Sample records for saccades smooth pursuit

  1. Role of retinal slip in the prediction of target motion during smooth and saccadic pursuit.

    PubMed

    de Brouwer, S; Missal, M; Lefèvre, P

    2001-08-01

    Visual tracking of moving targets requires the combination of smooth pursuit eye movements with catch-up saccades. In primates, catch-up saccades usually take place only during pursuit initiation because pursuit gain is close to unity. This contrasts with the lower and more variable gain of smooth pursuit in cats, where smooth eye movements are intermingled with catch-up saccades during steady-state pursuit. In this paper, we studied in detail the role of retinal slip in the prediction of target motion during smooth and saccadic pursuit in the cat. We found that the typical pattern of pursuit in the cat was a combination of smooth eye movements with saccades. During smooth pursuit initiation, there was a correlation between peak eye acceleration and target velocity. During pursuit maintenance, eye velocity oscillated at approximately 3 Hz around a steady-state value. The average gain of smooth pursuit was approximately 0.5. Trained cats were able to continue pursuing in the absence of a visible target, suggesting a role of the prediction of future target motion in this species. The analysis of catch-up saccades showed that the smooth-pursuit motor command is added to the saccadic command during catch-up saccades and that both position error and retinal slip are taken into account in their programming. The influence of retinal slip on catch-up saccades showed that prediction about future target motion is used in the programming of catch-up saccades. Altogether, these results suggest that pursuit systems in primates and cats are qualitatively similar, with a lower average gain in the cat and that prediction affects both saccades and smooth eye movements during pursuit.

  2. Adaptation of catch-up saccades during the initiation of smooth pursuit eye movements.

    PubMed

    Schütz, Alexander C; Souto, David

    2011-04-01

    Reduction of retinal speed and alignment of the line of sight are believed to be the respective primary functions of smooth pursuit and saccadic eye movements. As the eye muscles strength can change in the short-term, continuous adjustments of motor signals are required to achieve constant accuracy. While adaptation of saccade amplitude to systematic position errors has been extensively studied, we know less about the adaptive response to position errors during smooth pursuit initiation, when target motion has to be taken into account to program saccades, and when position errors at the saccade endpoint could also be corrected by increasing pursuit velocity. To study short-term adaptation (250 adaptation trials) of tracking eye movements, we introduced a position error during the first catch-up saccade made during the initiation of smooth pursuit-in a ramp-step-ramp paradigm. The target position was either shifted in the direction of the horizontally moving target (forward step), against it (backward step) or orthogonally to it (vertical step). Results indicate adaptation of catch-up saccade amplitude to back and forward steps. With vertical steps, saccades became oblique, by an inflexion of the early or late saccade trajectory. With a similar time course, post-saccadic pursuit velocity was increased in the step direction, adding further evidence that under some conditions pursuit and saccades can act synergistically to reduce position errors.

  3. Target Selection by the Frontal Cortex during Coordinated Saccadic and Smooth Pursuit Eye Movements

    ERIC Educational Resources Information Center

    Srihasam, Krishna; Bullock, Daniel; Grossberg, Stephen

    2009-01-01

    Oculomotor tracking of moving objects is an important component of visually based cognition and planning. Such tracking is achieved by a combination of saccades and smooth-pursuit eye movements. In particular, the saccadic and smooth-pursuit systems interact to often choose the same target, and to maximize its visibility through time. How do…

  4. Visual sensitivity for luminance and chromatic stimuli during the execution of smooth pursuit and saccadic eye movements.

    PubMed

    Braun, Doris I; Schütz, Alexander C; Gegenfurtner, Karl R

    2017-07-01

    Visual sensitivity is dynamically modulated by eye movements. During saccadic eye movements, sensitivity is reduced selectively for low-spatial frequency luminance stimuli and largely unaffected for high-spatial frequency luminance and chromatic stimuli (Nature 371 (1994), 511-513). During smooth pursuit eye movements, sensitivity for low-spatial frequency luminance stimuli is moderately reduced while sensitivity for chromatic and high-spatial frequency luminance stimuli is even increased (Nature Neuroscience, 11 (2008), 1211-1216). Since these effects are at least partly of different polarity, we investigated the combined effects of saccades and smooth pursuit on visual sensitivity. For the time course of chromatic sensitivity, we found that detection rates increased slightly around pursuit onset. During saccades to static and moving targets, detection rates dropped briefly before the saccade and reached a minimum at saccade onset. This reduction of chromatic sensitivity was present whenever a saccade was executed and it was not modified by subsequent pursuit. We also measured contrast sensitivity for flashed high- and low-spatial frequency luminance and chromatic stimuli during saccades and pursuit. During saccades, the reduction of contrast sensitivity was strongest for low-spatial frequency luminance stimuli (about 90%). However, a significant reduction was also present for chromatic stimuli (about 58%). Chromatic sensitivity was increased during smooth pursuit (about 12%). These results suggest that the modulation of visual sensitivity during saccades and smooth pursuit is more complex than previously assumed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Competition between color and luminance for target selection in smooth pursuit and saccadic eye movements.

    PubMed

    Spering, Miriam; Montagnini, Anna; Gegenfurtner, Karl R

    2008-11-24

    Visual processing of color and luminance for smooth pursuit and saccadic eye movements was investigated using a target selection paradigm. In two experiments, stimuli were varied along the dimensions color and luminance, and selection of the more salient target was compared in pursuit and saccades. Initial pursuit was biased in the direction of the luminance component whereas saccades showed a relative preference for color. An early pursuit response toward luminance was often reversed to color by a later saccade. Observers' perceptual judgments of stimulus salience, obtained in two control experiments, were clearly biased toward luminance. This choice bias in perceptual data implies that the initial short-latency pursuit response agrees with perceptual judgments. In contrast, saccades, which have a longer latency than pursuit, do not seem to follow the perceptual judgment of salience but instead show a stronger relative preference for color. These substantial differences in target selection imply that target selection processes for pursuit and saccadic eye movements use distinctly different weights for color and luminance stimuli.

  6. Smooth Pursuit Saccade Amplitude Modulation During Exposure to Microgravity

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Sayenko, D. G.; Sayenko, I.; Somers, J. T.; Paloski, W. H.

    2002-01-01

    Russian investigators have reported changes in pursuit tracking of a vertically moving point stimulus during space flight. Early in microgravity, changes were manifested by decreased eye movement amplitude (undershooting) and the appearance of correction saccades. As the flight progressed, pursuit of the moving point stimulus deteriorated while associated saccadic movements were unchanged. Immediately postflight there was an improved execution of active head movements indicating that the deficiencies in pursuit function noted in microgravity may be of central origin. In contrast, tests of two cosmonauts showed that horizontal and vertical smooth pursuit were unchanged inflight. However, results of corresponding saccadic tasks showed a tendency toward the overshooting of a horizontal target early inflight with high accuracy developing later inflight, accompanied by an increased saccade velocity and a trend toward decreased saccade latency. Based on these equivocal results, we have further investigated the effects of space flight on the smooth pursuit mechanism during and after short duration flight, and postflight on returning MIR crewmembers. Sinusoidal target movement was presented horizontally at frequencies of 0.33 and 1.0 Hz. Subjects were asked to perform two trials for each stimulus combination: (1) moving eyes-only (EO) and (2) moving eyes and head (EH) with the target motion. Peak amplitude was 30 deg for 0.33 Hz trials and 15 deg for the 1.0 Hz trials. The relationship between saccade amplitude and peak velocity were plotted as a main sequence for each phase of flight, and linear regression analysis allowed us to determine the slope of each main sequence plot. The linear slopes were then combined for each flight phase for each individual subject. The main sequence for both EO and EH trials at both the 0.33 and 1.0 Hz frequencies during flight for the short duration flyers showed a reduction in saccade velocity and amplitude when compared to the preflight

  7. Predictive saccade in the absence of smooth pursuit: interception of moving targets in the archer fish.

    PubMed

    Ben-Simon, Avi; Ben-Shahar, Ohad; Vasserman, Genadiy; Segev, Ronen

    2012-12-15

    Interception of fast-moving targets is a demanding task many animals solve. To handle it successfully, mammals employ both saccadic and smooth pursuit eye movements in order to confine the target to their area centralis. But how can non-mammalian vertebrates, which lack smooth pursuit, intercept moving targets? We studied this question by exploring eye movement strategies employed by archer fish, an animal that possesses an area centralis, lacks smooth pursuit eye movements, but can intercept moving targets by shooting jets of water at them. We tracked the gaze direction of fish during interception of moving targets and found that they employ saccadic eye movements based on prediction of target position when it is hit. The fish fixates on the target's initial position for ∼0.2 s from the onset of its motion, a time period used to predict whether a shot can be made before the projection of the target exits the area centralis. If the prediction indicates otherwise, the fish performs a saccade that overshoots the center of gaze beyond the present target projection on the retina, such that after the saccade the moving target remains inside the area centralis long enough to prepare and perform a shot. These results add to the growing body of knowledge on biological target tracking and may shed light on the mechanism underlying this behavior in other animals with no neural system for the generation of smooth pursuit eye movements.

  8. Quantitative analysis of catch-up saccades during sustained pursuit.

    PubMed

    de Brouwer, Sophie; Missal, Marcus; Barnes, Graham; Lefèvre, Philippe

    2002-04-01

    During visual tracking of a moving stimulus, primates orient their visual axis by combining two very different types of eye movements, smooth pursuit and saccades. The purpose of this paper was to investigate quantitatively the catch-up saccades occurring during sustained pursuit. We used a ramp-step-ramp paradigm to evoke catch-up saccades during sustained pursuit. In general, catch-up saccades followed the unexpected steps in position and velocity of the target. We observed catch-up saccades in the same direction as the smooth eye movement (forward saccades) as well as in the opposite direction (reverse saccades). We made a comparison of the main sequences of forward saccades, reverse saccades, and control saccades made to stationary targets. They were all three significantly different from each other and were fully compatible with the hypothesis that the smooth pursuit component is added to the saccadic component during catch-up saccades. A multiple linear regression analysis was performed on the saccadic component to find the parameters determining the amplitude of catch-up saccades. We found that both position error and retinal slip are taken into account in catch-up saccade programming to predict the future trajectory of the moving target. We also demonstrated that the saccadic system needs a minimum period of approximately 90 ms for taking into account changes in target trajectory. Finally, we reported a saturation (above 15 degrees /s) in the contribution of retinal slip to the amplitude of catch-up saccades.

  9. Responses of Purkinje cells in the oculomotor vermis of monkeys during smooth pursuit eye movements and saccades: comparison with floccular complex.

    PubMed

    Raghavan, Ramanujan T; Lisberger, Stephen G

    2017-08-01

    We recorded the responses of Purkinje cells in the oculomotor vermis during smooth pursuit and saccadic eye movements. Our goal was to characterize the responses in the vermis using approaches that would allow direct comparisons with responses of Purkinje cells in another cerebellar area for pursuit, the floccular complex. Simple-spike firing of vermis Purkinje cells is direction selective during both pursuit and saccades, but the preferred directions are sufficiently independent so that downstream circuits could decode signals to drive pursuit and saccades separately. Complex spikes also were direction selective during pursuit, and almost all Purkinje cells showed a peak in the probability of complex spikes during the initiation of pursuit in at least one direction. Unlike the floccular complex, the preferred directions for simple spikes and complex spikes were not opposite. The kinematics of smooth eye movement described the simple-spike responses of vermis Purkinje cells well. Sensitivities were similar to those in the floccular complex for eye position and considerably lower for eye velocity and acceleration. The kinematic relations were quite different for saccades vs. pursuit, supporting the idea that the contributions from the vermis to each kind of movement could contribute independently in downstream areas. Finally, neither the complex-spike nor the simple-spike responses of vermis Purkinje cells were appropriate to support direction learning in pursuit. Complex spikes were not triggered reliably by an instructive change in target direction; simple-spike responses showed very small amounts of learning. We conclude that the vermis plays a different role in pursuit eye movements compared with the floccular complex. NEW & NOTEWORTHY The midline oculomotor cerebellum plays a different role in smooth pursuit eye movements compared with the lateral, floccular complex and appears to be much less involved in direction learning in pursuit. The output from the

  10. Direct evidence for a position input to the smooth pursuit system.

    PubMed

    Blohm, Gunnar; Missal, Marcus; Lefèvre, Philippe

    2005-07-01

    When objects move in our environment, the orientation of the visual axis in space requires the coordination of two types of eye movements: saccades and smooth pursuit. The principal input to the saccadic system is position error, whereas it is velocity error for the smooth pursuit system. Recently, it has been shown that catch-up saccades to moving targets are triggered and programmed by using velocity error in addition to position error. Here, we show that, when a visual target is flashed during ongoing smooth pursuit, it evokes a smooth eye movement toward the flash. The velocity of this evoked smooth movement is proportional to the position error of the flash; it is neither influenced by the velocity of the ongoing smooth pursuit eye movement nor by the occurrence of a saccade, but the effect is absent if the flash is ignored by the subject. Furthermore, the response started around 85 ms after the flash presentation and decayed with an average time constant of 276 ms. Thus this is the first direct evidence of a position input to the smooth pursuit system. This study shows further evidence for a coupling between saccadic and smooth pursuit systems. It also suggests that there is an interaction between position and velocity error signals in the control of more complex movements.

  11. Short-term adaptation of saccades does not affect smooth pursuit eye movement initiation.

    PubMed

    Sun, Zongpeng; Smilgin, Aleksandra; Junker, Marc; Dicke, Peter W; Thier, Peter

    2017-08-01

    Scrutiny of the visual environment requires saccades that shift gaze to objects of interest. In case the object should be moving, smooth pursuit eye movements (SPEM) try to keep the image of the object within the confines of the fovea in order to ensure sufficient time for its analysis. Both saccades and SPEM can be adaptively changed by the experience of insufficiencies, compromising the precision of saccades or the minimization of object image slip in the case of SPEM. As both forms of adaptation rely on the cerebellar oculomotor vermis (OMV), most probably deploying a shared neuronal machinery, one might expect that the adaptation of one type of eye movement should affect the kinematics of the other. In order to test this expectation, we subjected two monkeys to a standard saccadic adaption paradigm with SPEM test trials at the end and, alternatively, the same two monkeys plus a third one to a random saccadic adaptation paradigm with interleaved trials of SPEM. In contrast to our expectation, we observed at best marginal transfer which, moreover, had little consistency across experiments and subjects. The lack of consistent transfer of saccadic adaptation decisively constrains models of the implementation of oculomotor learning in the OMV, suggesting an extensive separation of saccade- and SPEM-related synapses on P-cell dendritic trees.

  12. Neurophysiology and Neuroanatomy of Smooth Pursuit: Lesion Studies

    ERIC Educational Resources Information Center

    Sharpe, James A.

    2008-01-01

    Smooth pursuit impairment is recognized clinically by the presence of saccadic tracking of a small object and quantified by reduction in pursuit gain, the ratio of smooth eye movement velocity to the velocity of a foveal target. Correlation of the site of brain lesions, identified by imaging or neuropathological examination, with defective smooth…

  13. Gravity modulates Listing's plane orientation during both pursuit and saccades

    NASA Technical Reports Server (NTRS)

    Hess, Bernhard J M.; Angelaki, Dora E.

    2003-01-01

    Previous studies have shown that the spatial organization of all eye orientations during visually guided saccadic eye movements (Listing's plane) varies systematically as a function of static and dynamic head orientation in space. Here we tested if a similar organization also applies to the spatial orientation of eye positions during smooth pursuit eye movements. Specifically, we characterized the three-dimensional distribution of eye positions during horizontal and vertical pursuit (0.1 Hz, +/-15 degrees and 0.5 Hz, +/-8 degrees) at different eccentricities and elevations while rhesus monkeys were sitting upright or being statically tilted in different roll and pitch positions. We found that the spatial organization of eye positions during smooth pursuit depends on static orientation in space, similarly as during visually guided saccades and fixations. In support of recent modeling studies, these results are consistent with a role of gravity on defining the parameters of Listing's law.

  14. The Initiation of Smooth Pursuit is Delayed in Anisometropic Amblyopia.

    PubMed

    Raashid, Rana Arham; Liu, Ivy Ziqian; Blakeman, Alan; Goltz, Herbert C; Wong, Agnes M F

    2016-04-01

    Several behavioral studies have shown that the reaction times of visually guided movements are slower in people with amblyopia, particularly during amblyopic eye viewing. Here, we tested the hypothesis that the initiation of smooth pursuit eye movements, which are responsible for accurately keeping moving objects on the fovea, is delayed in people with anisometropic amblyopia. Eleven participants with anisometropic amblyopia and 14 visually normal observers were asked to track a step-ramp target moving at ±15°/s horizontally as quickly and as accurately as possible. The experiment was conducted under three viewing conditions: amblyopic/nondominant eye, binocular, and fellow/dominant eye viewing. Outcome measures were smooth pursuit latency, open-loop gain, steady state gain, and catch-up saccade frequency. Participants with anisometropic amblyopia initiated smooth pursuit significantly slower during amblyopic eye viewing (206 ± 20 ms) than visually normal observers viewing with their nondominant eye (183 ± 17 ms, P = 0.002). However, mean pursuit latency in the anisometropic amblyopia group during binocular and monocular fellow eye viewing was comparable to the visually normal group. Mean open-loop gain, steady state gain, and catch-up saccade frequency were similar between the two groups, but participants with anisometropic amblyopia exhibited more variable steady state gain (P = 0.045). This study provides evidence of temporally delayed smooth pursuit initiation in anisometropic amblyopia. After initiation, the smooth pursuit velocity profile in anisometropic amblyopia participants is similar to visually normal controls. This finding differs from what has been observed previously in participants with strabismic amblyopia who exhibit reduced smooth pursuit velocity gains with more catch-up saccades.

  15. The Initiation of Smooth Pursuit is Delayed in Anisometropic Amblyopia

    PubMed Central

    Raashid, Rana Arham; Liu, Ivy Ziqian; Blakeman, Alan; Goltz, Herbert C.; Wong, Agnes M. F.

    2016-01-01

    Purpose Several behavioral studies have shown that the reaction times of visually guided movements are slower in people with amblyopia, particularly during amblyopic eye viewing. Here, we tested the hypothesis that the initiation of smooth pursuit eye movements, which are responsible for accurately keeping moving objects on the fovea, is delayed in people with anisometropic amblyopia. Methods Eleven participants with anisometropic amblyopia and 14 visually normal observers were asked to track a step-ramp target moving at ±15°/s horizontally as quickly and as accurately as possible. The experiment was conducted under three viewing conditions: amblyopic/nondominant eye, binocular, and fellow/dominant eye viewing. Outcome measures were smooth pursuit latency, open-loop gain, steady state gain, and catch-up saccade frequency. Results Participants with anisometropic amblyopia initiated smooth pursuit significantly slower during amblyopic eye viewing (206 ± 20 ms) than visually normal observers viewing with their nondominant eye (183 ± 17 ms, P = 0.002). However, mean pursuit latency in the anisometropic amblyopia group during binocular and monocular fellow eye viewing was comparable to the visually normal group. Mean open-loop gain, steady state gain, and catch-up saccade frequency were similar between the two groups, but participants with anisometropic amblyopia exhibited more variable steady state gain (P = 0.045). Conclusions This study provides evidence of temporally delayed smooth pursuit initiation in anisometropic amblyopia. After initiation, the smooth pursuit velocity profile in anisometropic amblyopia participants is similar to visually normal controls. This finding differs from what has been observed previously in participants with strabismic amblyopia who exhibit reduced smooth pursuit velocity gains with more catch-up saccades. PMID:27070109

  16. Dynamic modulation of ocular orientation during visually guided saccades and smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Hess, Bernhard J M.; Angelaki, Dora E.

    2003-01-01

    Rotational disturbances of the head about an off-vertical yaw axis induce a complex vestibuloocular reflex pattern that reflects the brain's estimate of head angular velocity as well as its estimate of instantaneous head orientation (at a reduced scale) in space coordinates. We show that semicircular canal and otolith inputs modulate torsional and, to a certain extent, also vertical ocular orientation of visually guided saccades and smooth-pursuit eye movements in a similar manner as during off-vertical axis rotations in complete darkness. It is suggested that this graviceptive control of eye orientation facilitates rapid visual spatial orientation during motion.

  17. Directional asymmetries in human smooth pursuit eye movements.

    PubMed

    Ke, Sally R; Lam, Jessica; Pai, Dinesh K; Spering, Miriam

    2013-06-27

    Humans make smooth pursuit eye movements to bring the image of a moving object onto the fovea. Although pursuit accuracy is critical to prevent motion blur, the eye often falls behind the target. Previous studies suggest that pursuit accuracy differs between motion directions. Here, we systematically assess asymmetries in smooth pursuit. In experiment 1, binocular eye movements were recorded while observers (n = 20) tracked a small spot of light moving along one of four cardinal or diagonal axes across a featureless background. We analyzed pursuit latency, acceleration, peak velocity, gain, and catch-up saccade latency, number, and amplitude. In experiment 2 (n = 22), we examined the effects of spatial location and constrained stimulus motion within the upper or lower visual field. Pursuit was significantly faster (higher acceleration, peak velocity, and gain) and smoother (fewer and later catch-up saccades) in response to downward versus upward motion in both the upper and the lower visual fields. Pursuit was also more accurate and smoother in response to horizontal versus vertical motion. CONCLUSIONS. Our study is the first to report a consistent up-down asymmetry in human adults, regardless of visual field. Our findings suggest that pursuit asymmetries are adaptive responses to the requirements of the visual context: preferred motion directions (horizontal and downward) are more critical to our survival than nonpreferred ones.

  18. Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion

    NASA Technical Reports Server (NTRS)

    Zivotofsky, A. Z.; Rottach, K. G.; Averbuch-Heller, L.; Kori, A. A.; Thomas, C. W.; Dell'Osso, L. F.; Leigh, R. J.

    1996-01-01

    1. Measurements were made in four normal human subjects of the accuracy of saccades to remembered locations of targets that were flashed on a 20 x 30 deg random dot display that was either stationary or moving horizontally and sinusoidally at +/-9 deg at 0.3 Hz. During the interval between the target flash and the memory-guided saccade, the "memory period" (1.4 s), subjects either fixated a stationary spot or pursued a spot moving vertically sinusoidally at +/-9 deg at 0.3 Hz. 2. When saccades were made toward the location of targets previously flashed on a stationary background as subjects fixated the stationary spot, median saccadic error was 0.93 deg horizontally and 1.1 deg vertically. These errors were greater than for saccades to visible targets, which had median values of 0.59 deg horizontally and 0.60 deg vertically. 3. When targets were flashed as subjects smoothly pursued a spot that moved vertically across the stationary background, median saccadic error was 1.1 deg horizontally and 1.2 deg vertically, thus being of similar accuracy to when targets were flashed during fixation. In addition, the vertical component of the memory-guided saccade was much more closely correlated with the "spatial error" than with the "retinal error"; this indicated that, when programming the saccade, the brain had taken into account eye movements that occurred during the memory period. 4. When saccades were made to targets flashed during attempted fixation of a stationary spot on a horizontally moving background, a condition that produces a weak Duncker-type illusion of horizontal movement of the primary target, median saccadic error increased horizontally to 3.2 deg but was 1.1 deg vertically. 5. When targets were flashed as subjects smoothly pursued a spot that moved vertically on the horizontally moving background, a condition that induces a strong illusion of diagonal target motion, median saccadic error was 4.0 deg horizontally and 1.5 deg vertically; thus the horizontal

  19. Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects

    PubMed Central

    Ma, Zheng; Watamaniuk, Scott N. J.; Heinen, Stephen J.

    2017-01-01

    When small objects move in a scene, we keep them foveated with smooth pursuit eye movements. Although large objects such as people and animals are common, it is nonetheless unknown how we pursue them since they cannot be foveated. It might be that the brain calculates an object's centroid, and then centers the eyes on it during pursuit as a foveation mechanism might. Alternatively, the brain merely matches the velocity by motion integration. We test these alternatives with an illusory motion stimulus that translates at a speed different from its retinal motion. The stimulus was a Gabor array that translated at a fixed velocity, with component Gabors that drifted with motion consistent or inconsistent with the translation. Velocity matching predicts different pursuit behaviors across drift conditions, while centroid matching predicts no difference. We also tested whether pursuit can segregate and ignore irrelevant local drifts when motion and centroid information are consistent by surrounding the Gabors with solid frames. Finally, observers judged the global translational speed of the Gabors to determine whether smooth pursuit and motion perception share mechanisms. We found that consistent Gabor motion enhanced pursuit gain while inconsistent, opposite motion diminished it, drawing the eyes away from the center of the stimulus and supporting a motion-based pursuit drive. Catch-up saccades tended to counter the position offset, directing the eyes opposite to the deviation caused by the pursuit gain change. Surrounding the Gabors with visible frames canceled both the gain increase and the compensatory saccades. Perceived speed was modulated analogous to pursuit gain. The results suggest that smooth pursuit of large stimuli depends on the magnitude of integrated retinal motion information, not its retinal location, and that the position system might be unnecessary for generating smooth velocity to large pursuit targets. PMID:29090315

  20. Antisaccade and smooth pursuit eye movements in healthy subjects receiving sertraline and lorazepam.

    PubMed

    Green, J F; King, D J; Trimble, K M

    2000-03-01

    Patients suffering from some psychiatric and neurological disorders demonstrate abnormally high levels of saccadic distractibility when carrying out the antisaccade task. This has been particularly thoroughly demonstrated in patients with schizophrenia. A large body of evidence has been accumulated from studies of patients which suggests that such eye movement abnormalities may arise from frontal lobe dysfunction. The psychopharmacology of saccadic distractibility is less well understood, but is relevant both to interpreting patient studies and to establishing the neurological basis of their findings. Twenty healthy subjects received lorazepam 0.5 mg, 1 mg and 2 mg, sertraline 50 mg and placebo in a balanced, repeated measures study design. Antisaccade, no-saccade, visually guided saccade and smooth pursuit tasks were carried out and the effects of practice and drugs measured. Lorazepam increased direction errors in the antisaccade and no-saccade tasks in a dose-dependent manner. Sertraline had no effect on these measures. Correlation showed a statistically significant, but rather weak, association between direction errors and smooth pursuit measures. Practice was shown to have a powerful effect on antisaccade direction errors. This study supports our previous work by confirming that lorazepam reliably worsens saccadic distractibility, in contrast to other psychotropic drugs such as sertraline and chlorpromazine. Our results also suggest that other studies in this field, particularly those using parallel groups design, should take account of practice effects.

  1. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    PubMed

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal 'visual dementia' and most common atypical Alzheimer's disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients' (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer's disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer's disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer's disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with 'sticky fixation'. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer's disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large saccadic intrusions

  2. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy

    PubMed Central

    Kaski, Diego; Yong, Keir X. X.; Paterson, Ross W.; Slattery, Catherine F.; Ryan, Natalie S.; Schott, Jonathan M.; Crutch, Sebastian J.

    2015-01-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal ‘visual dementia’ and most common atypical Alzheimer’s disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients’ (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer’s disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer’s disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer’s disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with ‘sticky fixation’. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer’s disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large

  3. Discrimination of curvature from motion during smooth pursuit eye movements and fixation.

    PubMed

    Ross, Nicholas M; Goettker, Alexander; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R

    2017-09-01

    Smooth pursuit and motion perception have mainly been investigated with stimuli moving along linear trajectories. Here we studied the quality of pursuit movements to curved motion trajectories in human observers and examined whether the pursuit responses would be sensitive enough to discriminate various degrees of curvature. In a two-interval forced-choice task subjects pursued a Gaussian blob moving along a curved trajectory and then indicated in which interval the curve was flatter. We also measured discrimination thresholds for the same curvatures during fixation. Motion curvature had some specific effects on smooth pursuit properties: trajectories with larger amounts of curvature elicited lower open-loop acceleration, lower pursuit gain, and larger catch-up saccades compared with less curved trajectories. Initially, target motion curvatures were underestimated; however, ∼300 ms after pursuit onset pursuit responses closely matched the actual curved trajectory. We calculated perceptual thresholds for curvature discrimination, which were on the order of 1.5 degrees of visual angle (°) for a 7.9° curvature standard. Oculometric sensitivity to curvature discrimination based on the whole pursuit trajectory was quite similar to perceptual performance. Oculometric thresholds based on smaller time windows were higher. Thus smooth pursuit can quite accurately follow moving targets with curved trajectories, but temporal integration over longer periods is necessary to reach perceptual thresholds for curvature discrimination. NEW & NOTEWORTHY Even though motion trajectories in the real world are frequently curved, most studies of smooth pursuit and motion perception have investigated linear motion. We show that pursuit initially underestimates the curvature of target motion and is able to reproduce the target curvature ∼300 ms after pursuit onset. Temporal integration of target motion over longer periods is necessary for pursuit to reach the level of precision found

  4. EMDR Effects on Pursuit Eye Movements

    PubMed Central

    Kapoula, Zoi; Yang, Qing; Bonnet, Audrey; Bourtoire, Pauline; Sandretto, Jean

    2010-01-01

    This study aimed to objectivize the quality of smooth pursuit eye movements in a standard laboratory task before and after an Eye Movement Desensitization and Reprocessing (EMDR) session run on seven healthy volunteers. EMDR was applied on autobiographic worries causing moderate distress. The EMDR session was complete in 5 out of the 7 cases; distress measured by SUDS (Subjective Units of Discomfort Scale) decreased to a near zero value. Smooth pursuit eye movements were recorded by an Eyelink II video system before and after EMDR. For the five complete sessions, pursuit eye movement improved after their EMDR session. Notably, the number of saccade intrusions—catch-up saccades (CUS)—decreased and, reciprocally, there was an increase in the smooth components of the pursuit. Such an increase in the smoothness of the pursuit presumably reflects an improvement in the use of visual attention needed to follow the target accurately. Perhaps EMDR reduces distress thereby activating a cholinergic effect known to improve ocular pursuit. PMID:20505828

  5. Smooth Pursuit Eye Movements in Children with Strabismus and in Children with Vergence Deficits

    PubMed Central

    Lions, Cynthia; Bui-Quoc, Emmanuel; Wiener-Vacher, Sylvette; Seassau, Magali; Bucci, Maria Pia

    2013-01-01

    Purpose The objective of our study was to examine horizontal smooth pursuit performance in strabismic children and in children with vergence deficits, and to compare these data with those recorded in a group of control age-matched children. Methods Binocular eye movements were recorded by video-oculography in ten strabismic children (mean age: 9.8±0.8) and seven children with vergence deficits (mean age: 10.8±0.6). Data were compared to that of age-matched control children (mean age: 9.8±0.8 years). Results Catch-up saccades amplitude in strabismic children and in children with vergence deficits were significantly higher than in control age-matched children. Moreover, in strabismic children the amplitude of catch-up saccades was significantly higher in rightward than in leftward direction. The number of catch-up saccades was also significantly higher in rightward than in leftward direction. The gain value of pursuits in rightward direction was significantly higher in the right eye than in the left one; for the right eye, the gain value was significantly higher in rightward than in leftward direction. Binocular coordination of pursuit was better in control age-matched children than in children with vergence deficits and than in strabismic children. Conclusions Binocular coordination of pursuit is abnormal in children with vergence deficits and worse in strabismic children. Binocular vision plays an important role in improving binocular coordination of pursuit. PMID:24376777

  6. Cue-dependent memory-based smooth-pursuit in normal human subjects: importance of extra-retinal mechanisms for initial pursuit.

    PubMed

    Ito, Norie; Barnes, Graham R; Fukushima, Junko; Fukushima, Kikuro; Warabi, Tateo

    2013-08-01

    Using a cue-dependent memory-based smooth-pursuit task previously applied to monkeys, we examined the effects of visual motion-memory on smooth-pursuit eye movements in normal human subjects and compared the results with those of the trained monkeys. These results were also compared with those during simple ramp-pursuit that did not require visual motion-memory. During memory-based pursuit, all subjects exhibited virtually no errors in either pursuit-direction or go/no-go selection. Tracking eye movements of humans and monkeys were similar in the two tasks, but tracking eye movements were different between the two tasks; latencies of the pursuit and corrective saccades were prolonged, initial pursuit eye velocity and acceleration were lower, peak velocities were lower, and time to reach peak velocities lengthened during memory-based pursuit. These characteristics were similar to anticipatory pursuit initiated by extra-retinal components during the initial extinction task of Barnes and Collins (J Neurophysiol 100:1135-1146, 2008b). We suggest that the differences between the two tasks reflect differences between the contribution of extra-retinal and retinal components. This interpretation is supported by two further studies: (1) during popping out of the correct spot to enhance retinal image-motion inputs during memory-based pursuit, pursuit eye velocities approached those during simple ramp-pursuit, and (2) during initial blanking of spot motion during memory-based pursuit, pursuit components appeared in the correct direction. Our results showed the importance of extra-retinal mechanisms for initial pursuit during memory-based pursuit, which include priming effects and extra-retinal drive components. Comparison with monkey studies on neuronal responses and model analysis suggested possible pathways for the extra-retinal mechanisms.

  7. In Six-month-old Infants, Prenatal Exposure to Maternal Anxiety is Associated with Less Developed Smooth Pursuit Eye Movements: An Initial Study.

    PubMed

    Pellegrino, Laurel; Ross, Randal G; Hunter, Sharon K

    2013-01-01

    There are an increasing number of reports suggesting an association between maternal anxiety experienced during pregnancy and adverse outcomes of the offspring. However, exploration of the biological changes in the brain that mediate that relationship has been hampered by the lack of appropriate biomarkers. This report represents an initial step exploring whether a potential infant biomarker, smooth pursuit eye movements, may be associated with prenatal exposure to maternal anxiety. Blinded cross-sectional study. Department of Psychiatry, University of Colorado School of Medicine. Data collected from July 2011 to May 2012. Forty-three infants including 34 whose prenatal maternal anxiety status was identified (12 with a known maternal prenatal anxiety diagnosis and 22 without) had eye movements recorded during a smooth pursuit eye movement task at four and/or six months of age. At 6 months of age, infants with prenatal exposure to maternal anxiety, compared to infants without such exposure, spent a higher percentage of time utilizing smooth pursuit (t=2.7, df=24, P =.013), had longer duration of smooth pursuit uninterrupted by saccades (t=2.5, df=24, P =.019), and had decreased frequency of forward saccades (t=3.8, df=24, P =.001). No differences between groups were identified at 4 months of age. Smooth pursuit abnormalities may, at six months of age, be a potential biomarker for prenatal maternal anxiety exposure.

  8. Prenatal Exposure to Maternal Anxiety is Associated with Less Developed Smooth Pursuit Eye Movements in Six-Month-Old Infants: An Initial Study

    PubMed Central

    Pellegrino, Laurel; Ross, Randal G.; Hunter, Sharon K.

    2014-01-01

    Aims There are an increasing number of reports suggesting an association between maternal anxiety experienced during pregnancy and adverse outcomes of the offspring. However, exploration of the biological changes in the brain that mediate that relationship has been hampered by the lack of appropriate biomarkers. This report represents an initial step exploring whether a potential infant biomarker, smooth pursuit eye movements, may be associated with prenatal exposure to maternal anxiety. Study Design Blinded cross-sectional study. Place and Duration of Study Department of Psychiatry, University of Colorado School of Medicine. Data collected from July 2011 to May 2012. Methodology Forty-three infants including 34 whose prenatal maternal anxiety status was identified (12 with a known maternal prenatal anxiety diagnosis and 22 without) had eye movements recorded during a smooth pursuit eye movement task at four and/or six months of age. Results At 6 months of age, infants with prenatal exposure to maternal anxiety, compared to infants without such exposure, spent a higher percentage of time utilizing smooth pursuit (t=2.7, df=24, P=.013), had longer duration of smooth pursuit uninterrupted by saccades (t=2.5, df=24, P=.019), and had decreased frequency of forward saccades (t=3.8, df=24, P=.001). No differences between groups were identified at 4 months of age. Conclusion Smooth pursuit abnormalities may, at six months of age, be a potential biomarker for prenatal maternal anxiety exposure. PMID:25558459

  9. Smooth Pursuit Eye Movement of Monkeys Naive to Laboratory Setups With Pictures and Artificial Stimuli.

    PubMed

    Botschko, Yehudit; Yarkoni, Merav; Joshua, Mati

    2018-01-01

    When animal behavior is studied in a laboratory environment, the animals are often extensively trained to shape their behavior. A crucial question is whether the behavior observed after training is part of the natural repertoire of the animal or represents an outlier in the animal's natural capabilities. This can be investigated by assessing the extent to which the target behavior is manifested during the initial stages of training and the time course of learning. We explored this issue by examining smooth pursuit eye movements in monkeys naïve to smooth pursuit tasks. We recorded the eye movements of monkeys from the 1st days of training on a step-ramp paradigm. We used bright spots, monkey pictures and scrambled versions of the pictures as moving targets. We found that during the initial stages of training, the pursuit initiation was largest for the monkey pictures and in some direction conditions close to target velocity. When the pursuit initiation was large, the monkeys mostly continued to track the target with smooth pursuit movements while correcting for displacement errors with small saccades. Two weeks of training increased the pursuit eye velocity in all stimulus conditions, whereas further extensive training enhanced pursuit slightly more. The training decreased the coefficient of variation of the eye velocity. Anisotropies that grade pursuit across directions were observed from the 1st day of training and mostly persisted across training. Thus, smooth pursuit in the step-ramp paradigm appears to be part of the natural repertoire of monkeys' behavior and training adjusts monkeys' natural predisposed behavior.

  10. Impaired smooth-pursuit in Parkinson's disease: normal cue-information memory, but dysfunction of extra-retinal mechanisms for pursuit preparation and execution

    PubMed Central

    Fukushima, Kikuro; Ito, Norie; Barnes, Graham R; Onishi, Sachiyo; Kobayashi, Nobuyoshi; Takei, Hidetoshi; Olley, Peter M; Chiba, Susumu; Inoue, Kiyoharu; Warabi, Tateo

    2015-01-01

    While retinal image motion is the primary input for smooth-pursuit, its efficiency depends on cognitive processes including prediction. Reports are conflicting on impaired prediction during pursuit in Parkinson's disease. By separating two major components of prediction (image motion direction memory and movement preparation) using a memory-based pursuit task, and by comparing tracking eye movements with those during a simple ramp-pursuit task that did not require visual memory, we examined smooth-pursuit in 25 patients with Parkinson's disease and compared the results with 14 age-matched controls. In the memory-based pursuit task, cue 1 indicated visual motion direction, whereas cue 2 instructed the subjects to prepare to pursue or not to pursue. Based on the cue-information memory, subjects were asked to pursue the correct spot from two oppositely moving spots or not to pursue. In 24/25 patients, the cue-information memory was normal, but movement preparation and execution were impaired. Specifically, unlike controls, most of the patients (18/24 = 75%) lacked initial pursuit during the memory task and started tracking the correct spot by saccades. Conversely, during simple ramp-pursuit, most patients (83%) exhibited initial pursuit. Popping-out of the correct spot motion during memory-based pursuit was ineffective for enhancing initial pursuit. The results were similar irrespective of levodopa/dopamine agonist medication. Our results indicate that the extra-retinal mechanisms of most patients are dysfunctional in initiating memory-based (not simple ramp) pursuit. A dysfunctional pursuit loop between frontal eye fields (FEF) and basal ganglia may contribute to the impairment of extra-retinal mechanisms, resulting in deficient pursuit commands from the FEF to brainstem. PMID:25825544

  11. Pursuit gain and saccadic intrusions in first-degree relatives of probands with schizophrenia.

    PubMed

    Clementz, B A; Sweeney, J A; Hirt, M; Haas, G

    1990-11-01

    Oculomotor functioning of 26 probands with schizophrenia, 12 spectrum and 46 nonspectrum first-degree relatives, and 38 nonpsychiatric control subjects was evaluated. Spectrum relatives had more anticipatory saccades (ASs) and lower pursuit gain than nonspectrum relatives, who had more ASs and lower pursuit gain than control subjects. Probands also had lower pursuit gain than nonspectrum relatives and control subjects but did not differ from other groups on AS frequency. Control subjects had more globally accurate pursuit tracking (root mean square [RMS] error deviation) than both relative groups, whereas probands had the poorest RMS scores. Square wave jerk frequency did not differentiate the groups. Attention enhancement affected the frequency of ASs but did not affect either the other intrusive saccadic event or RMS scores. These results offer evidence that eye-movement dysfunction may serve as a biological marker for schizophrenia.

  12. What triggers catch-up saccades during visual tracking?

    PubMed

    de Brouwer, Sophie; Yuksel, Demet; Blohm, Gunnar; Missal, Marcus; Lefèvre, Philippe

    2002-03-01

    When tracking moving visual stimuli, primates orient their visual axis by combining two kinds of eye movements, smooth pursuit and saccades, that have very different dynamics. Yet, the mechanisms that govern the decision to switch from one type of eye movement to the other are still poorly understood, even though they could bring a significant contribution to the understanding of how the CNS combines different kinds of control strategies to achieve a common motor and sensory goal. In this study, we investigated the oculomotor responses to a large range of different combinations of position error and velocity error during visual tracking of moving stimuli in humans. We found that the oculomotor system uses a prediction of the time at which the eye trajectory will cross the target, defined as the "eye crossing time" (T(XE)). The eye crossing time, which depends on both position error and velocity error, is the criterion used to switch between smooth and saccadic pursuit, i.e., to trigger catch-up saccades. On average, for T(XE) between 40 and 180 ms, no saccade is triggered and target tracking remains purely smooth. Conversely, when T(XE) becomes smaller than 40 ms or larger than 180 ms, a saccade is triggered after a short latency (around 125 ms).

  13. Impaired smooth-pursuit in Parkinson's disease: normal cue-information memory, but dysfunction of extra-retinal mechanisms for pursuit preparation and execution.

    PubMed

    Fukushima, Kikuro; Ito, Norie; Barnes, Graham R; Onishi, Sachiyo; Kobayashi, Nobuyoshi; Takei, Hidetoshi; Olley, Peter M; Chiba, Susumu; Inoue, Kiyoharu; Warabi, Tateo

    2015-03-01

    While retinal image motion is the primary input for smooth-pursuit, its efficiency depends on cognitive processes including prediction. Reports are conflicting on impaired prediction during pursuit in Parkinson's disease. By separating two major components of prediction (image motion direction memory and movement preparation) using a memory-based pursuit task, and by comparing tracking eye movements with those during a simple ramp-pursuit task that did not require visual memory, we examined smooth-pursuit in 25 patients with Parkinson's disease and compared the results with 14 age-matched controls. In the memory-based pursuit task, cue 1 indicated visual motion direction, whereas cue 2 instructed the subjects to prepare to pursue or not to pursue. Based on the cue-information memory, subjects were asked to pursue the correct spot from two oppositely moving spots or not to pursue. In 24/25 patients, the cue-information memory was normal, but movement preparation and execution were impaired. Specifically, unlike controls, most of the patients (18/24 = 75%) lacked initial pursuit during the memory task and started tracking the correct spot by saccades. Conversely, during simple ramp-pursuit, most patients (83%) exhibited initial pursuit. Popping-out of the correct spot motion during memory-based pursuit was ineffective for enhancing initial pursuit. The results were similar irrespective of levodopa/dopamine agonist medication. Our results indicate that the extra-retinal mechanisms of most patients are dysfunctional in initiating memory-based (not simple ramp) pursuit. A dysfunctional pursuit loop between frontal eye fields (FEF) and basal ganglia may contribute to the impairment of extra-retinal mechanisms, resulting in deficient pursuit commands from the FEF to brainstem. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  14. Smooth pursuit eye movements and schizophrenia: literature review.

    PubMed

    Franco, J G; de Pablo, J; Gaviria, A M; Sepúlveda, E; Vilella, E

    2014-09-01

    To review the scientific literature about the relationship between impairment on smooth pursuit eye movements and schizophrenia. Narrative review that includes historical articles, reports about basic and clinical investigation, systematic reviews, and meta-analysis on the topic. Up to 80% of schizophrenic patients have impairment of smooth pursuit eye movements. Despite the diversity of test protocols, 65% of patients and controls are correctly classified by their overall performance during this pursuit. The smooth pursuit eye movements depend on the ability to anticipate the target's velocity and the visual feedback, as well as on learning and attention. The neuroanatomy implicated in smooth pursuit overlaps to some extent with certain frontal cortex zones associated with some clinical and neuropsychological characteristics of the schizophrenia, therefore some specific components of smooth pursuit anomalies could serve as biomarkers of the disease. Due to their sedative effect, antipsychotics have a deleterious effect on smooth pursuit eye movements, thus these movements cannot be used to evaluate the efficacy of the currently available treatments. Standardized evaluation of smooth pursuit eye movements on schizophrenia will allow to use specific aspects of that pursuit as biomarkers for the study of its genetics, psychopathology, or neuropsychology. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  15. Coordinated Control of Three-Dimensional Components of Smooth Pursuit to Rotating and Translating Textures.

    PubMed

    Edinger, Janick; Pai, Dinesh K; Spering, Miriam

    2017-01-01

    The neural control of pursuit eye movements to visual textures that simultaneously translate and rotate has largely been neglected. Here we propose that pursuit of such targets-texture pursuit-is a fully three-dimensional task that utilizes all three degrees of freedom of the eye, including torsion. Head-fixed healthy human adults (n = 8) tracked a translating and rotating random dot pattern, shown on a computer monitor, with their eyes. Horizontal, vertical, and torsional eye positions were recorded with a head-mounted eye tracker. The torsional component of pursuit is a function of the rotation of the texture, aligned with its visual properties. We observed distinct behaviors between those trials in which stimulus rotation was in the same direction as that of a rolling ball ("natural") in comparison to those with the opposite rotation ("unnatural"): Natural rotation enhanced and unnatural rotation reversed torsional velocity during pursuit, as compared to torsion triggered by a nonrotating random dot pattern. Natural rotation also triggered pursuit with a higher horizontal velocity gain and fewer and smaller corrective saccades. Furthermore, we show that horizontal corrective saccades are synchronized with torsional corrective saccades, indicating temporal coupling of horizontal and torsional saccade control. Pursuit eye movements have a torsional component that depends on the visual stimulus. Horizontal and torsional eye movements are separated in the motor periphery. Our findings suggest that translational and rotational motion signals might be coordinated in descending pursuit pathways.

  16. Neurophysiology and Neuroanatomy of Smooth Pursuit in Humans

    ERIC Educational Resources Information Center

    Lencer, Rebekka; Trillenberg, Peter

    2008-01-01

    Smooth pursuit eye movements enable us to focus our eyes on moving objects by utilizing well-established mechanisms of visual motion processing, sensorimotor transformation and cognition. Novel smooth pursuit tasks and quantitative measurement techniques can help unravel the different smooth pursuit components and complex neural systems involved…

  17. Benzodiazepines impair smooth pursuit eye movements.

    PubMed Central

    Bittencourt, P R; Wade, P; Smith, A T; Richens, A

    1983-01-01

    Five healthy male volunteers received single oral doses of 10 mg diazepam, 20 mg temazepam and placebo, in a double-blind, randomised fashion. Smooth pursuit eye movement velocity and serum benzodiazepine concentration were measured before and after at 0.5,1,1.5,2,3,4,6,9 and 12 h after administration of the treatments. Significant decrease in smooth pursuit eye movement velocity as compared to placebo was observed between 0.5-2 h after temazepam, and between 1-2 h after diazepam. Smooth pursuit eye movement velocity was log-linearly correlated with serum temazepam and diazepam concentration. The results demonstrate the relationship between serum benzodiazepine concentration and its effect on an objective measure of oculomotor performance. PMID:6133544

  18. Vestibular-Related Frontal Cortical Areas and Their Roles in Smooth-Pursuit Eye Movements: Representation of Neck Velocity, Neck-Vestibular Interactions, and Memory-Based Smooth-Pursuit

    PubMed Central

    Fukushima, Kikuro; Fukushima, Junko; Warabi, Tateo

    2011-01-01

    Smooth-pursuit eye movements are voluntary responses to small slow-moving objects in the fronto-parallel plane. They evolved in primates, who possess high-acuity foveae, to ensure clear vision about the moving target. The primate frontal cortex contains two smooth-pursuit related areas; the caudal part of the frontal eye fields (FEF) and the supplementary eye fields (SEF). Both areas receive vestibular inputs. We review functional differences between the two areas in smooth-pursuit. Most FEF pursuit neurons signal pursuit parameters such as eye velocity and gaze-velocity, and are involved in canceling the vestibulo-ocular reflex by linear addition of vestibular and smooth-pursuit responses. In contrast, gaze-velocity signals are rarely represented in the SEF. Most FEF pursuit neurons receive neck velocity inputs, while discharge modulation during pursuit and trunk-on-head rotation adds linearly. Linear addition also occurs between neck velocity responses and vestibular responses during head-on-trunk rotation in a task-dependent manner. During cross-axis pursuit–vestibular interactions, vestibular signals effectively initiate predictive pursuit eye movements. Most FEF pursuit neurons discharge during the interaction training after the onset of pursuit eye velocity, making their involvement unlikely in the initial stages of generating predictive pursuit. Comparison of representative signals in the two areas and the results of chemical inactivation during a memory-based smooth-pursuit task indicate they have different roles; the SEF plans smooth-pursuit including working memory of motion–direction, whereas the caudal FEF generates motor commands for pursuit eye movements. Patients with idiopathic Parkinson’s disease were asked to perform this task, since impaired smooth-pursuit and visual working memory deficit during cognitive tasks have been reported in most patients. Preliminary results suggested specific roles of the basal ganglia in memory-based smooth-pursuit

  19. Visual Short-Term Memory During Smooth Pursuit Eye Movements

    ERIC Educational Resources Information Center

    Kerzel, Dirk; Ziegler, Nathalie E.

    2005-01-01

    Visual short-term memory (VSTM) was probed while observers performed smooth pursuit eye movements. Smooth pursuit keeps a moving object stabilized in the fovea. VSTM capacity for position was reduced during smooth pursuit compared with a condition with eye fixation. There was no difference between a condition in which the items were approximately…

  20. Pursuit Eye Movements

    NASA Technical Reports Server (NTRS)

    Krauzlis, Rich; Stone, Leland; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    When viewing objects, primates use a combination of saccadic and pursuit eye movements to stabilize the retinal image of the object of regard within the high-acuity region near the fovea. Although these movements involve widespread regions of the nervous system, they mix seamlessly in normal behavior. Saccades are discrete movements that quickly direct the eyes toward a visual target, thereby translating the image of the target from an eccentric retinal location to the fovea. In contrast, pursuit is a continuous movement that slowly rotates the eyes to compensate for the motion of the visual target, minimizing the blur that can compromise visual acuity. While other mammalian species can generate smooth optokinetic eye movements - which track the motion of the entire visual surround - only primates can smoothly pursue a single small element within a complex visual scene, regardless of the motion elsewhere on the retina. This ability likely reflects the greater ability of primates to segment the visual scene, to identify individual visual objects, and to select a target of interest.

  1. Effects of contrast on smooth pursuit eye movements.

    PubMed

    Spering, Miriam; Kerzel, Dirk; Braun, Doris I; Hawken, Michael J; Gegenfurtner, Karl R

    2005-05-20

    It is well known that moving stimuli can appear to move more slowly when contrast is reduced (P. Thompson, 1982). Here we address the question whether changes in stimulus contrast also affect smooth pursuit eye movements. Subjects were asked to smoothly track a moving Gabor patch. Targets varied in velocity (1, 8, and 15 deg/s), spatial frequency (0.1, 1, 4, and 8 c/deg), and contrast, ranging from just below individual thresholds to maximum contrast. Results show that smooth pursuit eye velocity gain rose significantly with increasing contrast. Below a contrast level of two to three times threshold, pursuit gain, acceleration, latency, and positional accuracy were severely impaired. Therefore, the smooth pursuit motor response shows the same kind of slowing at low contrast that was demonstrated in previous studies on perception.

  2. Attention is allocated closely ahead of the target during smooth pursuit eye movements: Evidence from EEG frequency tagging.

    PubMed

    Chen, Jing; Valsecchi, Matteo; Gegenfurtner, Karl R

    2017-07-28

    It is under debate whether attention during smooth pursuit is centered right on the pursuit target or allocated preferentially ahead of it. Attentional deployment was previously probed using a secondary task, which might have altered attention allocation and led to inconsistent findings. We measured frequency-tagged steady-state visual evoked potentials (SSVEP) to measure attention allocation in the absence of any secondary probing task. The observers pursued a moving dot while stimuli flickering at different frequencies were presented at various locations ahead or behind the pursuit target. We observed a significant increase in EEG power at the flicker frequency of the stimulus in front of the pursuit target, compared to the frequency of the stimulus behind. When testing many different locations, we found that the enhancement was detectable up to about 1.5° ahead during pursuit, but vanished by 3.5°. In a control condition using attentional cueing during fixation, we did observe an enhanced EEG response to stimuli at this eccentricity, indicating that the focus of attention during pursuit is narrower than allowed for by the resolution of the attentional system. In a third experiment, we ruled out the possibility that the SSVEP enhancement was a byproduct of the catch-up saccades occurring during pursuit. Overall, we showed that attention is on average allocated ahead of the pursuit target during smooth pursuit. EEG frequency tagging seems to be a powerful technique that allows for the investigation of attention/perception implicitly when an overt task would be confounding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Smooth pursuit eye movement (SPEM) in patients with multiple complex developmental disorder (MCDD), a subtype of the pervasive developmental disorder.

    PubMed

    Lahuis, Bertine E; Van Engeland, Herman; Cahn, Wiepke; Caspers, Esther; Van der Geest, Jos N; Van der Gaag, Rutger Jan; Kemner, Chantal

    2009-01-01

    Multiple complex developmental disorder (MCDD) is a well-defined and validated behavioural subtype of pervasive developmental disorder-not otherwise specified (PDD-NOS) and is thought to be associated with a higher risk of developing a schizophrenic spectrum disorder. The question was addressed whether patients with MCDD show the same psychophysiological abnormalities as seen in patients with schizophrenia. Smooth pursuit eye movement (pursuit gain and saccadic parameters) was measured in children with either MCDD (n=18) or autism (n=18), and in age- and IQ-matched controls (n=36), as well as in a group of adult patients with schizophrenia (n=14) and a group of adult controls (n=17). We found the expected effect of lower velocity gain and increased number of saccades in schizophrenic patients. Children with MCDD also showed a lower velocity gain compared to controls children. In contrast, velocity gain was similar in autistic subjects and controls. No differences for velocity gain were found in a direct comparison between MCDD and autism. Saccadic parameters were not significantly different from controls in either MCDD or autistic subjects. Children with MCDD, like schizophrenic adults, show a reduced velocity gain, which could indicate that schizophrenia spectrum disorders and MCDD share (at least to some degree) a common neurobiological background.

  4. A model that integrates eye velocity commands to keep track of smooth eye displacements.

    PubMed

    Blohm, Gunnar; Optican, Lance M; Lefèvre, Philippe

    2006-08-01

    Past results have reported conflicting findings on the oculomotor system's ability to keep track of smooth eye movements in darkness. Whereas some results indicate that saccades cannot compensate for smooth eye displacements, others report that memory-guided saccades during smooth pursuit are spatially correct. Recently, it was shown that the amount of time before the saccade made a difference: short-latency saccades were retinotopically coded, whereas long-latency saccades were spatially coded. Here, we propose a model of the saccadic system that can explain the available experimental data. The novel part of this model consists of a delayed integration of efferent smooth eye velocity commands. Two alternative physiologically realistic neural mechanisms for this integration stage are proposed. Model simulations accurately reproduced prior findings. Thus, this model reconciles the earlier contradictory reports from the literature about compensation for smooth eye movements before saccades because it involves a slow integration process.

  5. Smooth Pursuit Eye Movements: Is Perceived Motion Necessary?

    ERIC Educational Resources Information Center

    Mack, Arien; And Others

    1979-01-01

    It has recently been shown that perceived motion, in the absence of any appropriate retinal motion, is a sufficient stimulus to generate smooth pursuit eye motions. However, three experiments show that perceived motion is not necessary for pursuit, but that retinal motion always governs pursuit. (BB)

  6. Contextual effects on smooth-pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R

    2007-02-01

    Segregating a moving object from its visual context is particularly relevant for the control of smooth-pursuit eye movements. We examined the interaction between a moving object and a stationary or moving visual context to determine the role of the context motion signal in driving pursuit. Eye movements were recorded from human observers to a medium-contrast Gaussian dot that moved horizontally at constant velocity. A peripheral context consisted of two vertically oriented sinusoidal gratings, one above and one below the stimulus trajectory, that were either stationary or drifted into the same or opposite direction as that of the target at different velocities. We found that a stationary context impaired pursuit acceleration and velocity and prolonged pursuit latency. A drifting context enhanced pursuit performance, irrespective of its motion direction. This effect was modulated by context contrast and orientation. When a context was briefly perturbed to move faster or slower eye velocity changed accordingly, but only when the context was drifting along with the target. Perturbing a context into the direction orthogonal to target motion evoked a deviation of the eye opposite to the perturbation direction. We therefore provide evidence for the use of absolute and relative motion cues, or motion assimilation and motion contrast, for the control of smooth-pursuit eye movements.

  7. Smooth-pursuit eye-movement-related neuronal activity in macaque nucleus reticularis tegmenti pontis.

    PubMed

    Suzuki, David A; Yamada, Tetsuto; Yee, Robert D

    2003-04-01

    Neuronal responses that were observed during smooth-pursuit eye movements were recorded from cells in rostral portions of the nucleus reticularis tegmenti pontis (rNRTP). The responses were categorized as smooth-pursuit eye velocity (78%) or eye acceleration (22%). A separate population of rNRTP cells encoded static eye position. The sensitivity to pursuit eye velocity averaged 0.81 spikes/s per degrees /s, whereas the average sensitivity to pursuit eye acceleration was 0.20 spikes/s per degrees /s(2). Of the eye-velocity cells with horizontal preferences for pursuit responses, 56% were optimally responsive to contraversive smooth-pursuit eye movements and 44% preferred ipsiversive pursuit. For cells with vertical pursuit preferences, 61% preferred upward pursuit and 39% preferred downward pursuit. The direction selectivity was broad with 50% of the maximal response amplitude observed for directions of smooth pursuit up to +/-85 degrees away from the optimal direction. The activities of some rNRTP cells were linearly related to eye position with an average sensitivity of 2.1 spikes/s per deg. In some cells, the magnitude of the response during smooth-pursuit eye movements was affected by the position of the eyes even though these cells did not encode eye position. On average, pursuit centered to one side of screen center elicited a response that was 73% of the response amplitude obtained with tracking centered at screen center. For pursuit centered on the opposite side, the average response was 127% of the response obtained at screen center. The results provide a neuronal rationale for the slow, pursuit-like eye movements evoked with rNRTP microstimulation and for the deficits in smooth-pursuit eye movements observed with ibotenic acid injection into rNRTP. More globally, the results support the notion of a frontal and supplementary eye field-rNRTP-cerebellum pathway involved with controlling smooth-pursuit eye movements.

  8. Execution of saccadic eye movements affects speed perception

    PubMed Central

    Goettker, Alexander; Braun, Doris I.; Schütz, Alexander C.; Gegenfurtner, Karl R.

    2018-01-01

    Due to the foveal organization of our visual system we have to constantly move our eyes to gain precise information about our environment. Doing so massively alters the retinal input. This is problematic for the perception of moving objects, because physical motion and retinal motion become decoupled and the brain has to discount the eye movements to recover the speed of moving objects. Two different types of eye movements, pursuit and saccades, are combined for tracking. We investigated how the way we track moving targets can affect the perceived target speed. We found that the execution of corrective saccades during pursuit initiation modifies how fast the target is perceived compared with pure pursuit. When participants executed a forward (catch-up) saccade they perceived the target to be moving faster. When they executed a backward saccade they perceived the target to be moving more slowly. Variations in pursuit velocity without corrective saccades did not affect perceptual judgments. We present a model for these effects, assuming that the eye velocity signal for small corrective saccades gets integrated with the retinal velocity signal during pursuit. In our model, the execution of corrective saccades modulates the integration of these two signals by giving less weight to the retinal information around the time of corrective saccades. PMID:29440494

  9. Smooth-pursuit eye-movement deficits with chemical lesions in macaque nucleus reticularis tegmenti pontis.

    PubMed

    Suzuki, D A; Yamada, T; Hoedema, R; Yee, R D

    1999-09-01

    Anatomic and neuronal recordings suggest that the nucleus reticularis tegmenti pontis (NRTP) of macaques may be a major pontine component of a cortico-ponto-cerebellar pathway that subserves the control of smooth-pursuit eye movements. The existence of such a pathway was implicated by the lack of permanent pursuit impairment after bilateral lesions in the dorsolateral pontine nucleus. To provide more direct evidence that NRTP is involved with regulating smooth-pursuit eye movements, chemical lesions were made in macaque NRTP by injecting either lidocaine or ibotenic acid. Injection sites first were identified by the recording of smooth-pursuit-related modulations in neuronal activity. The resulting lesions caused significant deficits in both the maintenance and the initiation of smooth-pursuit eye movements. After lesion formation, the gain of constant-velocity, maintained smooth-pursuit eye movements decreased, on the average, by 44%. Recovery of the ability to maintain smooth-pursuit eye movements occurred over approximately 3 days when maintained pursuit gains attained normal values. The step-ramp, "Rashbass" task was used to investigate the effects of the lesions on the initiation of smooth-pursuit eye movements. Eye accelerations averaged over the initial 80 ms of pursuit initiation were determined and found to be decremented, on the average, by 48% after the administration of ibotenic acid. Impairments in the initiation and maintenance of smooth-pursuit eye movements were directional in nature. Upward pursuit seemed to be the most vulnerable and was impaired in all cases independent of lesioning agent and type of pursuit investigated. Downward smooth pursuit seemed more resistant to the effects of chemical lesions in NRTP. Impairments in horizontal tracking were observed with examples of deficits in ipsilaterally and contralaterally directed pursuit. The results provide behavioral support for the physiologically and anatomic-based conclusion that NRTP is a

  10. Differential auditory-oculomotor interactions in patients with right vs. left sided subjective tinnitus: a saccade study

    PubMed Central

    Lang, Alexandre; Vernet, Marine; Yang, Qing; Orssaud, Christophe; Londero, Alain; Kapoula, Zoï

    2013-01-01

    Subjective tinnitus (ST) is a frequent but poorly understood medical condition. Recent studies demonstrated abnormalities in several types of eye movements (smooth pursuit, optokinetic nystagmus, fixation, and vergence) in ST patients. The present study investigates horizontal and vertical saccades in patients with tinnitus lateralized predominantly to the left or to the right side. Compared to left sided ST, tinnitus perceived on the right side impaired almost all the parameters of saccades (latency, amplitude, velocity, etc.) and noticeably the upward saccades. Relative to controls, saccades from both groups were more dysmetric and were characterized by increased saccade disconjugacy (i.e., poor binocular coordination). Although the precise mechanisms linking ST and saccadic control remain unexplained, these data suggest that ST can lead to detrimental auditory, visuomotor, and perhaps vestibular interactions. PMID:23550269

  11. Contextual effects on motion perception and smooth pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R

    2008-08-15

    Smooth pursuit eye movements are continuous, slow rotations of the eyes that allow us to follow the motion of a visual object of interest. These movements are closely related to sensory inputs from the visual motion processing system. To track a moving object in the natural environment, its motion first has to be segregated from the motion signals provided by surrounding stimuli. Here, we review experiments on the effect of the visual context on motion processing with a focus on the relationship between motion perception and smooth pursuit eye movements. While perception and pursuit are closely linked, we show that they can behave quite distinctly when required by the visual context.

  12. Efference Copy Failure during Smooth Pursuit Eye Movements in Schizophrenia

    PubMed Central

    Dias, Elisa C.; Sanchez, Jamie L.; Schütz, Alexander C.; Javitt, Daniel C.

    2013-01-01

    Abnormal smooth pursuit eye movements in patients with schizophrenia are often considered a consequence of impaired motion perception. Here we used a novel motion prediction task to assess the effects of abnormal pursuit on perception in human patients. Schizophrenia patients (n = 15) and healthy controls (n = 16) judged whether a briefly presented moving target (“ball”) would hit/miss a stationary vertical line segment (“goal”). To relate prediction performance and pursuit directly, we manipulated eye movements: in half of the trials, observers smoothly tracked the ball; in the other half, they fixated on the goal. Strict quality criteria ensured that pursuit was initiated and that fixation was maintained. Controls were significantly better in trajectory prediction during pursuit than during fixation, their performance increased with presentation duration, and their pursuit gain and perceptual judgments were correlated. Such perceptual benefits during pursuit may be due to the use of extraretinal motion information estimated from an efference copy signal. With an overall lower performance in pursuit and perception, patients showed no such pursuit advantage and no correlation between pursuit gain and perception. Although patients' pursuit showed normal improvement with longer duration, their prediction performance failed to benefit from duration increases. This dissociation indicates relatively intact early visual motion processing, but a failure to use efference copy information. Impaired efference function in the sensory system may represent a general deficit in schizophrenia and thus contribute to symptoms and functional outcome impairments associated with the disorder. PMID:23864667

  13. Efference copy failure during smooth pursuit eye movements in schizophrenia.

    PubMed

    Spering, Miriam; Dias, Elisa C; Sanchez, Jamie L; Schütz, Alexander C; Javitt, Daniel C

    2013-07-17

    Abnormal smooth pursuit eye movements in patients with schizophrenia are often considered a consequence of impaired motion perception. Here we used a novel motion prediction task to assess the effects of abnormal pursuit on perception in human patients. Schizophrenia patients (n = 15) and healthy controls (n = 16) judged whether a briefly presented moving target ("ball") would hit/miss a stationary vertical line segment ("goal"). To relate prediction performance and pursuit directly, we manipulated eye movements: in half of the trials, observers smoothly tracked the ball; in the other half, they fixated on the goal. Strict quality criteria ensured that pursuit was initiated and that fixation was maintained. Controls were significantly better in trajectory prediction during pursuit than during fixation, their performance increased with presentation duration, and their pursuit gain and perceptual judgments were correlated. Such perceptual benefits during pursuit may be due to the use of extraretinal motion information estimated from an efference copy signal. With an overall lower performance in pursuit and perception, patients showed no such pursuit advantage and no correlation between pursuit gain and perception. Although patients' pursuit showed normal improvement with longer duration, their prediction performance failed to benefit from duration increases. This dissociation indicates relatively intact early visual motion processing, but a failure to use efference copy information. Impaired efference function in the sensory system may represent a general deficit in schizophrenia and thus contribute to symptoms and functional outcome impairments associated with the disorder.

  14. The Neural Basis of Smooth Pursuit Eye Movements in the Rhesus Monkey Brain

    ERIC Educational Resources Information Center

    Ilg, Uwe J.; Thier, Peter

    2008-01-01

    Smooth pursuit eye movements are performed in order to prevent retinal image blur of a moving object. Rhesus monkeys are able to perform smooth pursuit eye movements quite similar as humans, even if the pursuit target does not consist in a simple moving dot. Therefore, the study of the neuronal responses as well as the consequences of…

  15. Low frequency rTMS over posterior parietal cortex impairs smooth pursuit eye tracking.

    PubMed

    Hutton, Samuel B; Weekes, Brendan S

    2007-11-01

    The role of the posterior parietal cortex in smooth pursuit eye movements remains unclear. We used low frequency repetitive transcranial magnetic stimulation (rTMS) to study the cognitive and neural systems involved in the control of smooth pursuit eye movements. Eighteen participants were tested on two separate occasions. On each occasion we measured smooth pursuit eye tracking before and after 6 min of 1 Hz rTMS delivered at 90% of motor threshold. Low frequency rTMS over the posterior parietal cortex led to a significant reduction in smooth pursuit velocity gain, whereas rTMS over the motor cortex had no effect on gain. We conclude that low frequency offline rTMS is a potentially useful tool with which to explore the cortical systems involved in oculomotor control.

  16. Contrast and assimilation in motion perception and smooth pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R

    2007-09-01

    The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.

  17. Computations underlying the visuomotor transformation for smooth pursuit eye movements

    PubMed Central

    Murdison, T. Scott; Leclercq, Guillaume; Lefèvre, Philippe

    2014-01-01

    Smooth pursuit eye movements are driven by retinal motion and enable us to view moving targets with high acuity. Complicating the generation of these movements is the fact that different eye and head rotations can produce different retinal stimuli but giving rise to identical smooth pursuit trajectories. However, because our eyes accurately pursue targets regardless of eye and head orientation (Blohm G, Lefèvre P. J Neurophysiol 104: 2103–2115, 2010), the brain must somehow take these signals into account. To learn about the neural mechanisms potentially underlying this visual-to-motor transformation, we trained a physiologically inspired neural network model to combine two-dimensional (2D) retinal motion signals with three-dimensional (3D) eye and head orientation and velocity signals to generate a spatially correct 3D pursuit command. We then simulated conditions of 1) head roll-induced ocular counterroll, 2) oblique gaze-induced retinal rotations, 3) eccentric gazes (invoking the half-angle rule), and 4) optokinetic nystagmus to investigate how units in the intermediate layers of the network accounted for different 3D constraints. Simultaneously, we simulated electrophysiological recordings (visual and motor tunings) and microstimulation experiments to quantify the reference frames of signals at each processing stage. We found a gradual retinal-to-intermediate-to-spatial feedforward transformation through the hidden layers. Our model is the first to describe the general 3D transformation for smooth pursuit mediated by eye- and head-dependent gain modulation. Based on several testable experimental predictions, our model provides a mechanism by which the brain could perform the 3D visuomotor transformation for smooth pursuit. PMID:25475344

  18. Smooth Pursuit Eye Movement Deficits in Patients With Whiplash and Neck Pain are Modulated by Target Predictability.

    PubMed

    Janssen, Malou; Ischebeck, Britta K; de Vries, Jurryt; Kleinrensink, Gert-Jan; Frens, Maarten A; van der Geest, Jos N

    2015-10-01

    This is a cross-sectional study. The purpose of this study is to support and extend previous observations on oculomotor disturbances in patients with neck pain and whiplash-associated disorders (WADs) by systematically investigating the effect of static neck torsion on smooth pursuit in response to both predictably and unpredictably moving targets using video-oculography. Previous studies showed that in patients with neck complaints, for instance due to WAD, extreme static neck torsion deteriorates smooth pursuit eye movements in response to predictably moving targets compared with healthy controls. Eye movements in response to a smoothly moving target were recorded with video-oculography in a heterogeneous group of 55 patients with neck pain (including 11 patients with WAD) and 20 healthy controls. Smooth pursuit performance was determined while the trunk was fixed in 7 static rotations relative to the head (from 45° to the left to 45° to right), using both predictably and unpredictably moving stimuli. Patients had reduced smooth pursuit gains and smooth pursuit gain decreased due to neck torsion. Healthy controls showed higher gains for predictably moving targets compared with unpredictably moving targets, whereas patients with neck pain had similar gains in response to both types of target movements. In 11 patients with WAD, increased neck torsion decreased smooth pursuit performance, but only for predictably moving targets. Smooth pursuit of patients with neck pain is affected. The previously reported WAD-specific decline in smooth pursuit due to increased neck torsion seems to be modulated by the predictability of the movement of the target. The observed oculomotor disturbances in patients with WAD are therefore unlikely to be induced by impaired neck proprioception alone. 3.

  19. Normal correspondence of tectal maps for saccadic eye movements in strabismus

    PubMed Central

    Economides, John R.; Adams, Daniel L.

    2016-01-01

    The superior colliculus is a major brain stem structure for the production of saccadic eye movements. Electrical stimulation at any given point in the motor map generates saccades of defined amplitude and direction. It is unknown how this saccade map is affected by strabismus. Three macaques were raised with exotropia, an outwards ocular deviation, by detaching the medial rectus tendon in each eye at age 1 mo. The animals were able to make saccades to targets with either eye and appeared to alternate fixation freely. To probe the organization of the superior colliculus, microstimulation was applied at multiple sites, with the animals either free-viewing or fixating a target. On average, microstimulation drove nearly conjugate saccades, similar in both amplitude and direction but separated by the ocular deviation. Two monkeys showed a pattern deviation, characterized by a systematic change in the relative position of the two eyes with certain changes in gaze angle. These animals' saccades were slightly different for the right eye and left eye in their amplitude or direction. The differences were consistent with the animals' underlying pattern deviation, measured during static fixation and smooth pursuit. The tectal map for saccade generation appears to be normal in strabismus, but saccades may be affected by changes in the strabismic deviation that occur with different gaze angles. PMID:27605534

  20. Are smooth pursuit eye movements altered in chronic whiplash-associated disorders? A cross-sectional study.

    PubMed

    Kongsted, A; Jørgensen, L V; Bendix, T; Korsholm, L; Leboeuf-Yde, C

    2007-11-01

    To evaluate whether smooth pursuit eye movements differed between patients with long-lasting whiplash-associated disorders and controls when using a purely computerized method for the eye movement analysis. Cross-sectional study comparing patients with whiplash-associated disorders and controls who had not been exposed to head or neck trauma and had no notable neck complaints. Smooth pursuit eye movements were registered while the subjects were seated with and without rotated cervical spine. Thirty-four patients with whiplash-associated disorders with symptoms more than six months after a car collision and 60 controls. Smooth pursuit eye movements were almost identical in patients with chronic whiplash-associated disorders and controls, both when the neck was rotated and in the neutral position. Disturbed smooth pursuit eye movements do not appear to be a distinct feature in patients with chronic whiplash-associated disorders. This is in contrast to results of previous studies and may be due to the fact that analyses were performed in a computerized and objective manner. Other possible reasons for the discrepancy to previous studies are discussed.

  1. The vestibular-related frontal cortex and its role in smooth-pursuit eye movements and vestibular-pursuit interactions

    PubMed Central

    Fukushima, Junko; Akao, Teppei; Kurkin, Sergei; Kaneko, Chris R.S.; Fukushima, Kikuro

    2006-01-01

    In order to see clearly when a target is moving slowly, primates with high acuity foveae use smooth-pursuit and vergence eye movements. The former rotates both eyes in the same direction to track target motion in frontal planes, while the latter rotates left and right eyes in opposite directions to track target motion in depth. Together, these two systems pursue targets precisely and maintain their images on the foveae of both eyes. During head movements, both systems must interact with the vestibular system to minimize slip of the retinal images. The primate frontal cortex contains two pursuit-related areas; the caudal part of the frontal eye fields (FEF) and supplementary eye fields (SEF). Evoked potential studies have demonstrated vestibular projections to both areas and pursuit neurons in both areas respond to vestibular stimulation. The majority of FEF pursuit neurons code parameters of pursuit such as pursuit and vergence eye velocity, gaze velocity, and retinal image motion for target velocity in frontal and depth planes. Moreover, vestibular inputs contribute to the predictive pursuit responses of FEF neurons. In contrast, the majority of SEF pursuit neurons do not code pursuit metrics and many SEF neurons are reported to be active in more complex tasks. These results suggest that FEF- and SEF-pursuit neurons are involved in different aspects of vestibular-pursuit interactions and that eye velocity coding of SEF pursuit neurons is specialized for the task condition. PMID:16917164

  2. Smooth pursuitlike eye movements evoked by microstimulation in macaque nucleus reticularis tegmenti pontis.

    PubMed

    Yamada, T; Suzuki, D A; Yee, R D

    1996-11-01

    1. Smooth pursuitlike eye movements were evoked with low current microstimulation delivered to rostral portions of the nucleus reticularis tegmenti pontis (rNRTP) in alert macaques. Microstimulation sites were selected by the observation of modulations in single-cell firing rates that were correlated with periodic smoothpursuit eye movements. Current intensities ranged from 10 to 120 microA and were routinely < 40 microA. Microstimulation was delivered either in the dark with no fixation, 100 ms after a fixation target was extinguished, or during maintained fixation of a stationary or moving target. Evoked eye movements also were studied under open-loop conditions with the target image stabilized on the retina. 2. Eye movements evoked in the absence of a target rapidly accelerated to a constant velocity that was maintained for the duration of the microstimulation. Evoked eye speeds ranged from 3.7 to 23 deg/s and averaged 11 deg/s. Evoked eye speed appeared to be linearly related to initial eye position with a sensitivity to initial eye position that averaged 0.23 deg.s-1.deg-1. While some horizontal and oblique smooth eye movements were elicited, microstimulation resulted in upward eye movements in 89% of the sites. 3. Evoked eye speed was found to be dependent on microstimulation pulse frequency and current intensity. Within limits, evoked eye speed increased with increases in stimulation frequency or current intensity. For stimulation frequencies < 300-400 Hz, only smooth pursuit-like eye movements were evoked. At higher stimulation frequencies, accompanying saccades consistently were elicited. 4. Feedback of retinal image motion interacted with the evoked eye movements to decrease eye speed if the visual motion was in the opposite direction as the evoked, pursuit-like eye movements. 5. The results implicate rNRTP as part of the neuronal substrate that controls smooth-pursuit eye movements. NRTP appears to be divided functionally into a rostral, pursuit

  3. On the Visual Input Driving Human Smooth-Pursuit Eye Movements

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, Brent R.; Lorenceau, Jean

    1996-01-01

    Current computational models of smooth-pursuit eye movements assume that the primary visual input is local retinal-image motion (often referred to as retinal slip). However, we show that humans can pursue object motion with considerable accuracy, even in the presence of conflicting local image motion. This finding indicates that the visual cortical area(s) controlling pursuit must be able to perform a spatio-temporal integration of local image motion into a signal related to object motion. We also provide evidence that the object-motion signal that drives pursuit is related to the signal that supports perception. We conclude that current models of pursuit should be modified to include a visual input that encodes perceived object motion and not merely retinal image motion. Finally, our findings suggest that the measurement of eye movements can be used to monitor visual perception, with particular value in applied settings as this non-intrusive approach would not require interrupting ongoing work or training.

  4. Pursuit Latency for Chromatic Targets

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Ellis, Stephen R. (Technical Monitor)

    1998-01-01

    The temporal dynamics of eye movement response to a change in direction of stimulus motion has been used to compare the processing speeds of different types of stimuli (Mulligan, ARVO '97). In this study, the pursuit response to colored targets was measured to test the hypothesis that the slow response of the chromatic system (as measured using traditional temporal sensitivity measures such as contrast sensitivity) results in increased eye movement latencies. Subjects viewed a small (0.4 deg) Gaussian spot which moved downward at a speed of 6.6 deg/sec. At a variable time during the trajectory, the dot's direction of motion changed by 30 degrees, either to the right or left. Subjects were instructed to pursue the spot. Eye movements were measured using a video ophthalmoscope with an angular resolution of approximately 1 arc min and a temporal sampling rate of 60 Hz. Stimuli were modulated in chrominance for a variety of hue directions, combined with a range of small luminance increments and decrements, to insure that some of the stimuli fell in the subjects' equiluminance planes. The smooth portions of the resulting eye movement traces were fit by convolving the stimulus velocity with an exponential having variable onset latency, time constant and amplitude. Smooth eye movements with few saccades were observed for all stimuli. Pursuit responses to stimuli having a significant luminance component are well-fit by exponentials having latencies and time constants on the order of 100 msec. Increases in pursuit response latency on the order of 100-200 msec are observed in response to certain stimuli, which occur in pairs of complementary hues, corresponding to the intersection of the stimulus section with the subjects' equiluminant plane. Smooth eye movements can be made in response to purely chromatic stimuli, but are slower than responses to stimuli with a luminance component.

  5. Catch-up saccades in head-unrestrained conditions reveal that saccade amplitude is corrected using an internal model of target movement

    PubMed Central

    Daye, Pierre M.; Blohm, Gunnar; Lefèvre, Phillippe

    2014-01-01

    This study analyzes how human participants combine saccadic and pursuit gaze movements when they track an oscillating target moving along a randomly oriented straight line with the head free to move. We found that to track the moving target appropriately, participants triggered more saccades with increasing target oscillation frequency to compensate for imperfect tracking gains. Our sinusoidal paradigm allowed us to show that saccade amplitude was better correlated with internal estimates of position and velocity error at saccade onset than with those parameters 100 ms before saccade onset as head-restrained studies have shown. An analysis of saccadic onset time revealed that most of the saccades were triggered when the target was accelerating. Finally, we found that most saccades were triggered when small position errors were combined with large velocity errors at saccade onset. This could explain why saccade amplitude was better correlated with velocity error than with position error. Therefore, our results indicate that the triggering mechanism of head-unrestrained catch-up saccades combines position and velocity error at saccade onset to program and correct saccade amplitude rather than using sensory information 100 ms before saccade onset. PMID:24424378

  6. Receptive fields for smooth pursuit eye movements and motion perception.

    PubMed

    Debono, Kurt; Schütz, Alexander C; Spering, Miriam; Gegenfurtner, Karl R

    2010-12-01

    Humans use smooth pursuit eye movements to track moving objects of interest. In order to track an object accurately, motion signals from the target have to be integrated and segmented from motion signals in the visual context. Most studies on pursuit eye movements used small visual targets against a featureless background, disregarding the requirements of our natural visual environment. Here, we tested the ability of the pursuit and the perceptual system to integrate motion signals across larger areas of the visual field. Stimuli were random-dot kinematograms containing a horizontal motion signal, which was perturbed by a spatially localized, peripheral motion signal. Perturbations appeared in a gaze-contingent coordinate system and had a different direction than the main motion including a vertical component. We measured pursuit and perceptual direction discrimination decisions and found that both steady-state pursuit and perception were influenced most by perturbation angles close to that of the main motion signal and only in regions close to the center of gaze. The narrow direction bandwidth (26 angular degrees full width at half height) and small spatial extent (8 degrees of visual angle standard deviation) correspond closely to tuning parameters of neurons in the middle temporal area (MT). Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Evidence for object permanence in the smooth-pursuit eye movements of monkeys.

    PubMed

    Churchland, Mark M; Chou, I-Han; Lisberger, Stephen G

    2003-10-01

    We recorded the smooth-pursuit eye movements of monkeys in response to targets that were extinguished (blinked) for 200 ms in mid-trajectory. Eye velocity declined considerably during the target blinks, even when the blinks were completely predictable in time and space. Eye velocity declined whether blinks were presented during steady-state pursuit of a constant-velocity target, during initiation of pursuit before target velocity was reached, or during eye accelerations induced by a change in target velocity. When a physical occluder covered the trajectory of the target during blinks, creating the impression that the target moved behind it, the decline in eye velocity was reduced or abolished. If the target was occluded once the eye had reached target velocity, pursuit was only slightly poorer than normal, uninterrupted pursuit. In contrast, if the target was occluded during the initiation of pursuit, while the eye was accelerating toward target velocity, pursuit during occlusion was very different from normal pursuit. Eye velocity remained relatively stable during target occlusion, showing much less acceleration than normal pursuit and much less of a decline than was produced by a target blink. Anticipatory or predictive eye acceleration was typically observed just prior to the reappearance of the target. Computer simulations show that these results are best understood by assuming that a mechanism of eye-velocity memory remains engaged during target occlusion but is disengaged during target blinks.

  8. Memory and decision making in the frontal cortex during visual motion processing for smooth pursuit eye movements.

    PubMed

    Shichinohe, Natsuko; Akao, Teppei; Kurkin, Sergei; Fukushima, Junko; Kaneko, Chris R S; Fukushima, Kikuro

    2009-06-11

    Cortical motor areas are thought to contribute "higher-order processing," but what that processing might include is unknown. Previous studies of the smooth pursuit-related discharge of supplementary eye field (SEF) neurons have not distinguished activity associated with the preparation for pursuit from discharge related to processing or memory of the target motion signals. Using a memory-based task designed to separate these components, we show that the SEF contains signals coding retinal image-slip-velocity, memory, and assessment of visual motion direction, the decision of whether to pursue, and the preparation for pursuit eye movements. Bilateral muscimol injection into SEF resulted in directional errors in smooth pursuit, errors of whether to pursue, and impairment of initial correct eye movements. These results suggest an important role for the SEF in memory and assessment of visual motion direction and the programming of appropriate pursuit eye movements.

  9. Normal aging affects movement execution but not visual motion working memory and decision-making delay during cue-dependent memory-based smooth-pursuit.

    PubMed

    Fukushima, Kikuro; Barnes, Graham R; Ito, Norie; Olley, Peter M; Warabi, Tateo

    2014-07-01

    Aging affects virtually all functions including sensory/motor and cognitive activities. While retinal image motion is the primary input for smooth-pursuit, its efficiency/accuracy depends on cognitive processes. Elderly subjects exhibit gain decrease during initial and steady-state pursuit, but reports on latencies are conflicting. Using a cue-dependent memory-based smooth-pursuit task, we identified important extra-retinal mechanisms for initial pursuit in young adults including cue information priming and extra-retinal drive components (Ito et al. in Exp Brain Res 229:23-35, 2013). We examined aging effects on parameters for smooth-pursuit using the same tasks. Elderly subjects were tested during three task conditions as previously described: memory-based pursuit, simple ramp-pursuit just to follow motion of a single spot, and popping-out of the correct spot during memory-based pursuit to enhance retinal image motion. Simple ramp-pursuit was used as a task that did not require visual motion working memory. To clarify aging effects, we then compared the results with the previous young subject data. During memory-based pursuit, elderly subjects exhibited normal working memory of cue information. Most movement-parameters including pursuit latencies differed significantly between memory-based pursuit and simple ramp-pursuit and also between young and elderly subjects. Popping-out of the correct spot motion was ineffective for enhancing initial pursuit in elderly subjects. However, the latency difference between memory-based pursuit and simple ramp-pursuit in individual subjects, which includes decision-making delay in the memory task, was similar between the two groups. Our results suggest that smooth-pursuit latencies depend on task conditions and that, although the extra-retinal mechanisms were functional for initial pursuit in elderly subjects, they were less effective.

  10. Saccadic eye movements as a measure of residual effects: temazepam compared with other hypnotics.

    PubMed

    Hofferberth, B; Hirschberg; Grotemeyer

    1986-01-01

    Eye movements are classified into two categories: quickly running saccades and smooth pursuit movements. Saccades are fast conjugate eye movements with a preprogrammed direction, amplitude, and speed course; their purpose is to register new objects in the visual field. The duration and velocity of saccadic eye movements are very much dependent on vigilance. Comparisons were made with a number of psychometric tests [d 2 Durchstreichtest (cross out test), Viennese determination apparatus, and flicker fusion frequency] and the velocity of fast eye movements. The results of three separate investigations are presented. Standardization was undertaken in 100 healthy volunteers, 50 male and 50 female subjects aged between 20 and more than 50 years were included. In an open parallel group study, comparisons were made between various hypnotics with different half-lives (temazepam, flunitrazepam, flurazepam, and phenobarbital). There were 10 healthy volunteers in each group, and medication was taken as a single night-time dose for 7 nights. In a double-blind study, temazepam (20 mg/day) was tested against flunitrazepam (2 mg/day). Dosing lasted 7 days. A marked impairment of the saccadic eye movements was observed with flunitrazepam but not with temazepam. Of all the benzodiazepines tested, only temazepam had no influence on the parameters of the saccade test. These results can be explained by temazepam's short half-life and also by the fact that no active metabolites are formed.

  11. Eye movement dysfunction in first-degree relatives of patients with schizophrenia: a meta-analytic evaluation of candidate endophenotypes.

    PubMed

    Calkins, Monica E; Iacono, William G; Ones, Deniz S

    2008-12-01

    Several forms of eye movement dysfunction (EMD) are regarded as promising candidate endophenotypes of schizophrenia. Discrepancies in individual study results have led to inconsistent conclusions regarding particular aspects of EMD in relatives of schizophrenia patients. To quantitatively evaluate and compare the candidacy of smooth pursuit, saccade and fixation deficits in first-degree biological relatives, we conducted a set of meta-analytic investigations. Among 18 measures of EMD, memory-guided saccade accuracy and error rate, global smooth pursuit dysfunction, intrusive saccades during fixation, antisaccade error rate and smooth pursuit closed-loop gain emerged as best differentiating relatives from controls (standardized mean differences ranged from .46 to .66), with no significant differences among these measures. Anticipatory saccades, but no other smooth pursuit component measures were also increased in relatives. Visually-guided reflexive saccades were largely normal. Moderator analyses examining design characteristics revealed few variables affecting the magnitude of the meta-analytically observed effects. Moderate effect sizes of relatives v. controls in selective aspects of EMD supports their endophenotype potential. Future work should focus on facilitating endophenotype utility through attention to heterogeneity of EMD performance, relationships among forms of EMD, and application in molecular genetics studies.

  12. Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Angelaki, Dora E.; Dickman, J. David

    2003-01-01

    Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.

  13. Smooth pursuit eye movements in 1,087 men: effects of schizotypy, anxiety, and depression.

    PubMed

    Smyrnis, Nikolaos; Evdokimidis, Ioannis; Mantas, Asimakis; Kattoulas, Emmanouil; Stefanis, Nicholas C; Constantinidis, Theodoros S; Avramopoulos, Dimitrios; Stefanis, Costas N

    2007-05-01

    Individuals with schizotypal personality disorder or high scores in questionnaires measuring schizotypy are at high risk for the development of schizophrenia and they also share some of the same phenotypic characteristics such as eye-tracking dysfunction (ETD). The question arises whether these individuals form a distinct high-risk group in the general population or whether schizotypy and ETD co-vary in the general population with no distinct cutoff point for a high-risk group. A large sample of military conscripts aged 18-25 were screened using oculomotor, cognitive and psychometric tools for the purposes of a prospective study on predisposing factors for the development of psychosis. Schizotypy measured using the perceptual aberration scale (PAS) and the schizotypal personality questionnaire (SPQ), anxiety and depression, measured using the Symptom Checklist 90-R, had no effect on pursuit performance in the total sample. Small groups of individuals with very high scores in schizotypy questionnaires were then identified. These groups were not mutually exclusive. The high PAS group had higher root-mean-square error scores (a quantitative measure for pursuit quality) than the total sample, and the high disorganized factor of SPQ group had lower gain and higher saccade frequencies in pursuit than the total sample. The presence of significant differences in pursuit performance only for predefined high schizotypy groups favors the hypothesis that individuals with high schizotypy might present one or more high-risk groups, distinct from the general population, that are prone to ETD as that observed in schizophrenia.

  14. Temporal dynamics of retinal and extraretinal signals in the FEFsem during smooth pursuit eye movements.

    PubMed

    Bakst, Leah; Fleuriet, Jérome; Mustari, Michael J

    2017-05-01

    Neurons in the smooth eye movement subregion of the frontal eye field (FEFsem) are known to play an important role in voluntary smooth pursuit eye movements. Underlying this function are projections to parietal and prefrontal visual association areas and subcortical structures, all known to play vital but differing roles in the execution of smooth pursuit. Additionally, the FEFsem has been shown to carry a diverse array of signals (e.g., eye velocity, acceleration, gain control). We hypothesized that distinct subpopulations of FEFsem neurons subserve these diverse functions and projections, and that the relative weights of retinal and extraretinal signals could form the basis for categorization of units. To investigate this, we used a step-ramp tracking task with a target blink to determine the relative contributions of retinal and extraretinal signals in individual FEFsem neurons throughout pursuit. We found that the contributions of retinal and extraretinal signals to neuronal activity and behavior change throughout the time course of pursuit. A clustering algorithm revealed three distinct neuronal subpopulations: cluster 1 was defined by a higher sensitivity to eye velocity, acceleration, and retinal image motion; cluster 2 had greater activity during blinks; and cluster 3 had significantly greater eye position sensitivity. We also performed a comparison with a sample of medial superior temporal neurons to assess similarities and differences between the two areas. Our results indicate the utility of simple tests such as the target blink for parsing the complex and multifaceted roles of cortical areas in behavior. NEW & NOTEWORTHY The frontal eye field (FEF) is known to play a critical role in volitional smooth pursuit, carrying a variety of signals that are distributed throughout the brain. This study used a novel application of a target blink task during step ramp tracking to determine, in combination with a clustering algorithm, the relative contributions of

  15. Temporal dynamics of retinal and extraretinal signals in the FEFsem during smooth pursuit eye movements

    PubMed Central

    Bakst, Leah; Fleuriet, Jérome

    2017-01-01

    Neurons in the smooth eye movement subregion of the frontal eye field (FEFsem) are known to play an important role in voluntary smooth pursuit eye movements. Underlying this function are projections to parietal and prefrontal visual association areas and subcortical structures, all known to play vital but differing roles in the execution of smooth pursuit. Additionally, the FEFsem has been shown to carry a diverse array of signals (e.g., eye velocity, acceleration, gain control). We hypothesized that distinct subpopulations of FEFsem neurons subserve these diverse functions and projections, and that the relative weights of retinal and extraretinal signals could form the basis for categorization of units. To investigate this, we used a step-ramp tracking task with a target blink to determine the relative contributions of retinal and extraretinal signals in individual FEFsem neurons throughout pursuit. We found that the contributions of retinal and extraretinal signals to neuronal activity and behavior change throughout the time course of pursuit. A clustering algorithm revealed three distinct neuronal subpopulations: cluster 1 was defined by a higher sensitivity to eye velocity, acceleration, and retinal image motion; cluster 2 had greater activity during blinks; and cluster 3 had significantly greater eye position sensitivity. We also performed a comparison with a sample of medial superior temporal neurons to assess similarities and differences between the two areas. Our results indicate the utility of simple tests such as the target blink for parsing the complex and multifaceted roles of cortical areas in behavior. NEW & NOTEWORTHY The frontal eye field (FEF) is known to play a critical role in volitional smooth pursuit, carrying a variety of signals that are distributed throughout the brain. This study used a novel application of a target blink task during step ramp tracking to determine, in combination with a clustering algorithm, the relative contributions of

  16. Smooth Pursuit in Schizophrenia: A Meta-Analytic Review of Research since 1993

    ERIC Educational Resources Information Center

    O'Driscoll, Gillian A.; Callahan, Brandy L.

    2008-01-01

    Abnormal smooth pursuit eye-tracking is one of the most replicated deficits in the psychophysiological literature in schizophrenia [Levy, D. L., Holzman, P. S., Matthysse, S., & Mendell, N. R. (1993). "Eye tracking dysfunction and schizophrenia: A critical perspective." "Schizophrenia Bulletin, 19", 461-505]. We used meta-analytic procedures to…

  17. Effects of diphenhydramine on human eye movements.

    PubMed

    Hopfenbeck, J R; Cowley, D S; Radant, A; Greenblatt, D J; Roy-Byrne, P P

    1995-04-01

    Peak saccadic eye movement velocity (SEV) and average smooth pursuit gain (SP) are reduced in a dose-dependent manner by diazepam and provide reliable, quantitative measures of benzodiazepine agonist effects. To evaluate the specificity of these eye movement effects for agents acting at the central GABA-benzodiazepine receptor complex and the role of sedation in benzodiazepine effects, we studied eye movement effects of diphenhydramine, a sedating drug which does not act at the GABA-benzodiazepine receptor complex. Ten healthy males, aged 19-28 years, with no history of axis I psychiatric disorders or substance abuse, received 50 mg/70 kg intravenous diphenhydramine or a similar volume of saline on separate days 1 week apart. SEV, saccade latency and accuracy, SP, self-rated sedation, and short-term memory were assessed at baseline and at 5, 15, 30, 45, 60, 90 and 120 min after drug administration. Compared with placebo, diphenhydramine produced significant SEV slowing, and increases in saccade latency and self-rated sedation. There was no significant effect of diphenhydramine on smooth pursuit gain, saccade accuracy, or short-term memory. These results suggest that, like diazepam, diphenhydramine causes sedation, SEV slowing, and an increase in saccade latency. Since the degree of diphenhydramine-induced sedation was not correlated with changes in SEV or saccade latency, slowing of saccadic eye movements is unlikely to be attributable to sedation alone. Unlike diazepam, diphenhydramine does not impair smooth pursuit gain, saccadic accuracy, or memory. Different neurotransmitter systems may influence the neural pathways involved in SEV and smooth pursuit again.

  18. Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation.

    PubMed

    Montagnini, Anna; Spering, Miriam; Masson, Guillaume S

    2006-12-01

    Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.

  19. Expansion of direction space around the cardinal axes revealed by smooth pursuit eye movements.

    PubMed

    Krukowski, Anton E; Stone, Leland S

    2005-01-20

    It is well established that perceptual direction discrimination shows an oblique effect; thresholds are higher for motion along diagonal directions than for motion along cardinal directions. Here, we compare simultaneous direction judgments and pursuit responses for the same motion stimuli and find that both pursuit and perceptual thresholds show similar anisotropies. The pursuit oblique effect is robust under a wide range of experimental manipulations, being largely resistant to changes in trajectory (radial versus tangential motion), speed (10 versus 25 deg/s), directional uncertainty (blocked versus randomly interleaved), and cognitive state (tracking alone versus concurrent tracking and perceptual tasks). Our data show that the pursuit oblique effect is caused by an effective expansion of direction space surrounding the cardinal directions and the requisite compression of space for other directions. This expansion suggests that the directions around the cardinal directions are in some way overrepresented in the visual cortical pathways that drive both smooth pursuit and perception.

  20. Expansion of direction space around the cardinal axes revealed by smooth pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Krukowski, Anton E.; Stone, Leland S.

    2005-01-01

    It is well established that perceptual direction discrimination shows an oblique effect; thresholds are higher for motion along diagonal directions than for motion along cardinal directions. Here, we compare simultaneous direction judgments and pursuit responses for the same motion stimuli and find that both pursuit and perceptual thresholds show similar anisotropies. The pursuit oblique effect is robust under a wide range of experimental manipulations, being largely resistant to changes in trajectory (radial versus tangential motion), speed (10 versus 25 deg/s), directional uncertainty (blocked versus randomly interleaved), and cognitive state (tracking alone versus concurrent tracking and perceptual tasks). Our data show that the pursuit oblique effect is caused by an effective expansion of direction space surrounding the cardinal directions and the requisite compression of space for other directions. This expansion suggests that the directions around the cardinal directions are in some way overrepresented in the visual cortical pathways that drive both smooth pursuit and perception.

  1. Evidence for a retinal velocity memory underlying the direction of anticipatory smooth pursuit eye movements.

    PubMed

    Murdison, T Scott; Paré-Bingley, Chanel A; Blohm, Gunnar

    2013-08-01

    To compute spatially correct smooth pursuit eye movements, the brain uses both retinal motion and extraretinal signals about the eyes and head in space (Blohm and Lefèvre 2010). However, when smooth eye movements rely solely on memorized target velocity, such as during anticipatory pursuit, it is unknown if this velocity memory also accounts for extraretinal information, such as head roll and ocular torsion. To answer this question, we used a novel behavioral updating paradigm in which participants pursued a repetitive, spatially constant fixation-gap-ramp stimulus in series of five trials. During the first four trials, participants' heads were rolled toward one shoulder, inducing ocular counterroll (OCR). With each repetition, participants increased their anticipatory pursuit gain, indicating a robust encoding of velocity memory. On the fifth trial, they rolled their heads to the opposite shoulder before pursuit, also inducing changes in ocular torsion. Consequently, for spatially accurate anticipatory pursuit, the velocity memory had to be updated across changes in head roll and ocular torsion. We tested how the velocity memory accounted for head roll and OCR by observing the effects of changes to these signals on anticipatory trajectories of the memory decoding (fifth) trials. We found that anticipatory pursuit was updated for changes in head roll; however, we observed no evidence of compensation for OCR, representing the absence of ocular torsion signals within the velocity memory. This indicated that the directional component of the memory must be coded retinally and updated to account for changes in head roll, but not OCR.

  2. Comparison of smooth pursuit and combined eye-head tracking in human subjects with deficient labyrinthine function

    NASA Technical Reports Server (NTRS)

    Leigh, R. J.; Thurston, S. E.; Sharpe, J. A.; Ranalli, P. J.; Hamid, M. A.

    1987-01-01

    The effects of deficient labyrinthine function on smooth visual tracking with the eyes and head were investigated, using ten patients with bilateral peripheral vestibular disease and ten normal controls. Active, combined eye-head tracking (EHT) was significantly better in patients than smooth pursuit with the eyes alone, whereas normal subjects pursued equally well in both cases. Compensatory eye movements during active head rotation in darkness were always less in patients than in normal subjects. These data were used to examine current hypotheses that postulate central cancellation of the vestibulo-ocular reflex (VOR) during EHT. A model that proposes summation of an integral smooth pursuit command and VOR/compensatory eye movements is consistent with the findings. Observation of passive EHT (visual fixation of a head-fixed target during en bloc rotation) appears to indicate that in this mode parametric gain changes contribute to modulation of the VOR.

  3. Visuo-oculomotor skills related to the visual demands of sporting environments.

    PubMed

    Ceyte, Hadrien; Lion, Alexis; Caudron, Sébastien; Perrin, Philippe; Gauchard, Gérome C

    2017-01-01

    The aim of this study was to assess the visuo-oculomotor skills of gaze orientation in selected sport activities relative to visual demands of the sporting environment. Both temporal and spatial demands of the sporting environment were investigated: The latency and accuracy of horizontal saccades and the gain of the horizontal smooth pursuit of the sporting environment were investigated in 16 fencers, 19 tennis players, 12 gymnasts, 9 swimmers and 18 sedentary participants. For the saccade test, two sequences were tested: In the fixed sequence, participants knew in advance the time interval between each target, as well as the direction and the amplitude of its reappearance; in the Freyss sequence however, the spatial changes of the target (direction and amplitude) were known in advance by participants but the time interval between each target was unknown. For the smooth-pursuit test, participants were instructed to smoothly track a target moving in a predictable sinusoidal, horizontal way without corrective ocular saccades, nor via anticipation or head movements. The results showed no significant differences between specificities of selected sporting activities via the saccade latency (although shorter than in non-athletes), contrary to saccade accuracy and the gain of smooth pursuit. Higher saccade accuracy was observed overall in fencers compared to non-athletes and all other sportsmen with the exception of tennis players. In the smooth-pursuit task, only tennis players presented a significantly higher gain compared to non-athletes and gymnasts. These sport-specific characteristics of the visuo-oculomotor skills are discussed with regard to the different cognitive skills such as attentional allocation and cue utilization ability as well as with regard to the difference in motor preparation.

  4. Visual cues that are effective for contextual saccade adaptation.

    PubMed

    Azadi, Reza; Harwood, Mark R

    2014-06-01

    The accuracy of saccades, as maintained by saccade adaptation, has been shown to be context dependent: able to have different amplitude movements to the same retinal displacement dependent on motor contexts such as orbital starting location. There is conflicting evidence as to whether purely visual cues also effect contextual saccade adaptation and, if so, what function this might serve. We tested what visual cues might evoke contextual adaptation. Over 5 experiments, 78 naive subjects made saccades to circularly moving targets, which stepped outward or inward during the saccade depending on target movement direction, speed, or color and shape. To test if the movement or context postsaccade were critical, we stopped the postsaccade target motion (experiment 4) or neutralized the contexts by equating postsaccade target speed to an intermediate value (experiment 5). We found contextual adaptation in all conditions except those defined by color and shape. We conclude that some, but not all, visual cues before the saccade are sufficient for contextual adaptation. We conjecture that this visual contextuality functions to allow for different motor states for different coordinated movement patterns, such as coordinated saccade and pursuit motor planning. Copyright © 2014 the American Physiological Society.

  5. Visual cues that are effective for contextual saccade adaptation

    PubMed Central

    Azadi, Reza

    2014-01-01

    The accuracy of saccades, as maintained by saccade adaptation, has been shown to be context dependent: able to have different amplitude movements to the same retinal displacement dependent on motor contexts such as orbital starting location. There is conflicting evidence as to whether purely visual cues also effect contextual saccade adaptation and, if so, what function this might serve. We tested what visual cues might evoke contextual adaptation. Over 5 experiments, 78 naive subjects made saccades to circularly moving targets, which stepped outward or inward during the saccade depending on target movement direction, speed, or color and shape. To test if the movement or context postsaccade were critical, we stopped the postsaccade target motion (experiment 4) or neutralized the contexts by equating postsaccade target speed to an intermediate value (experiment 5). We found contextual adaptation in all conditions except those defined by color and shape. We conclude that some, but not all, visual cues before the saccade are sufficient for contextual adaptation. We conjecture that this visual contextuality functions to allow for different motor states for different coordinated movement patterns, such as coordinated saccade and pursuit motor planning. PMID:24647429

  6. Human discrimination of visual direction of motion with and without smooth pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Krukowski, Anton E.; Pirog, Kathleen A.; Beutter, Brent R.; Brooks, Kevin R.; Stone, Leland S.

    2003-01-01

    It has long been known that ocular pursuit of a moving target has a major influence on its perceived speed (Aubert, 1886; Fleischl, 1882). However, little is known about the effect of smooth pursuit on the perception of target direction. Here we compare the precision of human visual-direction judgments under two oculomotor conditions (pursuit vs. fixation). We also examine the impact of stimulus duration (200 ms vs. 800 ms) and absolute direction (cardinal vs. oblique). Our main finding is that direction discrimination thresholds in the fixation and pursuit conditions are indistinguishable. Furthermore, the two oculomotor conditions showed oblique effects of similar magnitudes. These data suggest that the neural direction signals supporting perception are the same with or without pursuit, despite remarkably different retinal stimulation. During fixation, the stimulus information is restricted to large, purely peripheral retinal motion, while during steady-state pursuit, the stimulus information consists of small, unreliable foveal retinal motion and a large efference-copy signal. A parsimonious explanation of our findings is that the signal limiting the precision of direction judgments is a neural estimate of target motion in head-centered (or world-centered) coordinates (i.e., a combined retinal and eye motion signal) as found in the medial superior temporal area (MST), and not simply an estimate of retinal motion as found in the middle temporal area (MT).

  7. Keep your eyes on the ball: smooth pursuit eye movements enhance prediction of visual motion.

    PubMed

    Spering, Miriam; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R

    2011-04-01

    Success of motor behavior often depends on the ability to predict the path of moving objects. Here we asked whether tracking a visual object with smooth pursuit eye movements helps to predict its motion direction. We developed a paradigm, "eye soccer," in which observers had to either track or fixate a visual target (ball) and judge whether it would have hit or missed a stationary vertical line segment (goal). Ball and goal were presented briefly for 100-500 ms and disappeared from the screen together before the perceptual judgment was prompted. In pursuit conditions, the ball moved towards the goal; in fixation conditions, the goal moved towards the stationary ball, resulting in similar retinal stimulation during pursuit and fixation. We also tested the condition in which the goal was fixated and the ball moved. Motion direction prediction was significantly better in pursuit than in fixation trials, regardless of whether ball or goal served as fixation target. In both fixation and pursuit trials, prediction performance was better when eye movements were accurate. Performance also increased with shorter ball-goal distance and longer presentation duration. A longer trajectory did not affect performance. During pursuit, an efference copy signal might provide additional motion information, leading to the advantage in motion prediction.

  8. Davida Teller Award Lecture 2013: the importance of prediction and anticipation in the control of smooth pursuit eye movements.

    PubMed

    Kowler, Eileen; Aitkin, Cordelia D; Ross, Nicholas M; Santos, Elio M; Zhao, Min

    2014-05-16

    The ability of smooth pursuit eye movements to anticipate the future motion of targets has been known since the pioneering work of Dodge, Travis, and Fox (1930) and Westheimer (1954). This article reviews aspects of anticipatory smooth eye movements, focusing on the roles of the different internal or external cues that initiate anticipatory pursuit.We present new results showing that the anticipatory smooth eye movements evoked by different cues differ substantially, even when the cues are equivalent in the information conveyed about the direction of future target motion. Cues that convey an easily interpretable visualization of the motion path produce faster anticipatory smooth eye movements than the other cues tested, including symbols associated arbitrarily with the path, and the same target motion tested repeatedly over a block of trials. The differences among the cues may be understood within a common predictive framework in which the cues differ in the level of subjective certainty they provide about the future path. Pursuit may be driven by a combined signal in which immediate sensory motion, and the predictions about future motion generated by sets of cues, are weighted according to their respective levels of certainty. Anticipatory smooth eye movements, an overt indicator of expectations and predictions, may not be operating in isolation, but may be part of a global process in which the brain analyzes available cues, formulates predictions, and uses them to control perceptual, motor, and cognitive processes. © 2014 ARVO.

  9. Auditory, Vestibular and Cognitive Effects due to Repeated Blast Exposure on the Warfighter

    DTIC Science & Technology

    2012-07-01

    for testing): • Spontaneous nystagmus • Smooth Harmonic Acceleration (.01, .08, .32, .64, 1. 75) • Saccades Horizontal and Vertical • Smooth...Pursuit Horizontal (0.1, 0.2, 0.4, . 71) • Smooth Pursuit Vertical (0 .1, 0.2, 0.4, .71) • Gaze Horizontal • Gaze Vertical • OKN Trapezoidal (20, 40, 60

  10. Sleep deprivation as an experimental model system for psychosis: Effects on smooth pursuit, prosaccades, and antisaccades.

    PubMed

    Meyhöfer, Inga; Kumari, Veena; Hill, Antje; Petrovsky, Nadine; Ettinger, Ulrich

    2017-04-01

    Current antipsychotic medications fail to satisfactorily reduce negative and cognitive symptoms and produce many unwanted side effects, necessitating the development of new compounds. Cross-species, experimental behavioural model systems can be valuable to inform the development of such drugs. The aim of the current study was to further test the hypothesis that controlled sleep deprivation is a safe and effective model system for psychosis when combined with oculomotor biomarkers of schizophrenia. Using a randomized counterbalanced within-subjects design, we investigated the effects of 1 night of total sleep deprivation in 32 healthy participants on smooth pursuit eye movements (SPEM), prosaccades (PS), antisaccades (AS), and self-ratings of psychosis-like states. Compared with a normal sleep control night, sleep deprivation was associated with reduced SPEM velocity gain, higher saccadic frequency at 0.2 Hz, elevated PS spatial error, and an increase in AS direction errors. Sleep deprivation also increased intra-individual variability of SPEM, PS, and AS measures. In addition, sleep deprivation induced psychosis-like experiences mimicking hallucinations, cognitive disorganization, and negative symptoms, which in turn had moderate associations with AS direction errors. Taken together, sleep deprivation resulted in psychosis-like impairments in SPEM and AS performance. However, diverging somewhat from the schizophrenia literature, sleep deprivation additionally disrupted PS control. Sleep deprivation thus represents a promising but possibly unspecific experimental model that may be helpful to further improve our understanding of the underlying mechanisms in the pathophysiology of psychosis and aid the development of antipsychotic and pro-cognitive drugs.

  11. Eye movement abnormalities in essential tremor

    PubMed Central

    Plinta, Klaudia; Krzak-Kubica, Agnieszka; Zajdel, Katarzyna; Falkiewicz, Marcel; Dylak, Jacek; Ober, Jan; Szczudlik, Andrzej; Rudzińska, Monika

    2016-01-01

    Abstract Essential tremor (ET) is the most prevalent movement disorder, characterized mainly by an action tremor of the arms. Only a few studies published as yet have assessed oculomotor abnormalities in ET and their results are unequivocal. The aim of this study was to assess the oculomotor abnormalities in ET patients compared with the control group and to find the relationship between oculomotor abnormalities and clinical features of ET patients. We studied 50 ET patients and 42 matched by age and gender healthy controls. Saccadometer Advanced (Ober Consulting, Poland) was used to investigate reflexive, pace-induced and cued saccades and conventional electrooculography for evaluation of smooth pursuit and fixation. The severity of the tremor was assessed by the Clinical Rating Scale for Tremor. Significant differences between ET patients and controls were found for the incidence of reflexive saccades dysmetria and deficit of smooth pursuit. Reflexive saccades dysmetria was more frequent in patients in the second and third phase of ET compared to the first phase. The reflexive saccades latency increase was correlated with severity of the tremor. In conclusion, oculomotor abnormalities were significantly more common in ET patients than in healthy subjects. The most common oculomotor disturbances in ET were reflexive saccades dysmetria and slowing of smooth pursuit. The frequency of reflexive saccades dysmetria increased with progression of ET. The reflexive saccades latency increase was related to the severity of tremor. PMID:28149393

  12. Relationship between a GABAA alpha 6 Pro385Ser substitution and benzodiazepine sensitivity.

    PubMed

    Iwata, N; Cowley, D S; Radel, M; Roy-Byrne, P P; Goldman, D

    1999-09-01

    In humans, interindividual variation in sensitivity to benzodiazepine drugs may correlate with behavioral variation, including vulnerability to disease states such as alcoholism. In the rat, variation in alcohol and benzodiazepine sensitivity has been correlated with an inherited variant of the GABAA alpha 6 receptor. The authors detected a Pro385Ser [1236C > T] amino acid substitution in the human GABAA alpha 6 that may influence alcohol sensitivity. In this pilot study, they evaluated the contribution of this polymorphism to benzodiazepine sensitivity. Sensitivity to diazepam was assessed in 51 children of alcoholics by using two eye movement measures: peak saccadic velocity and average smooth pursuit gain. Association analysis was performed with saccadic velocity and smooth pursuit gain as dependent variables and comparing Pro385/Ser385 heterozygotes and Pro385/Pro385 homozygotes. The Pro385Ser genotype was associated with less diazepam-induced impairment of saccadic velocity but not with smooth pursuit gain. The Pro385Ser genotype may play a role in benzodiazepine sensitivity and conditions, such as alcoholism, that may be correlated with this trait.

  13. Weighted integration of short-term memory and sensory signals in the oculomotor system.

    PubMed

    Deravet, Nicolas; Blohm, Gunnar; de Xivry, Jean-Jacques Orban; Lefèvre, Philippe

    2018-05-01

    Oculomotor behaviors integrate sensory and prior information to overcome sensory-motor delays and noise. After much debate about this process, reliability-based integration has recently been proposed and several models of smooth pursuit now include recurrent Bayesian integration or Kalman filtering. However, there is a lack of behavioral evidence in humans supporting these theoretical predictions. Here, we independently manipulated the reliability of visual and prior information in a smooth pursuit task. Our results show that both smooth pursuit eye velocity and catch-up saccade amplitude were modulated by visual and prior information reliability. We interpret these findings as the continuous reliability-based integration of a short-term memory of target motion with visual information, which support modeling work. Furthermore, we suggest that saccadic and pursuit systems share this short-term memory. We propose that this short-term memory of target motion is quickly built and continuously updated, and constitutes a general building block present in all sensorimotor systems.

  14. Saccadic foveation of a moving visual target in the rhesus monkey.

    PubMed

    Fleuriet, Jérome; Hugues, Sandrine; Perrinet, Laurent; Goffart, Laurent

    2011-02-01

    When generating a saccade toward a moving target, the target displacement that occurs during the period spanning from its detection to the saccade end must be taken into account to accurately foveate the target and to initiate its pursuit. Previous studies have shown that these saccades are characterized by a lower peak velocity and a prolonged deceleration phase. In some cases, a second peak eye velocity appears during the deceleration phase, presumably reflecting the late influence of a mechanism that compensates for the target displacement occurring before saccade end. The goal of this work was to further determine in the head restrained monkey the dynamics of this putative compensatory mechanism. A step-ramp paradigm, where the target motion was orthogonal to a target step occurring along the primary axes, was used to estimate from the generated saccades: a component induced by the target step and another one induced by the target motion. Resulting oblique saccades were compared with saccades to a static target with matched horizontal and vertical amplitudes. This study permitted to estimate the time taken for visual motion-related signals to update the programming and execution of saccades. The amplitude of the motion-related component was slightly hypometric with an undershoot that increased with target speed. Moreover, it matched with the eccentricity that the target had 40-60 ms before saccade end. The lack of significant difference in the delay between the onsets of the horizontal and vertical components between saccades directed toward a static target and those aimed at a moving target questions the late influence of the compensatory mechanism. The results are discussed within the framework of the "dual drive" and "remapping" hypotheses.

  15. A Review on Eye Movement Studies in Childhood and Adolescent Psychiatry

    ERIC Educational Resources Information Center

    Rommelse, Nanda N. J.; Van der Stigchel, Stefan; Sergeant, Joseph A.

    2008-01-01

    The neural substrates of eye movement measures are largely known. Therefore, measurement of eye movements in psychiatric disorders may provide insight into the underlying neuropathology of these disorders. Visually guided saccades, antisaccades, memory guided saccades, and smooth pursuit eye movements will be reviewed in various childhood…

  16. Effects of reward on the accuracy and dynamics of smooth pursuit eye movements.

    PubMed

    Brielmann, Aenne A; Spering, Miriam

    2015-08-01

    Reward modulates behavioral choices and biases goal-oriented behavior, such as eye or hand movements, toward locations or stimuli associated with higher rewards. We investigated reward effects on the accuracy and timing of smooth pursuit eye movements in 4 experiments. Eye movements were recorded in participants tracking a moving visual target on a computer monitor. Before target motion onset, a monetary reward cue indicated whether participants could earn money by tracking accurately, or whether the trial was unrewarded (Experiments 1 and 2, n = 11 each). Reward significantly improved eye-movement accuracy across different levels of task difficulty. Improvements were seen even in the earliest phase of the eye movement, within 70 ms of tracking onset, indicating that reward impacts visual-motor processing at an early level. We obtained similar findings when reward was not precued but explicitly associated with the pursuit target (Experiment 3, n = 16); critically, these results were not driven by stimulus prevalence or other factors such as preparation or motivation. Numerical cues (Experiment 4, n = 9) were not effective. (c) 2015 APA, all rights reserved).

  17. Toward statistical modeling of saccadic eye-movement and visual saliency.

    PubMed

    Sun, Xiaoshuai; Yao, Hongxun; Ji, Rongrong; Liu, Xian-Ming

    2014-11-01

    In this paper, we present a unified statistical framework for modeling both saccadic eye movements and visual saliency. By analyzing the statistical properties of human eye fixations on natural images, we found that human attention is sparsely distributed and usually deployed to locations with abundant structural information. This observations inspired us to model saccadic behavior and visual saliency based on super-Gaussian component (SGC) analysis. Our model sequentially obtains SGC using projection pursuit, and generates eye movements by selecting the location with maximum SGC response. Besides human saccadic behavior simulation, we also demonstrated our superior effectiveness and robustness over state-of-the-arts by carrying out dense experiments on synthetic patterns and human eye fixation benchmarks. Multiple key issues in saliency modeling research, such as individual differences, the effects of scale and blur, are explored in this paper. Based on extensive qualitative and quantitative experimental results, we show promising potentials of statistical approaches for human behavior research.

  18. Distractor interference during smooth pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R; Kerzel, Dirk

    2006-10-01

    When 2 targets for pursuit eye movements move in different directions, the eye velocity follows the vector average (S. G. Lisberger & V. P. Ferrera, 1997). The present study investigates the mechanisms of target selection when observers are instructed to follow a predefined horizontal target and to ignore a moving distractor stimulus. Results show that at 140 ms after distractor onset, horizontal eye velocity is decreased by about 25%. Vertical eye velocity increases or decreases by 1 degrees /s in the direction opposite from the distractor. This deviation varies in size with distractor direction, velocity, and contrast. The effect was present during the initiation and steady-state tracking phase of pursuit but only when the observer had prior information about target motion. Neither vector averaging nor winner-take-all models could predict the response to a moving to-be-ignored distractor during steady-state tracking of a predefined target. The contributions of perceptual mislocalization and spatial attention to the vertical deviation in pursuit are discussed. Copyright 2006 APA.

  19. Gaze control for an active camera system by modeling human pursuit eye movements

    NASA Astrophysics Data System (ADS)

    Toelg, Sebastian

    1992-11-01

    The ability to stabilize the image of one moving object in the presence of others by active movements of the visual sensor is an essential task for biological systems, as well as for autonomous mobile robots. An algorithm is presented that evaluates the necessary movements from acquired visual data and controls an active camera system (ACS) in a feedback loop. No a priori assumptions about the visual scene and objects are needed. The algorithm is based on functional models of human pursuit eye movements and is to a large extent influenced by structural principles of neural information processing. An intrinsic object definition based on the homogeneity of the optical flow field of relevant objects, i.e., moving mainly fronto- parallel, is used. Velocity and spatial information are processed in separate pathways, resulting in either smooth or saccadic sensor movements. The program generates a dynamic shape model of the moving object and focuses its attention to regions where the object is expected. The system proved to behave in a stable manner under real-time conditions in complex natural environments and manages general object motion. In addition it exhibits several interesting abilities well-known from psychophysics like: catch-up saccades, grouping due to coherent motion, and optokinetic nystagmus.

  20. Do we track what we see? Common versus independent processing for motion perception and smooth pursuit eye movements: a review.

    PubMed

    Spering, Miriam; Montagnini, Anna

    2011-04-22

    Many neurophysiological studies in monkeys have indicated that visual motion information for the guidance of perception and smooth pursuit eye movements is - at an early stage - processed in the same visual pathway in the brain, crucially involving the middle temporal area (MT). However, these studies left some questions unanswered: Are perception and pursuit driven by the same or independent neuronal signals within this pathway? Are the perceptual interpretation of visual motion information and the motor response to visual signals limited by the same source of neuronal noise? Here, we review psychophysical studies that were motivated by these questions and compared perception and pursuit behaviorally in healthy human observers. We further review studies that focused on the interaction between perception and pursuit. The majority of results point to similarities between perception and pursuit, but dissociations were also reported. We discuss recent developments in this research area and conclude with suggestions for common and separate principles for the guidance of perceptual and motor responses to visual motion information. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Electro-oculography of smooth pursuit and optokinetic nystagmus eye movements in type I Duane's retraction syndrome.

    PubMed

    Melek, Nélida B; Blanco, Susana; Garcia, Horacio

    2006-01-01

    These two eye movements have not been previously studied in this condition by this method. Five cases were studied. Both visual acuity and eye examination of anterior and posterior segments were normal. A Nicolet Nystar Plus system with chloride silver electrodes was used to record the EOG. Of the two systems under study, the smooth pursuit system showed the most relevant anomalies, both in the Duane's eye and in the apparently healthy eye. No correlation was found between the pursuit and optokinetic nystagmus disorders. In some cases, more significant abnormalities were observed in the clinically normal eye. The results clearly demonstrated a significant impairment of the pursuit system. This suggests that this motor disorder is not exclusively caused by hypoplasia or aplasia of the nucleus of the abducens nerve (VIth cranial nerve). These abnormalities might be related to a poor development of the rhombencephalon since both supramotor nuclei as well as the pathways of this system arise from this region of the embryonic brain. In the particular case of OKN, the supramotor nuclei have a different origin. Therefore, these systems might be affected differently.

  2. Updating visual memory across eye movements for ocular and arm motor control.

    PubMed

    Thompson, Aidan A; Henriques, Denise Y P

    2008-11-01

    Remembered object locations are stored in an eye-fixed reference frame, so that every time the eyes move, spatial representations must be updated for the arm-motor system to reflect the target's new relative position. To date, studies have not investigated how the brain updates these spatial representations during other types of eye movements, such as smooth-pursuit. Further, it is unclear what information is used in spatial updating. To address these questions we investigated whether remembered locations of pointing targets are updated following smooth-pursuit eye movements, as they are following saccades, and also investigated the role of visual information in estimating eye-movement amplitude for updating spatial memory. Misestimates of eye-movement amplitude were induced when participants visually tracked stimuli presented with a background that moved in either the same or opposite direction of the eye before pointing or looking back to the remembered target location. We found that gaze-dependent pointing errors were similar following saccades and smooth-pursuit and that incongruent background motion did result in a misestimate of eye-movement amplitude. However, the background motion had no effect on spatial updating for pointing, but did when subjects made a return saccade, suggesting that the oculomotor and arm-motor systems may rely on different sources of information for spatial updating.

  3. fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements.

    PubMed

    Kimmig, H; Ohlendorf, S; Speck, O; Sprenger, A; Rutschmann, R M; Haller, S; Greenlee, M W

    2008-01-01

    Smooth pursuit eye movements (SP) are driven by moving objects. The pursuit system processes the visual input signals and transforms this information into an oculomotor output signal. Despite the object's movement on the retina and the eyes' movement in the head, we are able to locate the object in space implying coordinate transformations from retinal to head and space coordinates. To test for the visual and oculomotor components of SP and the possible transformation sites, we investigated three experimental conditions: (I) fixation of a stationary target with a second target moving across the retina (visual), (II) pursuit of the moving target with the second target moving in phase (oculomotor), (III) pursuit of the moving target with the second target remaining stationary (visuo-oculomotor). Precise eye movement data were simultaneously measured with the fMRI data. Visual components of activation during SP were located in the motion-sensitive, temporo-parieto-occipital region MT+ and the right posterior parietal cortex (PPC). Motor components comprised more widespread activation in these regions and additional activations in the frontal and supplementary eye fields (FEF, SEF), the cingulate gyrus and precuneus. The combined visuo-oculomotor stimulus revealed additional activation in the putamen. Possible transformation sites were found in MT+ and PPC. The MT+ activation evoked by the motion of a single visual dot was very localized, while the activation of the same single dot motion driving the eye was rather extended across MT+. The eye movement information appeared to be dispersed across the visual map of MT+. This could be interpreted as a transfer of the one-dimensional eye movement information into the two-dimensional visual map. Potentially, the dispersed information could be used to remap MT+ to space coordinates rather than retinal coordinates and to provide the basis for a motor output control. A similar interpretation holds for our results in the PPC

  4. Perceptual learning modifies untrained pursuit eye movements.

    PubMed

    Szpiro, Sarit F A; Spering, Miriam; Carrasco, Marisa

    2014-07-07

    Perceptual learning improves detection and discrimination of relevant visual information in mature humans, revealing sensory plasticity. Whether visual perceptual learning affects motor responses is unknown. Here we implemented a protocol that enabled us to address this question. We tested a perceptual response (motion direction estimation, in which observers overestimate motion direction away from a reference) and a motor response (voluntary smooth pursuit eye movements). Perceptual training led to greater overestimation and, remarkably, it modified untrained smooth pursuit. In contrast, pursuit training did not affect overestimation in either pursuit or perception, even though observers in both training groups were exposed to the same stimuli for the same time period. A second experiment revealed that estimation training also improved discrimination, indicating that overestimation may optimize perceptual sensitivity. Hence, active perceptual training is necessary to alter perceptual responses, and an acquired change in perception suffices to modify pursuit, a motor response. © 2014 ARVO.

  5. Perceptual learning modifies untrained pursuit eye movements

    PubMed Central

    Szpiro, Sarit F. A.; Spering, Miriam; Carrasco, Marisa

    2014-01-01

    Perceptual learning improves detection and discrimination of relevant visual information in mature humans, revealing sensory plasticity. Whether visual perceptual learning affects motor responses is unknown. Here we implemented a protocol that enabled us to address this question. We tested a perceptual response (motion direction estimation, in which observers overestimate motion direction away from a reference) and a motor response (voluntary smooth pursuit eye movements). Perceptual training led to greater overestimation and, remarkably, it modified untrained smooth pursuit. In contrast, pursuit training did not affect overestimation in either pursuit or perception, even though observers in both training groups were exposed to the same stimuli for the same time period. A second experiment revealed that estimation training also improved discrimination, indicating that overestimation may optimize perceptual sensitivity. Hence, active perceptual training is necessary to alter perceptual responses, and an acquired change in perception suffices to modify pursuit, a motor response. PMID:25002412

  6. [A tracking function of human eye in microgravity and during readaptation to earth's gravity].

    PubMed

    Kornilova, L N

    2001-01-01

    The paper summarizes results of electro-oculography of all ways of visual tracking: fixative eye movements (saccades), smooth pursuit of linearly, pendulum-like and circularly moving point stimuli, pursuit of vertically moving foveoretinal optokinetic stimuli, and presents values of thresholds and amplification coefficients of the optokinetic nystagmus during tracking of linear movement of foveoretinal optokinetic stimuli. Investigations were performed aboard the Salyut and Mir space stations with participation of 31 cosmonauts of whom 27 made long-term (76 up to 438 day) and 4 made short-term (7 to 9 day) missions. It was shown that in space flight the saccadic structure within the tracking reaction does not change; yet, corrective movements (additional microsaccades to achieve tracking) appeared in 47% of observations at the onset and in 76% of observations on months 3 to 6 of space flight. After landing, the structure of vertical saccades was found altered in half the cosmonauts. No matter in or after flight, reverse nystagmus was present along with the gaze nystagmus during static saccades in 22% (7 cosmonauts) of the observations. Amplitude of tracking vertically, diagonally or circularly moving stimuli was significantly reduced as period on mission increased. Early in flight (40% of the cosmonauts) and shortly afterwards (21% of the cosmonauts) the structure of smooth tracking reaction was totally broken up, that is eye followed stimulus with micro- or macrosaccades. The structure of smooth eye tracking recovered on flight days 6-8 and on postflight days 3-4. However, in 46% of the cosmonauts on long-term missions the structure of smooth eye tracking was noted to be disturbed periodically, i.e. smooth tracking was replaced by saccadic.

  7. Infantile Nystagmus and Abnormalities of Conjugate Eye Movements in Down Syndrome.

    PubMed

    Weiss, Avery H; Kelly, John P; Phillips, James O

    2016-03-01

    Subjects with Down syndrome (DS) have an anatomical defect within the cerebellum that may impact downstream oculomotor areas. This study characterized gaze holding and gains for smooth pursuit, saccades, and optokinetic nystagmus (OKN) in DS children with infantile nystagmus (IN). Clinical data of 18 DS children with IN were reviewed retrospectively. Subjects with constant strabismus were excluded to remove any contribution of latent nystagmus. Gaze-holding, horizontal and vertical saccades to target steps, horizontal smooth pursuit of drifting targets, OKN in response to vertically or horizontally-oriented square wave gratings drifted at 15°/s, 30°/s, and 45°/s were recorded using binocular video-oculography. Seven subjects had additional optical coherence tomography imaging. Infantile nystagmus was associated with one or more gaze-holding instabilities (GHI) in each subject. The majority of subjects had a combination of conjugate horizontal jerk with constant or exponential slow-phase velocity, asymmetric or symmetric, and either monocular or binocular pendular nystagmus. Six of seven subjects had mild (Grade 0-1) persistence of retinal layers overlying the fovea, similar to that reported in DS children without nystagmus. All subjects had abnormal gains across one or more stimulus conditions (horizontal smooth pursuit, saccades, or OKN). Saccade velocities followed the main sequence. Down syndrome subjects with IN show a wide range of GHI and abnormalities of conjugate eye movements. We propose that these ocular motor abnormalities result from functional abnormalities of the cerebellum and/or downstream oculomotor circuits, perhaps due to extensive miswiring.

  8. The Cerebellar Dysplasia of Chiari II Malformation as Revealed by Eye Movements

    PubMed Central

    Salman, Michael S.; Dennis, Maureen; Sharpe, James A.

    2011-01-01

    Introduction Chiari type II malformation (CII) is a developmental deformity of the hindbrain. We have previously reported that many patients with CII have impaired smooth pursuit, while few make inaccurate saccades or have an abnormal vestibulo-ocular reflex. In contrast, saccadic adaptation and visual fixation are normal. In this report, we correlate results from several eye movement studies with neuroimaging in CII. We present a model for structural changes within the cerebellum in CII. Methods Saccades, smooth pursuit, the vestibulo-ocular reflex, and visual fixation were recorded in 21 patients with CII, aged 8–19 years and 39 age-matched controls, using an infrared eye tracker. Qualitative and quantitative MRI data were correlated with eye movements in 19 CII patients and 28 controls. Results Nine patients with CII had abnormal eye movements. Smooth pursuit gain was subnormal in eight, saccadic accuracy abnormal in four, and vestibulo-ocular reflex gain abnormal in three. None had fixation instability. Patients with CII had a significantly smaller cerebellar volume than controls, and those with normal eye motion had an expanded midsagittal vermis compared to controls. However, patients with abnormal eye movements had a smaller (non-expanded) midsagittal vermis area, posterior fossa area and medial cerebellar volumes than CII patients with normal eye movements. Conclusions The deformity of CII affects the structure and function of the cerebellum selectively and differently in those with abnormal eye movements. We propose that the vermis can expand when compressed within a small posterior fossa in some CII patients, thus sparing its ocular motor functions. PMID:19960749

  9. Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation

    PubMed Central

    Fukushima, Kikuro; Fukushima, Junko; Warabi, Tateo; Barnes, Graham R.

    2013-01-01

    Smooth-pursuit eye movements allow primates to track moving objects. Efficient pursuit requires appropriate target selection and predictive compensation for inherent processing delays. Prediction depends on expectation of future object motion, storage of motion information and use of extra-retinal mechanisms in addition to visual feedback. We present behavioral evidence of how cognitive processes are involved in predictive pursuit in normal humans and then describe neuronal responses in monkeys and behavioral responses in patients using a new technique to test these cognitive controls. The new technique examines the neural substrate of working memory and movement preparation for predictive pursuit by using a memory-based task in macaque monkeys trained to pursue (go) or not pursue (no-go) according to a go/no-go cue, in a direction based on memory of a previously presented visual motion display. Single-unit task-related neuronal activity was examined in medial superior temporal cortex (MST), supplementary eye fields (SEF), caudal frontal eye fields (FEF), cerebellar dorsal vermis lobules VI–VII, caudal fastigial nuclei (cFN), and floccular region. Neuronal activity reflecting working memory of visual motion direction and go/no-go selection was found predominantly in SEF, cerebellar dorsal vermis and cFN, whereas movement preparation related signals were found predominantly in caudal FEF and the same cerebellar areas. Chemical inactivation produced effects consistent with differences in signals represented in each area. When applied to patients with Parkinson's disease (PD), the task revealed deficits in movement preparation but not working memory. In contrast, patients with frontal cortical or cerebellar dysfunction had high error rates, suggesting impaired working memory. We show how neuronal activity may be explained by models of retinal and extra-retinal interaction in target selection and predictive control and thus aid understanding of underlying

  10. FEFsem neuronal response during combined volitional and reflexive pursuit.

    PubMed

    Bakst, Leah; Fleuriet, Jérome; Mustari, Michael J

    2017-05-01

    Although much is known about volitional and reflexive smooth eye movements individually, much less is known about how they are coordinated. It is hypothesized that separate cortico-ponto-cerebellar loops subserve these different types of smooth eye movements. Specifically, the MT-MST-DLPN pathway is thought to be critical for ocular following eye movements, whereas the FEF-NRTP pathway is understood to be vital for volitional smooth pursuit. However, the role that these loops play in combined volitional and reflexive behavior is unknown. We used a large, textured background moving in conjunction with a small target spot to investigate the eye movements evoked by a combined volitional and reflexive pursuit task. We also assessed the activity of neurons in the smooth eye movement subregion of the frontal eye field (FEFsem). We hypothesized that the pursuit system would show less contribution from the volitional pathway in this task, owing to the increased involvement of the reflexive pathway. In accordance with this hypothesis, a majority of FEFsem neurons (63%) were less active during pursuit maintenance in a combined volitional and reflexive pursuit task than during purely volitional pursuit. Interestingly and surprisingly, the neuronal response to the addition of the large-field motion was highly correlated with the neuronal response to a target blink. This suggests that FEFsem neuronal responses to these different perturbations-whether the addition or subtraction of retinal input-may be related. We conjecture that these findings are due to changing weights of both the volitional and reflexive pathways, as well as retinal and extraretinal signals.

  11. FEFsem neuronal response during combined volitional and reflexive pursuit

    PubMed Central

    Bakst, Leah; Fleuriet, Jérome; Mustari, Michael J.

    2017-01-01

    Although much is known about volitional and reflexive smooth eye movements individually, much less is known about how they are coordinated. It is hypothesized that separate cortico-ponto-cerebellar loops subserve these different types of smooth eye movements. Specifically, the MT-MST-DLPN pathway is thought to be critical for ocular following eye movements, whereas the FEF-NRTP pathway is understood to be vital for volitional smooth pursuit. However, the role that these loops play in combined volitional and reflexive behavior is unknown. We used a large, textured background moving in conjunction with a small target spot to investigate the eye movements evoked by a combined volitional and reflexive pursuit task. We also assessed the activity of neurons in the smooth eye movement subregion of the frontal eye field (FEFsem). We hypothesized that the pursuit system would show less contribution from the volitional pathway in this task, owing to the increased involvement of the reflexive pathway. In accordance with this hypothesis, a majority of FEFsem neurons (63%) were less active during pursuit maintenance in a combined volitional and reflexive pursuit task than during purely volitional pursuit. Interestingly and surprisingly, the neuronal response to the addition of the large-field motion was highly correlated with the neuronal response to a target blink. This suggests that FEFsem neuronal responses to these different perturbations—whether the addition or subtraction of retinal input—may be related. We conjecture that these findings are due to changing weights of both the volitional and reflexive pathways, as well as retinal and extraretinal signals. PMID:28538993

  12. On the predictive control of foveal eye tracking and slow phases of optokinetic and vestibular nystagmus.

    PubMed Central

    Yasui, S; Young, L R

    1984-01-01

    Smooth pursuit and saccadic components of foveal visual tracking as well as more involuntary ocular movements of optokinetic (o.k.n.) and vestibular nystagmus slow phase components were investigated in man, with particular attention given to their possible input-adaptive or predictive behaviour. Each component in question was isolated from the eye movement records through a computer-aided procedure. The frequency response method was used with sinusoidal (predictable) and pseudo-random (unpredictable) stimuli. When the target motion was pseudo-random, the frequency response of pursuit eye movements revealed a large phase lead (up to about 90 degrees) at low stimulus frequencies. It is possible to interpret this result as a predictive effect, even though the stimulation was pseudo-random and thus 'unpredictable'. The pseudo-random-input frequency response intrinsic to the saccadic system was estimated in an indirect way from the pursuit and composite (pursuit + saccade) frequency response data. The result was fitted well by a servo-mechanism model, which has a simple anticipatory mechanism to compensate for the inherent neuromuscular saccadic delay by utilizing the retinal slip velocity signal. The o.k.n. slow phase also exhibited a predictive effect with sinusoidal inputs; however, pseudo-random stimuli did not produce such phase lead as found in the pursuit case. The vestibular nystagmus slow phase showed no noticeable sign of prediction in the frequency range examined (0 approximately 0.7 Hz), in contrast to the results of the visually driven eye movements (i.e. saccade, pursuit and o.k.n. slow phase) at comparable stimulus frequencies. PMID:6707954

  13. Distinct eye movement patterns enhance dynamic visual acuity.

    PubMed

    Palidis, Dimitrios J; Wyder-Hodge, Pearson A; Fooken, Jolande; Spering, Miriam

    2017-01-01

    Dynamic visual acuity (DVA) is the ability to resolve fine spatial detail in dynamic objects during head fixation, or in static objects during head or body rotation. This ability is important for many activities such as ball sports, and a close relation has been shown between DVA and sports expertise. DVA tasks involve eye movements, yet, it is unclear which aspects of eye movements contribute to successful performance. Here we examined the relation between DVA and the kinematics of smooth pursuit and saccadic eye movements in a cohort of 23 varsity baseball players. In a computerized dynamic-object DVA test, observers reported the location of the gap in a small Landolt-C ring moving at various speeds while eye movements were recorded. Smooth pursuit kinematics-eye latency, acceleration, velocity gain, position error-and the direction and amplitude of saccadic eye movements were linked to perceptual performance. Results reveal that distinct eye movement patterns-minimizing eye position error, tracking smoothly, and inhibiting reverse saccades-were related to dynamic visual acuity. The close link between eye movement quality and DVA performance has important implications for the development of perceptual training programs to improve DVA.

  14. Abnormal Vestibulo-Ocular Reflexes in Autism: A Potential Endophenotype

    DTIC Science & Technology

    2014-08-01

    among. Saccades and smooth pursuit are complex sensorimotor behaviors that involve several spatially distant brain regions and long- fiber tracts between...time, at a rate of 100 Hz. Visual stimuli were presented as a red laser -light, generated by NKI Pursuit Tracker® laser . The Pursuit Tracker® laser ...the testing equipment by projecting a laser stimulus onto the cylindrical screen and providing a fixed target at + 10º in both the horizontal and

  15. Distractor Interference during Smooth Pursuit Eye Movements

    ERIC Educational Resources Information Center

    Spering, Miriam; Gegenfurtner, Karl R.; Kerzel, Dirk

    2006-01-01

    When 2 targets for pursuit eye movements move in different directions, the eye velocity follows the vector average (S. G. Lisberger & V. P. Ferrera, 1997). The present study investigates the mechanisms of target selection when observers are instructed to follow a predefined horizontal target and to ignore a moving distractor stimulus. Results show…

  16. A Subconscious Interaction between Fixation and Anticipatory Pursuit

    PubMed Central

    Bal, Japjot; Heinen, Stephen J.

    2017-01-01

    Ocular smooth pursuit and fixation are typically viewed as separate systems, yet there is evidence that the brainstem fixation system inhibits pursuit. Here we present behavioral evidence that the fixation system modulates pursuit behavior outside of conscious awareness. Human observers (male and female) either pursued a small spot that translated across a screen, or fixated it as it remained stationary. As shown previously, pursuit trials potentiated the oculomotor system, producing anticipatory eye velocity on the next trial before the target moved that mimicked the stimulus-driven velocity. Randomly interleaving fixation trials reduced anticipatory pursuit, suggesting that a potentiated fixation system interacted with pursuit to suppress eye velocity in upcoming pursuit trials. The reduction was not due to passive decay of the potentiated pursuit signal because interleaving “blank” trials in which no target appeared did not reduce anticipatory pursuit. Interspersed short fixation trials reduced anticipation on long pursuit trials, suggesting that fixation potentiation was stronger than pursuit potentiation. Furthermore, adding more pursuit trials to a block did not restore anticipatory pursuit, suggesting that fixation potentiation was not overridden by certainty of an imminent pursuit trial but rather was immune to conscious intervention. To directly test whether cognition can override fixation suppression, we alternated pursuit and fixation trials to perfectly specify trial identity. Still, anticipatory pursuit did not rise above that observed with an equal number of random fixation trials. The results suggest that potentiated fixation circuitry interacts with pursuit circuitry at a subconscious level to inhibit pursuit. SIGNIFICANCE STATEMENT When an object moves, we view it with smooth pursuit eye movements. When an object is stationary, we view it with fixational eye movements. Pursuit and fixation are historically regarded as controlled by different

  17. A Subconscious Interaction between Fixation and Anticipatory Pursuit.

    PubMed

    Watamaniuk, Scott N J; Bal, Japjot; Heinen, Stephen J

    2017-11-22

    Ocular smooth pursuit and fixation are typically viewed as separate systems, yet there is evidence that the brainstem fixation system inhibits pursuit. Here we present behavioral evidence that the fixation system modulates pursuit behavior outside of conscious awareness. Human observers (male and female) either pursued a small spot that translated across a screen, or fixated it as it remained stationary. As shown previously, pursuit trials potentiated the oculomotor system, producing anticipatory eye velocity on the next trial before the target moved that mimicked the stimulus-driven velocity. Randomly interleaving fixation trials reduced anticipatory pursuit, suggesting that a potentiated fixation system interacted with pursuit to suppress eye velocity in upcoming pursuit trials. The reduction was not due to passive decay of the potentiated pursuit signal because interleaving "blank" trials in which no target appeared did not reduce anticipatory pursuit. Interspersed short fixation trials reduced anticipation on long pursuit trials, suggesting that fixation potentiation was stronger than pursuit potentiation. Furthermore, adding more pursuit trials to a block did not restore anticipatory pursuit, suggesting that fixation potentiation was not overridden by certainty of an imminent pursuit trial but rather was immune to conscious intervention. To directly test whether cognition can override fixation suppression, we alternated pursuit and fixation trials to perfectly specify trial identity. Still, anticipatory pursuit did not rise above that observed with an equal number of random fixation trials. The results suggest that potentiated fixation circuitry interacts with pursuit circuitry at a subconscious level to inhibit pursuit. SIGNIFICANCE STATEMENT When an object moves, we view it with smooth pursuit eye movements. When an object is stationary, we view it with fixational eye movements. Pursuit and fixation are historically regarded as controlled by different neural

  18. Schizotypy and smooth pursuit eye movements as potential endophenotypes of obsessive-compulsive disorder.

    PubMed

    Bey, Katharina; Meyhöfer, Inga; Lennertz, Leonhard; Grützmann, Rosa; Heinzel, Stephan; Kaufmann, Christian; Klawohn, Julia; Riesel, Anja; Ettinger, Ulrich; Kathmann, Norbert; Wagner, Michael

    2018-05-02

    Patients with obsessive-compulsive disorder (OCD) show dysfunctions of the fronto-striatal circuitry, which imply corresponding oculomotor deficits including smooth pursuit eye movements (SPEM). However, evidence for a deficit in SPEM is inconclusive, with some studies reporting reduced velocity gain while others did not find any SPEM dysfunctions in OCD patients. Interestingly, psychosis-like traits have repeatedly been linked to both OCD and impaired SPEM. Here, we examined a large sample of n = 168 patients with OCD, n = 93 unaffected first-degree relatives and n = 171 healthy control subjects to investigate whether elevated levels of schizotypy and SPEM deficits represent potential endophenotypes of OCD. We applied a SPEM task with high demands on predictive pursuit that is more sensitive to assess executive dysfunctions than a standard task with continuous visual feedback, as episodes of target blanking put increased demands on basal ganglia and prefrontal involvement. Additionally, we examined the relation between schizotypy and SPEM performance in OCD patients and their relatives. Results indicate that OCD patients and unaffected relatives do not show deficient performance in either standard or predictive SPEM. Yet, both patients and relatives exhibited elevated levels of schizotypy, and schizotypy was significantly correlated with velocity gain during standard trials in unmedicated and depression-free OCD patients. These findings highlight the role of schizotypy as a candidate endophenotype of OCD and add to the growing evidence for predisposing personality traits in OCD. Furthermore, intact gain may represent a key characteristic that distinguishes the OCD and schizophrenia patient populations.

  19. A geometric method for computing ocular kinematics and classifying gaze events using monocular remote eye tracking in a robotic environment.

    PubMed

    Singh, Tarkeshwar; Perry, Christopher M; Herter, Troy M

    2016-01-26

    Robotic and virtual-reality systems offer tremendous potential for improving assessment and rehabilitation of neurological disorders affecting the upper extremity. A key feature of these systems is that visual stimuli are often presented within the same workspace as the hands (i.e., peripersonal space). Integrating video-based remote eye tracking with robotic and virtual-reality systems can provide an additional tool for investigating how cognitive processes influence visuomotor learning and rehabilitation of the upper extremity. However, remote eye tracking systems typically compute ocular kinematics by assuming eye movements are made in a plane with constant depth (e.g. frontal plane). When visual stimuli are presented at variable depths (e.g. transverse plane), eye movements have a vergence component that may influence reliable detection of gaze events (fixations, smooth pursuits and saccades). To our knowledge, there are no available methods to classify gaze events in the transverse plane for monocular remote eye tracking systems. Here we present a geometrical method to compute ocular kinematics from a monocular remote eye tracking system when visual stimuli are presented in the transverse plane. We then use the obtained kinematics to compute velocity-based thresholds that allow us to accurately identify onsets and offsets of fixations, saccades and smooth pursuits. Finally, we validate our algorithm by comparing the gaze events computed by the algorithm with those obtained from the eye-tracking software and manual digitization. Within the transverse plane, our algorithm reliably differentiates saccades from fixations (static visual stimuli) and smooth pursuits from saccades and fixations when visual stimuli are dynamic. The proposed methods provide advancements for examining eye movements in robotic and virtual-reality systems. Our methods can also be used with other video-based or tablet-based systems in which eye movements are performed in a peripersonal

  20. Minimization of Retinal Slip Cannot Explain Human Smooth-Pursuit Eye Movements

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, Brent R.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Existing models assume that pursuit attempts a direct minimization of retinal image motion or "slip" (e.g. Robinson et al., 1986; Krauzlis & Weisberger, 1989). Using occluded line-figure stimuli, we have previously shown that humans can accurately pursue stimuli for which perfect tracking does not zero retinal slip (Neurologic ARCO). These findings are inconsistent with the standard control strategy of matching eye motion to a target-motion signal reconstructed by adding retinal slip and eye motion, but consistent with a visual front-end which estimates target motion via a global spatio-temporal integration for pursuit and perception. Another possible explanation is that pursuit simply attempts to minimize slip perpendicular to the segments (and neglects parallel "sliding" motion). To resolve this, 4 observers (3 naive) were asked to pursue the center of 2 types of stimuli with identical velocity-space descriptions and matched motion energy. The line-figure "diamond" stimulus was viewed through 2 invisible 3 deg-wide vertical apertures (38 cd/m2 equal to background) such that only the sinusoidal motion of 4 oblique line segments (44 cd/m2 was visible. The "cross" was identical except that the segments exchanged positions. Two trajectories (8's and infinity's) with 4 possible initial directions were randomly interleaved (1.25 cycles, 2.5s period, Ax = Ay = 1.4 deg). In 91% of trials, the diamond appeared rigid. Correspondingly, pursuit was vigorous (mean Again: 0.74) with a V/H aspect ratio approx. 1 (mean: 0.9). Despite a valid rigid solution, the cross however appeared rigid in 8% of trials. Correspondingly, pursuit was weaker (mean Hgain: 0.38) with an incorrect aspect ratio (mean: 1.5). If pursuit were just minimizing perpendicular slip, performance would be the same in both conditions.

  1. Attention modulates trans-saccadic integration.

    PubMed

    Stewart, Emma E M; Schütz, Alexander C

    2018-01-01

    With every saccade, humans must reconcile the low resolution peripheral information available before a saccade, with the high resolution foveal information acquired after the saccade. While research has shown that we are able to integrate peripheral and foveal vision in a near-optimal manner, it is still unclear which mechanisms may underpin this important perceptual process. One potential mechanism that may moderate this integration process is visual attention. Pre-saccadic attention is a well documented phenomenon, whereby visual attention shifts to the location of an upcoming saccade before the saccade is executed. While it plays an important role in other peri-saccadic processes such as predictive remapping, the role of attention in the integration process is as yet unknown. This study aimed to determine whether the presentation of an attentional distractor during a saccade impaired trans-saccadic integration, and to measure the time-course of this impairment. Results showed that presenting an attentional distractor impaired integration performance both before saccade onset, and during the saccade, in selected subjects who showed integration in the absence of a distractor. This suggests that visual attention may be a mechanism that facilitates trans-saccadic integration. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Oculomotor Function in Frontotemporal Lobar Degeneration, Related Disorders and Alzheimer's Disease

    ERIC Educational Resources Information Center

    Garbutt, Siobhan; Matlin, Alisa; Hellmuth, Joanna; Schenk, Ana K.; Johnson, Julene K.; Rosen, Howard; Dean, David; Kramer, Joel; Neuhaus, John; Miller, Bruce L.; Lisberger, Stephen G.; Boxer, Adam L.

    2008-01-01

    Frontotemporal lobar degeneration (FTLD) often overlaps clinically with corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP), both of which have prominent eye movement abnormalities. To investigate the ability of oculomotor performance to differentiate between FTLD, Alzheimer's disease, CBS and PSP, saccades and smooth pursuit were…

  3. No Evidence for a Saccadic Range Effect for Visually Guided and Memory-Guided Saccades in Simple Saccade-Targeting Tasks

    PubMed Central

    Vitu, Françoise; Engbert, Ralf; Kliegl, Reinhold

    2016-01-01

    Saccades to single targets in peripheral vision are typically characterized by an undershoot bias. Putting this bias to a test, Kapoula [1] used a paradigm in which observers were presented with two different sets of target eccentricities that partially overlapped each other. Her data were suggestive of a saccadic range effect (SRE): There was a tendency for saccades to overshoot close targets and undershoot far targets in a block, suggesting that there was a response bias towards the center of eccentricities in a given block. Our Experiment 1 was a close replication of the original study by Kapoula [1]. In addition, we tested whether the SRE is sensitive to top-down requirements associated with the task, and we also varied the target presentation duration. In Experiments 1 and 2, we expected to replicate the SRE for a visual discrimination task. The simple visual saccade-targeting task in Experiment 3, entailing minimal top-down influence, was expected to elicit a weaker SRE. Voluntary saccades to remembered target locations in Experiment 3 were expected to elicit the strongest SRE. Contrary to these predictions, we did not observe a SRE in any of the tasks. Our findings complement the results reported by Gillen et al. [2] who failed to find the effect in a saccade-targeting task with a very brief target presentation. Together, these results suggest that unlike arm movements, saccadic eye movements are not biased towards making saccades of a constant, optimal amplitude for the task. PMID:27658191

  4. Neural effects of methylphenidate and nicotine during smooth pursuit eye movements.

    PubMed

    Kasparbauer, Anna-Maria; Meyhöfer, Inga; Steffens, Maria; Weber, Bernd; Aydin, Merve; Kumari, Veena; Hurlemann, Rene; Ettinger, Ulrich

    2016-11-01

    Nicotine and methylphenidate are putative cognitive enhancers in healthy and patient populations. Although they stimulate different neurotransmitter systems, they have been shown to enhance performance on overlapping measures of attention. So far, there has been no direct comparison of the effects of these two stimulants on behavioural performance or brain function in healthy humans. Here, we directly compare the two compounds using a well-established oculomotor biomarker in order to explore common and distinct behavioural and neural effects. Eighty-two healthy male non-smokers performed a smooth pursuit eye movement task while lying in an fMRI scanner. In a between-subjects, double-blind design, subjects either received placebo (placebo patch and capsule), nicotine (7mg nicotine patch and placebo capsule), or methylphenidate (placebo patch and 40mg methylphenidate capsule). There were no significant drug effects on behavioural measures. At the neural level, methylphenidate elicited higher activation in left frontal eye field compared to nicotine, with an intermediate response under placebo. The reduced activation of task-related regions under nicotine could be associated with more efficient neural processing, while increased hemodynamic response under methylphenidate is interpretable as enhanced processing of task-relevant networks. Together, these findings suggest dissociable neural effects of these putative cognitive enhancers. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Visual-Ocular Control of Normal and Learning-Disabled Children.

    ERIC Educational Resources Information Center

    Polatajko, H. J.

    1987-01-01

    Differences in visual-ocular function, particularly optokinetic nystagmus (OKN), were compared with 40 learning disabled and 40 normal children (8-12 years-old). No significant differences were found between groups on the variables tested (refixation saccades, smooth ocular pursuit, spontaneous nystagmus, gaze nystagmus, and OKN). (Author/DB)

  6. Behavioral responses of trained squirrel and rhesus monkeys during oculomotor tasks

    PubMed Central

    Heiney, Shane A.; Blazquez, Pablo M.

    2018-01-01

    The oculomotor system is the motor system of choice for many neuroscientists studying motor control and learning because of its simplicity, easy control of inputs (e.g., visual stimulation), and precise control and measurement of motor outputs (eye position). This is especially true in primates, which are easily trained to perform oculomotor tasks. Here we provide the first detailed characterization of the oculomotor performance of trained squirrel monkeys, primates used extensively in oculomotor physiology, during saccade and smooth pursuit tasks, and compare it to that of the rhesus macaque. We found that both primates have similar oculomotor behavior but the rhesus shows a larger oculomotor range, better performance for horizontal saccades above 10 degrees, and better horizontal smooth pursuit gain to target velocities above 15 deg/s. These results are important for interspecies comparisons and necessary when selecting the best stimuli to study motor control and motor learning in the oculomotor systems of these primates. PMID:21656216

  7. Effects of directional uncertainty on visually-guided joystick pointing.

    PubMed

    Berryhill, Marian; Kveraga, Kestutis; Hughes, Howard C

    2005-02-01

    Reaction times generally follow the predictions of Hick's law as stimulus-response uncertainty increases, although notable exceptions include the oculomotor system. Saccadic and smooth pursuit eye movement reaction times are independent of stimulus-response uncertainty. Previous research showed that joystick pointing to targets, a motor analog of saccadic eye movements, is only modestly affected by increased stimulus-response uncertainty; however, a no-uncertainty condition (simple reaction time to 1 possible target) was not included. Here, we re-evaluate manual joystick pointing including a no-uncertainty condition. Analysis indicated simple joystick pointing reaction times were significantly faster than choice reaction times. Choice reaction times (2, 4, or 8 possible target locations) only slightly increased as the number of possible targets increased. These data suggest that, as with joystick tracking (a motor analog of smooth pursuit eye movements), joystick pointing is more closely approximated by a simple/choice step function than the log function predicted by Hick's law.

  8. A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements

    PubMed Central

    Mohsenzadeh, Yalda; Dash, Suryadeep; Crawford, J. Douglas

    2016-01-01

    In the oculomotor system, spatial updating is the ability to aim a saccade toward a remembered visual target position despite intervening eye movements. Although this has been the subject of extensive experimental investigation, there is still no unifying theoretical framework to explain the neural mechanism for this phenomenon, and how it influences visual signals in the brain. Here, we propose a unified state-space model (SSM) to account for the dynamics of spatial updating during two types of eye movement; saccades and smooth pursuit. Our proposed model is a non-linear SSM and implemented through a recurrent radial-basis-function neural network in a dual Extended Kalman filter (EKF) structure. The model parameters and internal states (remembered target position) are estimated sequentially using the EKF method. The proposed model replicates two fundamental experimental observations: continuous gaze-centered updating of visual memory-related activity during smooth pursuit, and predictive remapping of visual memory activity before and during saccades. Moreover, our model makes the new prediction that, when uncertainty of input signals is incorporated in the model, neural population activity and receptive fields expand just before and during saccades. These results suggest that visual remapping and motor updating are part of a common visuomotor mechanism, and that subjective perceptual constancy arises in part from training the visual system on motor tasks. PMID:27242452

  9. Rhesus Monkeys Behave As If They Perceive the Duncker Illusion

    PubMed Central

    Zivotofsky, A. Z.; Goldberg, M. E.; Powell, K. D.

    2008-01-01

    The visual system uses the pattern of motion on the retina to analyze the motion of objects in the world, and the motion of the observer him/herself. Distinguishing between retinal motion evoked by movement of the retina in space and retinal motion evoked by movement of objects in the environment is computationally difficult, and the human visual system frequently misinterprets the meaning of retinal motion. In this study, we demonstrate that the visual system of the Rhesus monkey also misinterprets retinal motion. We show that monkeys erroneously report the trajectories of pursuit targets or their own pursuit eye movements during an epoch of smooth pursuit across an orthogonally moving background. Furthermore, when they make saccades to the spatial location of stimuli that flashed early in an epoch of smooth pursuit or fixation, they make large errors that appear to take into account the erroneous smooth eye movement that they report in the first experiment, and not the eye movement that they actually make. PMID:16102233

  10. Detection of Stimulus Displacements Across Saccades is Capacity-Limited and Biased in Favor of the Saccade Target

    PubMed Central

    Irwin, David E.; Robinson, Maria M.

    2015-01-01

    Retinal image displacements caused by saccadic eye movements are generally unnoticed. Recent theories have proposed that perceptual stability across saccades depends on a local evaluation process centered on the saccade target object rather than on remapping and evaluating the positions of all objects in a display. In three experiments, we examined whether objects other than the saccade target also influence perceptual stability by measuring displacement detection thresholds across saccades for saccade targets and a variable number of non-saccade objects. We found that the positions of multiple objects are maintained across saccades, but with variable precision, with the saccade target object having priority in the perception of displacement, most likely because it is the focus of attention before the saccade and resides near the fovea after the saccade. The perception of displacement of objects that are not the saccade target is affected by acuity limitations, attentional limitations, and limitations on memory capacity. Unlike previous studies that have found that a postsaccadic blank improves the detection of displacement direction across saccades, we found that postsaccadic blanking hurt the detection of displacement per se by increasing false alarms. Overall, our results are consistent with the hypothesis that visual working memory underlies the perception of stability across saccades. PMID:26640430

  11. Pre-saccadic perception: Separate time courses for enhancement and spatial pooling at the saccade target

    PubMed Central

    Buonocore, Antimo; Fracasso, Alessio; Melcher, David

    2017-01-01

    We interact with complex scenes using eye movements to select targets of interest. Studies have shown that the future target of a saccadic eye movement is processed differently by the visual system. A number of effects have been reported, including a benefit for perceptual performance at the target (“enhancement”), reduced influences of backward masking (“un-masking”), reduced crowding (“un-crowding”) and spatial compression towards the saccade target. We investigated the time course of these effects by measuring orientation discrimination for targets that were spatially crowded or temporally masked. In four experiments, we varied the target-flanker distance, the presence of forward/backward masks, the orientation of the flankers and whether participants made a saccade. Masking and randomizing flanker orientation reduced performance in both fixation and saccade trials. We found a small improvement in performance on saccade trials, compared to fixation trials, with a time course that was consistent with a general enhancement at the saccade target. In addition, a decrement in performance (reporting the average flanker orientation, rather than the target) was found in the time bins nearest saccade onset when random oriented flankers were used, consistent with spatial pooling around the saccade target. We did not find strong evidence for un-crowding. Overall, our pattern of results was consistent with both an early, general enhancement at the saccade target and a later, peri-saccadic compression/pooling towards the saccade target. PMID:28614367

  12. Unconscious cues bias first saccades in a free-saccade task.

    PubMed

    Huang, Yu-Feng; Tan, Edlyn Gui Fang; Soon, Chun Siong; Hsieh, Po-Jang

    2014-10-01

    Visual-spatial attention can be biased towards salient visual information without visual awareness. It is unclear, however, whether such bias can further influence free-choices such as saccades in a free viewing task. In our experiment, we presented visual cues below awareness threshold immediately before people made free saccades. Our results showed that masked cues could influence the direction and latency of the first free saccade, suggesting that salient visual information can unconsciously influence free actions. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Eye Movement Abnormalities in Joubert Syndrome

    PubMed Central

    Weiss, Avery H.; Doherty, Dan; Parisi, Melissa; Shaw, Dennis; Glass, Ian; Phillips, James O.

    2011-01-01

    Purpose Joubert syndrome is a genetic disorder characterized by hypoplasia of the midline cerebellum and deficiency of crossed connections between neural structures in the brain stem that control eye movements. The goal of the study was to quantify the eye movement abnormalities that occur in Joubert syndrome. Methods Eye movements were recorded in response to stationary stimuli and stimuli designed to elicit smooth pursuit, saccades, optokinetic nystagmus (OKN), vestibulo-ocular reflex (VOR), and vergence using video-oculography or Skalar search coils in 8 patients with Joubert syndrome. All patients underwent high-resolution magnetic resonance imaging (MRI). Results All patients had the highly characteristic molar tooth sign on brain MRI. Six patients had conjugate pendular (n = 4) or see-saw nystagmus (n = 2); gaze holding was stable in four patients. Smooth-pursuit gains were 0.28 to 1.19, 0.11 to 0.68, and 0.33 to 0.73 at peak stimulus velocities of 10, 20, and 30 deg/s in six patients; smooth pursuit could not be elicited in four patients. Saccade gains in five patients ranged from 0.35 to 0.91 and velocities ranged from 60.9 to 259.5 deg/s. Targeted saccades could not be elicited in five patients. Horizontal OKN gain was uniformly reduced across gratings drifted at velocities of 15, 30, and 45 deg/s. VOR gain was 0.8 or higher and phase appropriate in three of seven subjects; VOR gain was 0.3 or less and phase was indeterminate in four subjects. Conclusions The abnormalities in gaze-holding and eye movements are consistent with the distributed abnormalities of midline cerebellum and brain stem regions associated with Joubert syndrome. PMID:19443711

  14. Learning the trajectory of a moving visual target and evolution of its tracking in the monkey

    PubMed Central

    Bourrelly, Clara; Quinet, Julie; Cavanagh, Patrick

    2016-01-01

    An object moving in the visual field triggers a saccade that brings its image onto the fovea. It is followed by a combination of slow eye movements and catch-up saccades that try to keep the target image on the fovea as long as possible. The accuracy of this ability to track the “here-and-now” location of a visual target contrasts with the spatiotemporally distributed nature of its encoding in the brain. We show in six experimentally naive monkeys how this performance is acquired and gradually evolves during successive daily sessions. During the early exposure, the tracking is mostly saltatory, made of relatively large saccades separated by low eye velocity episodes, demonstrating that accurate (here and now) pursuit is not spontaneous and that gaze direction lags behind its location most of the time. Over the sessions, while the pursuit velocity is enhanced, the gaze is more frequently directed toward the current target location as a consequence of a 25% reduction in the number of catch-up saccades and a 37% reduction in size (for the first saccade). This smoothing is observed at several scales: during the course of single trials, across the set of trials within a session, and over successive sessions. We explain the neurophysiological processes responsible for this combined evolution of saccades and pursuit in the absence of stringent training constraints. More generally, our study shows that the oculomotor system can be used to discover the neural mechanisms underlying the ability to synchronize a motor effector with a dynamic external event. PMID:27683886

  15. Spatial attention during saccade decisions.

    PubMed

    Jonikaitis, Donatas; Klapetek, Anna; Deubel, Heiner

    2017-07-01

    Behavioral measures of decision making are usually limited to observations of decision outcomes. In the present study, we made use of the fact that oculomotor and sensory selection are closely linked to track oculomotor decision making before oculomotor responses are made. We asked participants to make a saccadic eye movement to one of two memorized target locations and observed that visual sensitivity increased at both the chosen and the nonchosen saccade target locations, with a clear bias toward the chosen target. The time course of changes in visual sensitivity was related to saccadic latency, with the competition between the chosen and nonchosen targets resolved faster before short-latency saccades. On error trials, we observed an increased competition between the chosen and nonchosen targets. Moreover, oculomotor selection and visual sensitivity were influenced by top-down and bottom-up factors as well as by selection history and predicted the direction of saccades. Our findings demonstrate that saccade decisions have direct visual consequences and show that decision making can be traced in the human oculomotor system well before choices are made. Our results also indicate a strong association between decision making, saccade target selection, and visual sensitivity. NEW & NOTEWORTHY We show that saccadic decisions can be tracked by measuring spatial attention. Spatial attention is allocated in parallel to the two competing saccade targets, and the time course of spatial attention differs for fast-slow and for correct-erroneous decisions. Saccade decisions take the form of a competition between potential saccade goals, which is associated with spatial attention allocation to those locations. Copyright © 2017 the American Physiological Society.

  16. Distinct eye movement patterns enhance dynamic visual acuity

    PubMed Central

    Palidis, Dimitrios J.; Wyder-Hodge, Pearson A.; Fooken, Jolande; Spering, Miriam

    2017-01-01

    Dynamic visual acuity (DVA) is the ability to resolve fine spatial detail in dynamic objects during head fixation, or in static objects during head or body rotation. This ability is important for many activities such as ball sports, and a close relation has been shown between DVA and sports expertise. DVA tasks involve eye movements, yet, it is unclear which aspects of eye movements contribute to successful performance. Here we examined the relation between DVA and the kinematics of smooth pursuit and saccadic eye movements in a cohort of 23 varsity baseball players. In a computerized dynamic-object DVA test, observers reported the location of the gap in a small Landolt-C ring moving at various speeds while eye movements were recorded. Smooth pursuit kinematics—eye latency, acceleration, velocity gain, position error—and the direction and amplitude of saccadic eye movements were linked to perceptual performance. Results reveal that distinct eye movement patterns—minimizing eye position error, tracking smoothly, and inhibiting reverse saccades—were related to dynamic visual acuity. The close link between eye movement quality and DVA performance has important implications for the development of perceptual training programs to improve DVA. PMID:28187157

  17. Smooth-pursuit eye movements without head movement disrupt the static body balance.

    PubMed

    Kim, Sang-Yeob; Moon, Byeong-Yeon; Cho, Hyun Gug

    2016-04-01

    [Purpose] To investigate the changes of body balance in static posture in smooth-pursuit eye movements (SPEMs) without head movement. [Subjects and Methods] Forty subjects (24 males, 16 females) aged 23.24 ± 2.58 years participated. SPEMs were activated in three directions (horizontal, vertical, and diagonal movements); the target speed was set at three conditions (10°/s, 20°/s, and 30°/s); and the binocular visual field was limited to 50°. To compare the body balance changes, the general stability (ST) and the fall risk index (FI) were measured with TETRAX. The subjects wore a head-neck collar and stood on a balance plate for 32 s during each measurement in three directions. SPEMs were induced to each subject with nine target speeds and directions. All measured values were compared with those in stationary fixation. [Results] The ST and FI increased significantly in all SPEMs directions, with an increased target speed than that in stationary fixation. In the same condition of the target speed, the FI had the highest value relative to diagonal SPEMs. [Conclusion] SPEMs without head movement disrupt the stability of body balance in a static posture, and diagonal SPEMs may have a more negative effect in maintaining body balance than horizontal or vertical SPEMs.

  18. Secondary adaptation of memory-guided saccades

    PubMed Central

    Srimal, Riju; Curtis, Clayton E.

    2011-01-01

    Adaptation of saccade gains in response to errors keeps vision and action co-registered in the absence of awareness or effort. Timing is key, as the visual error must be available shortly after the saccade is generated or adaptation does not occur. Here, we tested the hypothesis that when feedback is delayed, learning still occurs, but does so through small secondary corrective saccades. Using a memory-guided saccade task, we gave feedback about the accuracy of saccades that was falsely displaced by a consistent amount, but only after long delays. Despite the delayed feedback, over time subjects improved in accuracy toward the false feedback. They did so not by adjusting their primary saccades, but via directed corrective saccades made before feedback was given. We propose that saccade learning may be driven by different types of feedback teaching signals. One teaching signal relies upon a tight temporal relation with the saccade and contributes to obligatory learning independent of awareness. When this signal is ineffective due to delayed error feedback, a second compensatory teaching signal enables flexible adjustments to the spatial goal of saccades and helps maintain sensorimotor accuracy. PMID:20803135

  19. Monetary reward speeds up voluntary saccades.

    PubMed

    Chen, Lewis L; Chen, Y Mark; Zhou, Wu; Mustain, William D

    2014-01-01

    Past studies have shown that reward contingency is critical for sensorimotor learning, and reward expectation speeds up saccades in animals. Whether monetary reward speeds up saccades in human remains unknown. Here we addressed this issue by employing a conditional saccade task, in which human subjects performed a series of non-reflexive, visually-guided horizontal saccades. The subjects were (or were not) financially compensated for making a saccade in response to a centrally-displayed visual congruent (or incongruent) stimulus. Reward modulation of saccadic velocities was quantified independently of the amplitude-velocity coupling. We found that reward expectation significantly sped up voluntary saccades up to 30°/s, and the reward modulation was consistent across tests. These findings suggest that monetary reward speeds up saccades in human in a fashion analogous to how juice reward sped up saccades in monkeys. We further noticed that the idiosyncratic nasal-temporal velocity asymmetry was highly consistent regardless of test order, and its magnitude was not correlated with the magnitude of reward modulation. This suggests that reward modulation and the intrinsic velocity asymmetry may be governed by separate mechanisms that regulate saccade generation.

  20. Salient Distractors Can Induce Saccade Adaptation

    PubMed Central

    Khan, Afsheen; McFadden, Sally A.; Wallman, Josh

    2014-01-01

    When saccadic eye movements consistently fail to land on their intended target, saccade accuracy is maintained by gradually adapting the movement size of successive saccades. The proposed error signal for saccade adaptation has been based on the distance between where the eye lands and the visual target (retinal error). We studied whether the error signal could alternatively be based on the distance between the predicted and actual locus of attention after the saccade. Unlike conventional adaptation experiments that surreptitiously displace the target once a saccade is initiated towards it, we instead attempted to draw attention away from the target by briefly presenting salient distractor images on one side of the target after the saccade. To test whether less salient, more predictable distractors would induce less adaptation, we separately used fixed random noise distractors. We found that both visual attention distractors were able to induce a small degree of downward saccade adaptation but significantly more to the more salient distractors. As in conventional adaptation experiments, upward adaptation was less effective and salient distractors did not significantly increase amplitudes. We conclude that the locus of attention after the saccade can act as an error signal for saccade adaptation. PMID:24876947

  1. Saccade adaptation goes for the goal

    PubMed Central

    Madelain, Laurent; Herman, James P.; Harwood, Mark R.

    2013-01-01

    The oculomotor system maintains saccade accuracy by adjusting saccades that are consistently inaccurate. Four experiments were performed to determine the relative contribution of background and target postsaccadic displacement. Unlike typical saccade adaptation experiments, we used natural image scenes and masked target and background displacements during the saccade to exclude motion signals from allowing detection of the displacements. We found that the background had no effect on saccade gain while the target drove gain changes. Only when the target was blanked after the saccade did we observe some adaptation in the direction of the background displacement. We conclude that target selection is critical to saccade adaptation, and operates effectively against natural image backgrounds. PMID:23492925

  2. A nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades

    PubMed Central

    Dai, Weiwei; Selesnick, Ivan; Rizzo, John-Ross; Rucker, Janet; Hudson, Todd

    2017-01-01

    The Savitzky-Golay (SG) filter is widely used to smooth and differentiate time series, especially biomedical data. However, time series that exhibit abrupt departures from their typical trends, such as sharp waves or steps, which are of physiological interest, tend to be oversmoothed by the SG filter. Hence, the SG filter tends to systematically underestimate physiological parameters in certain situations. This article proposes a generalization of the SG filter to more accurately track abrupt deviations in time series, leading to more accurate parameter estimates (e.g., peak velocity of saccadic eye movements). The proposed filtering methodology models a time series as the sum of two component time series: a low-frequency time series for which the conventional SG filter is well suited, and a second time series that exhibits instantaneous deviations (e.g., sharp waves, steps, or more generally, discontinuities in a higher order derivative). The generalized SG filter is then applied to the quantitative analysis of saccadic eye movements. It is demonstrated that (a) the conventional SG filter underestimates the peak velocity of saccades, especially those of small amplitude, and (b) the generalized SG filter estimates peak saccadic velocity more accurately than the conventional filter. PMID:28813566

  3. A nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades.

    PubMed

    Dai, Weiwei; Selesnick, Ivan; Rizzo, John-Ross; Rucker, Janet; Hudson, Todd

    2017-08-01

    The Savitzky-Golay (SG) filter is widely used to smooth and differentiate time series, especially biomedical data. However, time series that exhibit abrupt departures from their typical trends, such as sharp waves or steps, which are of physiological interest, tend to be oversmoothed by the SG filter. Hence, the SG filter tends to systematically underestimate physiological parameters in certain situations. This article proposes a generalization of the SG filter to more accurately track abrupt deviations in time series, leading to more accurate parameter estimates (e.g., peak velocity of saccadic eye movements). The proposed filtering methodology models a time series as the sum of two component time series: a low-frequency time series for which the conventional SG filter is well suited, and a second time series that exhibits instantaneous deviations (e.g., sharp waves, steps, or more generally, discontinuities in a higher order derivative). The generalized SG filter is then applied to the quantitative analysis of saccadic eye movements. It is demonstrated that (a) the conventional SG filter underestimates the peak velocity of saccades, especially those of small amplitude, and (b) the generalized SG filter estimates peak saccadic velocity more accurately than the conventional filter.

  4. The parallel programming of voluntary and reflexive saccades.

    PubMed

    Walker, Robin; McSorley, Eugene

    2006-06-01

    A novel two-step paradigm was used to investigate the parallel programming of consecutive, stimulus-elicited ('reflexive') and endogenous ('voluntary') saccades. The mean latency of voluntary saccades, made following the first reflexive saccades in two-step conditions, was significantly reduced compared to that of voluntary saccades made in the single-step control trials. The latency of the first reflexive saccades was modulated by the requirement to make a second saccade: first saccade latency increased when a second voluntary saccade was required in the opposite direction to the first saccade, and decreased when a second saccade was required in the same direction as the first reflexive saccade. A second experiment confirmed the basic effect and also showed that a second reflexive saccade may be programmed in parallel with a first voluntary saccade. The results support the view that voluntary and reflexive saccades can be programmed in parallel on a common motor map.

  5. Modification of saccadic gain by reinforcement

    PubMed Central

    Paeye, Céline; Wallman, Josh

    2011-01-01

    Control of saccadic gain is often viewed as a simple compensatory process in which gain is adjusted over many trials by the postsaccadic retinal error, thereby maintaining saccadic accuracy. Here, we propose that gain might also be changed by a reinforcement process not requiring a visual error. To test this hypothesis, we used experimental paradigms in which retinal error was removed by extinguishing the target at the start of each saccade and either an auditory tone or the vision of the target on the fovea was provided as reinforcement after those saccades that met an amplitude criterion. These reinforcement procedures caused a progressive change in saccade amplitude in nearly all subjects, although the rate of adaptation differed greatly among subjects. When we reversed the contingencies and reinforced those saccades landing closer to the original target location, saccade gain changed back toward normal gain in most subjects. When subjects had saccades adapted first by reinforcement and a week later by conventional intrasaccadic step adaptation, both paradigms yielded similar degrees of gain changes and similar transfer to new amplitudes and to new starting positions of the target step as well as comparable rates of recovery. We interpret these changes in saccadic gain in the absence of postsaccadic retinal error as showing that saccade adaptation is not controlled by a single error signal. More generally, our findings suggest that normal saccade adaptation might involve general learning mechanisms rather than only specialized mechanisms for motor calibration. PMID:21525366

  6. Physiology and pathology of saccades and gaze holding.

    PubMed

    Shaikh, Aasef G; Ghasia, Fatema F

    2013-01-01

    Foveation is the fundamental requirement for clear vision. Saccades rapidly shift the gaze to the interesting target while gaze holding ensures foveation of the desired object. We will review the pertinent physiology of saccades and gaze holding and their pathophysiology leading to saccadic oscillations, slow saccades, saccadic dysmetria, and nystagmus. Motor commands for saccades are generated at multiple levels of the neuraxis. The frontal and parietal eye field send saccadic commands to the superior colliculus. Latter then projects to the brain-stem saccadic burst generator. The brain-stem burst generators guarantee optimum signal to ensure rapid saccadic velocity, while the neural integrator, by mathematically integrating the saccadic pulse, facilitates stable gaze holding. Reciprocal innervations that ensure rapid saccadic velocity are prone to inherent instability leading to saccadic oscillations. In contrast, suboptimal function of the burst generators causes slow saccades. Impaired error correction, either at the cerebellum or the inferior olive, leads to impaired saccade adaptation and ultimately saccadic dysmetria and oculopalatal tremor. Impairment in the function of neural integrator causes nystagmus. Neurophysiology of saccades, gaze holding, and their deficits are well recognized. These principles can be implemented to define novel therapeutic and rehabilitation approaches.

  7. Adjustment of saccade characteristics during head movements.

    NASA Technical Reports Server (NTRS)

    Morasso, P.; Bizzi, E.; Dichgans, J.

    1973-01-01

    Saccade characteristics have been studied during coordinated eye-head movements in monkeys. Amplitude, duration, and peak velocity of saccades with head turning were compared with saccades executed while the head was artificially restrained. The results indicate that the saccade characteristics are modulated as a function of head movement, hence the gaze movement (eye+head) exactly matches saccades with head fixed. Saccade modulation is achieved by way of negative vestibulo-ocular feedback. The neck proprioceptors, because of their longer latency, are effective only if the head starts moving prior to the onset of saccade. It is concluded that saccades make with head turning are not 'ballistic' movements because their trajectory is not entirely predetermined by a central command.

  8. Less efficient oculomotor performance is associated with increased incidence of head impacts in high school ice hockey.

    PubMed

    Kiefer, Adam W; DiCesare, Christopher; Nalepka, Patrick; Foss, Kim Barber; Thomas, Staci; Myer, Gregory D

    2018-01-01

    To evaluate associations between pre-season oculomotor performance on visual tracking tasks and in-season head impact incidence during high school boys ice hockey. Prospective observational study design. Fifteen healthy high school aged male hockey athletes (M=16.50±1.17years) performed two 30s blocks each of a prosaccade and self-paced saccade task, and two trials each of a slow, medium, and fast smooth pursuit task (90°s -1 ; 180°s -1 ; 360°s -1 ) during the pre-season. Regular season in-game collision data were collected via helmet-mounted accelerometers. Simple linear regressions were used to examine relations between oculomotor performance measures and collision incidence at various impact thresholds. The variability of prosaccade latency was positively related to total collisions for the 20g force cutoff (p=0.046, adjusted R 2 =0.28). The average self-paced saccade velocity (p=0.020, adjusted R 2 =0.37) and variability of smooth pursuit gaze velocity (p=0.012, adjusted R 2 =0.47) were also positively associated with total collisions for the 50g force cutoff. These results provide preliminary evidence that less efficient oculomotor performance on three different oculomotor tasks is associated with increased incidence of head impacts during a competitive ice hockey season. The variability of prosaccade latency, the average self-paced saccade velocity and the variability of gaze velocity during predictable smooth pursuit all related to increased head impacts. Future work is needed to further understand player initiated collisions, but this is an important first step toward understanding strategies to reduce incidence of injury risk in ice hockey, and potentially contact sports more generally. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Motor scaling by viewing distance of early visual motion signals during smooth pursuit

    NASA Technical Reports Server (NTRS)

    Zhou, Hui-Hui; Wei, Min; Angelaki, Dora E.

    2002-01-01

    The geometry of gaze stabilization during head translation requires eye movements to scale proportionally to the inverse of target distance. Such a scaling has indeed been demonstrated to exist for the translational vestibuloocular reflex (TVOR), as well as optic flow-selective translational visuomotor reflexes (e.g., ocular following, OFR). The similarities in this scaling by a neural estimate of target distance for both the TVOR and the OFR have been interpreted to suggest that the two reflexes share common premotor processing. Because the neural substrates of OFR are partly shared by those for the generation of pursuit eye movements, we wanted to know if the site of gain modulation for TVOR and OFR is also part of a major pathway for pursuit. Thus, in the present studies, we investigated in rhesus monkeys whether initial eye velocity and acceleration during the open-loop portion of step ramp pursuit scales with target distance. Specifically, with visual motion identical on the retina during tracking at different distances (12, 24, and 60 cm), we compared the first 80 ms of horizontal pursuit. We report that initial eye velocity and acceleration exhibits either no or a very small dependence on vergence angle that is at least an order of magnitude less than the corresponding dependence of the TVOR and OFR. The results suggest that the neural substrates for motor scaling by target distance remain largely distinct from the main pathway for pursuit.

  10. Object motion computation for the initiation of smooth pursuit eye movements in humans.

    PubMed

    Wallace, Julian M; Stone, Leland S; Masson, Guillaume S

    2005-04-01

    Pursuing an object with smooth eye movements requires an accurate estimate of its two-dimensional (2D) trajectory. This 2D motion computation requires that different local motion measurements are extracted and combined to recover the global object-motion direction and speed. Several combination rules have been proposed such as vector averaging (VA), intersection of constraints (IOC), or 2D feature tracking (2DFT). To examine this computation, we investigated the time course of smooth pursuit eye movements driven by simple objects of different shapes. For type II diamond (where the direction of true object motion is dramatically different from the vector average of the 1-dimensional edge motions, i.e., VA not equal IOC = 2DFT), the ocular tracking is initiated in the vector average direction. Over a period of less than 300 ms, the eye-tracking direction converges on the true object motion. The reduction of the tracking error starts before the closing of the oculomotor loop. For type I diamonds (where the direction of true object motion is identical to the vector average direction, i.e., VA = IOC = 2DFT), there is no such bias. We quantified this effect by calculating the direction error between responses to types I and II and measuring its maximum value and time constant. At low contrast and high speeds, the initial bias in tracking direction is larger and takes longer to converge onto the actual object-motion direction. This effect is attenuated with the introduction of more 2D information to the extent that it was totally obliterated with a texture-filled type II diamond. These results suggest a flexible 2D computation for motion integration, which combines all available one-dimensional (edge) and 2D (feature) motion information to refine the estimate of object-motion direction over time.

  11. Anticipatory Smooth Eye Movements in Autism Spectrum Disorder

    PubMed Central

    Aitkin, Cordelia D.; Santos, Elio M.; Kowler, Eileen

    2013-01-01

    Smooth pursuit eye movements are important for vision because they maintain the line of sight on targets that move smoothly within the visual field. Smooth pursuit is driven by neural representations of motion, including a surprisingly strong influence of high-level signals representing expected motion. We studied anticipatory smooth eye movements (defined as smooth eye movements in the direction of expected future motion) produced by salient visual cues in a group of high-functioning observers with Autism Spectrum Disorder (ASD), a condition that has been associated with difficulties in either generating predictions, or translating predictions into effective motor commands. Eye movements were recorded while participants pursued the motion of a disc that moved within an outline drawing of an inverted Y-shaped tube. The cue to the motion path was a visual barrier that blocked the untraveled branch (right or left) of the tube. ASD participants showed strong anticipatory smooth eye movements whose velocity was the same as that of a group of neurotypical participants. Anticipatory smooth eye movements appeared on the very first cued trial, indicating that trial-by-trial learning was not responsible for the responses. These results are significant because they show that anticipatory capacities are intact in high-functioning ASD in cases where the cue to the motion path is highly salient and unambiguous. Once the ability to generate anticipatory pursuit is demonstrated, the study of the anticipatory responses with a variety of types of cues provides a window into the perceptual or cognitive processes that underlie the interpretation of events in natural environments or social situations. PMID:24376667

  12. Anticipatory smooth eye movements in autism spectrum disorder.

    PubMed

    Aitkin, Cordelia D; Santos, Elio M; Kowler, Eileen

    2013-01-01

    Smooth pursuit eye movements are important for vision because they maintain the line of sight on targets that move smoothly within the visual field. Smooth pursuit is driven by neural representations of motion, including a surprisingly strong influence of high-level signals representing expected motion. We studied anticipatory smooth eye movements (defined as smooth eye movements in the direction of expected future motion) produced by salient visual cues in a group of high-functioning observers with Autism Spectrum Disorder (ASD), a condition that has been associated with difficulties in either generating predictions, or translating predictions into effective motor commands. Eye movements were recorded while participants pursued the motion of a disc that moved within an outline drawing of an inverted Y-shaped tube. The cue to the motion path was a visual barrier that blocked the untraveled branch (right or left) of the tube. ASD participants showed strong anticipatory smooth eye movements whose velocity was the same as that of a group of neurotypical participants. Anticipatory smooth eye movements appeared on the very first cued trial, indicating that trial-by-trial learning was not responsible for the responses. These results are significant because they show that anticipatory capacities are intact in high-functioning ASD in cases where the cue to the motion path is highly salient and unambiguous. Once the ability to generate anticipatory pursuit is demonstrated, the study of the anticipatory responses with a variety of types of cues provides a window into the perceptual or cognitive processes that underlie the interpretation of events in natural environments or social situations.

  13. Microgravity

    NASA Image and Video Library

    2003-01-22

    One concern about human adaptation to space is how returning from the microgravity of orbit to Earth can affect an astronaut's ability to fly safely. There are monitors and infrared video cameras to measure eye movements without having to affect the crew member. A computer screen provides moving images which the eye tracks while the brain determines what it is seeing. A video camera records movement of the subject's eyes. Researchers can then correlate perception and response. Test subjects perceive different images when a moving object is covered by a mask that is visible or invisible (above). Early results challenge the accepted theory that smooth pursuit -- the fluid eye movement that humans and primates have -- does not involve the higher brain. NASA results show that: Eye movement can predict human perceptual performance, smooth pursuit and saccadic (quick or ballistic) movement share some signal pathways, and common factors can make both smooth pursuit and visual perception produce errors in motor responses.

  14. Understanding Visible Perception

    NASA Technical Reports Server (NTRS)

    2003-01-01

    One concern about human adaptation to space is how returning from the microgravity of orbit to Earth can affect an astronaut's ability to fly safely. There are monitors and infrared video cameras to measure eye movements without having to affect the crew member. A computer screen provides moving images which the eye tracks while the brain determines what it is seeing. A video camera records movement of the subject's eyes. Researchers can then correlate perception and response. Test subjects perceive different images when a moving object is covered by a mask that is visible or invisible (above). Early results challenge the accepted theory that smooth pursuit -- the fluid eye movement that humans and primates have -- does not involve the higher brain. NASA results show that: Eye movement can predict human perceptual performance, smooth pursuit and saccadic (quick or ballistic) movement share some signal pathways, and common factors can make both smooth pursuit and visual perception produce errors in motor responses.

  15. Shared Sensory Estimates for Human Motion Perception and Pursuit Eye Movements

    PubMed Central

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio

    2015-01-01

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. PMID:26041919

  16. Secondary (micro-)saccades: the influence of primary saccade end point and target eccentricity on the process of postsaccadic fixation.

    PubMed

    Ohl, Sven; Brandt, Stephan A; Kliegl, Reinhold

    2011-12-08

    We examine how the size of saccadic under-/overshoot and target eccentricity influence the latency, amplitude and orientation of secondary (micro-)saccades. In our experiment, a target appeared at an eccentricity of either 6° or 14° of visual angle. Subjects were instructed to direct their gaze as quickly as possible to the target and hold fixation at the new location until the end of the trial. Typically, increasing saccadic error is associated with faster and larger secondary saccades. We show that secondary saccades at distant in contrast to close targets have in a specific error range a shorter latency, larger amplitude, and follow more often the direction of the primary saccade. Finally, we demonstrate that an undershooting primary saccade is followed almost exclusively by secondary saccades into the same direction while overshooting primary saccades are followed by secondary saccades into both directions. This supports the notion that under- and overshooting imply different consequences for postsaccadic oculomotor processing. Results are discussed using a model, introduced by Rolfs, Kliegl, and Engbert (2008), to account for the generation of microsaccades. We argue that the dynamic interplay of target eccentricity and the magnitude of the saccadic under-/overshoot can be explained by a different strength of activation in the two hemispheres of the saccadic motor map in this model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Clinical application of eye movement tasks as an aid to understanding Parkinson's disease pathophysiology.

    PubMed

    Fukushima, Kikuro; Fukushima, Junko; Barnes, Graham R

    2017-05-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder of the basal ganglia. Most PD patients suffer from somatomotor and oculomotor disorders. The oculomotor system facilitates obtaining accurate information from the visual world. If a target moves slowly in the fronto-parallel plane, tracking eye movements occur that consist primarily of smooth-pursuit interspersed with corrective saccades. Efficient smooth-pursuit requires appropriate target selection and predictive compensation for inherent processing delays. Although pursuit impairment, e.g. as latency prolongation or low gain (eye velocity/target velocity), is well known in PD, normal aging alone results in such changes. In this article, we first briefly review some basic features of smooth-pursuit, then review recent results showing the specific nature of impaired pursuit in PD using a cue-dependent memory-based smooth-pursuit task. This task was initially used for monkeys to separate two major components of prediction (image-motion direction memory and movement preparation), and neural correlates were examined in major pursuit pathways. Most PD patients possessed normal cue-information memory but extra-retinal mechanisms for pursuit preparation and execution were dysfunctional. A minority of PD patients had abnormal cue-information memory or difficulty in understanding the task. Some PD patients with normal cue-information memory changed strategy to initiate smooth tracking. Strategy changes were also observed to compensate for impaired pursuit during whole body rotation while the target moved with the head. We discuss PD pathophysiology by comparing eye movement task results with neuropsychological and motor symptom evaluations of individual patients and further with monkey results, and suggest possible neural circuits for these functions/dysfunctions.

  18. Face recognition increases during saccade preparation.

    PubMed

    Lin, Hai; Rizak, Joshua D; Ma, Yuan-ye; Yang, Shang-chuan; Chen, Lin; Hu, Xin-tian

    2014-01-01

    Face perception is integral to human perception system as it underlies social interactions. Saccadic eye movements are frequently made to bring interesting visual information, such as faces, onto the fovea for detailed processing. Just before eye movement onset, the processing of some basic features, such as the orientation, of an object improves at the saccade landing point. Interestingly, there is also evidence that indicates faces are processed in early visual processing stages similar to basic features. However, it is not known whether this early enhancement of processing includes face recognition. In this study, three experiments were performed to map the timing of face presentation to the beginning of the eye movement in order to evaluate pre-saccadic face recognition. Faces were found to be similarly processed as simple objects immediately prior to saccadic movements. Starting ∼ 120 ms before a saccade to a target face, independent of whether or not the face was surrounded by other faces, the face recognition gradually improved and the critical spacing of the crowding decreased as saccade onset was approaching. These results suggest that an upcoming saccade prepares the visual system for new information about faces at the saccade landing site and may reduce the background in a crowd to target the intended face. This indicates an important role of pre-saccadic eye movement signals in human face recognition.

  19. Visual and vestibular induced eye movements in verbal children and adults with autism

    PubMed Central

    Furman, Joseph M.; Osorio, Maria Joana; Minshew, Nancy J.

    2016-01-01

    This study investigated several types of eye movements that rely on the function of brainstem-cerebellar pathways specifically (vestibular-ocular reflexes) or on widely distributed pathways of the brain (horizontal pursuit and saccade eye movements). Although eye movements that rely on higher brain regions have been studies fairly extensively in autism, eye movements dependent on brainstem and cerebellum have not. This study involved 79 individuals with autism and 62 typical controls aged 5 to 52 years with IQ scores above 70. No differences between the autism and control groups were present on the measures of vestibular ocular reflexes, or on saccade velocity or accuracy. The autism group was significantly slower to initiate saccades, which was most prominent in the 8-18 year old age range. These findings provide the most substantial evidence to date of the functional integrity of brainstem and cerebellar pathways in autism, suggesting that the histopathological abnormalities described in these structures may not be associated with intrinsic dysfunction but rather reflect developmental alterations related to forebrain cortical systems formation. The increase in saccade latency adds to the substantial evidence of altered function and maturation of cortical systems in autism. Objective This study assessed the functionality of vestibular, pursuit and saccade circuitry in autism across a wide age range. Methods Subjects were 79 individuals with autism (AUT) and 62 controls (CON) aged 5 to 52 years with IQ scores > 70. For vestibular testing, earth-vertical axis rotation was performed in darkness and in a lighted visual surround with a fixation target. Ocular motor testing included assessment of horizontal saccades and horizontal smooth pursuit. Results No between-group differences were found in vestibular reflexes or in mean saccade velocity or accuracy. Saccade latency was increased in the AUT group with significant age-related effects in the 8-18 year old subgroups

  20. Visual Depth from Motion Parallax and Eye Pursuit

    PubMed Central

    Stroyan, Keith; Nawrot, Mark

    2012-01-01

    A translating observer viewing a rigid environment experiences “motion parallax,” the relative movement upon the observer’s retina of variously positioned objects in the scene. This retinal movement of images provides a cue to the relative depth of objects in the environment, however retinal motion alone cannot mathematically determine relative depth of the objects. Visual perception of depth from lateral observer translation uses both retinal image motion and eye movement. In (Nawrot & Stroyan, 2009, Vision Res. 49, p.1969) we showed mathematically that the ratio of the rate of retinal motion over the rate of smooth eye pursuit mathematically determines depth relative to the fixation point in central vision. We also reported on psychophysical experiments indicating that this ratio is the important quantity for perception. Here we analyze the motion/pursuit cue for the more general, and more complicated, case when objects are distributed across the horizontal viewing plane beyond central vision. We show how the mathematical motion/pursuit cue varies with different points across the plane and with time as an observer translates. If the time varying retinal motion and smooth eye pursuit are the only signals used for this visual process, it is important to know what is mathematically possible to derive about depth and structure. Our analysis shows that the motion/pursuit ratio determines an excellent description of depth and structure in these broader stimulus conditions, provides a detailed quantitative hypothesis of these visual processes for the perception of depth and structure from motion parallax, and provides a computational foundation to analyze the dynamic geometry of future experiments. PMID:21695531

  1. Does the noise matter? Effects of different kinematogram types on smooth pursuit eye movements and perception

    PubMed Central

    Schütz, Alexander C.; Braun, Doris I.; Movshon, J. Anthony; Gegenfurtner, Karl R.

    2011-01-01

    We investigated how the human visual system and the pursuit system react to visual motion noise. We presented three different types of random-dot kinematograms at five different coherence levels. For transparent motion, the signal and noise labels on each dot were preserved throughout each trial, and noise dots moved with the same speed as the signal dots but in fixed random directions. For white noise motion, every 20 ms the signal and noise labels were randomly assigned to each dot and noise dots appeared at random positions. For Brownian motion, signal and noise labels were also randomly assigned, but the noise dots moved at the signal speed in a direction that varied randomly from moment to moment. Neither pursuit latency nor early eye acceleration differed among the different types of kinematograms. Late acceleration, pursuit gain, and perceived speed all depended on kinematogram type, with good agreement between pursuit gain and perceived speed. For transparent motion, pursuit gain and perceived speed were independent of coherence level. For white and Brownian motions, pursuit gain and perceived speed increased with coherence but were higher for white than for Brownian motion. This suggests that under our conditions, the pursuit system integrates across all directions of motion but not across all speeds. PMID:21149307

  2. Saccadic velocity measurements in strabismus.

    PubMed Central

    Metz, H S

    1983-01-01

    Traditional evaluation of strabismus has included cover test measurements, evaluation of the range of ocular rotations, and an array of subjective sensory tests. These studies could not always differentiate paresis of an extraocular muscle from restrictions and from various neuro-ophthalmic motility disorders. The measurement of horizontal and vertical saccadic movements can provide an objective test of rectus muscle function. Using EOG, saccades can be recorded easily, inexpensively, and repeatably at any age. In ocular muscle paresis or paralysis, saccadic speed is reduced mildly to markedly and can be used to monitor recovery. Assessment of saccadic velocity does not appear useful in evaluating superior oblique palsy, although it is valuable in sixth nerve palsy, Duane's syndrome, and third nerve palsy. When restrictions are the major cause of limited rotation, as in thyroid ophthalmopathy and orbital floor fracture, saccadic speed is unaffected. The induction of OKN or vestibular nystagmus is helpful in the study of children too young to perform voluntary saccadic movements. In patients with limitation of elevation or depression, this technique can separate innervational from mechanical causes of diminished rotation. The specific saccadic velocity pattern in myasthenia gravis, progressive external ophthalmoplegia, internuclear ophthalmoplegia, and Möbius' syndrome is helpful in differentiating these disorders from other neuroophthalmic motility problems. Transposition surgery of the rectus muscle is effective because of an increase in force, seen as an improvement in saccadic velocity and resulting from the change of insertion of the muscles. Saccadic velocities can also be of assistance in diagnosing a lost or disinserted muscle following surgery for strabismus. Although analysis of saccadic velocity is not required for the proper evaluation of all problems in strabismus and motility, it can be of inestimable value in the diagnosis of many complex and

  3. Human Motion Perception and Smooth Eye Movements Show Similar Directional Biases for Elongated Apertures

    NASA Technical Reports Server (NTRS)

    Beutter, Brent R.; Stone, Leland S.

    1997-01-01

    Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.

  4. Human motion perception and smooth eye movements show similar directional biases for elongated apertures

    NASA Technical Reports Server (NTRS)

    Beutter, B. R.; Stone, L. S.

    1998-01-01

    Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye-movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical, suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.

  5. Shared sensory estimates for human motion perception and pursuit eye movements.

    PubMed

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio; Osborne, Leslie C

    2015-06-03

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. Copyright © 2015 the authors 0270-6474/15/358515-16$15.00/0.

  6. Choice of saccade endpoint under risk

    PubMed Central

    Ackermann, John F.; Landy, Michael S.

    2013-01-01

    Eye movements function to bring detailed information onto the high-resolution region of the retina. Previous research has shown that human observers select fixation points that maximize information acquisition and minimize target location uncertainty. In this study, we ask whether human observers choose the saccade endpoint that maximizes gain when there are explicit rewards associated with correctly detecting the target. Observers performed an 8-alternative forced-choice detection task for a contrast-defined target in noise. After a single saccade, observers indicated the target location. Each potential target location had an associated reward that was known to the observer. In some conditions, the reward at one location was higher than at the other locations. We compared human saccade endpoints to those of an ideal observer that maximizes expected gain given the respective human observer's visibility map, i.e., d′ for target detection as a function of retinal location. Varying the location of the highest reward had a significant effect on human observers' distribution of saccade endpoints. Both human and ideal observers show a high density of saccades made toward the highest rewarded and actual target locations. But humans' overall spatial distributions of saccade endpoints differed significantly from the ideal observer as they made a greater number of saccade to locations far from the highest rewarded and actual target locations. Suboptimal choice of saccade endpoint, possibly in combination with suboptimal integration of information across saccades, had a significant effect on human observers' ability to correctly detect the target and maximize gain. PMID:24023277

  7. Cognitive regulation of saccadic velocity by reward prospect.

    PubMed

    Chen, Lewis L; Hung, Leroy Y; Quinet, Julie; Kosek, Kevin

    2013-08-01

    It is known that expectation of reward speeds up saccades. Past studies have also shown the presence of a saccadic velocity bias in the orbit, resulting from a biomechanical regulation over varying eccentricities. Nevertheless, whether and how reward expectation interacts with the biomechanical regulation of saccadic velocities over varying eccentricities remains unknown. We addressed this question by conducting a visually guided double-step saccade task. The role of reward expectation was tested in monkeys performing two consecutive horizontal saccades, one associated with reward prospect and the other not. To adequately assess saccadic velocity and avoid adaptation, we systematically varied initial eye positions, saccadic directions and amplitudes. Our results confirmed the existence of a velocity bias in the orbit, i.e., saccadic peak velocity decreased linearly as the initial eye position deviated in the direction of the saccade. The slope of this bias increased as saccadic amplitudes increased. Nevertheless, reward prospect facilitated velocity to a greater extent for saccades away from than for saccades toward the orbital centre, rendering an overall reduction in the velocity bias. The rate (slope) and magnitude (intercept) of reward modulation over this velocity bias were linearly correlated with amplitudes, similar to the amplitude-modulated velocity bias without reward prospect, which presumably resulted from a biomechanical regulation. Small-amplitude (≤ 5°) saccades received little modulation. These findings together suggest that reward expectation modulated saccadic velocity not as an additive signal but as a facilitating mechanism that interacted with the biomechanical regulation. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Effects of preparation time and trial type probability on performance of anti- and pro-saccades.

    PubMed

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control optimizes responses to relevant task conditions by balancing bottom-up stimulus processing with top-down goal pursuit. It can be investigated using the ocular motor system by contrasting basic prosaccades (look toward a stimulus) with complex antisaccades (look away from a stimulus). Furthermore, the amount of time allotted between trials, the need to switch task sets, and the time allowed to prepare for an upcoming saccade all impact performance. In this study the relative probabilities of anti- and pro-saccades were manipulated across five blocks of interleaved trials, while the inter-trial interval and trial type cue duration were varied across subjects. Results indicated that inter-trial interval had no significant effect on error rates or reaction times (RTs), while a shorter trial type cue led to more antisaccade errors and faster overall RTs. Responses following a shorter cue duration also showed a stronger effect of trial type probability, with more antisaccade errors in blocks with a low antisaccade probability and slower RTs for each saccade task when its trial type was unlikely. A longer cue duration yielded fewer errors and slower RTs, with a larger switch cost for errors compared to a short cue duration. Findings demonstrated that when the trial type cue duration was shorter, visual motor responsiveness was faster and subjects relied upon the implicit trial probability context to improve performance. When the cue duration was longer, increased fixation-related activity may have delayed saccade motor preparation and slowed responses, guiding subjects to respond in a controlled manner regardless of trial type probability. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Are Covert Saccade Functionally Relevant in Vestibular Hypofunction?

    PubMed

    Hermann, R; Pelisson, D; Dumas, O; Urquizar, Ch; Truy, E; Tilikete, C

    2018-06-01

    The vestibulo-ocular reflex maintains gaze stabilization during angular or linear head accelerations, allowing adequate dynamic visual acuity. In case of bilateral vestibular hypofunction, patients use saccades to compensate for the reduced vestibulo-ocular reflex function, with covert saccades occurring even during the head displacement. In this study, we questioned whether covert saccades help maintain dynamic visual acuity, and evaluated which characteristic of these saccades are the most relevant to improve visual function. We prospectively included 18 patients with chronic bilateral vestibular hypofunction. Subjects underwent evaluation of dynamic visual acuity in the horizontal plane as well as video recording of their head and eye positions during horizontal head impulse tests in both directions (36 ears tested). Frequency, latency, consistency of covert saccade initiation, and gain of covert saccades as well as residual vestibulo-ocular reflex gain were calculated. We found no correlation between residual vestibulo-ocular reflex gain and dynamic visual acuity. Dynamic visual acuity performance was however positively correlated with the frequency and gain of covert saccades and negatively correlated with covert saccade latency. There was no correlation between consistency of covert saccade initiation and dynamic visual acuity. Even though gaze stabilization in space during covert saccades might be of very short duration, these refixation saccades seem to improve vision in patients with bilateral vestibular hypofunction during angular head impulses. These findings emphasize the need for specific rehabilitation technics that favor the triggering of covert saccades. The physiological origin of covert saccades is discussed.

  10. Eye movements and attention: The role of pre-saccadic shifts of attention in perception, memory and the control of saccades

    PubMed Central

    Gersch, Timothy M.; Schnitzer, Brian S.; Dosher, Barbara A.; Kowler, Eileen

    2012-01-01

    Saccadic eye movements and perceptual attention work in a coordinated fashion to allow selection of the objects, features or regions with the greatest momentary need for limited visual processing resources. This study investigates perceptual characteristics of pre-saccadic shifts of attention during a sequence of saccades using the visual manipulations employed to study mechanisms of attention during maintained fixation. The first part of this paper reviews studies of the connections between saccades and attention, and their significance for both saccadic control and perception. The second part presents three experiments that examine the effects of pre-saccadic shifts of attention on vision during sequences of saccades. Perceptual enhancements at the saccadic goal location relative to non-goal locations were found across a range of stimulus contrasts, with either perceptual discrimination or detection tasks, with either single or multiple perceptual targets, and regardless of the presence of external noise. The results show that the preparation of saccades can evoke a variety of attentional effects, including attentionally-mediated changes in the strength of perceptual representations, selection of targets for encoding in visual memory, exclusion of external noise, or changes in the levels of internal visual noise. The visual changes evoked by saccadic planning make it possible for the visual system to effectively use saccadic eye movements to explore the visual environment. PMID:22809798

  11. Memory and prediction in natural gaze control

    PubMed Central

    Diaz, Gabriel; Cooper, Joseph; Hayhoe, Mary

    2013-01-01

    In addition to stimulus properties and task factors, memory is an important determinant of the allocation of attention and gaze in the natural world. One way that the role of memory is revealed is by predictive eye movements. Both smooth pursuit and saccadic eye movements demonstrate predictive effects based on previous experience. We have previously shown that unskilled subjects make highly accurate predictive saccades to the anticipated location of a ball prior to a bounce in a virtual racquetball setting. In this experiment, we examined this predictive behaviour. We asked whether the period after the bounce provides subjects with visual information about the ball trajectory that is used to programme the pursuit movement initiated when the ball passes through the fixation point. We occluded a 100 ms period of the ball's trajectory immediately after the bounce, and found very little effect on the subsequent pursuit movement. Subjects did not appear to modify their strategy to prolong the fixation. Neither were we able to find an effect on interception performance. Thus, it is possible that the occluded trajectory information is not critical for subsequent pursuit, and subjects may use an estimate of the ball's trajectory to programme pursuit. These results provide further support for the role of memory in eye movements. PMID:24018726

  12. Error correcting mechanisms during antisaccades: contribution of online control during primary saccades and offline control via secondary saccades.

    PubMed

    Bedi, Harleen; Goltz, Herbert C; Wong, Agnes M F; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa

    2013-01-01

    Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary "corrective" saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task.

  13. Error Correcting Mechanisms during Antisaccades: Contribution of Online Control during Primary Saccades and Offline Control via Secondary Saccades

    PubMed Central

    Bedi, Harleen; Goltz, Herbert C.; Wong, Agnes M. F.; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa

    2013-01-01

    Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary “corrective” saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task. PMID:23936308

  14. Saccadic Eye Movements in Anorexia Nervosa

    PubMed Central

    Phillipou, Andrea; Rossell, Susan Lee; Gurvich, Caroline; Hughes, Matthew Edward; Castle, David Jonathan; Nibbs, Richard Grant; Abel, Larry Allen

    2016-01-01

    Background Anorexia Nervosa (AN) has a mortality rate among the highest of any mental illness, though the factors involved in the condition remain unclear. Recently, the potential neurobiological underpinnings of the condition have become of increasing interest. Saccadic eye movement tasks have proven useful in our understanding of the neurobiology of some other psychiatric illnesses as they utilise known brain regions, but to date have not been examined in AN. The aim of this study was to investigate whether individuals with AN differ from healthy individuals in performance on a range of saccadic eye movements tasks. Methods 24 females with AN and 25 healthy individuals matched for age, gender and premorbid intelligence participated in the study. Participants were required to undergo memory-guided and self-paced saccade tasks, and an interleaved prosaccade/antisaccade/no-go saccade task while undergoing functional magnetic resonance imaging (fMRI). Results AN participants were found to make prosaccades of significantly shorter latency than healthy controls. AN participants also made an increased number of inhibitory errors on the memory-guided saccade task. Groups did not significantly differ in antisaccade, no-go saccade or self-paced saccade performance, or fMRI findings. Discussion The results suggest a potential role of GABA in the superior colliculus in the psychopathology of AN. PMID:27010196

  15. Selective enhancement of orientation tuning before saccades.

    PubMed

    Ohl, Sven; Kuper, Clara; Rolfs, Martin

    2017-11-01

    Saccadic eye movements cause a rapid sweep of the visual image across the retina and bring the saccade's target into high-acuity foveal vision. Even before saccade onset, visual processing is selectively prioritized at the saccade target. To determine how this presaccadic attention shift exerts its influence on visual selection, we compare the dynamics of perceptual tuning curves before movement onset at the saccade target and in the opposite hemifield. Participants monitored a 30-Hz sequence of randomly oriented gratings for a target orientation. Combining a reverse correlation technique previously used to study orientation tuning in neurons and general additive mixed modeling, we found that perceptual reports were tuned to the target orientation. The gain of orientation tuning increased markedly within the last 100 ms before saccade onset. In addition, we observed finer orientation tuning right before saccade onset. This increase in gain and tuning occurred at the saccade target location and was not observed at the incongruent location in the opposite hemifield. The present findings suggest, therefore, that presaccadic attention exerts its influence on vision in a spatially and feature-selective manner, enhancing performance and sharpening feature tuning at the future gaze location before the eyes start moving.

  16. Eye Movements Affect Postural Control in Young and Older Females

    PubMed Central

    Thomas, Neil M.; Bampouras, Theodoros M.; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions. PMID:27695412

  17. Eye Movements Affect Postural Control in Young and Older Females.

    PubMed

    Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.

  18. The amblyopic eye in subjects with anisometropia show increased saccadic latency in the delayed saccade task

    PubMed Central

    Perdziak, Maciej; Witkowska, Dagmara; Gryncewicz, Wojciech; Przekoracka-Krawczyk, Anna; Ober, Jan

    2014-01-01

    The term amblyopia is used to describe reduced visual function in one eye (or both eyes, though not so often) which cannot be fully improved by refractive correction and explained by the organic cause observed during regular eye examination. Amblyopia is associated with abnormal visual experience (e.g., anisometropia) during infancy or early childhood. Several studies have shown prolongation of saccadic latency time in amblyopic eye. In our opinion, study of saccadic latency in the context of central vision deficits assessment, should be based on central retina stimulation. For this reason, we proposed saccade delayed task. It requires inhibitory processing for maintaining fixation on the central target until it disappears—what constitutes the GO signal for saccade. The experiment consisted of 100 trials for each eye and was performed under two viewing conditions: monocular amblyopic/non-dominant eye and monocular dominant eye. We examined saccadic latency in 16 subjects (mean age 30 ± 11 years) with anisometropic amblyopia (two subjects had also microtropia) and in 17 control subjects (mean age 28 ± 8 years). Participants were instructed to look at central (fixation) target and when it disappears, to make the saccade toward the periphery (10°) as fast as possible, either left or the right target. The study results have proved the significant difference in saccadic latency between the amblyopic (mean 262 ± 48 ms) and dominant (mean 237 ± 45 ms) eye, in anisometropic group. In the control group, the saccadic latency for dominant (mean 226 ± 32 ms) and non-dominant (mean 230 ± 29 ms) eye was not significantly different. By the use of LATER (Linear Approach to the Threshold with Ergodic Rate) decision model we interpret our findings as a decrease in accumulation of visual information acquired by means of central retina in subjects with anisometropic amblyopia. PMID:25352790

  19. Real-time visual target tracking: two implementations of velocity-based smooth pursuit

    NASA Astrophysics Data System (ADS)

    Etienne-Cummings, Ralph; Longo, Paul; Van der Spiegel, Jan; Mueller, Paul

    1995-06-01

    Two systems for velocity-based visual target tracking are presented. The first two computational layers of both implementations are composed of VLSI photoreceptors (logarithmic compression) and edge detection (difference-of-Gaussians) arrays that mimic the outer-plexiform layer of mammalian retinas. The subsequent processing layers for measuring the target velocity and to realize smooth pursuit tracking are implemented in software and at the focal plane in the two versions, respectively. One implentation uses a hybrid of a PC and a silicon retina (39 X 38 pixels) operating at 333 frames/second. The software implementation of a real-time optical flow measurement algorithm is used to determine the target velocity, and a closed-loop control system zeroes the relative velocity of the target and retina. The second implementation is a single VLSI chip, which contains a linear array of photoreceptors, edge detectors and motion detectors at the focal plane. The closed-loop control system is also included on chip. This chip realizes all the computational properties of the hybrid system. The effects of background motion, target occlusion, and disappearance are studied as a function of retinal size and spatial distribution of the measured motion vectors (i.e. foveal/peripheral and diverging/converging measurement schemes). The hybrid system, which tested successfully, tracks targets moving as fast as 3 m/s at 1.3 meters from the camera and it can compensate for external arbitrary movements in its mounting platform. The single chip version, whose circuits tested successfully, can handle targets moving at 10 m/s.

  20. Dynamics of attentional deployment during saccadic programming.

    PubMed

    Castet, Eric; Jeanjean, Sébastien; Montagnini, Anna; Laugier, Danièle; Masson, Guillaume S

    2006-03-03

    The dynamics of attentional deployment before saccade execution was studied with a dual-task paradigm. Observers made a horizontal saccade whose direction was indicated by a symbolic precue and had to discriminate the orientation of a Gabor patch displayed at different delays after the precue (but before saccade onset). The patch location relative to the saccadic target was indicated to observers before each block. Therefore, on each trial, observers were informed simultaneously about the respective absolute locations of the saccadic and perceptual targets. The main result is that orientational acuity improved over a period of 150-200 ms after the precue onset at the saccadic target location, where overall performance is best, and at distant locations. This effect is due to attentional factors rather than to an alerting effect. It is also dependent on the efficiency of the temporal masks displayed before and after the Gabor patches.

  1. Efficient Saccade Planning Requires Time and Clear Choices

    PubMed Central

    Ghahghaei, Saiedeh; Verghese, Preeti

    2015-01-01

    We use eye movements constantly to gather information. Saccades are efficient when they maximize the information required for the task, however there is controversy regarding the efficiency of eye movement planning. For example, saccades are efficient when searching for a single target (Nature, 434 (2005) 387–91), but are inefficient when searching for an unknown number of targets in noise, particularly under time pressure (Vision Research 74 (2012), 61–71). In this study, we used a multiple-target search paradigm and explored whether altering the noise level or increasing saccadic latency improved efficiency. Experiments used stimuli with two levels of discriminability such that saccades to the less discriminable stimuli provided more information. When these two noise levels corresponded to low and moderate visibility, most observers did not preferentially select informative locations, but looked at uncertain and probable target locations equally often. We then examined whether eye movements could be made more efficient by increasing the discriminability of the two stimulus levels and by delaying the first saccade so that there was more time for decision processes to influence the saccade choices. Some observers did indeed increase the proportion of their saccades to informative locations under these conditions. Others, however, made as many saccades as they could during the limited time and were unselective about the saccade goal. A clear trend that emerges across all experiments is that conditions with a greater proportion of efficient saccades are associated with a longer latency to initiate saccades, suggesting that the choice of informative locations requires deliberate planning. PMID:26037735

  2. Cortical functional anatomy of voluntary saccades in Parkinson disease.

    PubMed

    Rieger, Jochem W; Kim, Aleander; Argyelan, Miklos; Farber, Mark; Glazman, Sofya; Liebeskind, Marc; Meyer, Thomas; Bodis-Wollner, Ivan

    2008-10-01

    In Parkinson Disease (PD) several aspects of saccades are affected. The saccade-generating brainstem neurons are spared, however, the signals they receive may be flawed. In particular voluntary saccades suffer, but the functional anatomy of the impairment of saccade-related cortical control is unknown. We measured blood-oxygenation-level-dependent (BOLD) activation with functional Magnetic Resonance Imaging (fMRI) while healthy participants and patients with PD performed horizontal voluntary saccades between peripheral visual targets or fixated centrally. We compared saccade-related BOLD-activity vs. fixation in patients with PD and in healthy controls and correlated perisaccadic BOLD-activity in PD patients with saccade kinetics (multistep saccades). Saccade related BOLD-activation was found in both PD and healthy participants in the superior parietal cortex (PEF) and the occipital cortex. Our results suggest remarkable hypoactivity of the frontal and supplementary eye fields (FEF and SEF) in PD patients. On the other hand, PD patients showed a statistically more reliable BOLD modulation than healthy participants in the posterior cingulate gyrus, the parahippocampal gyrus, inferior parietal lobule, precuneus and in the middle temporal gyrus. Given abnormal frontal and normal PEF responses, our results suggest that in PD a frontal cortical circuitry, known to be associated with saccade planning, selection, and predicting a metric error of the saccade, is deficient.

  3. Visual working memory modulates low-level saccade target selection: Evidence from rapidly generated saccades in the global effect paradigm

    PubMed Central

    Hollingworth, Andrew; Matsukura, Michi; Luck, Steven J.

    2013-01-01

    In three experiments, we examined the influence of visual working memory (VWM) on the metrics of saccade landing position in a global effect paradigm. Participants executed a saccade to the more eccentric object in an object pair appearing on the horizontal midline, to the left or right of central fixation. While completing the saccade task, participants maintained a color in VWM for an unrelated memory task. Either the color of the saccade target matched the memory color (target match), the color of the distractor matched the memory color (distractor match), or the colors of neither object matched the memory color (no match). In the no-match condition, saccades tended to land at the midpoint between the two objects: the global, or averaging, effect. However, when one of the two objects matched VWM, the distribution of landing position shifted toward the matching object, both for target match and for distractor match. VWM modulation of landing position was observed even for the fastest quartile of saccades, with a mean latency as low as 112 ms. Effects of VWM on such rapidly generated saccades, with latencies in the express-saccade range, indicate that VWM interacts with the initial sweep of visual sensory processing, modulating perceptual input to oculomotor systems and thereby biasing oculomotor selection. As a result, differences in memory match produce effects on landing position similar to the effects generated by differences in physical salience. PMID:24190909

  4. Attentional sensitivity and asymmetries of vertical saccade generation in monkey

    NASA Technical Reports Server (NTRS)

    Zhou, Wu; King, W. M.; Shelhamer, M. J. (Principal Investigator)

    2002-01-01

    The first goal of this study was to systematically document asymmetries in vertical saccade generation. We found that visually guided upward saccades have not only shorter latencies, but higher peak velocities, shorter durations and smaller errors. The second goal was to identify possible mechanisms underlying the asymmetry in vertical saccade latencies. Based on a recent model of saccade generation, three stages of saccade generation were investigated using specific behavioral paradigms: attention shift to a visual target (CUED paradigm), initiation of saccade generation (GAP paradigm) and release of the motor command to execute the saccade (DELAY paradigm). Our results suggest that initiation of a saccade (or "ocular disengagement") and its motor release contribute little to the asymmetry in vertical saccade latency. However, analysis of saccades made in the CUED paradigm indicated that it took less time to shift attention to a target in the upper visual field than to a target in the lower visual field. These data suggest that higher attentional sensitivity to targets in the upper visual field may contribute to shorter latencies of upward saccades.

  5. Saccade-synchronized rapid attention shifts in macaque visual cortical area MT.

    PubMed

    Yao, Tao; Treue, Stefan; Krishna, B Suresh

    2018-03-06

    While making saccadic eye-movements to scan a visual scene, humans and monkeys are able to keep track of relevant visual stimuli by maintaining spatial attention on them. This ability requires a shift of attentional modulation from the neuronal population representing the relevant stimulus pre-saccadically to the one representing it post-saccadically. For optimal performance, this trans-saccadic attention shift should be rapid and saccade-synchronized. Whether this is so is not known. We trained two rhesus monkeys to make saccades while maintaining covert attention at a fixed spatial location. We show that the trans-saccadic attention shift in cortical visual medial temporal (MT) area is well synchronized to saccades. Attentional modulation crosses over from the pre-saccadic to the post-saccadic neuronal representation by about 50 ms after a saccade. Taking response latency into account, the trans-saccadic attention shift is well timed to maintain spatial attention on relevant stimuli, so that they can be optimally tracked and processed across saccades.

  6. The timing of sequences of saccades in visual search.

    PubMed Central

    Van Loon, E M; Hooge, I Th C; Van den Berg, A V

    2002-01-01

    According to the LATER model (linear approach to thresholds with ergodic rate), the latency of a single saccade in response to target appearance can be understood as a decision process, which is subject to (i) variations in the rate of (visual) information processing; and (ii) the threshold for the decision. We tested whether the LATER model can also be applied to the sequences of saccades in a multiple fixation search, during which latencies of second and subsequent saccades are typically shorter than that of the initial saccade. We found that the distributions of the reciprocal latencies for later saccades, unlike those of the first saccade, are highly asymmetrical, much like a gamma distribution. This suggests that the normal distribution of the rate r, which the LATER model assumes, is not appropriate to describe the rate distributions of subsequent saccades in a scanning sequence. By contrast, the gamma distribution is also appropriate to describe the distribution of reciprocal latencies for the first saccade. The change of the gamma distribution parameters as a function of the ordinal number of the saccade suggests a lowering of the threshold for second and later saccades, as well as a reduction in the number of target elements analysed. PMID:12184827

  7. Saccadic eye movement during spaceflight

    NASA Technical Reports Server (NTRS)

    Uri, John J.; Linder, Barry J.; Moore, Thomas P.; Pool, Sam L.; Thornton, William E.

    1989-01-01

    Saccadic eye movements were studied in six subjects during two Space Shuttle missions. Reaction time, peak velocity and accuracy of horizontal, visually-guided saccades were examined preflight, inflight and postflight. Conventional electro-oculography was used to record eye position, with the subjects responding to pseudo-randomly illuminated targets at 0 deg and + or - 10 deg and 20 deg visual angles. In all subjects, preflight measurements were within normal limits. Reaction time was significantly increased inflight, while peak velocity was significantly decreased. A tendency toward a greater proportion of hypometric saccades inflight was also noted. Possible explanations for these changes and possible correlations with space motion sickness are discussed.

  8. Implications of Lateral Cerebellum in Proactive Control of Saccades.

    PubMed

    Kunimatsu, Jun; Suzuki, Tomoki W; Tanaka, Masaki

    2016-06-29

    Although several lines of evidence establish the involvement of the medial and vestibular parts of the cerebellum in the adaptive control of eye movements, the role of the lateral hemisphere of the cerebellum in eye movements remains unclear. Ascending projections from the lateral cerebellum to the frontal and parietal association cortices via the thalamus are consistent with a role of these pathways in higher-order oculomotor control. In support of this, previous functional imaging studies and recent analyses in subjects with cerebellar lesions have indicated a role for the lateral cerebellum in volitional eye movements such as anti-saccades. To elucidate the underlying mechanisms, we recorded from single neurons in the dentate nucleus of the cerebellum in monkeys performing anti-saccade/pro-saccade tasks. We found that neurons in the posterior part of the dentate nucleus showed higher firing rates during the preparation of anti-saccades compared with pro-saccades. When the animals made erroneous saccades to the visual stimuli in the anti-saccade trials, the firing rate during the preparatory period decreased. Furthermore, local inactivation of the recording sites with muscimol moderately increased the proportion of error trials, while successful anti-saccades were more variable and often had shorter latency during inactivation. Thus, our results show that neuronal activity in the cerebellar dentate nucleus causally regulates anti-saccade performance. Neuronal signals from the lateral cerebellum to the frontal cortex might modulate the proactive control signals in the corticobasal ganglia circuitry that inhibit early reactive responses and possibly optimize the speed and accuracy of anti-saccades. Although the lateral cerebellum is interconnected with the cortical eye fields via the thalamus and the pons, its role in eye movements remains unclear. We found that neurons in the caudal part of the lateral (dentate) nucleus of the cerebellum showed the increased

  9. Asynchrony between position and motion signals in the saccadic system.

    PubMed

    Schreiber, Céline; Missal, Marcus; Lefèvre, Philippe

    2006-02-01

    The influence of position and motion signals on saccades was studied in two dimensions (2D) using a double step-ramp paradigm. We showed the presence of a predictive component in 2D catch-up saccade programming that is based on motion signals and influences both saccade amplitude and orientation. Interestingly, a significant proportion of catch-up saccades was characterized by a large curvature or a sudden change of direction in midflight for large values of retinal slip. For these saccades, a quantitative analysis showed that their trajectory could be explained by an asynchrony between position and motion signals in saccade programming. When the saccade trajectory was not straight, position error was always available first and influenced the initial orientation of the saccade, whereas retinal slip determined the final orientation. This new paradigm could be used in electrophysiological experiments, where it should prove to be very useful to study position and motion pathways separately in catch-up saccades.

  10. [Changes and disorders in voluntary saccades during development and aging].

    PubMed

    Hikosaka, O

    1997-05-01

    We examined age-dependent changes in voluntary eye movements in normal subjects (age : 5-76) using a visually guided saccade (V-saccade) task and a memory guided saccade (M-saccade) task. Changes were more evident in M-saccades. The latencies were long in children (< 12 y.o.) and elderly people (> 50 y.o.). Both young children and elderly people tended to break fixation by making a saccade to the cue stimulus that indicated the future target position. On the other hand, both young children and elderly people tended to be slow in making M-saccade promptly after the central fixation point went off. Thus, they had difficulties both in suppressing unnecessary saccades and in initiating saccades based on memory. Interestingly, similar difficulties were observed, in exaggerated forms, in patients in basal ganglia disorders, such as Parkinson's disease, juvenile parkinsonism, dopa-responsive dystonia, and hereditary progressive dystonia with marked diurnal fluctuation. These findings were consistent with the known functions of the basal ganglia which have been revealed by physiological studies using trained monkeys. The substantia nigra pars reticulata exerts tonic inhibitory influences over the superior colliculus, thereby preventing excitatory inputs from triggering unnecessary saccades. The tonic inhibition, however, is removed by a phasic inhibition largely originating in the caudate nucleus. Thus, inhibition and disinhibition are key mechanisms of the basal ganglia. In fact, experimental manipulations of these serial inhibitory pathway in the basal ganglia led either to the difficulty in initiation of saccades, especially M-saccades, or to the difficulty in suppressing unnecessary saccades. These comparisons suggest that the functions of the basal ganglia are immature in young children while they become deteriorated in elderly people.

  11. Computational models of spatial updating in peri-saccadic perception

    PubMed Central

    Hamker, Fred H.; Zirnsak, Marc; Ziesche, Arnold; Lappe, Markus

    2011-01-01

    Perceptual phenomena that occur around the time of a saccade, such as peri-saccadic mislocalization or saccadic suppression of displacement, have often been linked to mechanisms of spatial stability. These phenomena are usually regarded as errors in processes of trans-saccadic spatial transformations and they provide important tools to study these processes. However, a true understanding of the underlying brain processes that participate in the preparation for a saccade and in the transfer of information across it requires a closer, more quantitative approach that links different perceptual phenomena with each other and with the functional requirements of ensuring spatial stability. We review a number of computational models of peri-saccadic spatial perception that provide steps in that direction. Although most models are concerned with only specific phenomena, some generalization and interconnection between them can be obtained from a comparison. Our analysis shows how different perceptual effects can coherently be brought together and linked back to neuronal mechanisms on the way to explaining vision across saccades. PMID:21242143

  12. Contribution of the cerebellar flocculus to gaze control during active head movements

    NASA Technical Reports Server (NTRS)

    Belton, T.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    The flocculus and ventral paraflocculus are adjacent regions of the cerebellar cortex that are essential for controlling smooth pursuit eye movements and for altering the performance of the vestibulo-ocular reflex (VOR). The question addressed in this study is whether these regions of the cerebellum are more globally involved in controlling gaze, regardless of whether eye or active head movements are used to pursue moving visual targets. Single-unit recordings were obtained from Purkinje (Pk) cells in the floccular region of squirrel monkeys that were trained to fixate and pursue small visual targets. Cell firing rate was recorded during smooth pursuit eye movements, cancellation of the VOR, combined eye-head pursuit, and spontaneous gaze shifts in the absence of targets. Pk cells were found to be much less sensitive to gaze velocity during combined eye-head pursuit than during ocular pursuit. They were not sensitive to gaze or head velocity during gaze saccades. Temporary inactivation of the floccular region by muscimol injection compromised ocular pursuit but had little effect on the ability of monkeys to pursue visual targets with head movements or to cancel the VOR during active head movements. Thus the signals produced by Pk cells in the floccular region are necessary for controlling smooth pursuit eye movements but not for coordinating gaze during active head movements. The results imply that individual functional modules in the cerebellar cortex are less involved in the global organization and coordination of movements than with parametric control of movements produced by a specific part of the body.

  13. Saccade Latency Indexes Exogenous and Endogenous Object-Based Attention

    PubMed Central

    Şentürk, Gözde; Greenberg, Adam S.; Liu, Taosheng

    2016-01-01

    Classic studies of object-based attention have utilized keypress responses as the main dependent measure. However, people typically make saccades to fixate important objects. Recent work has shown that attention may act differently when deployed covertly versus in advance of a saccade. We further investigated the link between saccades and attention by examining whether object-based effects can be observed for saccades. We adapted the classical double-rectangle cueing paradigm of Egly et al., (1994), and measured both the first saccade latency and keypress reaction time (RT) to a target that appeared at the end of one of the two rectangles. Our results showed that saccade latency exhibited higher sensitivity than RT in detecting effects of attention. We also assessed the generality of the attention effects by testing three types of cues: hybrid (predictive and peripheral), exogenous (non-predictive and peripheral), and endogenous (predictive and central). We found that both RT and saccade latency exhibited effects of both space-based and object-based attentional selection. However, saccade latency showed a more robust attentional modulation than RTs. For the exogenous cue, we observed a spatial inhibition-of-return along with an object-based effect, implying that object-based attention is independent of space-based attention. Overall, our results reveal an oculomotor correlate of object-based attention, suggesting that, in addition to spatial priority, object-level priority also affects saccade planning. PMID:27225468

  14. Critical role of cerebellar fastigial nucleus in programming sequences of saccades

    PubMed Central

    King, Susan A.; Schneider, Rosalyn M.; Serra, Alessandro; Leigh, R. John

    2011-01-01

    The cerebellum plays an important role in programming accurate saccades. Cerebellar lesions affecting the ocular motor region of the fastigial nucleus (FOR) cause saccadic hypermetria; however, if a second target is presented before a saccade can be initiated (double-step paradigm), saccade hypermetria may be decreased. We tested the hypothesis that the cerebellum, especially FOR, plays a pivotal role in programming sequences of saccades. We studied patients with saccadic hypermetria due either to genetic cerebellar ataxia or surgical lesions affecting FOR and confirmed that the gain of initial saccades made to double-step stimuli was reduced compared with the gain of saccades to single target jumps. Based on measurements of the intersaccadic interval, we found that the ability to perform parallel processing of saccades was reduced or absent in all of our patients with cerebellar disease. Our results support the crucial role of the cerebellum, especially FOR, in programming sequences of saccades. PMID:21950988

  15. Critical role of cerebellar fastigial nucleus in programming sequences of saccades.

    PubMed

    King, Susan A; Schneider, Rosalyn M; Serra, Alessandro; Leigh, R John

    2011-09-01

    The cerebellum plays an important role in programming accurate saccades. Cerebellar lesions affecting the ocular motor region of the fastigial nucleus (FOR) cause saccadic hypermetria; however, if a second target is presented before a saccade can be initiated (double-step paradigm), saccade hypermetria may be decreased. We tested the hypothesis that the cerebellum, especially FOR, plays a pivotal role in programming sequences of saccades. We studied patients with saccadic hypermetria because of either genetic cerebellar ataxia or surgical lesions affecting FOR and confirmed that the gain of initial saccades made to double-step stimuli was reduced compared with the gain of saccades to single target jumps. Based on measurements of the intersaccadic interval, we found that the ability to perform parallel processing of saccades was reduced or absent in all of our patients with cerebellar disease. Our results support the crucial role of the cerebellum, especially FOR, in programming sequences of saccades. © 2011 New York Academy of Sciences.

  16. The Role of Dopamine in Anticipatory Pursuit Eye Movements: Insights from Genetic Polymorphisms in Healthy Adults

    PubMed Central

    Hennig, Jürgen

    2016-01-01

    Abstract There is a long history of eye movement research in patients with psychiatric diseases for which dysfunctions of neurotransmission are considered to be the major pathologic mechanism. However, neuromodulation of oculomotor control is still hardly understood. We aimed to investigate in particular the impact of dopamine on smooth pursuit eye movements. Systematic variability in dopaminergic transmission due to genetic polymorphisms in healthy subjects offers a noninvasive opportunity to determine functional associations. We measured smooth pursuit in 110 healthy subjects genotyped for two well-documented polymorphisms, the COMT Val158Met polymorphism and the SLC6A3 3′-UTR-VNTR polymorphism. Pursuit paradigms were chosen to particularly assess the ability of the pursuit system to initiate tracking when target motion onset is blanked, reflecting the impact of extraretinal signals. In contrast, when following a fully visible target sensory, retinal signals are available. Our results highlight the crucial functional role of dopamine for anticipatory, but not for sensory-driven, pursuit processes. We found the COMT Val158Met polymorphism specifically associated with anticipatory pursuit parameters, emphasizing the dominant impact of prefrontal dopamine activity on complex oculomotor control. In contrast, modulation of striatal dopamine activity by the SLC6A3 3′-UTR-VNTR polymorphism had no significant functional effect. Though often neglected so far, individual differences in healthy subjects provide a promising approach to uncovering functional mechanisms and can be used as a bridge to understanding deficits in patients. PMID:28101524

  17. The Role of Dopamine in Anticipatory Pursuit Eye Movements: Insights from Genetic Polymorphisms in Healthy Adults.

    PubMed

    Billino, Jutta; Hennig, Jürgen; Gegenfurtner, Karl R

    2016-01-01

    There is a long history of eye movement research in patients with psychiatric diseases for which dysfunctions of neurotransmission are considered to be the major pathologic mechanism. However, neuromodulation of oculomotor control is still hardly understood. We aimed to investigate in particular the impact of dopamine on smooth pursuit eye movements. Systematic variability in dopaminergic transmission due to genetic polymorphisms in healthy subjects offers a noninvasive opportunity to determine functional associations. We measured smooth pursuit in 110 healthy subjects genotyped for two well-documented polymorphisms, the COMT Val 158 Met polymorphism and the SLC6A3 3'-UTR-VNTR polymorphism. Pursuit paradigms were chosen to particularly assess the ability of the pursuit system to initiate tracking when target motion onset is blanked, reflecting the impact of extraretinal signals. In contrast, when following a fully visible target sensory, retinal signals are available. Our results highlight the crucial functional role of dopamine for anticipatory, but not for sensory-driven, pursuit processes. We found the COMT Val 158 Met polymorphism specifically associated with anticipatory pursuit parameters, emphasizing the dominant impact of prefrontal dopamine activity on complex oculomotor control. In contrast, modulation of striatal dopamine activity by the SLC6A3 3'-UTR-VNTR polymorphism had no significant functional effect. Though often neglected so far, individual differences in healthy subjects provide a promising approach to uncovering functional mechanisms and can be used as a bridge to understanding deficits in patients.

  18. Adaptation and adaptation transfer characteristics of five different saccade types in the monkey

    PubMed Central

    Fuchs, Albert F.; Soetedjo, Robijanto

    2015-01-01

    Shifts in the direction of gaze are accomplished by different kinds of saccades, which are elicited under different circumstances. Saccade types include targeting saccades to simple jumping targets, delayed saccades to visible targets after a waiting period, memory-guided (MG) saccades to remembered target locations, scanning saccades to stationary target arrays, and express saccades after very short latencies. Studies of human cases and neurophysiological experiments in monkeys suggest that separate pathways, which converge on a common locus that provides the motor command, generate these different types of saccade. When behavioral manipulations in humans cause targeting saccades to have persistent dysmetrias as might occur naturally from growth, aging, and injury, they gradually adapt to reduce the dysmetria. Although results differ slightly between laboratories, this adaptation generalizes or transfers to all the other saccade types mentioned above. Also, when one of the other types of saccade undergoes adaptation, it often transfers to another saccade type. Similar adaptation and transfer experiments, which allow inferences to be drawn about the site(s) of adaptation for different saccade types, have yet to be done in monkeys. Here we show that simian targeting and MG saccades adapt more than express, scanning, and delayed saccades. Adaptation of targeting saccades transfers to all the other saccade types. However, the adaptation of MG saccades transfers only to delayed saccades. These data suggest that adaptation of simian targeting saccades occurs on the pathway common to all saccade types. In contrast, only the delayed saccade command passes through the adaptation site of the MG saccade. PMID:25855693

  19. Effects of aging on eye movements in the real world

    PubMed Central

    Dowiasch, Stefan; Marx, Svenja; Einhäuser, Wolfgang; Bremmer, Frank

    2015-01-01

    The effects of aging on eye movements are well studied in the laboratory. Increased saccade latencies or decreased smooth-pursuit gain are well established findings. The question remains whether these findings are influenced by the rather untypical environment of a laboratory; that is, whether or not they transfer to the real world. We measured 34 healthy participants between the age of 25 and 85 during two everyday tasks in the real world: (I) walking down a hallway with free gaze, (II) visual tracking of an earth-fixed object while walking straight-ahead. Eye movements were recorded with a mobile light-weight eye tracker, the EyeSeeCam (ESC). We find that age significantly influences saccade parameters. With increasing age, saccade frequency, amplitude, peak velocity, and mean velocity are reduced and the velocity/amplitude distribution as well as the velocity profile become less skewed. In contrast to laboratory results on smooth pursuit, we did not find a significant effect of age on tracking eye-movements in the real world. Taken together, age-related eye-movement changes as measured in the laboratory only partly resemble those in the real world. It is well-conceivable that in the real world additional sensory cues, such as head-movement or vestibular signals, may partially compensate for age-related effects, which, according to this view, would be specific to early motion processing. In any case, our results highlight the importance of validity for natural situations when studying the impact of aging on real-life performance. PMID:25713524

  20. Effects of aging on eye movements in the real world.

    PubMed

    Dowiasch, Stefan; Marx, Svenja; Einhäuser, Wolfgang; Bremmer, Frank

    2015-01-01

    The effects of aging on eye movements are well studied in the laboratory. Increased saccade latencies or decreased smooth-pursuit gain are well established findings. The question remains whether these findings are influenced by the rather untypical environment of a laboratory; that is, whether or not they transfer to the real world. We measured 34 healthy participants between the age of 25 and 85 during two everyday tasks in the real world: (I) walking down a hallway with free gaze, (II) visual tracking of an earth-fixed object while walking straight-ahead. Eye movements were recorded with a mobile light-weight eye tracker, the EyeSeeCam (ESC). We find that age significantly influences saccade parameters. With increasing age, saccade frequency, amplitude, peak velocity, and mean velocity are reduced and the velocity/amplitude distribution as well as the velocity profile become less skewed. In contrast to laboratory results on smooth pursuit, we did not find a significant effect of age on tracking eye-movements in the real world. Taken together, age-related eye-movement changes as measured in the laboratory only partly resemble those in the real world. It is well-conceivable that in the real world additional sensory cues, such as head-movement or vestibular signals, may partially compensate for age-related effects, which, according to this view, would be specific to early motion processing. In any case, our results highlight the importance of validity for natural situations when studying the impact of aging on real-life performance.

  1. Kinesthetic information facilitates saccades towards proprioceptive-tactile targets.

    PubMed

    Voudouris, Dimitris; Goettker, Alexander; Mueller, Stefanie; Fiehler, Katja

    2016-05-01

    Saccades to somatosensory targets have longer latencies and are less accurate and precise than saccades to visual targets. Here we examined how different somatosensory information influences the planning and control of saccadic eye movements. Participants fixated a central cross and initiated a saccade as fast as possible in response to a tactile stimulus that was presented to either the index or the middle fingertip of their unseen left hand. In a static condition, the hand remained at a target location for the entire block of trials and the stimulus was presented at a fixed time after an auditory tone. Therefore, the target location was derived only from proprioceptive and tactile information. In a moving condition, the hand was first actively moved to the same target location and the stimulus was then presented immediately. Thus, in the moving condition additional kinesthetic information about the target location was available. We found shorter saccade latencies in the moving compared to the static condition, but no differences in accuracy or precision of saccadic endpoints. In a second experiment, we introduced variable delays after the auditory tone (static condition) or after the end of the hand movement (moving condition) in order to reduce the predictability of the moment of the stimulation and to allow more time to process the kinesthetic information. Again, we found shorter latencies in the moving compared to the static condition but no improvement in saccade accuracy or precision. In a third experiment, we showed that the shorter saccade latencies in the moving condition cannot be explained by the temporal proximity between the relevant event (auditory tone or end of hand movement) and the moment of the stimulation. Our findings suggest that kinesthetic information facilitates planning, but not control, of saccadic eye movements to proprioceptive-tactile targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Parietal stimulation destabilizes spatial updating across saccadic eye movements.

    PubMed

    Morris, Adam P; Chambers, Christopher D; Mattingley, Jason B

    2007-05-22

    Saccadic eye movements cause sudden and global shifts in the retinal image. Rather than causing confusion, however, eye movements expand our sense of space and detail. In macaques, a stable representation of space is embodied by neural populations in intraparietal cortex that redistribute activity with each saccade to compensate for eye displacement, but little is known about equivalent updating mechanisms in humans. We combined noninvasive cortical stimulation with a double-step saccade task to examine the contribution of two human intraparietal areas to transsaccadic spatial updating. Right hemisphere stimulation over the posterior termination of the intraparietal sulcus (IPSp) broadened and shifted the distribution of second-saccade endpoints, but only when the first-saccade was directed into the contralateral hemifield. By interleaving trials with and without cortical stimulation, we show that the shift in endpoints was caused by an enduring effect of stimulation on neural functioning (e.g., modulation of neuronal gain). By varying the onset time of stimulation, we show that the representation of space in IPSp is updated immediately after the first-saccade. In contrast, stimulation of an adjacent IPS site had no such effects on second-saccades. These experiments suggest that stimulation of IPSp distorts an eye position or displacement signal that updates the representation of space at the completion of a saccade. Such sensory-motor integration in IPSp is crucial for the ongoing control of action, and may contribute to visual stability across saccades.

  3. Saccade latency indexes exogenous and endogenous object-based attention.

    PubMed

    Şentürk, Gözde; Greenberg, Adam S; Liu, Taosheng

    2016-10-01

    Classic studies of object-based attention have utilized keypress responses as the main dependent measure. However, people typically make saccades to fixate important objects. Recent work has shown that attention may act differently when it is deployed covertly versus in advance of a saccade. We further investigated the link between saccades and attention by examining whether object-based effects can be observed for saccades. We adapted the classical double-rectangle cueing paradigm of Egly, Driver, and Rafal (1994), and measured both the first saccade latency and the keypress reaction time (RT) to a target that appeared at the end of one of the two rectangles. Our results showed that saccade latencies exhibited higher sensitivity than did RTs for detecting effects of attention. We also assessed the generality of the attention effects by testing three types of cues: hybrid (predictive and peripheral), exogenous (nonpredictive and peripheral), and endogenous (predictive and central). We found that both RTs and saccade latencies exhibited effects of both space-based and object-based attentional selection. However, saccade latencies showed a more robust attentional modulation than RTs. For the exogenous cues, we observed a spatial inhibition of return along with an object-based effect, implying that object-based attention is independent of space-based attention. Overall, our results revealed an oculomotor correlate of object-based attention, suggesting that, in addition to spatial priority, object-level priority also affects saccade planning.

  4. Inhibition of voluntary saccadic eye movement commands by abrupt visual onsets.

    PubMed

    Edelman, Jay A; Xu, Kitty Z

    2009-03-01

    Saccadic eye movements are made both to explore the visual world and to react to sudden sensory events. We studied the ability for humans to execute a voluntary (i.e., nonstimulus-driven) saccade command in the face of a suddenly appearing visual stimulus. Subjects were required to make a saccade to a memorized location when a central fixation point disappeared. At varying times relative to fixation point disappearance a visual distractor appeared at a random location. When the distractor appeared at locations distant from the target virtually no saccades were initiated in a 30- to 40-ms interval beginning 70-80 ms after appearance of the distractor. If the distractor was presented slightly earlier relative to saccade initiation then saccades tended to have smaller amplitudes, with velocity profiles suggesting that the distractor terminated them prematurely. In contrast, distractors appearing close to the saccade target elicited express saccade-like movements 70-100 ms after their appearance, although the saccade endpoint was generally scarcely affected by the distractor. An additional experiment showed that these effects were weaker when the saccade was made to a visible target in a delayed task and still weaker when the saccade itself was made in response to the abrupt appearance of a visual stimulus. A final experiment revealed that the effect is smaller, but quite evident, for very small stimuli. These results suggest that the transient component of a visual response can briefly but almost completely suppress a voluntary saccade command, but only when the stimulus evoking that response is distant from the saccade goal.

  5. Dynamic coding of vertical facilitated vergence by premotor saccadic burst neurons.

    PubMed

    Van Horn, Marion R; Cullen, Kathleen E

    2008-10-01

    To redirect our gaze in three-dimensional space we frequently combine saccades and vergence. These eye movements, known as disconjugate saccades, are characterized by eyes rotating by different amounts, with markedly different dynamics, and occur whenever gaze is shifted between near and far objects. How the brain ensures the precise control of binocular positioning remains controversial. It has been proposed that the traditionally assumed "conjugate" saccadic premotor pathway does not encode conjugate commands but rather encodes monocular commands for the right or left eye during saccades. Here, we directly test this proposal by recording from the premotor neurons of the horizontal saccade generator during a dissociation task that required a vergence but no horizontal conjugate saccadic command. Specifically, saccadic burst neurons (SBNs) in the paramedian pontine reticular formation were recorded while rhesus monkeys made vertical saccades made between near and far targets. During this task, we first show that peak vergence velocities were enhanced to saccade-like speeds (e.g., >150 vs. <100 degrees/s during saccade-free movements for comparable changes in vergence angle). We then quantified the discharge dynamics of SBNs during these movements and found that the majority of the neurons preferentially encode the velocity of the ipsilateral eye. Notably, a given neuron typically encoded the movement of the same eye during horizontal saccades that were made in depth. Taken together, our findings demonstrate that the brain stem saccadic burst generator encodes integrated conjugate and vergence commands, thus providing strong evidence for the proposal that the classic saccadic premotor pathway controls gaze in three-dimensional space.

  6. Acquisition of neural learning in cerebellum and cerebral cortex for smooth pursuit eye movements

    PubMed Central

    Li, Jennifer X.; Medina, Javier F.; Frank, Loren M.; Lisberger, Stephen G.

    2011-01-01

    We have evaluated the emergence of neural learning in the frontal eye fields (FEFSEM) and the floccular complex of the cerebellum while monkeys learned a precisely-timed change in the direction of pursuit eye movement. For each neuron, we measured the time course of changes in neural response across a learning session that comprised at least 100 repetitions of an instructive change in target direction. In both areas, the average population learning curves tracked the behavioral changes with high fidelity, consistent with possible roles in driving learning. However, the learning curves of individual neurons sometimes bore little relation to the smooth, monotonic progression of behavioral learning. In the FEFSEM, neural learning was episodic. For individual neurons, learning appeared at different times during the learning session and sometimes disappeared by the end of the session. Different FEFSEM neurons expressed maximal learning at different times relative to the acquisition of behavioral learning. In the floccular complex, many Purkinje cells acquired learned simple-spike responses according to the same time course as behavioral learning and retained their learned responses throughout the learning session. A minority of Purkinje cells acquired learned responses late in the learning session, after behavioral learning had reached an asymptote. We conclude that learning in single neurons can follow a very different time course from behavioral learning. Both the FEFSEM and the floccular complex contain representations of multiple temporal components of learning, with different neurons contributing to learning at different times during the acquisition of a learned movement. PMID:21900551

  7. Between-object and within-object saccade programming in a visual search task.

    PubMed

    Vergilino-Perez, Dorine; Findlay, John M

    2006-07-01

    The role of the perceptual organization of the visual display on eye movement control was examined in two experiments using a task where a two-saccade sequence was directed toward either a single elongated object or three separate shorter objects. In the first experiment, we examined the consequences for the second saccade of a small displacement of the whole display during the first saccade. We found that between-object saccades compensated for the displacement to aim for a target position on the new object whereas within-object saccades did not show compensation but were coded as a fixed motor vector applied irrespective of wherever the preceding saccade landed. In the second experiment, we extended the paradigm to examine saccades performed in different directions. The results suggest that the within-object and between-object saccade distinction is an essential feature of saccadic planning.

  8. VOR Gain Is Related to Compensatory Saccades in Healthy Older Adults

    PubMed Central

    Anson, Eric R.; Bigelow, Robin T.; Carey, John P.; Xue, Qian-Li; Studenski, Stephanie; Schubert, Michael C.; Agrawal, Yuri

    2016-01-01

    Objective: Vestibulo-ocular reflex (VOR) gain is well-suited for identifying rotational vestibular dysfunction, but may miss partial progressive decline in age-related vestibular function. Since compensatory saccades might provide an alternative method for identifying subtle vestibular decline, we describe the relationship between VOR gain and compensatory saccades in healthy older adults. Methods: Horizontal VOR gain was measured in 243 subjects age 60 and older from the Baltimore Longitudinal Study of Aging using video head impulse testing (HIT). Saccades in each HIT were identified as either “compensatory” or “compensatory back-up,” i.e., same or opposite direction as the VOR response respectively. Saccades were also classified as “covert” (occurring during head movement) and “overt” (occurring after head movement). The relationship between VOR gain and percentage of HITs with saccades, as well as the relationship between VOR gain and saccade latency and amplitude, were evaluated using regression analyses adjusting for age, gender, and race. Results: In adjusted analyses, the percentage of HITs with compensatory saccades increased 4.5% for every 0.1 decrease in VOR gain (p < 0.0001). Overt compensatory saccade amplitude decreased 0.6° (p < 0.005) and latency increased 90 ms (p < 0.001) for every 0.1 increase in VOR gain. Covert back-up compensatory saccade amplitude increased 0.4° for every 0.1 increase in VOR gain. Conclusion: We observed significant relationships between VOR gain and compensatory saccades in healthy older adults. Lower VOR gain was associated with larger amplitude, shorter latency compensatory saccades. Compensatory saccades reflect underlying rotational vestibular hypofunction, and may be particularly useful at identifying partial vestibular deficits as occur in aging adults. PMID:27445793

  9. Saccadic eye movements as an index of perceptual decision-making.

    PubMed

    McSorley, Eugene; McCloy, Rachel

    2009-10-01

    One of the most common decisions we make is the one about where to move our eyes next. Here we examine the impact that processing the evidence supporting competing options has on saccade programming. Participants were asked to saccade to one of two possible visual targets indicated by a cloud of moving dots. We varied the evidence which supported saccade target choice by manipulating the proportion of dots moving towards one target or the other. The task was found to become easier as the evidence supporting target choice increased. This was reflected in an increase in percent correct and a decrease in saccade latency. The trajectory and landing position of saccades were found to deviate away from the non-selected target reflecting the choice of the target and the inhibition of the non-target. The extent of the deviation was found to increase with amount of sensory evidence supporting target choice. This shows that decision-making processes involved in saccade target choice have an impact on the spatial control of a saccade. This would seem to extend the notion of the processes involved in the control of saccade metrics beyond a competition between visual stimuli to one also reflecting a competition between options.

  10. Saccadic adaptation to a systematically varying disturbance

    PubMed Central

    Ohl, Sven; Rolfs, Martin

    2016-01-01

    Saccadic adaptation maintains the correct mapping between eye movements and their targets, yet the dynamics of saccadic gain changes in the presence of systematically varying disturbances has not been extensively studied. Here we assessed changes in the gain of saccade amplitudes induced by continuous and periodic postsaccadic visual feedback. Observers made saccades following a sequence of target steps either along the horizontal meridian (Two-way adaptation) or with unconstrained saccade directions (Global adaptation). An intrasaccadic step—following a sinusoidal variation as a function of the trial number (with 3 different frequencies tested in separate blocks)—consistently displaced the target along its vector. The oculomotor system responded to the resulting feedback error by modifying saccade amplitudes in a periodic fashion with similar frequency of variation but lagging the disturbance by a few tens of trials. This periodic response was superimposed on a drift toward stronger hypometria with similar asymptotes and decay rates across stimulus conditions. The magnitude of the periodic response decreased with increasing frequency and was smaller and more delayed for Global than Two-way adaptation. These results suggest that—in addition to the well-characterized return-to-baseline response observed in protocols using constant visual feedback—the oculomotor system attempts to minimize the feedback error by integrating its variation across trials. This process resembles a convolution with an internal response function, whose structure would be determined by coefficients of the learning model. Our protocol reveals this fast learning process in single short experimental sessions, qualifying it for the study of sensorimotor learning in health and disease. PMID:27098027

  11. Context effects on smooth pursuit and manual interception of a disappearing target.

    PubMed

    Kreyenmeier, Philipp; Fooken, Jolande; Spering, Miriam

    2017-07-01

    In our natural environment, we interact with moving objects that are surrounded by richly textured, dynamic visual contexts. Yet most laboratory studies on vision and movement show visual objects in front of uniform gray backgrounds. Context effects on eye movements have been widely studied, but it is less well known how visual contexts affect hand movements. Here we ask whether eye and hand movements integrate motion signals from target and context similarly or differently, and whether context effects on eye and hand change over time. We developed a track-intercept task requiring participants to track the initial launch of a moving object ("ball") with smooth pursuit eye movements. The ball disappeared after a brief presentation, and participants had to intercept it in a designated "hit zone." In two experiments ( n = 18 human observers each), the ball was shown in front of a uniform or a textured background that either was stationary or moved along with the target. Eye and hand movement latencies and speeds were similarly affected by the visual context, but eye and hand interception (eye position at time of interception, and hand interception timing error) did not differ significantly between context conditions. Eye and hand interception timing errors were strongly correlated on a trial-by-trial basis across all context conditions, highlighting the close relation between these responses in manual interception tasks. Our results indicate that visual contexts similarly affect eye and hand movements but that these effects may be short-lasting, affecting movement trajectories more than movement end points. NEW & NOTEWORTHY In a novel track-intercept paradigm, human observers tracked a briefly shown object moving across a textured, dynamic context and intercepted it with their finger after it had disappeared. Context motion significantly affected eye and hand movement latency and speed, but not interception accuracy; eye and hand position at interception were

  12. Rapid accumulation of inhibition accounts for saccades curved away from distractors.

    PubMed

    Kehoe, Devin H; Fallah, Mazyar

    2017-08-01

    Saccades curved toward a distractor are accompanied by a burst of neuronal activation at the distractor locus in the intermediate layers of the superior colliculus (SCi) ~30 ms before the initiation of a saccade. Although saccades curve away from inactivated SCi loci, whether inhibition is restricted to a similar critical epoch for saccades curved away from a distractor remains unclear. We examined this possibility by modeling human saccade curvature as a function of the time between onset of a task irrelevant luminance- or color-modulated distractor and initiation of an impending saccade, referred to as saccade distractor onset asynchrony (SDOA). Our results demonstrated that 70 ms of luminance-modulated distractor processing or 90 ms of color-modulated distractor processing was required to modulate saccade trajectories. As these behavioral, feature-based differences were temporally consistent with the cortically mediated neurophysiological differences in visual onset latencies between luminance and color stimuli observed in the oculomotor and visual system, this method provides a noninvasive means to estimate the timing of peak activation in the oculomotor system. As such, we modeled SDOA functions separately for saccades curved toward and away from distractors and observed that a similar temporal process determined the magnitude of saccade curvatures in both contexts, suggesting that saccades deviate away from a distractor due to a rapid accumulation of inhibition in the critical epoch before saccade initiation. NEW & NOTEWORTHY In this research article, we propose a novel, noninvasive approach to behaviorally model the time course of competitive oculomotor processing. Our results highly resembled those from previously published neurophysiological experiments utilizing similar oculomotor processing contexts, thus validating our approach. Furthermore, this methodology provided new insights into the underlying neural mechanism subserving oculomotor processing

  13. Effect of visual attention on postural control in children with attention-deficit/hyperactivity disorder.

    PubMed

    Bucci, Maria Pia; Seassau, Magali; Larger, Sandrine; Bui-Quoc, Emmanuel; Gerard, Christophe-Loic

    2014-06-01

    We compared the effect of oculomotor tasks on postural sway in two groups of ADHD children with and without methylphenidate (MPH) treatment against a group of control age-matched children. Fourteen MPH-untreated ADHD children, fourteen MPH-treated ADHD children and a group of control children participated to the study. Eye movements were recorded using a video-oculography system and postural sway measured with a force platform simultaneously. Children performed fixation, pursuits, pro- and anti-saccades. We analyzed the number of saccades during fixation, the number of catch-up saccades during pursuits, the latency of pro- and anti-saccades; the occurrence of errors in the anti-saccade task and the surface and mean velocity of the center of pressure (CoP). During the postural task, the quality of fixation was significantly worse in both groups of ADHD children with respect to control children; in contrast, the number of catch-up saccades during pursuits, the latency of pro-/anti-saccades and the rate of errors in the anti-saccade task did not differ in the three groups of children. The surface of the CoP in MPH-treated children was similar to that of control children, while MPH-untreated children showed larger postural sway. When performing any saccades, the surface of the CoP improved with respect to fixation or pursuits tasks. This study provides evidence of poor postural control in ADHD children, probably due to cerebellar deficiencies. Our study is also the first to show an improvement on postural sway in ADHD children performing saccadic eye movements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Dissociating the capture of attention from saccade activation by subliminal abrupt onsets.

    PubMed

    Schoeberl, Tobias; Ansorge, Ulrich

    2017-10-01

    Attentional capture and effects on saccade metrics by subliminal abrupt onset cues have been studied with peripheral cues at one out of several (two to four) display locations, swiftly followed by additional onsets at the other display locations. The lead time of the cue was too short to be seen. Here, we were interested in whether such subliminal onset cues influenced saccades primarily by way of attention or by way of direct saccade activation. In separate blocks, participants made speeded pro-saccades towards a black target or anti-saccades away from the target. Prior to the targets, an abrupt onset cue was presented either at the same side as the target (valid condition) or at the opposite side (invalid condition). If cues influenced performance by way of attentional capture, we expected facilitation of target processing in valid compared to invalid conditions (cueing effect) in the pro- as well as in the anti-saccade task. If the cues activated saccades in their direction, we expected the cueing effect to drop in the anti-saccade task compared to the pro-saccade task because in the anti-saccade task the invalid cue would activate the finally required response, whereas the valid cue would activate the alternative response, leading to interference. Results were in line with the former of these possibilities suggesting that subliminal abrupt onsets influenced saccades by way of attention with no or little direct activation of saccades.

  15. Fall prevention modulates decisional saccadic behavior in aging.

    PubMed

    Coubard, Olivier A

    2012-01-01

    As society ages and frequency of falls increases in older adults, counteracting motor decline is a challenging issue for developed countries. Physical activity based on aerobic and strength training as well as motor activity based on skill learning both help benefit balance and reduce the risk of falls, as assessed by clinical or laboratory measures. However, how such programs influence motor control is a neglected issue. This study examined the effects of fall prevention (FP) training on saccadic control in older adults. Saccades were recorded in 12 participants aged 64-91 years before and after 2.5 months training in FP. Traditional analysis of saccade timing and dynamics was performed together with a quantitative analysis using the LATER model, enabling us to examine the underlying motor control processes. Results indicated that FP reduced the rate of anticipatory and express saccades in inappropriate directions and enhanced that of express saccades in the appropriate direction, resulting in decreased latency and higher left-right symmetry of motor responses. FP reduced within-participant variability of saccade duration, amplitude, and peak velocity. LATER analysis suggested that FP modulates decisional thresholds, extending our knowledge of motor training influence on central motor control. We introduce the Threshold Interval Modulation with Early Release-Rate of rIse Deviation with Early Release (TIMER-RIDER) model to account for the results.

  16. Dynamic interactions between visual working memory and saccade target selection

    PubMed Central

    Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-01-01

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628

  17. Neurobehavioral Abnormalities in First-Degree Relatives of Individuals With Autism

    PubMed Central

    Mosconi, Matthew W.; Kay, Margaret; D’Cruz, Anna-Maria; Guter, Stephen; Kapur, Kush; Macmillan, Carol; Stanford, Lisa D.; Sweeney, John A.

    2011-01-01

    Context Studying sensorimotor and neurocognitive impairments in unaffected family members of individuals with autism may help identify familial pathophysiological mechanisms associated with the disorder. Objective To determine whether atypical sensorimotor or neurocognitive characteristics associated with autism are present in first-degree relatives of individuals with autism. Design Case-control comparison of neurobehavioral functions. Setting University medical center. Participants Fifty-seven first-degree relatives of individuals with autism and 40 age-, sex-, and IQ-matched healthy control participants (aged 8–54 years). Main Outcome Measures Oculomotor tests of sensorimotor responses (saccades and smooth pursuit); procedural learning and response inhibition; neuropsychological tests of motor, memory, and executive functions; and psychological measures of social behavior, communication skills, and obsessive-compulsive behaviors. Results On eye movement testing, family members demonstrated saccadic hypometria, reduced steady-state pursuit gain, and a higher rate of voluntary response inhibition errors relative to controls. They also showed lateralized deficits in procedural learning and open-loop pursuit gain (initial 100 milliseconds of pursuit) and increased variability in the accuracy of large-amplitude saccades that were confined to rightward movements. In neuropsychological studies, only executive functions were impaired relative to those of controls. Family members reported more communication abnormalities and obsessive-compulsive behaviors than controls. Deficits across oculomotor, neuropsychological, and psychological domains were relatively independent from one another. Conclusions Family members of individuals with autism demonstrate oculomotor abnormalities implicating pontocerebellar and frontostriatal circuits and left-lateralized alterations of frontotemporal circuitry and striatum. The left-lateralized alterations have not been identified in

  18. Neurobehavioral abnormalities in first-degree relatives of individuals with autism.

    PubMed

    Mosconi, Matthew W; Kay, Margaret; D'Cruz, Anna-Maria; Guter, Stephen; Kapur, Kush; Macmillan, Carol; Stanford, Lisa D; Sweeney, John A

    2010-08-01

    Studying sensorimotor and neurocognitive impairments in unaffected family members of individuals with autism may help identify familial pathophysiological mechanisms associated with the disorder. To determine whether atypical sensorimotor or neurocognitive characteristics associated with autism are present in first-degree relatives of individuals with autism. Case-control comparison of neurobehavioral functions. University medical center. Fifty-seven first-degree relatives of individuals with autism and 40 age-, sex-, and IQ-matched healthy control participants (aged 8-54 years). Oculomotor tests of sensorimotor responses (saccades and smooth pursuit); procedural learning and response inhibition; neuropsychological tests of motor, memory, and executive functions; and psychological measures of social behavior, communication skills, and obsessive-compulsive behaviors. On eye movement testing, family members demonstrated saccadic hypometria, reduced steady-state pursuit gain, and a higher rate of voluntary response inhibition errors relative to controls. They also showed lateralized deficits in procedural learning and open-loop pursuit gain (initial 100 milliseconds of pursuit) and increased variability in the accuracy of large-amplitude saccades that were confined to rightward movements. In neuropsychological studies, only executive functions were impaired relative to those of controls. Family members reported more communication abnormalities and obsessive-compulsive behaviors than controls. Deficits across oculomotor, neuropsychological, and psychological domains were relatively independent from one another. Family members of individuals with autism demonstrate oculomotor abnormalities implicating pontocerebellar and frontostriatal circuits and left-lateralized alterations of frontotemporal circuitry and striatum. The left-lateralized alterations have not been identified in other neuropsychiatric disorders and are of interest given atypical brain lateralization and

  19. Saccadic eye movement metrics reflect surgical residents' fatigue.

    PubMed

    Di Stasi, Leandro L; McCamy, Michael B; Macknik, Stephen L; Mankin, James A; Hooft, Nicole; Catena, Andrés; Martinez-Conde, Susana

    2014-04-01

    Little is known about the effects of surgical residents' fatigue on patient safety. We monitored surgical residents' fatigue levels during their call day using (1) eye movement metrics, (2) objective measures of laparoscopic surgical performance, and (3) subjective reports based on standardized questionnaires. Prior attempts to investigate the effects of fatigue on surgical performance have suffered from methodological limitations, including inconsistent definitions and lack of objective measures of fatigue, and nonstandardized measures of surgical performance. Recent research has shown that fatigue can affect the characteristics of saccadic (fast ballistic) eye movements in nonsurgical scenarios. Here we asked whether fatigue induced by time-on-duty (~24 hours) might affect saccadic metrics in surgical residents. Because saccadic velocity is not under voluntary control, a fatigue index based on saccadic velocity has the potential to provide an accurate and unbiased measure of the resident's fatigue level. We measured the eye movements of members of the general surgery resident team at St. Joseph's Hospital and Medical Center (Phoenix, AZ) (6 males and 6 females), using a head-mounted video eye tracker (similar configuration to a surgical headlight), during the performance of 3 tasks: 2 simulated laparoscopic surgery tasks (peg transfer and precision cutting) and a guided saccade task, before and after their call day. Residents rated their perceived fatigue level every 3 hours throughout their 24-hour shift, using a standardized scale. Time-on-duty decreased saccadic velocity and increased subjective fatigue but did not affect laparoscopic performance. These results support the hypothesis that saccadic indices reflect graded changes in fatigue. They also indicate that fatigue due to prolonged time-on-duty does not result necessarily in medical error, highlighting the complicated relationship among continuity of care, patient safety, and fatigued providers. Our data

  20. Cultural diversity and saccade similarities: culture does not explain saccade latency differences between Chinese and Caucasian participants.

    PubMed

    Knox, Paul C; Wolohan, Felicity D A

    2014-01-01

    A central claim of cultural neuroscience is that the culture to which an individual belongs plays a key role in shaping basic cognitive processes and behaviours, including eye movement behaviour. We previously reported a robust difference in saccade behaviour between Chinese and Caucasian participants; Chinese participants are much more likely to execute low latency express saccades, in circumstances in which these are normally discouraged. To assess the extent to which this is the product of culture we compared a group of 70 Chinese overseas students (whose primary cultural exposure was that of mainland China), a group of 45 participants whose parents were Chinese but who themselves were brought up in the UK (whose primary cultural exposure was western European) and a group of 70 Caucasian participants. Results from the Schwartz Value Survey confirmed that the UK-Chinese group were culturally similar to the Caucasian group. However, their patterns of saccade latency were identical to the mainland Chinese group, and different to the Caucasian group. We conclude that at least for the relatively simple reflexive saccade behaviour we have investigated, culture cannot explain the observed differences in behaviour.

  1. Cultural Diversity and Saccade Similarities: Culture Does Not Explain Saccade Latency Differences between Chinese and Caucasian Participants

    PubMed Central

    Knox, Paul C.; Wolohan, Felicity D. A.

    2014-01-01

    A central claim of cultural neuroscience is that the culture to which an individual belongs plays a key role in shaping basic cognitive processes and behaviours, including eye movement behaviour. We previously reported a robust difference in saccade behaviour between Chinese and Caucasian participants; Chinese participants are much more likely to execute low latency express saccades, in circumstances in which these are normally discouraged. To assess the extent to which this is the product of culture we compared a group of 70 Chinese overseas students (whose primary cultural exposure was that of mainland China), a group of 45 participants whose parents were Chinese but who themselves were brought up in the UK (whose primary cultural exposure was western European) and a group of 70 Caucasian participants. Results from the Schwartz Value Survey confirmed that the UK-Chinese group were culturally similar to the Caucasian group. However, their patterns of saccade latency were identical to the mainland Chinese group, and different to the Caucasian group. We conclude that at least for the relatively simple reflexive saccade behaviour we have investigated, culture cannot explain the observed differences in behaviour. PMID:24709988

  2. Saccadic adaptation to a systematically varying disturbance.

    PubMed

    Cassanello, Carlos R; Ohl, Sven; Rolfs, Martin

    2016-08-01

    Saccadic adaptation maintains the correct mapping between eye movements and their targets, yet the dynamics of saccadic gain changes in the presence of systematically varying disturbances has not been extensively studied. Here we assessed changes in the gain of saccade amplitudes induced by continuous and periodic postsaccadic visual feedback. Observers made saccades following a sequence of target steps either along the horizontal meridian (Two-way adaptation) or with unconstrained saccade directions (Global adaptation). An intrasaccadic step-following a sinusoidal variation as a function of the trial number (with 3 different frequencies tested in separate blocks)-consistently displaced the target along its vector. The oculomotor system responded to the resulting feedback error by modifying saccade amplitudes in a periodic fashion with similar frequency of variation but lagging the disturbance by a few tens of trials. This periodic response was superimposed on a drift toward stronger hypometria with similar asymptotes and decay rates across stimulus conditions. The magnitude of the periodic response decreased with increasing frequency and was smaller and more delayed for Global than Two-way adaptation. These results suggest that-in addition to the well-characterized return-to-baseline response observed in protocols using constant visual feedback-the oculomotor system attempts to minimize the feedback error by integrating its variation across trials. This process resembles a convolution with an internal response function, whose structure would be determined by coefficients of the learning model. Our protocol reveals this fast learning process in single short experimental sessions, qualifying it for the study of sensorimotor learning in health and disease. Copyright © 2016 the American Physiological Society.

  3. Tracking with the mind's eye

    NASA Technical Reports Server (NTRS)

    Krauzlis, R. J.; Stone, L. S.

    1999-01-01

    The two components of voluntary tracking eye-movements in primates, pursuit and saccades, are generally viewed as relatively independent oculomotor subsystems that move the eyes in different ways using independent visual information. Although saccades have long been known to be guided by visual processes related to perception and cognition, only recently have psychophysical and physiological studies provided compelling evidence that pursuit is also guided by such higher-order visual processes, rather than by the raw retinal stimulus. Pursuit and saccades also do not appear to be entirely independent anatomical systems, but involve overlapping neural mechanisms that might be important for coordinating these two types of eye movement during the tracking of a selected visual object. Given that the recovery of objects from real-world images is inherently ambiguous, guiding both pursuit and saccades with perception could represent an explicit strategy for ensuring that these two motor actions are driven by a single visual interpretation.

  4. Early Cerebellar Network Shifting in Spinocerebellar Ataxia Type 6

    PubMed Central

    Falcon, M.I.; Gomez, C.M.; Chen, E.E.; Shereen, A.; Solodkin, A.

    2016-01-01

    Spinocerebellar ataxia 6 (SCA6), an autosomal dominant degenerative disease, is characterized by diplopia, gait ataxia, and incoordination due to severe progressive degeneration of Purkinje cells in the vestibulo- and spinocerebellum. Ocular motor deficits are common, including difficulty fixating on moving objects, nystagmus and disruption of smooth pursuit movements. In presymptomatic SCA6, there are alterations in saccades and smooth-pursuit movements. We sought to assess functional and structural changes in cerebellar connectivity associated with a visual task, hypothesizing that gradual changes would parallel disease progression. We acquired functional magnetic resonance imaging and diffusion tensor imaging data during a passive smooth-pursuit task in 14 SCA6 patients, representing a range of disease duration and severity, and performed a cross-sectional comparison of cerebellar networks compared with healthy controls. We identified a shift in activation from vermis in presymptomatic individuals to lateral cerebellum in moderate-to-severe cases. Concomitantly, effective connectivity between regions of cerebral cortex and cerebellum was at its highest in moderate cases, and disappeared in severe cases. Finally, we noted structural differences in the cerebral and cerebellar peduncles. These unique results, spanning both functional and structural domains, highlight widespread changes in SCA6 and compensatory mechanisms associated with cerebellar physiology that could be utilized in developing new therapies. PMID:26209844

  5. Role of the superior colliculus in choosing mixed-strategy saccades.

    PubMed

    Thevarajah, Dhushan; Mikulić, Areh; Dorris, Michael C

    2009-02-18

    Game theory outlines optimal response strategies during mixed-strategy competitions. The neural processes involved in choosing individual strategic actions, however, remain poorly understood. Here, we tested whether the superior colliculus (SC), a brain region critical for generating sensory-guided saccades, is also involved in choosing saccades under strategic conditions. Monkeys were free to choose either of two saccade targets as they competed against a computer opponent during the mixed-strategy game "matching pennies." The accuracy with which presaccadic SC activity predicted upcoming choice gradually increased in the time leading up to the saccade. Probing the SC with suprathreshold stimulation demonstrated that these evolving signals were functionally involved in preparing strategic saccades. Finally, subthreshold stimulation of the SC increased the likelihood that contralateral saccades were selected. Together, our results suggest that motor regions of the brain play an active role in choosing strategic actions rather than passively executing those prespecified by upstream executive regions.

  6. The time course of saccadic decision making: dynamic field theory.

    PubMed

    Wilimzig, Claudia; Schneider, Stefan; Schöner, Gregor

    2006-10-01

    Making a saccadic eye movement involves two decisions, the decision to initiate the saccade and the selection of the visual target of the saccade. Here we provide a theoretical account for the time-courses of these two processes, whose instabilities are the basis of decision making. We show how the cross-over from spatial averaging for fast saccades to selection for slow saccades arises from the balance between excitatory and inhibitory processes. Initiating a saccade involves overcoming fixation, as can be observed in the countermanding paradigm, which we model accounting both for the temporal evolution of the suppression probability and its dependence on fixation activity. The interaction between the two forms of decision making is demonstrated by predicting how the cross-over from averaging to selection depends on the fixation stimulus in gap-step-overlap paradigms. We discuss how the activation dynamics of our model may be mapped onto neuronal structures including the motor map and the fixation cells in superior colliculus.

  7. Saccadic movement deficiencies in adults with ADHD tendencies.

    PubMed

    Lee, Yun-Jeong; Lee, Sangil; Chang, Munseon; Kwak, Ho-Wan

    2015-12-01

    The goal of the present study was to explore deficits in gaze detection and emotional value judgment during a saccadic eye movement task in adults with attention deficit/hyperactivity disorder (ADHD) tendencies. Thirty-two participants, consisting of 16 ADHD tendencies and 16 controls, were recruited from a pool of 243 university students. Among the many problems in adults with ADHDs, our research focused on the deficits in the processing of nonverbal cues, such as gaze direction and the emotional value of others' faces. In Experiment 1, a cue display containing a face with emotional value and gaze direction was followed by a target display containing two faces located on the left and right side of the display. The participant's task was to make an anti-saccade opposite to the gaze direction if the cue face was not emotionally neutral. ADHD tendencies showed more overall errors than controls in making anti-saccades. Based on the hypothesis that the exposure duration of the cue display in Experiment 1 may have been too long, we presented the cue and target display simultaneously to prevent participants from preparing saccades in advance. Participants in Experiment 2 were asked to make either a pro-saccade or an anti-saccade depending on the emotional value of the central cue face. Interestingly, significant group differences were observed for errors of omission and commission. In addition, a significant three-way interaction among groups, cue emotion, and target gaze direction suggests that the emotional recognition and gaze control systems might somehow be interconnected. The result also shows that ADHDs are more easily distracted by a task-irrelevant gaze direction. Taken together, these results suggest that tasks requiring both response inhibition (anti-saccade) and gaze-emotion recognition might be useful in developing a diagnostic test for discriminating adults with ADHDs from healthy adults.

  8. Influence of Coactors on Saccadic and Manual Responses

    PubMed Central

    Niehorster, Diederick C.; Jarodzka, Halszka; Holmqvist, Kenneth

    2017-01-01

    Two experiments were conducted to investigate the effects of coaction on saccadic and manual responses. Participants performed the experiments either in a solitary condition or in a group of coactors who performed the same tasks at the same time. In Experiment 1, participants completed a pro- and antisaccade task where they were required to make saccades towards (prosaccades) or away (antisaccades) from a peripheral visual stimulus. In Experiment 2, participants performed a visual discrimination task that required both making a saccade towards a peripheral stimulus and making a manual response in reaction to the stimulus’s orientation. The results showed that performance of stimulus-driven responses was independent of the social context, while volitionally controlled responses were delayed by the presence of coactors. These findings are in line with studies assessing the effect of attentional load on saccadic control during dual-task paradigms. In particular, antisaccades – but not prosaccades – were influenced by the type of social context. Additionally, the number of coactors present in the group had a moderating effect on both saccadic and manual responses. The results support an attentional view of social influences. PMID:28321288

  9. Evidence against the facilitation of the vergence command during saccade-vergence interactions.

    PubMed

    Hendel, Tal; Gur, Moshe

    2012-11-01

    Combined saccade-vergence movements result when gaze shifts are made to targets that differ both in direction and in depth from the momentary fixation point. Currently, there are two rivaling schemes to explain these eye movements. According to the first, such eye movements are due to a combination of a conjugate saccadic command and a symmetric vergence command; the two commands are not taken to be independent but instead are suggested to interact in a nonlinear manner, which leads to an intra-saccadic facilitation of the vergence command. According to the second scheme, the saccade generator is disconjugate, thus encoding vergence information in the saccadic commands themselves, and the remaining vergence requirement is provided by an asymmetric mechanism. Here, we test the scheme that suggests an intra-saccadic facilitation of the vergence command. We analyze this scheme and show that it has two fundamental properties. The first is that the vergence command is always symmetric, even during the intra-saccadic facilitation. The second is that the facilitated (and symmetric) vergence command sums linearly with the conjugate saccadic command at the final common pathway. Taking these properties together, this scheme predicts that the total magnitude of the saccadic component of combined saccade-vergence movements can be decomposed into a conjugate part and a symmetric part. When we tested this prediction in combined saccade-vergence movements of humans, we found that it was not confirmed. Thus, our results are incompatible with the facilitation of the vergence command hypothesis. Although these results do not directly verify the rivaling hypothesis, which suggests a disconjugate saccade generator, they do provide it with indirect support.

  10. Functions of the nucleus of the optic tract (NOT)

    PubMed Central

    Yakushin, Sergei B.; Gizzi, Martin; Reisine, Harvey; Raphan, Theodore; Büttner-Ennever, Jean; Cohen, Bernard

    2007-01-01

    Ocular pursuit in monkeys, elicited by sinusoidal and triangular (constant velocity) stimuli, was studied before and after lesions of the nucleus of the optic tract (NOT). Before NOT lesions, pursuit gains (eye velocity/target velocity) were close to unity for sinusoidal and constant-velocity stimuli at frequencies up to 1 Hz. In this range, retinal slip was less than 2°. Electrode tracks made to identify the location of NOT caused deficits in ipsilateral pursuit, which later recovered. Small electrolytic lesions of NOT reduced ipsilateral pursuit gains to below 0.5 in all tested conditions. Pursuit was better, however, when the eyes moved from the contra-lateral side toward the center (centripetal pursuit) than from the center ipsilaterally (centrifugal pursuit), although the eyes remained in close proximity to the target with saccadic tracking. Effects of lesions on ipsilateral pursuit were not permanent, and pursuit gains had generally recovered to 60–80% of baseline after about 2 weeks. One animal had bilateral NOT lesions and lost pursuit for 4 days. Thereafter, it had a centrifugal pursuit deficit that lasted for more than 2 months. Vertical pursuit and visually guided saccades were not affected by the bilateral NOT lesions in this animal. We also compared effects of these and similar NOT lesions on opto-kinetic nystagmus (OKN) and optokinetic after-nystagmus (OKAN). Correlation of functional deficits with NOT lesions from this and previous studies showed that rostral lesions of NOT in and around the pretectal oli-vary nucleus, which interrupted cortical input through the brachium of the superior colliculus (BSC), affected both smooth pursuit and OKN. In two animals in which it was tested, NOT lesions that caused a deficit in pursuit also decreased the rapid and slow components of OKN slow-phase velocity and affected OKAN. It was previously shown that slightly more caudal NOT lesions were more effective in altering gain adaptation of the angular vestibulo

  11. Express saccades in distinct populations: east, west, and in-between.

    PubMed

    Knox, Paul C; Wolohan, Felicity D A; Helmy, Mai S

    2017-12-01

    Express saccades are low latency (80-130 ms), visually guided saccades. While their occurrence is encouraged by the use of gap tasks (the fixation target is extinguished 200 ms prior to the saccade target appearing) and suppressed by the use of overlap tasks (the fixation target remains present when the saccade target appears), there are some healthy, adult participants, "express saccade makers" (ESMs), who persist in generating high proportions (> 30%) of express saccades in overlap conditions. These participants are encountered much more frequently in Chinese participant groups than amongst the Caucasian participants tested to date. What is not known is whether this high number of ESMs is only a feature of Chinese participant groups. More broadly, there are few comparative studies of saccade behaviour across large participant groups drawn from different populations. We, therefore, tested an independent group of 70 healthy adult Egyptian participants, using the same equipment and procedures as employed in the previous studies. Each participant was exposed to two blocks of 200 gap, and two blocks of 200 overlap trials, with block order counterbalanced. Results from the Schwartz Value Survey were used to confirm that this group of participants was culturally distinct from the Chinese and Caucasian (white British) groups tested previously. Fourteen percent (10/70) of this new group were ESMs, and the pattern of latency distribution in these ESMs was identical to that identified in the other participant groups, with a prominent peak in the express latency range in overlap conditions. Overall, we identified three modes in the distribution of saccade latency in overlap conditions, the timing of which (express peak at 110 ms, subsequent peaks at 160 and 210 ms) were strikingly consistent with our previous observations. That these behavioural patterns of saccade latency are observed consistently in large participant groups, drawn from geographically, ethnically, and

  12. Body saccades of Drosophila consist of stereotyped banked turns.

    PubMed

    Muijres, Florian T; Elzinga, Michael J; Iwasaki, Nicole A; Dickinson, Michael H

    2015-03-01

    The flight pattern of many fly species consists of straight flight segments interspersed with rapid turns called body saccades, a strategy that is thought to minimize motion blur. We analyzed the body saccades of fruit flies (Drosophila hydei), using high-speed 3D videography to track body and wing kinematics and a dynamically scaled robot to study the production of aerodynamic forces and moments. Although the size, degree and speed of the saccades vary, the dynamics of the maneuver are remarkably stereotypic. In executing a body saccade, flies perform a quick roll and counter-roll, combined with a slower unidirectional rotation around their yaw axis. Flies regulate the size of the turn by adjusting the magnitude of torque that they produce about these control axes, while maintaining the orientation of the rotational axes in the body frame constant. In this way, body saccades are different from escape responses in the same species, in which the roll and pitch component of banking is varied to adjust turn angle. Our analysis of the wing kinematics and aerodynamics showed that flies control aerodynamic torques during the saccade primarily by adjusting the timing and amount of span-wise wing rotation. © 2015. Published by The Company of Biologists Ltd.

  13. Eye movement accuracy determines natural interception strategies.

    PubMed

    Fooken, Jolande; Yeo, Sang-Hoon; Pai, Dinesh K; Spering, Miriam

    2016-11-01

    Eye movements aid visual perception and guide actions such as reaching or grasping. Most previous work on eye-hand coordination has focused on saccadic eye movements. Here we show that smooth pursuit eye movement accuracy strongly predicts both interception accuracy and the strategy used to intercept a moving object. We developed a naturalistic task in which participants (n = 42 varsity baseball players) intercepted a moving dot (a "2D fly ball") with their index finger in a designated "hit zone." Participants were instructed to track the ball with their eyes, but were only shown its initial launch (100-300 ms). Better smooth pursuit resulted in more accurate interceptions and determined the strategy used for interception, i.e., whether interception was early or late in the hit zone. Even though early and late interceptors showed equally accurate interceptions, they may have relied on distinct tactics: early interceptors used cognitive heuristics, whereas late interceptors' performance was best predicted by pursuit accuracy. Late interception may be beneficial in real-world tasks as it provides more time for decision and adjustment. Supporting this view, baseball players who were more senior were more likely to be late interceptors. Our findings suggest that interception strategies are optimally adapted to the proficiency of the pursuit system.

  14. Volitional control of anticipatory ocular pursuit responses under stabilised image conditions in humans.

    PubMed

    Barnes, G; Goodbody, S; Collins, S

    1995-01-01

    Ocular pursuit responses have been examined in humans in three experiments in which the pursuit target image has been fully or partially stabilised on the fovea by feeding a recorded eye movement signal back to drive the target motion. The objective was to establish whether subjects could volitionally control smooth eye movement to reproduce trajectories of target motion in the absence of a concurrent target motion stimulus. In experiment 1 subjects were presented with a target moving with a triangular waveform in the horizontal axis with a frequency of 0.325 Hz and velocities of +/- 10-50 degrees/s. The target was illuminated twice per cycle for pulse durations (PD) of 160-640 ms as it passed through the centre position; otherwise subjects were in darkness. Subjects initially tracked the target motion in a conventional closed-loop mode for four cycles. Prior to the next target presentation the target image was stabilised on the fovea, so that any target motion generated resulted solely from volitional eye movement. Subjects continued to make anticipatory smooth eye movements both to the left and the right with a velocity trajectory similar to that observed in the closed-loop phase. Peak velocity in the stabilised-image mode was highly correlated with that in the prior closed-loop phase, but was slightly less (84% on average). In experiment 2 subjects were presented with a continuously illuminated target that was oscillated sinusoidally at frequencies of 0.2-1.34 Hz and amplitudes of +/- 5-20 degrees. After four cycles of closed-loop stimulation the image was stabilised on the fovea at the time of peak target displacement. Subjects continued to generate an oscillatory smooth eye velocity pattern that mimicked the sinusoidal motion of the previous closed-loop phase for at least three further cycles. The peak eye velocity generated ranged from 57-95% of that in the closed-loop phase at frequencies up to 0.8 Hz but decreased significantly at 1.34 Hz. In experiment 3

  15. Presaccadic perceptual facilitation effects depend on saccade execution: evidence from the stop-signal paradigm.

    PubMed

    Born, Sabine; Mottet, Isaline; Kerzel, Dirk

    2014-03-05

    Prior to the onset of a saccadic eye movement, perception is facilitated at the saccade target location. This has been attributed to a shift of attention. To test whether presaccadic attention shifts are strictly dependent on saccade execution, we examined whether they are found when observers are required to cancel the eye movement. We combined a dual task with the stop-signal paradigm: Subjects made saccades as quickly as possible to a cued location while discriminating a stimulus either at the saccade target or at the opposite location. A stop signal was presented on a subset of trials, asking subjects to cancel the eye movement. The delay of the stop signal was adjusted to yield successful inhibition of the saccade in 50% of trials. Results show similar perceptual facilitation at the saccade target for saccades with or without a stop signal, suggesting that presaccadic attention shifts are obligatory for all saccades. However, there was facilitation only when saccades were actually performed, not when observers successfully inhibited them. Thus, preparing an eye movement without subsequently executing it does not result in an attention shift. The results speak to a difference between saccade preparation and saccade programming. In light of the strong dependence on saccade execution, we discuss the functional role and causes of presaccadic attention shifts.

  16. Saccadic abnormalities in psychotic patients. I. Neuroleptic-free psychotic patients.

    PubMed

    Crawford, T J; Haeger, B; Kennard, C; Reveley, M A; Henderson, L

    1995-05-01

    Most of the previous research reporting abnormalities of rapid re-fixation eye movements (saccades) in patients with schizophrenia has used patients receiving neuroleptic medication. In this study non-neuroleptically medicated schizophrenics were compared with other psychiatric patients using a variety of saccadic paradigms to determine the specificity of saccadic dysfunction. The patient groups consisted of schizophrenics (N = 18), bipolar affectives (N = 18), anxiety neurotics (N = 10) and normal controls (N = 31), none of whom had received neuroleptic medication for the preceding 6 months. Four behavioural paradigms, reflexive, predictive, remembered and ANTI were used to elicit saccades. The primary abnormality in the schizophrenic group was a significantly increased rate of distractibility in the ANTI (saccades made towards the target rather than in an opposite direction) and REM (saccades made prior to the imperative cue) paradigms. The major neuropsychological variable predictive of these errors was Wisconsin card sort perseverative errors. These data, in conjunction with findings from previous neurological research, would seem to provide converging evidence towards dysfunction of prefrontal cortex in schizophrenia.

  17. The effect of different brightness conditions on visually and memory guided saccades.

    PubMed

    Felßberg, Anna-Maria; Dombrowe, Isabel

    2018-01-01

    It is commonly assumed that saccades in the dark are slower than saccades in a lit room. Early studies that investigated this issue using electrooculography (EOG) often compared memory guided saccades in darkness to visually guided saccades in an illuminated room. However, later studies showed that memory guided saccades are generally slower than visually guided saccades. Research on this topic is further complicated by the fact that the different existing eyetracking methods do not necessarily lead to consistent measurements. In the present study, we independently manipulated task (memory guided/visually guided) and screen brightness (dark, medium and light) in an otherwise completely dark room, and measured the peak velocity and the duration of the participant's saccades using a popular pupil-cornea reflection (p-cr) eyetracker (Eyelink 1000). Based on a critical reading of the literature, including a recent study using cornea-reflection (cr) eye tracking, we did not expect any velocity or duration differences between the three brightness conditions. We found that memory guided saccades were generally slower than visually guided saccades. In both tasks, eye movements on a medium and light background were equally fast and had similar durations. However, saccades on the dark background were slower and had shorter durations, even after we corrected for the effect of pupil size changes. This means that this is most likely an artifact of current pupil-based eye tracking. We conclude that the common assumption that saccades in the dark are slower than in the light is probably not true, however pupil-based eyetrackers tend to underestimate the peak velocity of saccades on very dark backgrounds, creating the impression that this might be the case. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparison of Predictable Smooth Ocular and Combined Eye-Head Tracking Behaviour in Patients with Lesions Affecting the Brainstem and Cerebellum

    NASA Technical Reports Server (NTRS)

    Grant, Michael P.; Leigh, R. John; Seidman, Scott H.; Riley, David E.; Hanna, Joseph P.

    1992-01-01

    We compared the ability of eight normal subjects and 15 patients with brainstem or cerebellar disease to follow a moving visual stimulus smoothly with either the eyes alone or with combined eye-head tracking. The visual stimulus was either a laser spot (horizontal and vertical planes) or a large rotating disc (torsional plane), which moved at one sinusoidal frequency for each subject. The visually enhanced Vestibulo-Ocular Reflex (VOR) was also measured in each plane. In the horizontal and vertical planes, we found that if tracking gain (gaze velocity/target velocity) for smooth pursuit was close to 1, the gain of combined eye-hand tracking was similar. If the tracking gain during smooth pursuit was less than about 0.7, combined eye-head tracking was usually superior. Most patients, irrespective of diagnosis, showed combined eye-head tracking that was superior to smooth pursuit; only two patients showed the converse. In the torsional plane, in which optokinetic responses were weak, combined eye-head tracking was much superior, and this was the case in both subjects and patients. We found that a linear model, in which an internal ocular tracking signal cancelled the VOR, could account for our findings in most normal subjects in the horizontal and vertical planes, but not in the torsional plane. The model failed to account for tracking behaviour in most patients in any plane, and suggested that the brain may use additional mechanisms to reduce the internal gain of the VOR during combined eye-head tracking. Our results confirm that certain patients who show impairment of smooth-pursuit eye movements preserve their ability to smoothly track a moving target with combined eye-head tracking.

  19. The brain stem saccadic burst generator encodes gaze in three-dimensional space.

    PubMed

    Van Horn, Marion R; Sylvestre, Pierre A; Cullen, Kathleen E

    2008-05-01

    When we look between objects located at different depths the horizontal movement of each eye is different from that of the other, yet temporally synchronized. Traditionally, a vergence-specific neuronal subsystem, independent from other oculomotor subsystems, has been thought to generate all eye movements in depth. However, recent studies have challenged this view by unmasking interactions between vergence and saccadic eye movements during disconjugate saccades. Here, we combined experimental and modeling approaches to address whether the premotor command to generate disconjugate saccades originates exclusively in "vergence centers." We found that the brain stem burst generator, which is commonly assumed to drive only the conjugate component of eye movements, carries substantial vergence-related information during disconjugate saccades. Notably, facilitated vergence velocities during disconjugate saccades were synchronized with the burst onset of excitatory and inhibitory brain stem saccadic burst neurons (SBNs). Furthermore, the time-varying discharge properties of the majority of SBNs (>70%) preferentially encoded the dynamics of an individual eye during disconjugate saccades. When these experimental results were implemented into a computer-based simulation, to further evaluate the contribution of the saccadic burst generator in generating disconjugate saccades, we found that it carries all the vergence drive that is necessary to shape the activity of the abducens motoneurons to which it projects. Taken together, our results provide evidence that the premotor commands from the brain stem saccadic circuitry, to the target motoneurons, are sufficient to ensure the accurate control shifts of gaze in three dimensions.

  20. Saccadic eye movements impose a natural bottleneck on visual short-term memory.

    PubMed

    Ohl, Sven; Rolfs, Martin

    2017-05-01

    Visual short-term memory (VSTM) is a crucial repository of information when events unfold rapidly before our eyes, yet it maintains only a fraction of the sensory information encoded by the visual system. Here, we tested the hypothesis that saccadic eye movements provide a natural bottleneck for the transition of fragile content in sensory memory to VSTM. In 4 experiments, we show that saccades, planned and executed after the disappearance of a memory array, markedly bias visual memory performance. First, items that had appeared at the saccade target were more readily remembered than items that had appeared elsewhere, even though the saccade was irrelevant to the memory task (Experiment 1). Second, this influence was strongest for saccades elicited right after the disappearance of the memory array and gradually declined over the course of a second (Experiment 2). Third, the saccade stabilized memory representations: The imposed bias persisted even several seconds after saccade execution (Experiment 3). Finally, the advantage for stimuli congruent with the saccade target occurred even when that stimulus was far less likely to be probed in the memory test than any other stimulus in the array, ruling out a strategic effort of observers to memorize information presented at the saccade target (Experiment 4). Together, these results make a strong case that saccades inadvertently determine the content of VSTM, and highlight the key role of actions for the fundamental building blocks of cognition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Consistent chronostasis effects across saccade categories imply a subcortical efferent trigger

    PubMed Central

    Yarrow, Kielan; Johnson, Helen; Haggard, Patrick; Rothwell, John C

    2005-01-01

    Saccadic chronostasis refers to the subjective temporal lengthening of the first visual stimulus perceived after an eye movement, and is most commonly experienced as the “stopped clock” illusion. Other temporal illusions arising in the context of movement (e.g. “intentional binding”) appear to depend upon the volitional nature of the preceding motor act. Here we assess chronostasis across different saccade types, ranging from highly volitional (self-timed saccades, anti saccades) to highly reflexive (peripherally-cued saccades, express saccades). Chronostasis was similar in magnitude across all these conditions, despite wide variations in their neural bases. The illusion must therefore be triggered by a “lowest common denominator” signal common to all the conditions tested and their respective neural circuits. Specifically, it is suggested that chronostasis is triggered by a low-level signal arising in response to efferent signals generated in the superior colliculus. PMID:15200711

  2. The neural basis of parallel saccade programming: an fMRI study.

    PubMed

    Hu, Yanbo; Walker, Robin

    2011-11-01

    The neural basis of parallel saccade programming was examined in an event-related fMRI study using a variation of the double-step saccade paradigm. Two double-step conditions were used: one enabled the second saccade to be partially programmed in parallel with the first saccade while in a second condition both saccades had to be prepared serially. The intersaccadic interval, observed in the parallel programming (PP) condition, was significantly reduced compared with latency in the serial programming (SP) condition and also to the latency of single saccades in control conditions. The fMRI analysis revealed greater activity (BOLD response) in the frontal and parietal eye fields for the PP condition compared with the SP double-step condition and when compared with the single-saccade control conditions. By contrast, activity in the supplementary eye fields was greater for the double-step condition than the single-step condition but did not distinguish between the PP and SP requirements. The role of the frontal eye fields in PP may be related to the advanced temporal preparation and increased salience of the second saccade goal that may mediate activity in other downstream structures, such as the superior colliculus. The parietal lobes may be involved in the preparation for spatial remapping, which is required in double-step conditions. The supplementary eye fields appear to have a more general role in planning saccade sequences that may be related to error monitoring and the control over the execution of the correct sequence of responses.

  3. Illusory bending of a rigidly moving line segment: effects of image motion and smooth pursuit eye movements.

    PubMed

    Thaler, Lore; Todd, James T; Spering, Miriam; Gegenfurtner, Karl R

    2007-04-20

    Four experiments in which observers judged the apparent "rubberiness" of a line segment undergoing different types of rigid motion are reported. The results reveal that observers perceive illusory bending when the motion involves certain combinations of translational and rotational components and that the illusion is maximized when these components are presented at a frequency of approximately 3 Hz with a relative phase angle of approximately 120 degrees . Smooth pursuit eye movements can amplify or attenuate the illusion, which is consistent with other results reported in the literature that show effects of eye movements on perceived image motion. The illusion is unaffected by background motion that is in counterphase with the motion of the line segment but is significantly attenuated by background motion that is in-phase. This is consistent with the idea that human observers integrate motion signals within a local frame of reference, and it provides strong evidence that visual persistency cannot be the sole cause of the illusion as was suggested by J. R. Pomerantz (1983). An analysis of the motion patterns suggests that the illusory bending motion may be due to an inability of observers to accurately track the motions of features whose image displacements undergo rapid simultaneous changes in both space and time. A measure of these changes is presented, which is highly correlated with observers' numerical ratings of rubberiness.

  4. [Cortical potentials evoked to response to a signal to make a memory-guided saccade].

    PubMed

    Slavutskaia, M V; Moiseeva, V V; Shul'govskiĭ, V V

    2010-01-01

    The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.

  5. Use of exocentric and egocentric representations in the concurrent planning of sequential saccades.

    PubMed

    Sharika, K M; Ramakrishnan, Arjun; Murthy, Aditya

    2014-11-26

    The concurrent planning of sequential saccades offers a simple model to study the nature of visuomotor transformations since the second saccade vector needs to be remapped to foveate the second target following the first saccade. Remapping is thought to occur through egocentric mechanisms involving an efference copy of the first saccade that is available around the time of its onset. In contrast, an exocentric representation of the second target relative to the first target, if available, can be used to directly code the second saccade vector. While human volunteers performed a modified double-step task, we examined the role of exocentric encoding in concurrent saccade planning by shifting the first target location well before the efference copy could be used by the oculomotor system. The impact of the first target shift on concurrent processing was tested by examining the end-points of second saccades following a shift of the second target during the first saccade. The frequency of second saccades to the old versus new location of the second target, as well as the propagation of first saccade localization errors, both indices of concurrent processing, were found to be significantly reduced in trials with the first target shift compared to those without it. A similar decrease in concurrent processing was obtained when we shifted the first target but kept constant the second saccade vector. Overall, these results suggest that the brain can use relatively stable visual landmarks, independent of efference copy-based egocentric mechanisms, for concurrent planning of sequential saccades. Copyright © 2014 the authors 0270-6474/14/3416009-13$15.00/0.

  6. Saccadic distractor effects: the remote distractor effect (RDE) and saccadic inhibition (SI): A response to McIntosh and Buonocore (2014).

    PubMed

    Walker, Robin; Benson, Valerie

    2015-02-04

    We (Walker & Benson, 2013) reported studies in which the spatial effects of distractors on the remote distractor effect (RDE) and saccadic inhibition (SI) were examined. Distractors remote from the target increased mean latency and the skew of the distractor-related distributions, without the presence of dips that are regarded as the hallmark of SI. We further showed that early onset distractors had similar effects although these would not be consistent with existing estimates of the duration of SI (of around 60-70 ms). McIntosh and Buonocore (2014) report a simulation showing that skewed latency distributions can arise from the putative SI mechanism and they also highlighted a number of methodological considerations regarding the RDE and SI as measures of saccadic distractor effects (SDEs). Here we evaluate these claims and note that the measures of SI obtained by subtracting latency distributions (specifically the decrease in saccade frequency--or dip duration) are no more diagnostic of a single inhibitory process, or more sensitive indicators of it, than is median latency. Furthermore the evidence of inhibitory influences of small distractors presented close to the target is incompatible with the explanations of both the RDE and SI. We conclude that saccadic distractor effects may be a more inclusive term to encompass the different characteristics of behavioral effects of underlying saccade target selection. © 2015 ARVO.

  7. End-Point Variability Is Not Noise in Saccade Adaptation

    PubMed Central

    Herman, James P.; Cloud, C. Phillip; Wallman, Josh

    2013-01-01

    When each of many saccades is made to overshoot its target, amplitude gradually decreases in a form of motor learning called saccade adaptation. Overshoot is induced experimentally by a secondary, backwards intrasaccadic target step (ISS) triggered by the primary saccade. Surprisingly, however, no study has compared the effectiveness of different sizes of ISS in driving adaptation by systematically varying ISS amplitude across different sessions. Additionally, very few studies have examined the feasibility of adaptation with relatively small ISSs. In order to best understand saccade adaptation at a fundamental level, we addressed these two points in an experiment using a range of small, fixed ISS values (from 0° to 1° after a 10° primary target step). We found that significant adaptation occurred across subjects with an ISS as small as 0.25°. Interestingly, though only adaptation in response to 0.25° ISSs appeared to be complete (the magnitude of change in saccade amplitude was comparable to size of the ISS), further analysis revealed that a comparable proportion of the ISS was compensated for across conditions. Finally, we found that ISS size alone was sufficient to explain the magnitude of adaptation we observed; additional factors did not significantly improve explanatory power. Overall, our findings suggest that current assumptions regarding the computation of saccadic error may need to be revisited. PMID:23555763

  8. Timing of saccadic eye movements during visual search for multiple targets

    PubMed Central

    Wu, Chia-Chien; Kowler, Eileen

    2013-01-01

    Visual search requires sequences of saccades. Many studies have focused on spatial aspects of saccadic decisions, while relatively few (e.g., Hooge & Erkelens, 1999) consider timing. We studied saccadic timing during search for targets (thin circles containing tilted lines) located among nontargets (thicker circles). Tasks required either (a) estimating the mean tilt of the lines, or (b) looking at targets without a concurrent psychophysical task. The visual similarity of targets and nontargets affected both the probability of hitting a target and the saccade rate in both tasks. Saccadic timing also depended on immediate conditions, specifically, (a) the type of currently fixated location (dwell time was longer on targets than nontargets), (b) the type of goal (dwell time was shorter prior to saccades that hit targets), and (c) the ordinal position of the saccade in the sequence. The results show that timing decisions take into account the difficulty of finding targets, as well as the cost of delays. Timing strategies may be a compromise between the attempt to find and locate targets, or other suitable landing locations, using eccentric vision (at the cost of increased dwell times) versus a strategy of exploring less selectively at a rapid rate. PMID:24049045

  9. A circuit for saccadic suppression in the primate brain

    PubMed Central

    Cavanaugh, James; McAlonan, Kerry; Wurtz, Robert H.

    2017-01-01

    Saccades should cause us to see a blur as the eyes sweep across a visual scene. Specific brain mechanisms prevent this by producing suppression during saccades. Neuronal correlates of such suppression were first established in the visual superficial layers of the superior colliculus (SC) and subsequently have been observed in cortical visual areas, including the middle temporal visual area (MT). In this study, we investigated suppression in a recently identified circuit linking visual SC (SCs) to MT through the inferior pulvinar (PI). We examined responses to visual stimuli presented just before saccades to reveal a neuronal correlate of suppression driven by a copy of the saccade command, referred to as a corollary discharge. We found that visual responses were similarly suppressed in SCs, PI, and MT. Within each region, suppression of visual responses occurred with saccades into both visual hemifields, but only in the contralateral hemifield did this suppression consistently begin before the saccade (~100 ms). The consistency of the signal along the circuit led us to hypothesize that the suppression in MT was influenced by input from the SC. We tested this hypothesis in one monkey by inactivating neurons within the SC and found evidence that suppression in MT depends on corollary discharge signals from motor SC (SCi). Combining these results with recent findings in rodents, we propose a complete circuit originating with corollary discharge signals in SCi that produces suppression in visual SCs, PI, and ultimately, MT cortex. NEW & NOTEWORTHY A fundamental puzzle in visual neuroscience is that we frequently make rapid eye movements (saccades) but seldom perceive the visual blur accompanying each movement. We investigated neuronal correlates of this saccadic suppression by recording from and perturbing a recently identified circuit from brainstem to cortex. We found suppression at each stage, with evidence that it was driven by an internally generated signal. We

  10. Steady-State Pursuit Is Driven by Object Motion Rather Than the Vector Average of Local Motions

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, B. R.; Lorenceau, J. D.; Ahumada, Al (Technical Monitor)

    1997-01-01

    We have previously shown that humans can pursue the motion of objects whose trajectories can be recovered only by spatio-temporal integration of local motion signals. We now explore the integration rule used to derive the target-motion signal driving pursuit. We measured the pursuit response of 4 observers (2 naive) to the motion of a line-figure diamond viewed through two vertical bar apertures (0.2 cd/square m). The comers were always occluded so that only four line segments (93 cd/square m) were visible behind the occluding foreground (38 cd/square m). The diamond was flattened (40 & 140 degree vertex angles) such that vector averaging of the local normal motions and vertical integration (e.g. IOC) yield very I or different predictions, analogous to using a Type II plaid. The diamond moved along Lissajous-figure trajectories (Ax = Ay = 2 degrees; TFx = 0.8 Hz; TFy = 0.4 Hz). We presented only 1.25 cycles and used 6 different randomly interleaved initial relative phases to minimize the role of predictive strategies. Observers were instructed to track the diamond and reported that its motion was always coherent (unlike type II plaids). Saccade-free portions of the horizontal and vertical eye-position traces sampled at 240 Hz were fit by separate sinusoids. Pursuit gain with respect to the diamond averaged 0.7 across subjects and directions. The ratio of the mean vertical to horizontal amplitude of the pursuit response was 1.7 +/- 0.7 averaged across subjects (1SD). This is close to the prediction of 1.0 from vertical motion-integration rules, but far from 7.7 predicted by vector averaging and infinity predicted by segment- or terminator-tracking strategies. Because there is no retinal motion which directly corresponds to the diamond's motion, steady-state pursuit of our "virtual" diamond is not closed-loop in the traditional sense. Thus, accurate pursuit is unlikely to result simply from local retinal negative feedback. We conclude that the signal driving steady

  11. Role of early visual cortex in trans-saccadic memory of object features.

    PubMed

    Malik, Pankhuri; Dessing, Joost C; Crawford, J Douglas

    2015-08-01

    Early visual cortex (EVC) participates in visual feature memory and the updating of remembered locations across saccades, but its role in the trans-saccadic integration of object features is unknown. We hypothesized that if EVC is involved in updating object features relative to gaze, feature memory should be disrupted when saccades remap an object representation into a simultaneously perturbed EVC site. To test this, we applied transcranial magnetic stimulation (TMS) over functional magnetic resonance imaging-localized EVC clusters corresponding to the bottom left/right visual quadrants (VQs). During experiments, these VQs were probed psychophysically by briefly presenting a central object (Gabor patch) while subjects fixated gaze to the right or left (and above). After a short memory interval, participants were required to detect the relative change in orientation of a re-presented test object at the same spatial location. Participants either sustained fixation during the memory interval (fixation task) or made a horizontal saccade that either maintained or reversed the VQ of the object (saccade task). Three TMS pulses (coinciding with the pre-, peri-, and postsaccade intervals) were applied to the left or right EVC. This had no effect when (a) fixation was maintained, (b) saccades kept the object in the same VQ, or (c) the EVC quadrant corresponding to the first object was stimulated. However, as predicted, TMS reduced performance when saccades (especially larger saccades) crossed the remembered object location and brought it into the VQ corresponding to the TMS site. This suppression effect was statistically significant for leftward saccades and followed a weaker trend for rightward saccades. These causal results are consistent with the idea that EVC is involved in the gaze-centered updating of object features for trans-saccadic memory and perception.

  12. Neurones associated with saccade metrics in the monkey central mesencephalic reticular formation

    PubMed Central

    Cromer, Jason A; Waitzman, David M

    2006-01-01

    Neurones in the central mesencephalic reticular formation (cMRF) begin to discharge prior to saccades. These long lead burst neurones interact with major oculomotor centres including the superior colliculus (SC) and the paramedian pontine reticular formation (PPRF). Three different functions have been proposed for neurones in the cMRF: (1) to carry eye velocity signals that provide efference copy information to the SC (feedback), (2) to provide duration signals from the omnipause neurones to the SC (feedback), or (3) to participate in the transformation from the spatial encoding of a target selection signal in the SC into the temporal pattern of discharge used to drive the excitatory burst neurones in the pons (feed-forward). According to each respective proposal, specific predictions about cMRF neuronal discharge have been formulated. Individual neurones should: (1) encode instantaneous eye velocity, (2) burst specifically in relation to saccade duration but not to other saccade metrics, or (3) have a spectrum of weak to strong correlations to saccade dynamics. To determine if cMRF neurones could subserve these multiple oculomotor roles, we examined neuronal activity in relation to a variety of saccade metrics including amplitude, velocity and duration. We found separate groups of cMRF neurones that have the characteristics predicted by each of the proposed models. We also identified a number of subgroups for which no specific model prediction had previously been established. We found that we could accurately predict the neuronal firing pattern during one type of saccade behaviour (visually guided) using the activity during an alternative behaviour with different saccade metrics (memory guided saccades). We suggest that this evidence of a close relationship of cMRF neuronal discharge to individual saccade metrics supports the hypothesis that the cMRF participates in multiple saccade control pathways carrying saccade amplitude, velocity and duration information

  13. Validation of a Behavioral Approach for Measuring Saccades in Parkinson's Disease.

    PubMed

    Turner, Travis H; Renfroe, Jenna B; Duppstadt-Delambo, Amy; Hinson, Vanessa K

    2017-01-01

    Speed and control of saccades are related to disease progression and cognitive functioning in Parkinson's disease (PD). Traditional eye-tracking complexities encumber application for individual evaluations and clinical trials. The authors examined psychometric properties of standalone tasks for reflexive prosaccade latency, volitional saccade initiation, and saccade inhibition (antisaccade) in a heterogeneous sample of 65 PD patients. Demographics had minimal impact on task performance. Thirty-day test-retest reliability estimates for behavioral tasks were acceptable and similar to traditional eye tracking. Behavioral tasks demonstrated concurrent validity with traditional eye-tracking measures; discriminant validity was less clear. Saccade initiation and inhibition discriminated PD patients with cognitive impairment. The present findings support further development and use of the behavioral tasks for assessing latency and control of saccades in PD.

  14. Stimulation of the substantia nigra influences the specification of memory-guided saccades

    PubMed Central

    Mahamed, Safraaz; Garrison, Tiffany J.; Shires, Joel

    2013-01-01

    In the absence of sensory information, we rely on past experience or memories to guide our actions. Because previous experimental and clinical reports implicate basal ganglia nuclei in the generation of movement in the absence of sensory stimuli, we ask here whether one output nucleus of the basal ganglia, the substantia nigra pars reticulata (nigra), influences the specification of an eye movement in the absence of sensory information to guide the movement. We manipulated the level of activity of neurons in the nigra by introducing electrical stimulation to the nigra at different time intervals while monkeys made saccades to different locations in two conditions: one in which the target location remained visible and a second in which the target location appeared only briefly, requiring information stored in memory to specify the movement. Electrical manipulation of the nigra occurring during the delay period of the task, when information about the target was maintained in memory, altered the direction and the occurrence of subsequent saccades. Stimulation during other intervals of the memory task or during the delay period of the visually guided saccade task had less effect on eye movements. On stimulated trials, and only when the visual stimulus was absent, monkeys occasionally (∼20% of the time) failed to make saccades. When monkeys made saccades in the absence of a visual stimulus, stimulation of the nigra resulted in a rotation of the endpoints ipsilaterally (∼2°) and increased the reaction time of contralaterally directed saccades. When the visual stimulus was present, stimulation of the nigra resulted in no significant rotation and decreased the reaction time of contralaterally directed saccades slightly. Based on these measurements, stimulation during the delay period of the memory-guided saccade task influenced the metrics of saccades much more than did stimulation during the same period of the visually guided saccade task. Because these effects

  15. The control of voluntary eye movements: new perspectives.

    PubMed

    Krauzlis, Richard J

    2005-04-01

    Primates use two types of voluntary eye movements to track objects of interest: pursuit and saccades. Traditionally, these two eye movements have been viewed as distinct systems that are driven automatically by low-level visual inputs. However, two sets of findings argue for a new perspective on the control of voluntary eye movements. First, recent experiments have shown that pursuit and saccades are not controlled by entirely different neural pathways but are controlled by similar networks of cortical and subcortical regions and, in some cases, by the same neurons. Second, pursuit and saccades are not automatic responses to retinal inputs but are regulated by a process of target selection that involves a basic form of decision making. The selection process itself is guided by a variety of complex processes, including attention, perception, memory, and expectation. Together, these findings indicate that pursuit and saccades share a similar functional architecture. These points of similarity may hold the key for understanding how neural circuits negotiate the links between the many higher order functions that can influence behavior and the singular and coordinated motor actions that follow.

  16. Parallel programming of saccades during natural scene viewing: evidence from eye movement positions.

    PubMed

    Wu, Esther X W; Gilani, Syed Omer; van Boxtel, Jeroen J A; Amihai, Ido; Chua, Fook Kee; Yen, Shih-Cheng

    2013-10-24

    Previous studies have shown that saccade plans during natural scene viewing can be programmed in parallel. This evidence comes mainly from temporal indicators, i.e., fixation durations and latencies. In the current study, we asked whether eye movement positions recorded during scene viewing also reflect parallel programming of saccades. As participants viewed scenes in preparation for a memory task, their inspection of the scene was suddenly disrupted by a transition to another scene. We examined whether saccades after the transition were invariably directed immediately toward the center or were contingent on saccade onset times relative to the transition. The results, which showed a dissociation in eye movement behavior between two groups of saccades after the scene transition, supported the parallel programming account. Saccades with relatively long onset times (>100 ms) after the transition were directed immediately toward the center of the scene, probably to restart scene exploration. Saccades with short onset times (<100 ms) moved to the center only one saccade later. Our data on eye movement positions provide novel evidence of parallel programming of saccades during scene viewing. Additionally, results from the analyses of intersaccadic intervals were also consistent with the parallel programming hypothesis.

  17. Trajectory prediction of saccadic eye movements using a compressed exponential model

    PubMed Central

    Han, Peng; Saunders, Daniel R.; Woods, Russell L.; Luo, Gang

    2013-01-01

    Gaze-contingent display paradigms play an important role in vision research. The time delay due to data transmission from eye tracker to monitor may lead to a misalignment between the gaze direction and image manipulation during eye movements, and therefore compromise the contingency. We present a method to reduce this misalignment by using a compressed exponential function to model the trajectories of saccadic eye movements. Our algorithm was evaluated using experimental data from 1,212 saccades ranging from 3° to 30°, which were collected with an EyeLink 1000 and a Dual-Purkinje Image (DPI) eye tracker. The model fits eye displacement with a high agreement (R2 > 0.96). When assuming a 10-millisecond time delay, prediction of 2D saccade trajectories using our model could reduce the misalignment by 30% to 60% with the EyeLink tracker and 20% to 40% with the DPI tracker for saccades larger than 8°. Because a certain number of samples are required for model fitting, the prediction did not offer improvement for most small saccades and the early stages of large saccades. Evaluation was also performed for a simulated 100-Hz gaze-contingent display using the prerecorded saccade data. With prediction, the percentage of misalignment larger than 2° dropped from 45% to 20% for EyeLink and 42% to 26% for DPI data. These results suggest that the saccade-prediction algorithm may help create more accurate gaze-contingent displays. PMID:23902753

  18. Neurophysiology and Neuroanatomy of Reflexive and Volitional Saccades: Evidence from Studies of Humans

    ERIC Educational Resources Information Center

    McDowell, Jennifer E.; Dyckman, Kara A.; Austin, Benjamin P.; Clementz, Brett A.

    2008-01-01

    This review provides a summary of the contributions made by human functional neuroimaging studies to the understanding of neural correlates of saccadic control. The generation of simple visually guided saccades (redirections of gaze to a visual stimulus or pro-saccades) and more complex volitional saccades require similar basic neural circuitry…

  19. The "hypnotic state" and eye movements: Less there than meets the eye?

    PubMed Central

    Nordhjem, Barbara; Marcusson-Clavertz, David; Holmqvist, Kenneth

    2017-01-01

    Responsiveness to hypnotic procedures has been related to unusual eye behaviors for centuries. Kallio and collaborators claimed recently that they had found a reliable index for "the hypnotic state" through eye-tracking methods. Whether or not hypnotic responding involves a special state of consciousness has been part of a contentious debate in the field, so the potential validity of their claim would constitute a landmark. However, their conclusion was based on 1 highly hypnotizable individual compared with 14 controls who were not measured on hypnotizability. We sought to replicate their results with a sample screened for High (n = 16) or Low (n = 13) hypnotizability. We used a factorial 2 (high vs. low hypnotizability) x 2 (hypnosis vs. resting conditions) counterbalanced order design with these eye-tracking tasks: Fixation, Saccade, Optokinetic nystagmus (OKN), Smooth pursuit, and Antisaccade (the first three tasks has been used in Kallio et al.'s experiment). Highs reported being more deeply in hypnosis than Lows but only in the hypnotic condition, as expected. There were no significant main or interaction effects for the Fixation, OKN, or Smooth pursuit tasks. For the Saccade task both Highs and Lows had smaller saccades during hypnosis, and in the Antisaccade task both groups had slower Antisaccades during hypnosis. Although a couple of results suggest that a hypnotic condition may produce reduced eye motility, the lack of significant interactions (e.g., showing only Highs expressing a particular eye behavior during hypnosis) does not support the claim that eye behaviors (at least as measured with the techniques used) are an indicator of a "hypnotic state.” Our results do not preclude the possibility that in a more spontaneous or different setting the experience of being hypnotized might relate to specific eye behaviors. PMID:28846696

  20. Oculomotor Deficits after Chemotherapy in Childhood

    PubMed Central

    Einarsson, Einar-Jón; Patel, Mitesh; Petersen, Hannes; Wiebe, Thomas; Magnusson, Måns; Moëll, Christian; Fransson, Per-Anders

    2016-01-01

    Advances in the diagnosis and treatment of pediatric malignancies have substantially increased the number of childhood cancer survivors. However, reports suggest that some of the chemotherapy agents used for treatment can cross the blood brain barrier which may lead to a host of neurological symptoms including oculomotor dysfunction. Whether chemotherapy at young age causes oculomotor dysfunction later in life is unknown. Oculomotor performance was assessed with traditional and novel methods in 23 adults (mean age 25.3 years, treatment age 10.2 years) treated with chemotherapy for a solid malignant tumor not affecting the central nervous system. Their results were compared to those from 25 healthy, age-matched controls (mean age 25.1 years). Correlation analysis was performed between the subjective symptoms reported by the chemotherapy treated subjects (CTS) and oculomotor performance. In CTS, the temporal control of the smooth pursuit velocity (velocity accuracy) was markedly poorer (p<0.001) and the saccades had disproportionally shorter amplitude than normal for the associated saccade peak velocity (main sequence) (p = 0.004), whereas smooth pursuit and saccade onset times were shorter (p = 0.004) in CTS compared with controls. The CTS treated before 12 years of age manifested more severe oculomotor deficits. CTS frequently reported subjective symptoms of visual disturbances (70%), unsteadiness, light-headedness and that things around them were spinning or moving (87%). Several subjective symptoms were significantly related to deficits in oculomotor performance. To conclude, chemotherapy in childhood or adolescence can result in severe oculomotor dysfunctions in adulthood. The revealed oculomotor dysfunctions were significantly related to the subjects’ self-perception of visual disturbances, dizziness, light-headedness and sensing unsteadiness. Assessments of oculomotor function may, thus, offer an objective method to track and rate the level of neurological

  1. Benefits from Vergence Rehabilitation: Evidence for Improvement of Reading Saccades and Fixations.

    PubMed

    Daniel, François; Morize, Aurélien; Brémond-Gignac, Dominique; Kapoula, Zoï

    2016-01-01

    We hypothesize that binocular coordination of saccades is based on continuous neuroplasticity involving interactions of saccades and vergence. To test this hypothesis we study reading saccades in young students who were diagnosed for vergence disorders before and after vergence rehabilitation. Following orthoptic evaluation and symptomatology screening, 5 weekly sessions of vergence rehabilitation were applied with the REMOBI vergence double step protocole (see Kapoula et al., 2016). Using the Eyeseecam videoculography device we measured vergence as well as saccades and fixations during a reading test four times: at the beginning and at the end of the first and of the fifth vergence rehabilitation session. The results show elimination of symptoms, improvement of clinical orthoptic scores, and importantly increase of measured vergence gain and reduction of inter-trial variability. Improvement of the vergence was associated to a decrease of the disconjugacy of saccades during reading but also to shortening of fixation durations, to reduction of the number of regressive saccades and to a better correction of the intra-saccadic disconjugacy during the following fixation. The results corroborate the hypothesis of neuroplasticity based on saccade vergence interaction in young adults. It validates the clinical validity of the vergence double-step REMOBI method as a means to improve both, vergence and reading performances. It opens a new research approach on the link between fine binocular coordination of saccades, quality of the vergence response, attention, cognition and reading.

  2. Saccadic eye movements do not disrupt the deployment of feature-based attention.

    PubMed

    Kalogeropoulou, Zampeta; Rolfs, Martin

    2017-07-01

    The tight link of saccades to covert spatial attention has been firmly established, yet their relation to other forms of visual selection remains poorly understood. Here we studied the temporal dynamics of feature-based attention (FBA) during fixation and across saccades. Participants reported the orientation (on a continuous scale) of one of two sets of spatially interspersed Gabors (black or white). We tested performance at different intervals between the onset of a colored cue (black or white, indicating which stimulus was the most probable target; red: neutral condition) and the stimulus. FBA built up after cue onset: Benefits (errors for valid vs. neutral cues), costs (invalid vs. neutral), and the overall cueing effect (valid vs. invalid) increased with the cue-stimulus interval. Critically, we also tested visual performance at different intervals after a saccade, when FBA had been fully deployed before saccade initiation. Cueing effects were evident immediately after the saccade and were predicted most accurately and most precisely by fully deployed FBA, indicating that FBA was continuous throughout saccades. Finally, a decomposition of orientation reports into target reports and random guesses confirmed continuity of report precision and guess rates across the saccade. We discuss the role of FBA in perceptual continuity across saccades.

  3. Direction of an initial saccade depends on radiological expertise

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Mariusz W.; McEntee, Mark F.; Evanoff, Michael E.; Brennan, Patrick C.; Mello-Thoms, Claudia R.

    2014-03-01

    Purpose: To evaluate the role of radiographic details in global impression of chest x-ray images viewed by experts in thoracic and non-thoracic domains. Materials and Methods: The study was approved by IRB. Five thoracic and five non-thoracic radiologists participated in two tachistoscopic (one low pass and one with the entire frequency spectrum, each lasting 270 ms) each containing 50 PA chest radiographs with 50% prevalence of pulmonary nodule. Eye movements were monitored in order to evaluate a pre-saccade shift of visual attention, saccade latency, decision time and the time to first fixation on a pulmonary nodule. Results: Thoracic radiologists showed significantly higher pre-saccadic shift of visual attention towards pulmonary nodules once using the full frequency spectrum (p < 0.05). An initial saccade orientation made by these radiologists on full resolution images correlated at significant level with their confidence ranking of pulmonary nodules (ρ = -0.387, p < 0.001). Conclusions: Thoracic radiologists benefited from high spatial frequency appearance during a rapid presentation of chest radiograph by allocating pre-saccade attention towards pulmonary nodules. This behavior correlated with a higher number of correct decisions, followed by higher confidence in the decisions made, and briefer reaction times.

  4. Caffeine increases the velocity of rapid eye movements in unfatigued humans.

    PubMed

    Connell, Charlotte J W; Thompson, Benjamin; Turuwhenua, Jason; Hess, Robert F; Gant, Nicholas

    2017-08-01

    Caffeine is a widely used dietary stimulant that can reverse the effects of fatigue on cognitive, motor and oculomotor function. However, few studies have examined the effect of caffeine on the oculomotor system when homeostasis has not been disrupted by physical fatigue. This study examined the influence of a moderate dose of caffeine on oculomotor control and visual perception in participants who were not fatigued. Within a placebo-controlled crossover design, 13 healthy adults ingested caffeine (5 mg·kg -1 body mass) and were tested over 3 h. Eye movements, including saccades, smooth pursuit and optokinetic nystagmus, were measured using infrared oculography. Caffeine was associated with higher peak saccade velocities (472 ± 60° s -1 ) compared to placebo (455 ± 62° s -1 ). Quick phases of optokinetic nystagmus were also significantly faster with caffeine, whereas pursuit eye movements were unchanged. Non-oculomotor perceptual tasks (global motion and global orientation processing) were unaffected by caffeine. These results show that oculomotor control is modulated by a moderate dose of caffeine in unfatigued humans. These effects are detectable in the kinematics of rapid eye movements, whereas pursuit eye movements and visual perception are unaffected. Oculomotor functions may be sensitive to changes in central catecholamines mediated via caffeine's action as an adenosine antagonist, even when participants are not fatigued.

  5. Rapid Simultaneous Enhancement of Visual Sensitivity and Perceived Contrast during Saccade Preparation

    PubMed Central

    Rolfs, Martin; Carrasco, Marisa

    2012-01-01

    Humans and other animals with foveate vision make saccadic eye movements to prioritize the visual analysis of behaviorally relevant information. Even before movement onset, visual processing is selectively enhanced at the target of a saccade, presumably gated by brain areas controlling eye movements. Here we assess concurrent changes in visual performance and perceived contrast before saccades, and show that saccade preparation enhances perception rapidly, altering early visual processing in a manner akin to increasing the physical contrast of the visual input. Observers compared orientation and contrast of a test stimulus, appearing briefly before a saccade, to a standard stimulus, presented previously during a fixation period. We found simultaneous progressive enhancement in both orientation discrimination performance and perceived contrast as time approached saccade onset. These effects were robust as early as 60 ms after the eye movement was cued, much faster than the voluntary deployment of covert attention (without eye movements), which takes ~300 ms. Our results link the dynamics of saccade preparation, visual performance, and subjective experience and show that upcoming eye movements alter visual processing by increasing the signal strength. PMID:23035086

  6. Correction to: Dissociating the capture of attention from saccade activation by subliminal abrupt onsets.

    PubMed

    Schoeberl, Tobias; Ansorge, Ulrich

    2018-01-01

    Attentional capture and effects on saccade metrics by subliminal abrupt onset cues have been studied with peripheral cues at one out of several (two to four) display locations, swiftly followed by additional onsets at the other display locations. The lead time of the cue was too short to be seen. Here, we were interested in whether such subliminal onset cues influenced saccades primarily by way of attention or by way of direct saccade activation. In separate blocks, participants made speeded pro-saccades towards a black target or anti-saccades away from the target. Prior to the targets, an abrupt onset cue was presented either at the same side as the target (valid condition) or at the opposite side (invalid condition). If cues influenced performance by way of attentional capture, we expected facilitation of target processing in valid compared to invalid conditions (cueing effect) in the pro- as well as in the anti-saccade task. If the cues activated saccades in their direction, we expected the cueing effect to drop in the anti-saccade task compared to the pro-saccade task because in the anti-saccade task the invalid cue would activate the finally required response, whereas the valid cue would activate the alternative response, leading to interference. Results were in line with the former of these possibilities suggesting that subliminal abrupt onsets influenced saccades by way of attention with no or little direct activation of saccades.

  7. Neurophysiology and Neuroanatomy of Reflexive and Volitional Saccades: Evidence from Studies of Humans

    PubMed Central

    McDowell, Jennifer E.; Dyckman, Kara A.; Austin, Benjamin; Clementz, Brett A.

    2008-01-01

    This review provides a summary of the contributions made by human functional neuroimaging studies to the understanding of neural correlates of saccadic control. The generation of simple visually-guided saccades (redirections of gaze to a visual stimulus or prosaccades) and more complex volitional saccades require similar basic neural circuitry with additional neural regions supporting requisite higher level processes. The saccadic system has been studied extensively in non-human primates (e.g. single unit recordings) and humans (e.g. lesions and neuroimaging). Considerable knowledge of this system’s functional neuroanatomy makes it useful for investigating models of cognitive control. The network involved in prosaccade generation (by definition exogenously-driven) includes subcortical (striatum, thalamus, superior colliculus, and cerebellar vermis) and cortical structures (primary visual, extrastriate, and parietal cortices, and frontal and supplementary eye fields). Activation in these regions is also observed during endogenously-driven voluntary saccades (e.g. antisaccades, ocular motor delayed response or memory saccades, predictive tracking tasks and anticipatory saccades, and saccade sequencing), all of which require complex cognitive processes like inhibition and working memory. These additional requirements are supported by changes in neural activity in basic saccade circuitry and by recruitment of additional neural regions (such as prefrontal and anterior cingulate cortices). Activity in visual cortex is modulated as a function of task demands and may predict the type of saccade to be generated, perhaps via top-down control mechanisms. Neuroimaging studies suggest two foci of activation within FEF - medial and lateral - which may correspond to volitional and reflexive demands, respectively. Future research on saccade control could usefully (i) delineate important anatomical subdivisions that underlie functional differences, (ii) evaluate functional

  8. A Physiological Neural Controller of a Muscle Fiber Oculomotor Plant in Horizontal Monkey Saccades

    PubMed Central

    Enderle, John D.

    2014-01-01

    A neural network model of biophysical neurons in the midbrain is presented to drive a muscle fiber oculomotor plant during horizontal monkey saccades. Neural circuitry, including omnipause neuron, premotor excitatory and inhibitory burst neurons, long lead burst neuron, tonic neuron, interneuron, abducens nucleus, and oculomotor nucleus, is developed to examine saccade dynamics. The time-optimal control strategy by realization of agonist and antagonist controller models is investigated. In consequence, each agonist muscle fiber is stimulated by an agonist neuron, while an antagonist muscle fiber is unstimulated by a pause and step from the antagonist neuron. It is concluded that the neural network is constrained by a minimum duration of the agonist pulse and that the most dominant factor in determining the saccade magnitude is the number of active neurons for the small saccades. For the large saccades, however, the duration of agonist burst firing significantly affects the control of saccades. The proposed saccadic circuitry establishes a complete model of saccade generation since it not only includes the neural circuits at both the premotor and motor stages of the saccade generator, but also uses a time-optimal controller to yield the desired saccade magnitude. PMID:24944832

  9. Eye-Pursuit and Reafferent Head Movement Signals Carried by Pursuit Neurons in the Caudal Part of the Frontal Eye Fields during Head-Free Pursuit

    PubMed Central

    Kasahara, Satoshi; Akao, Teppei; Kurkin, Sergei; Peterson, Barry W.

    2009-01-01

    Eye and head movements are coordinated during head-free pursuit. To examine whether pursuit neurons in frontal eye fields (FEF) carry gaze-pursuit commands that drive both eye-pursuit and head-pursuit, monkeys whose heads were free to rotate about a vertical axis were trained to pursue a juice feeder with their head and a target with their eyes. Initially the feeder and target moved synchronously with the same visual angle. FEF neurons responding to this gaze-pursuit were tested for eye-pursuit of target motion while the feeder was stationary and for head-pursuit while the target was stationary. The majority of pursuit neurons exhibited modulation during head-pursuit, but their preferred directions during eye-pursuit and head-pursuit were different. Although peak modulation occurred during head movements, the onset of discharge usually was not aligned with the head movement onset. The minority of neurons whose discharge onset was so aligned discharged after the head movement onset. These results do not support the idea that the head-pursuit–related modulation reflects head-pursuit commands. Furthermore, modulation similar to that during head-pursuit was obtained by passive head rotation on stationary trunk. Our results suggest that FEF pursuit neurons issue gaze or eye movement commands during gaze-pursuit and that the head-pursuit–related modulation primarily reflects reafferent signals resulting from head movements. PMID:18483002

  10. Saccade preparation signals in the human frontal and parietal cortices

    PubMed Central

    Curtis, Clayton E.; Connolly, Jason D.

    2009-01-01

    Our ability to prepare an action in advance allows us to respond to our environment quickly, accurately, and flexibly. Here, we used event-related fMRI to measure human brain activity while subjects maintained an active state of preparedness. At the beginning of each trial, subjects were instructed to prepare a pro- or anti-saccade to a visual cue that was continually present during a long and variable preparation interval, but to defer the saccade’s execution until a go signal. The deferred saccade task eliminated the mnemonic component inherent in memory-guided saccade tasks and placed the emphasis entirely on advance motor preparation. During the delay while subjects were in an active state of motor preparedness, BOLD signal in the frontal cortex showed: 1) a sustained elevation throughout the preparation interval; 2) a linear increase with increasing delay length; 3) a bias for contra- rather than ipsiversive movements; 4) greater activity when the specific metrics of the planned saccade were known compared to when they were not; 5) increased activity when the saccade was directed towards an internal versus an external representation (i.e., anti-cue location). These findings support the hypothesis that both the human frontal and parietal cortices are involved in the spatial selection and preparation of saccades. PMID:18032565

  11. The effects of chlorpromazine and lorazepam on abnormal antisaccade and no-saccade distractibility.

    PubMed

    Green, J F; King, D J

    1998-10-15

    Abnormally high levels of saccadic distractibility have been demonstrated to occur in patients with schizophrenia. Converging evidence implicates frontal cortical dysfunction as a mechanism; however, much of the neuropharmacology of saccadic distractibility has not yet been established. We measured antisaccade, no-saccade, and visually guided saccade components in healthy subjects following single doses of lorazepam 2 mg, chlorpromazine 50-100 mg, and placebo. Visual analogue rating scales (VARS) provided a subjective measure of sedation. Lorazepam, but not chlorpromazine, was shown to cause an increase in saccadic distractibility in both the antisaccade and no-saccade tasks. Peak visually guided saccade velocity was decreased by lorazepam and chlorpromazine in a dose-dependent manner, with corresponding changes seen in VARS. Lorazepam, unexpectedly, did not affect peak antisaccade velocity. The background level of antisaccade directional errors was 6.43%, which is relatively low compared to control groups in patient studies. These results support the view that abnormal saccadic distractibility in patients with schizophrenia is not due to an acute effect of antipsychotic medication. The use of benzodiazepines and the level of task practice are highlighted as possible confounding variables in patient studies. The implications of these results for the current neuropathological theories of abnormal saccadic distractibility are discussed.

  12. Saccades to future ball location reveal memory-based prediction in a virtual-reality interception task

    PubMed Central

    Diaz, Gabriel; Cooper, Joseph; Rothkopf, Constantin; Hayhoe, Mary

    2013-01-01

    Despite general agreement that prediction is a central aspect of perception, there is relatively little evidence concerning the basis on which visual predictions are made. Although both saccadic and pursuit eye-movements reveal knowledge of the future position of a moving visual target, in many of these studies targets move along simple trajectories through a fronto-parallel plane. Here, using a naturalistic and racquet-based interception task in a virtual environment, we demonstrate that subjects make accurate predictions of visual target motion, even when targets follow trajectories determined by the complex dynamics of physical interactions and the head and body are unrestrained. Furthermore, we found that, following a change in ball elasticity, subjects were able to accurately adjust their prebounce predictions of the ball's post-bounce trajectory. This suggests that prediction is guided by experience-based models of how information in the visual image will change over time. PMID:23325347

  13. Saccades to future ball location reveal memory-based prediction in a virtual-reality interception task.

    PubMed

    Diaz, Gabriel; Cooper, Joseph; Rothkopf, Constantin; Hayhoe, Mary

    2013-01-16

    Despite general agreement that prediction is a central aspect of perception, there is relatively little evidence concerning the basis on which visual predictions are made. Although both saccadic and pursuit eye-movements reveal knowledge of the future position of a moving visual target, in many of these studies targets move along simple trajectories through a fronto-parallel plane. Here, using a naturalistic and racquet-based interception task in a virtual environment, we demonstrate that subjects make accurate predictions of visual target motion, even when targets follow trajectories determined by the complex dynamics of physical interactions and the head and body are unrestrained. Furthermore, we found that, following a change in ball elasticity, subjects were able to accurately adjust their prebounce predictions of the ball's post-bounce trajectory. This suggests that prediction is guided by experience-based models of how information in the visual image will change over time.

  14. Short-term saccadic adaptation in the macaque monkey: a binocular mechanism

    PubMed Central

    Schultz, K. P.

    2013-01-01

    Saccadic eye movements are rapid transfers of gaze between objects of interest. Their duration is too short for the visual system to be able to follow their progress in time. Adaptive mechanisms constantly recalibrate the saccadic responses by detecting how close the landings are to the selected targets. The double-step saccadic paradigm is a common method to simulate alterations in saccadic gain. While the subject is responding to a first target shift, a second shift is introduced in the middle of this movement, which masks it from visual detection. The error in landing introduced by the second shift is interpreted by the brain as an error in the programming of the initial response, with gradual gain changes aimed at compensating the apparent sensorimotor mismatch. A second shift applied dichoptically to only one eye introduces disconjugate landing errors between the two eyes. A monocular adaptive system would independently modify only the gain of the eye exposed to the second shift in order to reestablish binocular alignment. Our results support a binocular mechanism. A version-based saccadic adaptive process detects postsaccadic version errors and generates compensatory conjugate gain alterations. A vergence-based saccadic adaptive process detects postsaccadic disparity errors and generates corrective nonvisual disparity signals that are sent to the vergence system to regain binocularity. This results in striking dynamical similarities between visually driven combined saccade-vergence gaze transfers, where the disparity is given by the visual targets, and the double-step adaptive disconjugate responses, where an adaptive disparity signal is generated internally by the saccadic system. PMID:23076111

  15. Development and learning of saccadic eye movements in 7- to 42-month-old children.

    PubMed

    Alahyane, Nadia; Lemoine-Lardennois, Christelle; Tailhefer, Coline; Collins, Thérèse; Fagard, Jacqueline; Doré-Mazars, Karine

    2016-01-01

    From birth, infants move their eyes to explore their environment, interact with it, and progressively develop a multitude of motor and cognitive abilities. The characteristics and development of oculomotor control in early childhood remain poorly understood today. Here, we examined reaction time and amplitude of saccadic eye movements in 93 7- to 42-month-old children while they oriented toward visual animated cartoon characters appearing at unpredictable locations on a computer screen over 140 trials. Results revealed that saccade performance is immature in children compared to a group of adults: Saccade reaction times were longer, and saccade amplitude relative to target location (10° eccentricity) was shorter. Results also indicated that performance is flexible in children. Although saccade reaction time decreased as age increased, suggesting developmental improvements in saccade control, saccade amplitude gradually improved over trials. Moreover, similar to adults, children were able to modify saccade amplitude based on the visual error made in the previous trial. This second set of results suggests that short visual experience and/or rapid sensorimotor learning are functional in children and can also affect saccade performance.

  16. Rewards modulate saccade latency but not exogenous spatial attention.

    PubMed

    Dunne, Stephen; Ellison, Amanda; Smith, Daniel T

    2015-01-01

    The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behavior induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of the effects of rewarding saccades on exogenous spatial attention and oculomotor inhibition of return. Reward feedback produced a relative facilitation of saccadic latency in a stimulus driven saccade task which persisted for three blocks of extinction trials. However, this hemifield-specific effect failed to transfer to peripheral cueing tasks. We conclude that rewarding specific spatial locations is unlikely to induce long-term, systemic changes to the human oculomotor or attention systems.

  17. Investigating saccade programming in the praying mantis Tenodera aridifolia using distracter interference paradigms.

    PubMed

    Yamawaki, Yoshifumi

    2006-10-01

    To investigate the saccadic system in the mantis, I applied distracter interference paradigms. These involved presenting the mantis with a fixation target and one or several distracters supposed to affect saccades towards the target. When a single target was presented, a medium-sized target located in its lower visual field elicited higher rates of saccade response. This preference for target size and position was also observed when a target and a distracter were presented simultaneously. That is, the mantis chose and fixated the target rather than a distracter that was much smaller or larger than the target, or was located above the target. Furthermore, the mantis' preference was not affected by increasing the number of distracters. However, the presence of the distracter decreased the occurrence rate of saccade and increased the response time to saccade. I conclude that distracter interference paradigms are an effective way of investigating the visual processing underlying saccade generation in the mantis. Possible mechanisms of saccade generation in the mantis are discussed.

  18. Role of peripheral vision in saccade planning: Learning from people with tunnel vision

    PubMed Central

    Luo, Gang; Vargas-Martin, Fernando; Peli, Eli

    2008-01-01

    Both visually salient and top-down information are important in eye movement control, but their relative roles in the planning of daily saccades are unclear. We investigated the effect of peripheral vision loss on saccadic behaviors in patients with tunnel vision (visual field diameters 7°–16°) in visual search and real-world walking experiments. The patients made up to two saccades per second to their pre-saccadic blind areas, about half of which had no overlap between the post- and pre-saccadic views. In the visual search experiment, visual field size and the background (blank or picture) did not affect the saccade sizes and direction of patients (n=9). In the walking experiment, the patients (n=5) and normal controls (n=3) had similar distributions of saccade sizes and directions. These findings might provide a clue about the extent of the top-down mechanism influence on eye movement control. PMID:19146326

  19. Breaking object correspondence across saccades impairs object recognition: The role of color and luminance.

    PubMed

    Poth, Christian H; Schneider, Werner X

    2016-09-01

    Rapid saccadic eye movements bring the foveal region of the eye's retina onto objects for high-acuity vision. Saccades change the location and resolution of objects' retinal images. To perceive objects as visually stable across saccades, correspondence between the objects before and after the saccade must be established. We have previously shown that breaking object correspondence across the saccade causes a decrement in object recognition (Poth, Herwig, & Schneider, 2015). Color and luminance can establish object correspondence, but it is unknown how these surface features contribute to transsaccadic visual processing. Here, we investigated whether changing the surface features color-and-luminance and color alone across saccades impairs postsaccadic object recognition. Participants made saccades to peripheral objects, which either maintained or changed their surface features across the saccade. After the saccade, participants briefly viewed a letter within the saccade target object (terminated by a pattern mask). Postsaccadic object recognition was assessed as participants' accuracy in reporting the letter. Experiment A used the colors green and red with different luminances as surface features, Experiment B blue and yellow with approximately the same luminances. Changing the surface features across the saccade deteriorated postsaccadic object recognition in both experiments. These findings reveal a link between object recognition and object correspondence relying on the surface features colors and luminance, which is currently not addressed in theories of transsaccadic perception. We interpret the findings within a recent theory ascribing this link to visual attention (Schneider, 2013).

  20. Influence of environmental statistics on inhibition of saccadic return

    PubMed Central

    Farrell, Simon; Ludwig, Casimir J. H.; Ellis, Lucy A.; Gilchrist, Iain D.

    2009-01-01

    Initiating an eye movement is slowed if the saccade is directed to a location that has been fixated in the recent past. We show that this inhibitory effect is modulated by the temporal statistics of the environment: If a return location is likely to become behaviorally relevant, inhibition of return is absent. By fitting an accumulator model of saccadic decision-making, we show that the inhibitory effect and the sensitivity to local statistics can be dissociated in their effects on the rate of accumulation of evidence, and the threshold controlling the amount of evidence needed to generate a saccade. PMID:20080778

  1. Saccadic Corollary Discharge Underlies Stable Visual Perception

    PubMed Central

    Berman, Rebecca A.; Joiner, Wilsaan M.; Wurtz, Robert H.

    2016-01-01

    Saccadic eye movements direct the high-resolution foveae of our retinas toward objects of interest. With each saccade, the image jumps on the retina, causing a discontinuity in visual input. Our visual perception, however, remains stable. Philosophers and scientists over centuries have proposed that visual stability depends upon an internal neuronal signal that is a copy of the neuronal signal driving the eye movement, now referred to as a corollary discharge (CD) or efference copy. In the old world monkey, such a CD circuit for saccades has been identified extending from superior colliculus through MD thalamus to frontal cortex, but there is little evidence that this circuit actually contributes to visual perception. We tested the influence of this CD circuit on visual perception by first training macaque monkeys to report their perceived eye direction, and then reversibly inactivating the CD as it passes through the thalamus. We found that the monkey's perception changed; during CD inactivation, there was a difference between where the monkey perceived its eyes to be directed and where they were actually directed. Perception and saccade were decoupled. We established that the perceived eye direction at the end of the saccade was not derived from proprioceptive input from eye muscles, and was not altered by contextual visual information. We conclude that the CD provides internal information contributing to the brain's creation of perceived visual stability. More specifically, the CD might provide the internal saccade vector used to unite separate retinal images into a stable visual scene. SIGNIFICANCE STATEMENT Visual stability is one of the most remarkable aspects of human vision. The eyes move rapidly several times per second, displacing the retinal image each time. The brain compensates for this disruption, keeping our visual perception stable. A major hypothesis explaining this stability invokes a signal within the brain, a corollary discharge, that informs

  2. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.

    PubMed

    Marino, Robert A; Levy, Ron; Munoz, Douglas P

    2015-08-01

    Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m(2) against a black background (∼0.0001 cd/m(2)). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was

  3. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus

    PubMed Central

    Levy, Ron; Munoz, Douglas P.

    2015-01-01

    Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m2 against a black background (∼0.0001 cd/m2). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was

  4. Effect of pharmacological inactivation of nucleus reticularis tegmenti pontis on saccadic eye movements in the monkey.

    PubMed

    Kaneko, Chris R S; Fuchs, Albert F

    2006-06-01

    The superior colliculus (SC) provides signals for the generation of saccades via a direct pathway to the brain stem burst generator (BG). In addition, it sends saccade-related activity to the BG indirectly through the cerebellum via a relay in the nucleus reticularis tegmenti pontis (NRTP). Lesions of the oculomotor vermis, lobules VIc and VII, and inactivation of the caudal fastigial nucleus, the cerebellar output nucleus to which it projects, produce saccade dysmetria but have little effect on saccade peak velocity and duration. We expected similar deficits from inactivation of the NRTP. Instead, injections as small as 80 nl into the NRTP first slowed ipsiversive saccades and then gradually reduced their amplitudes. Postinjection saccades had slower peak velocities and longer durations than preinjection saccades with similar amplitudes. Contraversive saccades retained their normal kinematics. When the gains of ipsiversive saccades to 10 degrees target steps had fallen to their lowest values (0.28 +/- 0.19; mean +/- SD; n = 10 experiments), the gains of contraversive saccades to 10 degrees target steps had decreased very little (0.82 +/- 0.11). Eventually, ipsiversive saccades did not exceed 5 degrees , even to 20 degrees target steps. Moreover, these small remaining saccades apparently were made with considerable difficulty because their latencies increased substantially. When ipsiversive saccade gain was at its lowest, the gain and kinematics of vertical saccades to 10 degrees target steps exhibited inconsistent changes. We argue that our injections did not compromise the direct SC pathway. Therefore these data suggest that the cerebellar saccade pathway does not simply modulate BG activity but is required for horizontal saccades to occur at all.

  5. Effect of Pharmacological Inactivation of Nucleus Reticularis Tegmenti Pontis on Saccadic Eye Movements in the Monkey

    PubMed Central

    Kaneko, Chris R. S.; Fuchs, Albert F.

    2006-01-01

    The superior colliculus (SC) provides signals for the generation of saccades via a direct pathway to the brain stem burst generator (BG). In addition, it sends saccade-related activity to the BG indirectly through the cerebellum via a relay in the nucleus reticularis tegmenti pontis (NRTP). Lesions of the oculomotor vermis, lobules VIc and VII, and inactivation of the caudal fastigial nucleus, the cerebellar output nucleus to which it projects, produce saccade dysmetria but have little effect on saccade peak velocity and duration. We expected similar deficits from inactivation of the NRTP. Instead, injections as small as 80 nl into the NRTP first slowed ipsiversive saccades and then gradually reduced their amplitudes. Postinjection saccades had slower peak velocities and longer durations than preinjection saccades with similar amplitudes. Contraversive saccades retained their normal kinematics. When the gains of ipsiversive saccades to 10° target steps had fallen to their lowest values (0.28 ± 0.19; mean ± SD; n = 10 experiments), the gains of contraversive saccades to 10° target steps had decreased very little (0.82 ± 0.11). Eventually, ipsiversive saccades did not exceed 5°, even to 20° target steps. Moreover, these small remaining saccades apparently were made with considerable difficulty because their latencies increased substantially. When ipsiversive saccade gain was at its lowest, the gain and kinematics of vertical saccades to 10° target steps exhibited inconsistent changes. We argue that our injections did not compromise the direct SC pathway. Therefore these data suggest that the cerebellar saccade pathway does not simply modulate BG activity but is required for horizontal saccades to occur at all. PMID:16467420

  6. ANXIETY, A BENEFIT AND DETRIMENT TO COGNITION: BEHAVIORAL AND MAGNETOENCEPHALOGRAPHIC EVIDENCE FROM A MIXED-SACCADE TASK

    PubMed Central

    Cornwell, Brian R.; Mueller, Sven C.; Kaplan, Raphael; Grillon, Christian; Ernst, Monique

    2012-01-01

    Anxiety is typically considered an impediment to cognition. We propose anxiety-related impairments in cognitive-behavioral performance are the consequences of enhanced stimulus-driven attention. Accordingly, reflexive, habitual behaviors that rely on stimulus-driven mechanisms should be facilitated in an anxious state, while novel, flexible behaviors that compete with the former should be impaired. To test these predictions, healthy adults (N=17) performed a mixed-saccade task, which pits habitual actions (pro-saccades) against atypical ones (anti-saccades), under anxiety-inducing threat of shock and safe conditions. Whole-head magnetoencephalography (MEG) captured oscillatory responses in the preparatory interval preceding target onset and saccade execution. Results showed threat-induced anxiety differentially impacted response times based on the type of saccade initiated, slowing anti-saccades but facilitating erroneous pro-saccades on anti-saccade trials. MEG source analyses revealed that successful suppression of reflexive pro-saccades and correct initiation of anti-saccades during threat was marked by increased theta power in right ventrolateral prefrontal cortical and midbrain regions (superior colliculi) implicated in stimulus-driven attention. Theta activity may delay stimulus-driven processes to enable generation of an anti-saccade. Moreover, compared to safety, threat reduced beta desynchronization in inferior parietal cortices during anti-saccade preparation but increased it during pro-saccade preparation. Differential effects in inferior parietal cortices indicate a greater readiness to execute anti-saccades during safety and to execute pro-saccades during threat. These findings suggest that, in an anxiety state, reduced cognitive-behavioral flexibility may stem from enhanced stimulus-driven attention, which may serve the adaptive function of optimizing threat detection. PMID:22289426

  7. Discharge of Monkey Nucleus Reticularis Tegmenti Pontis Neurons Changes During Saccade Adaptation

    PubMed Central

    Takeichi, N.; Kaneko, C.R.S.; Fuchs, A. F.

    2006-01-01

    Saccade accuracy is maintained by adaptive mechanisms that continually modify saccade amplitude to reduce dysmetria. Previous studies suggest that adaptation occurs upstream of the caudal fastigial nucleus (CFN), the output of the oculomotor cerebellar vermis but downstream from the superior colliculus (SC). The nucleus reticularis tegmenti pontis (NRTP) is a major source of afferents to both the oculomotor vermis and the CFN and in turn receives direct input from the SC. Here we examine the activity of NRTP neurons in four rhesus monkeys during behaviorally induced changes in saccade amplitude to assess whether their discharge might reveal adaptation mechanisms that mediate changes in saccade amplitude. During amplitude decrease adaptation (average, 22%), the gradual reduction of saccade amplitude was accompanied by an increase in the number of spikes in the burst of 19/34 neurons (56%) and no change for 15 neurons (44%). For the neurons that increased their discharge, the additional spikes were added at the beginning of the saccadic burst and adaptation also delayed the peak-firing rate in some neurons. Moreover, after amplitude reduction, the movement fields changed shape in all 15 open field neurons tested. Our data show that saccadic amplitude reduction affects the number of spikes in the burst of more than half of NRTP neurons tested, primarily by increasing burst duration not frequency. Therefore adaptive changes in saccade amplitude are reflected already at a major input to the oculomotor cerebellum. PMID:15917328

  8. Discharge of monkey nucleus reticularis tegmenti pontis neurons changes during saccade adaptation.

    PubMed

    Takeichi, N; Kaneko, C R S; Fuchs, A F

    2005-09-01

    Saccade accuracy is maintained by adaptive mechanisms that continually modify saccade amplitude to reduce dysmetria. Previous studies suggest that adaptation occurs upstream of the caudal fastigial nucleus (CFN), the output of the oculomotor cerebellar vermis but downstream from the superior colliculus (SC). The nucleus reticularis tegmenti pontis (NRTP) is a major source of afferents to both the oculomotor vermis and the CFN and in turn receives direct input from the SC. Here we examine the activity of NRTP neurons in four rhesus monkeys during behaviorally induced changes in saccade amplitude to assess whether their discharge might reveal adaptation mechanisms that mediate changes in saccade amplitude. During amplitude decrease adaptation (average, 22%), the gradual reduction of saccade amplitude was accompanied by an increase in the number of spikes in the burst of 19/34 neurons (56%) and no change for 15 neurons (44%). For the neurons that increased their discharge, the additional spikes were added at the beginning of the saccadic burst and adaptation also delayed the peak-firing rate in some neurons. Moreover, after amplitude reduction, the movement fields changed shape in all 15 open field neurons tested. Our data show that saccadic amplitude reduction affects the number of spikes in the burst of more than half of NRTP neurons tested, primarily by increasing burst duration not frequency. Therefore adaptive changes in saccade amplitude are reflected already at a major input to the oculomotor cerebellum.

  9. Linear Age-Correlated Development of Inhibitory Saccadic Trajectory Deviations

    ERIC Educational Resources Information Center

    West, Greg L.; Mendizabal, Sandrine; Carrière, Marie-Pierre; Lippé, Sarah

    2014-01-01

    The present study examined development-related differences in saccade curvature during a goal-directed saccade task in the presence of distracting visual information. Participants were individuals who ranged in age from 6 to 30 years. Consistent with previous findings, all participants showed curvature toward the distractor stimulus at shorter…

  10. The kinematics of far-near re-fixation saccades

    PubMed Central

    Misslisch, H.

    2015-01-01

    We have analyzed the three-dimensional spatiotemporal characteristics of saccadic refixations between far and near targets in three behaviorally trained rhesus monkeys. The kinematics underlying these rapid eye movements can be accurately described by rotations of the eyes in four different planes, namely, first disconjugate rotations in the horizontal plane of regard converging the eyes toward the near target, followed by rotations in each eye's vertical direction plane, and finally, disconjugate rotations in a common frontoparallel plane. This compounded rotation of the eye was underlying an initially fast-rising variable torsion that typically overshot the final torsion, which the eyes attained at the time of target acquisition. The torsion consisted of a coarse, widely varying component of opposite polarity in the two eyes, which contained a more robust, much smaller modulation that sharply increased toward the end of saccades. The reorientation of the eyes in torsion depended on each eye's azimuth, elevation, and target distance. We conclude that refixation saccades are generated by motor commands that control ocular torsion in concert with the saccade generator, which operates in Donders-Listing kinematics underlying Listing's law. PMID:25717167

  11. Saccade latency reveals episodic representation of object color.

    PubMed

    Gordon, Robert D

    2014-08-01

    While previous studies suggest that identity, but not color, plays a role in episodic object representation, such studies have typically used tasks in which only identity is relevant, raising the possibility that the results reflect task demands, rather than the general principles that underlie object representation. In the present study, participants viewed a preview display containing one (Experiments 1 and 2) or two (Experiment 3) letters, then viewed a target display containing a single letter, in either the same or a different location. Participants executed an immediate saccade to fixate the target; saccade latency served as the dependent variable. In all experiments, saccade latencies were longer to fixate a target appearing in its previewed location, consistent with a bias to attend to new objects rather than to objects for which episodic representations are being maintained in visual working memory. The results of Experiment 3 further demonstrate, however, that changing target color eliminates these latency differences. The results suggest that color and identity are part of episodic representation even when not task relevant and that examining biases in saccade execution may be a useful approach to studying episodic representation.

  12. Influence of removal of invisible fixation on the saccadic and manual gap effect.

    PubMed

    Ueda, Hiroshi; Takahashi, Kohske; Watanabe, Katsumi

    2014-01-01

    Saccadic and manual reactions to a peripherally presented target are facilitated by removing a central fixation stimulus shortly before a target onset (the gap effect). The present study examined the effects of removal of a visible and invisible fixation point on the saccadic gap effect and the manual gap effect. Participants were required to fixate a central fixation point and respond to a peripherally presented target as quickly and accurately as possible by making a saccade (Experiment 1) or pressing a corresponding key (Experiment 2). The fixation point was dichoptically presented, and visibility was manipulated by using binocular rivalry and continuous flash suppression technique. In both saccade and key-press tasks, removing the visible fixation strongly quickened the responses. Furthermore, the invisible fixation, which remained on the display but suppressed, significantly delayed the saccadic response. Contrarily, the invisible fixation had no effect on the manual task. These results indicate that partially different processes mediate the saccadic gap effect and the manual gap effect. In particular, unconscious processes might modulate an oculomotor-specific component of the saccadic gap effect, presumably via subcortical mechanisms.

  13. The cost of making an eye movement: A direct link between visual working memory and saccade execution.

    PubMed

    Schut, Martijn J; Van der Stoep, Nathan; Postma, Albert; Van der Stigchel, Stefan

    2017-06-01

    To facilitate visual continuity across eye movements, the visual system must presaccadically acquire information about the future foveal image. Previous studies have indicated that visual working memory (VWM) affects saccade execution. However, the reverse relation, the effect of saccade execution on VWM load is less clear. To investigate the causal link between saccade execution and VWM, we combined a VWM task and a saccade task. Participants were instructed to remember one, two, or three shapes and performed either a No Saccade-, a Single Saccade- or a Dual (corrective) Saccade-task. The results indicate that items stored in VWM are reported less accurately if a single saccade-or a dual saccade-task is performed next to retaining items in VWM. Importantly, the loss of response accuracy for items retained in VWM by performing a saccade was similar to committing an extra item to VWM. In a second experiment, we observed no cost of executing a saccade for auditory working memory performance, indicating that executing a saccade exclusively taxes the VWM system. Our results suggest that the visual system presaccadically stores the upcoming retinal image, which has a similar VWM load as committing one extra item to memory and interferes with stored VWM content. After the saccade, the visual system can retrieve this item from VWM to evaluate saccade accuracy. Our results support the idea that VWM is a system which is directly linked to saccade execution and promotes visual continuity across saccades.

  14. A new saccadic indicator of peripheral vestibular function based on the video head impulse test

    PubMed Central

    MacDougall, Hamish G.; McGarvie, Leigh A.; Rogers, Stephen J.; Manzari, Leonardo; Burgess, Ann M.; Curthoys, Ian S.; Weber, Konrad P.

    2016-01-01

    Objective: While compensatory saccades indicate vestibular loss in the conventional head impulse test paradigm (HIMP), in which the participant fixates an earth-fixed target, we investigated a complementary suppression head impulse paradigm (SHIMP), in which the participant is fixating a head-fixed target to elicit anticompensatory saccades as a sign of vestibular function. Methods: HIMP and SHIMP eye movement responses were measured with the horizontal video head impulse test in patients with unilateral vestibular loss, patients with bilateral vestibular loss, and in healthy controls. Results: Vestibulo-ocular reflex gains showed close correlation (R2 = 0.97) with slightly lower SHIMP than HIMP gains (mean gain difference 0.06 ± 0.05 SD, p < 0.001). However, the 2 paradigms produced complementary catch-up saccade patterns: HIMP elicited compensatory saccades in patients but rarely in controls, whereas SHIMP elicited large anticompensatory saccades in controls, but smaller or no saccades in bilateral vestibular loss. Unilateral vestibular loss produced covert saccades in HIMP, but later and smaller saccades in SHIMP toward the affected side. Cumulative HIMP and SHIMP saccade amplitude differentiated patients from controls with high sensitivity and specificity. Conclusions: While compensatory saccades indicate vestibular loss in conventional HIMP, anticompensatory saccades in SHIMP using a head-fixed target indicate vestibular function. SHIMP saccades usually appear later than HIMP saccades, therefore being more salient to the naked eye and facilitating vestibulo-ocular reflex gain measurements. The new paradigm is intuitive and easy to explain to patients, and the SHIMP results complement those from the standard video head impulse test. Classification of evidence: This case-control study provides Class III evidence that SHIMP accurately identifies patients with unilateral or bilateral vestibulopathies. PMID:27251884

  15. Electrophysiological recordings in humans reveal reduced location-specific attentional-shift activity prior to recentering saccades

    PubMed Central

    Boehler, C. Nicolas; Zhang, Helen H.; Schoenfeld, Mircea A.; Woldorff, Marty G.

    2012-01-01

    Being able to effectively explore the visual world is of fundamental importance, and it has been suggested that the straight-ahead gaze position within the egocentric reference frame (“primary position”) might play a special role in this context. In the present study we employed human electroencephalography (EEG) to examine neural activity related to the spatial guidance of saccadic eye movements. Moreover, we sought to investigate whether such activity would be modulated by the spatial relation of saccade direction to the primary gaze position (recentering saccades). Participants executed endogenously cued saccades between five equidistant locations along the horizontal meridian. This design allowed for the comparison of isoamplitude saccades from the same starting position that were oriented either toward the primary position (centripetal) or further away from it (centrifugal). By back-averaging time-locked to the saccade onset on each trial, we identified a parietally distributed, negative-polarity EEG deflection contralateral to the direction of the upcoming saccade. Importantly, this contralateral presaccadic negativity, which appeared to reflect the location-specific attentional guidance of the eye movement, was attenuated for recentering saccades relative to isoamplitude centrifugal saccades. This differential electrophysiological signature was paralleled by faster saccadic reaction times and was substantially more apparent when time-locking the data to the onset of the saccade rather than to the onset of the cue, suggesting a tight temporal association with saccade initiation. The diminished level of this presaccadic component for recentering saccades may reflect the preferential coding of the straight-ahead gaze position, in which both the eye-centered and head-centered reference frames are perfectly aligned and from which the visual world can be effectively explored. PMID:22157127

  16. Anxiety, a benefit and detriment to cognition: behavioral and magnetoencephalographic evidence from a mixed-saccade task.

    PubMed

    Cornwell, Brian R; Mueller, Sven C; Kaplan, Raphael; Grillon, Christian; Ernst, Monique

    2012-04-01

    Anxiety is typically considered an impediment to cognition. We propose anxiety-related impairments in cognitive-behavioral performance are the consequences of enhanced stimulus-driven attention. Accordingly, reflexive, habitual behaviors that rely on stimulus-driven mechanisms should be facilitated in an anxious state, while novel, flexible behaviors that compete with the former should be impaired. To test these predictions, healthy adults (N=17) performed a mixed-saccade task, which pits habitual actions (pro-saccades) against atypical ones (anti-saccades), under anxiety-inducing threat of shock and safe conditions. Whole-head magnetoencephalography (MEG) captured oscillatory responses in the preparatory interval preceding target onset and saccade execution. Results showed threat-induced anxiety differentially impacted response times based on the type of saccade initiated, slowing anti-saccades but facilitating erroneous pro-saccades on anti-saccade trials. MEG source analyses revealed that successful suppression of reflexive pro-saccades and correct initiation of anti-saccades during threat was marked by increased theta power in right ventrolateral prefrontal cortical and midbrain regions (superior colliculi) implicated in stimulus-driven attention. Theta activity may delay stimulus-driven processes to enable generation of an anti-saccade. Moreover, compared to safety, threat reduced beta desynchronization in inferior parietal cortices during anti-saccade preparation but increased it during pro-saccade preparation. Differential effects in inferior parietal cortices indicate a greater readiness to execute anti-saccades during safety and to execute pro-saccades during threat. These findings suggest that, in an anxiety state, reduced cognitive-behavioral flexibility may stem from enhanced stimulus-driven attention, which may serve the adaptive function of optimizing threat detection. Published by Elsevier Inc.

  17. Remote distractor effects and saccadic inhibition: spatial and temporal modulation.

    PubMed

    Walker, Robin; Benson, Valerie

    2013-09-12

    The onset of a visual distractor remote from a saccade target is known to increase saccade latency (the remote distractor effect [RDE]). In addition, distractors may also selectively inhibit saccades that would be initiated about 90 ms after distractor onset (termed saccadic inhibition [SI]). Recently, it has been proposed that the transitory inhibition of saccades (SI) may underlie the increase in mean latency (RDE). In a first experiment, the distractor eccentricity was manipulated, and a robust RDE that was strongly modulated by distractor eccentricity was observed. However, the underlying latency distributions did not reveal clear evidence of SI. A second experiment manipulated distractor spatial location and the timing of the distractor onset in relation to the target. An RDE was again observed with remote distractors away from the target axis and under conditions with early-onset distractors that would be unlikely to produce SI, whereas later distractor onsets produced an RDE along with some evidence of an SI effect. A third experiment using a mixed block of target-distractor stimulus-onset asynchronies (SOAs) revealed an RDE that varied with both distractor eccentricity and SOA and changes to latency distributions consistent with the timing of SI. We argue that the notion that SI underpins the RDE is similar to the earlier argument that express saccades underlie the fixation offset (gap) effect and that changes in mean latency and to the shape of the underlying latency distributions following a visual onset may involve more than one inhibitory process.

  18. Comprehensive Oculomotor Behavioral Response Assessment (COBRA)

    NASA Technical Reports Server (NTRS)

    Stone, Leland S. (Inventor); Liston, Dorion B. (Inventor)

    2017-01-01

    An eye movement-based methodology and assessment tool may be used to quantify many aspects of human dynamic visual processing using a relatively simple and short oculomotor task, noninvasive video-based eye tracking, and validated oculometric analysis techniques. By examining the eye movement responses to a task including a radially-organized appropriately randomized sequence of Rashbass-like step-ramp pursuit-tracking trials, distinct performance measurements may be generated that may be associated with, for example, pursuit initiation (e.g., latency and open-loop pursuit acceleration), steady-state tracking (e.g., gain, catch-up saccade amplitude, and the proportion of the steady-state response consisting of smooth movement), direction tuning (e.g., oblique effect amplitude, horizontal-vertical asymmetry, and direction noise), and speed tuning (e.g., speed responsiveness and noise). This quantitative approach may provide fast and results (e.g., a multi-dimensional set of oculometrics and a single scalar impairment index) that can be interpreted by one without a high degree of scientific sophistication or extensive training.

  19. Various background pattern-effect on saccadic suppression.

    PubMed

    Mitrani, L; Radil-Weiss, T; Yakimoff, N; Mateeff, S; Bozkov, V

    1975-09-01

    It has been proved that the saccadic suppression is a phenomenon closely related to the presence of contours and structures in the visual field. Experiments were performed to clarify whether the structured background influences the pattern of attention distribution (making the stimulus detection more difficult) or whether the elevation of visual threshold is due to the "masking' effect of the moving background image over the retina. Two types of backgrounds were used therefore: those with symbolic meaning in the processing of which "psychological' mechanisms are presumably involved like picture reproductions of famous painters and photographs of nudes, and those lacking semantic significance like computer figures composed of randomly distributed black and white squares with different grain expressed as the entropy of the pattern. The results show that saccadic suppression is primarily a consequence of peripheral mechanisms, probably of lateral inhibition in the visual field occurring in the presence of moving edges over the retina. Psychological factors have to be excluded as being fundamental for saccadic suppression.

  20. Changes in cognitive control in pre-manifest Huntington's disease examined using pre-saccadic EEG potentials - a longitudinal study.

    PubMed

    Ness, Vanessa; Bestgen, Anne-Kathrin; Saft, Carsten; Beste, Christian

    2014-01-01

    It is well-known that Huntington's disease (HD) affects saccadic processing. However, saccadic dysfunctions in HD may be seen as a result of dysfunctional processes occurring at the oculomotor level prior to the execution of saccades, i.e., at a pre-saccadic level. Virtually nothing is known about possible changes in pre-saccadic processes in HD. This study examines pre-saccadic processing in pre-manifest HD gene mutation carriers (pre-HDs) by using clinically available EEG measures. Error rates, pre-saccadic EEG potentials and saccade onset EEG potentials were measured in 14 pre-HDs and case-matched controls performing prosaccades and antisaccades in a longitudinal study over a 15-month period. The results show that pre-saccadic potentials were changed in pre-HDs, relative to controls and also revealed changes across the 15-month longitudinal period. In particular, pre-saccadic ERP in pre-HDs were characterized by lower amplitudes and longer latencies, which revealed longitudinal changes. These changes were observed for anti-saccades, but not for pro-saccades. Overt saccadic trajectories (potentials) were not different to those in controls, showing that pre-saccadic processes are sensitive to subtle changes in fronto-striatal networks in pre-HDs. Deficits in pre-saccadic processes prior the execution of an erroneous anti-saccade can be seen as an effect of dysfunctional cognitive control in HD. This may underlie saccadic abnormalities and hence a major phenotype of HD. Pre-saccadic EEG potentials preceding erroneous anti-saccades are sensitive to pre-manifest disease progression in HD.

  1. The Tell-Tale Tasks: A Review of Saccadic Research in Psychiatric Patient Populations

    PubMed Central

    Gooding, Diane C.; Basso, Michele A.

    2008-01-01

    This review focuses on saccade research with adult psychiatric patients. It begins with an introduction of the various types of saccades and the tasks used to evoke them. The functional significance of the different types of eye movements is briefly discussed. Research findings regarding the saccadic performance of different adult psychiatric patient populations are discussed in detail, with particular emphasis on findings regarding error rates, response latencies, and any specific task parameters that might affect those variables. Findings regarding the symptom, neurocognitive, and neural correlates of saccadic performance and the functional significance of patients’ saccadic deficits are also discussed. We also discuss the saccadic deficits displayed by various patient groups in terms of circuitry (e.g. cortical/basal ganglia circuits) that may be implicated in the underlying pathophysiology of several of these disorders. Future directions for research in this growing area are offered. PMID:18950927

  2. The role of peripheral vision in saccade planning: learning from people with tunnel vision.

    PubMed

    Luo, Gang; Vargas-Martin, Fernando; Peli, Eli

    2008-12-22

    Both visually salient and top-down information are important in eye movement control, but their relative roles in the planning of daily saccades are unclear. We investigated the effect of peripheral vision loss on saccadic behaviors in patients with tunnel vision (visual field diameters 7 degrees-16 degrees) in visual search and real-world walking experiments. The patients made up to two saccades per second to their pre-saccadic blind areas, about half of which had no overlap between the post- and pre-saccadic views. In the visual search experiment, visual field size and the background (blank or picture) did not affect the saccade sizes and direction of patients (n = 9). In the walking experiment, the patients (n = 5) and normal controls (n = 3) had similar distributions of saccade sizes and directions. These findings might provide a clue about the large extent of the top-down mechanism influence on eye movement control.

  3. The effects of video game play on the characteristics of saccadic eye movements.

    PubMed

    Mack, David J; Ilg, Uwe J

    2014-09-01

    Video game play has become a common leisure activity all around the world. To reveal possible effects of playing video games, we measured saccades elicited by video game players (VGPs) and non-players (NVGPs) in two oculomotor tasks. First, our subjects performed a double-step task. Second, we asked our subjects to move their gaze opposite to the appearance of a visual target, i.e. to perform anti-saccades. As expected on the basis of previous studies, VGPs had significantly shorter saccadic reaction times (SRTs) than NVGPs for all saccade types. However, the error rates in the anti-saccade task did not reveal any significant differences. In fact, the error rates of VGPs were actually slightly lower compared to NVGPs (34% versus 40%, respectively). In addition, VGPs showed significantly higher saccadic peak velocities in every saccade type compared to NVGP. Our results suggest that faster SRTs in VGPs were associated with a more efficient motor drive for saccades. Taken together, our results are in excellent agreement with earlier reports of beneficial video game effects through the general reduction in SRTs. Our data clearly provides additional experimental evidence for an higher efficiency of the VGPs on the one hand and refutes the notion of a reduced impulse control in VGPs on the other. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Curved Saccade Trajectories Reveal Conflicting Predictions in Associative Learning

    ERIC Educational Resources Information Center

    Koenig, Stephan; Lachnit, Harald

    2011-01-01

    We report how the trajectories of saccadic eye movements are affected by memory interference acquired during associative learning. Human participants learned to perform saccadic choice responses based on the presentation of arbitrary central cues A, B, AC, BC, AX, BY, X, and Y that were trained to predict the appearance of a peripheral target…

  5. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey.

    PubMed

    Ohtsuka, K; Noda, H

    1995-11-01

    1. We previously described discharge properties of cerebellar output cells in the fastigial nucleus during ipsilateral and contralateral saccades. Fastigial cells exhibited unique responses depending on the direction of saccades and were involved in execution of accurate targeting saccades. Purkinje cells in the oculomotor vermis (lobules VIc and VII) are thought to modulate these discharges of fastigial cells. In this study we reexamine discharge properties of Purkinje cells on the basis of this hypothesis. 2. Initially we physiologically identified the right and left sides of the oculomotor vermis. Saccade-related discharges of 79 Purkinje cells were recorded from both sides of the vermis during visually guided saccades toward the sides ipsilateral and contralateral to the recording side in two trained macaque monkeys. To clarify the correlation of Purkinje cell discharge with burst activities in the fastigial nucleus during saccadic eye movements, we analyzed our data by employing methods used in the study of fastigial neurons. 3. Among the 79 cells, 56 (71%) showed burst discharges during saccades (saccadic burst cells). Of the 56 cells, 29 exhibited a peak of burst discharges in both the contralateral and ipsilateral directions (bidirectional cells). The remaining 27 saccadic burst cells showed a peak of burst discharges during either contralateral or ipsilateral saccades (unidirectional cells). Among the 79 cells, 14 (18%) exhibited a pause of discharges during contralateral saccades (pause cells). Among the 79 cells, 9 (11%) showed burst discharge during contralateral saccades followed by tonic discharge that was correlated with eye position (burst tonic cells). 4. The timing of bursts in bidirectional cells with respect to saccade onset was dependent on the direction of saccade. During ipsilateral saccades, Purkinje cells exhibited a long lead burst that built up gradually, peaked near the onset of the saccade, and terminated sharply near midsaccade. The

  6. The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades.

    PubMed

    Boon, Paul J; Belopolsky, Artem V; Theeuwes, Jan

    2016-01-01

    Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which went unnoticed by the participants. After executing the saccade, participants had to indicate the memorized location. If memory updating fully relies on cancellation driven by extraretinal oculomotor signals, the displacement should have no effect on the perceived location of the memorized stimulus. However, if postsaccadic retinal information about the location of the saccade target is used, the perceived location will be shifted according to the target displacement. As it has been suggested that maintenance of accurate spatial representations across saccades is especially important for action control, we used different ways of reporting the location held in memory; a match-to-sample task, a mouse click or by making another saccade. The results showed a small systematic target displacement bias in all response modalities. Parametric manipulation of the distance between the to-be-memorized stimulus and saccade target revealed that target displacement bias increased over time and changed its spatial profile from being initially centered on locations around the saccade target to becoming spatially global. Taken together results suggest that we neither rely exclusively on extraretinal nor on retinal information in updating working memory representations across saccades. The relative contribution of retinal signals is not fixed but depends on both the time available to integrate these signals as well as the distance between the saccade target and the remembered location.

  7. The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades

    PubMed Central

    Boon, Paul J.; Belopolsky, Artem V.; Theeuwes, Jan

    2016-01-01

    Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which went unnoticed by the participants. After executing the saccade, participants had to indicate the memorized location. If memory updating fully relies on cancellation driven by extraretinal oculomotor signals, the displacement should have no effect on the perceived location of the memorized stimulus. However, if postsaccadic retinal information about the location of the saccade target is used, the perceived location will be shifted according to the target displacement. As it has been suggested that maintenance of accurate spatial representations across saccades is especially important for action control, we used different ways of reporting the location held in memory; a match-to-sample task, a mouse click or by making another saccade. The results showed a small systematic target displacement bias in all response modalities. Parametric manipulation of the distance between the to-be-memorized stimulus and saccade target revealed that target displacement bias increased over time and changed its spatial profile from being initially centered on locations around the saccade target to becoming spatially global. Taken together results suggest that we neither rely exclusively on extraretinal nor on retinal information in updating working memory representations across saccades. The relative contribution of retinal signals is not fixed but depends on both the time available to integrate these signals as well as the distance between the saccade target and the remembered location. PMID

  8. What and where information in the caudate tail guides saccades to visual objects

    PubMed Central

    Yamamoto, Shinya; Monosov, Ilya E.; Yasuda, Masaharu; Hikosaka, Okihide

    2012-01-01

    We understand the world by making saccadic eye movements to various objects. However, it is unclear how a saccade can be aimed at a particular object, because two kinds of visual information, what the object is and where it is, are processed separately in the dorsal and ventral visual cortical pathways. Here we provide evidence suggesting that a basal ganglia circuit through the tail of the monkey caudate nucleus (CDt) guides such object-directed saccades. First, many CDt neurons responded to visual objects depending on where and what the objects were. Second, electrical stimulation in the CDt induced saccades whose directions matched the preferred directions of neurons at the stimulation site. Third, many CDt neurons increased their activity before saccades directed to the neurons’ preferred objects and directions in a free-viewing condition. Our results suggest that CDt neurons receive both ‘what’ and ‘where’ information and guide saccades to visual objects. PMID:22875934

  9. Causal Inference for Spatial Constancy across Saccades

    PubMed Central

    Atsma, Jeroen; Maij, Femke; Koppen, Mathieu; Irwin, David E.; Medendorp, W. Pieter

    2016-01-01

    Our ability to interact with the environment hinges on creating a stable visual world despite the continuous changes in retinal input. To achieve visual stability, the brain must distinguish the retinal image shifts caused by eye movements and shifts due to movements of the visual scene. This process appears not to be flawless: during saccades, we often fail to detect whether visual objects remain stable or move, which is called saccadic suppression of displacement (SSD). How does the brain evaluate the memorized information of the presaccadic scene and the actual visual feedback of the postsaccadic visual scene in the computations for visual stability? Using a SSD task, we test how participants localize the presaccadic position of the fixation target, the saccade target or a peripheral non-foveated target that was displaced parallel or orthogonal during a horizontal saccade, and subsequently viewed for three different durations. Results showed different localization errors of the three targets, depending on the viewing time of the postsaccadic stimulus and its spatial separation from the presaccadic location. We modeled the data through a Bayesian causal inference mechanism, in which at the trial level an optimal mixing of two possible strategies, integration vs. separation of the presaccadic memory and the postsaccadic sensory signals, is applied. Fits of this model generally outperformed other plausible decision strategies for producing SSD. Our findings suggest that humans exploit a Bayesian inference process with two causal structures to mediate visual stability. PMID:26967730

  10. Saccade and cognitive impairment associated with kava intoxication.

    PubMed

    Cairney, Sheree; Maruff, Paul; Clough, Alan R; Collie, Alex; Currie, Jon; Currie, Bart J

    2003-10-01

    Kava is an extract from the Piper methysticum Forst. f. plant that has social and spiritual importance in Pacific islands societies. Herbal remedies that contain kava are used for the psychiatric treatment of anxiety and insomnia. Laboratory studies have found only subtle, if any, changes on cognitive or motor functions from the acute effects of consuming small clinical doses of kava products. Intoxication from recreational doses of kava has not been studied. The performance of individuals intoxicated from drinking kava (n=11) was compared with a control group (n=17) using saccade and cognitive tests. On average, intoxicated individuals had consumed 205 g of kava powder each (approximately 150 times clinical doses) in a group session that went for 14.4 h and ended 8 h prior to testing. Intoxicated kava drinkers showed ataxia, tremors, sedation, blepharospasm and elevated liver enzymes (GGT and ALP), together with saccadic dysmetria, saccadic slowing and reduced accuracy performing a visual search task that only became evident as the task complexity increased. Kava intoxication is characterized by specific abnormalities of movement coordination and visual attention but normal performance of complex cognitive functions. Saccade abnormalities suggest disruption of cerebellar and GABAergic functions. Copyright 2003 John Wiley & Sons, Ltd.

  11. Quick Phases of Infantile Nystagmus Show the Saccadic Inhibition Effect

    PubMed Central

    Harrison, James J.; Sumner, Petroc; Dunn, Matt J.; Erichsen, Jonathan T.; Freeman, Tom C. A.

    2015-01-01

    Purpose. Infantile nystagmus (IN) is a pathological, involuntary oscillation of the eyes consisting of slow, drifting eye movements interspersed with rapid reorienting quick phases. The extent to which quick phases of IN are programmed similarly to saccadic eye movements remains unknown. We investigated whether IN quick phases exhibit ‘saccadic inhibition,' a phenomenon typically related to normal targeting saccades, in which the initiation of the eye movement is systematically delayed by task-irrelevant visual distractors. Methods. We recorded eye position from 10 observers with early-onset idiopathic nystagmus while task-irrelevant distractor stimuli were flashed along the top and bottom of a large screen at ±10° eccentricity. The latency distributions of quick phases were measured with respect to these distractor flashes. Two additional participants, one with possible albinism and one with fusion maldevelopment nystagmus syndrome, were also tested. Results. All observers showed that a distractor flash delayed the execution of quick phases that would otherwise have occurred approximately 100 ms later, exactly as in the standard saccadic inhibition effect. The delay did not appear to differ between the two main nystagmus types under investigation (idiopathic IN with unidirectional and bidirectional jerk). Conclusions. The presence of the saccadic inhibition effect in IN quick phases is consistent with the idea that quick phases and saccades share a common programming pathway. This could allow quick phases to take on flexible, goal-directed behavior, at odds with the view that IN quick phases are stereotyped, involuntary eye movements. PMID:25670485

  12. Microsaccade production during saccade cancelation in a stop-signal task

    PubMed Central

    Godlove, David C.; Schall, Jeffrey D.

    2014-01-01

    We obtained behavioral data to evaluate two alternative hypotheses about the neural mechanisms of gaze control. The “fixation” hypothesis states that neurons in rostral superior colliculus (SC) enforce fixation of gaze. The “microsaccade” hypothesis states that neurons in rostral SC encode microsaccades rather than fixation per se. Previously reported neuronal activity in monkey SC during the saccade stop-signal task leads to specific, dissociable behavioral predictions of these two hypotheses. When subjects are required to cancel partially-prepared saccades, imbalanced activity spreads across rostral and caudal SC with a reliable temporal profile. The microsaccade hypothesis predicts that this imbalance will lead to elevated microsaccade production biased toward the target location, while the fixation hypothesis predicts reduced microsaccade production. We tested these predictions by analyzing the microsaccades produced by 4 monkeys while they voluntarily canceled partially prepared eye movements in response to explicit stop signals. Consistent with the fixation hypothesis and contradicting the microsaccade hypothesis, we found that each subject produced significantly fewer microsaccades when normal saccades were successfully canceled. The few microsaccades escaping this inhibition tended to be directed toward the target location. We additionally investigated interactions between initiating microsaccades and inhibiting normal saccades. Reaction times were longer when microsaccades immediately preceded target presentation. However, pre-target microsaccade production did not affect stop-signal reaction time or alter the probability of canceling saccades following stop signals. These findings demonstrate that imbalanced activity within SC does not necessarily produce microsaccades and add to evidence that saccade preparation and cancelation are separate processes. PMID:25448116

  13. Learning Peri-saccadic Remapping of Receptive Field from Experience in Lateral Intraparietal Area.

    PubMed

    Wang, Xiao; Wu, Yan; Zhang, Mingsha; Wu, Si

    2017-01-01

    Our eyes move constantly at a frequency of 3-5 times per second. These movements, called saccades, induce the sweeping of visual images on the retina, yet we perceive the world as stable. It has been suggested that the brain achieves this visual stability via predictive remapping of neuronal receptive field (RF). A recent experimental study disclosed details of this remapping process in the lateral intraparietal area (LIP), that is, about the time of the saccade, the neuronal RF expands along the saccadic trajectory temporally, covering the current RF (CRF), the future RF (FRF), and the region the eye will sweep through during the saccade. A cortical wave (CW) model was also proposed, which attributes the RF remapping as a consequence of neural activity propagating in the cortex, triggered jointly by a visual stimulus and the corollary discharge (CD) signal responsible for the saccade. In this study, we investigate how this CW model is learned naturally from visual experiences at the development of the brain. We build a two-layer network, with one layer consisting of LIP neurons and the other superior colliculus (SC) neurons. Initially, neuronal connections are random and non-selective. A saccade will cause a static visual image to sweep through the retina passively, creating the effect of the visual stimulus moving in the opposite direction of the saccade. According to the spiking-time-dependent-plasticity rule, the connection path in the opposite direction of the saccade between LIP neurons and the connection path from SC to LIP are enhanced. Over many such visual experiences, the CW model is developed, which generates the peri-saccadic RF remapping in LIP as observed in the experiment.

  14. Context cue-dependent saccadic adaptation in rhesus macaques cannot be elicited using color

    PubMed Central

    Smalianchuk, Ivan; Khanna, Sanjeev B.; Smith, Matthew A.; Gandhi, Neeraj J.

    2015-01-01

    When the head does not move, rapid movements of the eyes called saccades are used to redirect the line of sight. Saccades are defined by a series of metrical and kinematic (evolution of a movement as a function of time) relationships. For example, the amplitude of a saccade made from one visual target to another is roughly 90% of the distance between the initial fixation point (T0) and the peripheral target (T1). However, this stereotypical relationship between saccade amplitude and initial retinal error (T1-T0) may be altered, either increased or decreased, by surreptitiously displacing a visual target during an ongoing saccade. This form of motor learning (called saccadic adaptation) has been described in both humans and monkeys. Recent experiments in humans and monkeys have suggested that internal (proprioceptive) and external (target shape, color, and/or motion) cues may be used to produce context-dependent adaptation. We tested the hypothesis that an external contextual cue (target color) could be used to evoke differential gain (actual saccade/initial retinal error) states in rhesus monkeys. We did not observe differential gain states correlated with target color regardless of whether targets were displaced along the same vector as the primary saccade or perpendicular to it. Furthermore, this observation held true regardless of whether adaptation trials using various colors and intrasaccade target displacements were randomly intermixed or presented in short or long blocks of trials. These results are consistent with hypotheses that state that color cannot be used as a contextual cue and are interpreted in light of previous studies of saccadic adaptation in both humans and monkeys. PMID:25995353

  15. Decoding Target Distance and Saccade Amplitude from Population Activity in the Macaque Lateral Intraparietal Area (LIP)

    PubMed Central

    Bremmer, Frank; Kaminiarz, Andre; Klingenhoefer, Steffen; Churan, Jan

    2016-01-01

    Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface. PMID:27630547

  16. Reading in Schizophrenic Subjects and Their Nonsymptomatic First-Degree Relatives

    PubMed Central

    Roberts, Eryl O.; Proudlock, Frank A.; Martin, Kate; Reveley, Michael A.; Al-Uzri, Mohammed; Gottlob, Irene

    2013-01-01

    Previous studies have demonstrated eye movement abnormalities during smooth pursuit and antisaccadic tasks in schizophrenia. However, eye movements have not been investigated during reading. The purpose of this study was to determine whether schizophrenic subjects and their nonsymptomatic first-degree relatives show eye movement abnormalities during reading. Reading rate, number of saccades per line, amplitudes of saccades, percentage regressions (reverse saccades), and fixation durations were measured using an eye tracker (EyeLink, SensoMotoric Instruments, Germany) in 38 schizophrenic volunteers, 14 nonaffected first-degree relatives, and 57 control volunteers matched for age and National Adult Reading Test scores. Parameters were examined when volunteers read full pages of text and text was limited to progressively smaller viewing areas around the point of fixation using a gaze-contingent window. Schizophrenic volunteers showed significantly slower reading rates (P = .004), increase in total number of saccades (P ≤ .001), and a decrease in saccadic amplitude (P = .025) while reading. Relatives showed a significant increase in total number of saccades (P = .013) and decrease in saccadic amplitude (P = .020). Limitation of parafoveal information by reducing the amount of visible characters did not change the reading rate of schizophrenics but controls showed a significant decrease in reading rate with reduced parafoveal information (P < .001). Eye movement abnormalities during reading of schizophrenic volunteers and their first-degree relatives suggest that visual integration of foveal and parafoveal information may be reduced in schizophrenia. Reading abnormalities in relatives suggest a genetic influence in reading ability in schizophrenia and rule out confounding effects of medication. PMID:22267532

  17. Causality attribution biases oculomotor responses.

    PubMed

    Badler, Jeremy; Lefèvre, Philippe; Missal, Marcus

    2010-08-04

    When viewing one object move after being struck by another, humans perceive that the action of the first object "caused" the motion of the second, not that the two events occurred independently. Although established as a perceptual and linguistic concept, it is not yet known whether the notion of causality exists as a fundamental, preattentional "Gestalt" that can influence predictive motor processes. Therefore, eye movements of human observers were measured while viewing a display in which a launcher impacted a tool to trigger the motion of a second "reaction" target. The reaction target could move either in the direction predicted by transfer of momentum after the collision ("causal") or in a different direction ("noncausal"), with equal probability. Control trials were also performed with identical target motion, either with a 100 ms time delay between the collision and reactive motion, or without the interposed tool. Subjects made significantly more predictive movements (smooth pursuit and saccades) in the causal direction during standard trials, and smooth pursuit latencies were also shorter overall. These trends were reduced or absent in control trials. In addition, pursuit latencies in the noncausal direction were longer during standard trials than during control trials. The results show that causal context has a strong influence on predictive movements.

  18. The effects of age and mood on saccadic function in older individuals.

    PubMed

    Shafiq-Antonacci, R; Maruff, P; Whyte, S; Tyler, P; Dudgeon, P; Currie, J

    1999-11-01

    To investigate the effect of age and mood on saccadic function, we recorded prosaccades, predictive saccades, and antisaccades from 238 cognitively normal, physically healthy volunteers aged 44 to 85 years old. Mood levels were measured using the State-Trait Anxiety Inventory and Center for Epidemiological Studies Depression Scale inventories. Small, but significant, positive relationships with age were observed for the mean latency and associated variability of latency for all types of saccades, as well as the antisaccade error rate. Saccade velocity or accuracy was unaffected by age. Increasing levels of depression had a minor negative influence on the antisaccade latency, whereas increasing levels of anxiety raised the antisaccade error rate marginally.

  19. The influence of spatial congruency and movement preparation time on saccade curvature in simultaneous and sequential dual-tasks.

    PubMed

    Moehler, Tobias; Fiehler, Katja

    2015-11-01

    Saccade curvature represents a sensitive measure of oculomotor inhibition with saccades curving away from covertly attended locations. Here we investigated whether and how saccade curvature depends on movement preparation time when a perceptual task is performed during or before saccade preparation. Participants performed a dual-task including a visual discrimination task at a cued location and a saccade task to the same location (congruent) or to a different location (incongruent). Additionally, we varied saccade preparation time (time between saccade cue and Go-signal) and the occurrence of the discrimination task (during saccade preparation=simultaneous vs. before saccade preparation=sequential). We found deteriorated perceptual performance in incongruent trials during simultaneous task performance while perceptual performance was unaffected during sequential task performance. Saccade accuracy and precision were deteriorated in incongruent trials during simultaneous and, to a lesser extent, also during sequential task performance. Saccades consistently curved away from covertly attended non-saccade locations. Saccade curvature was unaffected by movement preparation time during simultaneous task performance but decreased and finally vanished with increasing movement preparation time during sequential task performance. Our results indicate that the competing saccade plan to the covertly attended non-saccade location is maintained during simultaneous task performance until the perceptual task is solved while in the sequential condition, in which the discrimination task is solved prior to the saccade task, oculomotor inhibition decays gradually with movement preparation time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Saccades to a remembered location elicit spatially-specific activation in human retinotopic visual cortex

    PubMed Central

    Geng, Joy J.; Ruff, Christian C.; Driver, Jon

    2008-01-01

    The possible impact upon human visual cortex from saccades to remembered target locations was investigated using fMRI. A specific location in the upper-right or upper-left visual quadrant served as the saccadic target. After a delay of 2400 msecs, an auditory signal indicated whether to execute a saccade to that location (go trial) or to cancel the saccade and remain centrally fixated (no-go). Group fMRI analysis revealed activation specific to the remembered target location for executed saccades, in contralateral lingual gyrus. No-go trials produced similar, albeit significantly reduced effects. Individual retinotopic mapping confirmed that on go trials, quadrant-specific activations arose in those parts of ventral V1, V2, and V3 that coded the target location for the saccade, whereas on no-go trials only the corresponding parts of V2 and V3 were significantly activated. These results indicate that a spatial-motor saccadic task (i.e. making an eye-movement to a remembered location) is sufficient to activate retinotopic visual cortex spatially corresponding to the target location, and that this activation is also present (though reduced) when no saccade is executed. We discuss the implications of finding that saccades to remembered locations can affect early visual cortex, not just those structures conventionally associated with eye-movements, in relation to recent ideas about attention, spatial working memory, and the notion that recently activated representations can be ‘refreshed’ when needed. PMID:18510442

  1. Left-Lateralized Contributions of Saccades to Cortical Activity During a One-Back Word Recognition Task.

    PubMed

    Chang, Yu-Cherng C; Khan, Sheraz; Taulu, Samu; Kuperberg, Gina; Brown, Emery N; Hämäläinen, Matti S; Temereanca, Simona

    2018-01-01

    Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150-350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition.

  2. Left-Lateralized Contributions of Saccades to Cortical Activity During a One-Back Word Recognition Task

    PubMed Central

    Chang, Yu-Cherng C.; Khan, Sheraz; Taulu, Samu; Kuperberg, Gina; Brown, Emery N.; Hämäläinen, Matti S.; Temereanca, Simona

    2018-01-01

    Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150–350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition. PMID:29867372

  3. Looking away from faces: influence of high-level visual processes on saccade programming.

    PubMed

    Morand, Stéphanie M; Grosbras, Marie-Hélène; Caldara, Roberto; Harvey, Monika

    2010-03-30

    Human faces capture attention more than other visual stimuli. Here we investigated whether such face-specific biases rely on automatic (involuntary) or voluntary orienting responses. To this end, we used an anti-saccade paradigm, which requires the ability to inhibit a reflexive automatic response and to generate a voluntary saccade in the opposite direction of the stimulus. To control for potential low-level confounds in the eye-movement data, we manipulated the high-level visual properties of the stimuli while normalizing their global low-level visual properties. Eye movements were recorded in 21 participants who performed either pro- or anti-saccades to a face, car, or noise pattern, randomly presented to the left or right of a fixation point. For each trial, a symbolic cue instructed the observer to generate either a pro-saccade or an anti-saccade. We report a significant increase in anti-saccade error rates for faces compared to cars and noise patterns, as well as faster pro-saccades to faces and cars in comparison to noise patterns. These results indicate that human faces induce stronger involuntary orienting responses than other visual objects, i.e., responses that are beyond the control of the observer. Importantly, this involuntary processing cannot be accounted for by global low-level visual factors.

  4. Saccadic Reaction Times in Infants and Adults: Spatiotemporal Factors, Gender, and Interlaboratory Variation

    ERIC Educational Resources Information Center

    Kenward, Ben; Koch, Felix-Sebastian; Forssman, Ida; Brehm, Julia; Tidemann, Linda; Sundqvist, Annette; Marciszkom, Carin; Hermansen, Tone Kristine; Heimann, Mikael; Gredebäck, Gustaf

    2017-01-01

    Saccade latency is widely used across infant psychology to investigate infants' understanding of events. Interpreting particular latency values requires knowledge of standard saccadic RTs, but there is no consensus as to typical values. This study provides standard estimates of infants' (n = 194, ages 9 to 15 months) saccadic RTs under a range of…

  5. Voluntary saccadic eye movements in humans studied with a double-cue paradigm.

    PubMed

    Sheliga, B M; Brown, V J; Miles, F A

    2002-07-01

    In the classic double-step paradigm, subjects are required to make a saccade to a visual target that is briefly presented at one location and then shifted to a new location before the subject has responded. The saccades in this situation are "reflexive" in that they are made in response to the appearance of the target itself. In the present experiments we adapted the double-step paradigm to study "voluntary" saccades. For this, several identical targets were always visible and subjects were given a cue to indicate that they should make a saccade to one of them. This cue was then changed to indicate another of the targets before the subject had responded: double-cue (DC) paradigm. The saccadic eye movements in our DC paradigm had many features in common with those in the double-step paradigm and we show that apparent differences can be attributed to the spatio-temporal arrangements of the cues/targets rather than to any intrinsic differences in the programming of these two kinds of eye movements. For example, a feature of our DC paradigm that is not seen in the usual double-step paradigm is that the second cue could cause transient delays of the initial saccade, and these delays still occurred when the second cue was reflexive--provided that it was at the fovea (as in our DC paradigm) and not in the periphery (as in the usual double-step paradigm). Thus, the critical factor for the delay was the retinal (foveal) location of the second cue/target--not whether it was cognitive or reflexive--and we argue that the second cue/target is here acting as a distractor. We conclude that the DC paradigm can be used to study the programming of voluntary saccades in the same way that the double-step paradigm can be used to study reflexive saccades.

  6. Learning Peri-saccadic Remapping of Receptive Field from Experience in Lateral Intraparietal Area

    PubMed Central

    Wang, Xiao; Wu, Yan; Zhang, Mingsha; Wu, Si

    2017-01-01

    Our eyes move constantly at a frequency of 3–5 times per second. These movements, called saccades, induce the sweeping of visual images on the retina, yet we perceive the world as stable. It has been suggested that the brain achieves this visual stability via predictive remapping of neuronal receptive field (RF). A recent experimental study disclosed details of this remapping process in the lateral intraparietal area (LIP), that is, about the time of the saccade, the neuronal RF expands along the saccadic trajectory temporally, covering the current RF (CRF), the future RF (FRF), and the region the eye will sweep through during the saccade. A cortical wave (CW) model was also proposed, which attributes the RF remapping as a consequence of neural activity propagating in the cortex, triggered jointly by a visual stimulus and the corollary discharge (CD) signal responsible for the saccade. In this study, we investigate how this CW model is learned naturally from visual experiences at the development of the brain. We build a two-layer network, with one layer consisting of LIP neurons and the other superior colliculus (SC) neurons. Initially, neuronal connections are random and non-selective. A saccade will cause a static visual image to sweep through the retina passively, creating the effect of the visual stimulus moving in the opposite direction of the saccade. According to the spiking-time-dependent-plasticity rule, the connection path in the opposite direction of the saccade between LIP neurons and the connection path from SC to LIP are enhanced. Over many such visual experiences, the CW model is developed, which generates the peri-saccadic RF remapping in LIP as observed in the experiment. PMID:29249953

  7. A unified dynamic neural field model of goal directed eye movements

    NASA Astrophysics Data System (ADS)

    Quinton, J. C.; Goffart, L.

    2018-01-01

    Primates heavily rely on their visual system, which exploits signals of graded precision based on the eccentricity of the target in the visual field. The interactions with the environment involve actively selecting and focusing on visual targets or regions of interest, instead of contemplating an omnidirectional visual flow. Eye-movements specifically allow foveating targets and track their motion. Once a target is brought within the central visual field, eye-movements are usually classified into catch-up saccades (jumping from one orientation or fixation to another) and smooth pursuit (continuously tracking a target with low velocity). Building on existing dynamic neural field equations, we introduce a novel model that incorporates internal projections to better estimate the current target location (associated to a peak of activity). Such estimate is then used to trigger an eye movement, leading to qualitatively different behaviours depending on the dynamics of the whole oculomotor system: (1) fixational eye-movements due to small variations in the weights of projections when the target is stationary, (2) interceptive and catch-up saccades when peaks build and relax on the neural field, (3) smooth pursuit when the peak stabilises near the centre of the field, the system reaching a fixed point attractor. Learning is nevertheless required for tracking a rapidly moving target, and the proposed model thus replicates recent results in the monkey, in which repeated exercise permits the maintenance of the target within in the central visual field at its current (here-and-now) location, despite the delays involved in transmitting retinal signals to the oculomotor neurons.

  8. The effect of sampling rate and lowpass filters on saccades - A modeling approach.

    PubMed

    Mack, David J; Belfanti, Sandro; Schwarz, Urs

    2017-12-01

    The study of eye movements has become popular in many fields of science. However, using the preprocessed output of an eye tracker without scrutiny can lead to low-quality or even erroneous data. For example, the sampling rate of the eye tracker influences saccadic peak velocity, while inadequate filters fail to suppress noise or introduce artifacts. Despite previously published guiding values, most filter choices still seem motivated by a trial-and-error approach, and a thorough analysis of filter effects is missing. Therefore, we developed a simple and easy-to-use saccade model that incorporates measured amplitude-velocity main sequences and produces saccades with a similar frequency content to real saccades. We also derived a velocity divergence measure to rate deviations between velocity profiles. In total, we simulated 155 saccades ranging from 0.5° to 60° and subjected them to different sampling rates, noise compositions, and various filter settings. The final goal was to compile a list with the best filter settings for each of these conditions. Replicating previous findings, we observed reduced peak velocities at lower sampling rates. However, this effect was highly non-linear over amplitudes and increasingly stronger for smaller saccades. Interpolating the data to a higher sampling rate significantly reduced this effect. We hope that our model and the velocity divergence measure will be used to provide a quickly accessible ground truth without the need for recording and manually labeling saccades. The comprehensive list of filters allows one to choose the correct filter for analyzing saccade data without resorting to trial-and-error methods.

  9. The effect of offset cues on saccade programming and covert attention.

    PubMed

    Smith, Daniel T; Casteau, Soazig

    2018-02-01

    Salient peripheral events trigger fast, "exogenous" covert orienting. The influential premotor theory of attention argues that covert orienting of attention depends upon planned but unexecuted eye-movements. One problem with this theory is that salient peripheral events, such as offsets, appear to summon attention when used to measure covert attention (e.g., the Posner cueing task) but appear not to elicit oculomotor preparation in tasks that require overt orienting (e.g., the remote distractor paradigm). Here, we examined the effects of peripheral offsets on covert attention and saccade preparation. Experiment 1 suggested that transient offsets summoned attention in a manual detection task without triggering motor preparation planning in a saccadic localisation task, although there were a high proportion of saccadic capture errors on "no-target" trials, where a cue was presented but no target appeared. In Experiment 2, "no-target" trials were removed. Here, transient offsets produced both attentional facilitation and faster saccadic responses on valid cue trials. A third experiment showed that the permanent disappearance of an object also elicited attentional facilitation and faster saccadic reaction times. These experiments demonstrate that offsets trigger both saccade programming and covert attentional orienting, consistent with the idea that exogenous, covert orienting is tightly coupled with oculomotor activation. The finding that no-go trials attenuates oculomotor priming effects offers a way to reconcile the current findings with previous claims of a dissociation between covert attention and oculomotor control in paradigms that utilise a high proportion of catch trials.

  10. Saccadic interception of a moving visual target after a spatiotemporal perturbation.

    PubMed

    Fleuriet, Jérome; Goffart, Laurent

    2012-01-11

    Animals can make saccadic eye movements to intercept a moving object at the right place and time. Such interceptive saccades indicate that, despite variable sensorimotor delays, the brain is able to estimate the current spatiotemporal (hic et nunc) coordinates of a target at saccade end. The present work further tests the robustness of this estimate in the monkey when a change in eye position and a delay are experimentally added before the onset of the saccade and in the absence of visual feedback. These perturbations are induced by brief microstimulation in the deep superior colliculus (dSC). When the microstimulation moves the eyes in the direction opposite to the target motion, a correction saccade brings gaze back on the target path or very near. When it moves the eye in the same direction, the performance is more variable and depends on the stimulated sites. Saccades fall ahead of the target with an error that increases when the stimulation is applied more caudally in the dSC. The numerous cases of compensation indicate that the brain is able to maintain an accurate and robust estimate of the location of the moving target. The inaccuracies observed when stimulating the dSC that encodes the visual field traversed by the target indicate that dSC microstimulation can interfere with signals encoding the target motion path. The results are discussed within the framework of the dual-drive and the remapping hypotheses.

  11. Looking away: distractor influences on saccadic trajectory and endpoint in prosaccade and antisaccade tasks.

    PubMed

    Laidlaw, Kaitlin E W; Zhu, Mona J H; Kingstone, Alan

    2016-06-01

    Successful target selection often occurs concurrently with distractor inhibition. A better understanding of the former thus requires a thorough study of the competition that arises between target and distractor representations. In the present study, we explore whether the presence of a distractor influences saccade processing via interfering with visual target and/or saccade goal representations. To do this, we asked participants to make either pro- or antisaccade eye movements to a target and measured the change in their saccade trajectory and landing position (collectively referred to as deviation) in response to distractors placed near or far from the saccade goal. The use of an antisaccade paradigm may help to distinguish between stimulus- and goal-related distractor interference, as unlike with prosaccades, these two features are dissociated in space when making a goal-directed antisaccade response away from a visual target stimulus. The present results demonstrate that for both pro- and antisaccades, distractors near the saccade goal elicited the strongest competition, as indicated by greater saccade trajectory deviation and landing position error. Though distractors far from the saccade goal elicited, on average, greater deviation away in antisaccades than in prosaccades, a time-course analysis revealed a significant effect of far-from-goal distractors in prosaccades as well. Considered together, the present findings support the view that goal-related representations most strongly influence the saccade metrics tested, though stimulus-related representations may play a smaller role in determining distractor-based interference effects on saccade execution under certain circumstances. Further, the results highlight the advantage of considering temporal changes in distractor-based interference.

  12. Parietal and superior frontal visuospatial maps activated by pointing and saccades

    PubMed Central

    Hagler, D.J.; Riecke, L.; Sereno, M.I.

    2009-01-01

    A recent study from our laboratory demonstrated that parietal cortex contains a map of visual space related to saccades and spatial attention and identified this area as the likely human homologue of the lateral intraparietal (LIP). A human homologue for the parietal reach region (PRR), thought to preferentially encode planned hand movements, has also been recently proposed. Both of these areas, originally identified in the macaque monkey, have been shown to encode space with eye-centered coordinates. Functional magnetic resonance imaging (fMRI) of humans was used to test the hypothesis that the putative human PRR contains a retinotopic map recruited by finger pointing but not saccades and to test more generally for differences in the visuospatial maps recruited by pointing and saccades. We identified multiple maps in both posterior parietal cortex and superior frontal cortex recruited for eye and hand movements, including maps not observed in previous mapping studies. Pointing and saccade maps were generally consistent within single subjects. We have developed new group analysis methods for phase-encoded data, which revealed subtle differences between pointing and saccades, including hemispheric asymmetries, but we did not find evidence of pointing-specific maps of visual space. PMID:17376706

  13. Spatiotemporal Filter for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys

    PubMed Central

    Liu, Bing

    2017-01-01

    Despite the enduring interest in motion integration, a direct measure of the space–time filter that the brain imposes on a visual scene has been elusive. This is perhaps because of the challenge of estimating a 3D function from perceptual reports in psychophysical tasks. We take a different approach. We exploit the close connection between visual motion estimates and smooth pursuit eye movements to measure stimulus–response correlations across space and time, computing the linear space–time filter for global motion direction in humans and monkeys. Although derived from eye movements, we find that the filter predicts perceptual motion estimates quite well. To distinguish visual from motor contributions to the temporal duration of the pursuit motion filter, we recorded single-unit responses in the monkey middle temporal cortical area (MT). We find that pursuit response delays are consistent with the distribution of cortical neuron latencies and that temporal motion integration for pursuit is consistent with a short integration MT subpopulation. Remarkably, the visual system appears to preferentially weight motion signals across a narrow range of foveal eccentricities rather than uniformly over the whole visual field, with a transiently enhanced contribution from locations along the direction of motion. We find that the visual system is most sensitive to motion falling at approximately one-third the radius of the stimulus aperture. Hypothesizing that the visual drive for pursuit is related to the filtered motion energy in a motion stimulus, we compare measured and predicted eye acceleration across several other target forms. SIGNIFICANCE STATEMENT A compact model of the spatial and temporal processing underlying global motion perception has been elusive. We used visually driven smooth eye movements to find the 3D space–time function that best predicts both eye movements and perception of translating dot patterns. We found that the visual system does not appear

  14. Electrical Stimulation of the Primate Lateral Habenula Suppresses Saccadic Eye Movement through a Learning Mechanism

    PubMed Central

    Matsumoto, Masayuki; Hikosaka, Okihide

    2011-01-01

    The lateral habenula (LHb) is a brain structure which represents negative motivational value. Neurons in the LHb are excited by unpleasant events such as reward omission and aversive stimuli, and transmit these signals to midbrain dopamine neurons which are involved in learning and motivation. However, it remains unclear whether these phasic changes in LHb neuronal activity actually influence animal behavior. To answer this question, we artificially activated the LHb by electrical stimulation while monkeys were performing a visually guided saccade task. In one block of trials, saccades to one fixed direction (e.g., right direction) were followed by electrical stimulation of the LHb while saccades to the other direction (e.g., left direction) were not. The direction-stimulation contingency was reversed in the next block. We found that the post-saccadic stimulation of the LHb increased the latencies of saccades in subsequent trials. Notably, the increase of the latency occurred gradually as the saccade was repeatedly followed by the stimulation, suggesting that the effect of the post-saccadic stimulation was accumulated across trials. LHb stimulation starting before saccades, on the other hand, had no effect on saccade latency. Together with previous studies showing LHb activation by reward omission and aversive stimuli, the present stimulation experiment suggests that LHb activity contributes to learning to suppress actions which lead to unpleasant events. PMID:22039537

  15. Are there any left-right asymmetries in saccade parameters? Examination of latency, gain, and peak velocity.

    PubMed

    Vergilino-Perez, Dorine; Fayel, Alexandra; Lemoine, Christelle; Senot, Patrice; Vergne, Judith; Doré-Mazars, Karine

    2012-06-05

    Hemispheric specialization in saccadic control is still under debate. Here we examine the latency, gain, and peak velocity of reactive and voluntary leftward and rightward saccades to assess the respective roles of eye and hand dominance. Participants with contrasting hand and eye dominance were asked to make saccades toward a target displayed at 5°, 10°, or 15° left or right of the central fixation point. In separate sessions, reactive and voluntary saccades were elicited by Gap-200, Gap-0, Overlap-600, and Antisaccade procedures. Left-right asymmetries were not found in saccade latencies but appeared in saccade gain and peak velocity. Regardless of the dominant hand, saccades directed to the ipsilateral side relative to the dominant eye had larger amplitudes and faster peak velocities. Left-right asymmetries can be explained by naso-temporal differences for some subjects and by eye dominance for others. Further investigations are needed to examine saccadic parameters more systematically in relation to eye dominance. Indeed, any method that allows one to determine ocular dominance from objective measures based on saccade parameters should greatly benefit clinical applications, such as monovision surgery.

  16. Nonlinear analysis of saccade speed fluctuations during combined action and perception tasks

    PubMed Central

    Stan, C.; Astefanoaei, C.; Pretegiani, E.; Optican, L.; Creanga, D.; Rufa, A.; Cristescu, C.P.

    2014-01-01

    Background: Saccades are rapid eye movements used to gather information about a scene which requires both action and perception. These are usually studied separately, so that how perception influences action is not well understood. In a dual task, where the subject looks at a target and reports a decision, subtle changes in the saccades might be caused by action-perception interactions. Studying saccades might provide insight into how brain pathways for action and for perception interact. New method: We applied two complementary methods, multifractal detrended fluctuation analysis and Lempel-Ziv complexity index to eye peak speed recorded in two experiments, a pure action task and a combined action-perception task. Results: Multifractality strength is significantly different in the two experiments, showing smaller values for dual decision task saccades compared to simple-task saccades. The normalized Lempel-Ziv complexity index behaves similarly i.e. is significantly smaller in the decision saccade task than in the simple task. Comparison with existing methods: Compared to the usual statistical and linear approaches, these analyses emphasize the character of the dynamics involved in the fluctuations and offer a sensitive tool for quantitative evaluation of the multifractal features and of the complexity measure in the saccades peak speeds when different brain circuits are involved. Conclusion: Our results prove that the peak speed fluctuations have multifractal characteristics with lower magnitude for the multifractality strength and for the complexity index when two neural pathways are simultaneously activated, demonstrating the nonlinear interaction in the brain pathways for action and perception. PMID:24854830

  17. Temporal order judgments are disrupted more by reflexive than by voluntary saccades.

    PubMed

    Yabe, Yoshiko; Goodale, Melvyn A; Shigemasu, Hiroaki

    2014-05-01

    We do not always perceive the sequence of events as they actually unfold. For example, when two events occur before a rapid eye movement (saccade), the interval between them is often perceived as shorter than it really is and the order of those events can be sometimes reversed (Morrone MC, Ross J, Burr DC. Nat Neurosci 8: 950-954, 2005). In the present article we show that these misperceptions of the temporal order of events critically depend on whether the saccade is reflexive or voluntary. In the first experiment, participants judged the temporal order of two visual stimuli that were presented one after the other just before a reflexive or voluntary saccadic eye movement. In the reflexive saccade condition, participants moved their eyes to a target that suddenly appeared. In the voluntary saccade condition, participants moved their eyes to a target that was present already. Similarly to the above-cited study, we found that the temporal order of events was often misjudged just before a reflexive saccade to a suddenly appearing target. However, when people made a voluntary saccade to a target that was already present, there was a significant reduction in the probability of misjudging the temporal order of the same events. In the second experiment, the reduction was seen in a memory-delay task. It is likely that the nature of the motor command and its origin determine how time is perceived during the moments preceding the motor act. Copyright © 2014 the American Physiological Society.

  18. Changing Hot Pursuit Policy: An Empirical Assessment of the Impact on Pursuit Behavior.

    ERIC Educational Resources Information Center

    Crew, Robert E., Jr.; And Others

    1994-01-01

    Using a two-year time series, the impact on law enforcement pursuit behavior of two changes in pursuit policy in a police department was studied using the ARIMA computer program and Tobit analysis. Each policy change produced significant reductions in pursuits engaged in by police officers. (SLD)

  19. Correspondence of presaccadic activity in the monkey primary visual cortex with saccadic eye movements

    PubMed Central

    Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A. F.

    2004-01-01

    We continuously scan the visual world via rapid or saccadic eye movements. Such eye movements are guided by visual information, and thus the oculomotor structures that determine when and where to look need visual information to control the eye movements. To know whether visual areas contain activity that may contribute to the control of eye movements, we recorded neural responses in the visual cortex of monkeys engaged in a delayed figure-ground detection task and analyzed the activity during the period of oculomotor preparation. We show that ≈100 ms before the onset of visually and memory-guided saccades neural activity in V1 becomes stronger where the strongest presaccadic responses are found at the location of the saccade target. In addition, in memory-guided saccades the strength of presaccadic activity shows a correlation with the onset of the saccade. These findings indicate that the primary visual cortex contains saccade-related responses and participates in visually guided oculomotor behavior. PMID:14970334

  20. Accuracy of saccades to remembered targets as a function of body orientation in space

    NASA Technical Reports Server (NTRS)

    Vogelstein, Joshua T.; Snyder, Lawrence H.; Angelaki, Dora E.

    2003-01-01

    A vertical asymmetry in memory-guided saccadic eye movements has been previously demonstrated in humans and in rhesus monkeys. In the upright orientation, saccades generally land several degrees above the target. The origin of this asymmetry has remained unknown. In this study, we investigated whether the asymmetry in memory saccades is dependent on body orientation in space. Thus animals performed memory saccades in four different body orientations: upright, left-side-down (LSD), right-side-down (RSD), and supine. Data in all three rhesus monkeys confirm previous observations regarding a significant upward vertical asymmetry. Saccade errors made from LSD and RSD postures were partitioned into components made along the axis of gravity and along the vertical body axis. Up/down asymmetry persisted only in body coordinates but not in gravity coordinates. However, this asymmetry was generally reduced in tilted positions. Therefore the upward bias seen in memory saccades is egocentric although orientation in space might play a modulatory role.

  1. Saccade-related activity in the prefrontal cortex: its role in eye movement control and cognitive functions

    PubMed Central

    Funahashi, Shintaro

    2014-01-01

    Prefrontal neurons exhibit saccade-related activity and pre-saccadic memory-related activity often encodes the directions of forthcoming eye movements, in line with demonstrated prefrontal contribution to flexible control of voluntary eye movements. However, many prefrontal neurons exhibit post-saccadic activity that is initiated well after the initiation of eye movement. Although post-saccadic activity has been observed in the frontal eye field, this activity is thought to be a corollary discharge from oculomotor centers, because this activity shows no directional tuning and is observed whenever the monkeys perform eye movements regardless of goal-directed or not. However, prefrontal post-saccadic activities exhibit directional tunings similar as pre-saccadic activities and show context dependency, such that post-saccadic activity is observed only when monkeys perform goal-directed saccades. Context-dependency of prefrontal post-saccadic activity suggests that this activity is not a result of corollary signals from oculomotor centers, but contributes to other functions of the prefrontal cortex. One function might be the termination of memory-related activity after a behavioral response is done. This is supported by the observation that the termination of memory-related activity coincides with the initiation of post-saccadic activity in population analyses of prefrontal activities. The termination of memory-related activity at the end of the trial ensures that the subjects can prepare to receive new and updated information. Another function might be the monitoring of behavioral performance, since the termination of memory-related activity by post-saccadic activity could be associated with informing the correctness of the response and the termination of the trial. However, further studies are needed to examine the characteristics of saccade-related activities in the prefrontal cortex and their functions in eye movement control and a variety of cognitive functions

  2. Oculomotor Evidence for Top-Down Control following the Initial Saccade

    PubMed Central

    Siebold, Alisha; van Zoest, Wieske; Donk, Mieke

    2011-01-01

    The goal of the current study was to investigate how salience-driven and goal-driven processes unfold during visual search over multiple eye movements. Eye movements were recorded while observers searched for a target, which was located on (Experiment 1) or defined as (Experiment 2) a specific orientation singleton. This singleton could either be the most, medium, or least salient element in the display. Results were analyzed as a function of response time separately for initial and second eye movements. Irrespective of the search task, initial saccades elicited shortly after the onset of the search display were primarily salience-driven whereas initial saccades elicited after approximately 250 ms were completely unaffected by salience. Initial saccades were increasingly guided in line with task requirements with increasing response times. Second saccades were completely unaffected by salience and were consistently goal-driven, irrespective of response time. These results suggest that stimulus-salience affects the visual system only briefly after a visual image enters the brain and has no effect thereafter. PMID:21931603

  3. Assessment of the perception of verticality and horizontality with self-paced saccades.

    PubMed

    Pettorossi, V E; Bambagioni, D; Bronstein, A M; Gresty, M A

    1998-07-01

    We investigated the ability of human subjects (Ss) to make self-paced saccades in the earth-vertical and horizontal directions (space-referenced task) and in the direction of the head-vertical and horizontal axis (self-referenced task) during whole body tilts of 0 degrees, 22.5 degrees, 45 degrees and 90 degrees in the frontal (roll) plane. Saccades were recorded in the dark with computerised video-oculography. During space-referenced tasks, the saccade vectors did not fully counter-rotate to compensate for larger angles of body tilt. This finding is in agreement with the 'A' effect reported for the visual vertical. The error was significantly larger for saccades intended to be space-horizontal than space-vertical. This vertico-horizontal dissociation implies greater difficulty in defining horizontality than verticality with the non-visual motor task employed. In contrast, normal Ss (and an alabyrinthine subject tested) were accurate in orienting saccades to their own (cranio-centric) vertical and horizontal axes regardless of tilt indicating that cranio-centric perception is robust and apparently not affected by gravitational influences.

  4. The Trajectories of Saccadic Eye Movements.

    ERIC Educational Resources Information Center

    Bahill, A. Terry; Stark, Lawrence

    1979-01-01

    Investigates the trajectories of saccadic eye movements, the control signals of the eye, and nature of the mechanisms that generate them, using the techniques of bioengineering in collecting the data. (GA)

  5. Voluntary saccade inhibition deficits correlate with extended white-matter cortico-basal atrophy in Huntington's disease.

    PubMed

    Vaca-Palomares, Israel; Coe, Brian C; Brien, Donald C; Munoz, Douglas P; Fernandez-Ruiz, Juan

    2017-01-01

    The ability to inhibit automatic versus voluntary saccade commands in demanding situations can be impaired in neurodegenerative diseases such as Huntington's disease (HD). These deficits could result from disruptions in the interaction between basal ganglia and the saccade control system. To investigate voluntary oculomotor control deficits related to the cortico-basal circuitry, we evaluated early HD patients using an interleaved pro- and anti-saccade task that requires flexible executive control to generate either an automatic response (look at a peripheral visual stimulus) or a voluntary response (look away from the stimulus in the opposite direction). The impairments of HD patients in this task are mainly attributed to degeneration in the striatal medium spiny neurons leading to an over-activation of the indirect-pathway thorough the basal ganglia. However, some studies have proposed that damage outside the indirect-pathway also contribute to executive and saccade deficits. We used the interleaved pro- and anti-saccade task to study voluntary saccade inhibition deficits, Voxel-based morphometry and Tract-based spatial statistic to map cortico-basal ganglia circuitry atrophy in HD. HD patients had voluntary saccade inhibition control deficits, including increased regular-latency anti-saccade errors and increased anticipatory saccades. These deficits correlated with white-matter atrophy in the inferior fronto-occipital fasciculus, anterior thalamic radiation, anterior corona radiata and superior longitudinal fasciculus. These findings suggest that cortico-basal ganglia white-matter atrophy in HD, disrupts the normal connectivity in a network controlling voluntary saccade inhibitory behavior beyond the indirect-pathway. This suggests that in vivo measures of white-matter atrophy can be a reliable marker of the progression of cognitive deficits in HD.

  6. Effects of spatial congruency on saccade and visual discrimination performance in a dual-task paradigm.

    PubMed

    Moehler, Tobias; Fiehler, Katja

    2014-12-01

    The present study investigated the coupling of selection-for-perception and selection-for-action during saccadic eye movement planning in three dual-task experiments. We focused on the effects of spatial congruency of saccade target (ST) location and discrimination target (DT) location and the time between ST-cue and Go-signal (SOA) on saccadic eye movement performance. In two experiments, participants performed a visual discrimination task at a cued location while programming a saccadic eye movement to a cued location. In the third experiment, the discrimination task was not cued and appeared at a random location. Spatial congruency of ST-location and DT-location resulted in enhanced perceptual performance irrespective of SOA. Perceptual performance in spatially incongruent trials was above chance, but only when the DT-location was cued. Saccade accuracy and precision were also affected by spatial congruency showing superior performance when the ST- and DT-location coincided. Saccade latency was only affected by spatial congruency when the DT-cue was predictive of the ST-location. Moreover, saccades consistently curved away from the incongruent DT-locations. Importantly, the effects of spatial congruency on saccade parameters only occurred when the DT-location was cued; therefore, results from experiments 1 and 2 are due to the endogenous allocation of attention to the DT-location and not caused by the salience of the probe. The SOA affected saccade latency showing decreasing latencies with increasing SOA. In conclusion, our results demonstrate that visuospatial attention can be voluntarily distributed upon spatially distinct perceptual and motor goals in dual-task situations, resulting in a decline of visual discrimination and saccade performance.

  7. An unbiased measure of the contributions of chroma and luminance to saccadic suppression of displacement.

    PubMed

    Anand, Sulekha; Bridgeman, Bruce

    2002-02-01

    Perception of image displacement is suppressed during saccadic eye movements. We probed the source of saccadic suppression of displacement by testing whether it selectively affects chromatic- or luminance-based motion information. Human subjects viewed a stimulus in which chromatic and luminance cues provided conflicting information about displacement direction. Apparent motion occurred during either fixation or a 19.5 degree saccade. Subjects detected motion and discriminated displacement direction in each trial. They reported motion in over 90% of fixation trials and over 70% of saccade trials. During fixation, the probability of perceiving the direction carried by chromatic cues decreased as luminance contrast increased. During saccades, subjects tended to perceive the direction indicated by luminance cues when luminance contrast was high. However, when luminance contrast was low, subjects showed no preference for the chromatic- or luminance-based direction. Thus magnocellular channels are suppressed, while stimulation of parvocellular channels is below threshold, so that neither channel drives motion perception during saccades. These results confirm that magnocellular inhibition is the source of saccadic suppression.

  8. A Sparse Matrix Approach for Simultaneous Quantification of Nystagmus and Saccade

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Stone, Lee; Boyle, Richard D.

    2012-01-01

    The vestibulo-ocular reflex (VOR) consists of two intermingled non-linear subsystems; namely, nystagmus and saccade. Typically, nystagmus is analysed using a single sufficiently long signal or a concatenation of them. Saccade information is not analysed and discarded due to insufficient data length to provide consistent and minimum variance estimates. This paper presents a novel sparse matrix approach to system identification of the VOR. It allows for the simultaneous estimation of both nystagmus and saccade signals. We show via simulation of the VOR that our technique provides consistent and unbiased estimates in the presence of output additive noise.

  9. Attentional cueing: fearful body postures capture attention with saccades.

    PubMed

    Bannerman, Rachel L; Milders, Maarten; Sahraie, Arash

    2010-05-01

    According to theories of attention and emotion, threat-related stimuli (e.g., negative facial expressions) capture and hold attention. Despite these theories, previous examination of attentional cueing by threat showed no enhanced capture at brief durations. One explanation for the absence of attentional capture effects may be related to the sensitivity of the manual response measure employed. Here we extended beyond facial expressions and investigated the time course of orienting attention towards fearful body postures in the exogenous cueing task. Cue duration (20, 40, 60, or 100 ms), orientation (upright or inverted), and response mode (saccadic eye movement or manual keypress) were manipulated across three experiments. In the saccade mode, both enhanced attentional capture and impaired disengagement from fearful bodies were evident and limited to rapid cue durations (20 and 40 ms), suggesting that saccadic cueing effects emerge rapidly and are short lived. In the manual mode, fearful bodies impacted only upon the disengagement component of attention at 100 ms, suggesting that manual cueing effects emerge over longer periods of time. No cueing modulation was found for inverted presentation, suggesting that valence, not low-level image confounds, was responsible for the cueing effects. Importantly, saccades could reveal threat biases at brief cue durations consistent with current theories of emotion and attention.

  10. Measuring saccade peak velocity using a low-frequency sampling rate of 50 Hz.

    PubMed

    Wierts, Roel; Janssen, Maurice J A; Kingma, Herman

    2008-12-01

    During the last decades, small head-mounted video eye trackers have been developed in order to record eye movements. Real-time systems-with a low sampling frequency of 50/60 Hz-are used for clinical vestibular practice, but are generally considered not to be suited for measuring fast eye movements. In this paper, it is shown that saccadic eye movements, having an amplitude of at least 5 degrees, can, in good approximation, be considered to be bandwidth limited up to a frequency of 25-30 Hz. Using the Nyquist theorem to reconstruct saccadic eye movement signals at higher temporal resolutions, it is shown that accurate values for saccade peak velocities, recorded at 50 Hz, can be obtained, but saccade peak accelerations and decelerations cannot. In conclusion, video eye trackers sampling at 50/60 Hz are appropriate for detecting the clinical relevant saccade peak velocities in contrast to what has been stated up till now.

  11. Adaptation of Reactive Saccades is Influenced by Unconscious Priming of the Attention Focus.

    PubMed

    Bock, Otmar; Grigorova, Valentina; Ilieva-Staneva, Milena

    2017-01-01

    The authors investigated whether the size of the attention focus can influence saccadic adaptation, and whether this influence changes in older age. Using the scrambled sentence task, young and older participants were either primed for a wide attention focus, or primed of a narrow attention focus, or were not primed for any specific attention focus. Subsequently, all participants underwent a double-step saccadic adaptation paradigm aimed at changing the direction of reflexive saccades. The authors found that compared to the nonprimed control group, priming for a wide attention focus enhanced saccadic adaptation in both age groups by a similar amount; the benefit persisted throughout the adaptation phase, but was absent during the deadaptation phase. In contrast, the authors found no effects of priming with a narrow attention focus on saccadic adaptation. From this the authors conclude that a wide attention focus is beneficial for workaround strategies but not for adaptive recalibration, and that those benefits are similar in young and older persons.

  12. What we remember affects how we see: spatial working memory steers saccade programming.

    PubMed

    Wong, Jason H; Peterson, Matthew S

    2013-02-01

    Relationships between visual attention, saccade programming, and visual working memory have been hypothesized for over a decade. Awh, Jonides, and Reuter-Lorenz (Journal of Experimental Psychology: Human Perception and Performance 24(3):780-90, 1998) and Awh et al. (Psychological Science 10(5):433-437, 1999) proposed that rehearsing a location in memory also leads to enhanced attentional processing at that location. In regard to eye movements, Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009) found that holding a location in working memory affects saccade programming, albeit negatively. In three experiments, we attempted to replicate the findings of Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009) and determine whether the spatial memory effect can occur in other saccade-cuing paradigms, including endogenous central arrow cues and exogenous irrelevant singletons. In the first experiment, our results were the opposite of those in Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009), in that we found facilitation (shorter saccade latencies) instead of inhibition when the saccade target matched the region in spatial working memory. In Experiment 2, we sought to determine whether the spatial working memory effect would generalize to other endogenous cuing tasks, such as a central arrow that pointed to one of six possible peripheral locations. As in Experiment 1, we found that saccade programming was facilitated when the cued location coincided with the saccade target. In Experiment 3, we explored how spatial memory interacts with other types of cues, such as a peripheral color singleton target or irrelevant onset. In both cases, the eyes were more likely to go to either singleton when it coincided with the location held in spatial working memory. On the basis of these results, we conclude that spatial working memory and saccade programming are likely to share common

  13. The Influence of Attention and Target Identification on Saccadic Eye Movements Depends on Prior Target Location

    PubMed Central

    Hardwick, David R.; Cutmore, Timothy R. H.; Hine, Trevor J.

    2014-01-01

    Saccadic latency is reduced by a temporal gap between fixation point and target, by identification of a target feature, and by movement in a new direction (inhibition of saccadic return, ISR). A simple additive model was compared with a shared resources model that predicts a three-way interaction. Twenty naïve participants made horizontal saccades to targets left and right of fixation in a randomised block design. There was a significant three-way interaction among the factors on saccade latency. This was revealed in a two-way interaction between feature identification and the gap versus no gap factor which was only apparent when the saccade was in the same direction as the previous saccade. No interaction was apparent when the saccade was in the opposite direction. This result supports an attentional inhibitory effect that is present during ISR to a previous location which is only partly released by the facilitative effect of feature identification and gap. Together, anticipatory error data and saccade latency interactions suggest a source of ISR at a higher level of attention, possibly localised in the dorsolateral prefrontal cortex and involving tonic activation. PMID:24719754

  14. Slower saccadic reading in Parkinson's disease.

    PubMed

    Jehangir, Naz; Yu, Caroline Yizhu; Song, Jeehey; Shariati, Mohammad Ali; Binder, Steven; Beyer, Jill; Santini, Veronica; Poston, Kathleen; Liao, Yaping Joyce

    2018-01-01

    Idiopathic Parkinson's Disease (PD) is characterized by degeneration of dopaminergic and other neurons, leading to motor and non-motor deficits. Abnormal eye movements in PD, including fixations, saccades, and convergence, are well described. However, saccadic reading, which requires serial and alternating saccades and fixations, is not well studied, despite its obvious impact on the quality of life. In this study, we assessed saccadic reading using variations of the King-Devick (KD) test, a rapid single digit number naming test, as a way to assess the ability to make serial left-to-right ocular motor movements necessary for reading. We recruited 42 treated PD patients and 80 age-matched controls and compared their reading times with a variety of measures, including age, duration of disease, Unified Parkinson's Disease Rating Scale (UPDRS), the National Eye Institute 25-Item Visual Functioning Questionnaire 25 (VFQ-25), and Montreal Cognitive assessment (MoCA) test. The subjects performed 4 trials of reading 120 single digit numbers aloud as fast as possible without making errors. In each trial, they read 3 pages (KD1, KD2, and KD3), and each page contained 40 numbers per page in 8 lines with 5 numbers/line. We found that PD patients read about 20% slower than controls on all tests (KD1, 2, and 3 tests) (p < 0.02), and both groups read irregularly spaced numbers slower than regularly spaced numbers. Having lines between numbers to guide reading (KD1 tests) did not impact reading time in both PD and controls, but increased visual crowding as a result of decreased spacing between numbers (KD3 tests) was associated with significantly slower reading times in both PD and control groups. Our study revealed that saccadic reading is slower in PD, but controls and PD patients are both impacted by visuospatial planning challenges posed by increased visual crowding and irregularity of number spacing. Reading time did not correlate with UPDRS or MoCA scores in PD patients but

  15. The effect of saccade metrics on the corollary discharge contribution to perceived eye location

    PubMed Central

    Bansal, Sonia; Jayet Bray, Laurence C.; Peterson, Matthew S.

    2015-01-01

    Corollary discharge (CD) is hypothesized to provide the movement information (direction and amplitude) required to compensate for the saccade-induced disruptions to visual input. Here, we investigated to what extent these conveyed metrics influence perceptual stability in human subjects with a target-displacement detection task. Subjects made saccades to targets located at different amplitudes (4°, 6°, or 8°) and directions (horizontal or vertical). During the saccade, the target disappeared and then reappeared at a shifted location either in the same direction or opposite to the movement vector. Subjects reported the target displacement direction, and from these reports we determined the perceptual threshold for shift detection and estimate of target location. Our results indicate that the thresholds for all amplitudes and directions generally scaled with saccade amplitude. Additionally, subjects on average produced hypometric saccades with an estimated CD gain <1. Finally, we examined the contribution of different error signals to perceptual performance, the saccade error (movement-to-movement variability in saccade amplitude) and visual error (distance between the fovea and the shifted target location). Perceptual judgment was not influenced by the fluctuations in movement amplitude, and performance was largely the same across movement directions for different magnitudes of visual error. Importantly, subjects reported the correct direction of target displacement above chance level for very small visual errors (<0.75°), even when these errors were opposite the target-shift direction. Collectively, these results suggest that the CD-based compensatory mechanisms for visual disruptions are highly accurate and comparable for saccades with different metrics. PMID:25761955

  16. Earlier saccades to task-relevant targets irrespective of relative gain between peripheral and foveal information.

    PubMed

    Wolf, Christian; Schütz, Alexander C

    2017-06-01

    Saccades bring objects of interest onto the fovea for high-acuity processing. Saccades to rewarded targets show shorter latencies that correlate negatively with expected motivational value. Shorter latencies are also observed when the saccade target is relevant for a perceptual discrimination task. Here we tested whether saccade preparation is equally influenced by informational value as it is by motivational value. We defined informational value as the probability that information is task-relevant times the ratio between postsaccadic foveal and presaccadic peripheral discriminability. Using a gaze-contingent display, we independently manipulated peripheral and foveal discriminability of the saccade target. Latencies of saccades with perceptual task were reduced by 36 ms in general, but they were not modulated by the information saccades provide (Experiments 1 and 2). However, latencies showed a clear negative linear correlation with the probability that the target is task-relevant (Experiment 3). We replicated that the facilitation by a perceptual task is spatially specific and not due to generally heightened arousal (Experiment 4). Finally, the facilitation only emerged when the perceptual task is in the visual but not in the auditory modality (Experiment 5). Taken together, these results suggest that saccade latencies are not equally modulated by informational value as by motivational value. The facilitation by a perceptual task only arises when task-relevant visual information is foveated, irrespective of whether the foveation is useful or not.

  17. A closer look at visually guided saccades in autism and Asperger’s disorder

    PubMed Central

    Johnson, Beth P.; Rinehart, Nicole J.; Papadopoulos, Nicole; Tonge, Bruce; Millist, Lynette; White, Owen; Fielding, Joanne

    2012-01-01

    Motor impairments have been found to be a significant clinical feature associated with autism and Asperger’s disorder (AD) in addition to core symptoms of communication and social cognition deficits. Motor deficits in high-functioning autism (HFA) and AD may differentiate these disorders, particularly with respect to the role of the cerebellum in motor functioning. Current neuroimaging and behavioral evidence suggests greater disruption of the cerebellum in HFA than AD. Investigations of ocular motor functioning have previously been used in clinical populations to assess the integrity of the cerebellar networks, through examination of saccade accuracy and the integrity of saccade dynamics. Previous investigations of visually guided saccades in HFA and AD have only assessed basic saccade metrics, such as latency, amplitude, and gain, as well as peak velocity. We used a simple visually guided saccade paradigm to further characterize the profile of visually guided saccade metrics and dynamics in HFA and AD. It was found that children with HFA, but not AD, were more inaccurate across both small (5°) and large (10°) target amplitudes, and final eye position was hypometric at 10°. These findings suggest greater functional disturbance of the cerebellum in HFA than AD, and suggest fundamental difficulties with visual error monitoring in HFA. PMID:23162442

  18. A Novel Saccadic Strategy Revealed by Suppression Head Impulse Testing of Patients with Bilateral Vestibular Loss.

    PubMed

    de Waele, Catherine; Shen, Qiwen; Magnani, Christophe; Curthoys, Ian S

    2017-01-01

    We examined the eye movement response patterns of a group of patients with bilateral vestibular loss (BVL) during suppression head impulse testing. Some showed a new saccadic strategy that may have potential for explaining how patients use saccades to recover from vestibular loss. Eight patients with severe BVL [vestibulo-ocular reflex (VOR) gains less than 0.35 and absent otolithic function] were tested. All patients were given the Dizziness Handicap Inventory and questioned about oscillopsia during abrupt head movements. Two paradigms of video head impulse testing of the horizontal VOR were used: (1) the classical head impulse paradigm [called head impulse test (HIMPs)]-fixating an earth-fixed target during the head impulse and (2) the new complementary test paradigm-fixating a head-fixed target during the head impulse (called SHIMPs). The VOR gain of HIMPs was quantified by two algorithms. During SHIMPs testing, some BVL patients consistently generated an inappropriate covert compensatory saccade during the head impulse that required a corresponding large anti-compensatory saccade at the end of the head impulse in order to obey the instructions to maintain gaze on the head-fixed target. By contrast, other BVL patients did not generate this inappropriate covert saccade and did not exhibit a corresponding anti-compensatory saccade. The latencies of the covert saccade in SHIMPs and HIMPs were similar. The pattern of covert saccades during SHIMPs appears to be related to the reduction of oscillopsia during abrupt head movements. BVL patients who did not report oscillopsia showed this unusual saccadic pattern, whereas BVL patients who reported oscillopsia did not show this pattern. This inappropriate covert SHIMPs saccade may be an objective indicator of how some patients with vestibular loss have learned to trigger covert saccades during head movements in everyday life.

  19. EYE MOVEMENT RECORDING AND NONLINEAR DYNAMICS ANALYSIS – THE CASE OF SACCADES#

    PubMed Central

    Aştefănoaei, Corina; Pretegiani, Elena; Optican, L.M.; Creangă, Dorina; Rufa, Alessandra

    2015-01-01

    Evidence of a chaotic behavioral trend in eye movement dynamics was examined in the case of a saccadic temporal series collected from a healthy human subject. Saccades are highvelocity eye movements of very short duration, their recording being relatively accessible, so that the resulting data series could be studied computationally for understanding the neural processing in a motor system. The aim of this study was to assess the complexity degree in the eye movement dynamics. To do this we analyzed the saccadic temporal series recorded with an infrared camera eye tracker from a healthy human subject in a special experimental arrangement which provides continuous records of eye position, both saccades (eye shifting movements) and fixations (focusing over regions of interest, with rapid, small fluctuations). The semi-quantitative approach used in this paper in studying the eye functioning from the viewpoint of non-linear dynamics was accomplished by some computational tests (power spectrum, portrait in the state space and its fractal dimension, Hurst exponent and largest Lyapunov exponent) derived from chaos theory. A high complexity dynamical trend was found. Lyapunov largest exponent test suggested bi-stability of cellular membrane resting potential during saccadic experiment. PMID:25698889

  20. Memory-guided saccade processing in visual form agnosia (patient DF).

    PubMed

    Rossit, Stéphanie; Szymanek, Larissa; Butler, Stephen H; Harvey, Monika

    2010-01-01

    According to Milner and Goodale's model (The visual brain in action, Oxford University Press, Oxford, 2006) areas in the ventral visual stream mediate visual perception and oV-line actions, whilst regions in the dorsal visual stream mediate the on-line visual control of action. Strong evidence for this model comes from a patient (DF), who suffers from visual form agnosia after bilateral damage to the ventro-lateral occipital region, sparing V1. It has been reported that she is normal in immediate reaching and grasping, yet severely impaired when asked to perform delayed actions. Here we investigated whether this dissociation would extend to saccade execution. Neurophysiological studies and TMS work in humans have shown that the posterior parietal cortex (PPC), on the right in particular (supposedly spared in DF), is involved in the control of memory-guided saccades. Surprisingly though, we found that, just as reported for reaching and grasping, DF's saccadic accuracy was much reduced in the memory compared to the stimulus-guided condition. These data support the idea of a tight coupling of eye and hand movements and further suggest that dorsal stream structures may not be sufficient to drive memory-guided saccadic performance.

  1. An fMRI Investigation of Preparatory Set in the Human Cerebral Cortex and Superior Colliculus for Pro- and Anti-Saccades

    PubMed Central

    Furlan, Michele; Smith, Andrew T.; Walker, Robin

    2016-01-01

    Previous studies have identified several cortical regions that show larger BOLD responses during preparation and execution of anti-saccades than pro-saccades. We confirmed this finding with a greater BOLD response for anti-saccades than pro-saccades during the preparation phase in the FEF, IPS and DLPFC and in the FEF and IPS in the execution phase. We then applied multi-voxel pattern analysis (MVPA) to establish whether different neural populations are involved in the two types of saccade. Pro-saccades and anti-saccades were reliably decoded during saccade execution in all three cortical regions (FEF, DLPFC and IPS) and in IPS during saccade preparation. This indicates neural specialization, for programming the desired response depending on the task rule, in these regions. In a further study tailored for imaging the superior colliculus in the midbrain a similar magnitude BOLD response was observed for pro-saccades and anti-saccades and the two saccade types could not be decoded with MVPA. This was the case both for activity related to the preparation phase and also for that elicited during the execution phase. We conclude that separate cortical neural populations are involved in the task-specific programming of a saccade while in contrast, the SC has a role in response preparation but may be less involved in high-level, task-specific aspects of the control of saccades. PMID:27391390

  2. Asymmetries in the Control of Saccadic Eye Movements to Bifurcating Targets.

    ERIC Educational Resources Information Center

    Zeevi, Yehoshua Y.; And Others

    The examination of saccadic eye movements--rapid shifts in gaze from one visual area of interest to another--is useful in studying pilot's visual learning in flight simulator training. Saccadic eye movements are the basic oculomotor response associated with the acquisition of visual information and provide an objective measure of higher perceptual…

  3. A subanesthetic dose of ketamine in the Rhesus monkey reduces the occurrence of anticipatory saccades.

    PubMed

    Ameqrane, Ilhame; Ilhame, Ameqrane; Wattiez, Nicolas; Nicolas, Wattiez; Pouget, Pierre; Pierre, Pouget; Missal, Marcus; Marcus, Missal

    2015-10-01

    It has been shown that antagonism of the glutamatergic N-methyl-D-aspartate (NMDA) receptor with subanesthetic doses of ketamine perturbs the perception of elapsed time. Anticipatory eye movements are based on an internal representation of elapsed time. Therefore, the occurrence of anticipatory saccades could be a particularly sensitive indicator of abnormal time perception due to NMDA receptors blockade. The objective of this study was to determine whether the occurrence of anticipatory saccades could be selectively altered by a subanesthetic dose of ketamine. Three Rhesus monkeys were trained in a simple visually guided saccadic task with a variable delay. Monkeys were rewarded for making a visually guided saccade at the end of the delay. Premature anticipatory saccades to the future position of the eccentric target initiated before the end of the delay were not rewarded. A subanesthetic dose of ketamine (0.25 mg/kg) or a saline solution of the same volume was injected i.m. during the task. We found that the injected dose of ketamine did not induce sedation or abnormal behavior. However, in ∼4 min, ketamine induced a strong reduction of the occurrence of anticipatory saccades but did not reduce the occurrence of visually guided saccades. This unexpected reduction of anticipatory saccade occurrence could be interpreted as resulting from an altered use of the perception of elapsed time during the delay period induced by NMDA receptors antagonism.

  4. Analysis of EEG Related Saccadic Eye Movement

    NASA Astrophysics Data System (ADS)

    Funase, Arao; Kuno, Yoshiaki; Okuma, Shigeru; Yagi, Tohru

    Our final goal is to establish the model for saccadic eye movement that connects the saccade and the electroencephalogram(EEG). As the first step toward this goal, we recorded and analyzed the saccade-related EEG. In the study recorded in this paper, we tried detecting a certain EEG that is peculiar to the eye movement. In these experiments, each subject was instructed to point their eyes toward visual targets (LEDs) or the direction of the sound sources (buzzers). In the control cases, the EEG was recorded in the case of no eye movemens. As results, in the visual experiments, we found that the potential of EEG changed sharply on the occipital lobe just before eye movement. Furthermore, in the case of the auditory experiments, similar results were observed. In the case of the visual experiments and auditory experiments without eye movement, we could not observed the EEG changed sharply. Moreover, when the subject moved his/her eyes toward a right-side target, a change in EEG potential was found on the right occipital lobe. On the contrary, when the subject moved his/her eyes toward a left-side target, a sharp change in EEG potential was found on the left occipital lobe.

  5. Updating the Premotor Theory: The Allocation of Attention Is Not Always Accompanied by Saccade Preparation

    ERIC Educational Resources Information Center

    Belopolsky, Artem V.; Theeuwes, Jan

    2012-01-01

    There is an ongoing controversy regarding the relationship between covert attention and saccadic eye movements. While there is quite some evidence that the preparation of a saccade is obligatory preceded by a shift of covert attention, the reverse is not clear: Is allocation of attention always accompanied by saccade preparation? Recently, a…

  6. Effects of strabismic amblyopia and strabismus without amblyopia on visuomotor behavior, I: saccadic eye movements.

    PubMed

    Niechwiej-Szwedo, Ewa; Chandrakumar, Manokaraananthan; Goltz, Herbert C; Wong, Agnes M F

    2012-11-01

    It has previously been shown that anisometropic amblyopia affects the programming and execution of saccades. The aim of the current study was to investigate the impact of strabismic amblyopia on saccade performance. Fourteen adults with strabismic amblyopia, 13 adults with strabismus without amblyopia, and 14 visually normal adults performed saccades and reach-to-touch movements to targets presented at ± 5° and ± 10° eccentricity during binocular and monocular viewing. Latency, amplitude, and peak velocity of primary and secondary saccades were measured. In contrast to visually normal participants who had shorter primary saccade latency during binocular viewing, no binocular advantage was found in patients with strabismus with or without amblyopia. Patients with amblyopia had longer saccade latency during amblyopic eye viewing (P < 0.0001); however, there were no significant differences in saccade amplitude precision among the three groups across viewing conditions. Further analysis showed that only patients with severe amblyopia and no stereopsis (n = 4) exhibited longer latency (which was more pronounced for more central targets; P < 0.0001), and they also had reduced amplitude precision during amblyopic eye viewing. In contrast, patients with mild amblyopia (n = 5) and no stereopsis had normal latency and reduced precision during amblyopic eye viewing (P < 0.001), whereas those with gross stereopsis (n = 5) had normal latency and precision. There were no differences in peak velocity among the groups. Distinct patterns of saccade performance according to different levels of visual acuity and stereoscopic losses in strabismic amblyopia were found. These findings were in contrast to those in anisometropic amblyopia in which the altered saccade performance was independent of the extent of visual acuity or stereoscopic deficits. These results were most likely due to different long-term sensory suppression mechanisms in strabismic versus anisometropic amblyopia.

  7. Steering a virtual blowfly: simulation of visual pursuit.

    PubMed

    Boeddeker, Norbert; Egelhaaf, Martin

    2003-09-22

    The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.

  8. The effects of ion channel blockers validate the conductance-based model of saccadic oscillations

    PubMed Central

    Shaikh, Aasef G.; Zee, David S.; Optican, Lance M.; Miura, Kenichiro; Ramat, Stefano; Leigh, R. John

    2012-01-01

    Conductance-based models of reciprocally inhibiting burst neurons suggest that intrinsic membrane properties and postinhibitory rebound (PIR) determine the amplitude and frequency of saccadic oscillations. Reduction of the low-threshold calcium currents (IT) in the model decreased the amplitude but increased the frequency of the simulated oscillations. Combined reduction of hyperpolarization-activated cation current (Ih) and IT in the model abolished the simulated oscillations. We measured the effects of a selective blocker of IT (ethosuximide) in healthy subjects on the amplitude and frequency of saccadic oscillations evoked by eye closure and of a nonselective blocker of Ih and IT (propronolol) in a patient with microsaccadic oscillation and limb tremor syndrome (mSOLT). Ethosuximide significantly reduced the amplitude but increased the frequency of the saccadic oscillations during eye closure in healthy subjects. Propranolol abolished saccadic oscillations in the mSOLT patient. These results support the hypothetical role of postinhibitory rebound, Ih, and IT, in generation of saccadic oscillations and determining their kinematic properties. PMID:21950976

  9. Modulation of motor control in saccadic behaviors by TMS over the posterior parietal cortex.

    PubMed

    Liang, Wei-Kuang; Juan, Chi-Hung

    2012-08-01

    The right posterior parietal cortex (rPPC) has been found to be critical in shaping visual selection and distractor-induced saccade curvature in the context of predictive as well as nonpredictive visual cues by means of transcranial magnetic stimulation (TMS) interference. However, the dynamic details of how distractor-induced saccade curvatures are affected by rPPC TMS have not yet been investigated. This study aimed to elucidate the key dynamic properties that cause saccades to curve away from distractors with different degrees of curvature in various TMS and target predictability conditions. Stochastic optimal feedback control theory was used to model the dynamics of the TMS saccade data. This allowed estimation of torques, which was used to identify the critical dynamic mechanisms producing saccade curvature. The critical mechanisms of distractor-induced saccade curvatures were found to be the motor commands and torques in the transverse direction. When an unpredictable saccade target occurred with rPPC TMS, there was an initial period of greater distractor-induced torque toward the side opposite the distractor in the transverse direction, immediately followed by a relatively long period of recovery torque that brought the deviated trace back toward the target. The results imply that the mechanisms of distractor-induced saccade curvature may be comprised of two mechanisms: the first causing the initial deviation and the second bringing the deviated trace back toward the target. The pattern of the initial torque in the transverse direction revealed the former mechanism. Conversely, the later mechanism could be well explained as a consequence of the control policy in this model. To summarize, rPPC TMS increased the initial torque away from the distractor as well as the recovery torque toward the target.

  10. The visual representations of motion and of gravity are functionally independent: Evidence of a differential effect of smooth pursuit eye movements.

    PubMed

    De Sá Teixeira, Nuno Alexandre

    2016-09-01

    The memory for the final position of a moving object which suddenly disappears has been found to be displaced forward, in the direction of motion, and downwards, in the direction of gravity. These phenomena were coined, respectively, Representational Momentum and Representational Gravity. Although both these and similar effects have been systematically linked with the functioning of internal representations of physical variables (e.g. momentum and gravity), serious doubts have been raised for a cognitively based interpretation, favouring instead a major role of oculomotor and perceptual factors which, more often than not, were left uncontrolled and even ignored. The present work aims to determine the degree to which Representational Momentum and Representational Gravity are epiphenomenal to smooth pursuit eye movements. Observers were required to indicate the offset locations of targets moving along systematically varied directions after a variable imposed retention interval. Each participant completed the task twice, varying the eye movements' instructions: gaze was either constrained or left free to track the targets. A Fourier decomposition analysis of the localization responses was used to disentangle both phenomena. The results show unambiguously that constraining eye movements significantly eliminates the harmonic components which index Representational Momentum, but have no effect on Representational Gravity or its time course. The found outcomes offer promising prospects for the study of the visual representation of gravity and its neurological substrates.

  11. Longitudinal assessment of reflexive and volitional saccades in Niemann-Pick Type C disease during treatment with miglustat.

    PubMed

    Abel, Larry A; Walterfang, Mark; Stainer, Matthew J; Bowman, Elizabeth A; Velakoulis, Dennis

    2015-12-21

    Niemann-Pick Type C disease (NPC), is an autosomal recessive neurovisceral disorder of lipid metabolism. One characteristic feature of NPC is a vertical supranuclear gaze palsy particularly affecting saccades. However, horizontal saccades are also impaired and as a consequence a parameter related to horizontal peak saccadic velocity was used as an outcome measure in the clinical trial of miglustat, the first drug approved in several jurisdictions for the treatment of NPC. As NPC-related neuropathology is widespread in the brain we examined a wider range of horizontal saccade parameters and to determine whether these showed treatment-related improvement and, if so, if this was maintained over time. Nine adult NPC patients participated in the study; 8 were treated with miglustat for periods between 33 and 61 months. Data were available for 2 patients before their treatment commenced and 1 patient was untreated. Tasks included reflexive saccades, antisaccades and self-paced saccades, with eye movements recorded by an infrared reflectance eye tracker. Parameters analysed were reflexive saccade gain and latency, asymptotic peak saccadic velocity, HSEM-α (the slope of the peak duration-amplitude regression line), antisaccade error percentage, self-paced saccade count and time between refixations on the self-paced task. Data were analysed by plotting the change from baseline as a proportion of the baseline value at each test time and, where multiple data values were available at each session, by linear mixed effects (LME) analysis. Examination of change plots suggested some modest sustained improvement in gain, no consistent changes in asymptotic peak velocity or HSEM-α, deterioration in the already poor antisaccade error rate and sustained improvement in self-paced saccade rate. LME analysis showed statistically significant improvement in gain and the interval between self-paced saccades, with differences over time between treated and untreated patients. Both

  12. Updating the premotor theory: the allocation of attention is not always accompanied by saccade preparation.

    PubMed

    Belopolsky, Artem V; Theeuwes, Jan

    2012-08-01

    There is an ongoing controversy regarding the relationship between covert attention and saccadic eye movements. While there is quite some evidence that the preparation of a saccade is obligatory preceded by a shift of covert attention, the reverse is not clear: Is allocation of attention always accompanied by saccade preparation? Recently, a shifting and maintenance account was proposed suggesting that shifting and maintenance components of covert attention differ in their relation to the oculomotor system. Specifically, it was argued that a shift of covert attention is always accompanied by activation of the oculomotor program, while maintaining covert attention at a location can be accompanied either by activation or suppression of oculomotor program, depending on the probability of executing an eye movement to the attended location. In the present study we tested whether there is such an obligatory coupling between shifting of attention and saccade preparation and how quickly saccade preparation gets suppressed. The results showed that attention shifting was always accompanied by saccade preparation whenever covert attention had to be shifted during visual search, as well as in response to exogenous or endogenous cues. However, for the endogenous cues the saccade program to the attended location was suppressed very soon after the attention shift was completed. The current findings support the shifting and maintenance account and indicate that the premotor theory needs to be updated to include a shifting and maintenance component for the cases in which covert shifts of attention are made without the intention to execute a saccade. (c) 2012 APA, all rights reserved.

  13. The saccadic flow baseline: Accounting for image-independent biases in fixation behavior.

    PubMed

    Clarke, Alasdair D F; Stainer, Matthew J; Tatler, Benjamin W; Hunt, Amelia R

    2017-09-01

    Much effort has been made to explain eye guidance during natural scene viewing. However, a substantial component of fixation placement appears to be a set of consistent biases in eye movement behavior. We introduce the concept of saccadic flow, a generalization of the central bias that describes the image-independent conditional probability of making a saccade to (xi+1, yi+1), given a fixation at (xi, yi). We suggest that saccadic flow can be a useful prior when carrying out analyses of fixation locations, and can be used as a submodule in models of eye movements during scene viewing. We demonstrate the utility of this idea by presenting bias-weighted gaze landscapes, and show that there is a link between the likelihood of a saccade under the flow model, and the salience of the following fixation. We also present a minor improvement to our central bias model (based on using a multivariate truncated Gaussian), and investigate the leftwards and coarse-to-fine biases in scene viewing.

  14. Micro and regular saccades across the lifespan during a visual search of "Where's Waldo" puzzles.

    PubMed

    Port, Nicholas L; Trimberger, Jane; Hitzeman, Steve; Redick, Bryan; Beckerman, Stephen

    2016-01-01

    Despite the fact that different aspects of visual-motor control mature at different rates and aging is associated with declines in both sensory and motor function, little is known about the relationship between microsaccades and either development or aging. Using a sample of 343 individuals ranging in age from 4 to 66 and a task that has been shown to elicit a high frequency of microsaccades (solving Where's Waldo puzzles), we explored microsaccade frequency and kinematics (main sequence curves) as a function of age. Taking advantage of the large size of our dataset (183,893 saccades), we also address (a) the saccade amplitude limit at which video eye trackers are able to accurately measure microsaccades and (b) the degree and consistency of saccade kinematics at varying amplitudes and directions. Using a modification of the Engbert-Mergenthaler saccade detector, we found that even the smallest amplitude movements (0.25-0.5°) demonstrate basic saccade kinematics. With regard to development and aging, both microsaccade and regular saccade frequency exhibited a very small increase across the life span. Visual search ability, as per many other aspects of visual performance, exhibited a U-shaped function over the lifespan. Finally, both large horizontal and moderate vertical directional biases were detected for all saccade sizes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Saccadic eye movement performance as an indicator of driving ability in elderly drivers.

    PubMed

    Schmitt, Kai-Uwe; Seeger, Rolf; Fischer, Hartmut; Lanz, Christian; Muser, Markus; Walz, Felix; Schwarz, Urs

    2015-01-01

    Regular checking of the fitness to drive of elderly car-license holders is required in some countries, and this will become increasingly important as more countries face aging populations. The present study investigated whether the analysis of saccadic eye movements could be used as a screening method for the assessment of driving ability. Three different paradigms (prosaccades, antisaccades, and visuovisual interactive (VVI) saccades) were used to test saccadic eye movements in 144 participants split into four groups: elderly drivers who came to the attention of road authorities for suspected lack of fitness to drive, a group of elderly drivers who served as a comparison group, a group of neurology patients with established brain lesion diagnoses, and a young comparison group. The group of elderly drivers with suspected deficits in driving skills also underwent a medical examination and a practical on-road driving test. The results of the saccadic eye tests of the different groups were compared. Antisaccade results indicated a strong link to driving behaviour: elderly drivers who were not fit to drive exhibited a poor performance on the antisaccade task and the performance in the VVI task was also clearly poorer in this group. Testing saccadic eye movements appears to be a promising and efficient method for screening large numbers of people such as elderly drivers. This study indicated a link between antisaccade performance and the ability to drive. Hence, measuring saccadic eye movements should be considered as a tool for screening the fitness to drive.

  16. Changes to Saccade Behaviors in Parkinson’s Disease Following Dancing and Observation of Dancing

    PubMed Central

    Cameron, Ian G. M.; Brien, Donald C.; Links, Kira; Robichaud, Sarah; Ryan, Jennifer D.; Munoz, Douglas P.; Chow, Tiffany W.

    2012-01-01

    Background: The traditional view of Parkinson’s disease (PD) as a motor disorder only treated by dopaminergic medications is now shifting to include non-pharmacologic interventions. We have noticed that patients with PD obtain an immediate, short-lasting benefit to mobility by the end of a dance class, suggesting some mechanism by which dancing reduces bradykinetic symptoms. We have also found that patients with PD are unimpaired at initiating highly automatic eye movements to visual stimuli (pro-saccades) but are impaired at generating willful eye movements away from visual stimuli (anti-saccades). We hypothesized that the mechanisms by which a dance class improves movement initiation may generalize to the brain networks impacted in PD (frontal lobe and basal ganglia, BG), and thus could be assessed objectively by measuring eye movements, which rely on the same neural circuitry. Methods: Participants with PD performed pro- and anti-saccades before, and after, a dance class. “Before” and “after” saccade performance measurements were compared. These measurements were then contrasted with a control condition (observing a dance class in a video), and with older and younger adult populations, who rested for an hour between measurements. Results: We found an improvement in anti-saccade performance following the observation of dance (but not following dancing), but we found a detriment in pro-saccade performance following dancing. Conclusion: We suggest that observation of dance induced plasticity changes in frontal-BG networks that are important for executive control. Dancing, in contrast, increased voluntary movement signals that benefited mobility, but interfered with the automaticity of efficient pro-saccade execution. PMID:23483834

  17. An electrooculogram-based binary saccade sequence classification (BSSC) technique for augmentative communication and control.

    PubMed

    Keegan, Johnalan; Burke, Edward; Condron, James

    2009-01-01

    In the field of assistive technology, the electrooculogram (EOG) can be used as a channel of communication and the basis of a man-machine interface. For many people with severe motor disabilities, simple actions such as changing the TV channel require assistance. This paper describes a method of detecting saccadic eye movements and the use of a saccade sequence classification algorithm to facilitate communication and control. Saccades are fast eye movements that occurs when a person's gaze jumps from one fixation point to another. The classification is based on pre-defined sequences of saccades, guided by a static visual template (e.g. a page or poster). The template, consisting of a table of symbols each having a clearly identifiable fixation point, is situated within view of the user. To execute a particular command, the user moves his or her gaze through a pre-defined path of eye movements. This results in a well-formed sequence of saccades which are translated into a command if a match is found in a library of predefined sequences. A coordinate transformation algorithm is applied to each candidate sequence of recorded saccades to mitigate the effect of changes in the user's position and orientation relative to the visual template. Upon recognition of a saccade sequence from the library, its associated command is executed. A preliminary experiment in which two subjects were instructed to perform a series of command sequences consisting of 8 different commands are presented in the final sections. The system is also shown to be extensible to facilitate convenient text entry via an alphabetic visual template.

  18. Saccadic Suppression of Flash Detection: the Uncertainty Theory VS. Alternative Theories.

    NASA Astrophysics Data System (ADS)

    Greenhouse, Daniel Stephen

    Helmholtz('1) and others have proposed that when a saccadic eye movement occurs, stability of the visual world is maintained by a process that utilizes a corollary to the efferent motor signal for the eye movement, allowing the visual frame of reference to translate equal in magnitude, but opposite in sign, to the movement itself. This process is now known to be synchronous neither with the saccadic trajectory('2,3) nor in all parts of the visual field.('4) In addition, this process has been shown to have variability('2) whereby the perceived visual direction of a flash presented to a fixed retinal locus during a saccade may change from trial to trial. Hence, uncertainty with respect to visual location of a stimulus may exist during and just before a saccade. It has been established for normal vision that uncertainty produces a decline in detectability of a weak stimulus.('5,6,7) The research reported in this dissertation was performed to test the notion, first suggested by L. Matin,('8) that uncertainty is responsible for saccadic suppression, the decline in detectability that has been reported('9,10,11) for a brief flash presented during a saccade. After having established the existence of suppression under the conditions we employed (1(DEGREES) foveal flash occurring 2 1/2(DEGREES) into a 10(DEGREES) voluntary saccade, presented against an illuminated background) we conducted an initial test of the uncertainty theory. We employed a pedestal (flash at the spatial, temporal, and chromatic locus of the stimulus, occurring on all trials, and sufficiently intense as to be visible during saccades) in an attempt to reduce uncertainty. Suppression was nearly eliminated for all subjects. We interpreted this result in terms of the uncertainty theory, but were unable to reject alternative theories of suppression, which include forms of neural inhibition,('10,11) increaed noise level in the retina during saccades,('12) and metacontrast masking.('13). The next experiment

  19. The background is remapped across saccades.

    PubMed

    Cha, Oakyoon; Chong, Sang Chul

    2014-02-01

    Physiological studies have found that neurons prepare for impending eye movements, showing anticipatory responses to stimuli presented at the location of the post-saccadic receptive fields (RFs) (Wurtz in Vis Res 48:2070-2089, 2008). These studies proposed that visual neurons with shifting RFs prepared for the stimuli they would process after an impending saccade. Additionally, psychophysical studies have shown behavioral consequences of those anticipatory responses, including the transfer of aftereffects (Melcher in Nat Neurosci 10:903-907, 2007) and the remapping of attention (Rolfs et al. in Nat Neurosci 14:252-258, 2011). As the physiological studies proposed, the shifting RF mechanism explains the transfer of aftereffects. Recently, a new mechanism based on activation transfer via a saliency map was proposed, which accounted for the remapping of attention (Cavanagh et al. in Trends Cogn Sci 14:147-153, 2010). We hypothesized that there would be different aspects of the remapping corresponding to these different neural mechanisms. This study found that the information in the background was remapped to a similar extent as the figure, provided that the visual context remained stable. We manipulated the status of the figure and the ground in the saliency map and showed that the manipulation modulated the remapping of the figure and the ground in different ways. These results suggest that the visual system has an ability to remap the background as well as the figure, but lacks the ability to modulate the remapping of the background based on the visual context, and that different neural mechanisms might work together to maintain visual stability across saccades.

  20. Separate neural substrates in the human cerebellum for sensory-motor adaptation of reactive and of scanning voluntary saccades.

    PubMed

    Alahyane, N; Fonteille, V; Urquizar, C; Salemme, R; Nighoghossian, N; Pelisson, D; Tilikete, C

    2008-01-01

    Sensory-motor adaptation processes are critically involved in maintaining accurate motor behavior throughout life. Yet their underlying neural substrates and task-dependency bases are still poorly understood. We address these issues here by studying adaptation of saccadic eye movements, a well-established model of sensory-motor plasticity. The cerebellum plays a major role in saccadic adaptation but it has not yet been investigated whether this role can account for the known specificity of adaptation to the saccade type (e.g., reactive versus voluntary). Two patients with focal lesions in different parts of the cerebellum were tested using the double-step target paradigm. Each patient was submitted to two separate sessions: one for reactive saccades (RS) triggered by the sudden appearance of a visual target and the second for scanning voluntary saccades (SVS) performed when exploring a more complex scene. We found that a medial cerebellar lesion impaired adaptation of reactive-but not of voluntary-saccades, whereas a lateral lesion affected adaptation of scanning voluntary saccades, but not of reactive saccades. These findings provide the first evidence of an involvement of the lateral cerebellum in saccadic adaptation, and extend the demonstrated role of the cerebellum in RS adaptation to adaptation of SVS. The double dissociation of adaptive abilities is also consistent with our previous hypothesis of the involvement in saccadic adaptation of partially separated cerebellar areas specific to the reactive or voluntary task (Alahyane et al. Brain Res 1135:107-121 (2007)).

  1. The volitional inhibition of anticipatory ocular pursuit using a stop signal.

    PubMed

    Jarrett, Christian Beresford; Barnes, Graham R

    2003-10-01

    Unlike limb movements, smooth pursuit eye movements cannot normally be performed in the absence of a target. However, when subjects have a high expectancy of an imminent target appearance, the situation changes, and anticipatory smooth pursuit (ASP) tends to precede target onset by several hundred milliseconds. The velocity of this ASP is scaled predictively according to expected target velocity. And when an upcoming target is unexpectedly altered, or fails to appear, ASP continues regardless for approximately 150-200 ms before modification by visual feedback begins [J. Neurophysiol., 84 (2000) 2340]. These and other observations led to the earlier suggestion that ASP might be ballistic, being pre-programmed from start to finish. Two experiments with different timing parameters were therefore performed to test this hypothesis using a version of Logan's [Psychol. Rev., 91 (1984) 295] stop signal task. The aim was to test whether ASP could be stopped at will, and if so, whether the time taken to stop varied as a function of the time since ASP onset. Results showed that in response to a stop signal, ASP can be inhibited at any point in its trajectory, and for the majority of subjects in experiment 1, and all the subjects in experiment 2, with a latency that does not change significantly with target speed or time since ASP onset. These results provide the first demonstration that anticipatory movements can be stopped volitionally in response to a stop signal. Possible cognitive and neurophysiological mechanisms underlying this process are discussed.

  2. Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum

    PubMed Central

    Sommer, Marc A.

    2013-01-01

    The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce “delay activity” between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move. PMID:23365182

  3. A spiking neural network model of the midbrain superior colliculus that generates saccadic motor commands.

    PubMed

    Kasap, Bahadir; van Opstal, A John

    2017-08-01

    Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons' burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center-surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.

  4. Saccadic eye movements analysis as a measure of drug effect on central nervous system function.

    PubMed

    Tedeschi, G; Quattrone, A; Bonavita, V

    1986-04-01

    Peak velocity (PSV) and duration (SD) of horizontal saccadic eye movements are demonstrably under the control of specific brain stem structures. Experimental and clinical evidence suggest the existence of an immediate premotor system for saccade generation located in the paramedian pontine reticular formation (PPRF). Effects on saccadic eye movements have been studied in normal volunteers with barbiturates, benzodiazepines, amphetamine and ethanol. On two occasions computer analysis of PSV, SD, saccade reaction time (SRT) and saccade accuracy (SA) was carried out in comparison with more traditional methods of assessment of human psychomotor performance like choice reaction time (CRT) and critical flicker fusion threshold (CFFT). The computer system proved to be a highly sensitive and objective method for measuring drug effect on central nervous system (CNS) function. It allows almost continuous sampling of data and appears to be particularly suitable for studying rapidly changing drug effects on the CNS.

  5. Development of internal models and predictive abilities for visual tracking during childhood

    PubMed Central

    Ego, Caroline; Yüksel, Demet

    2015-01-01

    The prediction of the consequences of our own actions through internal models is an essential component of motor control. Previous studies showed improvement of anticipatory behaviors with age for grasping, drawing, and postural control. Since these actions require visual and proprioceptive feedback, these improvements might reflect both the development of internal models and the feedback control. In contrast, visual tracking of a temporarily invisible target gives specific markers of prediction and internal models for eye movements. Therefore, we recorded eye movements in 50 children (aged 5–19 yr) and in 10 adults, who were asked to pursue a visual target that is temporarily blanked. Results show that the youngest children (5–7 yr) have a general oculomotor behavior in this task, qualitatively similar to the one observed in adults. However, the overall performance of older subjects in terms of accuracy at target reappearance and variability in their behavior was much better than the youngest children. This late maturation of predictive mechanisms with age was reflected into the development of the accuracy of the internal models governing the synergy between the saccadic and pursuit systems with age. Altogether, we hypothesize that the maturation of the interaction between smooth pursuit and saccades that relies on internal models of the eye and target displacement is related to the continuous maturation of the cerebellum. PMID:26510757

  6. Development of internal models and predictive abilities for visual tracking during childhood.

    PubMed

    Ego, Caroline; Yüksel, Demet; Orban de Xivry, Jean-Jacques; Lefèvre, Philippe

    2016-01-01

    The prediction of the consequences of our own actions through internal models is an essential component of motor control. Previous studies showed improvement of anticipatory behaviors with age for grasping, drawing, and postural control. Since these actions require visual and proprioceptive feedback, these improvements might reflect both the development of internal models and the feedback control. In contrast, visual tracking of a temporarily invisible target gives specific markers of prediction and internal models for eye movements. Therefore, we recorded eye movements in 50 children (aged 5-19 yr) and in 10 adults, who were asked to pursue a visual target that is temporarily blanked. Results show that the youngest children (5-7 yr) have a general oculomotor behavior in this task, qualitatively similar to the one observed in adults. However, the overall performance of older subjects in terms of accuracy at target reappearance and variability in their behavior was much better than the youngest children. This late maturation of predictive mechanisms with age was reflected into the development of the accuracy of the internal models governing the synergy between the saccadic and pursuit systems with age. Altogether, we hypothesize that the maturation of the interaction between smooth pursuit and saccades that relies on internal models of the eye and target displacement is related to the continuous maturation of the cerebellum. Copyright © 2016 the American Physiological Society.

  7. Topographic Organization for Delayed Saccades in Human Posterior Parietal Cortex

    PubMed Central

    Schluppeck, Denis; Glimcher, Paul; Heeger, David J.

    2008-01-01

    Posterior parietal cortex (PPC) is thought to play a critical role in decision making, sensory attention, motor intention, and/or working memory. Research on the PPC in non-human primates has focused on the lateral intraparietal area (LIP) in the intraparietal sulcus (IPS). Neurons in LIP respond after the onset of visual targets, just before saccades to those targets, and during the delay period in between. To study the function of posterior parietal cortex in humans, it will be crucial to have a routine and reliable method for localizing specific parietal areas in individual subjects. Here, we show that human PPC contains at least two topographically organized regions, which are candidates for the human homologue of LIP. We mapped the topographic organization of human PPC for delayed (memory guided) saccades using fMRI. Subjects were instructed to fixate centrally while a peripheral target was briefly presented. After a further 3-s delay, subjects made a saccade to the remembered target location followed by a saccade back to fixation and a 1-s inter-trial interval. Targets appeared at successive locations “around the clock” (same eccentricity, ≈30° angular steps), to produce a traveling wave of activity in areas that are topographically organized. PPC exhibited topographic organization for delayed saccades. We defined two areas in each hemisphere that contained topographic maps of the contralateral visual field. These two areas were immediately rostral to V7 as defined by standard retinotopic mapping. The two areas were separated from each other and from V7 by reversals in visual field orientation. However, we leave open the possibility that these two areas will be further subdivided in future studies. Our results demonstrate that topographic maps tile the cortex continuously from V1 well into PPC. PMID:15817644

  8. The effects of ion channel blockers validate the conductance-based model of saccadic oscillations.

    PubMed

    Shaikh, Aasef G; Zee, David S; Optican, Lance M; Miura, Kenichiro; Ramat, Stefano; Leigh, R John

    2011-09-01

    Conductance-based models of reciprocally inhibiting burst neurons suggest that intrinsic membrane properties and postinhibitory rebound (PIR) determine the amplitude and frequency of saccadic oscillations. Reduction of the low-threshold calcium currents (I(T)) in the model decreased the amplitude but increased the frequency of the simulated oscillations. Combined reduction of hyperpolarization-activated cation current (I(h)) and I(T) in the model abolished the simulated oscillations. We measured the effects of a selective blocker of I(T) (ethosuximide) in healthy subjects on the amplitude and frequency of saccadic oscillations evoked by eye closure and of a nonselective blocker of I(h) and I(T) (propronolol) in a patient with microsaccadic oscillation and limb tremor syndrome (mSOLT). Ethosuximide significantly reduced the amplitude but increased the frequency of the saccadic oscillations during eye closure in healthy subjects. Propranolol abolished saccadic oscillations in the mSOLT patient. These results support the hypothetical role of postinhibitory rebound, I(h), and I(T) , in generation of saccadic oscillations and determining their kinematic properties. © 2011 New York Academy of Sciences.

  9. Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression.

    PubMed

    Keren, Alon S; Yuval-Greenberg, Shlomit; Deouell, Leon Y

    2010-02-01

    Analysis of high-frequency (gamma-band) neural activity by means of non-invasive EEG is gaining increasing interest. However, we have recently shown that a saccade-related spike potential (SP) seriously confounds the analysis of EEG induced gamma-band responses (iGBR), as the SP eludes traditional EEG artifact rejection methods. Here we provide a comprehensive profile of the SP and evaluate methods for its detection and suppression, aiming to unveil true cerebral gamma-band activity. The SP appears consistently as a sharp biphasic deflection of about 22 ms starting at the saccade onset, with a frequency band of approximately 20-90 Hz. On the average, larger saccades elicit higher SP amplitudes. The SP amplitude gradually changes from the extra-ocular channels towards posterior sites with the steepest gradients around the eyes, indicating its ocular source. Although the amplitude and the sign of the SP depend on the choice of reference channel, the potential gradients remain the same and non-zero for all references. The scalp topography is modulated almost exclusively by the direction of saccades, with steeper gradients ipsilateral to the saccade target. We discuss how the above characteristics impede attempts to remove these SPs from the EEG by common temporal filtering, choice of different references, or rejection of contaminated trials. We examine the extent to which SPs can be reliably detected without an eye tracker, assess the degree to which scalp current density derivation attenuates the effect of the SP, and propose a tailored ICA procedure for minimizing the effect of the SP. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  10. Slower saccadic reading in Parkinson’s disease

    PubMed Central

    Jehangir, Naz; Yu, Caroline Yizhu; Song, Jeehey; Shariati, Mohammad Ali; Binder, Steven; Beyer, Jill; Santini, Veronica; Poston, Kathleen

    2018-01-01

    Idiopathic Parkinson’s Disease (PD) is characterized by degeneration of dopaminergic and other neurons, leading to motor and non-motor deficits. Abnormal eye movements in PD, including fixations, saccades, and convergence, are well described. However, saccadic reading, which requires serial and alternating saccades and fixations, is not well studied, despite its obvious impact on the quality of life. In this study, we assessed saccadic reading using variations of the King-Devick (KD) test, a rapid single digit number naming test, as a way to assess the ability to make serial left-to-right ocular motor movements necessary for reading. We recruited 42 treated PD patients and 80 age-matched controls and compared their reading times with a variety of measures, including age, duration of disease, Unified Parkinson’s Disease Rating Scale (UPDRS), the National Eye Institute 25-Item Visual Functioning Questionnaire 25 (VFQ-25), and Montreal Cognitive assessment (MoCA) test. The subjects performed 4 trials of reading 120 single digit numbers aloud as fast as possible without making errors. In each trial, they read 3 pages (KD1, KD2, and KD3), and each page contained 40 numbers per page in 8 lines with 5 numbers/line. We found that PD patients read about 20% slower than controls on all tests (KD1, 2, and 3 tests) (p < 0.02), and both groups read irregularly spaced numbers slower than regularly spaced numbers. Having lines between numbers to guide reading (KD1 tests) did not impact reading time in both PD and controls, but increased visual crowding as a result of decreased spacing between numbers (KD3 tests) was associated with significantly slower reading times in both PD and control groups. Our study revealed that saccadic reading is slower in PD, but controls and PD patients are both impacted by visuospatial planning challenges posed by increased visual crowding and irregularity of number spacing. Reading time did not correlate with UPDRS or MoCA scores in PD patients

  11. Human Visual Search Does Not Maximize the Post-Saccadic Probability of Identifying Targets

    PubMed Central

    Morvan, Camille; Maloney, Laurence T.

    2012-01-01

    Researchers have conjectured that eye movements during visual search are selected to minimize the number of saccades. The optimal Bayesian eye movement strategy minimizing saccades does not simply direct the eye to whichever location is judged most likely to contain the target but makes use of the entire retina as an information gathering device during each fixation. Here we show that human observers do not minimize the expected number of saccades in planning saccades in a simple visual search task composed of three tokens. In this task, the optimal eye movement strategy varied, depending on the spacing between tokens (in the first experiment) or the size of tokens (in the second experiment), and changed abruptly once the separation or size surpassed a critical value. None of our observers changed strategy as a function of separation or size. Human performance fell far short of ideal, both qualitatively and quantitatively. PMID:22319428

  12. Anticipatory smooth eye movements with random-dot kinematograms

    PubMed Central

    Santos, Elio M.; Gnang, Edinah K.; Kowler, Eileen

    2012-01-01

    Anticipatory smooth eye movements were studied in response to expectations of motion of random-dot kinematograms (RDKs). Dot lifetime was limited (52–208 ms) to prevent selection and tracking of the motion of local elements and to disrupt the perception of an object moving across space. Anticipatory smooth eye movements were found in response to cues signaling the future direction of global RDK motion, either prior to the onset of the RDK or prior to a change in its direction of motion. Cues signaling the lifetime of the dots were not effective. These results show that anticipatory smooth eye movements can be produced by expectations of global motion and do not require a sustained representation of an object or set of objects moving across space. At the same time, certain properties of global motion (direction) were more sensitive to cues than others (dot lifetime), suggesting that the rules by which prediction operates to influence pursuit may go beyond simple associations between cues and the upcoming motion of targets. PMID:23027686

  13. The role of "rescue saccades" in tracking objects through occlusions.

    PubMed

    Zelinsky, Gregory J; Todor, Andrei

    2010-12-29

    We hypothesize that our ability to track objects through occlusions is mediated by timely assistance from gaze in the form of "rescue saccades"-eye movements to tracked objects that are in danger of being lost due to impending occlusion. Observers tracked 2-4 target sharks (out of 9) for 20 s as they swam through a rendered 3D underwater scene. Targets were either allowed to enter into occlusions (occlusion trials) or not (no occlusion trials). Tracking accuracy with 2-3 targets was ≥ 92% regardless of target occlusion but dropped to 74% on occlusion trials with four targets (no occlusion trials remained accurate; 83%). This pattern was mirrored in the frequency of rescue saccades. Rescue saccades accompanied approximatlely 50% of the Track 2-3 target occlusions, but only 34% of the Track 4 occlusions. Their frequency also decreased with increasing distance between a target and the nearest other object, suggesting that it is the potential for target confusion that summons a rescue saccade, not occlusion itself. These findings provide evidence for a tracking system that monitors for events that might cause track loss (e.g., occlusions) and requests help from the oculomotor system to resolve these momentary crises. As the number of crises increase with the number of targets, some requests for help go unsatisfied, resulting in degraded tracking.

  14. Modeling Inter-trial Variability of Saccade Trajectories: Effects of Lesions of the Oculomotor Part of the Fastigial Nucleus

    PubMed Central

    Eggert, Thomas; Straube, Andreas

    2016-01-01

    This study investigates the inter-trial variability of saccade trajectories observed in five rhesus macaques (Macaca mulatta). For each time point during a saccade, the inter-trial variance of eye position and its covariance with eye end position were evaluated. Data were modeled by a superposition of three noise components due to 1) planning noise, 2) signal-dependent motor noise, and 3) signal-dependent premotor noise entering within an internal feedback loop. Both planning noise and signal-dependent motor noise (together called accumulating noise) predict a simple S-shaped variance increase during saccades, which was not sufficient to explain the data. Adding noise within an internal feedback loop enabled the model to mimic variance/covariance structure in each monkey, and to estimate the noise amplitudes and the feedback gain. Feedback noise had little effect on end point noise, which was dominated by accumulating noise. This analysis was further extended to saccades executed during inactivation of the caudal fastigial nucleus (cFN) on one side of the cerebellum. Saccades ipsiversive to an inactivated cFN showed more end point variance than did normal saccades. During cFN inactivation, eye position during saccades was statistically more strongly coupled to eye position at saccade end. The proposed model could fit the variance/covariance structure of ipsiversive and contraversive saccades. Inactivation effects on saccade noise are explained by a decrease of the feedback gain and an increase of planning and/or signal-dependent motor noise. The decrease of the fitted feedback gain is consistent with previous studies suggesting a role for the cerebellum in an internal feedback mechanism. Increased end point variance did not result from impaired feedback but from the increase of accumulating noise. The effects of cFN inactivation on saccade noise indicate that the effects of cFN inactivation cannot be explained entirely with the cFN’s direct connections to the

  15. Altered saccadic targets when processing facial expressions under different attentional and stimulus conditions.

    PubMed

    Boutsen, Frank A; Dvorak, Justin D; Pulusu, Vinay K; Ross, Elliott D

    2017-04-01

    Depending on a subject's attentional bias, robust changes in emotional perception occur when facial blends (different emotions expressed on upper/lower face) are presented tachistoscopically. If no instructions are given, subjects overwhelmingly identify the lower facial expression when blends are presented to either visual field. If asked to attend to the upper face, subjects overwhelmingly identify the upper facial expression in the left visual field but remain slightly biased to the lower facial expression in the right visual field. The current investigation sought to determine whether differences in initial saccadic targets could help explain the perceptual biases described above. Ten subjects were presented with full and blend facial expressions under different attentional conditions. No saccadic differences were found for left versus right visual field presentations or for full facial versus blend stimuli. When asked to identify the presented emotion, saccades were directed to the lower face. When asked to attend to the upper face, saccades were directed to the upper face. When asked to attend to the upper face and try to identify the emotion, saccades were directed to the upper face but to a lesser degree. Thus, saccadic behavior supports the concept that there are cognitive-attentional pre-attunements when subjects visually process facial expressions. However, these pre-attunements do not fully explain the perceptual superiority of the left visual field for identifying the upper facial expression when facial blends are presented tachistoscopically. Hence other perceptual factors must be in play, such as the phenomenon of virtual scanning. Published by Elsevier Ltd.

  16. Abnormal tuning of saccade-related cells in pontine reticular formation of strabismic monkeys.

    PubMed

    Walton, Mark M G; Mustari, Michael J

    2015-08-01

    Strabismus is a common disorder, characterized by a chronic misalignment of the eyes and numerous visual and oculomotor abnormalities. For example, saccades are often highly disconjugate. For humans with pattern strabismus, the horizontal and vertical disconjugacies vary with eye position. In monkeys, manipulations that disturb binocular vision during the first several weeks of life result in a chronic strabismus with characteristics that closely match those in human patients. Early onset strabismus is associated with altered binocular sensitivity of neurons in visual cortex. Here we test the hypothesis that brain stem circuits specific to saccadic eye movements are abnormal. We targeted the pontine paramedian reticular formation, a structure that directly projects to the ipsilateral abducens nucleus. In normal animals, neurons in this structure are characterized by a high-frequency burst of spikes associated with ipsiversive saccades. We recorded single-unit activity from 84 neurons from four monkeys (two normal, one exotrope, and one esotrope), while they made saccades to a visual target on a tangent screen. All 24 neurons recorded from the normal animals had preferred directions within 30° of pure horizontal. For the strabismic animals, the distribution of preferred directions was normal on one side of the brain, but highly variable on the other. In fact, 12/60 neurons recorded from the strabismic animals preferred vertical saccades. Many also had unusually weak or strong bursts. These data suggest that the loss of corresponding binocular vision during infancy impairs the development of normal tuning characteristics for saccade-related neurons in brain stem. Copyright © 2015 the American Physiological Society.

  17. Patients with mild Alzheimer's disease produced shorter outgoing saccades when reading sentences.

    PubMed

    Fernández, Gerardo; Schumacher, Marcela; Castro, Liliana; Orozco, David; Agamennoni, Osvaldo

    2015-09-30

    In the present work we analyzed forward saccades of thirty five elderly subjects (Controls) and of thirty five mild Alzheimer's disease (AD) during reading regular and high-predictable sentences. While they read, their eye movements were recorded. The pattern of forward saccade amplitudes as a function of word predictability was clearly longer in Controls. Our results suggest that Controls might use stored information of words for enhancing their reading performance. Further, cloze predictability increased outgoing saccades amplitudes, as this increase stronger in high-predictable sentences. Quite the contrary, patients with mild AD evidenced reduced forward saccades even at early stages of the disease. This reduction might reveal impairments in brain areas such as those corresponding to working memory, memory retrieval, and semantic memory functions that are already present at early stages of AD. Our findings might be relevant for expanding the options for the early detection and monitoring of in the early stages of AD. Furthermore, eye movements during reading could provide a new tool for measuring a drug's impact on patient's behavior. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Effects of saccadic bilateral eye movements on episodic and semantic autobiographical memory fluency.

    PubMed

    Parker, Andrew; Parkin, Adam; Dagnall, Neil

    2013-01-01

    Performing a sequence of fast saccadic horizontal eye movements has been shown to facilitate performance on a range of cognitive tasks, including the retrieval of episodic memories. One explanation for these effects is based on the hypothesis that saccadic eye movements increase hemispheric interaction, and that such interactions are important for particular types of memory. The aim of the current research was to assess the effect of horizontal saccadic eye movements on the retrieval of both episodic autobiographical memory (event/incident based memory) and semantic autobiographical memory (fact based memory) over recent and more distant time periods. It was found that saccadic eye movements facilitated the retrieval of episodic autobiographical memories (over all time periods) but not semantic autobiographical memories. In addition, eye movements did not enhance the retrieval of non-autobiographical semantic memory. This finding illustrates a dissociation between the episodic and semantic characteristics of personal memory and is considered within the context of hemispheric contributions to episodic memory performance.

  19. Effects of Saccadic Bilateral Eye Movements on Episodic and Semantic Autobiographical Memory Fluency

    PubMed Central

    Parker, Andrew; Parkin, Adam; Dagnall, Neil

    2013-01-01

    Performing a sequence of fast saccadic horizontal eye movements has been shown to facilitate performance on a range of cognitive tasks, including the retrieval of episodic memories. One explanation for these effects is based on the hypothesis that saccadic eye movements increase hemispheric interaction, and that such interactions are important for particular types of memory. The aim of the current research was to assess the effect of horizontal saccadic eye movements on the retrieval of both episodic autobiographical memory (event/incident based memory) and semantic autobiographical memory (fact based memory) over recent and more distant time periods. It was found that saccadic eye movements facilitated the retrieval of episodic autobiographical memories (over all time periods) but not semantic autobiographical memories. In addition, eye movements did not enhance the retrieval of non-autobiographical semantic memory. This finding illustrates a dissociation between the episodic and semantic characteristics of personal memory and is considered within the context of hemispheric contributions to episodic memory performance. PMID:24133435

  20. Pharmacology of saccadic eye movements in man. 1. Effects of the benzodiazepine receptor ligands midazolam and flumazenil.

    PubMed

    Ball, D M; Glue, P; Wilson, S; Nutt, D J

    1991-01-01

    A paradigm for assessing benzodiazepine receptor sensitivity was developed using intravenous midazolam in normal volunteers. After administration of incremental doses of midazolam, alterations in saccadic eye movement parameters and psychological self ratings were assessed. Significant changes included dose-dependent slowing of peak velocity, peak acceleration, peak deceleration, reduced saccade acceleration/deceleration ratio and saccade accuracy, and increased sedation self-ratings. Changes in saccade variables and sedation ratings were significantly correlated, and also correlated with plasma midazolam concentrations. No significant changes were seen in saccade latency or anxiety self-ratings. Pharmacological specificity of these changes was demonstrated by their reversal with the benzodiazepine antagonist flumazenil. This challenge paradigm appears to be a sensitive means of assessing benzodiazepine receptor function in man.

  1. Reading sentences of uniform word length - II: Very rapid adaptation of the preferred saccade length.

    PubMed

    Cutter, Michael G; Drieghe, Denis; Liversedge, Simon P

    2018-04-25

    In the current study we investigated whether readers adjust their preferred saccade length (PSL) during reading on a trial-by-trial basis. The PSL refers to the distance between a saccade launch site and saccade target (i.e., the word center during reading) when participants neither undershoot nor overshoot this target (McConkie, Kerr, Reddix, & Zola in Vision Research, 28, 1107-1118, 1988). The tendency for saccades longer or shorter than the PSL to under or overshoot their target is referred to as the range error. Recent research by Cutter, Drieghe, and Liversedge (Journal of Experimental Psychology: Human Perception and Performance, 2017) has shown that the PSL changes to be shorter when readers are presented with 30 consecutive sentences exclusively made of three-letter words, and longer when presented with 30 consecutive sentences exclusively made of five-letter words. We replicated and extended this work by this time presenting participants with these uniform sentences in an unblocked design. We found that adaptation still occurred across different sentence types despite participants only having one trial to adapt. Our analyses suggested that this effect was driven by the length of the words readers were making saccades away from, rather than the length of the words in the rest of the sentence. We propose an account of the range error in which readers use parafoveal word length information to estimate the length of a saccade between the center of two parafoveal words (termed the Centre-Based Saccade Length) prior to landing on the first of these words.

  2. Role of the human supplementary eye field in the control of saccadic eye movements

    PubMed Central

    Parton, Andrew; Nachev, Parashkev; Hodgson, Timothy L.; Mort, Dominic; Thomas, David; Ordidge, Roger; Morgan, Paul S.; Jackson, Stephen; Rees, Geraint; Husain, Masud

    2007-01-01

    The precise function of the supplementary eye field (SEF) is poorly understood. Although electrophysiological and functional imaging studies are important for demonstrating when SEF neurones are active, lesion studies are critical to establish the functions for which the SEF is essential. Here we report a series of investigations performed on an extremely rare individual with a highly focal lesion of the medial frontal cortex. High-resolution structural imaging demonstrated that his lesion was confined to the region of the left paracentral sulcus, the anatomical locus of the SEF. Behavioural testing revealed that the patient was significantly impaired when required to switch between anti- and pro-saccades, when there were conflicting rules governing stimulus–response mappings for saccades. Similarly, the results of an arbitrary stimulus–response associative learning task demonstrated that he was impaired when required to select the appropriate saccade from conflicting eye movement responses, but not for limb movements on an analogous manual task. When making memory-guided saccadic sequences, the patient demonstrated hypometria, like patients with Parkinson's disease, but had no significant difficulties in reproducing the order of saccades correctly on a task that emphasized accuracy with a wide temporal segregation between responses. These findings are consistent with the hypothesis that the SEF plays a key role in implementing control when there is conflict between several, ongoing competing saccadic responses, but not when eye movements need to be made accurately in sequence. PMID:17069864

  3. Multipulse control of saccadic eye movements

    NASA Technical Reports Server (NTRS)

    Lehman, S. L.; Stark, L.

    1981-01-01

    We present three conclusions regarding the neural control of saccadic eye movements, resulting from comparisons between recorded movements and computer simulations. The controller signal to the muscles is probably a multipulse-step. This kind of signal drives the fastest model trajectories. Finally, multipulse signals explain differences between model and electrophysiological results.

  4. Dissecting patterns of preparatory activity in the frontal eye fields during pursuit target selection.

    PubMed

    Raghavan, Ramanujan T; Joshua, Mati

    2017-10-01

    We investigated the composition of preparatory activity of frontal eye field (FEF) neurons in monkeys performing a pursuit target selection task. In response to the orthogonal motion of a large and a small reward target, monkeys initiated pursuit biased toward the direction of large reward target motion. FEF neurons exhibited robust preparatory activity preceding movement initiation in this task. Preparatory activity consisted of two components, ramping activity that was constant across target selection conditions, and a flat offset in firing rates that signaled the target selection condition. Ramping activity accounted for 50% of the variance in the preparatory activity and was linked most strongly, on a trial-by-trial basis, to pursuit eye movement latency rather than to its direction or gain. The offset in firing rates that discriminated target selection conditions accounted for 25% of the variance in the preparatory activity and was commensurate with a winner-take-all representation, signaling the direction of large reward target motion rather than a representation that matched the parameters of the upcoming movement. These offer new insights into the role that the frontal eye fields play in target selection and pursuit control. They show that preparatory activity in the FEF signals more strongly when to move rather than where or how to move and suggest that structures outside the FEF augment its contributions to the target selection process. NEW & NOTEWORTHY We used the smooth eye movement pursuit system to link between patterns of preparatory activity in the frontal eye fields and movement during a target selection task. The dominant pattern was a ramping signal that did not discriminate between selection conditions and was linked, on trial-by-trial basis, to movement latency. A weaker pattern was composed of a constant signal that discriminated between selection conditions but was only weakly linked to the movement parameters. Copyright © 2017 the American

  5. Paying attention to saccadic intrusions.

    PubMed

    Gowen, E; Abadi, R V; Poliakoff, E

    2005-12-01

    Fixation to a target in primary gaze is invariably interrupted by physiological conjugate saccadic intrusions (SI). These small idiosyncratic eye movements (usually <1 degrees in amplitude) take the form of an initial horizontal fast eye movement away from the desired eye position, followed after a variable duration by a return saccade or drift. As the aetiology of SI is still unclear, it was the aim of this study to investigate whether SI are related to exogenous or endogenous attentional processes. This was achieved by varying (a) the "bottom-up" target viewing conditions (target presence, servo control of the target, target background, target size) and (b) the 'top-down' attentional state (instruction change--'look' or 'hold eyes steady' and passive fixation versus active--'respond to change' fixation) in 13 subjects (the number of participants in each task varied between 7 and 11). We also manipulated the orientation of pure exogenous attention through a cue-target task, during which subjects were required to respond to a target, preceded by a non-informative cue by either pressing a button or making a saccade towards the target. SI amplitude, duration, frequency and direction were measured. SI amplitude was found to be significantly higher when the target was absent and SI frequency significantly lower during open loop conditions. Target size and background influenced SI behaviour in an idiosyncratic manner, although there was a trend for subjects to exhibit lower SI frequencies and amplitudes when a patterned background was present and larger SI amplitudes with larger target sizes. SI frequency decreased during the "hold eyes steady" passive command as well as during active fixation but SI direction was not influenced by the exogenous cue-target task. These results suggest that SI are related to endogenous rather than exogenous attention mechanisms. Our experiments lead us to propose that SI represent shifts in endogenous attention that reflect a baseline

  6. Combining two model systems of psychosis: The effects of schizotypy and sleep deprivation on oculomotor control and psychotomimetic states.

    PubMed

    Meyhöfer, Inga; Steffens, Maria; Faiola, Eliana; Kasparbauer, Anna-Maria; Kumari, Veena; Ettinger, Ulrich

    2017-11-01

    Model systems of psychosis, such as schizotypy or sleep deprivation, are valuable in informing our understanding of the etiology of the disorder and aiding the development of new treatments. Schizophrenia patients, high schizotypes, and sleep-deprived subjects are known to share deficits in oculomotor biomarkers. Here, we aimed to further validate the schizotypy and sleep deprivation models and investigated, for the first time, their interactive effects on smooth pursuit eye movements (SPEM), prosaccades, antisaccades, predictive saccades, and measures of psychotomimetic states, anxiety, depression, and stress. To do so, n = 19 controls and n = 17 high positive schizotypes were examined after both a normal sleep night and 24 h of sleep deprivation. Schizotypes displayed higher SPEM global position error, catch-up saccade amplitude, and increased psychotomimetic states. Sleep deprivation impaired SPEM, prosaccade, antisaccade, and predictive saccade performance and increased levels of psychotomimetic experiences. Additionally, sleep deprivation reduced SPEM gain in schizotypes but not controls. We conclude that oculomotor impairments are observed in relation to schizotypy and following sleep deprivation, supporting their utility as biomarkers in model systems of psychosis. The combination of these models with oculomotor biomarkers may be particularly fruitful in assisting the development of new antipsychotic or pro-cognitive drugs. © 2017 Society for Psychophysiological Research.

  7. Compensatory Saccades Are Associated With Physical Performance in Older Adults: Data From the Baltimore Longitudinal Study of Aging.

    PubMed

    Xie, Yanjun; Anson, Eric R; Simonsick, Eleanor M; Studenski, Stephanie A; Agrawal, Yuri

    2017-03-01

    To determine whether compensatory saccade metrics observed in the video head impulse test, specifically saccade amplitude and latency, predict physical performance. Cross-sectional analysis of the Baltimore Longitudinal Study of Aging, a prospective cohort study. National Institute on Aging Intramural Research Program Clinical Research Unit in Baltimore, Maryland. Community-dwelling older adults. Video head impulse testing was performed, and compensatory saccades and horizontal vestibulo-ocular reflex (VOR) gain were measured. Physical performance was assessed using the Short Physical Performance Battery (SPPB), which included the feet side-by-side, semitandem, tandem, and single-leg stance; repeated chair stands; and usual gait speed measurements. Compensatory saccade amplitude and latency, VOR gain, and SPPB performance. In 183 participants who underwent vestibular and SPPB testing (mean age 71.8 yr; 53% females), both higher mean saccade amplitude (odds ratio [OR] =1.62, p = 0.010) and shorter mean saccade latency (OR = 0.88, p = 0.004) were associated with a higher odds of failing the tandem stand task. In contrast, VOR gain was not associated with any physical performance measure. We observed in a cohort of healthy older adults that compensatory saccade amplitude and latency were associated with tandem stance performance. Compensatory saccade metrics may provide insights into capturing the impact of vestibular loss on physical function in older adults.

  8. Object motion perception is shaped by the motor control mechanism of ocular pursuit.

    PubMed

    Schweigart, G; Mergner, T; Barnes, G R

    2003-02-01

    It is still a matter of debate whether the control of smooth pursuit eye movements involves an internal drive signal from object motion perception. We measured human target velocity and target position perceptions and compared them with the presumed pursuit control mechanism (model simulations). We presented normal subjects (Ns) and vestibular loss patients (Ps) with visual target motion in space. Concurrently, a visual background was presented, which was kept stationary or was moved with or against the target (five combinations). The motion stimuli consisted of smoothed ramp displacements with different dominant frequencies and peak velocities (0.05, 0.2, 0.8 Hz; 0.2-25.6 degrees /s). Subjects always pursued the target with their eyes. In a first experiment they gave verbal magnitude estimates of perceived target velocity in space and of self-motion in space. The target velocity estimates of both Ns and Ps tended to saturate at 0.8 Hz and with peak velocities >3 degrees /s. Below these ranges the velocity estimates showed a pronounced modulation in relation to the relative target-to-background motion ('background effect'; for example, 'background with'-motion decreased and 'against'-motion increased perceived target velocity). Pronounced only in Ps and not in Ns, there was an additional modulation in relation to the relative head-to-background motion, which co-varied with an illusion of self-motion in space (circular vection, CV) in Ps. In a second experiment, subjects performed retrospective reproduction of perceived target start and end positions with the same stimuli. Perceived end position was essentially veridical in both Ns and Ps (apart from a small constant offset). Reproduced start position showed an almost negligible background effect in Ns. In contrast, it showed a pronounced modulation in Ps, which again was related to CV. The results were compared with simulations of a model that we have recently presented for velocity control of eye pursuit. We found

  9. Saccade Generation by the Frontal Eye Fields in Rhesus Monkeys Is Separable from Visual Detection and Bottom-Up Attention Shift

    PubMed Central

    Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L.

    2012-01-01

    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory. PMID:22761923

  10. Saccade generation by the frontal eye fields in rhesus monkeys is separable from visual detection and bottom-up attention shift.

    PubMed

    Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L

    2012-01-01

    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area's role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area's functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.

  11. Pursuit

    Integrated Risk Information System (IRIS)

    Integrated Risk Information System ( IRIS ) Chemical Assessment Summary U.S . Environmental Protection Agency National Center for Environmental Assessment This IRIS Summary has been removed from the IRIS database and is available for historical reference purposes . ( July 2016 ) Pursuit ; CASRN 8133

  12. Decomposing mechanisms of abnormal saccade generation in schizophrenia patients: Contributions of volitional initiation, motor preparation, and fixation release.

    PubMed

    Reuter, Benedikt; Elsner, Björn; Möllers, David; Kathmann, Norbert

    2016-11-01

    Clinical and theoretical models suggest deficient volitional initiation of action in schizophrenia patients. Recent research provided an experimental model of testing this assumption using saccade tasks. However, inconsistent findings necessitate a specification of conditions on which the deficit may occur. The present study sought to detect mechanisms that may contribute to poor performance. Sixteen schizophrenia patients and 16 healthy control participants performed visually guided and two types of volitional saccade tasks. All tasks varied as to whether the initial fixation stimulus disappeared (fixation stimulus offset) or continued during saccade initiation, and whether a direction cue allowed motor preparation of the specific saccade. Saccade latencies of the two groups were differentially affected by task type, fixation stimulus offset, and cueing, suggesting abnormal volitional saccade generation, fixation release, and motor preparation in schizophrenia. However, substantial performance deficits may only occur if all affected processes are required in a task. © 2016 Society for Psychophysiological Research.

  13. Cognitive Control of Saccadic Eye Movements

    ERIC Educational Resources Information Center

    Hutton, S. B.

    2008-01-01

    The saccadic eye movement system provides researchers with a powerful tool with which to explore the cognitive control of behaviour. It is a behavioural system whose limited output can be measured with exceptional precision, and whose input can be controlled and manipulated in subtle ways. A range of cognitive processes (notably those involved in…

  14. Decoding Saccadic Directions Using Epidural ECoG in Non-Human Primates

    PubMed Central

    2017-01-01

    A brain-computer interface (BCI) can be used to restore some communication as an alternative interface for patients suffering from locked-in syndrome. However, most BCI systems are based on SSVEP, P300, or motor imagery, and a diversity of BCI protocols would be needed for various types of patients. In this paper, we trained the choice saccade (CS) task in 2 non-human primate monkeys and recorded the brain signal using an epidural electrocorticogram (eECoG) to predict eye movement direction. We successfully predicted the direction of the upcoming eye movement using a support vector machine (SVM) with the brain signals after the directional cue onset and before the saccade execution. The mean accuracies were 80% for 2 directions and 43% for 4 directions. We also quantified the spatial-spectro-temporal contribution ratio using SVM recursive feature elimination (RFE). The channels over the frontal eye field (FEF), supplementary eye field (SEF), and superior parietal lobule (SPL) area were dominantly used for classification. The α-band in the spectral domain and the time bins just after the directional cue onset and just before the saccadic execution were mainly useful for prediction. A saccade based BCI paradigm can be projected in the 2D space, and will hopefully provide an intuitive and convenient communication platform for users. PMID:28665058

  15. Decoding Saccadic Directions Using Epidural ECoG in Non-Human Primates.

    PubMed

    Lee, Jeyeon; Choi, Hoseok; Lee, Seho; Cho, Baek Hwan; Ahn, Kyoung Ha; Kim, In Young; Lee, Kyoung Min; Jang, Dong Pyo

    2017-08-01

    A brain-computer interface (BCI) can be used to restore some communication as an alternative interface for patients suffering from locked-in syndrome. However, most BCI systems are based on SSVEP, P300, or motor imagery, and a diversity of BCI protocols would be needed for various types of patients. In this paper, we trained the choice saccade (CS) task in 2 non-human primate monkeys and recorded the brain signal using an epidural electrocorticogram (eECoG) to predict eye movement direction. We successfully predicted the direction of the upcoming eye movement using a support vector machine (SVM) with the brain signals after the directional cue onset and before the saccade execution. The mean accuracies were 80% for 2 directions and 43% for 4 directions. We also quantified the spatial-spectro-temporal contribution ratio using SVM recursive feature elimination (RFE). The channels over the frontal eye field (FEF), supplementary eye field (SEF), and superior parietal lobule (SPL) area were dominantly used for classification. The α-band in the spectral domain and the time bins just after the directional cue onset and just before the saccadic execution were mainly useful for prediction. A saccade based BCI paradigm can be projected in the 2D space, and will hopefully provide an intuitive and convenient communication platform for users. © 2017 The Korean Academy of Medical Sciences.

  16. A model of curved saccade trajectories: spike rate adaptation in the brainstem as the cause of deviation away.

    PubMed

    Kruijne, Wouter; Van der Stigchel, Stefan; Meeter, Martijn

    2014-03-01

    The trajectory of saccades to a target is often affected whenever there is a distractor in the visual field. Distractors can cause a saccade to deviate towards their location or away from it. The oculomotor mechanisms that produce deviation towards distractors have been thoroughly explored in behavioral, neurophysiological and computational studies. The mechanisms underlying deviation away, on the other hand, remain unclear. Behavioral findings suggest a mechanism of spatially focused, top-down inhibition in a saccade map, and deviation away has become a tool to investigate such inhibition. However, this inhibition hypothesis has little neuroanatomical or neurophysiological support, and recent findings go against it. Here, we propose that deviation away results from an unbalanced saccade drive from the brainstem, caused by spike rate adaptation in brainstem long-lead burst neurons. Adaptation to stimulation in the direction of the distractor results in an unbalanced drive away from it. An existing model of the saccade system was extended with this theory. The resulting model simulates a wide range of findings on saccade trajectories, including findings that have classically been interpreted to support inhibition views. Furthermore, the model replicated the effect of saccade latency on deviation away, but predicted this effect would be absent with large (400 ms) distractor-target onset asynchrony. This prediction was confirmed in an experiment, which demonstrates that the theory both explains classical findings on saccade trajectories and predicts new findings. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Differentiation between Vergence and Saccadic Functional Activity within the Human Frontal Eye Fields and Midbrain Revealed through fMRI

    PubMed Central

    Alkan, Yelda; Biswal, Bharat B.; Alvarez, Tara L.

    2011-01-01

    Purpose Eye movement research has traditionally studied solely saccade and/or vergence eye movements by isolating these systems within a laboratory setting. While the neural correlates of saccadic eye movements are established, few studies have quantified the functional activity of vergence eye movements using fMRI. This study mapped the neural substrates of vergence eye movements and compared them to saccades to elucidate the spatial commonality and differentiation between these systems. Methodology The stimulus was presented in a block design where the ‘off’ stimulus was a sustained fixation and the ‘on’ stimulus was random vergence or saccadic eye movements. Data were collected with a 3T scanner. A general linear model (GLM) was used in conjunction with cluster size to determine significantly active regions. A paired t-test of the GLM beta weight coefficients was computed between the saccade and vergence functional activities to test the hypothesis that vergence and saccadic stimulation would have spatial differentiation in addition to shared neural substrates. Results Segregated functional activation was observed within the frontal eye fields where a portion of the functional activity from the vergence task was located anterior to the saccadic functional activity (z>2.3; p<0.03). An area within the midbrain was significantly correlated with the experimental design for the vergence but not the saccade data set. Similar functional activation was observed within the following regions of interest: the supplementary eye field, dorsolateral prefrontal cortex, ventral lateral prefrontal cortex, lateral intraparietal area, cuneus, precuneus, anterior and posterior cingulates, and cerebellar vermis. The functional activity from these regions was not different between the vergence and saccade data sets assessed by analyzing the beta weights of the paired t-test (p>0.2). Conclusion Functional MRI can elucidate the differences between the vergence and saccade

  18. A review on eye movement studies in childhood and adolescent psychiatry.

    PubMed

    Rommelse, Nanda N J; Van der Stigchel, Stefan; Sergeant, Joseph A

    2008-12-01

    The neural substrates of eye movement measures are largely known. Therefore, measurement of eye movements in psychiatric disorders may provide insight into the underlying neuropathology of these disorders. Visually guided saccades, antisaccades, memory guided saccades, and smooth pursuit eye movements will be reviewed in various childhood psychiatric disorders. The four aims of this review are (1) to give a thorough overview of eye movement studies in a wide array of psychiatric disorders occurring during childhood and adolescence (attention-deficit/hyperactivity disorder, oppositional deviant disorder and conduct disorder, autism spectrum disorders, reading disorder, childhood-onset schizophrenia, Tourette's syndrome, obsessive compulsive disorder, and anxiety and depression), (2) to discuss the specificity and overlap of eye movement findings across disorders and paradigms, (3) to discuss the developmental aspects of eye movement abnormalities in childhood and adolescence psychiatric disorders, and (4) to present suggestions for future research. In order to make this review of interest to a broad audience, attention will be given to the clinical manifestation of the disorders and the theoretical background of the eye movement paradigms.

  19. Clinical classification and neuro-vestibular evaluation in chronic dizziness.

    PubMed

    Oh, Sun-Young; Kim, Do-Hyung; Yang, Tae-Ho; Shin, Byoung-Soo; Jeong, Seul-Ki

    2015-01-01

    This study attempts to clarify the clinical characteristics of chronic dizziness and its relationships with specific vestibular, oculomotor, autonomic and psychiatric dysfunctions. 73 Patients with idiopathic chronic dizziness were recruited and classified based on history taking and clinical examination into the following four clinical subgroups; vestibular migraine (VM), dysautonomia, psychogenic, and unspecified groups. They were also evaluated using oculomotor, otolithic and autonomic function tests, and psychologic investigation. Patients in the VM group showed a high proportion of abnormality on smooth pursuit and otolithic function testing compared to the other groups. The dysautonomia group revealed significant abnormalities in sympathetic and cardiovagal autonomic function, while the psychogenic group had a high frequency of abnormality in sympathetic autonomic testing and in Beck's anxiety inventory scale. The unspecified group showed abnormalities on saccade, smooth pursuit and autonomic function testing. Clinical classification of patients with chronic dizziness was relevant and they showed a correlation with disease-specific abnormal results in oculomotor, otolithic, autonomic function and psychology testing. Appropriate diagnostic investigation based on precise clinical diagnosis of chronic dizziness reduces the need for extensive laboratory testing, neuroimaging, and other low-yield tests. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Active Listening Delays Attentional Disengagement and Saccadic Eye Movements.

    PubMed

    Lester, Benjamin D; Vecera, Shaun P

    2018-06-01

    Successful goal-directed visual behavior depends on efficient disengagement of attention. Attention must be withdrawn from its current focus before being redeployed to a new object or internal process. Previous research has demonstrated that occupying cognitive processes with a secondary cellular phone conversation impairs attentional functioning and driving behavior. For example, attentional processing is significantly impacted by concurrent cell phone use, resulting in decreased explicit memory for on-road information. Here, we examined the impact of a critical component of cell-phone use-active listening-on the effectiveness of attentional disengagement. In the gap task-a saccadic manipulation of attentional disengagement-we measured saccade latencies while participants performed a secondary active listening task. Saccadic latencies significantly increased under an active listening load only when attention needed to be disengaged, indicating that active listening delays a disengagement operation. Simple dual-task interference did not account for the observed results. Rather, active cognitive engagement is required for measurable disengagement slowing to be observed. These results have implications for investigations of attention, gaze behavior, and distracted driving. Secondary tasks such as active listening or cell-phone conversations can have wide-ranging impacts on cognitive functioning, potentially impairing relatively elementary operations of attentional function, including disengagement.

  1. Changes in Simple Spike Activity of some Purkinje cells in the Oculomotor Vermis during Saccade Adaptation are Appropriate to Participate in Motor Learning

    PubMed Central

    Kojima, Yoshiko; Soetedjo, Robijanto; Fuchs, Albert F.

    2010-01-01

    Adaptation of saccadic eye movements provides an excellent motor learning model to study theories of neuronal plasticity. When primates make saccades to a jumping target, a backward step of the target during the saccade can make it appear to overshoot. If this deception continues for many trials, saccades gradually decrease in amplitude to go directly to the back-stepped target location. We used this adaptation paradigm to evaluate the Marr-Albus hypothesis that such motor learning occurs at the Purkinje (P-) cell of the cerebellum. We recorded the activity of identified P-cells in the oculomotor vermis, lobules VIc and VII. After determining the on and off error directions of a P-cell’s complex spike activity, we determined whether its saccade-related simple spike (SS) activity changed during saccade adaptation in those two directions. Before adaptation, 57 of 61 P-cells exhibited a clear burst, pause or a combination of both for saccades in one or both directions. Sixty-two percent of all cells, including 2 of the 4 initially unresponsive ones, behaved differently for saccades whose size changed because of adaptation than for saccades of similar sizes gathered before adaptation. In at least 42% of these, the changes were appropriate to decrease saccade amplitude based on our current knowledge of cerebellum and brain stem saccade circuitry. Changes in activity during adaptation were not compensating for the potential fatigue associated with performing many saccades. Therefore, many P-cells in the oculomotor vermis exhibit changes in SS activity specific to adapted saccades and therefore appropriate to induce adaptation. PMID:20220005

  2. Relationship between saccadic eye movements and formation of the Krukenberg's spindle-a CFD study.

    PubMed

    Boushehrian, Hamidreza Hajiani; Abouali, Omid; Jafarpur, Khosrow; Ghaffarieh, Alireza; Ahmadi, Goodarz

    2017-09-01

    In this research, a series of numerical simulations for evaluating the effects of saccadic eye movement on the aqueous humour (AH) flow field and movement of pigment particles in the anterior chamber (AC) was performed. To predict the flow field of AH in the AC, the unsteady forms of continuity, momentum balance and conservation of energy equations were solved using the dynamic mesh technique for simulating the saccadic motions. Different orientations of the human eye including horizontal, vertical and angles of 10° and 20° were considered. The Lagrangian particle trajectory analysis approach was used to find the trajectories of pigment particles in the eye. Particular attention was given to the relation between the saccadic eye movement and potential formation of Krukenberg's spindle in the eye. The simulation results revealed that the natural convection flow was an effective mechanism for transferring pigment particles from the iris to near the cornea. In addition, the saccadic eye movement was the dominant mechanism for deposition of pigment particles on the cornea, which could lead to the formation of Krukenberg's spindle. The effect of amplitude of saccade motion angle in addition to the orientation of the eye on the formation of Krukenberg's spindle was investigated. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  3. Topography of eye-position sensitivity of saccades evoked electrically from the cat's superior colliculus.

    PubMed

    McIlwain, J T

    1990-03-01

    Saccades evoked electrically from the deep layers of the superior colliculus have been examined in the alert cat with its head fixed. Amplitudes of the vertical and horizontal components varied linearly with the starting position of the eye. The slopes of the linear-regression lines provided an estimate of the sensitivity of these components to initial eye position. In observations on 29 sites in nine cats, the vertical and horizontal components of saccades evoked from a given site were rarely influenced to the same degree by initial eye position. For most sites, the horizontal component was more sensitive than the vertical component. Sensitivities of vertical and horizontal components were lowest near the representations of the horizontal and vertical meridians, respectively, of the collicular retinotopic map, but otherwise exhibited no systematic retinotopic dependence. Estimates of component amplitudes for saccades evoked from the center of the oculomotor range also diverged significantly from those predicted from the retinotopic map. The results of this and previous studies indicate that electrical stimulation of the cat's superior colliculus cannot yield a unique oculomotor map or one that is in register everywhere with the sensory retinotopic map. Several features of these observations suggest that electrical stimulation of the colliculus produces faulty activation of a saccadic control system that computes target position with respect to the head and that small and large saccades are controlled differently.

  4. Atypical Saccadic Scanning in Autistic Spectrum Disorder

    ERIC Educational Resources Information Center

    Benson, Valerie; Piper, Jenna; Fletcher-Watson, Sue

    2009-01-01

    Saccadic scanning was examined for typically developing (TD) adults and those with autistic spectrum disorder (ASD) during inspection of the "Repin" picture (Yarbus, A. (1967). "Eye movements and vision". New York: Plenum) under two different viewing instructions: (A) material instructions ("Estimate the material circumstances of the family"); and…

  5. Saccade frequency response to visual cues during gait in Parkinson's disease: the selective role of attention.

    PubMed

    Stuart, Samuel; Lord, Sue; Galna, Brook; Rochester, Lynn

    2018-04-01

    Gait impairment is a core feature of Parkinson's disease (PD) with implications for falls risk. Visual cues improve gait in PD, but the underlying mechanisms are unclear. Evidence suggests that attention and vision play an important role; however, the relative contribution from each is unclear. Measurement of visual exploration (specifically saccade frequency) during gait allows for real-time measurement of attention and vision. Understanding how visual cues influence visual exploration may allow inferences of the underlying mechanisms to response which could help to develop effective therapeutics. This study aimed to examine saccade frequency during gait in response to a visual cue in PD and older adults and investigate the roles of attention and vision in visual cue response in PD. A mobile eye-tracker measured saccade frequency during gait in 55 people with PD and 32 age-matched controls. Participants walked in a straight line with and without a visual cue (50 cm transverse lines) presented under single task and dual-task (concurrent digit span recall). Saccade frequency was reduced when walking in PD compared to controls; however, visual cues ameliorated saccadic deficit. Visual cues significantly increased saccade frequency in both PD and controls under both single task and dual-task. Attention rather than visual function was central to saccade frequency and gait response to visual cues in PD. In conclusion, this study highlights the impact of visual cues on visual exploration when walking and the important role of attention in PD. Understanding these complex features will help inform intervention development. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation.

    PubMed

    Murthy, Aditya; Ray, Supriya; Shorter, Stephanie M; Schall, Jeffrey D; Thompson, Kirk G

    2009-05-01

    The dynamics of visual selection and saccade preparation by the frontal eye field was investigated in macaque monkeys performing a search-step task combining the classic double-step saccade task with visual search. Reward was earned for producing a saccade to a color singleton. On random trials the target and one distractor swapped locations before the saccade and monkeys were rewarded for shifting gaze to the new singleton location. A race model accounts for the probabilities and latencies of saccades to the initial and final singleton locations and provides a measure of the duration of a covert compensation process-target-step reaction time. When the target stepped out of a movement field, noncompensated saccades to the original location were produced when movement-related activity grew rapidly to a threshold. Compensated saccades to the final location were produced when the growth of the original movement-related activity was interrupted within target-step reaction time and was replaced by activation of other neurons producing the compensated saccade. When the target stepped into a receptive field, visual neurons selected the new target location regardless of the monkeys' response. When the target stepped out of a receptive field most visual neurons maintained the representation of the original target location, but a minority of visual neurons showed reduced activity. Chronometric analyses of the neural responses to the target step revealed that the modulation of visually responsive neurons and movement-related neurons occurred early enough to shift attention and saccade preparation from the old to the new target location. These findings indicate that visual activity in the frontal eye field signals the location of targets for orienting, whereas movement-related activity instantiates saccade preparation.

  7. Initiation and inhibitory control of saccades with the progression of Parkinson's disease - changes in three major drives converging on the superior colliculus.

    PubMed

    Terao, Yasuo; Fukuda, Hideki; Yugeta, Akihiro; Hikosaka, Okihide; Nomura, Yoshiko; Segawa, Masaya; Hanajima, Ritsuko; Tsuji, Shoji; Ugawa, Yoshikazu

    2011-06-01

    The cardinal pathophysiology of Parkinson's disease (PD) is considered to be the increase in the activities of basal ganglia (BG) output nuclei, which excessively inhibits the thalamus and superior colliculus (SC) and causes preferential impairment of internal over external movements. Here we recorded saccade performance in 66 patients with PD and 87 age-matched controls, and studied how the abnormality changed with disease progression. PD patients were impaired not only in memory guided saccades, but also in visually guided saccades, beginning in the relatively early stages of the disease. On the other hand, they were impaired in suppressing reflexive saccades (saccades to cue). All these changes deteriorated with disease progression. The frequency of reflexive saccades showed a negative correlation with the latency of visually guided saccades and Unified Parkinson's Disease Rating Scale motor subscores reflecting dopaminergic function. We suggest that three major drives converging on SC determine the saccade abnormalities in PD. The impairment in visually and memory guided saccades may be caused by the excessive inhibition of the SC due to the increased BG output and the decreased activity of the frontal cortex-BG circuit. The impaired suppression of reflexive saccades may be explained if the excessive inhibition of SC is "leaky." Changes in saccade parameters suggest that frontal cortex-BG circuit activity decreases with disease progression, whereas SC inhibition stays relatively mild in comparison throughout the course of the disease. Finally, SC disinhibition due to leaky suppression may represent functional compensation from neural structures outside BG, leading to hyper-reflexivity of saccades and milder clinical symptoms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Lifespan development of pro- and anti-saccades: multiple regression models for point estimates.

    PubMed

    Klein, Christoph; Foerster, Friedrich; Hartnegg, Klaus; Fischer, Burkhart

    2005-12-07

    The comparative study of anti- and pro-saccade task performance contributes to our functional understanding of the frontal lobes, their alterations in psychiatric or neurological populations, and their changes during the life span. In the present study, we apply regression analysis to model life span developmental effects on various pro- and anti-saccade task parameters, using data of a non-representative sample of 327 participants aged 9 to 88 years. Development up to the age of about 27 years was dominated by curvilinear rather than linear effects of age. Furthermore, the largest developmental differences were found for intra-subject variability measures and the anti-saccade task parameters. Ageing, by contrast, had the shape of a global linear decline of the investigated saccade functions, lacking the differential effects of age observed during development. While these results do support the assumption that frontal lobe functions can be distinguished from other functions by their strong and protracted development, they do not confirm the assumption of disproportionate deterioration of frontal lobe functions with ageing. We finally show that the regression models applied here to quantify life span developmental effects can also be used for individual predictions in applied research contexts or clinical practice.

  9. Eye-Hand Synergy and Intermittent Behaviors during Target-Directed Tracking with Visual and Non-visual Information

    PubMed Central

    Huang, Chien-Ting; Hwang, Ing-Shiou

    2012-01-01

    Visual feedback and non-visual information play different roles in tracking of an external target. This study explored the respective roles of the visual and non-visual information in eleven healthy volunteers who coupled the manual cursor to a rhythmically moving target of 0.5 Hz under three sensorimotor conditions: eye-alone tracking (EA), eye-hand tracking with visual feedback of manual outputs (EH tracking), and the same tracking without such feedback (EHM tracking). Tracking error, kinematic variables, and movement intermittency (saccade and speed pulse) were contrasted among tracking conditions. The results showed that EHM tracking exhibited larger pursuit gain, less tracking error, and less movement intermittency for the ocular plant than EA tracking. With the vision of manual cursor, EH tracking achieved superior tracking congruency of the ocular and manual effectors with smaller movement intermittency than EHM tracking, except that the rate precision of manual action was similar for both types of tracking. The present study demonstrated that visibility of manual consequences altered mutual relationships between movement intermittency and tracking error. The speed pulse metrics of manual output were linked to ocular tracking error, and saccade events were time-locked to the positional error of manual tracking during EH tracking. In conclusion, peripheral non-visual information is critical to smooth pursuit characteristics and rate control of rhythmic manual tracking. Visual information adds to eye-hand synchrony, underlying improved amplitude control and elaborate error interpretation during oculo-manual tracking. PMID:23236498

  10. Visual motion integration for perception and pursuit

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Beutter, B. R.; Lorenceau, J.

    2000-01-01

    To examine the relationship between visual motion processing for perception and pursuit, we measured the pursuit eye-movement and perceptual responses to the same complex-motion stimuli. We show that humans can both perceive and pursue the motion of line-figure objects, even when partial occlusion makes the resulting image motion vastly different from the underlying object motion. Our results show that both perception and pursuit can perform largely accurate motion integration, i.e. the selective combination of local motion signals across the visual field to derive global object motion. Furthermore, because we manipulated perceived motion while keeping image motion identical, the observed parallel changes in perception and pursuit show that the motion signals driving steady-state pursuit and perception are linked. These findings disprove current pursuit models whose control strategy is to minimize retinal image motion, and suggest a new framework for the interplay between visual cortex and cerebellum in visuomotor control.

  11. Short-duration stimulation of the supplementary eye fields perturbs anti-saccade performance while potentiating contralateral head orienting.

    PubMed

    Chapman, Brendan B; Corneil, Brian D

    2014-01-01

    Many forms of brain stimulation utilize the notion of state dependency, whereby greater influences are observed when a given area is more engaged at the time of stimulation. Here, by delivering intracortical microstimulation (ICMS) to the supplementary eye fields (SEF) of monkeys performing interleaved pro- and anti-saccades, we show a surprising diversity of state-dependent effects of ICMS-SEF. Short-duration ICMS-SEF passed around cue presentation selectively disrupted anti-saccades by increasing reaction times and error rates bilaterally, and also recruited neck muscles, favoring contralateral head turning to a greater degree on anti-saccade trials. These results are consistent with the functional relevance of the SEF for anti-saccades. The multiplicity of stimulation-evoked effects, with ICMS-SEF simultaneously disrupting anti-saccade performance and facilitating contralateral head orienting, probably reflects both the diversity of cortical and subcortical targets of SEF projections, and the response of this oculomotor network to stimulation. We speculate that the bilateral disruption of anti-saccades arises via feedback loops that may include the thalamus, whereas neck muscle recruitment arises via feedforward polysynaptic pathways to the motor periphery. Consideration of both sets of results reveals a more complete picture of the highly complex and multiphasic response to ICMS-SEF that can play out differently in different effector systems.

  12. Novel Eye Movement Disorders in Whipple's Disease-Staircase Horizontal Saccades, Gaze-Evoked Nystagmus, and Esotropia.

    PubMed

    Shaikh, Aasef G; Ghasia, Fatema F

    2017-01-01

    Whipple's disease, a rare systemic infectious disorder, is complicated by the involvement of the central nervous system in about 5% of cases. Oscillations of the eyes and the jaw, called oculo-masticatory myorhythmia, are pathognomonic of the central nervous system involvement but are often absent. Typical manifestations of the central nervous system Whipple's disease are cognitive impairment, parkinsonism mimicking progressive supranuclear palsy with vertical saccade slowing, and up-gaze range limitation. We describe a unique patient with the central nervous system Whipple's disease who had typical features, including parkinsonism, cognitive impairment, and up-gaze limitation; but also had diplopia, esotropia with mild horizontal (abduction more than adduction) limitation, and vertigo. The patient also had gaze-evoked nystagmus and staircase horizontal saccades. Latter were thought to be due to mal-programmed small saccades followed by a series of corrective saccades. The saccades were disconjugate due to the concurrent strabismus. Also, we noted disconjugacy in the slow phase of gaze-evoked nystagmus. The disconjugacy of the slow phase of gaze-evoked nystagmus was larger during monocular viewing condition. We propose that interaction of the strabismic drifts of the covered eyes and the nystagmus drift, putatively at the final common pathway might lead to such disconjugacy.

  13. The Relationship between Saccadic Choice and Reaction Times with Manipulations of Target Value

    PubMed Central

    Milstein, David M.; Dorris, Michael C.

    2011-01-01

    Choosing the option with the highest expected value (EV; reward probability × reward magnitude) maximizes the intake of reward under conditions of uncertainty. However, human economic choices indicate that our value calculation has a subjective component whereby probability and reward magnitude are not linearly weighted. Using a similar economic framework, our goal was to characterize how subjective value influences the generation of simple motor actions. Specifically, we hypothesized that attributes of saccadic eye movements could provide insight into how rhesus monkeys, a well-studied animal model in cognitive neuroscience, subjectively value potential visual targets. In the first experiment, monkeys were free to choose by directing a saccade toward one of two simultaneously displayed targets, each of which had an uncertain outcome. In this task, choices were more likely to be allocated toward the higher valued target. In the second experiment, only one of the two possible targets appeared on each trial. In this task, saccadic reaction times (SRTs) decreased toward the higher valued target. Reward magnitude had a much stronger influence on both choices and SRTs than probability, whose effect was observed only when reward magnitude was similar for both targets. Across EV blocks, a strong relationship was observed between choice preferences and SRTs. However, choices tended to maximize at skewed values whereas SRTs varied more continuously. Lastly, SRTs were unchanged when all reward magnitudes were 1×, 1.5×, and 2× their normal amount, indicating that saccade preparation was influenced by the relative value of the targets rather than the absolute value of any single-target. We conclude that value is not only an important factor for deliberative decision making in primates, but also for the selection and preparation of simple motor actions, such as saccadic eye movements. More precisely, our results indicate that, under conditions of uncertainty, saccade

  14. Influence of orbital eye position on vertical saccades in progressive supranuclear palsy

    PubMed Central

    Schneider, Rosalyn; Chen, Athena L.; King, Susan A.; Riley, David E.; Gunzler, Steven A.; Devereaux, Michael. W.; Leigh, R. John

    2011-01-01

    Disturbance of vertical saccadesis a cardinal feature of progressive supranuclear palsy (PSP). We investigated whether the amplitude and peak velocity of saccades is affected by the orbital position fromwhich movements start in PSP patients and age-matched control subjects. Subjects made vertical saccades in response to ± 5 degree vertical target jumps with their heads in one of three positions: head “center,” head pitched forward ~15 degrees, and head pitched back ~ 15 degrees.All patients showed some effect of starting eye position, whether beginning in the upward or downward field of gaze, on saccade amplitude, peak velocity (PV), and net range of movement. Generally, reduction of amplitude and PV were commensurate and bidirectional in the affected hemifield of gaze. Such findings are unlikelyto be due to orbital factors and could be explained by varying degrees of involvement of rostral midbrain nucleiin the pathological process. PMID:21950977

  15. Sensorimotor recovery following spaceflight may be due to frequent square-wave saccadic intrusions

    NASA Technical Reports Server (NTRS)

    Reschke, Millard; Somers, Jeffrey T.; Leigh, R. John; Krnavek, Jody M.; Kornilova, Ludmila; Kozlovskaya, Inessa; Bloomberg, Jacob J.; Paloski, William H.

    2004-01-01

    Square-wave jerks (SWJs) are small, involuntary saccades that disrupt steady fixation. We report the case of an astronaut (approximately 140 d on orbit) who showed frequent SWJs, especially postflight, but who showed no impairment of vision or decrement of postflight performance. These data support the view that SWJs do not impair vision because they are paired movements, consisting of a small saccade away from the fixation position followed, within 200 ms, by a corrective saccade that brings the eye back on target. Since many returning astronauts show a decrement of dynamic visual function during postflight locomotion, it seems possible that frequent SWJs improved this astronaut's visual function by providing postsaccadic enhancement of visual fixation, which aided postflight performance. Certainly, frequent SWJs did not impair performance in this astronaut, who had no other neurological disorder.

  16. Attentional disengagement is modulated by the offset of unpleasant pictures: a saccadic reaction time study.

    PubMed

    Machado-Pinheiro, Walter; Faria, Aydamari; Braga, Filipe; Guerra, Pedro; Perakakis, Pandelis; Caldas, Ariane Leão; Mocaiber, Izabela; Oliveira, Letícia; Pereira, Mirtes Garcia; Volchan, Eliane; Vila, Jaime

    2013-12-01

    We studied the influence of passively viewing a picture on saccade latencies to peripheral targets. Thirty-two volunteers were instructed to look at a central picture, wait for the onset of a peripheral target, and execute a saccade toward it as quickly as possible - saccadic reaction time (SRT). The central picture (neutral or unpleasant) could be turned off simultaneously with target onset (the no-gap condition) or 200ms prior to target onset (the gap-200 condition). We found that saccade latencies were influenced by emotional valence and condition. In the no-gap condition, SRTs were longer after viewing unpleasant pictures. In the gap-200 condition, the pattern was reversed, and unpleasant pictures induced shorter SRTs in relation to neutral pictures. Furthermore, the influence of unpleasant pictures gradually decreased when images were re-exposed to the participants - affective habituation. The results are discussed in terms of attentional avoidance and disengagement from unpleasant emotional pictures. © 2013.

  17. Neural correlates of saccadic inhibition in healthy elderly and patients with amnestic mild cognitive impairment

    PubMed Central

    Alichniewicz, K. K.; Brunner, F.; Klünemann, H. H.; Greenlee, M. W.

    2013-01-01

    Performance on tasks that require saccadic inhibition declines with age and altered inhibitory functioning has also been reported in patients with Alzheimer's disease. Although mild cognitive impairment (MCI) is assumed to be a high-risk factor for conversion to AD, little is known about changes in saccadic inhibition and its neural correlates in this condition. Our study determined whether the neural activation associated with saccadic inhibition is altered in persons with amnestic mild cognitive impairment (aMCI). Functional magnetic resonance imaging (fMRI) revealed decreased activation in parietal lobe in healthy elderly persons compared to young persons and decreased activation in frontal eye fields in aMCI patients compared to healthy elderly persons during the execution of anti-saccades. These results illustrate that the decline in inhibitory functions is associated with impaired frontal activation in aMCI. This alteration in function might reflect early manifestations of AD and provide new insights in the neural activation changes that occur in pathological ageing. PMID:23898312

  18. Testing a simplified method for measuring velocity integration in saccades using a manipulation of target contrast.

    PubMed

    Etchells, Peter J; Benton, Christopher P; Ludwig, Casimir J H; Gilchrist, Iain D

    2011-01-01

    A growing number of studies in vision research employ analyses of how perturbations in visual stimuli influence behavior on single trials. Recently, we have developed a method along such lines to assess the time course over which object velocity information is extracted on a trial-by-trial basis in order to produce an accurate intercepting saccade to a moving target. Here, we present a simplified version of this methodology, and use it to investigate how changes in stimulus contrast affect the temporal velocity integration window used when generating saccades to moving targets. Observers generated saccades to one of two moving targets which were presented at high (80%) or low (7.5%) contrast. In 50% of trials, target velocity stepped up or down after a variable interval after the saccadic go signal. The extent to which the saccade endpoint can be accounted for as a weighted combination of the pre- or post-step velocities allows for identification of the temporal velocity integration window. Our results show that the temporal integration window takes longer to peak in the low when compared to high contrast condition. By enabling the assessment of how information such as changes in velocity can be used in the programming of a saccadic eye movement on single trials, this study describes and tests a novel methodology with which to look at the internal processing mechanisms that transform sensory visual inputs into oculomotor outputs.

  19. Socio-cognitive load and social anxiety in an emotional anti-saccade task

    PubMed Central

    Butler, Stephen H.; Grealy, Madeleine A.

    2018-01-01

    The anti-saccade task has been used to measure attentional control related to general anxiety but less so with social anxiety specifically. Previous research has not been conclusive in suggesting that social anxiety may lead to difficulties in inhibiting faces. It is possible that static face paradigms do not convey a sufficient social threat to elicit an inhibitory response in socially anxious individuals. The aim of the current study was twofold. We investigated the effect of social anxiety on performance in an anti-saccade task with neutral or emotional faces preceded either by a social stressor (Experiment 1), or valenced sentence primes designed to increase the social salience of the task (Experiment 2). Our results indicated that latencies were significantly longer for happy than angry faces. Additionally, and surprisingly, high anxious participants made more erroneous anti-saccades to neutral than angry and happy faces, whilst the low anxious groups exhibited a trend in the opposite direction. Results are consistent with a general approach-avoidance response for positive and threatening social information. However increased socio-cognitive load may alter attentional control with high anxious individuals avoiding emotional faces, but finding it more difficult to inhibit ambiguous faces. The effects of social sentence primes on attention appear to be subtle but suggest that the anti-saccade task will only elicit socially relevant responses where the paradigm is more ecologically valid. PMID:29795619

  20. The Mechanism Underlying Inhibition of Saccadic Return

    ERIC Educational Resources Information Center

    Ludwig, Casimir J. H.; Farrell, Simon; Ellis, Lucy A.; Gilchrist, Iain D.

    2009-01-01

    Human observers take longer to re-direct gaze to a previously fixated location. Although there has been some exploration of the characteristics of inhibition of saccadic return (ISR), the exact mechanisms by which ISR operates are currently unknown. In the framework of accumulation models of response times, in which evidence is integrated over…

  1. Back to basics: The effects of block vs. interleaved trial administration on pro- and anti-saccade performance

    PubMed Central

    Zeligman, Liran; Zivotofsky, Ari Z.

    2017-01-01

    The pro and anti-saccade task (PAT) is a widely used tool in the study of overt and covert attention with promising potential role in neurocognitive and psychiatric assessment. However, specific PAT protocols can vary significantly between labs, potentially resulting in large variations in findings across studies. In light of recent calls towards a standardization of PAT the current study's objective was to systematically and purposely evaluate the effects of block vs. interleaved administration—a fundamental consideration—on PAT measures in a within subject design. Additionally, this study evaluated whether measures of a Posner-type cueing paradigm parallels measures of the PAT paradigm. As hypothesized, results indicate that PAT performance is highly susceptible to administration mode. Interleaved mode resulted in larger error rates not only for anti (blocks: M = 22%; interleaved: M = 42%) but also for pro-saccades (blocks: M = 5%; interleaved: M = 12%). This difference between block and interleaved administration was significantly larger in anti-saccades compared to pro-saccades and cannot be attributed to a 'speed/accuracy tradeoff'. Interleaved mode produced larger pro and anti-saccade differences in error rates while block administration produced larger latency differences. Results question the reflexive nature of pro-saccades, suggesting they are not purely reflexive. These results were further discussed and compared to previous studies that included within subject data of blocks and interleaved trials. PMID:28222173

  2. Modulation of Saccade Vigor during Value-Based Decision Making.

    PubMed

    Reppert, Thomas R; Lempert, Karolina M; Glimcher, Paul W; Shadmehr, Reza

    2015-11-18

    During value-based decision-making, individuals consider the various options and select the one that provides the maximum subjective value. Although the brain integrates abstract information to compute and compare these values, the only behavioral outcome is often the decision itself. However, if the options are visual stimuli, during deliberation the brain moves the eyes from one stimulus to the other. Previous work suggests that saccade vigor, i.e., peak velocity as a function of amplitude, is greater if reward is associated with the visual stimulus. This raises the possibility that vigor during the free viewing of options may be influenced by the valuation of each option. Here, humans chose between a small, immediate monetary reward and a larger but delayed reward. As the deliberation began, vigor was similar for the saccades made to the two options but diverged 0.5 s before decision time, becoming greater for the preferred option. This difference in vigor increased as a function of the difference in the subjective values that the participant assigned to the delayed and immediate options. After the decision was made, participants continued to gaze at the options, but with reduced vigor, making it possible to infer timing of the decision from the sudden drop in vigor. Therefore, the subjective value that the brain assigned to a stimulus during decision-making affected the motor system via the vigor with which the eyes moved toward that stimulus. We find that, as individuals deliberate between two rewarding options and arrive at a decision, the vigor with which they make saccades to each option reflects a real-time evaluation of that option. With deliberation, saccade vigor diverges between the two options, becoming greater for the option that the individual will eventually choose. The results suggest a shared element between the network that assigns value to a stimulus during the process of decision-making and the network that controls vigor of movements toward

  3. Modulation of Saccade Vigor during Value-Based Decision Making

    PubMed Central

    Lempert, Karolina M.; Glimcher, Paul W.; Shadmehr, Reza

    2015-01-01

    During value-based decision-making, individuals consider the various options and select the one that provides the maximum subjective value. Although the brain integrates abstract information to compute and compare these values, the only behavioral outcome is often the decision itself. However, if the options are visual stimuli, during deliberation the brain moves the eyes from one stimulus to the other. Previous work suggests that saccade vigor, i.e., peak velocity as a function of amplitude, is greater if reward is associated with the visual stimulus. This raises the possibility that vigor during the free viewing of options may be influenced by the valuation of each option. Here, humans chose between a small, immediate monetary reward and a larger but delayed reward. As the deliberation began, vigor was similar for the saccades made to the two options but diverged 0.5 s before decision time, becoming greater for the preferred option. This difference in vigor increased as a function of the difference in the subjective values that the participant assigned to the delayed and immediate options. After the decision was made, participants continued to gaze at the options, but with reduced vigor, making it possible to infer timing of the decision from the sudden drop in vigor. Therefore, the subjective value that the brain assigned to a stimulus during decision-making affected the motor system via the vigor with which the eyes moved toward that stimulus. SIGNIFICANCE STATEMENT We find that, as individuals deliberate between two rewarding options and arrive at a decision, the vigor with which they make saccades to each option reflects a real-time evaluation of that option. With deliberation, saccade vigor diverges between the two options, becoming greater for the option that the individual will eventually choose. The results suggest a shared element between the network that assigns value to a stimulus during the process of decision-making and the network that controls

  4. Visual and non-visual motion information processing during pursuit eye tracking in schizophrenia and bipolar disorder.

    PubMed

    Trillenberg, Peter; Sprenger, Andreas; Talamo, Silke; Herold, Kirsten; Helmchen, Christoph; Verleger, Rolf; Lencer, Rebekka

    2017-04-01

    Despite many reports on visual processing deficits in psychotic disorders, studies are needed on the integration of visual and non-visual components of eye movement control to improve the understanding of sensorimotor information processing in these disorders. Non-visual inputs to eye movement control include prediction of future target velocity from extrapolation of past visual target movement and anticipation of future target movements. It is unclear whether non-visual input is impaired in patients with schizophrenia. We recorded smooth pursuit eye movements in 21 patients with schizophrenia spectrum disorder, 22 patients with bipolar disorder, and 24 controls. In a foveo-fugal ramp task, the target was either continuously visible or was blanked during movement. We determined peak gain (measuring overall performance), initial eye acceleration (measuring visually driven pursuit), deceleration after target extinction (measuring prediction), eye velocity drifts before onset of target visibility (measuring anticipation), and residual gain during blanking intervals (measuring anticipation and prediction). In both patient groups, initial eye acceleration was decreased and the ability to adjust eye acceleration to increasing target acceleration was impaired. In contrast, neither deceleration nor eye drift velocity was reduced in patients, implying unimpaired non-visual contributions to pursuit drive. Disturbances of eye movement control in psychotic disorders appear to be a consequence of deficits in sensorimotor transformation rather than a pure failure in adding cognitive contributions to pursuit drive in higher-order cortical circuits. More generally, this deficit might reflect a fundamental imbalance between processing external input and acting according to internal preferences.

  5. Interaction between Visual- and Goal-Related Neuronal Signals on the Trajectories of Saccadic Eye Movements

    ERIC Educational Resources Information Center

    White, Brian J.; Theeuwes, Jan; Munoz, Douglas P.

    2012-01-01

    During natural viewing, the trajectories of saccadic eye movements often deviate dramatically from a straight-line path between objects. In human studies, saccades have been shown to deviate toward or away from salient visual distractors depending on visual- and goal-related parameters, but the neurophysiological basis for this is not well…

  6. Saccadic eye movement applications for psychiatric disorders

    PubMed Central

    Bittencourt, Juliana; Velasques, Bruna; Teixeira, Silmar; Basile, Luis F; Salles, José Inácio; Nardi, Antonio Egídio; Budde, Henning; Cagy, Mauricio; Piedade, Roberto; Ribeiro, Pedro

    2013-01-01

    Objective The study presented here analyzed the patterns of relationship between oculomotor performance and psychopathology, focusing on depression, bipolar disorder, schizophrenia, attention-deficit hyperactivity disorder, and anxiety disorder. Methods Scientific articles published from 1967 to 2013 in the PubMed/Medline, ISI Web of Knowledge, Cochrane, and SciELO databases were reviewed. Results Saccadic eye movement appears to be heavily involved in psychiatric diseases covered in this review via a direct mechanism. The changes seen in the execution of eye movement tasks in patients with psychopathologies of various studies confirm that eye movement is associated with the cognitive and motor system. Conclusion Saccadic eye movement changes appear to be heavily involved in the psychiatric disorders covered in this review and may be considered a possible marker of some disorders. The few existing studies that approach the topic demonstrate a need to improve the experimental paradigms, as well as the methods of analysis. Most of them report behavioral variables (latency/reaction time), though electrophysiological measures are absent. PMID:24072973

  7. The relationship between peak velocity of saccadic eye movements and serum benzodiazepine concentration.

    PubMed Central

    Bittencourt, P R; Wade, P; Smith, A T; Richens, A

    1981-01-01

    1 Six healthy male volunteers received single oral doses of 10 mg diazepam, 20 mg temazepam, 15 mg flurazepam, 5 mg nitrazepam, 10 mg desmethyl-diazepam and placebo in a double-blind randomized fashion. 2 Peak velocity of saccadic eye movements, serum benzodiazepine concentration, and subjective ratings of wakefulness and co-ordination were measured at intervals up to 12 h after drug administration. 3 All active treatments produced a statistically significant decrease in peak saccadic velocity. The effect of temazepam and diazepam was generally more pronounced than that of flurazepam, nitrazepam and desmethyl-diazepam. 4 There were log-linear correlations between peak saccadic velocity and serum benzodiazepine concentration after ingestion of temazepam, diazepam and nitrazepam. 5 These results demonstrate a clear relationship between serum benzodiazepine concentration and its effect on a convenient measure of brainstem reticular formation function. PMID:6794587

  8. Cause of kinematic differences during centrifugal and centripetal saccades.

    PubMed

    Koene, Ansgar R; Erkelens, Casper J

    2002-06-01

    Measurements of eye movements have shown that centrifugal movements (i.e. away from the primary position) have a lower maximum velocity and a longer duration than centripetal movements (i.e. toward the primary position) of the same size. In 1988 Pelisson proposed that these kinematic differences might be caused by differences in the neural command signals, oculomotor mechanics or a combination of the two. By using the result of muscle force measurements that were made in recent years (Orbit 1.8 Gaze mechanics simulation, Eidactics, San Francisco, 1999) we simulated the muscle forces during centrifugal and centripetal saccades. Based on these simulations we show that the cause of the kinematic differences between the centrifugal and centripetal saccades is the non-linear force-velocity relationship (i.e. muscle viscosity) of the muscles.

  9. On the development of voluntary and reflexive components in human saccade generation.

    PubMed

    Fischer, B; Biscaldi, M; Gezeck, S

    1997-04-18

    The saccadic performance of a large number (n = 281) of subjects of different ages (8-70 years) was studied applying two saccade tasks: the prosaccade overlap (PO) task and the antisaccade gap (AG) task. From the PO task, the mean reaction times and the percentage of express saccades were determined for each subject. From the AG task, the mean reaction time of the correct antisaccades and of the erratic prosaccades were measured. In addition, we determined the error rate and the mean correction time, i.e. the time between the end of the first erratic prosaccade and the following corrective antisaccade. These variables were measured separately for stimuli presented (in random order) at the right or left side. While strong correlations were seen between variables for the right and left sides, considerable side asymmetries were obtained from many subjects. A factor analysis revealed that the seven variables (six eye movement variables plus age) were mainly determined by only two factors, V and F. The V factor was dominated by the variables from the AG task (reaction time, correction time, error rate) the F factor by variables from the PO task (reaction time, percentage express saccades) and the reaction time of the errors (prosaccades!) from the AG task. The relationship between the percentage number of express saccades and the percentage number of errors was completely asymmetric: high numbers of express saccades were accompanied by high numbers of errors but not vice versa. Only the variables in the V factor covaried with age. A fast decrease of the antisaccade reaction time (by 50 ms), of the correction times (by 70 ms) and of the error rate (from 60 to 22%) was observed between age 9 and 15 years, followed by a further period of slower decrease until age 25 years. The mean time a subject needed to reach the side opposite to the stimulus as required by the antisaccade task decreased from approximately 350 to 250 ms until age 15 years and decreased further by 20 ms

  10. Greater magnocellular saccadic suppression in high versus low autistic tendency suggests a causal path to local perceptual style.

    PubMed

    Crewther, David P; Crewther, Daniel; Bevan, Stephanie; Goodale, Melvyn A; Crewther, Sheila G

    2015-12-01

    Saccadic suppression-the reduction of visual sensitivity during rapid eye movements-has previously been proposed to reflect a specific suppression of the magnocellular visual system, with the initial neural site of that suppression at or prior to afferent visual information reaching striate cortex. Dysfunction in the magnocellular visual pathway has also been associated with perceptual and physiological anomalies in individuals with autism spectrum disorder or high autistic tendency, leading us to question whether saccadic suppression is altered in the broader autism phenotype. Here we show that individuals with high autistic tendency show greater saccadic suppression of low versus high spatial frequency gratings while those with low autistic tendency do not. In addition, those with high but not low autism spectrum quotient (AQ) demonstrated pre-cortical (35-45 ms) evoked potential differences (saccade versus fixation) to a large, low contrast, pseudo-randomly flashing bar. Both AQ groups showed similar differential visual evoked potential effects in later epochs (80-160 ms) at high contrast. Thus, the magnocellular theory of saccadic suppression appears untenable as a general description for the typically developing population. Our results also suggest that the bias towards local perceptual style reported in autism may be due to selective suppression of low spatial frequency information accompanying every saccadic eye movement.

  11. The Role of Predictability in Saccadic Eye Responses in the Suppression Head Impulse Test of Horizontal Semicircular Canal Function.

    PubMed

    Rey-Martinez, Jorge; Yanes, Joaquin; Esteban, Jonathan; Sanz, Ricardo; Martin-Sanz, Eduardo

    2017-01-01

    In the suppression head impulse paradigm (SHIMP) vHIT protocol, the participant is instructed to follow with his gaze a mobile target generated by a laser placed on the participant's head. Recent studies have reported that the refixation saccade latencies are in relation with the time evolution of the vestibular dysfunction in both (standard and SHIMP) procedures. We hypothesized that some central mechanisms like head impulse prediction could be one of the causes for the differences in the saccadic eye responses. A prospective cohort non-randomized study was designed. For the SHIMP protocol, recorded with the ICS Impulse ver. 4.0 ® (Otometrics A/S, Taastrup, Denmark) vHIT device, three different algorithms were performed: "predictable," "less predictable," and "unpredictable" depending on the target's predictability. A mathematical method was developed to analyze the SHIMP responses. The method was implemented as an additional tool to the MATLAB open source script for the extended analysis of the vHIT responses named HITCal. In cohort 1, 52 participants were included in "predictable" SHIMP protocol. In cohort 2, 60 patients were included for the "less predictable" and 35 patients for the "unpredictable" SHIMP protocol. The participants made more early saccades when instructed to perform the "predictable" paradigm compared with the "less predictable" paradigm ( p  < 0.001). The less predictable protocol did not reveal any significant difference when compared with the unpredictable protocol ( p  = 0.189). For the latency of the first saccade, there was statistical difference between the "unpredictable" and "predictable" protocols ( p  < 0.001) and between the "less predictable" and "predictable" protocols ( p  < 0.001). Finally, we did not find any relationship between the horizontal vestibulo-ocular reflex (hVOR) gain and the latency of the saccades. We developed a specific method to analyze and detect early SHIMP saccades. Our findings offer

  12. A neurocomputational model of figure-ground discrimination and target tracking.

    PubMed

    Sun, H; Liu, L; Guo, A

    1999-01-01

    A neurocomputational model is presented for figureground discrimination and target tracking. In the model, the elementary motion detectors of the correlation type, the computational modules of saccadic and smooth pursuit eye movement, an oscillatory neural-network motion perception module and a selective attention module are involved. It is shown that through the oscillatory amplitude and frequency encoding, and selective synchronization of phase oscillators, the figure and the ground can be successfully discriminated from each other. The receptive fields developed by hidden units of the networks were surprisingly similar to the actual receptive fields and columnar organization found in the primate visual cortex. It is suggested that equivalent mechanisms may exist in the primate visual cortex to discriminate figure-ground in both temporal and spatial domains.

  13. Oculomotor apraxia and dilated cardiomyopathy with ataxia syndrome: A case report.

    PubMed

    Benson, Matthew D; Ferreira, Patrick; MacDonald, Ian M

    2017-01-01

    Dilated cardiomyopathy with ataxia syndrome (DCMA) is a rare mitochondrial condition associated with early onset cardiomyopathy and non-progressive ataxia. The cardiac manifestations may be progressive and often severe, resulting in significant morbidity and mortality. While optic nerve atrophy has been described in patients with DCMA, to our knowledge, there have been no reports of additional ocular phenotypes. We present two related Dariusleut Hutterite patients with documented DCMA syndrome and disorders of ocular motility: poor smooth pursuit and difficulty initiating saccadic eye movements and maintaining target fixation. We thus report the first cases of oculomotor apraxia in DCMA syndrome. By identifying these associated findings early in life, we hope to improve both the clinical diagnostic accuracy and timeliness of intervention in cases of DCMA.

  14. The effect of vestibulo-ocular reflex deficits and covert saccades on dynamic vision in opioid-induced vestibular dysfunction.

    PubMed

    Ramaioli, Cecilia; Colagiorgio, Paolo; Sağlam, Murat; Heuser, Fabian; Schneider, Erich; Ramat, Stefano; Lehnen, Nadine

    2014-01-01

    Patients with bilateral vestibular dysfunction cannot fully compensate passive head rotations with eye movements, and experience disturbing oscillopsia. To compensate for the deficient vestibulo-ocular reflex (VOR), they have to rely on re-fixation saccades. Some can trigger "covert" saccades while the head still moves; others only initiate saccades afterwards. Due to their shorter latency, it has been hypothesized that covert saccades are particularly beneficial to improve dynamic visual acuity, reducing oscillopsia. Here, we investigate the combined effect of covert saccades and the VOR on clear vision, using the Head Impulse Testing Device-Functional Test (HITD-FT), which quantifies reading ability during passive high-acceleration head movements. To reversibly decrease VOR function, fourteen healthy men (median age 26 years, range 21-31) were continuously administrated the opioid remifentanil intravenously (0.15 µg/kg/min). VOR gain was assessed with the video head-impulse test, functional performance (i.e. reading) with the HITD-FT. Before opioid application, VOR and dynamic reading were intact (head-impulse gain: 0.87±0.08, mean±SD; HITD-FT rate of correct answers: 90±9%). Remifentanil induced impairment in dynamic reading (HITD-FT 26±15%) in 12/14 subjects, with transient bilateral vestibular dysfunction (head-impulse gain 0.63±0.19). HITD-FT score correlated with head-impulse gain (R = 0.63, p = 0.03) and with gain difference (before/with remifentanil, R = -0.64, p = 0.02). One subject had a non-pathological head-impulse gain (0.82±0.03) and a high HITD-FT score (92%). One subject triggered covert saccades in 60% of the head movements and could read during passive head movements (HITD-FT 93%) despite a pathological head-impulse gain (0.59±0.03) whereas none of the 12 subjects without covert saccades reached such high performance. In summary, early catch-up saccades may improve dynamic visual function. HITD-FT is an appropriate method

  15. Further Tests of a Dynamic-Adjustment Account of Saccade Targeting during the Reading of Chinese

    ERIC Educational Resources Information Center

    Liu, Yanping; Huang, Ren; Gao, Dingguo; Reichle, Erik D.

    2017-01-01

    There are two accounts of how readers of unspaced writing systems (e.g., Chinese) know where to move their eyes: (a) saccades are directed toward default targets (e.g., centers of words that have been segmented in the parafovea); or (b) saccade lengths are adjusted dynamically, as a function of ongoing parafoveal processing. This article reports…

  16. Greater magnocellular saccadic suppression in high versus low autistic tendency suggests a causal path to local perceptual style

    PubMed Central

    Crewther, David P.; Crewther, Daniel; Bevan, Stephanie; Goodale, Melvyn A.; Crewther, Sheila G.

    2015-01-01

    Saccadic suppression—the reduction of visual sensitivity during rapid eye movements—has previously been proposed to reflect a specific suppression of the magnocellular visual system, with the initial neural site of that suppression at or prior to afferent visual information reaching striate cortex. Dysfunction in the magnocellular visual pathway has also been associated with perceptual and physiological anomalies in individuals with autism spectrum disorder or high autistic tendency, leading us to question whether saccadic suppression is altered in the broader autism phenotype. Here we show that individuals with high autistic tendency show greater saccadic suppression of low versus high spatial frequency gratings while those with low autistic tendency do not. In addition, those with high but not low autism spectrum quotient (AQ) demonstrated pre-cortical (35–45 ms) evoked potential differences (saccade versus fixation) to a large, low contrast, pseudo-randomly flashing bar. Both AQ groups showed similar differential visual evoked potential effects in later epochs (80–160 ms) at high contrast. Thus, the magnocellular theory of saccadic suppression appears untenable as a general description for the typically developing population. Our results also suggest that the bias towards local perceptual style reported in autism may be due to selective suppression of low spatial frequency information accompanying every saccadic eye movement. PMID:27019719

  17. Effects of Reduced Acuity and Stereo Acuity on Saccades and Reaching Movements in Adults With Amblyopia and Strabismus.

    PubMed

    Niechwiej-Szwedo, Ewa; Goltz, Herbert C; Colpa, Linda; Chandrakumar, Manokaraananthan; Wong, Agnes M F

    2017-02-01

    Our previous work has shown that amblyopia disrupts the planning and execution of visually-guided saccadic and reaching movements. We investigated the association between the clinical features of amblyopia and aspects of visuomotor behavior that are disrupted by amblyopia. A total of 55 adults with amblyopia (22 anisometropic, 18 strabismic, 15 mixed mechanism), 14 adults with strabismus without amblyopia, and 22 visually-normal control participants completed a visuomotor task while their eye and hand movements were recorded. Univariate and multivariate analyses were performed to assess the association between three clinical predictors of amblyopia (amblyopic eye [AE] acuity, stereo sensitivity, and eye deviation) and seven kinematic outcomes, including saccadic and reach latency, interocular saccadic and reach latency difference, saccadic and reach precision, and PA/We ratio (an index of reach control strategy efficacy using online feedback correction). Amblyopic eye acuity explained 28% of the variance in saccadic latency, and 48% of the variance in mean saccadic latency difference between the amblyopic and fellow eyes (i.e., interocular latency difference). In contrast, for reach latency, AE acuity explained only 10% of the variance. Amblyopic eye acuity was associated with reduced endpoint saccadic (23% of variance) and reach (22% of variance) precision in the amblyopic group. In the strabismus without amblyopia group, stereo sensitivity and eye deviation did not explain any significant variance in saccadic and reach latency or precision. Stereo sensitivity was the best clinical predictor of deficits in reach control strategy, explaining 23% of total variance of PA/We ratio in the amblyopic group and 12% of variance in the strabismus without amblyopia group when viewing with the amblyopic/nondominant eye. Deficits in eye and limb movement initiation (latency) and target localization (precision) were associated with amblyopic acuity deficit, whereas changes in

  18. Long-Lasting Modifications of Saccadic Eye Movements Following Adaptation Induced in the Double-Step Target Paradigm

    ERIC Educational Resources Information Center

    Alahyane, Nadia; Pelisson, Denis

    2005-01-01

    The adaptation of saccadic eye movements to environmental changes occurring throughout life is a good model of motor learning and motor memory. Numerous studies have analyzed the behavioral properties and neural substrate of oculomotor learning in short-term saccadic adaptation protocols, but to our knowledge, none have tested the persistence of…

  19. Immediate Neural Plasticity Involving Reaction Time in a Saccadic Eye Movement Task is Intact in Children With Fetal Alcohol Spectrum Disorder.

    PubMed

    Paolozza, Angelina; Munoz, Douglas P; Brien, Donald; Reynolds, James N

    2016-11-01

    Saccades are rapid eye movements that bring an image of interest onto the retina. Previous research has found that in healthy individuals performing eye movement tasks, the location of a previous visual target can influence performance of the saccade on the next trial. This rapid behavioral adaptation represents a form of immediate neural plasticity within the saccadic circuitry. Our studies have shown that children with fetal alcohol spectrum disorder (FASD) are impaired on multiple saccade measures. We therefore investigated these previous trial effects in typically developing children and children with FASD to measure sensory neural plasticity and how these effects vary with age and pathology. Both typically developing control children (n = 102; mean age = 10.54 ± 3.25; 48 males) and children with FASD (n = 66; mean age = 11.85 ± 3.42; 35 males) were recruited from 5 sites across Canada. Each child performed a visually guided saccade task. Reaction time and saccade amplitude were analyzed and then assessed based on the previous trial. There was a robust previous trial effect for both reaction time and amplitude, with both the control and FASD groups displaying faster reaction times and smaller saccades during alternation trials (visual target presented on the opposite side to the previous trial). Children with FASD exhibited smaller overall mean amplitude and smaller amplitude selectively on alternation trials compared with controls. The effect of the previous trial on reaction time and amplitude did not differ across childhood and adolescent development. Children with FASD did not display any significant reaction time differences, despite exhibiting numerous deficits in motor and higher level cognitive control over saccades in other studies. These results suggest that this form of immediate neural plasticity in response to sensory information before saccade initiation remains intact in children with FASD. In contrast, the previous trial effect on

  20. Reliability and comparison of gain values with occurrence of saccades in the EyeSeeCam video head impulse test (vHIT).

    PubMed

    Korsager, Leise Elisabeth Hviid; Schmidt, Jesper Hvass; Faber, Christian; Wanscher, Jens Højberg

    2016-12-01

    The vHIT (video head impulse test) investigates the vestibular function in two ways: a VOR (vestibulo-ocular reflex) gain value and a head impulse diagram. From the diagram covert and overt saccades can be detected. Evaluation of the vestibular function based on vHIT depends on both parameters. There is a lack of knowledge regarding the reliability of the two parameters. The objective was to investigate the reliability of vHIT by comparing gain values between examiners on the same subjects, and to see how differences affected the occurrence of saccades. 25 subjects who had undergone cochlear implant (CI) surgery. Subjects were tested using the vHIT by two of four different examiners. Two judges interpreted the occurrence of saccades in the diagram. VOR gain values and the occurrence of saccades in the diagram. Differences in gain values between examiners varied from 0.2 to 0.58 with an average of 0.14 (95 % CI 0.12-0.16) on the right ear and 0.17 (95 % CI 0.15-0.19) on the left ear. Occurrences of saccades in the same patient were reproduced in 93 % of the cases by all examiners. Kappa's coefficient on the occurrence of saccades was 0.83. Interclass correlation coefficient (ICC) of the gain values between examiners ranged from 0.62 to 0.70. Differences in gain values amongst examiners did not seem to affect the occurrence of saccades in the same patient. The occurrence of saccades, therefore, seems to be more reliable than the gain value in the evaluation of the vestibular function. Interpretation of vHIT results should, therefore, first depend on the occurrence of saccades and second on the gain value.

  1. Reduced Misinformation Effects Following Saccadic Bilateral Eye Movements

    ERIC Educational Resources Information Center

    Parker, Andrew; Buckley, Sharon; Dagnall, Neil

    2009-01-01

    The effects of saccadic bilateral (horizontal) eye movements on memory for a visual event narrative were investigated. In the study phase, participants were exposed to a set of pictures accompanied by a verbal commentary describing the events depicted in the pictures. Next, the participants were asked either misleading or control questions about…

  2. Reading sentences of uniform word length: Evidence for the adaptation of the preferred saccade length during reading.

    PubMed

    Cutter, Michael G; Drieghe, Denis; Liversedge, Simon P

    2017-11-01

    In the current study, the effect of removing word length variability within sentences on spatial aspects of eye movements during reading was investigated. Participants read sentences that were uniform in terms of word length, with each sentence consisting entirely of three-, four-, or five-letter words, or a combination of these word lengths. Several interesting findings emerged. Adaptation of the preferred saccade length occurred for sentences with different uniform word length; participants would be more accurate at making short saccades while reading uniform sentences of three-letter words, while they would be more accurate at making long saccades while reading uniform sentences of five-letter words. Furthermore, word skipping was affected such that three- and four-letter words were more likely, and five-letter words less likely, to be directly fixated in uniform compared to non-uniform sentences. It is argued that saccadic targeting during reading is highly adaptable and flexible toward the characteristics of the text currently being read, as opposed to the idea implemented in most current models of eye movement control during reading that readers develop a preference for making saccades of a certain length across a lifetime of experience with a given language. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Saccade selection when reward probability is dynamically manipulated using Markov chains

    PubMed Central

    Lovejoy, Lee P.; Krauzlis, Richard J.

    2012-01-01

    Markov chains (stochastic processes where probabilities are assigned based on the previous outcome) are commonly used to examine the transitions between behavioral states, such as those that occur during foraging or social interactions. However, relatively little is known about how well primates can incorporate knowledge about Markov chains into their behavior. Saccadic eye movements are an example of a simple behavior influenced by information about probability, and thus are good candidates for testing whether subjects can learn Markov chains. In addition, when investigating the influence of probability on saccade target selection, the use of Markov chains could provide an alternative method that avoids confounds present in other task designs. To investigate these possibilities, we evaluated human behavior on a task in which stimulus reward probabilities were assigned using a Markov chain. On each trial, the subject selected one of four identical stimuli by saccade; after selection, feedback indicated the rewarded stimulus. Each session consisted of 200–600 trials, and on some sessions, the reward magnitude varied. On sessions with a uniform reward, subjects (n = 6) learned to select stimuli at a frequency close to reward probability, which is similar to human behavior on matching or probability classification tasks. When informed that a Markov chain assigned reward probabilities, subjects (n = 3) learned to select the greatest reward probability more often, bringing them close to behavior that maximizes reward. On sessions where reward magnitude varied across stimuli, subjects (n = 6) demonstrated preferences for both greater reward probability and greater reward magnitude, resulting in a preference for greater expected value (the product of reward probability and magnitude). These results demonstrate that Markov chains can be used to dynamically assign probabilities that are rapidly exploited by human subjects during saccade target selection. PMID:18330552

  4. Saccade selection when reward probability is dynamically manipulated using Markov chains.

    PubMed

    Nummela, Samuel U; Lovejoy, Lee P; Krauzlis, Richard J

    2008-05-01

    Markov chains (stochastic processes where probabilities are assigned based on the previous outcome) are commonly used to examine the transitions between behavioral states, such as those that occur during foraging or social interactions. However, relatively little is known about how well primates can incorporate knowledge about Markov chains into their behavior. Saccadic eye movements are an example of a simple behavior influenced by information about probability, and thus are good candidates for testing whether subjects can learn Markov chains. In addition, when investigating the influence of probability on saccade target selection, the use of Markov chains could provide an alternative method that avoids confounds present in other task designs. To investigate these possibilities, we evaluated human behavior on a task in which stimulus reward probabilities were assigned using a Markov chain. On each trial, the subject selected one of four identical stimuli by saccade; after selection, feedback indicated the rewarded stimulus. Each session consisted of 200-600 trials, and on some sessions, the reward magnitude varied. On sessions with a uniform reward, subjects (n = 6) learned to select stimuli at a frequency close to reward probability, which is similar to human behavior on matching or probability classification tasks. When informed that a Markov chain assigned reward probabilities, subjects (n = 3) learned to select the greatest reward probability more often, bringing them close to behavior that maximizes reward. On sessions where reward magnitude varied across stimuli, subjects (n = 6) demonstrated preferences for both greater reward probability and greater reward magnitude, resulting in a preference for greater expected value (the product of reward probability and magnitude). These results demonstrate that Markov chains can be used to dynamically assign probabilities that are rapidly exploited by human subjects during saccade target selection.

  5. Eyetracking Metrics in Young Onset Alzheimer’s Disease: A Window into Cognitive Visual Functions

    PubMed Central

    Pavisic, Ivanna M.; Firth, Nicholas C.; Parsons, Samuel; Rego, David Martinez; Shakespeare, Timothy J.; Yong, Keir X. X.; Slattery, Catherine F.; Paterson, Ross W.; Foulkes, Alexander J. M.; Macpherson, Kirsty; Carton, Amelia M.; Alexander, Daniel C.; Shawe-Taylor, John; Fox, Nick C.; Schott, Jonathan M.; Crutch, Sebastian J.; Primativo, Silvia

    2017-01-01

    Young onset Alzheimer’s disease (YOAD) is defined as symptom onset before the age of 65 years and is particularly associated with phenotypic heterogeneity. Atypical presentations, such as the clinic-radiological visual syndrome posterior cortical atrophy (PCA), often lead to delays in accurate diagnosis. Eyetracking has been used to demonstrate basic oculomotor impairments in individuals with dementia. In the present study, we aim to explore the relationship between eyetracking metrics and standard tests of visual cognition in individuals with YOAD. Fifty-seven participants were included: 36 individuals with YOAD (n = 26 typical AD; n = 10 PCA) and 21 age-matched healthy controls. Participants completed three eyetracking experiments: fixation, pro-saccade, and smooth pursuit tasks. Summary metrics were used as outcome measures and their predictive value explored looking at correlations with visuoperceptual and visuospatial metrics. Significant correlations between eyetracking metrics and standard visual cognitive estimates are reported. A machine-learning approach using a classification method based on the smooth pursuit raw eyetracking data discriminates with approximately 95% accuracy patients and controls in cross-validation tests. Results suggest that the eyetracking paradigms of a relatively simple and specific nature provide measures not only reflecting basic oculomotor characteristics but also predicting higher order visuospatial and visuoperceptual impairments. Eyetracking measures can represent extremely useful markers during the diagnostic phase and may be exploited as potential outcome measures for clinical trials. PMID:28824534

  6. Eyetracking Metrics in Young Onset Alzheimer's Disease: A Window into Cognitive Visual Functions.

    PubMed

    Pavisic, Ivanna M; Firth, Nicholas C; Parsons, Samuel; Rego, David Martinez; Shakespeare, Timothy J; Yong, Keir X X; Slattery, Catherine F; Paterson, Ross W; Foulkes, Alexander J M; Macpherson, Kirsty; Carton, Amelia M; Alexander, Daniel C; Shawe-Taylor, John; Fox, Nick C; Schott, Jonathan M; Crutch, Sebastian J; Primativo, Silvia

    2017-01-01

    Young onset Alzheimer's disease (YOAD) is defined as symptom onset before the age of 65 years and is particularly associated with phenotypic heterogeneity. Atypical presentations, such as the clinic-radiological visual syndrome posterior cortical atrophy (PCA), often lead to delays in accurate diagnosis. Eyetracking has been used to demonstrate basic oculomotor impairments in individuals with dementia. In the present study, we aim to explore the relationship between eyetracking metrics and standard tests of visual cognition in individuals with YOAD. Fifty-seven participants were included: 36 individuals with YOAD ( n  = 26 typical AD; n  = 10 PCA) and 21 age-matched healthy controls. Participants completed three eyetracking experiments: fixation, pro-saccade, and smooth pursuit tasks. Summary metrics were used as outcome measures and their predictive value explored looking at correlations with visuoperceptual and visuospatial metrics. Significant correlations between eyetracking metrics and standard visual cognitive estimates are reported. A machine-learning approach using a classification method based on the smooth pursuit raw eyetracking data discriminates with approximately 95% accuracy patients and controls in cross-validation tests. Results suggest that the eyetracking paradigms of a relatively simple and specific nature provide measures not only reflecting basic oculomotor characteristics but also predicting higher order visuospatial and visuoperceptual impairments. Eyetracking measures can represent extremely useful markers during the diagnostic phase and may be exploited as potential outcome measures for clinical trials.

  7. Saccadic Eye Movement Improves Plantar Sensation and Postural Balance in Elderly Women.

    PubMed

    Bae, Youngsook

    2016-06-01

    Vision, proprioception and plantar sensation contribute to the control of postural balance (PB). Reduced plantar sensation alters postural response and is at an increased risk of fall, and eye movements reduce the postural sway. Therefore, the aim of this study was to study the improvement of plantar sensation and PB after saccadic eye movement (SEM) and pursuit eye movement (PEM) in community-dwelling elderly women. Participants (104 females; 75.11 ± 6.25 years) were randomly allocated into the SEM group (n = 52) and PEM groups (n = 52). The SEM group performed eye fixation and SEM for 5 minutes, and the PEM group performed eye fixation and PEM for 5 minutes. The plantar sensation was measured according to the plantar surface area of the feet in contact with the floor surface before and after the intervention. Before and after SEM and PEM with the eyes open and closed, PB was measured as the area (mm(2)), length (cm), and velocity (cm/s) of the fluctuation of the center of pressure (COP). The plantar sensation of both feet improved in both groups (p < 0.01). Significant decreases in the area, length, and velocity of the COP were observed in the eye open and close in both groups (p < 0.01). The length and velocity of the COP significantly decreased in the SEM group compared to the PEM group (p < 0.05). In conclusion, SEM and PEM are effective interventions for improving plantar sensation and PB in elderly women, with greater PB improvement after SEM.

  8. Inactivation of Parietal Reach Region Affects Reaching But Not Saccade Choices in Internally Guided Decisions.

    PubMed

    Christopoulos, Vassilios N; Bonaiuto, James; Kagan, Igor; Andersen, Richard A

    2015-08-19

    The posterior parietal cortex (PPC) has traditionally been considered important for awareness, spatial perception, and attention. However, recent findings provide evidence that the PPC also encodes information important for making decisions. These findings have initiated a running argument of whether the PPC is critically involved in decision making. To examine this issue, we reversibly inactivated the parietal reach region (PRR), the area of the PPC that is specialized for reaching movements, while two monkeys performed a memory-guided reaching or saccade task. The task included choices between two equally rewarded targets presented simultaneously in opposite visual fields. Free-choice trials were interleaved with instructed trials, in which a single cue presented in the peripheral visual field defined the reach and saccade target unequivocally. We found that PRR inactivation led to a strong reduction of contralesional choices, but only for reaches. On the other hand, saccade choices were not affected by PRR inactivation. Importantly, reaching and saccade movements to single instructed targets remained largely intact. These results cannot be explained as an effector-nonspecific deficit in spatial attention or awareness, since the temporary "lesion" had an impact only on reach choices. Hence, the PPR is a part of a network for reach decisions and not just reach planning. There has been an ongoing debate on whether the posterior parietal cortex (PPC) represents only spatial awareness, perception, and attention or whether it is also involved in decision making for actions. In this study we explore whether the parietal reach region (PRR), the region of the PPC that is specialized for reaches, is involved in the decision process. We inactivated the PRR while two monkeys performed reach and saccade choices between two targets presented simultaneously in both hemifields. We found that inactivation affected only the reach choices, while leaving saccade choices intact

  9. Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness

    PubMed Central

    Spering, Miriam; Carrasco, Marisa

    2012-01-01

    Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth pursuit eye movements in response to moving dichoptic plaids–stimuli composed of two orthogonally-drifting gratings, presented separately to each eye–in human observers. Monocular adaptation to one grating prior to the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating’s motion direction or to both (neutral condition). We show that observers were better in detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating’s motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted towards the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it. PMID:22649238

  10. Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness.

    PubMed

    Spering, Miriam; Carrasco, Marisa

    2012-05-30

    Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth-pursuit eye movements in response to moving dichoptic plaids--stimuli composed of two orthogonally drifting gratings, presented separately to each eye--in human observers. Monocular adaptation to one grating before the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating's motion direction or to both (neutral condition). We show that observers were better at detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating's motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted toward the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it.

  11. Motor neuronopathy with dropped hands and downbeat nystagmus: a distinctive disorder? A case report.

    PubMed

    Thakore, Nimish J; Pioro, Erik P; Rucker, Janet C; Leigh, R John

    2006-01-12

    Eye movements are clinically normal in most patients with motor neuron disorders until late in the disease course. Rare patients are reported to show slow vertical saccades, impaired smooth pursuit, and gaze-evoked nystagmus. We report clinical and oculomotor findings in three patients with motor neuronopathy and downbeat nystagmus, a classic sign of vestibulocerebellar disease. All patients had clinical and electrodiagnostic features of anterior horn cell disease. Involvement of finger and wrist extensors predominated, causing finger and wrist drop. Bulbar or respiratory dysfunction did not occur. All three had clinically evident downbeat nystagmus worse on lateral and downgaze, confirmed on eye movement recordings using the magnetic search coil technique in two patients. Additional oculomotor findings included alternating skew deviation and intermittent horizontal saccadic oscillations, in one patient each. One patient had mild cerebellar atrophy, while the other two had no cerebellar or brainstem abnormality on neuroimaging. The disorder is slowly progressive, with survival up to 30 years from the time of onset. The combination of motor neuronopathy, characterized by early and prominent wrist and finger extensor weakness, and downbeat nystagmus with or without other cerebellar eye movement abnormalities may represent a novel motor neuron syndrome.

  12. Inactivation of the Parietal Reach Region Causes Optic Ataxia, Impairing Reaches but Not Saccades

    PubMed Central

    Hwang, Eun Jung; Hauschild, Markus; Wilke, Melanie; Andersen, Richard A.

    2013-01-01

    SUMMARY Lesions in human posterior parietal cortex can cause optic ataxia (OA), in which reaches but not saccades to visual objects are impaired, suggesting separate visuomotor pathways for the two effectors. In monkeys, one potentially crucial area for reach control is the parietal reach region (PRR), in which neurons respond preferentially during reach planning as compared to saccade planning. However, direct causal evidence linking the monkey PRR to the deficits observed in OA is missing. We thus inactivated part of the macaque PRR, in the medial wall of the intraparietal sulcus, and produced the hallmarks of OA, misreaching for peripheral targets but unimpaired saccades. Furthermore, reach errors were larger for the targets preferred by the neural population local to the injection site. These results demonstrate that PRR is causally involved in reach-specific visuomotor pathways, and reach goal disruption in PRR can be a neural basis of OA. PMID:23217749

  13. Oscillatory Alpha-Band Suppression Mechanisms during the Rapid Attentional Shifts Required to Perform an Anti-Saccade Task

    PubMed Central

    Belyusar, Daniel; Snyder, Adam C.; Frey, Hans-Peter; Harwood, Mark R.; Wallman, Josh; Foxe, John J.

    2015-01-01

    Neuroimaging has demonstrated anatomical overlap between covert and overt attention systems, although behavioral and electrophysiological studies have suggested that the two systems do not rely on entirely identical circuits or mechanisms. In a parallel line of research, topographically-specific modulations of alpha-band power (~8-14Hz) have been consistently correlated with anticipatory states during tasks requiring covert attention shifts. These tasks, however, typically employ cue-target-interval paradigms where attentional processes are examined across relatively protracted periods of time and not at the rapid timescales implicated during overt attention tasks. The anti-saccade task, where one must first covertly attend for a peripheral target, before executing a rapid overt attention shift (i.e. a saccade) to the opposite side of space, is particularly well-suited for examining the rapid dynamics of overt attentional deployments. Here, we asked whether alpha-band oscillatory mechanisms would also be associated with these very rapid overt shifts, potentially representing a common neural mechanism across overt and covert attention systems. High-density electroencephalography in conjunction with infra-red eye-tracking was recorded while participants engaged in both pro- and anti- saccade task blocks. Alpha power, time-locked to saccade onset, showed three distinct phases of significantly lateralized topographic shifts, all occurring within a period of less than one second, closely reflecting the temporal dynamics of anti-saccade performance. Only two such phases were observed during the pro-saccade task. These data point to substantially more rapid temporal dynamics of alpha-band suppressive mechanisms than previously established, and implicate oscillatory alpha-band activity as a common mechanism across both overt and covert attentional deployments. PMID:23041338

  14. Dual-Task Crosstalk between Saccades and Manual Responses

    ERIC Educational Resources Information Center

    Huestegge, Lynn; Koch, Iring

    2009-01-01

    Between-task crosstalk has been discussed as an important source for dual-task costs. In this study, the authors examine concurrently performed saccades and manual responses as a means of studying the role of response-code conflict between 2 tasks. In Experiment 1, participants responded to an imperative auditory stimulus with a left or a right…

  15. Impairment of manual but not saccadic response inhibition following acute alcohol intoxication.

    PubMed

    Campbell, Anne Eileen; Chambers, Christopher D; Allen, Christopher P G; Hedge, Craig; Sumner, Petroc

    2017-12-01

    Alcohol impairs response inhibition; however, it remains contested whether such impairments affect a general inhibition system, or whether affected inhibition systems are embedded in, and specific to, each response modality. Further, alcohol-induced impairments have not been disambiguated between proactive and reactive inhibition mechanisms, and nor have the contributions of action-updating impairments to behavioural 'inhibition' deficits been investigated. Forty Participants (25 female) completed both a manual and a saccadic stop-signal reaction time (SSRT) task before and after a 0.8g/kg dose of alcohol and, on a separate day, before and after a placebo. Blocks in which participants were required to ignore the signal to stop or make an additional 'dual' response were included to obtain measures of proactive inhibition as well as updating of attention and action. Alcohol increased manual but not saccadic SSRT. Proactive inhibition was weakly reduced by alcohol, but increases in the reaction times used to baseline this contrast prevent clear conclusions regarding response caution. Finally, alcohol also increased secondary dual response times of the dual task uniformly as a function of the delay between tasks, indicating an effect of alcohol on action-updating or execution. The modality-specific effects of alcohol favour the theory that response inhibition systems are embedded within response modalities, rather than there existing a general inhibition system. Concerning alcohol, saccadic control appears relatively more immune to disruption than manual control, even though alcohol affects saccadic latency and velocity. Within the manual domain, alcohol affects multiple types of action updating, not just inhibition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. An Attention-Sensitive Memory Trace in Macaque MT Following Saccadic Eye Movements

    PubMed Central

    Yao, Tao; Treue, Stefan; Krishna, B. Suresh

    2016-01-01

    We experience a visually stable world despite frequent retinal image displacements induced by eye, head, and body movements. The neural mechanisms underlying this remain unclear. One mechanism that may contribute is transsaccadic remapping, in which the responses of some neurons in various attentional, oculomotor, and visual brain areas appear to anticipate the consequences of saccades. The functional role of transsaccadic remapping is actively debated, and many of its key properties remain unknown. Here, recording from two monkeys trained to make a saccade while directing attention to one of two spatial locations, we show that neurons in the middle temporal area (MT), a key locus in the motion-processing pathway of humans and macaques, show a form of transsaccadic remapping called a memory trace. The memory trace in MT neurons is enhanced by the allocation of top-down spatial attention. Our data provide the first demonstration, to our knowledge, of the influence of top-down attention on the memory trace anywhere in the brain. We find evidence only for a small and transient effect of motion direction on the memory trace (and in only one of two monkeys), arguing against a role for MT in the theoretically critical yet empirically contentious phenomenon of spatiotopic feature-comparison and adaptation transfer across saccades. Our data support the hypothesis that transsaccadic remapping represents the shift of attentional pointers in a retinotopic map, so that relevant locations can be tracked and rapidly processed across saccades. Our results resolve important issues concerning the perisaccadic representation of visual stimuli in the dorsal stream and demonstrate a significant role for top-down attention in modulating this representation. PMID:26901857

  17. Impaired Oculomotor Behavior of Children with Developmental Dyslexia in Antisaccades and Predictive Saccades Tasks

    PubMed Central

    Lukasova, Katerina; Silva, Isadora P.; Macedo, Elizeu C.

    2016-01-01

    Analysis of eye movement patterns during tracking tasks represents a potential way to identify differences in the cognitive processing and motor mechanisms underlying reading in dyslexic children before the occurrence of school failure. The current study aimed to evaluate the pattern of eye movements in antisaccades, predictive saccades and visually guided saccades in typical readers and readers with developmental dyslexia. The study included 30 children (age M = 11; SD = 1.67), 15 diagnosed with developmental dyslexia (DG) and 15 regular readers (CG), matched by age, gender and school grade. Cognitive assessment was performed prior to the eye-tracking task during which both eyes were registered using the Tobii® 1750 eye-tracking device. The results demonstrated a lower correct antisaccades rate in dyslexic children compared to the controls (p < 0.001, DG = 25%, CC = 37%). Dyslexic children also made fewer saccades in predictive latency (p < 0.001, DG = 34%, CG = 46%, predictive latency within −300–120 ms with target as 0 point). No between-group difference was found for visually guided saccades. In this task, both groups showed shorter latency for right-side targets. The results indicated altered oculomotor behavior in dyslexic children, which has been reported in previous studies. We extend these findings by demonstrating impaired implicit learning of target's time/position patterns in dyslexic children. PMID:27445945

  18. Performing saccadic eye movements or blinking improves postural control.

    PubMed

    Rougier, Patrice; Garin, Mélanie

    2007-07-01

    To determine the relationship between eye movement and postural control on an undisturbed upright stance maintenance protocol, 15 young, healthy individuals were tested in various conditions. These conditions included imposed blinking patterns and horizontal and vertical saccadic eye movements. The directions taken by the center of pressure (CP) were recorded via a force platform on which the participants remained in an upright position. The CP trajectories were used to estimate, via a low-pass filter, the vertically projected movements of the center of gravity (CGv) and consequently the difference CP-CGv. An analysis of the frequency shows that regular bilateral blinking does not produce a significant change in postural control. In contrast, performing saccadic eye movements induces some reduced amplitude for both basic CGv and CP-CGv movements principally along the antero-posterior axis. The present result supports the theory that some ocular movements may modify postural control in the maintenance of the upright standing position in human participants.

  19. Incidental threat during visuospatial working memory in adolescent anxiety: an emotional memory-guided saccade task.

    PubMed

    Mueller, Sven C; Shechner, Tomer; Rosen, Dana; Nelson, Eric E; Pine, Daniel S; Ernst, Monique

    2015-04-01

    Pediatric anxiety disorders are among the most common psychiatric mental illnesses in children and adolescents, and are associated with abnormal cognitive control in emotional, particularly threat, contexts. In a series of studies using eye movement saccade tasks, we reported anxiety-related alterations in the interplay of inhibitory control with incentives, or with emotional distractors. The present study extends these findings to working memory (WM), and queries the interaction of spatial WM with emotional stimuli in pediatric clinical anxiety. Participants were 33 children/adolescents diagnosed with an anxiety disorder, and 22 age-matched healthy comparison youths. Participants completed a novel eye movement task, an affective variant of the memory-guided saccade task. This task assessed the influence of incidental threat on spatial WM processes during high and low cognitive load. Healthy but not anxious children/adolescents showed slowed saccade latencies during incidental threat in low-load but not high-load WM conditions. No other group effects emerged on saccade latency or accuracy. The current data suggest a differential pattern of how emotion interacts with cognitive control in healthy youth relative to anxious youth. These findings extend data from inhibitory processes, reported previously, to spatial WM in pediatric anxiety. © 2015 Wiley Periodicals, Inc.

  20. Motion coherence affects human perception and pursuit similarly.

    PubMed

    Beutter, B R; Stone, L S

    2000-01-01

    Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursuit to perform motion integration by measuring direction judgments and the concomitant eye-movement responses to line-figure parallelograms moving behind stationary rectangular apertures. The apertures were constructed such that only the line segments corresponding to the parallelogram's sides were visible; thus, recovering global motion required the integration of the local segment motion. We investigated several potential motion-integration rules by using stimuli with different object, vector-average, and line-segment terminator-motion directions. We used an oculometric decision rule to directly compare direction discrimination for pursuit and perception. For visible apertures, the percept was a coherent object, and both the pursuit and perceptual performance were close to the object-motion prediction. For invisible apertures, the percept was incoherently moving segments, and both the pursuit and perceptual performance were close to the terminator-motion prediction. Furthermore, both psychometric and oculometric direction thresholds were much higher for invisible apertures than for visible apertures. We constructed a model in which both perception and pursuit are driven by a shared motion-processing stage, with perception having an additional input from an independent static-processing stage. Model simulations were consistent with our perceptual and oculomotor data. Based on these results, we propose the use of pursuit as an objective and continuous measure of perceptual coherence. Our results support the view that pursuit and perception share a common motion

  1. Motion coherence affects human perception and pursuit similarly

    NASA Technical Reports Server (NTRS)

    Beutter, B. R.; Stone, L. S.

    2000-01-01

    Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursuit to perform motion integration by measuring direction judgments and the concomitant eye-movement responses to line-figure parallelograms moving behind stationary rectangular apertures. The apertures were constructed such that only the line segments corresponding to the parallelogram's sides were visible; thus, recovering global motion required the integration of the local segment motion. We investigated several potential motion-integration rules by using stimuli with different object, vector-average, and line-segment terminator-motion directions. We used an oculometric decision rule to directly compare direction discrimination for pursuit and perception. For visible apertures, the percept was a coherent object, and both the pursuit and perceptual performance were close to the object-motion prediction. For invisible apertures, the percept was incoherently moving segments, and both the pursuit and perceptual performance were close to the terminator-motion prediction. Furthermore, both psychometric and oculometric direction thresholds were much higher for invisible apertures than for visible apertures. We constructed a model in which both perception and pursuit are driven by a shared motion-processing stage, with perception having an additional input from an independent static-processing stage. Model simulations were consistent with our perceptual and oculomotor data. Based on these results, we propose the use of pursuit as an objective and continuous measure of perceptual coherence. Our results support the view that pursuit and perception share a common motion

  2. Visual and auditory cue integration for the generation of saccadic eye movements in monkeys and lever pressing in humans.

    PubMed

    Schiller, Peter H; Kwak, Michelle C; Slocum, Warren M

    2012-08-01

    This study examined how effectively visual and auditory cues can be integrated in the brain for the generation of motor responses. The latencies with which saccadic eye movements are produced in humans and monkeys form, under certain conditions, a bimodal distribution, the first mode of which has been termed express saccades. In humans, a much higher percentage of express saccades is generated when both visual and auditory cues are provided compared with the single presentation of these cues [H. C. Hughes et al. (1994) J. Exp. Psychol. Hum. Percept. Perform., 20, 131-153]. In this study, we addressed two questions: first, do monkeys also integrate visual and auditory cues for express saccade generation as do humans and second, does such integration take place in humans when, instead of eye movements, the task is to press levers with fingers? Our results show that (i) in monkeys, as in humans, the combined visual and auditory cues generate a much higher percentage of express saccades than do singly presented cues and (ii) the latencies with which levers are pressed by humans are shorter when both visual and auditory cues are provided compared with the presentation of single cues, but the distribution in all cases is unimodal; response latencies in the express range seen in the execution of saccadic eye movements are not obtained with lever pressing. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. [Positive potentials of the human brain at different stages of preparation of a visually triggered saccade].

    PubMed

    Slavutskaia, M V; Shul'govskiĭ, V V

    2003-01-01

    The EEG of 10 right-handed subjects preceding saccades with mean values of latent periods were selected and averaged. Two standard paradigms of presentation of visual stimuli (central fixation stimulus-peripheral target succession): with a 200-ms inerstimulus interval (GAP) and successive single step (SS). During the period of central fixation, two kinds of positive potentials were observed: fast potentials of "inermediate" positivity (IP) developing 600-400 ms prior to saccade onset and fast potentials of "leading" positivity (LP), which immediately preceded the offset of the central fixation stimulus. Peak latency of the LP potentials was 300 ms prior to saccade onset in the SS paradigm and 400 ms in the GAP paradigm. These potentials were predominantly recorded in the frontal and frontosagittal cortical areas. Decrease in the latency by 30-50 ms in the GAP paradigm was associated with more pronounced positive potentials during the fixation period and absence of the initiation potential P-1' (or decrease in its amplitude). The obtained evidence suggest that the fast positive presaccadic potentials are of a complex nature related to attention, anticipation, motor preparation, decision making, saccadic initiation, and backward afferentation.

  4. Strength of figure-ground activity in monkey primary visual cortex predicts saccadic reaction time in a delayed detection task.

    PubMed

    Supèr, Hans; Lamme, Victor A F

    2007-06-01

    When and where are decisions made? In the visual system a saccade, which is a fast shift of gaze toward a target in the visual scene, is the behavioral outcome of a decision. Current neurophysiological data and reaction time models show that saccadic reaction times are determined by a build-up of activity in motor-related structures, such as the frontal eye fields. These structures depend on the sensory evidence of the stimulus. Here we use a delayed figure-ground detection task to show that late modulated activity in the visual cortex (V1) predicts saccadic reaction time. This predictive activity is part of the process of figure-ground segregation and is specific for the saccade target location. These observations indicate that sensory signals are directly involved in the decision of when and where to look.

  5. CarPrice versus CarpRice: Word Boundary Ambiguity Influences Saccade Target Selection during the Reading of Chinese Sentences

    ERIC Educational Resources Information Center

    Yan, Ming; Kliegl, Reinhold

    2016-01-01

    As a contribution to a theoretical debate about the degree of high-level influences on saccade targeting during sentence reading, we investigated eye movements during the reading of structurally ambiguous Chinese character strings and examined whether parafoveal word segmentation could influence saccade-target selection. As expected, ambiguous…

  6. Value-modulated oculomotor capture by task-irrelevant stimuli is a consequence of early competition on the saccade map.

    PubMed

    Pearson, Daniel; Osborn, Raphaella; Whitford, Thomas J; Failing, Michel; Theeuwes, Jan; Le Pelley, Mike E

    2016-10-01

    Recent research has shown that reward learning can modulate oculomotor and attentional capture by physically salient and task-irrelevant distractor stimuli, even when directing gaze to those stimuli is directly counterproductive to receiving reward. This value-modulated oculomotor capture effect may reflect biased competition in the oculomotor system, such that the relationship between a stimulus feature and reward enhances that feature's representation on an internal priority map. However, it is also possible that this effect is a result of reward reducing the threshold for a saccade to be made to salient items. Here, we demonstrate value-modulated oculomotor capture when two reward-associated distractor stimuli are presented simultaneously in the same search display. The influence of reward on oculomotor capture is found to be most prominent at the shortest saccade latencies. We conclude that the value-modulated oculomotor capture effect is a consequence of biased competition on the saccade priority map and cannot be explained by a general reduction in saccadic threshold.

  7. New supervised learning theory applied to cerebellar modeling for suppression of variability of saccade end points.

    PubMed

    Fujita, Masahiko

    2013-06-01

    A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.

  8. Electrical Microstimulation of the Pulvinar Biases Saccade Choices and Reaction Times in a Time-Dependent Manner

    PubMed Central

    2017-01-01

    The pulvinar complex is interconnected extensively with brain regions involved in spatial processing and eye movement control. Recent inactivation studies have shown that the dorsal pulvinar (dPul) plays a role in saccade target selection; however, it remains unknown whether it exerts effects on visual processing or at planning/execution stages. We used electrical microstimulation of the dPul while monkeys performed saccade tasks toward instructed and freely chosen targets. Timing of stimulation was varied, starting before, at, or after onset of target(s). Stimulation affected saccade properties and target selection in a time-dependent manner. Stimulation starting before but overlapping with target onset shortened saccadic reaction times (RTs) for ipsiversive (to the stimulation site) target locations, whereas stimulation starting at and after target onset caused systematic delays for both ipsiversive and contraversive locations. Similarly, stimulation starting before the onset of bilateral targets increased ipsiversive target choices, whereas stimulation after target onset increased contraversive choices. Properties of dPul neurons and stimulation effects were consistent with an overall contraversive drive, with varying outcomes contingent upon behavioral demands. RT and choice effects were largely congruent in the visually-guided task, but stimulation during memory-guided saccades, while influencing RTs and errors, did not affect choice behavior. Together, these results show that the dPul plays a primary role in action planning as opposed to visual processing, that it exerts its strongest influence on spatial choices when decision and action are temporally close, and that this choice effect can be dissociated from motor effects on saccade initiation and execution. SIGNIFICANCE STATEMENT Despite a recent surge of interest, the core function of the pulvinar, the largest thalamic complex in primates, remains elusive. This understanding is crucial given the central

  9. Gaze pursuit responses in nucleus reticularis tegmenti pontis of head-unrestrained macaques.

    PubMed

    Suzuki, David A; Betelak, Kathleen F; Yee, Robert D

    2009-01-01

    Eye-head gaze pursuit-related activity was recorded in rostral portions of the nucleus reticularis tegmenti pontis (rNRTP) in alert macaques. The head was unrestrained in the horizontal plane, and macaques were trained to pursue a moving target either with their head, with the eyes stationary in the orbits, or with their eyes, with their head voluntarily held stationary in space. Head-pursuit-related modulations in rNRTP activity were observed with some cells exhibiting increases in firing rate with increases in head-pursuit frequency. For many units, this head-pursuit response appeared to saturate at higher frequencies (>0.6 Hz). The response phase re:peak head-pursuit velocity formed a continuum, containing cells that could encode head-pursuit velocity and those encoding head-pursuit acceleration. The latter cells did not exhibit head position-related activity. Sensitivities were calculated with respect to peak head-pursuit velocity and averaged 1.8 spikes/s/deg/s. Of the cells that were tested for both head- and eye-pursuit-related activity, 86% exhibited responses to both head- and eye-pursuit and therefore carried a putative gaze-pursuit signal. For these gaze-pursuit units, the ratio of head to eye response sensitivities averaged approximately 1.4. Pursuit eccentricity seemed to affect head-pursuit response amplitude even in the absence of a head position response per se. The results indicated that rNRTP is a strong candidate for the source of an active head-pursuit signal that projects to the cerebellum, specifically to the target-velocity and gaze-velocity Purkinje cells that have been observed in vermal lobules VI and VII.

  10. Lateralization of posterior alpha EEG reflects the distribution of spatial attention during saccadic reading.

    PubMed

    Kornrumpf, Benthe; Dimigen, Olaf; Sommer, Werner

    2017-06-01

    Visuospatial attention is an important mechanism in reading that governs the uptake of information from foveal and parafoveal regions of the visual field. However, the spatiotemporal dynamics of how attention is allocated during eye fixations are not completely understood. The current study explored the use of EEG alpha-band oscillations to investigate the spatial distribution of attention during reading. We reanalyzed two data sets, focusing on the lateralization of alpha activity at posterior scalp sites. In each experiment, participants read short lists of German nouns in two paradigms: either by freely moving their eyes (saccadic reading) or by fixating the screen center while the text moved passively from right to left at the same average speed (RSVP paradigm). In both paradigms, upcoming words were either visible or masked, and foveal processing load was manipulated by varying the words' lexical frequencies. Posterior alpha lateralization revealed a sustained rightward bias of attention during saccadic reading, but not in the RSVP paradigm. Interestingly, alpha lateralization was not influenced by word frequency (foveal load) or preview during the preceding fixation. Hence, alpha did not reflect transient attention shifts within a given fixation. However, in both experiments, we found that in the saccadic reading condition a stronger alpha lateralization shortly before a saccade predicted shorter fixations on the subsequently fixated word. These results indicate that alpha lateralization can serve as a measure of attention deployment and its link to oculomotor behavior in reading. © 2017 Society for Psychophysiological Research.

  11. Object form discontinuity facilitates displacement discrimination across saccades.

    PubMed

    Demeyer, Maarten; De Graef, Peter; Wagemans, Johan; Verfaillie, Karl

    2010-06-01

    Stimulus displacements coinciding with a saccadic eye movement are poorly detected by human observers. In recent years, converging evidence has shown that this phenomenon does not result from poor transsaccadic retention of presaccadic stimulus position information, but from the visual system's efforts to spatially align presaccadic and postsaccadic perception on the basis of visual landmarks. It is known that this process can be disrupted, and transsaccadic displacement detection performance can be improved, by briefly blanking the stimulus display during and immediately after the saccade. In the present study, we investigated whether this improvement could also follow from a discontinuity in the task-irrelevant form of the displaced stimulus. We observed this to be the case: Subjects more accurately identified the direction of intrasaccadic displacements when the displaced stimulus simultaneously changed form, compared to conditions without a form change. However, larger improvements were still observed under blanking conditions. In a second experiment, we show that facilitation induced by form changes and blanks can combine. We conclude that a strong assumption of visual stability underlies the suppression of transsaccadic change detection performance, the rejection of which generalizes from stimulus form to stimulus position.

  12. Deficient saccadic inhibition in Asperger's disorder and the social-emotional processing disorder

    PubMed Central

    Manoach, D; Lindgren, K; Barton, J

    2004-01-01

    Background: Both Asperger's disorder and the social-emotional processing disorder (SEPD), a form of non-verbal learning disability, are associated with executive function deficits. SEPD has been shown to be associated with deficient saccadic inhibition. Objective: To study two executive functions in Asperger's disorder and SEPD, inhibition and task switching, using a single saccadic paradigm. Methods: 22 control subjects and 27 subjects with developmental social processing disorders—SEPD, Asperger's disorder, or both syndromes—performed random sequences of prosaccades and antisaccades. This design resulted in four trial types, prosaccades and antisaccades, that were either repeated or switched. The design allowed the performance costs of inhibition and task switching to be isolated. Results: Subjects with both Asperger's disorder and SEPD showed deficient inhibition, as indicated by increased antisaccade errors and a disproportionate increase in latency for antisaccades relative to prosaccades. In contrast, task switching error and latency costs were normal and unrelated to the costs of inhibition. Conclusions: This study replicates the finding of deficient saccadic inhibition in SEPD, extends it to Asperger's disorder, and implicates prefrontal cortex dysfunction in these syndromes. The finding of intact task switching shows that executive function deficits in Asperger's disorder and SEPD are selective and suggests that inhibition and task switching are mediated by distinct neural networks. PMID:15548490

  13. What do eye movements tell us about patients with neurological disorders? — An introduction to saccade recording in the clinical setting —

    PubMed Central

    TERAO, Yasuo; FUKUDA, Hideki; HIKOSAKA, Okihide

    2017-01-01

    Non-invasive and readily implemented in the clinical setting, eye movement studies have been conducted extensively not only in healthy human subjects but also in patients with neurological disorders. The purpose of saccade studies is to “read out” the pathophysiology underlying neurological disorders from the saccade records, referring to known primate physiology. In the current review, we provide an overview of studies in which we attempted to elucidate the patterns of saccade abnormalities in over 250 patients with neurological disorders, including cerebellar ataxia and brainstem pathology due to neurodegenerative disorders, and what they tell about the pathophysiology of patients with neurological disorders. We also discuss how interventions, such as deep brain stimulation, affect saccade performance and provide further insights into the workings of the oculomotor system in humans. Finally, we argue that it is important to understand the functional significance and behavioral correlate of saccade abnormalities in daily life, which could require eye tracking methodologies to be performed in settings similar to daily life. PMID:29225306

  14. Model simulation studies to clarify the effect on saccadic eye movements of initial condition velocities set by the Vestibular Ocular Reflex (VOR)

    NASA Technical Reports Server (NTRS)

    Nam, M. H.; Winters, J. M.; Stark, L.

    1981-01-01

    Voluntary active head rotations produced vestibulo-ocular reflex eye movements (VOR) with the subject viewing a fixation target. When this target jumped, the size of the refixation saccades were a function of the ongoing initial velocity of the eye. Saccades made against the VOR were larger in magnitude. Simulation of a reciprocally innervated model eye movement provided results comparable to the experimental data. Most of the experimental effect appeared to be due to linear summation for saccades of 5 and 10 degree magnitude. For small saccades of 2.5 degrees, peripheral nonlinear interaction of state variables in the neuromuscular plant also played a role as proven by comparable behavior in the simulated model with known controller signals.

  15. The Pursuit of Word Meanings

    PubMed Central

    Stevens, Jon Scott; Gleitman, Lila R.; Trueswell, John C.; Yang, Charles

    2016-01-01

    We evaluate here the performance of four models of cross-situational word learning; two global models, which extract and retain multiple referential alternatives from each word occurrence; and two local models, which extract just a single referent from each occurrence. One of these local models, dubbed Pursuit, uses an associative learning mechanism to estimate word-referent probability but pursues and tests the best referent-meaning at any given time. Pursuit is found to perform as well as global models under many conditions extracted from naturalistic corpora of parent child-interactions, even though the model maintains far less information than global models. Moreover, Pursuit is found to best capture human experimental findings from several relevant cross-situational word-learning experiments, including those of Yu and Smith (2007), the paradigm example of a finding believed to support fully global cross-situational models. Implications and limitations of these results are discussed, most notably that the model characterizes only the earliest stages of word learning, when reliance on the co-occurring referent world is at its greatest. PMID:27666335

  16. Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments.

    PubMed

    Andrews, T J; Coppola, D M

    1999-08-01

    Eye position was recorded in different viewing conditions to assess whether the temporal and spatial characteristics of saccadic eye movements in different individuals are idiosyncratic. Our aim was to determine the degree to which oculomotor control is based on endogenous factors. A total of 15 naive subjects viewed five visual environments: (1) The absence of visual stimulation (i.e. a dark room); (2) a repetitive visual environment (i.e. simple textured patterns); (3) a complex natural scene; (4) a visual search task; and (5) reading text. Although differences in visual environment had significant effects on eye movements, idiosyncrasies were also apparent. For example, the mean fixation duration and size of an individual's saccadic eye movements when passively viewing a complex natural scene covaried significantly with those same parameters in the absence of visual stimulation and in a repetitive visual environment. In contrast, an individual's spatio-temporal characteristics of eye movements during active tasks such as reading text or visual search covaried together, but did not correlate with the pattern of eye movements detected when viewing a natural scene, simple patterns or in the dark. These idiosyncratic patterns of eye movements in normal viewing reveal an endogenous influence on oculomotor control. The independent covariance of eye movements during different visual tasks shows that saccadic eye movements during active tasks like reading or visual search differ from those engaged during the passive inspection of visual scenes.

  17. Eye Gaze Correlates of Motor Impairment in VR Observation of Motor Actions.

    PubMed

    Alves, J; Vourvopoulos, A; Bernardino, A; Bermúdez I Badia, S

    2016-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Methodologies, Models and Algorithms for Patients Rehabilitation". Identify eye gaze correlates of motor impairment in a virtual reality motor observation task in a study with healthy participants and stroke patients. Participants consisted of a group of healthy subjects (N = 20) and a group of stroke survivors (N = 10). Both groups were required to observe a simple reach-and-grab and place-and-release task in a virtual environment. Additionally, healthy subjects were required to observe the task in a normal condition and a constrained movement condition. Eye movements were recorded during the observation task for later analysis. For healthy participants, results showed differences in gaze metrics when comparing the normal and arm-constrained conditions. Differences in gaze metrics were also found when comparing dominant and non-dominant arm for saccades and smooth pursuit events. For stroke patients, results showed longer smooth pursuit segments in action observation when observing the paretic arm, thus providing evidence that the affected circuitry may be activated for eye gaze control during observation of the simulated motor action. This study suggests that neural motor circuits are involved, at multiple levels, in observation of motor actions displayed in a virtual reality environment. Thus, eye tracking combined with action observation tasks in a virtual reality display can be used to monitor motor deficits derived from stroke, and consequently can also be used for rehabilitation of stroke patients.

  18. How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization

    PubMed Central

    Kress, Daniel; van Bokhorst, Evelien; Lentink, David

    2015-01-01

    Diurnal flying animals such as birds depend primarily on vision to coordinate their flight path during goal-directed flight tasks. To extract the spatial structure of the surrounding environment, birds are thought to use retinal image motion (optical flow) that is primarily induced by motion of their head. It is unclear what gaze behaviors birds perform to support visuomotor control during rapid maneuvering flight in which they continuously switch between flight modes. To analyze this, we measured the gaze behavior of rapidly turning lovebirds in a goal-directed task: take-off and fly away from a perch, turn on a dime, and fly back and land on the same perch. High-speed flight recordings revealed that rapidly turning lovebirds perform a remarkable stereotypical gaze behavior with peak saccadic head turns up to 2700 degrees per second, as fast as insects, enabled by fast neck muscles. In between saccades, gaze orientation is held constant. By comparing saccade and wingbeat phase, we find that these super-fast saccades are coordinated with the downstroke when the lateral visual field is occluded by the wings. Lovebirds thus maximize visual perception by overlying behaviors that impair vision, which helps coordinate maneuvers. Before the turn, lovebirds keep a high contrast edge in their visual midline. Similarly, before landing, the lovebirds stabilize the center of the perch in their visual midline. The perch on which the birds land swings, like a branch in the wind, and we find that retinal size of the perch is the most parsimonious visual cue to initiate landing. Our observations show that rapidly maneuvering birds use precisely timed stereotypic gaze behaviors consisting of rapid head turns and frontal feature stabilization, which facilitates optical flow based flight control. Similar gaze behaviors have been reported for visually navigating humans. This finding can inspire more effective vision-based autopilots for drones. PMID:26107413

  19. Gaze Pursuit Responses in Nucleus Reticularis Tegmenti Pontis of Head-Unrestrained Macaques

    PubMed Central

    Suzuki, David A.; Betelak, Kathleen F.; Yee, Robert D.

    2009-01-01

    Eye-head gaze pursuit–related activity was recorded in rostral portions of the nucleus reticularis tegmenti pontis (rNRTP) in alert macaques. The head was unrestrained in the horizontal plane, and macaques were trained to pursue a moving target either with their head, with the eyes stationary in the orbits, or with their eyes, with their head voluntarily held stationary in space. Head-pursuit–related modulations in rNRTP activity were observed with some cells exhibiting increases in firing rate with increases in head-pursuit frequency. For many units, this head-pursuit response appeared to saturate at higher frequencies (>0.6 Hz). The response phase re:peak head-pursuit velocity formed a continuum, containing cells that could encode head-pursuit velocity and those encoding head-pursuit acceleration. The latter cells did not exhibit head position–related activity. Sensitivities were calculated with respect to peak head-pursuit velocity and averaged 1.8 spikes/s/deg/s. Of the cells that were tested for both head- and eye-pursuit–related activity, 86% exhibited responses to both head- and eye-pursuit and therefore carried a putative gaze-pursuit signal. For these gaze-pursuit units, the ratio of head to eye response sensitivities averaged ∼1.4. Pursuit eccentricity seemed to affect head-pursuit response amplitude even in the absence of a head position response per se. The results indicated that rNRTP is a strong candidate for the source of an active head-pursuit signal that projects to the cerebellum, specifically to the target-velocity and gaze-velocity Purkinje cells that have been observed in vermal lobules VI and VII. PMID:18987125

  20. Distinguishing spinocerebellar ataxia with pure cerebellar manifestation from multiple system atrophy (MSA-C) through saccade profiles.

    PubMed

    Terao, Yasuo; Fukuda, Hideki; Tokushige, Shin-Ichi; Inomata-Terada, Satomi; Yugeta, Akihiro; Hamada, Masashi; Ugawa, Yoshikazu

    2017-01-01

    Patients with spinocerebellar ataxia with pure cerebellar presentation (SCD) and multiple system atrophy (MSA-C) show similar symptoms at early stages, although cerebellofugal pathology predominates in SCD, and cerebellopetal pathology in MSA-C. We studied whether saccade velocity profiles, which reflect the accelerating and braking functions of the cerebellum, can differentiate these two disorders. We recorded visually guided (VGS) and memory guided saccades (MGS) in 29 MSA-C patients, 12 SCD patients, and 92 age-matched normal subjects, and compared their amplitude, peak velocity and duration (accelerating and decelerating phases). Hypometria predominated in VGS and MGS of MSA-C, whereas hypometria was less marked in SCD, with hypermetria frequently noted in MGS. Peak velocity was reduced, and deteriorated with advancing disease both in SCD and MSA-C groups at smaller target eccentricities. The deceleration phase was prolonged in SCD compared to MSA-C and normal groups at larger target eccentricities, which deteriorated with advancing disease. Saccades in MSA-C were characterized by a more prominent acceleration deficit and those in SCD by a more prominent braking defect, possibly caused by the cerebellopetal and cerebellofugal pathologies, respectively. Saccade profiles provide important information regarding the accelerating and braking signals of the cerebellum in spinocerebellar ataxia. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.