathogen abundance, and the cost is proportional to the defense activity. We can prove that a single globally optimal combination of defense options always exists and there is no other local optimum. Depending on the parameters, the optimal is to adopt only the early response, only the late response, or both responses. The defense response with a shorter time delay is more heavily used when the pathogen grows fast, the initial pathogen abundance is large, and the difference in time delay is long. We also study the host's optimal choice between constitutive and inducible defenses. In the constitutive defense, the response to pathogen attack works without delay, but it causes the cost even when the pathogen attack does not occur. We discuss mammalian immunity and the plant chemical defense from the model's viewpoint. Copyright 2001 Academic Press.

  9. Emotional exhaustion and defense mechanisms in intensive therapy unit nurses.

    PubMed

    Regan, Anna; Howard, Ruth A; Oyebode, Jan R

    2009-05-01

    Contrary to its original conceptualization, research has found that emotional demands do not lead to burnout in nurses. According to psychoanalytic theory, unconscious defense mechanisms may protect nurses from conscious awareness of work-related anxiety. This prevents self-report and may explain research findings. The maturity of defense style influences how anxiety is managed. Immature defenses prevent the conscious processing necessary for resolution of anxiety. Therefore, it is hypothesized that the use of immature defenses will lead to emotional exhaustion. This cross-sectional study used questionnaires to explore the defense mechanisms of 87 Intensive Therapy Unit nurses. Although the sample endorsed a predominantly mature defense style, the use of immature defenses predicted emotional exhaustion. Also, lower levels of reported stress associated with emotional demands predicted emotional exhaustion. Although this strongly implies the mediating role of immature defense mechanisms, the results were not statistically significant.

  10. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Jiwoo; Ku, Sae-Kwang; Lee, Suyeon

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/ormore » production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.« less

  11. Empowering self-defense training.

    PubMed

    Thompson, Martha E

    2014-03-01

    The purpose of self-defense training is to expand people's options, yet it is often framed as a solely physical, and limiting, response to violence. I draw on my own experience as a self-defense instructor and that of others in the self-defense movement to argue that an empowerment approach to self-defense training contributes to the anti-violence movement in multiple ways: providing a pathway to increase women's and girls' safety and their potential for becoming powerful and effective social change agents right now, providing an informed and embodied understanding of violence, and offering comprehensive options to recognize, prevent, and interrupt violence.

  12. TaMAPK4 Acts as a Positive Regulator in Defense of Wheat Stripe-Rust Infection

    PubMed Central

    Wang, Bing; Song, Na; Zhang, Qiong; Wang, Ning; Kang, Zhensheng

    2018-01-01

    Highly conserved mitogen-activated protein kinase (MAPK) cascades regulate numerous plant processes, including hormonal responses, stress, and innate immunity. In this research, TaMAPK4 was predicted to be a target of tae-miR164. We verified the binding and suppression of TaMAPK4 by co-expression in Nicotiana benthamiana. Moreover, we found TaMAPK4 was localized in the cytoplasm and nucleus using transient expression analyses. TaMAPK4 transcripts increased following salicylic acid (SA) treatment and when host plants were infected with an avirulent race of the stripe-rust pathogen. Silencing of TaMAPK4 by virus-induced gene silencing permitted increased colonization by the avirulent pathogen race. Detailed histological results showed increased Puccinia striiformis (Pst) hyphal length, hyphal branches, and infection uredinial size compared to the non-silenced control. SA accumulation and the transcript levels of TaPR1, TaPR2, and TaPR5 were significantly down-regulated in TaMAPK4 knockdown plants. Overall, these results suggest that TaMAPK4 plays an important role in signaling during the wheat-Pst interaction. These results present new insights into MAPK signaling in wheat defense to rust pathogen. PMID:29527215

  13. Membrane microdomains in immunity: glycosphingolipid-enriched domain-mediated innate immune responses.

    PubMed

    Iwabuchi, Kazuhisa; Nakayama, Hitoshi; Masuda, Hiromi; Kina, Katsunari; Ogawa, Hideoki; Takamori, Kenji

    2012-01-01

    Over the last 30 years, many studies have indicated that glycosphingolipids (GSLs) expressed on the cell surface may act as binding sites for microorganisms. Based on their physicochemical characteristics, GSLs form membrane microdomains with cholesterol, sphingomyelin, glycosylphosphatidylinositol (GPI)-anchored proteins, and various signaling molecules, and GSL-enriched domains have been shown to be involved in these defense responses. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms. LacCer is expressed at high levels on the plasma membrane of human neutrophils, and forms membrane microdomains associated with the Src family tyrosine kinase Lyn. LacCer-enriched membrane microdomains mediate superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. In contrast, several pathogens have developed infection mechanisms using membrane microdomains. In addition, some pathogens have the ability to avoid degradation by escaping from the vacuolar compartment or preventing phagosome maturation, utilizing membrane microdomains, such as LacCer-enriched domains, of host cells. The detailed molecular mechanisms of these membrane microdomain-associated host-pathogen interactions remain to be elucidated. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  14. Schools and Civil Defense.

    ERIC Educational Resources Information Center

    Office of Civil Defense (DOD), Washington, DC.

    Civil defense is a planned, coordinated action to protect the population during any emergency whether arising from thermonuclear attack or natural disaster. The Federal Government has assumed four responsibilities--(1) to keep track of the nature of the threat which the civil defense program must meet, (2) to prepare and disseminate information…

  15. The coevolution of ova defensiveness with sperm competitiveness in house mice.

    PubMed

    Firman, Renée C; Gomendio, Montserrat; Roldan, Eduardo R S; Simmons, Leigh W

    2014-04-01

    Theoretical models have suggested that sperm competition can lead to increased ova resistance to fertilization. While there is some comparative evidence that this might be true, there is no experimental evidence to show that ova defensiveness evolves in response to sperm competition. We performed a series of in vitro fertilization assays to gauge the fertilizability of ova produced by female house mice from experimental populations that evolved either with or without sperm competition. Our analysis revealed that after 24 generations of experimental evolution, females that evolved under a polygamous regime produced more defensive ova than females that evolved under a monogamous regime. We therefore provide the first direct line of evidence that sperm competition can generate sexual conflict at the gametic level and lead to asymmetries in fertilization rates among populations. Our results show that females respond to sperm competition via fertilization barriers that have the potential to mediate sperm entry.

  16. Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures

    PubMed Central

    Tattoli, Ivan; Sorbara, Matthew T; Yang, Chloe; Tooze, Sharon A; Philpott, Dana J; Girardin, Stephen E

    2013-01-01

    Listeria can escape host autophagy defense pathways through mechanisms that remain poorly understood. We show here that in epithelial cells, Listeriolysin (LLO)-dependent cytosolic escape of Listeria triggered a transient amino-acid starvation host response characterized by GCN2 phosphorylation, ATF3 induction and mTOR inhibition, the latter favouring a pro-autophagic cellular environment. Surprisingly, rapid recovery of mTOR signalling was neither sufficient nor necessary for Listeria avoidance of autophagic targeting. Instead, we observed that Listeria phospholipases PlcA and PlcB reduced autophagic flux and phosphatidylinositol 3-phosphate (PI3P) levels, causing pre-autophagosomal structure stalling and preventing efficient targeting of cytosolic bacteria. In co-infection experiments, wild-type Listeria protected PlcA/B-deficient bacteria from autophagy-mediated clearance. Thus, our results uncover a critical role for Listeria phospholipases C in the inhibition of autophagic flux, favouring bacterial escape from host autophagic defense. PMID:24162724

  17. Characterization of Vitis vinifera NPR1 homologs involved in the regulation of Pathogenesis-Related gene expression

    PubMed Central

    Le Henanff, Gaëlle; Heitz, Thierry; Mestre, Pere; Mutterer, Jerôme; Walter, Bernard; Chong, Julie

    2009-01-01

    Background Grapevine protection against diseases needs alternative strategies to the use of phytochemicals, implying a thorough knowledge of innate defense mechanisms. However, signalling pathways and regulatory elements leading to induction of defense responses have yet to be characterized in this species. In order to study defense response signalling to pathogens in Vitis vinifera, we took advantage of its recently completed genome sequence to characterize two putative orthologs of NPR1, a key player in salicylic acid (SA)-mediated resistance to biotrophic pathogens in Arabidopsis thaliana. Results Two cDNAs named VvNPR1.1 and VvNPR1.2 were isolated from Vitis vinifera cv Chardonnay, encoding proteins showing 55% and 40% identity to Arabidopsis NPR1 respectively. Constitutive expression of VvNPR1.1 and VvNPR1.2 monitored in leaves of V. vinifera cv Chardonnay was found to be enhanced by treatment with benzothiadiazole, a SA analog. In contrast, VvNPR1.1 and VvNPR1.2 transcript levels were not affected during infection of resistant Vitis riparia or susceptible V. vinifera with Plasmopara viticola, the causal agent of downy mildew, suggesting regulation of VvNPR1 activity at the protein level. VvNPR1.1-GFP and VvNPR1.2-GFP fusion proteins were transiently expressed by agroinfiltration in Nicotiana benthamiana leaves, where they localized predominantly to the nucleus. In this system, VvNPR1.1 and VvNPR1.2 expression was sufficient to trigger the accumulation of acidic SA-dependent Pathogenesis-Related proteins PR1 and PR2, but not of basic chitinases (PR3) in the absence of pathogen infection. Interestingly, when VvNPR1.1 or AtNPR1 were transiently overexpressed in Vitis vinifera leaves, the induction of grapevine PR1 was significantly enhanced in response to P. viticola. Conclusion In conclusion, our data identified grapevine homologs of NPR1, and their functional analysis showed that VvNPR1.1 and VvNPR1.2 likely control the expression of SA-dependent defense genes

  18. Transcriptomic Profiling of Soybean in Response to High-Intensity UV-B Irradiation Reveals Stress Defense Signaling

    PubMed Central

    Yoon, Min Young; Kim, Moon Young; Shim, Sangrae; Kim, Kyung Do; Ha, Jungmin; Shin, Jin Hee; Kang, Sungtaeg; Lee, Suk-Ha

    2016-01-01

    The depletion of the ozone layer in the stratosphere has led to a dramatic spike in ultraviolet B (UV-B) intensity and increased UV-B light levels. The direct absorption of high-intensity UV-B induces complex abiotic stresses in plants, including excessive light exposure, heat, and dehydration. However, UV-B stress signaling mechanisms in plants including soybean (Glycine max [L.]) remain poorly understood. Here, we surveyed the overall transcriptional responses of two soybean genotypes, UV-B-sensitive Cheongja 3 and UV-B-resistant Buseok, to continuous UV-B irradiation for 0 (control), 0.5, and 6 h using RNA-seq analysis. Homology analysis using UV-B-related genes from Arabidopsis thaliana revealed differentially expressed genes (DEGs) likely involved in UV-B stress responses. Functional classification of the DEGs showed that the categories of immune response, stress defense signaling, and reactive oxygen species (ROS) metabolism were over-represented. UV-B-resistant Buseok utilized phosphatidic acid-dependent signaling pathways (based on subsequent reactions of phospholipase C and diacylglycerol kinase) rather than phospholipase D in response to UV-B exposure at high fluence rates, and genes involved in its downstream pathways, such as ABA signaling, mitogen-activated protein kinase cascades, and ROS overproduction, were upregulated in this genotype. In addition, the DEGs for TIR-NBS-LRR and heat shock proteins are positively activated. These results suggest that defense mechanisms against UV-B stress at high fluence rates are separate from the photomorphogenic responses utilized by plants to adapt to low-level UV light. Our study provides valuable information for deep understanding of UV-B stress defense mechanisms and for the development of resistant soybean genotypes that survive under high-intensity UV-B stress. PMID:28066473

  19. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    USGS Publications Warehouse

    Work, Thierry M.; Balazs, George H.; Rameyer, Robert; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freund’s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  20. NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner

    PubMed Central

    Domonkos, Ágota; Kovács, Szilárd; Gombár, Anikó; Kiss, Ernő; Horváth, Beatrix; Kováts, Gyöngyi Z.; Farkas, Attila; Tóth, Mónika T.; Ayaydin, Ferhan; Bóka, Károly; Fodor, Lili; Endre, Gabriella; Kaló, Péter

    2017-01-01

    Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, indicating the suppression of plant immunity in the nodule in the favur of the symbiotic partner. Medicago truncatula DNF2 (defective in nitrogen fixation 2) and NAD1 (nodules with activated defense 1) genes are essential for the control of plant defense during the colonization of the nitrogen-fixing nodule and are required for bacteroid persistence. The previously identified nodule-specific NAD1 gene encodes a protein of unknown function. Herein, we present the analysis of novel NAD1 mutant alleles to better understand the function of NAD1 in the repression of immune responses in symbiotic nodules. By exploiting the advantage of plant double and rhizobial mutants defective in establishing nitrogen-fixing symbiotic interaction, we show that NAD1 functions following the release of rhizobia from the infection threads and colonization of nodule cells. The suppression of plant defense is self-dependent of the differentiation status of the rhizobia. The corresponding phenotype of nad1 and dnf2 mutants and the similarity in the induction of defense-associated genes in both mutants suggest that NAD1 and DNF2 operate close together in the same pathway controlling defense responses in symbiotic nodules. PMID:29240711