Sample records for sabanero geochelone chelonoidis

  1. Karyotypic characterization of Trachemys dorbigni (Testudines: Emydidae) and Chelonoidis (Geochelone) donosobarrosi (Testudines: Testudinidae), two species of Cryptodiran turtles from Argentina.

    PubMed

    Martinez, Pablo A; Boeris, Juan M; Sánchez, Julieta; Pastori, María C; Bolzán, Alejandro D; Ledesma, Mario A

    2009-12-01

    We describe for the first time the karyotypes of two species of Cryptodiran turtles from Argentina, namely, Trachemys dorbigni (Emydidae) and Chelonoidis (Geochelone) donosobarrosi (Testudinidae). The karyotype of T. dorbigni (2n = 50) consists of 13 pairs of macrochromosomes and 12 pairs of microchromosomes, whereas the karyotype of C. donosobarrosi (2n = 52) consists of 11 pairs of macrochromosomes and 15 pairs of microchromosomes. Fluorescence in situ hybridization (FISH) with a (TTAGGG)n telomeric probe showed that the chromosomes of these species have four telomeric signals, two at each end, indicating that none of the chromosomes of T. dorbigni and C. donosobarrosi are telocentric. The fact that no interstitial telomeric signals were observed after FISH, suggests that interstitial telomeric sequences did not have a major role in the chromosomal evolution of these species. Additional data will be needed to elucidate if interstitial telomeric sequences have a major role in the karyotypic evolution of Testudines.

  2. Tropical ancient DNA reveals relationships of the extinct Bahamian giant tortoise Chelonoidis alburyorum

    PubMed Central

    Kehlmaier, Christian; Barlow, Axel; Hastings, Alexander K.; Vamberger, Melita; Paijmans, Johanna L. A.; Steadman, David W.; Albury, Nancy A.; Franz, Richard; Hofreiter, Michael

    2017-01-01

    Ancient DNA of extinct species from the Pleistocene and Holocene has provided valuable evolutionary insights. However, these are largely restricted to mammals and high latitudes because DNA preservation in warm climates is typically poor. In the tropics and subtropics, non-avian reptiles constitute a significant part of the fauna and little is known about the genetics of the many extinct reptiles from tropical islands. We have reconstructed the near-complete mitochondrial genome of an extinct giant tortoise from the Bahamas (Chelonoidis alburyorum) using an approximately 1 000-year-old humerus from a water-filled sinkhole (blue hole) on Great Abaco Island. Phylogenetic and molecular clock analyses place this extinct species as closely related to Galápagos (C. niger complex) and Chaco tortoises (C. chilensis), and provide evidence for repeated overseas dispersal in this tortoise group. The ancestors of extant Chelonoidis species arrived in South America from Africa only after the opening of the Atlantic Ocean and dispersed from there to the Caribbean and the Galápagos Islands. Our results also suggest that the anoxic, thermally buffered environment of blue holes may enhance DNA preservation, and thus are opening a window for better understanding evolution and population history of extinct tropical species, which would likely still exist without human impact. PMID:28077774

  3. Tropical ancient DNA reveals relationships of the extinct Bahamian giant tortoise Chelonoidis alburyorum.

    PubMed

    Kehlmaier, Christian; Barlow, Axel; Hastings, Alexander K; Vamberger, Melita; Paijmans, Johanna L A; Steadman, David W; Albury, Nancy A; Franz, Richard; Hofreiter, Michael; Fritz, Uwe

    2017-01-11

    Ancient DNA of extinct species from the Pleistocene and Holocene has provided valuable evolutionary insights. However, these are largely restricted to mammals and high latitudes because DNA preservation in warm climates is typically poor. In the tropics and subtropics, non-avian reptiles constitute a significant part of the fauna and little is known about the genetics of the many extinct reptiles from tropical islands. We have reconstructed the near-complete mitochondrial genome of an extinct giant tortoise from the Bahamas (Chelonoidis alburyorum) using an approximately 1 000-year-old humerus from a water-filled sinkhole (blue hole) on Great Abaco Island. Phylogenetic and molecular clock analyses place this extinct species as closely related to Galápagos (C. niger complex) and Chaco tortoises (C. chilensis), and provide evidence for repeated overseas dispersal in this tortoise group. The ancestors of extant Chelonoidis species arrived in South America from Africa only after the opening of the Atlantic Ocean and dispersed from there to the Caribbean and the Galápagos Islands. Our results also suggest that the anoxic, thermally buffered environment of blue holes may enhance DNA preservation, and thus are opening a window for better understanding evolution and population history of extinct tropical species, which would likely still exist without human impact. © 2017 The Author(s).

  4. Computed tomography imaging of a leopard tortoise (Geochelone pardalis pardalis) with confirmed pulmonary fibrosis: a case report

    PubMed Central

    2013-01-01

    An approximately 20-year-old, female Leopard tortoise (Geochelone pardalis pardalis) was presented with dypsnea, wheezing, anorexia and depression. Whole body radiographs revealed generalized diffuse unstructured ‘interstitial lung pattern’ with thickened pulmonary septae while computed tomography (CT) showed emphysematous lung parenchyma and thickened pulmonary septae bordered by irregular ground-glass opacity with smaller areas of ‘honeycombing’. These imaging findings together with histopathologic findings were compatible with chronic, extensive ‘interstitial’ pulmonary fibrosis. PMID:23618386

  5. USE OF COMPUTED TOMOGRAPHY FOR INVESTIGATION OF HEPATIC LIPIDOSIS IN CAPTIVE CHELONOIDIS CARBONARIA (SPIX, 1824).

    PubMed

    Marchiori, Adriano; da Silva, Ieverton Cleiton Correia; de Albuquerque Bonelli, Marília; de Albuquerque Zanotti, Luciana Carla Rameh; Siqueira, Daniel B; Zanotti, Alexandre Pinheiro; Costa, Fabiano Séllos

    2015-06-01

    Computed tomography is a sensitive and highly applicable technique for determining the degree of radiographic attenuation of the hepatic parenchyma. Radiodensity measurements of the liver can help in the diagnosis of hepatic lipidosis in humans and animals. The objective was to investigate the presence of hepatic lipidosis in captive red-footed tortoises (Chelonoidis carbonaria) using computed tomography. Computed tomography was performed in 10 male red-footed tortoises. Mean radiographic attenuation values for the hepatic parenchyma were 11.2±3.0 Hounsfield units (HU). Seven red-footed tortoises had values lower than 20 HU, which is compatible with C. carbonaria hepatic lipidosis. These results allowed an early diagnosis of the hepatic changes and suggested corrective measures regarding feeding and management protocols.

  6. Body size development of captive and free-ranging Leopard tortoises (Geochelone pardalis).

    PubMed

    Ritz, Julia; Hammer, Catrin; Clauss, Marcus

    2010-01-01

    The growth and weight development of Leopard tortoise hatchings (Geochelone pardalis) kept at the Al Wabra Wildlife Preservation (AWWP), Qatar, was observed for more than four years, and compared to data in literature for free-ranging animals on body weight or carapace measurements. The results document a distinctively faster growth in the captive animals. Indications for the same phenomenon in other tortoise species (Galapagos giant tortoises, G. nigra; Spur-thighed tortoises, Testudo graeca; Desert tortoises, Gopherus agassizi) were found in the literature. The cause of the high growth rate most likely is the constant provision with highly digestible food of low fiber content. Increased growth rates are suspected to have negative consequences such as obesity, high mortality, gastrointestinal illnesses, renal diseases, "pyramiding," fibrous osteodystrophy or metabolic bone disease. The apparently widespread occurrence of high growth rates in intensively managed tortoises underlines how easily ectothermic animals can be oversupplemented with nutrients. (c) 2009 Wiley-Liss, Inc.

  7. The use of classical and operant conditioning in training Aldabra tortoises (Geochelone gigantea), for venipuncture and other, husbandry issues.

    PubMed

    Weiss, Emily; Wilson, Sandra

    2003-01-01

    A variety of nonhuman animals in zoo and research settings have been the subjects of classical and operant conditioning techniques. Much of the published work has focused on mammals, husbandry training, and veterinary issues. However, several zoos are training reptiles and birds for similar procedures, but there has been little of this work published. Using positive reinforcement techniques enabled the training of 2 male and 2 female Aldabra tortoises (Geochelone gigantea) to approach a target, hold steady on target, and stretch and hold for venipuncture. This article discusses training techniques, venipuncture sight, and future training.

  8. Biochemistry and hematology parameters of the San Cristóbal Galápagos tortoise (Chelonoidis chathamensis)

    PubMed Central

    Griffioen, John A; Savo, Alison; Muñoz-Pérez, Juan Pablo; Ortega, Carlos; Loyola, Andrea; Roberts, Sarah; Schaaf, George; Steinberg, David; Osegueda, Steven B; Levy, Michael G; Páez-Rosas, Diego

    2018-01-01

    Abstract As part of a planned introduction of captive Galapagos tortoises (Chelonoidis chathamensis) to the San Cristóbal highland farms, our veterinary team performed thorough physical examinations and health assessments of 32 tortoises. Blood samples were collected for packed cell volume (PCV), total solids (TS), white blood cell count (WBC) differential, estimated WBC and a biochemistry panel including lactate. In some cases not all of the values were obtainable but most of the tortoises have full complements of results. Despite a small number of minor abnormalities this was a healthy group of mixed age and sex tortoises that had been maintained with appropriate husbandry. This work establishes part of a scientific and technical database to provide qualitative and quantitative information when establishing sustainable development strategies aimed at the conservation of Galapagos tortoises. PMID:29479431

  9. Status and distribution of the angonoka tortoise (Geochelone yniphora) of western Madagascar

    USGS Publications Warehouse

    Smith, Lora L.; Reid, Don; Robert, Bourou; Joby, Mahatoly; Clement, Sibo

    1999-01-01

    From 1993 to 1995, field surveys were conducted in western Madagascar to assess the current status of the angonoka tortoise (Geochelone yniphora) in the wild. Tortoise presence was documented at 10 of 11 localities surveyed. These localities represent at least five populations, all within a 30-km radius of Baly Bay, near the town of Soalala. The populations occur on fragments of habitat ranging from <50 to 4–6000 ha in size. One hundred and forty-five tortoises were marked in the five populations. Hatchling or juvenile tortoises were observed in all populations, indicating that reproduction was occurring. Most of the 145 tortoises (68%) were marked on Cape Sada, where monthly surveys were conducted. The tortoise density on the c. 150 ha peninsula was 0.66 tortoises/ha. The remains of 22 dead juveniles were found on Cape Sada over the 2-year period. This evidence, combined with the low number of juveniles in intermediate size classes in the Cape Sada population suggests that juvenile mortality may be high.

  10. Chapiniella variabilis (Nematoda) parasitizing Chelonoidis carbonarius and C. denticulatus (Testudinidae) in the state of Piauí.

    PubMed

    Freire, Simone Mousinho; Leal, Anangela Ravena da Silva; Knoff, Marcelo; Gomes, Delir Corrêa; Santos, Jeannie Nascimento Dos; Giese, Elane Guerreiro; Silva, Reinaldo José da; Mendonça, Ivete Lopes

    2017-01-01

    Chapiniella variabilis (Chapin, 1924), a strongylid nematode, was collected parasitizing the large intestine of the tortoises Chelonoidis carbonarius (Spix, 1824) (Cc) and C. denticulatus (Linnaeus, 1766) (Cd) in the Zoobotanical Park of the municipality of Teresina, state of Piauí, Brazil. The taxonomic identification was based on morphological and morphometric features, using bright-field and scanning electron microscopy. The present study adds new observations on the morphology, mainly relating to the mouth papillae, external and internal leaf-crown elements, excretory pore, deirids and male and female posterior end. The parasitic indices of prevalence (P), mean intensity (MI), mean abundance (MA) and range of infection (RI) of C. variabilis in these two tortoise species were: P = 100%, MI = 833.3, MA = 833.3, RI = 500-1,500 (Cc); P = 100%, MI = 472.2, MA = 472.2, RI = 333-500 (Cd). This record expands occurrences of C. variabilis to a new host, C. carbonarius, and to another state in Brazil, in the Neotropical region of South America. Adjustment to host management with the aim of improving hygiene and health conditions is suggested.

  11. Atractis thapari (Nematoda, Atractidae) parasitizing Chelonoidis carbonarius and C. denticulatus (Testudinidae) in the state of Piauí, Brazil.

    PubMed

    Leal, Anangela Ravena da Silva; Freire, Simone Mousinho; Knoff, Marcelo; Gomes, Delir Corrêa; Santos, Jeannie Nascimento Dos; Mendonça, Ivete Lopes de

    2018-03-01

    Atractis thapari Petter, 1966, an atractid nematode, was collected parasitizing the large intestine of tortoises of the species Chelonoidis carbonarius (Spix, 1824) (Cc) and C. denticulatus (Linnaeus, 1766) (Cd) (Testudinidae) in the Zoobotanical Park of the municipality of Teresina, state of Piauí, Brazil. Taxonomic identification was based on morphological and morphometrical features, and using bright-field and scanning electron microscopy. The present study adds new observations on the morphology of A. thapari, mainly relating to mouth papillae, the excretory pore, deirids, and male and female posterior ends. The parasitic indices of prevalence (P), mean intensity (MI), mean abundance (MA) and range of infection (RI) for A. thapari in these two tortoise species were: P = 100%, MI = 154,667, MA = 154,667, RI = 5,500-588,500 (Cc); P = 100%, MI = 93,639, MA = 93,639, RI = 1,000-224,500 (Cd). This report confirms the occurrence of A. thapari in Neotropical region, South America, Brazil, and extends its occurrences to a new host, the tortoise C. carbonarius. Adjustment of host management with the aim of improving hygiene and health conditions is suggested.

  12. Endoscopically guided removal of cloacal calculi in three African spurred tortoises (Geochelone sulcata).

    PubMed

    Mans, Christoph; Sladky, Kurt K

    2012-04-01

    3 female African spurred tortoises (Geochelone sulcata) of various body weights (0.22, 0.77, and 2.86 kg [0.48, 1.69, and 6.29 lb]) were examined because of reduced food intake and lack of fecal output. Owners reported intermittent tenesmus in 2 of the tortoises. Physical examinations revealed no clinically important abnormalities in the tortoises. Cloacal calculi were diagnosed on the basis of radiography and cloacoscopy in all 3 tortoises. One tortoise had another calculus in the urinary bladder. Tortoises were anesthetized, and cloacal calculi were removed by use of a cutting burr (plain-fissure cutting burr and a soft tissue protector mounted to a dental handpiece that had a low-speed motor and a straight nose cone) and warm water irrigation with endoscopic guidance. Complete removal of calculus fragments was achieved by use of forceps and irrigation. In 1 tortoise, removal of the cloacal calculus was staged (2 separate procedures). In another tortoise, a second cloacal calculus (which had been located in the urinary bladder during the first examination) was successfully removed 25 days after removal of the first calculus. All 3 tortoises recovered uneventfully, and serious complications secondary to removal of the cloacal calculi were not detected. Cloacoscopy combined with the use of a low-speed dental drill and warm water irrigation should be considered a simple, safe, and nontraumatic treatment option for removal of obstructive cloacal calculi in tortoises.

  13. Anti-inflammatory activity of animal oils from the Peruvian Amazon.

    PubMed

    Schmeda-Hirschmann, Guillermo; Delporte, Carla; Valenzuela-Barra, Gabriela; Silva, Ximena; Vargas-Arana, Gabriel; Lima, Beatriz; Feresin, Gabriela E

    2014-10-28

    Animal oils and fats from the fishes Electrophorus electricus and Potamotrygon motoro, the reptiles Boa constrictor, Chelonoidis denticulata (Geochelone denticulata) and Melanosuchus niger and the riverine dolphin Inia geoffrensis are used as anti-inflammatory agents in the Peruvian Amazon. The aim of the study was to assess the topic anti-inflammatory effect of the oils/fats as well as to evaluate its antimicrobial activity and fatty acid composition. The oils/fats were purchased from a traditional store at the Iquitos market of Belen, Peru. The topic anti-inflammatory effect was evaluated by the mice ear edema induced by arachidonic acid (AA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) at the dose of 3mg oil/ear. Indomethacine and nimesulide were used as reference anti-inflammatory drugs. The application resembles the traditional topical use of the oils. The antimicrobial effect of the oils/fats was assessed by the microdilution test against reference strains of Escherichia coli, Staphylococcus aureus and Salmonella enteritidis. The fatty acid composition of the oils/fats (as methyl esters) was determined by GC and GC-MS analysis after saponification. All oils/fats showed topic anti-inflammatory activity, with better effect in the TPA-induced mice ear edema assay. The most active drugs were Potamotrygon motoro, Melanosuchus niger and Geochelone denticulata. In the AA-induced assay, the best activity was found for Potamotrygon motoro and Electrophorus electricus oil. The oil of Electrophorus electricus also showed a weak antimicrobial effect with MIC values of 250 µg/mL against Escherichia coli ATCC 25922 and Salmonella enteritidis-MI. The main fatty acids in the oils were oleic, palmitic and linoleic acids. Topical application of all the oils/fats investigated showed anti-inflammatory activity in the mice ear edema assay. The effect can be related with the identity and composition of the fatty acids in the samples. This study gives support to the traditional

  14. Steroid levels and reproductive cycle of the Galápagos tortoise, Geochelone nigra, living under seminatural conditions on Santa Cruz Island (Galápagos).

    PubMed

    Schramm, B G; Casares, M; Lance, V A

    1999-04-01

    The Galápagos Islands are home to 11 subspecies of large terrestrial tortoises (Geochelone nigra). All Galápagos tortoises are considered endangered and approximately 12,000 animals still exist. Until now, the reproductive cycle of the Galápagos tortoise has been studied only in captive animals, and no data from free-ranging tortoises have been available. During a one-year period, blood samples were collected from male and female G. nigra living under seminatural conditions on Santa Cruz Island, Galápagos. Plasma steroid hormones were measured by radioimmunoassays (RIAs). In males, plasma testosterone and corticosterone increased a few months before the onset of the mating season. Peak levels were observed while most copulations occurred and environmental temperatures were highest. Both testosterone and corticosterone showed low levels during the cold and dry nesting season and high levels during the hot and rainy mating season. In females, testosterone and corticosterone also rose during the hot and rainy mating season. Both hormones peaked during the second half of the mating season and decreased during the cooler dry season. Female estradiol levels increased at the onset of the mating season, reaching the highest level at the peak of the mating season, which coincided with the highest annual temperatures measured. Estradiol slowly decreased within the next months and rapidly dropped at the onset of the nesting season when temperatures decreased. Progesterone levels were high close to the time of ovulation and showed clearly elevated levels at the beginning of the nesting season after some females had laid their first clutch. Progesterone decreased during the nesting season, when ambient temperatures began to decrease, and reached minimal levels in the postbreeding period shortly before the onset of the next mating season. There were significant annual variations in plasma testosterone in both males and females. Plasma corticosterone was generally higher in

  15. Prevalence of Haemoproteus spp. (Apicomplexa: Haemoproteidae) in tortoises in Brazil and its molecular phylogeny.

    PubMed

    Martinele, Isabel; Tostes, Raquel; Castro, Rômulo; D'Agosto, Marta

    2016-01-01

    Captive terrestrial tortoises of the species Chelonoidis carbonaria (n = 17) and Chelonoidis denticulata (n = 37) in the state of Minas Gerais, southeastern Brazil, were examined for hematozoans by using a combination of microscopic and molecular methods. Microscopic examination revealed young intra-erythrocytic forms in blood smears from both species of tortoises. The results of PCR, sequencing, and phylogenetic analysis indicated that these parasites belonged to the Haemoproteus spp., whose observed prevalence was 17.6 % in C. carbonaria and 13.5 % in C. denticulata. Phylogenetic analysis indicated that these sequences formed a clade that was grouped with other sequences of Haemoproteus spp. parasites in birds, separate from the clade formed by Haemoproteus spp. of reptiles. This study expands the information regarding the occurrence and distribution of hemosporidia in turtles and is the first study of blood parasites in C. carbonaria.

  16. Ticks on captive and free-living wild animals in northeastern Brazil.

    PubMed

    Dantas-Torres, Filipe; Ferreira, Débora R A; de Melo, Louise M; Lima, Polly-Ana C P; Siqueira, Daniel B; Rameh-de-Albuquerque, Luciana C; de Melo, Adriana V; Ramos, Janaina A C

    2010-02-01

    From 2005 to 2009, 147 ticks found on 32 wild animals from or referred to two zoobotanical parks (Parque Zoobotânico Arruda Câmara and Parque Estadual Dois Irmãos) located in northeastern Brazil were identified. Ticks found on two veterinarians working in one of the parks (i.e., Parque Estadual Dois Irmãos), after return from forested areas within the park's territory, were also identified. The following tick-host associations were recorded: Amblyomma fuscum Neumann on Boa constrictor L.; Amblyomma longirostre Koch on Ramphastos vitellinus ariel Vigors and Coendou prehensilis (L.); Amblyomma varium Koch on Bradypus variegates Schinz; Amblyomma rotundatum Koch on Chelonoidis carbonaria (Spix), Chelonoidis denticulata (L.), Micrurus ibiboboca (Merrem), Python molurus bivittatus Kuhl, Iguana iguana (L.) and B. variegatus; Amblyomma nodosum Neumann on Myrmecophaga tridactyla L. and Tamandua tetradactyla (L.); and Rhipicephalus sanguineus (Latreille) on Nasua nasua (L.). The ticks found on the veterinarians were identified as nine Amblyomma larvae. The presence of Am. nodosum in Pernambuco and Am. rotundatum and Am. varium in Paraíba is recorded for the first time and the occurrence of Am. longirostre in Pernambuco is confirmed. Ramphastos vitellinus ariel is a new host record for Am. longirostre whereas M. ibiboboca and B. variegatus are new host records for Am. rotundatum. Finally, the human parasitism by Amblyomma ticks is reported for the first time in Pernambuco, highlighting the potential of tick-borne pathogen transmission in this state.

  17. Population genomics of the endangered giant Galápagos tortoise

    PubMed Central

    2013-01-01

    Background The giant Galápagos tortoise, Chelonoidis nigra, is a large-sized terrestrial chelonian of high patrimonial interest. The species recently colonized a small continental archipelago, the Galápagos Islands, where it has been facing novel environmental conditions and limited resource availability. To explore the genomic consequences of this ecological shift, we analyze the transcriptomic variability of five individuals of C. nigra, and compare it to similar data obtained from several continental species of turtles. Results Having clarified the timing of divergence in the Chelonoidis genus, we report in C. nigra a very low level of genetic polymorphism, signatures of a weakened efficacy of purifying selection, and an elevated mutation load in coding and regulatory sequences. These results are consistent with the hypothesis of an extremely low long-term effective population size in this insular species. Functional evolutionary analyses reveal a reduced diversity of immunity genes in C. nigra, in line with the hypothesis of attenuated pathogen diversity in islands, and an increased selective pressure on genes involved in response to stress, potentially related to the climatic instability of its environment and its elongated lifespan. Finally, we detect no population structure or homozygosity excess in our five-individual sample. Conclusions These results enlighten the molecular evolution of an endangered taxon in a stressful environment and point to island endemic species as a promising model for the study of the deleterious effects on genome evolution of a reduced long-term population size. PMID:24342523

  18. Population genomics of the endangered giant Galápagos tortoise.

    PubMed

    Loire, Etienne; Chiari, Ylenia; Bernard, Aurélien; Cahais, Vincent; Romiguier, Jonathan; Nabholz, Benoît; Lourenço, Joao Miguel; Galtier, Nicolas

    2013-12-16

    The giant Galápagos tortoise, Chelonoidis nigra, is a large-sized terrestrial chelonian of high patrimonial interest. The species recently colonized a small continental archipelago, the Galápagos Islands, where it has been facing novel environmental conditions and limited resource availability. To explore the genomic consequences of this ecological shift, we analyze the transcriptomic variability of five individuals of C. nigra, and compare it to similar data obtained from several continental species of turtles. Having clarified the timing of divergence in the Chelonoidis genus, we report in C. nigra a very low level of genetic polymorphism, signatures of a weakened efficacy of purifying selection, and an elevated mutation load in coding and regulatory sequences. These results are consistent with the hypothesis of an extremely low long-term effective population size in this insular species. Functional evolutionary analyses reveal a reduced diversity of immunity genes in C. nigra, in line with the hypothesis of attenuated pathogen diversity in islands, and an increased selective pressure on genes involved in response to stress, potentially related to the climatic instability of its environment and its elongated lifespan. Finally, we detect no population structure or homozygosity excess in our five-individual sample. These results enlighten the molecular evolution of an endangered taxon in a stressful environment and point to island endemic species as a promising model for the study of the deleterious effects on genome evolution of a reduced long-term population size.

  19. Reptile trade and the risk of exotic tick introductions into southern South American countries.

    PubMed

    González-Acuña, D; Beldoménico, P M; Venzal, J M; Fabry, M; Keirans, J E; Guglielmone, A A

    2005-01-01

    Ticks exotic for the Neotropical region were found on Python regius imported into Argentina and Chile. All ticks (7 males and 3 females) were classified as Amblyomma latum Koch, 1844 ( = Aponomma latum). Additionally, four lots comprising 18 males of the Argentinean tortoise tick, Amblyomma argentinae Neumann, 1904, were found on a terrestrial tortoise, Chelonoidis chilensis, and on three terrestrial tortoises (probably C. chilensis) imported to Uruguay presumably from Argentina). These findings alert us to the risk of expanding the distribution of reptile parasites and their diseases into regions previously free of these parasites.

  20. Comparison of chemistry analytes between 2 portable, commercially available analyzers and a conventional laboratory analyzer in reptiles.

    PubMed

    McCain, Stephanie L; Flatland, Bente; Schumacher, Juergen P; Clarke Iii, Elsburgh O; Fry, Michael M

    2010-12-01

    Advantages of handheld and small bench-top biochemical analyzers include requirements for smaller sample volume and practicality for use in the field or in practices, but little has been published on the performance of these instruments compared with standard reference methods in analysis of reptilian blood. The aim of this study was to compare reptilian blood biochemical values obtained using the Abaxis VetScan Classic bench-top analyzer and a Heska i-STAT handheld analyzer with values obtained using a Roche Hitachi 911 chemical analyzer. Reptiles, including 14 bearded dragons (Pogona vitticeps), 4 blue-tongued skinks (Tiliqua gigas), 8 Burmese star tortoises (Geochelone platynota), 10 Indian star tortoises (Geochelone elegans), 5 red-tailed boas (Boa constrictor), and 5 Northern pine snakes (Pituophis melanoleucus melanoleucus), were manually restrained, and a single blood sample was obtained and divided for analysis. Results for concentrations of albumin, bile acids, calcium, glucose, phosphates, potassium, sodium, total protein, and uric acid and activities of aspartate aminotransferase and creatine kinase obtained from the VetScan Classic and Hitachi 911 were compared. Results for concentrations of chloride, glucose, potassium, and sodium obtained from the i-STAT and Hitachi 911 were compared. Compared with results from the Hitachi 911, those from the VetScan Classic and i-STAT had variable correlations, and constant or proportional bias was found for many analytes. Bile acid data could not be evaluated because results for 44 of 45 samples fell below the lower linearity limit of the VetScan Classic. Although the 2 portable instruments might provide measurements with clinical utility, there were significant differences compared with the reference analyzer, and development of analyzer-specific reference intervals is recommended. ©2010 American Society for Veterinary Clinical Pathology.

  1. Giant fossil tortoise and freshwater chelid turtle remains from the middle Miocene, Quebrada Honda, Bolivia: Evidence for lower paleoelevations for the southern Altiplano

    NASA Astrophysics Data System (ADS)

    Cadena, Edwin A.; Anaya, Federico; Croft, Darin A.

    2015-12-01

    We describe the first Miocene turtle remains from Bolivia, which were collected from the late middle Miocene (13.18-13.03 Ma) of Quebrada Honda, southern Bolivia. This material includes a large scapula-acromion and fragmentary shell elements conferred to the genus Chelonoidis (Testudinidae), and a left xiphiplastron from a pleurodire or side-necked turtle, conferred to Acanthochelys (Chelidae). The occurrence of a giant tortoise and a freshwater turtle suggests that the paleoelevation of the region when the fossils were deposited was lower than has been estimated by stable isotope proxies, with a maximum elevation probably less than 1000 m. At a greater elevation, cool temperatures would have been beyond the tolerable physiological limits for these turtles and other giant ectotherm reptiles.

  2. Ophthalmic diagnostic tests in captive red-footed tortoises (Chelonoidis carbonaria) in Salvador, northeast Brazil.

    PubMed

    Oriá, Arianne P; Silva, Renata M Monção; Pinna, Melissa H; Oliveira, Alberto Vinícius D; Ferreira, Paulo Roberto B; Martins Filho, Emanoel F; Meneses, Iris Daniela S; Requião, Kátia G; Ofri, Ron

    2015-01-01

    The aim of this study was to establish normal ophthalmic parameters for select diagnostic tests in red-footed tortoises (Chelonoides carbonaria). A total of 52 animals, approximately 20-30 years old, were studied. Ophthalmic diagnostic tests included culturing of the normal conjunctival bacterial flora in summer and winter, evaluation of tear production using Schirmer tear test (STT) and endodontic absorbent paper point tear test in two different environmental temperatures (EAPPTT-1 at 32 °C and EAPPTT-2 at 18 °C), cytology of conjunctival cells, B-mode ultrasonography, measurement of palpebral fissure length (PFL), and applanation tonometry (in two different positions). In both seasons, Gram-positive bacteria were predominant. Median (± IQR/2) STT was 12.0 ± 3.5 mm/min, EAPPTT-1 was 15.9 ± 0.7 mm/15 s, and EAPPTT-2 was 15.4 ± 0.4 mm/min (OD) and 17.8 ± 1.0 mm/min (OS). Anterior chamber depth was 1.0 ± 0.1 mm, lens axial length was 2.3 ± 0.1 mm, vitreous chamber depth was 4.3 ± 0.2 mm, and axial globe length was 7.7 ± 0.3 mm. PFL was 11.7 ± 1.7 mm. Intraocular pressure was 11.5 ± 2.8 mmHg for males and 14.0 ± 3.5 mmHg for females (dorsoventral position) and 18.0 ± 3.2 mmHg for males and 24.1 ± 3.0 mmHg for females (ventrodorsal position with inclination of 45°). The ophthalmic parameters reported here can aid in the diagnosis of eye diseases in red-footed tortoises (Chelonoides carbonaria). © 2014 American College of Veterinary Ophthalmologists.

  3. Occurrence and molecular characterization of Cryptosporidium spp. in mammals and reptiles at the Lisbon Zoo.

    PubMed

    Alves, Margarida; Xiao, Lihua; Lemos, Vanessa; Zhou, Ling; Cama, Vitaliano; da Cunha, Margarida Barão; Matos, Olga; Antunes, Francisco

    2005-09-01

    The presence of Cryptosporidium parasites in mammals and reptiles kept at the Lisbon Zoo was investigated. A total of 274 stool samples were collected from 100 mammals and 29 reptiles. The species and genotype of the isolates identified by light microscopy were determined by nested PCR and sequence analysis of a fragment of the small subunit rRNA gene. Cryptosporidium oocysts were found in one black wildebeest (Connochaetes gnou), one Prairie bison (Bison bison bison) and in one Indian star tortoise (Geochelone elegans). The PCR and sequence analysis of these three isolates showed that those excreted by the Prairie bison were Cryptosporidium mouse genotype, those from the black wildebeest were from a new Cryptosporidium genotype and those infecting the Indian star tortoise were Cryptosporidium tortoise genotype. The present work reports a new Cryptosporidium genotype in a black wildebeest and the first finding of the Cryptosporidium mouse genotype in a ruminant.

  4. Exploring conservation discourses in the Galapagos Islands: A case study of the Galapagos giant tortoises.

    PubMed

    Benitez-Capistros, Francisco; Hugé, Jean; Dahdouh-Guebas, Farid; Koedam, Nico

    2016-10-01

    Conservation discourses change rapidly both at global and local scales. To be able to capture these shifts and the relationships between humans and nature, we focused on a local and iconic conservation case: the Galapagos giant tortoises (Chelonoidis spp.). We used the Q methodology to contextualize conservation for science and decision making and to explore the multidimensionality of the conservation concept in Galapagos. The results indicate four prevailing discourses: (1) Multi-actor governance; (2) giant tortoise and ecosystems conservation; (3) community governance; and (4) market and tourism centred. These findings allow us to identify foreseeable points of disagreement, as well as areas of consensus, and to discuss the implication of the findings to address socio-ecological conservation and sustainability challenges. This can help the different involved stakeholders (managers, scientists and local communities) to the design and apply contextualized conservation actions and policies to contribute to a better sustainable management of the archipelago.

  5. Simple method for culture of peripheral blood lymphocytes of Testudinidae.

    PubMed

    Silva, T L; Silva, M I A; Venancio, L P R; Zago, C E S; Moscheta, V A G; Lima, A V B; Vizotto, L D; Santos, J R; Bonini-Domingos, C R; Azeredo-Oliveira, M T V

    2011-12-06

    We developed and optimized a simple, efficient and inexpensive method for in vitro culture of peripheral blood lymphocytes from the Brazilian tortoise Chelonoidis carbonaria (Testudinidae), testing various parameters, including culture medium, mitogen concentration, mitotic index, culture volume, incubation time, and mitotic arrest. Peripheral blood samples were obtained from the costal vein of four couples. The conditions that gave a good mitotic index were lymphocytes cultured at 37°C in minimum essential medium (7.5 mL), with phytohemagglutinin as a mitogen (0.375 mL), plus streptomycin/penicillin (0.1 mL), and an incubation period of 72 h. Mitotic arrest was induced by 2-h exposure to colchicine (0.1 mL), 70 h after establishing the culture. After mitotic arrest, the cells were hypotonized with 0.075 M KCl for 2 h and fixed with methanol/acetic acid (3:1). The non-banded mitotic chromosomes were visualized by Giemsa staining. The diploid chromosome number of C. carbonaria was found to be 52 in females and males, and sex chromosomes were not observed. We were able to culture peripheral blood lymphocytes of a Brazilian tortoise in vitro, for the preparation of mitotic chromosomes.

  6. New tick records in Rondônia, Western Brazilian Amazon.

    PubMed

    Labruna, Marcelo Bahia; Barbieri, Fábio Silva; Martins, Thiago Fernandes; Brito, Luciana Gatto; Ribeiro, Francisco Dimas Sales

    2010-01-01

    In the present study, we provide new tick records from Vilhena Municipality, in the Southeast of the State of Rondônia, Northern Brazil. Ticks collected from a capybara, Hydrochoerus hydrochaeris (Linnaeus), were identified as Amblyomma romitii Tonelli-Rondelli (1 female), and Amblyomma sp. (1 larva). Ticks collected from a harpy eagle, Harpia harpyja (Linnaeus), were identified as Amblyomma cajennense (Fabricius) (16 nymphs) and Haemaphysalis juxtakochi Cooley (1 nymph). Ticks collected from a yellow-footed tortoise, Chelonoidis denticulada (Linnaeus), were identified as Amblyomma rotundatum Koch (10 females, 2 nymphs), and Amblyomma sp. (2 larvae). The present record of A. romitii is the first in the State of Rondônia, and represents the southernmost record for this tick species, indicating that its distribution area is much larger than currently recognized. Although both A. cajennense and H. juxtakochi have been reported parasitizing various bird species, we provide the first tick records on a harpy eagle. A. rotundatum is widespread in the State of Rondônia, and has been previously reported on the yellow-footed tortoise. The present records increase the tick fauna of Rondônia to 26 species.

  7. Lineage fusion in Galápagos giant tortoises.

    PubMed

    Garrick, Ryan C; Benavides, Edgar; Russello, Michael A; Hyseni, Chaz; Edwards, Danielle L; Gibbs, James P; Tapia, Washington; Ciofi, Claudio; Caccone, Adalgisa

    2014-11-01

    Although many classic radiations on islands are thought to be the result of repeated lineage splitting, the role of past fusion is rarely known because during these events, purebreds are rapidly replaced by a swarm of admixed individuals. Here, we capture lineage fusion in action in a Galápagos giant tortoise species, Chelonoidis becki, from Wolf Volcano (Isabela Island). The long generation time of Galápagos tortoises and dense sampling (841 individuals) of genetic and demographic data were integral in detecting and characterizing this phenomenon. In C. becki, we identified two genetically distinct, morphologically cryptic lineages. Historical reconstructions show that they colonized Wolf Volcano from Santiago Island in two temporally separated events, the first estimated to have occurred ~199 000 years ago. Following arrival of the second wave of colonists, both lineages coexisted for approximately ~53 000 years. Within that time, they began fusing back together, as microsatellite data reveal widespread introgressive hybridization. Interestingly, greater mate selectivity seems to be exhibited by purebred females of one of the lineages. Forward-in-time simulations predict rapid extinction of the early arriving lineage. This study provides a rare example of reticulate evolution in action and underscores the power of population genetics for understanding the past, present and future consequences of evolutionary phenomena associated with lineage fusion. © 2014 John Wiley & Sons Ltd.

  8. Exceptionally well preserved late Quaternary plant and vertebrate fossils from a blue hole on Abaco, The Bahamas.

    PubMed

    Steadman, David W; Franz, Richard; Morgan, Gary S; Albury, Nancy A; Kakuk, Brian; Broad, Kenneth; Franz, Shelley E; Tinker, Keith; Pateman, Michael P; Lott, Terry A; Jarzen, David M; Dilcher, David L

    2007-12-11

    We report Quaternary vertebrate and plant fossils from Sawmill Sink, a "blue hole" (a water-filled sinkhole) on Great Abaco Island, The Bahamas. The fossils are well preserved because of deposition in anoxic salt water. Vertebrate fossils from peat on the talus cone are radiocarbon-dated from approximately 4,200 to 1,000 cal BP (Late Holocene). The peat produced skeletons of two extinct species (tortoise Chelonoidis undescribed sp. and Caracara Caracara creightoni) and two extant species no longer in The Bahamas (Cuban crocodile, Crocodylus rhombifer; and Cooper's or Gundlach's Hawk, Accipiter cooperii or Accipiter gundlachii). A different, inorganic bone deposit on a limestone ledge in Sawmill Sink is a Late Pleistocene owl roost that features lizards (one species), snakes (three species), birds (25 species), and bats (four species). The owl roost fauna includes Rallus undescribed sp. (extinct; the first Bahamian flightless rail) and four other locally extinct species of birds (Cooper's/Gundlach's Hawk, A. cooperii/gundlachii; flicker Colaptes sp.; Cave Swallow, Petrochelidon fulva; and Eastern Meadowlark, Sturnella magna) and mammals (Bahamian hutia, Geocapromys ingrahami; and a bat, Myotis sp.). The exquisitely preserved fossils from Sawmill Sink suggest a grassy pineland as the dominant plant community on Abaco in the Late Pleistocene, with a heavier component of coppice (tropical dry evergreen forest) in the Late Holocene. Important in its own right, this information also will help biologists and government planners to develop conservation programs in The Bahamas that consider long-term ecological and cultural processes.

  9. Phylogeography and history of giant Galápagos tortoises

    USGS Publications Warehouse

    Caccone, A.; Gentile, G.; Gibbs, J.P.; Fritts, T.H.; Snell, H.L.; Betts, J.; Powell, J.R.

    2002-01-01

    We examined the phylogeography and history of giant Galápagos tortoise populations based on mitochondrial DNA sequence data from 161 individuals from 21 sampling sites representing the 11 currently recognized extant taxa. Molecular clock and geological considerations indicate a founding of the monophyletic Galápagos lineage around 2–3 million years ago, which would allow for all the diversification to have occurred on extant islands. Founding events generally occurred from geologically older to younger islands with some islands colonized more than once. Six of the 11 named taxa can be associated with monophyletic maternal lineages. One, Geochelone porteri on Santa Cruz Island, consists of two distinct populations connected by the deepest node in the archipelago-wide phylogeny, whereas tortoises in northwest Santa Cruz are closely related to those on adjacent Pinzón Island. Volcan Wolf, the northernmost volcano of Isabela Island, consists of both a unique set of maternal lineages and recent migrants from other islands, indicating multiple colonizations possibly due to human transport or multiple colonization and partial elimination through competition. These genetic findings are consistent with the mixed morphology of tortoises on this volcano. No clear genetic differentiation between two taxa on the two southernmost volcanoes of Isabela was evident. Extinction of crucial populations by human activities confounds whether domed versus saddleback carapaces of different populations are mono- or polyphyletic. Our findings revealed a complex phylogeography and history for this tortoise radiation within an insular environment and have implications for efforts to conserve these endangered biological treasures.

  10. Morphological, ultrastructural, and molecular characterization of intestinal tetratrichomonads isolated from non-human primates in southeastern Brazil.

    PubMed

    Dos Santos, Caroline Spitz; de Jesus, Vera Lúcia Teixeira; McIntosh, Douglas; Carreiro, Caroline Cunha; Batista, Lilian Cristina Oliveira; do Bomfim Lopes, Bruno; Neves, Daniel Marchesi; Lopes, Carlos Wilson Gomes

    2017-09-01

    Non-human primates are our closest relatives and represent an interesting model for comparative parasitological studies. However, research on this topic particularly in relation to intestinal parasites has been fragmentary and limited mainly to animals held in captivity. Thus, our knowledge of host-parasite relationships in this species-rich group of mammals could be considered rudimentary. The current study combined morphological, ultrastructural, and molecular analyses to characterize isolates of intestinal tetratrichomonads recovered from the feces of three species of South American, non-human primates. Fecal samples were collected from 16 animals, representing 12 distinct species. Parabasalid-like organisms were evident in five samples (31%) of feces: two from Alouatta sara, two from Callithrix penicillata, and one from Sapajus apella. The five samples presented morphologies consistent with the description of Tetratrichomonas sp., with four anterior flagella of unequal length, a well-developed undulating membrane, and a long recurrent flagellum. Sequencing of the ITS1-5.8S rRNA-ITS2 region demonstrated that the isolates from A. sara, and C. penicillata were closely related and highly similar to isolates of Tetratrichomonas brumpti, recovered previously from tortoises (Geochelone sp.). The flagellate recovered from S. apella demonstrated a similar morphology to those of the other isolates, however, sequence analysis showed it to be identical to an isolate of Tetratrichomonas sp. recovered from white-lipped peccaries (Tayassu pecari). The findings of this study extend and enhance our knowledge of parasitism of non-human primates by members of the genus Tetratrichomonas and indicate that the host range of these parasites is broader than previously believed.

  11. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change

    PubMed Central

    Blake, Stephen; Soultan, Alaaeldin; Guézou, Anne; Cabrera, Fredy; Lötters, Stefan

    2017-01-01

    Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of ‘wasted’ seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of “wasted” seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities. PMID:28727747

  12. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change.

    PubMed

    Ellis-Soto, Diego; Blake, Stephen; Soultan, Alaaeldin; Guézou, Anne; Cabrera, Fredy; Lötters, Stefan

    2017-01-01

    Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of 'wasted' seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of "wasted" seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities.

  13. Historical DNA analysis reveals living descendants of an extinct species of Galápagos tortoise

    PubMed Central

    Poulakakis, Nikos; Glaberman, Scott; Russello, Michael; Beheregaray, Luciano B.; Ciofi, Claudio; Powell, Jeffrey R.; Caccone, Adalgisa

    2008-01-01

    Giant tortoises, a prominent symbol of the Galápagos archipelago, illustrate the influence of geological history and natural selection on the diversification of organisms. Because of heavy human exploitation, 4 of the 15 known species (Geochelone spp.) have disappeared. Charles Darwin himself detailed the intense harvesting of one species, G. elephantopus, which once was endemic to the island of Floreana. This species was believed to have been exterminated within 15 years of Darwin's historic visit to the Galápagos in 1835. The application of modern DNA techniques to museum specimens combined with long-term study of a system creates new opportunities for identifying the living remnants of extinct taxa in the wild. Here, we use mitochondrial DNA and microsatellite data obtained from museum specimens to show that the population on Floreana was evolutionarily distinct from all other Galápagos tortoise populations. It was demonstrated that some living individuals on the nearby island of Isabela are genetically distinct from the rest of the island's inhabitants. Surprisingly, we found that these “non-native” tortoises from Isabela are of recent Floreana ancestry and closely match the genetic data provided by the museum specimens. Thus, we show that the genetic line of G. elephantopus has not been completely extinguished and still exists in an intermixed population on Isabela. With enough individuals to commence a serious captive breeding program, this finding may help reestablish a species that was thought to have gone extinct more than a century ago and illustrates the power of long-term genetic analysis and the critical role of museum specimens in conservation biology. PMID:18809928

  14. Gopherus Agassizii (Desert Tortoise). Predation/Mountain Lions (Pre-Print)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul D. Greger and Philip A. Medica

    2009-01-01

    adult sized Mountain Lion. By comparison, a 2 year old male Mountain Lion salvaged on NTS had an upper intercanine bite width of 45 mm, and a 6 month old kitten measured 35mm respectively. The Mountain Lion (Puma concolor) is the only predator that exists in southern Nevada that could possibly have a bite with a gap between its upper canine teeth that large (Murmann et al. 2006. J. Forensic Sci. 51:846-860). The appearance of the shell remains in Figure 1A is similar to that depicting Jaguar (Panthera onca) predation, on the Amazonian Tortoise (Geochelone denticulata) as illustrated by Emmons (1989. J. Herpetol. 23:311-314) with the majority of the carapace broken open and the plastron still intact. Predation of Desert Tortoises by Mountain Lions was also documented in 1993 in southern Arizona (Little Shipp Wash Plot), where 7 of 8 carcasses found were attributed to Mountain Lion predation (Averill-Murray et al. 2002. In. T.R.Van Devender [ed.], The Sonoran Desert Tortoise: Natural History, Biology, and Conservation, pp.109-134. University of Arizona Press and Arizona-Sonora Desert Museum, Tucson, Arizona). Similarly, predation by a Mountain Lion has been reported on the Argentine Tortoise (Chelonoidis chilensis) in Argentina (Acosta et al. 2004. Herpetol. Review 35:53-54), and a Mountain Lion kitten was observed to kill and consume a portion of the carapace of a Texas Tortoise (Gopherus berlandieri) in west Texas (Adams et al. 2006. Southwestern Nat. 51:581-581). Over the past 45 years this Desert Tortoise population has been monitored yearly, with no prior evidence of predation to tortoises within the fenced enclosures. On several occasions other predators such as Bobcats (Lynx rufus) have been observed within the study enclosures for as long as a week. Evidence of Kit Fox (Vulpes macrotus) sign has been observed on numerous occasions, and a Spotted Skunk (Spilogale putorius) and Longtail Weasels (Mustela frenata) have been captured and released (B.G. Maza, pers. comm

  15. Allometric and temporal scaling of movement characteristics in Galapagos tortoises

    USGS Publications Warehouse

    Bastille-Rousseau, Guillaume; Yackulic, Charles B.; Frair, Jacqueline L.; Cabrera, Freddy; Blake, Stephen

    2016-01-01

    Understanding how individual movement scales with body size is of fundamental importance in predicting ecological relationships for diverse species. One-dimensional movement metrics scale consistently with body size yet vary over different temporal scales. Knowing how temporal scale influences the relationship between animal body size and movement would better inform hypotheses about the efficiency of foraging behaviour, the ontogeny of energy budgets, and numerous life-history trade-offs.We investigated how the temporal scaling of allometric patterns in movement varies over the course of a year, specifically during periods of motivated (directional and fast movement) and unmotivated (stationary and tortuous movement) behaviour. We focused on a recently diverged group of species that displays wide variation in movement behaviour – giant Galapagos tortoises (Chelonoidis spp.) – to test how movement metrics estimated on a monthly basis scaled with body size.We used state-space modelling to estimate seven different movement metrics of Galapagos tortoises. We used log-log regression of the power law to evaluate allometric scaling for these movement metrics and contrasted relationships by species and sex.Allometric scaling of movement was more apparent during motivated periods of movement. During this period, allometry was revealed at multiple temporal intervals (hourly, daily and monthly), with values observed at daily and monthly intervals corresponding most closely to the expected one-fourth scaling coefficient, albeit with wide credible intervals. We further detected differences in the magnitude of scaling among taxa uncoupled from observed differences in the temporal structuring of their movement rates.Our results indicate that the definition of temporal scales is fundamental to the detection of allometry of movement and should be given more attention in movement studies. Our approach not only provides new conceptual insights into temporal attributes in one

  16. Demographic outcomes and ecosystem implications of giant tortoise reintroduction to Española Island, Galapagos.

    PubMed

    Gibbs, James P; Hunter, Elizabeth A; Shoemaker, Kevin T; Tapia, Washington H; Cayot, Linda J

    2014-01-01

    Restoration of extirpated species via captive breeding has typically relied on population viability as the primary criterion for evaluating success. This criterion is inadequate when species reintroduction is undertaken to restore ecological functions and interactions. Herein we report on the demographic and ecological outcomes of a five-decade-long population restoration program for a critically endangered species of "ecosystem engineer": the endemic Española giant Galapagos tortoise (Chelonoidis hoodensis). Our analysis of complementary datasets on tortoise demography and movement, tortoise-plant interactions and Española Island's vegetation history indicated that the repatriated tortoise population is secure from a strictly demographic perspective: about half of tortoises released on the island since 1975 were still alive in 2007, in situ reproduction is now significant, and future extinction risk is low with or without continued repatriation. Declining survival rates, somatic growth rates, and body condition of repatriates suggests, however, that resources for continued population growth are increasingly limited. Soil stable carbon isotope analyses indicated a pronounced shift toward woody plants in the recent history of the island's plant community, likely a legacy of changes in competitive relations between woody and herbaceous plants induced by now-eradicated feral goats and prolonged absence of tortoises. Woody plants are of concern because they block tortoise movement and hinder recruitment of cactus--a critical resource for tortoises. Tortoises restrict themselves to remnant cactus patches and areas of low woody plant density in the center of the island despite an apparent capacity to colonize a far greater range, likely because of a lack of cactus elsewhere on the island. We conclude that ecosystem-level criteria for success of species reintroduction efforts take much longer to achieve than population-level criteria; moreover, reinstatement of

  17. Animal movement in the absence of predation: environmental drivers of movement strategies in a partial migration system

    USGS Publications Warehouse

    Bastille-Rousseau, Guillaume; Gibbs, James P.; Yackulic, Charles B.; Frair, Jacqueline L.; Cabrera, Fredy; Rousseau, Louis-Philippe

    2016-01-01

    Animal movement strategies including migration, dispersal, nomadism, and residency are shaped by broad-scale spatial-temporal structuring of the environment, including factors such as the degrees of spatial variation, seasonality and inter-annual predictability. Animal movement strategies, in turn, interact with the characteristics of individuals and the local distribution of resources to determine local patterns of resource selection with complex and poorly understood implications for animal fitness. Here we present a multi-scale investigation of animal movement strategies and resource selection. We consider the degree to which spatial variation, seasonality, and inter-annual predictability in resources drive migration patterns among different taxa and how movement strategies in turn shape local resource selection patterns. We focus on adult Galapagos giant tortoises Chelonoidis spp. as a model system since they display many movement strategies and evolved in the absence of predators of adults. Specifically, our analysis is based on 63 individuals among four taxa tracked on three islands over six years and almost 106 tortoise re-locations. Tortoises displayed a continuum of movement strategies from migration to sedentarism that were linked to the spatio-temporal scale and predictability of resource distributions. Movement strategies shaped patterns of resource selection. Specifically, migratory individuals displayed stronger selection toward areas where resources were more predictable among years than did non-migratory individuals, which indicates a selective advantage for migrants in seasonally structured, more predictable environments. Our analytical framework combines large-scale predictions for movement strategies, based on environmental structuring, with finer-scale analysis of space-use. Integrating different organizational levels of analysis provides a deeper understanding of the eco-evolutionary dynamics at play in the emergence and maintenance of

  18. Equivalency of Galápagos giant tortoises used as ecological replacement species to restore ecosystem functions.

    PubMed

    Hunter, Elizabeth A; Gibbs, James P; Cayot, Linda J; Tapia, Washington

    2013-08-01

    Loss of key plant-animal interactions (e.g., disturbance, seed dispersal, and herbivory) due to extinctions of large herbivores has diminished ecosystem functioning nearly worldwide. Mitigating for the ecological consequences of large herbivore losses through the use of ecological replacements to fill extinct species' niches and thereby replicate missing ecological functions has been proposed. It is unknown how different morphologically and ecologically a replacement can be from the extinct species and still provide similar functions. We studied niche equivalency between 2 phenotypes of Galápagos giant tortoises (domed and saddlebacked) that were translocated to Pinta Island in the Galápagos Archipelago as ecological replacements for the extinct saddlebacked giant tortoise (Chelonoidis abingdonii). Thirty-nine adult, nonreproductive tortoises were introduced to Pinta Island in May 2010, and we observed tortoise resource use in relation to phenotype during the first year following release. Domed tortoises settled in higher, moister elevations than saddlebacked tortoises, which favored lower elevation arid zones. The areas where the tortoises settled are consistent with the ecological conditions each phenotype occupies in its native range. Saddlebacked tortoises selected areas with high densities of the arboreal prickly pear cactus (Opuntia galapageia) and mostly foraged on the cactus, which likely relied on the extinct saddlebacked Pinta tortoise for seed dispersal. In contrast, domed tortoises did not select areas with cactus and therefore would not provide the same seed-dispersal functions for the cactus as the introduced or the original, now extinct, saddlebacked tortoises. Interchangeability of extant megaherbivores as replacements for extinct forms therefore should be scrutinized given the lack of equivalency we observed in closely related forms of giant tortoises. Our results also demonstrate the value of trial introductions of sterilized individuals to test

  19. Naturally rare versus newly rare: demographic inferences on two timescales inform conservation of Galápagos giant tortoises

    PubMed Central

    Garrick, Ryan C; Kajdacsi, Brittney; Russello, Michael A; Benavides, Edgar; Hyseni, Chaz; Gibbs, James P; Tapia, Washington; Caccone, Adalgisa

    2015-01-01

    Long-term population history can influence the genetic effects of recent bottlenecks. Therefore, for threatened or endangered species, an understanding of the past is relevant when formulating conservation strategies. Levels of variation at neutral markers have been useful for estimating local effective population sizes (Ne) and inferring whether population sizes increased or decreased over time. Furthermore, analyses of genotypic, allelic frequency, and phylogenetic information can potentially be used to separate historical from recent demographic changes. For 15 populations of Galápagos giant tortoises (Chelonoidis sp.), we used 12 microsatellite loci and DNA sequences from the mitochondrial control region and a nuclear intron, to reconstruct demographic history on shallow (past ∽100 generations, ∽2500 years) and deep (pre-Holocene, >10 thousand years ago) timescales. At the deep timescale, three populations showed strong signals of growth, but with different magnitudes and timing, indicating different underlying causes. Furthermore, estimated historical Ne of populations across the archipelago showed no correlation with island age or size, underscoring the complexity of predicting demographic history a priori. At the shallow timescale, all populations carried some signature of a genetic bottleneck, and for 12 populations, point estimates of contemporary Ne were very small (i.e., < 50). On the basis of the comparison of these genetic estimates with published census size data, Ne generally represented ∽0.16 of the census size. However, the variance in this ratio across populations was considerable. Overall, our data suggest that idiosyncratic and geographically localized forces shaped the demographic history of tortoise populations. Furthermore, from a conservation perspective, the separation of demographic events occurring on shallow versus deep timescales permits the identification of naturally rare versus newly rare populations; this distinction should

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parham, James F.; Macey, J. Robert; Papenfuss, Theodore J.

    As part of an ongoing project to generate a mitochondrial database for terrestrial tortoises based on museum specimens, the complete mitochondrial genome sequences of 10 species and a {approx}14 kb sequence from an eleventh species are reported. The sampling of the present study emphasizes Mediterranean tortoises (genus Testudo and their close relatives). Our new sequences are aligned, along with those of two testudinoid turtles from GenBank, Chrysemys picta and Mauremys reevesii, yielding an alignment of 14,858 positions, of which 3,238 are parsimony informative. We develop a phylogenetic taxonomy for Testudo and related species based on well-supported, diagnosable clades. Several well-supportedmore » nodes are recovered, including the monophyly of a restricted Testudo, T. kleinmanni + T. marginata (the Chersus clade), and the placement of the enigmatic African pancake tortoise (Malacochersustornieri) within the predominantly Palearctic greater Testudo group (Testudona tax. nov.). Despite the large amount of sequence reported, there is low statistical support for some nodes within Testudona and Sowe do not propose names for those groups. A preliminary and conservative estimation of divergence times implies a late Miocene diversification for the testudonan clade (6-12 million years ago), matching their first appearance in the fossil record. The multi-continental distribution of testudonan turtles can be explained by the establishment of permanent connections between Europe, Africa, and Asia at this time. The arrival of testudonan turtles to Africa occurred after one or more initial tortoise invasions gave rise to the diverse (>25 species) 'Geochelone complex.'Two unusual genomic features are reported for the mtDNA of one tortoise, M. tornieri: (1) nad4 has a shift of reading frame that we suggest is resolved by translational frameshifting of the mRNA on the ribosome during protein synthesis and (2) there are two copies of the control region and trnF, with the

  1. Carriage of antibiotic-resistant enteric bacteria varies among sites in Galapagos reptiles.

    PubMed

    Wheeler, Emily; Hong, Pei-Ying; Bedon, Lenin Cruz; Mackie, Roderick I

    2012-01-01

    Increased overlap between humans and wildlife populations has increased the risk for novel disease emergence. Detecting contacts with a high risk for transmission of pathogens requires the identification of dependable measures of microbial exchange. We evaluated antibiotic resistance as a molecular marker for the intensity of human-wildlife microbial connectivity in the Galápagos Islands. We isolated Escherichia coli and Salmonella enterica from the feces of land iguanas (Conolophus sp.), marine iguanas (Amblyrhynchus cristatus), giant tortoises (Geochelone nigra), and seawater, and tested these bacteria with the use of the disk diffusion method for resistance to 10 antibiotics. Antibiotic-resistant bacteria were found in reptile feces from two tourism sites (Isla Plaza Sur and La Galapaguera on Isla San Cristóbal) and from seawater close to a public use beach near Puerto Baquerizo Moreno on Isla San Cristóbal. No resistance was detected at two protected beaches on more isolated islands (El Miedo on Isla Santa Fe and Cape Douglas on Isla Fernandina) and at a coastal tourism site (La Lobería on Isla San Cristóbal). Eighteen E. coli isolates from three locations, all sites relatively proximate to a port town, were resistant to ampicillin, doxycycline, tetracycline, and trimethoprin/sulfamethoxazole. In contrast, only five S. enterica isolates showed a mild decrease in susceptibility to doxycycline and tetracycline from these same sites (i.e., an intermediate resistance phenotype), but no clinical resistance was detected in this bacterial species. These findings suggest that reptiles living in closer proximity to humans potentially have higher exposure to bacteria of human origin; however, it is not clear from this study to what extent this potential exposure translates to ongoing exchange of bacterial strains or genetic traits. Resistance patterns and bacterial exchange in this system warrant further investigation to understand better how human associations

  2. DNA from the Past Informs Ex Situ Conservation for the Future: An “Extinct” Species of Galápagos Tortoise Identified in Captivity

    PubMed Central

    Russello, Michael A.; Poulakakis, Nikos; Gibbs, James P.; Tapia, Washington; Benavides, Edgar; Powell, Jeffrey R.; Caccone, Adalgisa

    2010-01-01

    Background Although not unusual to find captive relicts of species lost in the wild, rarely are presumed extinct species rediscovered outside of their native range. A recent study detected living descendents of an extinct Galápagos tortoise species (Chelonoidis elephantopus) once endemic to Floreana Island on the neighboring island of Isabela. This finding adds to the growing cryptic diversity detected among these species in the wild. There also exists a large number of Galápagos tortoises in captivity of ambiguous origin. The recently accumulated population-level haplotypic and genotypic data now available for C. elephantopus add a critical reference population to the existing database of 11 extant species for investigating the origin of captive individuals of unknown ancestry. Methodology/Findings We reanalyzed mitochondrial DNA control region haplotypes and microsatellite genotypes of 156 captive individuals using an expanded reference database that included all extant Galápagos tortoise species as well as the extinct species from Floreana. Nine individuals (six females and three males) exhibited strong signatures of Floreana ancestry and a high probability of assignment to C. elephantopus as detected by Bayesian assignment and clustering analyses of empirical and simulated data. One male with high assignment probability to C. elephantopus based on microsatellite genotypic data also possessed a “Floreana-like” mitochondrial DNA haplotype. Significance Historical DNA analysis of museum specimens has provided critical spatial and temporal components to ecological, evolutionary, taxonomic and conservation-related research, but rarely has it informed ex situ species recovery efforts. Here, the availability of population-level genotypic data from the extinct C. elephantopus enabled the identification of nine Galápagos tortoise individuals of substantial conservation value that were previously misassigned to extant species of varying conservation status. As

  3. Applying network theory to animal movements to identify properties of landscape space use.

    PubMed

    Bastille-Rousseau, Guillaume; Douglas-Hamilton, Iain; Blake, Stephen; Northrup, Joseph M; Wittemyer, George

    2018-04-01

    Network (graph) theory is a popular analytical framework to characterize the structure and dynamics among discrete objects and is particularly effective at identifying critical hubs and patterns of connectivity. The identification of such attributes is a fundamental objective of animal movement research, yet network theory has rarely been applied directly to animal relocation data. We develop an approach that allows the analysis of movement data using network theory by defining occupied pixels as nodes and connection among these pixels as edges. We first quantify node-level (local) metrics and graph-level (system) metrics on simulated movement trajectories to assess the ability of these metrics to pull out known properties in movement paths. We then apply our framework to empirical data from African elephants (Loxodonta africana), giant Galapagos tortoises (Chelonoidis spp.), and mule deer (Odocoileous hemionus). Our results indicate that certain node-level metrics, namely degree, weight, and betweenness, perform well in capturing local patterns of space use, such as the definition of core areas and paths used for inter-patch movement. These metrics were generally applicable across data sets, indicating their robustness to assumptions structuring analysis or strategies of movement. Other metrics capture local patterns effectively, but were sensitive to specified graph properties, indicating case specific applications. Our analysis indicates that graph-level metrics are unlikely to outperform other approaches for the categorization of general movement strategies (central place foraging, migration, nomadism). By identifying critical nodes, our approach provides a robust quantitative framework to identify local properties of space use that can be used to evaluate the effect of the loss of specific nodes on range wide connectivity. Our network approach is intuitive, and can be implemented across imperfectly sampled or large-scale data sets efficiently, providing a

  4. Allometric and temporal scaling of movement characteristics in Galapagos tortoises.

    PubMed

    Bastille-Rousseau, Guillaume; Yackulic, Charles B; Frair, Jacqueline L; Cabrera, Freddy; Blake, Stephen

    2016-09-01

    Understanding how individual movement scales with body size is of fundamental importance in predicting ecological relationships for diverse species. One-dimensional movement metrics scale consistently with body size yet vary over different temporal scales. Knowing how temporal scale influences the relationship between animal body size and movement would better inform hypotheses about the efficiency of foraging behaviour, the ontogeny of energy budgets, and numerous life-history trade-offs. We investigated how the temporal scaling of allometric patterns in movement varies over the course of a year, specifically during periods of motivated (directional and fast movement) and unmotivated (stationary and tortuous movement) behaviour. We focused on a recently diverged group of species that displays wide variation in movement behaviour - giant Galapagos tortoises (Chelonoidis spp.) - to test how movement metrics estimated on a monthly basis scaled with body size. We used state-space modelling to estimate seven different movement metrics of Galapagos tortoises. We used log-log regression of the power law to evaluate allometric scaling for these movement metrics and contrasted relationships by species and sex. Allometric scaling of movement was more apparent during motivated periods of movement. During this period, allometry was revealed at multiple temporal intervals (hourly, daily and monthly), with values observed at daily and monthly intervals corresponding most closely to the expected one-fourth scaling coefficient, albeit with wide credible intervals. We further detected differences in the magnitude of scaling among taxa uncoupled from observed differences in the temporal structuring of their movement rates. Our results indicate that the definition of temporal scales is fundamental to the detection of allometry of movement and should be given more attention in movement studies. Our approach not only provides new conceptual insights into temporal attributes in one

  5. Curious creatures: a multi-taxa investigation of responses to novelty in a zoo environment.

    PubMed

    Hall, Belinda A; Melfi, Vicky; Burns, Alicia; McGill, David M; Doyle, Rebecca E

    2018-01-01

    The personality trait of curiosity has been shown to increase welfare in humans. If this positive welfare effect is also true for non-humans, animals with high levels of curiosity may be able to cope better with stressful situations than their conspecifics. Before discoveries can be made regarding the effect of curiosity on an animal's ability to cope in their environment, a way of measuring curiosity across species in different environments must be created to standardise testing. To determine the suitability of novel objects in testing curiosity, species from different evolutionary backgrounds with sufficient sample sizes were chosen. Barbary sheep ( Ammotragus lervia) n  = 12, little penguins ( Eudyptula minor) n  = 10, ringtail lemurs ( Lemur catta) n  = 8 , red tailed black cockatoos ( Calyptorhynchus banksia) n  = 7, Indian star tortoises ( Geochelone elegans) n  = 5 and red kangaroos ( Macropus rufus) n  = 5 were presented with a stationary object, a moving object and a mirror. Having objects with different characteristics increased the likelihood individuals would find at least one motivating. Conspecifics were all assessed simultaneously for time to first orientate towards object (s), latency to make contact (s), frequency of interactions, and total duration of interaction (s). Differences in curiosity were recorded in four of the six species; the Barbary sheep and red tailed black cockatoos did not interact with the novel objects suggesting either a low level of curiosity or that the objects were not motivating for these animals. Variation in curiosity was seen between and within species in terms of which objects they interacted with and how long they spent with the objects. This was determined by the speed in which they interacted, and the duration of interest. By using the measure of curiosity towards novel objects with varying characteristics across a range of zoo species, we can see evidence of evolutionary, husbandry and individual

  6. Curious creatures: a multi-taxa investigation of responses to novelty in a zoo environment

    PubMed Central

    Melfi, Vicky; Burns, Alicia; McGill, David M.; Doyle, Rebecca E.

    2018-01-01

    The personality trait of curiosity has been shown to increase welfare in humans. If this positive welfare effect is also true for non-humans, animals with high levels of curiosity may be able to cope better with stressful situations than their conspecifics. Before discoveries can be made regarding the effect of curiosity on an animal’s ability to cope in their environment, a way of measuring curiosity across species in different environments must be created to standardise testing. To determine the suitability of novel objects in testing curiosity, species from different evolutionary backgrounds with sufficient sample sizes were chosen. Barbary sheep (Ammotragus lervia) n = 12, little penguins (Eudyptula minor) n = 10, ringtail lemurs (Lemur catta) n = 8, red tailed black cockatoos (Calyptorhynchus banksia) n = 7, Indian star tortoises (Geochelone elegans) n = 5 and red kangaroos (Macropus rufus) n = 5 were presented with a stationary object, a moving object and a mirror. Having objects with different characteristics increased the likelihood individuals would find at least one motivating. Conspecifics were all assessed simultaneously for time to first orientate towards object (s), latency to make contact (s), frequency of interactions, and total duration of interaction (s). Differences in curiosity were recorded in four of the six species; the Barbary sheep and red tailed black cockatoos did not interact with the novel objects suggesting either a low level of curiosity or that the objects were not motivating for these animals. Variation in curiosity was seen between and within species in terms of which objects they interacted with and how long they spent with the objects. This was determined by the speed in which they interacted, and the duration of interest. By using the measure of curiosity towards novel objects with varying characteristics across a range of zoo species, we can see evidence of evolutionary, husbandry and individual influences on

  7. Palaeohydrology, vegetation, and climate since the late Illinois Episode (~130 ka) in south-central Illinois

    USGS Publications Warehouse

    Curry, B. Brandon; Baker, R.G.

    2000-01-01

    marine oxygen isotope stages 5e and 5c. Associated with the transition between the first two climates are fossils of the subtropical ostracode Heterocypris punctata and the giant tortoise Geochelone crassiscutata that suggest short periods in winter when polar low-pressure systems did not extend into Illinois as they do today. (3) The third climatic regime occurred during the transition from the Sangamon interglacial episode to the Wisconsin glacial episode. A severely continental climate is indicated by the heat-tolerant ostracode Pelocypris tuberculatum, variable ??18O values of ostracode valves, and high environmental tolerance index values for the ostracode assemblages. The weedy Chenopodiaceae and Amaranthaceae families grew on exposed mudflats. The tree pollen associated with this type of climate included low percentages of Picea and Liquidambar, an assemblage that has no modem analogue. We suggest that this transitional climatic regime was associated with the large-scale changes in the climate system during marine oxygen isotope stage 4.

  8. Thesis Abstract Morphological and phylogeographic analysis of Brazilian tortoises (Testudinidae).

    PubMed

    Silva, T L; Venancio, L P R; Bonini-Domingos, C R

    2015-12-29

    The discriminative potentials of biogeography, vocalization, morphology, cytogenetics, hemoglobin, and molecular profiling of cytochrome b as taxonomic techniques for differentiating Brazilian tortoises were evaluated in this study. In Brazil, two species of tortoises are described, Chelonoidis carbonarius and Chelonoidis denticulatus. However, in the present study, some animals that were initially recognized based on morphological characters and coloring did not correspond to the typical pattern of C. carbonarius; these animals were classified as morphotypes 1 and 2. It was proposed that these morphotypes are differentiated species, and they should not be considered as a single taxonomic unit with C. carbonarius. Tortoises analyzed were provided by the National Institute for Amazonian Research (INPA); the Emilio Goeldi Museum, PA; municipal zoos in São José do Rio Preto, SP, and Araçatuba, SP; and the Reginaldo Uvo Leone breeding farm for Wild and Exotic Animals, Tabapuã, SP. Based on the data obtained using biogeographic evaluation of specimens in the literature, it was found that C. carbonarius is distributed in the Northeast Region of Brazil, and no animal of this pattern was observed in the investigated collections. On the other hand, C. denticulatus is found in all the states of the Legal Amazonia. In addition, isolated individual records of this species exist in the Atlantic Forest in Espírito Santo and Rio de Janeiro and in the Midwest Region composed of the states of Goiás, Mato Grosso, and Mato Grosso do Sul. In the Northeast Region, C. denticulatus occurs in the State of Bahia. Morphotype 1 has a wider geographical distribution than C. carbonarius, possibly because of several distribution reports associated with C. carbonarius, indicating erroneous association of morphotype 1 as a single taxonomic unit with C. carbonarius. Morphotype 2 is found only in the states of Pará, Maranhão, and Piauí. These biogeographic data indicate that the