Science.gov

Sample records for saccharomyces uvarum pt

  1. Saccharomyces eubayanus and Saccharomyces uvarum associated with the fermentation of Araucaria araucana seeds in Patagonia.

    PubMed

    Rodríguez, M Eugenia; Pérez-Través, Laura; Sangorrín, Marcela P; Barrio, Eladio; Lopes, Christian A

    2014-09-01

    Mudai is a traditional fermented beverage, made from the seeds of the Araucaria araucana tree by Mapuche communities. The main goal of the present study was to identify and characterize the yeast microbiota responsible of Mudai fermentation as well as from A. araucana seeds and bark from different locations in Northern Patagonia. Only Hanseniaspora uvarum and a commercial bakery strain of Saccharomyces cerevisiae were isolated from Mudai and all Saccharomyces isolates recovered from A. araucana seed and bark samples belonged to the cryotolerant species Saccharomyces eubayanus and Saccharomyces uvarum. These two species were already reported in Nothofagus trees from Patagonia; however, this is the first time that they were isolated from A. araucana, which extends their ecological distribution. The presence of these species in A. araucana seeds and bark samples, led us to postulate a potential role for them as the original yeasts responsible for the elaboration of Mudai before the introduction of commercial S. cerevisiae cultures. The molecular and genetic characterization of the S. uvarum and S. eubayanus isolates and their comparison with European S. uvarum strains and S. eubayanus hybrids (S. bayanus and S. pastorianus), allowed their ecology and evolution us to be examined.

  2. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum

    NASA Astrophysics Data System (ADS)

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David James; Marullo, Philippe; Todd Hittinger, Chris; Gonçalves, Paula; Sampaio, José Paulo

    2014-06-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum.

  3. A Gondwanan Imprint on Global Diversity and Domestication of Wine and Cider Yeast Saccharomyces uvarum

    PubMed Central

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David; Marullo, Philippe; Hittinger, Chris Todd; Gonçalves, Paula; Sampaio, José Paulo

    2016-01-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum. PMID:24887054

  4. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum.

    PubMed

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David James; Marullo, Philippe; Hittinger, Chris Todd; Gonçalves, Paula; Sampaio, José Paulo

    2014-01-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum.

  5. Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells.

    PubMed

    Safaríková, M; Ptácková, L; Kibriková, I; Safarík, I

    2005-05-01

    Brewer's yeast (bottom yeast, Saccharomyces cerevisiae subsp. uvarum) cells were magnetically modified using water based magnetic fluid stabilized with perchloric acid. Magnetically modified yeast cells efficiently adsorbed various water soluble dyes. The dyes adsorption can be described by the Langmuir adsorption model. The maximum adsorption capacity of the magnetic cells differed substantially for individual dyes; the highest value was found for aniline blue (approx. 220 mg per g of dried magnetic adsorbent). PMID:15811411

  6. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    PubMed

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries.

  7. Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum.

    PubMed

    Varela, C; Sengler, F; Solomon, M; Curtin, C

    2016-10-15

    Production of quality wines with decreased alcohol concentration continues to be one of the major challenges facing wine producers. Therefore, there is considerable interest in the isolation or generation of wine yeasts less efficient at transforming grape sugars into ethanol. We recently demonstrated that Metschnikowia pulcherrima AWRI1149 and Saccharomyces uvarum AWRI2846 were both able to produce reduced alcohol wine when used in sequential inoculation with Saccharomyces cerevisiae. This effect is additive when both strains are co-inoculated in grape must. Here we describe the volatile flavour profile of Chardonnay and Shiraz wines produced with these two strains. Wines fermented with M. pulcherrima showed concentrations of ethyl acetate likely to affect negatively wine aroma. Wines fermented with S. uvarum and with a combination of M. pulcherrima and S. uvarum were characterised by increased concentrations of 2-phenyl ethanol and 2-phenylethyl acetate, both associated with positive sensory attributes. PMID:27173534

  8. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production

    PubMed Central

    Tristezza, Mariana; Tufariello, Maria; Capozzi, Vittorio; Spano, Giuseppe; Mita, Giovanni; Grieco, Francesco

    2016-01-01

    In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation) and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of non-Saccharomyces in

  9. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production.

    PubMed

    Tristezza, Mariana; Tufariello, Maria; Capozzi, Vittorio; Spano, Giuseppe; Mita, Giovanni; Grieco, Francesco

    2016-01-01

    In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation) and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of non-Saccharomyces in

  10. Differences in Enzymatic Properties of the Saccharomyces kudriavzevii and Saccharomyces uvarum Alcohol Acetyltransferases and Their Impact on Aroma-Active Compounds Production.

    PubMed

    Stribny, Jiri; Querol, Amparo; Pérez-Torrado, Roberto

    2016-01-01

    Higher alcohols and acetate esters belong to the most important yeast secondary metabolites that significantly contribute to the overall flavor and aroma profile of fermented products. In Saccharomyces cerevisiae, esterification of higher alcohols is catalyzed mainly by the alcohol acetyltransferases encoded by genes ATF1 and ATF2. Previous investigation has shown other Saccharomyces species, e.g., S. kudriavzevii and S. uvarum, to vary in aroma-active higher alcohols and acetate esters formation when compared to S. cerevisiae. Here, we aimed to analyze the enzymes encoded by the ATF1 and ATF2 genes from S. kudriavzevii (SkATF1, SkATF2) and S. uvarum (SuATF1, SuATF2). The heterologous expression of the individual ATF1 and ATF2 genes in a host S. cerevisiae resulted in the enhanced production of several higher alcohols and acetate esters. Particularly, an increase of 2-phenylethyl acetate production by the strains that harbored ATF1 and ATF2 genes from S. kudriavzevii and S. uvarum was observed. When grown with individual amino acids as the nitrogen source, the strain that harbored SkATF1 showed particularly high 2-phenylethyl acetate production and the strains with introduced SkATF2 or SuATF2 revealed increased production of isobutyl acetate, isoamyl acetate, and 2-phenylethyl acetate compared to the reference strains with endogenous ATF genes. The alcohol acetyltransferase activities of the individual Atf1 and Atf2 enzymes measured in the cell extracts of the S. cerevisiae atf1 atf2 iah1 triple-null strain were detected for all the measured substrates. This indicated that S. kudriavzevii and S. uvarum Atf enzymes had broad range substrate specificity as S. cerevisiae Atf enzymes. Individual Atf1 enzymes exhibited markedly different kinetic properties since SkAtf1p showed c. twofold higher and SuAtf1p c. threefold higher K m for isoamyl alcohol than ScAtf1p. Together these results indicated that the differences found among the three Saccharomyces species during the

  11. Differences in Enzymatic Properties of the Saccharomyces kudriavzevii and Saccharomyces uvarum Alcohol Acetyltransferases and Their Impact on Aroma-Active Compounds Production

    PubMed Central

    Stribny, Jiri; Querol, Amparo; Pérez-Torrado, Roberto

    2016-01-01

    Higher alcohols and acetate esters belong to the most important yeast secondary metabolites that significantly contribute to the overall flavor and aroma profile of fermented products. In Saccharomyces cerevisiae, esterification of higher alcohols is catalyzed mainly by the alcohol acetyltransferases encoded by genes ATF1 and ATF2. Previous investigation has shown other Saccharomyces species, e.g., S. kudriavzevii and S. uvarum, to vary in aroma-active higher alcohols and acetate esters formation when compared to S. cerevisiae. Here, we aimed to analyze the enzymes encoded by the ATF1 and ATF2 genes from S. kudriavzevii (SkATF1, SkATF2) and S. uvarum (SuATF1, SuATF2). The heterologous expression of the individual ATF1 and ATF2 genes in a host S. cerevisiae resulted in the enhanced production of several higher alcohols and acetate esters. Particularly, an increase of 2-phenylethyl acetate production by the strains that harbored ATF1 and ATF2 genes from S. kudriavzevii and S. uvarum was observed. When grown with individual amino acids as the nitrogen source, the strain that harbored SkATF1 showed particularly high 2-phenylethyl acetate production and the strains with introduced SkATF2 or SuATF2 revealed increased production of isobutyl acetate, isoamyl acetate, and 2-phenylethyl acetate compared to the reference strains with endogenous ATF genes. The alcohol acetyltransferase activities of the individual Atf1 and Atf2 enzymes measured in the cell extracts of the S. cerevisiae atf1 atf2 iah1 triple-null strain were detected for all the measured substrates. This indicated that S. kudriavzevii and S. uvarum Atf enzymes had broad range substrate specificity as S. cerevisiae Atf enzymes. Individual Atf1 enzymes exhibited markedly different kinetic properties since SkAtf1p showed c. twofold higher and SuAtf1p c. threefold higher Km for isoamyl alcohol than ScAtf1p. Together these results indicated that the differences found among the three Saccharomyces species during the

  12. Yeast population dynamics reveal a potential 'collaboration' between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation.

    PubMed

    Contreras, A; Curtin, C; Varela, C

    2015-02-01

    The wine sector is actively seeking strategies and technologies that facilitate the production of wines with lower alcohol content. One of the simplest approaches to achieve this aim would be the use of wine yeast strains which are less efficient at transforming grape sugars into ethanol; however, commercial wine yeasts have very similar ethanol yields. We recently demonstrated that Metschnikowia pulcherrima AWRI1149 was able to produce wine with reduced alcohol concentration when used in sequential inoculation with a wine strain of Saccharomyces cerevisiae. Here, different inoculation regimes were explored to study the effect of yeast population dynamics and potential yeast interactions on the metabolism of M. pulcherrima AWRI1149 during fermentation of non-sterile Shiraz must. Of all inoculation regimes tested, only ferments inoculated with M. pulcherrima AWRI1149 showed reduced ethanol concentration. Population dynamics revealed the presence of several indigenous yeast species and one of these, Saccharomyces uvarum (AWRI 2846), was able to produce wine with reduced ethanol concentration in sterile conditions. Both strains however, were inhibited when a combination of three non-Saccharomyces strains, Hanseniaspora uvarum AWRI863, Pichia kluyveri AWRI1896 and Torulaspora delbrueckii AWRI2845 were inoculated into must, indicating that the microbial community composition might impact on the growth of M. pulcherrima AWRI1149 and S. uvarum AWRI 2846. Our results indicate that mixed cultures of M. pulcherrima AWRI1149 and S. uvarum AWRI2846 enable an additional reduction of wine ethanol concentration compared to the same must fermented with either strain alone. This work thus provides a foundation to develop inoculation regimes for the successful application of non-cerevisiae yeast to the production of wines with reduced alcohol.

  13. Analysis of temperature-mediated changes in the wine yeast Saccharomyces bayanus var uvarum. An oenological study of how the protein content influences wine quality.

    PubMed

    Muñoz-Bernal, Eugenia; Deery, Michael J; Rodríguez, María Esther; Cantoral, Jesús M; Howard, Julie; Feret, Renata; Natera, Ramón; Lilley, Kathryn S; Fernández-Acero, Francisco Javier

    2016-02-01

    Saccharomyces bayanus var. uvarum plays an important role in the fermentation of red wine from the D.O. Ribera del Duero. This is due to the special organoleptic taste that this yeast gives the wines and their ability to ferment at low temperature. To determine the molecular factors involved in the fermentation process at low temperature, a differential proteomic approach was performed by using 2D-DIGE, comparing, qualitatively and quantitatively, the profiles obtained at 13 and 25°C. A total of 152 protein spots were identified. We detected proteins upregulated at 13°C that were shown to be related to temperature stress, the production of aromatic compounds involved in the metabolism of amino acids, and the production of fusel alcohols and their derivatives, each of which is directly related to the quality of the wines. To check the temperature effects, an aromatic analysis by GC-MS was performed. The proteomic and "aromatomic" results are discussed in relation to the oenological properties of S. bayanus var. uvarum. PMID:26621492

  14. Oral Intake of Carboxymethyl-Glucan (CM-G) from Yeast (Saccharomyces uvarum) Reduces Malondialdehyde Levels in Healthy Men.

    PubMed

    Araújo, Vilma Barbosa da Silva; de Melo, Adma Nadja Ferreira; de Souza, Neyrijane Targino; da Silva, Vânia Maria Barboza; Castro-Gomez, Raul H; Silva, Alexandre Sérgio; de Souza, Evandro Leite; Magnani, Marciane

    2015-08-14

    Carboxymethyl-glucan (CM-G) is a water-soluble derivative of β(1 → 3)(1 → 6) glucan, a well-known immunostimulant and antioxidant compound. In this experimental, randomized and placebo-controlled study, the effects of oral CM-G intake over a 60-day period on the peripheral blood, cholesterol, glycemic index and malondialdehyde (MDA) levels of healthy men was assessed. The CM-G was obtained from spent brewer's yeast (S. uvarum) with DS 0.8 and molecular weight of 2.2 × 10(5) Da. Following CM-G administration, no changes were observed in red and white blood cell, hematocrit, hemoglobin and platelet counts, or in cholesterol and glycemic indices. After 30 days of CM-G administration, the MDA levels decreased significantly (p ≤ 0.05) in men receiving CM-G. The results showed for the first time that CM-G may act as an adjuvant in preventing oxidative damage in healthy humans.

  15. Hanseniaspora uvarum from Winemaking Environments Show Spatial and Temporal Genetic Clustering

    PubMed Central

    Albertin, Warren; Setati, Mathabatha E.; Miot-Sertier, Cécile; Mostert, Talitha T.; Colonna-Ceccaldi, Benoit; Coulon, Joana; Girard, Patrick; Moine, Virginie; Pillet, Myriam; Salin, Franck; Bely, Marina; Divol, Benoit; Masneuf-Pomarede, Isabelle

    2016-01-01

    Hanseniaspora uvarum is one of the most abundant yeast species found on grapes and in grape must, at least before the onset of alcoholic fermentation (AF) which is usually performed by Saccharomyces species. The aim of this study was to characterize the genetic and phenotypic variability within the H. uvarum species. One hundred and fifteen strains isolated from winemaking environments in different geographical origins were analyzed using 11 microsatellite markers and a subset of 47 strains were analyzed by AFLP. H. uvarum isolates clustered mainly on the basis of their geographical localization as revealed by microsatellites. In addition, a strong clustering based on year of isolation was evidenced, indicating that the genetic diversity of H. uvarum isolates was related to both spatial and temporal variations. Conversely, clustering analysis based on AFLP data provided a different picture with groups showing no particular characteristics, but provided higher strain discrimination. This result indicated that AFLP approaches are inadequate to establish the genetic relationship between individuals, but allowed good strain discrimination. At the phenotypic level, several extracellular enzymatic activities of enological relevance (pectinase, chitinase, protease, β-glucosidase) were measured but showed low diversity. The impact of environmental factors of enological interest (temperature, anaerobia, and copper addition) on growth was also assessed and showed poor variation. Altogether, this work provided both new analytical tool (microsatellites) and new insights into the genetic and phenotypic diversity of H. uvarum, a yeast species that has previously been identified as a potential candidate for co-inoculation in grape must, but whose intraspecific variability had never been fully assessed. PMID:26834719

  16. Hanseniaspora uvarum from Winemaking Environments Show Spatial and Temporal Genetic Clustering.

    PubMed

    Albertin, Warren; Setati, Mathabatha E; Miot-Sertier, Cécile; Mostert, Talitha T; Colonna-Ceccaldi, Benoit; Coulon, Joana; Girard, Patrick; Moine, Virginie; Pillet, Myriam; Salin, Franck; Bely, Marina; Divol, Benoit; Masneuf-Pomarede, Isabelle

    2015-01-01

    Hanseniaspora uvarum is one of the most abundant yeast species found on grapes and in grape must, at least before the onset of alcoholic fermentation (AF) which is usually performed by Saccharomyces species. The aim of this study was to characterize the genetic and phenotypic variability within the H. uvarum species. One hundred and fifteen strains isolated from winemaking environments in different geographical origins were analyzed using 11 microsatellite markers and a subset of 47 strains were analyzed by AFLP. H. uvarum isolates clustered mainly on the basis of their geographical localization as revealed by microsatellites. In addition, a strong clustering based on year of isolation was evidenced, indicating that the genetic diversity of H. uvarum isolates was related to both spatial and temporal variations. Conversely, clustering analysis based on AFLP data provided a different picture with groups showing no particular characteristics, but provided higher strain discrimination. This result indicated that AFLP approaches are inadequate to establish the genetic relationship between individuals, but allowed good strain discrimination. At the phenotypic level, several extracellular enzymatic activities of enological relevance (pectinase, chitinase, protease, β-glucosidase) were measured but showed low diversity. The impact of environmental factors of enological interest (temperature, anaerobia, and copper addition) on growth was also assessed and showed poor variation. Altogether, this work provided both new analytical tool (microsatellites) and new insights into the genetic and phenotypic diversity of H. uvarum, a yeast species that has previously been identified as a potential candidate for co-inoculation in grape must, but whose intraspecific variability had never been fully assessed. PMID:26834719

  17. 2μ plasmid in Saccharomyces species and in Saccharomyces cerevisiae.

    PubMed

    Strope, Pooja K; Kozmin, Stanislav G; Skelly, Daniel A; Magwene, Paul M; Dietrich, Fred S; McCusker, John H

    2015-12-01

    We determined that extrachromosomal 2μ plasmid was present in 67 of the Saccharomyces cerevisiae 100-genome strains; in addition to variation in the size and copy number of 2μ, we identified three distinct classes of 2μ. We identified 2μ presence/absence and class associations with populations, clinical origin and nuclear genotypes. We also screened genome sequences of S. paradoxus, S. kudriavzevii, S. uvarum, S. eubayanus, S. mikatae, S. arboricolus and S. bayanus strains for both integrated and extrachromosomal 2μ. Similar to S. cerevisiae, we found no integrated 2μ sequences in any S. paradoxus strains. However, we identified part of 2μ integrated into the genomes of some S. uvarum, S. kudriavzevii, S. mikatae and S. bayanus strains, which were distinct from each other and from all extrachromosomal 2μ. We identified extrachromosomal 2μ in one S. paradoxus, one S. eubayanus, two S. bayanus and 13 S. uvarum strains. The extrachromosomal 2μ in S. paradoxus, S. eubayanus and S. cerevisiae were distinct from each other. In contrast, the extrachromosomal 2μ in S. bayanus and S. uvarum strains were identical with each other and with one of the three classes of S. cerevisiae 2μ, consistent with interspecific transfer.

  18. Molecular Analysis of the Genes Involved in Aroma Synthesis in the Species S. cerevisiae, S. kudriavzevii and S. bayanus var. uvarum in Winemaking Conditions

    PubMed Central

    Gamero, Amparo; Belloch, Carmela; Ibáñez, Clara; Querol, Amparo

    2014-01-01

    The Saccharomyces genus is the main yeast involved in wine fermentations to play a crucial role in the production and release of aromatic compounds. Despite the several studies done into the genome-wide expression analysis using DNA microarray technology in wine S. cerevisiae strains, this is the first to investigate other species of the Saccharomyces genus. This research work investigates the expression of the genes involved in flavor compound production in three different Saccharomyces species (S. cerevisiae, S. bayanus var. uvarum and S. kudriavzevii) under low (12°C) and moderate fermentation temperatures (28°C). The global genes analysis showed that 30% of genes appeared to be differently expressed in the three cryophilic strains if compared to the reference strain (mesophilic S. cerevisiae), suggesting a very close cold adaptation response. Remarkable differences in the gene expression level were observed when comparing the three species, S. cerevisiae, S. bayanus var. uvarum and S. kudriavzevii, which will result in different aroma profiles. Knowledge of these differences in the transcriptome can be a tool to help modulate aroma to create wines with the desired aromatic traits. PMID:24854353

  19. Truncation of Gal4p explains the inactivation of the GAL/MEL regulon in both Saccharomyces bayanus and some Saccharomyces cerevisiae wine strains.

    PubMed

    Dulermo, Rémi; Legras, Jean-Luc; Brunel, François; Devillers, Hugo; Sarilar, Véronique; Neuvéglise, Cécile; Nguyen, Huu-Vang

    2016-09-01

    In the past, the galactose-negative (Gal(-)) phenotype was a key physiological character used to distinguish Saccharomyces bayanus from S. cerevisiae In this work, we investigated the inactivation of GAL gene networks in S. bayanus, which is an S. uvarum/S. eubayanus hybrid, and in S. cerevisiae wine strains erroneously labelled 'S. bayanus'. We made an inventory of their GAL genes using genomes that were either available publicly, re-sequenced by us, or assembled from public data and completed with targeted sequencing. In the S. eubayanus/S. uvarum CBS 380(T) hybrid, the GAL/MEL network is composed of genes from both parents: from S. uvarum, an otherwise complete set that lacks GAL4, and from S. eubayanus, a truncated version of GAL4 and an additional copy of GAL3 and GAL80 Similarly, two different truncated GAL4 alleles were found in S. cerevisiae wine strains EC1118 and LalvinQA23. The lack of GAL4 activity in these strains was corrected by introducing a full-length copy of S. cerevisiae GAL4 on a CEN4/ARS plasmid. Transformation with this plasmid restored galactose utilisation in Gal(-) strains, and melibiose fermentation in strain CBS 380(T) The melibiose fermentation phenotype, formerly regarded as characteristic of S. uvarum, turned out to be widespread among Saccharomyces species. PMID:27589939

  20. Viability of Hanseniaspora uvarum yeast preserved by lyophilization and cryopreservation.

    PubMed

    de Arruda Moura Pietrowski, Giovana; Grochoski, Mayara; Sartori, Gabriela Felkl; Gomes, Tatiane Aparecida; Wosiacki, Gilvan; Nogueira, Alessandro

    2015-08-01

    Hanseniaspora yeasts are known to produce volatile compounds that give fruity aromas in wine and fermented fruit. This study aimed to verify the feasibility of the Hanseniaspora uvarum strain that had been isolated and identified during a previous study and preserved by lyophilization and freezing at -80 °C (cryopreservation). This strain was assessed in relation to its macroscopic and microscopic morphology and for its ability to ferment apple must. After having been subjected to lyophilization and cryopreservation, viability was assessed in relation to these characteristics during 12 months of storage. The strain showed stable colonial features and its microscopic appearance was unchanged during all recoveries. The plate count results showed consistency in both processes. Regarding the fermentative capacity, the kinetic results showed 100% viability for the strain subjected to lyophilization, as well as for those preserved at -80 °C. These results demonstrate that the preservation methods used are compatible with the maintenance of the relevant characteristics of the strain for the period of evaluation of this study (12 months). PMID:26095929

  1. Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions.

    PubMed

    da Silva, Telma; Albertin, Warren; Dillmann, Christine; Bely, Marina; la Guerche, Stéphane; Giraud, Christophe; Huet, Sylvie; Sicard, Delphine; Masneuf-Pomarede, Isabelle; de Vienne, Dominique; Marullo, Philippe

    2015-01-01

    Despite its biotechnological interest, hybridization, which can result in hybrid vigor, has not commonly been studied or exploited in the yeast genus. From a diallel design including 55 intra- and interspecific hybrids between Saccharomyces cerevisiae and S. uvarum grown at two temperatures in enological conditions, we analyzed as many as 35 fermentation traits with original statistical and modeling tools. We first showed that, depending on the types of trait--kinetics parameters, life-history traits, enological parameters and aromas -, the sources of variation (strain, temperature and strain * temperature effects) differed in a large extent. Then we compared globally three groups of hybrids and their parents at two growth temperatures: intraspecific hybrids S. cerevisiae * S. cerevisiae, intraspecific hybrids S. uvarum * S. uvarum and interspecific hybrids S. cerevisiae * S. uvarum. We found that hybridization could generate multi-trait phenotypes with improved oenological performances and better homeostasis with respect to temperature. These results could explain why interspecific hybridization is so common in natural and domesticated yeast, and open the way to applications for wine-making.

  2. Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions.

    PubMed

    da Silva, Telma; Albertin, Warren; Dillmann, Christine; Bely, Marina; la Guerche, Stéphane; Giraud, Christophe; Huet, Sylvie; Sicard, Delphine; Masneuf-Pomarede, Isabelle; de Vienne, Dominique; Marullo, Philippe

    2015-01-01

    Despite its biotechnological interest, hybridization, which can result in hybrid vigor, has not commonly been studied or exploited in the yeast genus. From a diallel design including 55 intra- and interspecific hybrids between Saccharomyces cerevisiae and S. uvarum grown at two temperatures in enological conditions, we analyzed as many as 35 fermentation traits with original statistical and modeling tools. We first showed that, depending on the types of trait--kinetics parameters, life-history traits, enological parameters and aromas -, the sources of variation (strain, temperature and strain * temperature effects) differed in a large extent. Then we compared globally three groups of hybrids and their parents at two growth temperatures: intraspecific hybrids S. cerevisiae * S. cerevisiae, intraspecific hybrids S. uvarum * S. uvarum and interspecific hybrids S. cerevisiae * S. uvarum. We found that hybridization could generate multi-trait phenotypes with improved oenological performances and better homeostasis with respect to temperature. These results could explain why interspecific hybridization is so common in natural and domesticated yeast, and open the way to applications for wine-making. PMID:25946464

  3. Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions

    PubMed Central

    Dillmann, Christine; Bely, Marina; la Guerche, Stéphane; Giraud, Christophe; Huet, Sylvie; Sicard, Delphine; Masneuf-Pomarede, Isabelle; de Vienne, Dominique; Marullo, Philippe

    2015-01-01

    Despite its biotechnological interest, hybridization, which can result in hybrid vigor, has not commonly been studied or exploited in the yeast genus. From a diallel design including 55 intra- and interspecific hybrids between Saccharomyces cerevisiae and S. uvarum grown at two temperatures in enological conditions, we analyzed as many as 35 fermentation traits with original statistical and modeling tools. We first showed that, depending on the types of trait – kinetics parameters, life-history traits, enological parameters and aromas –, the sources of variation (strain, temperature and strain * temperature effects) differed in a large extent. Then we compared globally three groups of hybrids and their parents at two growth temperatures: intraspecific hybrids S. cerevisiae * S. cerevisiae, intraspecific hybrids S. uvarum * S. uvarum and interspecific hybrids S. cerevisiae * S. uvarum. We found that hybridization could generate multi-trait phenotypes with improved oenological performances and better homeostasis with respect to temperature. These results could explain why interspecific hybridization is so common in natural and domesticated yeast, and open the way to applications for wine-making. PMID:25946464

  4. Saccharomyces boulardii

    MedlinePlus

    ... of diarrhea caused by this type of bacteria. Helicobacter pylori. Some evidence suggests that taking Saccharomyces boulardii reduces ... of treatment for ulcers caused by the bacteria Helicobacter pylori. Diarrhea related to HIV. Taking Saccharomyces boulardii by ...

  5. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific.

    PubMed

    Wang, Chunxiao; Mas, Albert; Esteve-Zarzoso, Braulio

    2016-01-01

    The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine, or glutamine) were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae.

  6. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific

    PubMed Central

    Wang, Chunxiao; Mas, Albert; Esteve-Zarzoso, Braulio

    2016-01-01

    The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine, or glutamine) were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae. PMID:27148191

  7. Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces.

    PubMed

    Alexander, William G; Peris, David; Pfannenstiel, Brandon T; Opulente, Dana A; Kuang, Meihua; Hittinger, Chris Todd

    2016-04-01

    Saccharomyces interspecies hybrids are critical biocatalysts in the fermented beverage industry, including in the production of lager beers, Belgian ales, ciders, and cold-fermented wines. Current methods for making synthetic interspecies hybrids are cumbersome and/or require genome modifications. We have developed a simple, robust, and efficient method for generating allotetraploid strains of prototrophic Saccharomyces without sporulation or nuclear genome manipulation. S. cerevisiae×S. eubayanus, S. cerevisiae×S. kudriavzevii, and S. cerevisiae×S. uvarum designer hybrid strains were created as synthetic lager, Belgian, and cider strains, respectively. The ploidy and hybrid nature of the strains were confirmed using flow cytometry and PCR-RFLP analysis, respectively. This method provides an efficient means for producing novel synthetic hybrids for beverage and biofuel production, as well as for constructing tetraploids to be used for basic research in evolutionary genetics and genome stability. PMID:26555931

  8. Genome-wide gene expression of a natural hybrid between Saccharomyces cerevisiae and S. kudriavzevii under enological conditions.

    PubMed

    Combina, Mariana; Pérez-Torrado, Roberto; Tronchoni, Jordi; Belloch, Carmela; Querol, Amparo

    2012-07-16

    The species Saccharomyces cerevisiae plays a predominant role in the wine making process. However, other species have been associated with must fermentation, such as Saccharomyces uvarum (Saccharomyces bayanus var. uvarum) or Saccharomyces paradoxus. Recently, yeast hybrids of different Saccharomyces species have also been reported as responsible for wine production. Yeast hybrids between the species S. cerevisiae×S. kudriavzevii isolated in wine fermentations show enhanced performance in low temperature enological conditions and increased production of interesting aroma compounds. In this work, we have studied the transcriptomic response in enological conditions of a S. cerevisiae×S. kudriavzevii hybrid strain and compared it with the reference species of S. cerevisiae and S. kudriavzevii. The results show that the hybrid strain presents an up-regulation of genes belonging to functional group translation and amino-acid metabolism. Moreover, key genes related to cold stress and production of glycerol and aroma compounds were also up-regulated. While some genes inherited regulation patterns from one of the parents, most of the up-regulated genes presented a new gene expression pattern, probably generated during the hybridization and adaptation process.

  9. Sequential Fermentation with Selected Immobilized Non-Saccharomyces Yeast for Reduction of Ethanol Content in Wine.

    PubMed

    Canonico, Laura; Comitini, Francesca; Oro, Lucia; Ciani, Maurizio

    2016-01-01

    The average ethanol content of wine has increased over the last two decades. This increase was due to consumer preference, and also to climate change that resulted in increased grape maturity at harvest. In the present study, to reduce ethanol content in wine, a microbiological approach was investigated, using immobilized selected strains of non-Saccharomyces yeasts namely Starmerella bombicola, Metschnikowia pulcherrima, Hanseniaspora osmophila, and Hanseniaspora uvarum to start fermentation, followed by inoculation of free Saccharomyces cerevisiae cells. The immobilization procedures, determining high reaction rates, led a feasible sequential inoculation management avoiding possible contamination under actual winemaking. Under these conditions, the immobilized cells metabolized almost 50% of the sugar in 3 days, while S. cerevisiae inoculation completed all of fermentation. The S. bombicola and M. pulcherrima initial fermentations showed the best reductions in the final ethanol content (1.6 and 1.4% v/v, respectively). Resulting wines did not have any negative fermentation products with the exception of H. uvarum sequential fermentation that showed significant amount of ethyl acetate. On the other hand, there were increases in desirable compounds such as glycerol and succinic acid for S. bombicola, geraniol for M. pulcherrima and isoamyl acetate and isoamyl alcohol for H. osmophila sequential fermentations. The overall results indicated that a promising ethanol reduction could be obtained using sequential fermentation of immobilized selected non-Saccharomyces strains. In this way, a suitable timing of second inoculation and an enhancement of analytical profile of wine were obtained. PMID:27014203

  10. Sequential Fermentation with Selected Immobilized Non-Saccharomyces Yeast for Reduction of Ethanol Content in Wine

    PubMed Central

    Canonico, Laura; Comitini, Francesca; Oro, Lucia; Ciani, Maurizio

    2016-01-01

    The average ethanol content of wine has increased over the last two decades. This increase was due to consumer preference, and also to climate change that resulted in increased grape maturity at harvest. In the present study, to reduce ethanol content in wine, a microbiological approach was investigated, using immobilized selected strains of non-Saccharomyces yeasts namely Starmerella bombicola, Metschnikowia pulcherrima, Hanseniaspora osmophila, and Hanseniaspora uvarum to start fermentation, followed by inoculation of free Saccharomyces cerevisiae cells. The immobilization procedures, determining high reaction rates, led a feasible sequential inoculation management avoiding possible contamination under actual winemaking. Under these conditions, the immobilized cells metabolized almost 50% of the sugar in 3 days, while S. cerevisiae inoculation completed all of fermentation. The S. bombicola and M. pulcherrima initial fermentations showed the best reductions in the final ethanol content (1.6 and 1.4% v/v, respectively). Resulting wines did not have any negative fermentation products with the exception of H. uvarum sequential fermentation that showed significant amount of ethyl acetate. On the other hand, there were increases in desirable compounds such as glycerol and succinic acid for S. bombicola, geraniol for M. pulcherrima and isoamyl acetate and isoamyl alcohol for H. osmophila sequential fermentations. The overall results indicated that a promising ethanol reduction could be obtained using sequential fermentation of immobilized selected non-Saccharomyces strains. In this way, a suitable timing of second inoculation and an enhancement of analytical profile of wine were obtained. PMID:27014203

  11. Povalibacter uvarum gen. nov., sp. nov., a polyvinyl-alcohol-degrading bacterium isolated from grapes.

    PubMed

    Nogi, Yuichi; Yoshizumi, Masaki; Hamana, Koei; Miyazaki, Masayuki; Horikoshi, Koki

    2014-08-01

    Polyvinyl-alcohol-degrading bacteria were isolated from the fruit of a grape in Yokosuka, Japan. The isolated strain, Zumi 37(T), was a Gram-stain-negative, rod-shaped, motile, non-spore-forming and strictly aerobic chemo-organotroph, showing optimal growth at pH 7.5, 30 °C and 0.1% (w/v) NaCl. The major respiratory quinone was Q-8. The predominant fatty acids were iso-C(15 : 0), C(16 : 0) and C(16 : 1)ω7c. The major polyamines were homospermidine and putrescine. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content of the novel strain was 64.2 mol%. 16S rRNA gene sequence comparison revealed that strain Zumi 37(T) belongs to the family Sinobacteraceae within the class Gammaproteobacteria. Steroidobacter denitrificans DSM 18526(T) was the most closely related species with a validly published name, with 98.0% similarity based on 16S rRNA gene sequence comparison (and showed less than 87.5% sequence similarity to members of the genera Alkanibacter, Fontimonas, Hydrocarboniphaga, Nevskia and Solimonas with known 16S rRNA gene sequences). Phenotypes for growth under aerobic conditions and on complex media and major fatty acid composition, differed greatly from those of with comparatively high 16S rRNA gene sequence similarity. Based on phylogenetic, phenotypic and chemotaxonomic evidence, it is proposed that strain Zumi 37(T) represents a novel species in a new genus for which the name Povalibacter uvarum gen. nov., sp. nov. is proposed. The type strain of the type species is Zumi 37(T) ( = JCM 18749(T) = DSM 26723(T)). PMID:24844263

  12. On the Complexity of the Saccharomyces bayanus Taxon: Hybridization and Potential Hybrid Speciation

    PubMed Central

    Pérez-Través, Laura; Lopes, Christian A.; Querol, Amparo; Barrio, Eladio

    2014-01-01

    Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum), which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequence data, and based on the S. bayanus var. bayanus reference strain NBRC 1948, a hypothetical pure S. bayanus was reconstructed for these genes that showed alleles with similarity values lower than 97% with the S. bayanus var. uvarum strain CBS 7001, and of 99–100% with the non S. cerevisiae portion in S. pastorianus Weihenstephan 34/70 and with the new species S. eubayanus. Among the S. bayanus strains under study, different levels of homozygosity, hybridization and introgression were found; however, no pure S. bayanus var. bayanus strain was identified. These S. bayanus hybrids can be classified into two types: homozygous (type I) and heterozygous hybrids (type II), indicating that they have been originated by different hybridization processes. Therefore, a putative evolutionary scenario involving two different hybridization events between a S. bayanus var. uvarum and unknown European S. eubayanus-like strains can be postulated to explain the genomic diversity observed in our S. bayanus var. bayanus strains. PMID:24705561

  13. On the complexity of the Saccharomyces bayanus taxon: hybridization and potential hybrid speciation.

    PubMed

    Pérez-Través, Laura; Lopes, Christian A; Querol, Amparo; Barrio, Eladio

    2014-01-01

    Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum), which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequence data, and based on the S. bayanus var. bayanus reference strain NBRC 1948, a hypothetical pure S. bayanus was reconstructed for these genes that showed alleles with similarity values lower than 97% with the S. bayanus var. uvarum strain CBS 7001, and of 99-100% with the non S. cerevisiae portion in S. pastorianus Weihenstephan 34/70 and with the new species S. eubayanus. Among the S. bayanus strains under study, different levels of homozygosity, hybridization and introgression were found; however, no pure S. bayanus var. bayanus strain was identified. These S. bayanus hybrids can be classified into two types: homozygous (type I) and heterozygous hybrids (type II), indicating that they have been originated by different hybridization processes. Therefore, a putative evolutionary scenario involving two different hybridization events between a S. bayanus var. uvarum and unknown European S. eubayanus-like strains can be postulated to explain the genomic diversity observed in our S. bayanus var. bayanus strains.

  14. Alternative Glycerol Balance Strategies among Saccharomyces Species in Response to Winemaking Stress

    PubMed Central

    Pérez-Torrado, Roberto; Oliveira, Bruno M.; Zemančíková, Jana; Sychrová, Hana; Querol, Amparo

    2016-01-01

    Production and balance of glycerol is essential for the survival of yeast cells in certain stressful conditions as hyperosmotic or cold shock that occur during industrial processes as winemaking. These stress responses are well-known in S. cerevisiae, however, little is known in other phylogenetically close related Saccharomyces species associated with natural or fermentation environments such as S. uvarum, S. paradoxus or S. kudriavzevii. In this work we have investigated the expression of four genes (GPD1, GPD2, STL1, and FPS1) crucial in the glycerol pool balance in the four species with a biotechnological potential (S. cerevisiae; S. paradoxus; S. uvarum; and S. kudriavzevii), and the ability of strains to grow under osmotic and cold stresses. The results show different pattern and level of expression among the different species, especially for STL1. We also studied the function of Stl1 glycerol symporter in the survival to osmotic changes and cell growth capacity in winemaking environments. These experiments also revealed a different functionality of the glycerol transporters among the different species studied. All these data point to different strategies to handle glycerol accumulation in response to winemaking stresses as hyperosmotic or cold-hyperosmotic stress in the different species, with variable emphasis in the production, influx, or efflux of glycerol. PMID:27064588

  15. Persistence of Two Non-Saccharomyces Yeasts (Hanseniaspora and Starmerella) in the Cellar

    PubMed Central

    Grangeteau, Cédric; Gerhards, Daniel; von Wallbrunn, Christian; Alexandre, Hervé; Rousseaux, Sandrine; Guilloux-Benatier, Michèle

    2016-01-01

    Different genera and/or species of yeasts present on grape berries, in musts and wines are widely described. Nevertheless, the community of non-Saccharomyces yeasts present in the cellar is still given little attention. Thus it is not known if the cellar is a real ecological niche for these yeasts or if it is merely a transient habitat for populations brought in by grape berries during the winemaking period. This study focused on three species of non-Saccharomyces yeasts commonly encountered during vinification: Starmerella bacillaris (synonymy with Candida zemplinina), Hanseniaspora guilliermondii and Hanseniaspora uvarum. More than 1200 isolates were identified at the strain level by FT-IR spectroscopy (207 different FTIR strain pattern). Only a small proportion of non-Saccharomyces yeasts present in musts came directly from grape berries for the three species studied. Some strains were found in the must in two consecutive years and some of them were also found in the cellar environment before the arrival of the harvest of second vintage. This study demonstrates for the first time the persistence of non-Saccharomyces yeast strains from year to year in the cellar. Sulfur dioxide can affect yeast populations in the must and therefore their persistence in the cellar environment. PMID:27014199

  16. Enological characterization of Spanish Saccharomyces kudriavzevii strains, one of the closest relatives to parental strains of winemaking and brewing Saccharomyces cerevisiae × S. kudriavzevii hybrids.

    PubMed

    Peris, D; Pérez-Través, L; Belloch, C; Querol, A

    2016-02-01

    Wine fermentation and innovation have focused mostly on Saccharomyces cerevisiae strains. However, recent studies have shown that other Saccharomyces species can also be involved in wine fermentation or are useful for wine bouquet, such as Saccharomyces uvarum and Saccharomyces paradoxus. Many interspecies hybrids have also been isolated from wine fermentation, such as S. cerevisiae × Saccharomyces kudriavzevii hybrids. In this study, we explored the genetic diversity and fermentation performance of Spanish S. kudriavzevii strains, which we compared to other S. kudriavzevii strains. Fermentations of red and white grape musts were performed, and the phenotypic differences between Spanish S. kudriavzevii strains under different temperature conditions were examined. An ANOVA analysis suggested striking similarity between strains for glycerol and ethanol production, although a high diversity of aromatic profiles among fermentations was found. The sources of these phenotypic differences are not well understood and require further investigation. Although the Spanish S. kudriavzevii strains showed desirable properties, particularly must fermentations, the quality of their wines was no better than those produced with a commercial S. cerevisiae. We suggest hybridization or directed evolution as methods to improve and innovate wine. PMID:26678127

  17. Enological characterization of Spanish Saccharomyces kudriavzevii strains, one of the closest relatives to parental strains of winemaking and brewing Saccharomyces cerevisiae × S. kudriavzevii hybrids.

    PubMed

    Peris, D; Pérez-Través, L; Belloch, C; Querol, A

    2016-02-01

    Wine fermentation and innovation have focused mostly on Saccharomyces cerevisiae strains. However, recent studies have shown that other Saccharomyces species can also be involved in wine fermentation or are useful for wine bouquet, such as Saccharomyces uvarum and Saccharomyces paradoxus. Many interspecies hybrids have also been isolated from wine fermentation, such as S. cerevisiae × Saccharomyces kudriavzevii hybrids. In this study, we explored the genetic diversity and fermentation performance of Spanish S. kudriavzevii strains, which we compared to other S. kudriavzevii strains. Fermentations of red and white grape musts were performed, and the phenotypic differences between Spanish S. kudriavzevii strains under different temperature conditions were examined. An ANOVA analysis suggested striking similarity between strains for glycerol and ethanol production, although a high diversity of aromatic profiles among fermentations was found. The sources of these phenotypic differences are not well understood and require further investigation. Although the Spanish S. kudriavzevii strains showed desirable properties, particularly must fermentations, the quality of their wines was no better than those produced with a commercial S. cerevisiae. We suggest hybridization or directed evolution as methods to improve and innovate wine.

  18. The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus

    PubMed Central

    Scannell, Devin R.; Zill, Oliver A.; Rokas, Antonis; Payen, Celia; Dunham, Maitreya J.; Eisen, Michael B.; Rine, Jasper; Johnston, Mark; Hittinger, Chris Todd

    2011-01-01

    High-quality, well-annotated genome sequences and standardized laboratory strains fuel experimental and evolutionary research. We present improved genome sequences of three species of Saccharomyces sensu stricto yeasts: S. bayanus var. uvarum (CBS 7001), S. kudriavzevii (IFO 1802T and ZP 591), and S. mikatae (IFO 1815T), and describe their comparison to the genomes of S. cerevisiae and S. paradoxus. The new sequences, derived by assembling millions of short DNA sequence reads together with previously published Sanger shotgun reads, have vastly greater long-range continuity and far fewer gaps than the previously available genome sequences. New gene predictions defined a set of 5261 protein-coding orthologs across the five most commonly studied Saccharomyces yeasts, enabling a re-examination of the tempo and mode of yeast gene evolution and improved inferences of species-specific gains and losses. To facilitate experimental investigations, we generated genetically marked, stable haploid strains for all three of these Saccharomyces species. These nearly complete genome sequences and the collection of genetically marked strains provide a valuable toolset for comparative studies of gene function, metabolism, and evolution, and render Saccharomyces sensu stricto the most experimentally tractable model genus. These resources are freely available and accessible through www.SaccharomycesSensuStricto.org. PMID:22384314

  19. Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation.

    PubMed

    Tronchoni, Jordi; Gamero, Amparo; Arroyo-López, Francisco Noé; Barrio, Eladio; Querol, Amparo

    2009-09-15

    Yeasts with a high fructose consumption capability are very important for winemakers to solve problems associated with sluggish or stuck fermentations causing undesirable sweetness in wines. In the present study, we analyze the kinetics of glucose and fructose consumption during wine fermentations performed at low (12 degrees C) and high (28 degrees C) temperatures by twelve different yeast strains belonging to the species Saccharomyces cerevisiae, S. bayanus var. uvarum, S. kudriavzevii as well as interspecific Saccharomyces hybrids. Different mathematical equations (sigmoid, exponential and linear decay functions) were used to fit, by means of linear and nonlinear regressions, the sugar degradation along the fermentative process. Temperature had an important influence on glucose and fructose consumption, and clearly different degradation profiles were observed at 12 and 28 degrees C. From the obtained equations, times to consume half and total of the initial glucose and fructose concentrations present in the must were calculated, allowing a quantitative comparison among yeasts in order to select the fastest fermentative yeast according to the fermentation temperature. In general, all yeasts assayed showed a slightly higher preference for glucose than fructose at both temperatures, confirming the glucophilic character of Saccharomyces wine yeasts. However, at low temperatures, some Saccharomyces yeasts showed a fructophilic character at the beginning of fermentation. This kind of studies can be very useful for the wine industry to select yeast strains with different glucose/fructose preferences.

  20. A multi-species based taxonomic microarray reveals interspecies hybridization and introgression in Saccharomyces cerevisiae

    PubMed Central

    Muller, Ludo A. H.; McCusker, John H.

    2009-01-01

    A multi-species based taxonomic microarray targeting coding sequences of diverged orthologous genes in Saccharomyces cerevisiae, S. paradoxus, S. mikatae, S. bayanus, S. kudriavzevii, Naumovia castellii, Lachancea kluyveri and Candida glabrata was designed to allow identification of isolates of these species and their interspecies hybrids. Analysis of isolates of several Saccharomyces species and interspecies hybrids demonstrated the ability of the microarray to differentiate these yeasts on the basis of their specific hybridization patterns. Subsequent analysis of 183 supposed S. cerevisiae isolates of various ecological and geographical backgrounds revealed one misclassified S. bayanus or S. uvarum isolate and four aneuploid interspecies hybrids, one between S. cerevisiae and S. bayanus and three between S. cerevisiae and S. kudriavzevii. Furthermore, this microarray design allowed the detection of multiple introgressed S. paradoxus DNA fragments in the genomes of three different S. cerevisiae isolates. These results show the power of multi-species based microarrays as taxonomic tools for the identification of species and interspecies hybrids, and their ability to provide a more detailed characterization of interspecies hybrids and recombinants. PMID:19054123

  1. Natural Populations of Saccharomyces kudriavzevii in Portugal Are Associated with Oak Bark and Are Sympatric with S. cerevisiae and S. paradoxus▿

    PubMed Central

    Sampaio, José Paulo; Gonçalves, Paula

    2008-01-01

    Here we report the isolation of four Saccharomyces species (former Saccharomyces sensu stricto group) from tree bark. The employment of two temperatures (10°C in addition to the more commonly used 30°C) resulted in the isolation of S. kudriavzevii and S. uvarum, two species that grow at low temperatures, in addition to S. cerevisiae and S. paradoxus. A clear bias was found toward the bark of certain trees, particularly certain oak species. Very often, more than one Saccharomyces species was found in one locality and occasionally even in the same bark sample. Our evidence strongly suggests that (markedly) different growth temperature preferences play a fundamental role in the sympatric associations of Saccharomyces species uncovered in this survey. S. kudriavzevii was isolated at most of the sites sampled in Portugal, indicating that the geographic distribution of this species is wider than the distribution assumed thus far. However, the Portuguese S. kudriavzevii population exhibited important genetic differences compared to the type strain of the species that represents a Japanese population. In this study, S. kudriavzevii stands out as the species that copes better with low temperatures. PMID:18281431

  2. Multifunctional Pt(II) Reagents: Covalent Modifications of Pt Complexes Enable Diverse Structural Variation and In-Cell Detection.

    PubMed

    White, Jonathan D; Haley, Michael M; DeRose, Victoria J

    2016-01-19

    Pt(II)-neutral complex analogous in structure to the aforementioned difunctional azide-Pt(II) reagent. In all cases, significant accumulation of Pt in the nucleolus of cells was observed, in addition to broader localization in the nucleus and cytoplasm of the cell. Using the same strategy of postbinding click modification with fluorescent probes, Pt adducts were detected and roughly quantified on rRNA and tRNA from Pt-treated Saccharomyces cerevisiae; rRNA adducts were found to be relatively long-lived and not targeted for immediate degradation. Finally, the utility and feasibility of the alkyne-appended Pt(II) compound has been further demonstrated with a turn-on fluorophore, dansyl azide, in fluorescent detection of DNA in vitro. In all, these modifications utilizing reactive handles have allowed for the diversification of new Pt reagents, as well as providing cellular localization information on the modified Pt compounds.

  3. Fermentative capabilities and volatile compounds produced by Kloeckera/Hanseniaspora and Saccharomyces yeast strains in pure and mixed cultures during Agave tequilana juice fermentation.

    PubMed

    González-Robles, Ivonne Wendolyne; Estarrón-Espinosa, Mirna; Díaz-Montaño, Dulce María

    2015-09-01

    The fermentative and aromatic capabilities of Kloeckera africana/Hanseniaspora vineae K1, K. apiculata/H. uvarum K2, and Saccharomyces cerevisiae S1 and S2 were studied in pure and mixed culture fermentations using Agave tequila juice as the culture medium. In pure and mixed cultures, Kloeckera/Hanseniaspora strains showed limited growth and sugar consumption, as well as low ethanol yield and productivity, compared to S. cerevisiae, which yielded more biomass, ethanol and viable cell concentrations. In pure and mixed cultures, S. cerevisiae presented a similar behaviour reaching high biomass production, completely consuming the sugar, leading to high ethanol production. Furthermore, the presence of S. cerevisiae strains in the mixed cultures promoted the production of higher alcohols, acetaldehyde and ethyl esters, whereas Kloeckera/Hanseniaspora strains stimulated the production of ethyl acetate and 2-phenyl ethyl acetate compounds.

  4. Fermentative capabilities and volatile compounds produced by Kloeckera/Hanseniaspora and Saccharomyces yeast strains in pure and mixed cultures during Agave tequilana juice fermentation.

    PubMed

    González-Robles, Ivonne Wendolyne; Estarrón-Espinosa, Mirna; Díaz-Montaño, Dulce María

    2015-09-01

    The fermentative and aromatic capabilities of Kloeckera africana/Hanseniaspora vineae K1, K. apiculata/H. uvarum K2, and Saccharomyces cerevisiae S1 and S2 were studied in pure and mixed culture fermentations using Agave tequila juice as the culture medium. In pure and mixed cultures, Kloeckera/Hanseniaspora strains showed limited growth and sugar consumption, as well as low ethanol yield and productivity, compared to S. cerevisiae, which yielded more biomass, ethanol and viable cell concentrations. In pure and mixed cultures, S. cerevisiae presented a similar behaviour reaching high biomass production, completely consuming the sugar, leading to high ethanol production. Furthermore, the presence of S. cerevisiae strains in the mixed cultures promoted the production of higher alcohols, acetaldehyde and ethyl esters, whereas Kloeckera/Hanseniaspora strains stimulated the production of ethyl acetate and 2-phenyl ethyl acetate compounds. PMID:26108494

  5. Dynamic study of yeast species and Saccharomyces cerevisiae strains during the spontaneous fermentations of Muscat blanc in Jingyang, China.

    PubMed

    Wang, Chunxiao; Liu, Yanlin

    2013-04-01

    The evolution of yeast species and Saccharomyces cerevisiae genotypes during spontaneous fermentations of Muscat blanc planted in 1957 in Jingyang region of China was followed in this study. Using a combination of colony morphology on Wallerstein Nutrient (WLN) medium, sequence analysis of the 26S rDNA D1/D2 domain and 5.8S-ITS-RFLP analysis, a total of 686 isolates were identified at the species level. The six species identified were S. cerevisiae, Hanseniaspora uvarum, Hanseniaspora opuntiae, Issatchenkia terricola, Pichia kudriavzevii (Issatchenkia orientalis) and Trichosporon coremiiforme. This is the first report of T. coremiiforme as an inhabitant of grape must. Three new colony morphologies on WLN medium and one new 5.8S-ITS-RFLP profile are described. Species of non-Saccharomyces, predominantly H. opuntiae, were found in early stages of fermentation. Subsequently, S. cerevisiae prevailed followed by large numbers of P. kudriavzevii that dominated at the end of fermentations. Six native genotypes of S. cerevisiae were determined by interdelta sequence analysis. Genotypes III and IV were predominant. As a first step in exploring untapped yeast resources of the region, this study is important for monitoring the yeast ecology in native fermentations and screening indigenous yeasts that will produce wines with regional characteristics.

  6. Dynamic study of yeast species and Saccharomyces cerevisiae strains during the spontaneous fermentations of Muscat blanc in Jingyang, China.

    PubMed

    Wang, Chunxiao; Liu, Yanlin

    2013-04-01

    The evolution of yeast species and Saccharomyces cerevisiae genotypes during spontaneous fermentations of Muscat blanc planted in 1957 in Jingyang region of China was followed in this study. Using a combination of colony morphology on Wallerstein Nutrient (WLN) medium, sequence analysis of the 26S rDNA D1/D2 domain and 5.8S-ITS-RFLP analysis, a total of 686 isolates were identified at the species level. The six species identified were S. cerevisiae, Hanseniaspora uvarum, Hanseniaspora opuntiae, Issatchenkia terricola, Pichia kudriavzevii (Issatchenkia orientalis) and Trichosporon coremiiforme. This is the first report of T. coremiiforme as an inhabitant of grape must. Three new colony morphologies on WLN medium and one new 5.8S-ITS-RFLP profile are described. Species of non-Saccharomyces, predominantly H. opuntiae, were found in early stages of fermentation. Subsequently, S. cerevisiae prevailed followed by large numbers of P. kudriavzevii that dominated at the end of fermentations. Six native genotypes of S. cerevisiae were determined by interdelta sequence analysis. Genotypes III and IV were predominant. As a first step in exploring untapped yeast resources of the region, this study is important for monitoring the yeast ecology in native fermentations and screening indigenous yeasts that will produce wines with regional characteristics. PMID:23200649

  7. Aroma Profile of Montepulciano d'Abruzzo Wine Fermented by Single and Co-culture Starters of Autochthonous Saccharomyces and Non-saccharomyces Yeasts

    PubMed Central

    Tofalo, Rosanna; Patrignani, Francesca; Lanciotti, Rosalba; Perpetuini, Giorgia; Schirone, Maria; Di Gianvito, Paola; Pizzoni, Daniel; Arfelli, Giuseppe; Suzzi, Giovanna

    2016-01-01

    Montepulciano d'Abruzzo is a native grape variety of Vitis vinifera L., grown in central Italy and used for production of high quality red wines. Limited studies have been carried out to improve its enological characteristics through the use of indigenous strains of Saccharomyces cerevisiae. The main objective of the present work was to test two indigenous strains of S. cerevisiae (SRS1, RT73), a strain of Starmerella bacillaris (STS12), one of Hanseniaspora uvarum (STS45) and a co-culture of S. cerevisiae (SRS1) and S. bacillaris (STS12), in an experimental cellar to evaluate their role in the sensory characteristic of Montepulciano d'Abruzzo wine. A S. cerevisiae commercial strain was used. Fermentations were conducted under routine Montepulciano d'Abruzzo wine production, in which the main variables were the yeast strains used for fermentation. Basic winemaking parameters, some key chemical analysis and aroma compounds were considered. S. cerevisiae strain dynamics during fermentation were determined by molecular methods. The musts inoculated with the co-culture were characterized by a faster fermentation start and a higher content of glycerol after 3 days of fermentation, as well as the musts added with strains S. bacillaris (STS12) and H. uvarum (STS45). At the end of fermentation the parameters studied were quite similar in all the wines. Total biogenic amines (BA) content of all the wines was low. Ethanolamine was the predominant BA, with a concentration ranging from 21 to 24 mg/l. Wines were characterized by esters and alcohols. In particular, 2-phenylethanol, 3-methylbut-1-yl methanoate, and ethyl ethanoate were the major aroma volatile compounds in all wines. Statistical analysis highlighted the different role played by aroma compounds in the differentiation of wines, even if it was impossible to select a single class of compounds as the most important for a specific yeast. The present study represents a further step toward the use of tailored

  8. Aroma Profile of Montepulciano d'Abruzzo Wine Fermented by Single and Co-culture Starters of Autochthonous Saccharomyces and Non-saccharomyces Yeasts.

    PubMed

    Tofalo, Rosanna; Patrignani, Francesca; Lanciotti, Rosalba; Perpetuini, Giorgia; Schirone, Maria; Di Gianvito, Paola; Pizzoni, Daniel; Arfelli, Giuseppe; Suzzi, Giovanna

    2016-01-01

    Montepulciano d'Abruzzo is a native grape variety of Vitis vinifera L., grown in central Italy and used for production of high quality red wines. Limited studies have been carried out to improve its enological characteristics through the use of indigenous strains of Saccharomyces cerevisiae. The main objective of the present work was to test two indigenous strains of S. cerevisiae (SRS1, RT73), a strain of Starmerella bacillaris (STS12), one of Hanseniaspora uvarum (STS45) and a co-culture of S. cerevisiae (SRS1) and S. bacillaris (STS12), in an experimental cellar to evaluate their role in the sensory characteristic of Montepulciano d'Abruzzo wine. A S. cerevisiae commercial strain was used. Fermentations were conducted under routine Montepulciano d'Abruzzo wine production, in which the main variables were the yeast strains used for fermentation. Basic winemaking parameters, some key chemical analysis and aroma compounds were considered. S. cerevisiae strain dynamics during fermentation were determined by molecular methods. The musts inoculated with the co-culture were characterized by a faster fermentation start and a higher content of glycerol after 3 days of fermentation, as well as the musts added with strains S. bacillaris (STS12) and H. uvarum (STS45). At the end of fermentation the parameters studied were quite similar in all the wines. Total biogenic amines (BA) content of all the wines was low. Ethanolamine was the predominant BA, with a concentration ranging from 21 to 24 mg/l. Wines were characterized by esters and alcohols. In particular, 2-phenylethanol, 3-methylbut-1-yl methanoate, and ethyl ethanoate were the major aroma volatile compounds in all wines. Statistical analysis highlighted the different role played by aroma compounds in the differentiation of wines, even if it was impossible to select a single class of compounds as the most important for a specific yeast. The present study represents a further step toward the use of tailored

  9. Enhancing the Bioconversion of Winery and Olive Mill Waste Mixtures into Lignocellulolytic Enzymes and Animal Feed by Aspergillus uvarum Using a Packed-Bed Bioreactor.

    PubMed

    Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2015-10-28

    Wineries and olive oil industries are dominant agro-industrial activities in southern European regions. Olive pomace, exhausted grape marc, and vine shoot trimmings are lignocellulosic residues generated by these industries, which could be valued biotechnologically. In the present work these residues were used as substrate to produce cellulases and xylanases through solid-state fermentation using Aspergillus uvarum MUM 08.01. For that, two factorial designs (3(2)) were first planned to optimize substrate composition, temperature, and initial moisture level. Subsequently, the kinectics of cellulolytic enzyme production, fungal growth, and fermented solid were characterized. Finally, the process was performed in a packed-bed bioreactor. The results showed that cellulase activity improved with the optimization processes, reaching 33.56 U/g, and with the packed-bed bioreactor aeration of 0.2 L/min, reaching 38.51 U/g. The composition of fermented solids indicated their potential use for animal feed because cellulose, hemicellulose, lignin, and phenolic compounds were partially degraded 28.08, 10.78, 13.3, and 28.32%, respectively, crude protein was increased from 8.47 to 17.08%, and the mineral contents meet the requirements of main livestock.

  10. Screening of β-Glucosidase and β-Xylosidase Activities in Four Non-Saccharomyces Yeast Isolates.

    PubMed

    López, María Consuelo; Mateo, José Juan; Maicas, Sergi

    2015-08-01

    The finding of new isolates of non-Saccharomyces yeasts, showing beneficial enzymes (such as β-glucosidase and β-xylosidase), can contribute to the production of quality wines. In a selection and characterization program, we have studied 114 isolates of non-Saccharomyces yeasts. Four isolates were selected because of their both high β-glucosidase and β-xylosidase activities. The ribosomal D1/D2 regions were sequenced to identify them as Pichia membranifaciens Pm7, Hanseniaspora vineae Hv3, H. uvarum Hu8, and Wickerhamomyces anomalus Wa1. The induction process was optimized to be carried on YNB-medium supplemented with 4% xylan, inoculated with 106 cfu/mL and incubated 48 h at 28 °C without agitation. Most of the strains had a pH optimum of 5.0 to 6.0 for both the β-glucosidase and β-xylosidase activities. The effect of sugars was different for each isolate and activity. Each isolate showed a characteristic set of inhibition, enhancement or null effect for β-glucosidase and β-xylosidase. The volatile compounds liberated from wine incubated with each of the 4 yeasts were also studied, showing an overall terpene increase (1.1 to 1.3-folds) when wines were treated with non-Saccharomyces isolates. In detail, terpineol, 4-vinyl-phenol and 2-methoxy-4-vinylphenol increased after the addition of Hanseniaspora isolates. Wines treated with Hanseniaspora, Wickerhamomyces, or Pichia produced more 2-phenyl ethanol than those inoculated with other yeasts.

  11. APJ1 and GRE3 homologs work in concert to allow growth in xylose in a natural Saccharomyces sensu stricto hybrid yeast.

    PubMed

    Schwartz, Katja; Wenger, Jared W; Dunn, Barbara; Sherlock, Gavin

    2012-06-01

    Creating Saccharomyces yeasts capable of efficient fermentation of pentoses such as xylose remains a key challenge in the production of ethanol from lignocellulosic biomass. Metabolic engineering of industrial Saccharomyces cerevisiae strains has yielded xylose-fermenting strains, but these strains have not yet achieved industrial viability due largely to xylose fermentation being prohibitively slower than that of glucose. Recently, it has been shown that naturally occurring xylose-utilizing Saccharomyces species exist. Uncovering the genetic architecture of such strains will shed further light on xylose metabolism, suggesting additional engineering approaches or possibly even enabling the development of xylose-fermenting yeasts that are not genetically modified. We previously identified a hybrid yeast strain, the genome of which is largely Saccharomyces uvarum, which has the ability to grow on xylose as the sole carbon source. To circumvent the sterility of this hybrid strain, we developed a novel method to genetically characterize its xylose-utilization phenotype, using a tetraploid intermediate, followed by bulk segregant analysis in conjunction with high-throughput sequencing. We found that this strain's growth in xylose is governed by at least two genetic loci, within which we identified the responsible genes: one locus contains a known xylose-pathway gene, a novel homolog of the aldo-keto reductase gene GRE3, while a second locus contains a homolog of APJ1, which encodes a putative chaperone not previously connected to xylose metabolism. Our work demonstrates that the power of sequencing combined with bulk segregant analysis can also be applied to a nongenetically tractable hybrid strain that contains a complex, polygenic trait, and identifies new avenues for metabolic engineering as well as for construction of nongenetically modified xylose-fermenting strains.

  12. Prothrombin time (PT)

    MedlinePlus

    PT; Pro-time; Anticoagulant-prothrombin time; Clotting time: protime; INR; International normalized ratio ... PT is measured in seconds. Most of the time, results are given as what is called INR ( ...

  13. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments.

    PubMed

    Dunn, Barbara; Richter, Chandra; Kvitek, Daniel J; Pugh, Tom; Sherlock, Gavin

    2012-05-01

    Although the budding yeast Saccharomyces cerevisiae is arguably one of the most well-studied organisms on earth, the genome-wide variation within this species--i.e., its "pan-genome"--has been less explored. We created a multispecies microarray platform containing probes covering the genomes of several Saccharomyces species: S. cerevisiae, including regions not found in the standard laboratory S288c strain, as well as the mitochondrial and 2-μm circle genomes-plus S. paradoxus, S. mikatae, S. kudriavzevii, S. uvarum, S. kluyveri, and S. castellii. We performed array-Comparative Genomic Hybridization (aCGH) on 83 different S. cerevisiae strains collected across a wide range of habitats; of these, 69 were commercial wine strains, while the remaining 14 were from a diverse set of other industrial and natural environments. We observed interspecific hybridization events, introgression events, and pervasive copy number variation (CNV) in all but a few of the strains. These CNVs were distributed throughout the strains such that they did not produce any clear phylogeny, suggesting extensive mating in both industrial and wild strains. To validate our results and to determine whether apparently similar introgressions and CNVs were identical by descent or recurrent, we also performed whole-genome sequencing on nine of these strains. These data may help pinpoint genomic regions involved in adaptation to different industrial milieus, as well as shed light on the course of domestication of S. cerevisiae.

  14. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments

    PubMed Central

    Dunn, Barbara; Richter, Chandra; Kvitek, Daniel J.; Pugh, Tom; Sherlock, Gavin

    2012-01-01

    Although the budding yeast Saccharomyces cerevisiae is arguably one of the most well-studied organisms on earth, the genome-wide variation within this species—i.e., its “pan-genome”—has been less explored. We created a multispecies microarray platform containing probes covering the genomes of several Saccharomyces species: S. cerevisiae, including regions not found in the standard laboratory S288c strain, as well as the mitochondrial and 2-μm circle genomes–plus S. paradoxus, S. mikatae, S. kudriavzevii, S. uvarum, S. kluyveri, and S. castellii. We performed array-Comparative Genomic Hybridization (aCGH) on 83 different S. cerevisiae strains collected across a wide range of habitats; of these, 69 were commercial wine strains, while the remaining 14 were from a diverse set of other industrial and natural environments. We observed interspecific hybridization events, introgression events, and pervasive copy number variation (CNV) in all but a few of the strains. These CNVs were distributed throughout the strains such that they did not produce any clear phylogeny, suggesting extensive mating in both industrial and wild strains. To validate our results and to determine whether apparently similar introgressions and CNVs were identical by descent or recurrent, we also performed whole-genome sequencing on nine of these strains. These data may help pinpoint genomic regions involved in adaptation to different industrial milieus, as well as shed light on the course of domestication of S. cerevisiae. PMID:22369888

  15. Unique Pt5 metallacycle: [Pt(II)Cl(pyrrolidinedithiocarbamate)]5.

    PubMed

    Montagner, Diego; Sanz Miguel, Pablo J

    2011-11-01

    The neutral complex [PtCl(PyDT)](5) (PyDT = (CH(2))(4)NCS(2)(-)) represents the first example of a Pt(5) metallacycle. This unique architecture based on chiral S-bridged Pt(II) monomers was prepared by thermal degradation of the reaction product of PtCl(2) and a pyrrolidinedithioester. PMID:21901224

  16. PT-symmetric strings

    SciTech Connect

    Amore, Paolo; Fernández, Francisco M.; Garcia, Javier; Gutierrez, German

    2014-04-15

    We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.

  17. PT quantum mechanics.

    PubMed

    Bender, Carl M; DeKieviet, Maarten; Klevansky, S P

    2013-04-28

    PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics.

  18. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.

    PubMed

    Comitini, Francesca; Gobbi, Mirko; Domizio, Paola; Romani, Cristina; Lencioni, Livio; Mannazzu, Ilaria; Ciani, Maurizio

    2011-08-01

    Non-Saccharomyces yeasts are metabolically active during spontaneous and inoculated must fermentations, and by producing a plethora of by-products, they can contribute to the definition of the wine aroma. Thus, use of Saccharomyces and non-Saccharomyces yeasts as mixed starter cultures for inoculation of wine fermentations is of increasing interest for quality enhancement and improved complexity of wines. We initially characterized 34 non-Saccharomyces yeasts of the genera Candida, Lachancea (Kluyveromyces), Metschnikowia and Torulaspora, and evaluated their enological potential. This confirmed that non-Saccharomyces yeasts from wine-related environments represent a rich sink of unexplored biodiversity for the winemaking industry. From these, we selected four non-Saccharomyces yeasts to combine with starter cultures of Saccharomyces cerevisiae in mixed fermentation trials. The kinetics of growth and fermentation, and the analytical profiles of the wines produced indicate that these non-Saccharomyces strains can be used with S. cerevisiae starter cultures to increase polysaccharide, glycerol and volatile compound production, to reduce volatile acidity, and to increase or reduce the total acidity of the final wines, depending on yeast species and inoculum ratio used. The overall effects of the non-Saccharomyces yeasts on fermentation and wine quality were strictly dependent on the Saccharomyces/non-Saccharomyces inoculum ratio that mimicked the differences of fermentation conditions (natural or simultaneous inoculated fermentation).

  19. PT-symmetric kinks

    SciTech Connect

    Souza Dutra, A. de; Santos, V. G. C. S. dos; Amaro de Faria, A. C. Jr.

    2007-06-15

    Some kinks for non-Hermitian quantum field theories in 1+1 dimensions are constructed. A class of models where the soliton energies are stable and real are found. Although these kinks are not Hermitian, they are symmetric under PT transformations.

  20. Pt, Co-Pt and Fe-Pt alloy nanoclusters encapsulated in virus capsids

    NASA Astrophysics Data System (ADS)

    Okuda, M.; Eloi, J.-C.; Jones, S. E. Ward; Verwegen, M.; Cornelissen, J. J. L. M.; Schwarzacher, W.

    2016-03-01

    Nanostructured Pt-based alloys show great promise, not only for catalysis but also in medical and magnetic applications. To extend the properties of this class of materials, we have developed a means of synthesizing Pt and Pt-based alloy nanoclusters in the capsid of a virus. Pure Pt and Pt-alloy nanoclusters are formed through the chemical reduction of [PtCl4]- by NaBH4 with/without additional metal ions (Co or Fe). The opening and closing of the ion channels in the virus capsid were controlled by changing the pH and ionic strength of the solution. The size of the nanoclusters is limited to 18 nm by the internal diameter of the capsid. Their magnetic properties suggest potential applications in hyperthermia for the Co-Pt and Fe-Pt magnetic alloy nanoclusters. This study introduces a new way to fabricate size-restricted nanoclusters using virus capsid.

  1. Cadmium biosorption by Saccharomyces cerevisiae

    SciTech Connect

    Volesky, B.; May, H.; Holan, Z.R. )

    1993-04-01

    Cadmium uptake by nonliving and resting cells of Saccharomyces cerevisiae obtained from aerobic or anaerobic cultures from pure cadmium-bearing solutions was examined. The highest cadmium uptake exceeding 70 mg Cd/g was observed with aerobic baker's yeast biomass from the exponential growth phase. Nearly linear sorption isotherms featured by higher sorbing resting cells together with metal deposits localized exclusively in vacuoles indicate the possibility of a different metal-sequestering mechanism when compared to dry nonliving yeasts which did not usually accumulate more than 20 mg Cd/g. The uptake of cadmium was relatively fast, 75% of the sorption completed in less than 5 min.

  2. PT symmetry in optics

    NASA Astrophysics Data System (ADS)

    Christodoulides, Demetrios

    2015-03-01

    Interest in complex Hamiltonians has been rekindled after the realization that a wide class of non-Hermitian Hamiltonians can have entirely real spectra as long as they simultaneously respect parity and time reversal operators. In non-relativistic quantum mechanics, governed by the Schrödinger equation, a necessary but not sufficient condition for PT symmetry to hold is that the complex potential should involve real and imaginary parts which are even and odd functions of position respectively. As recently indicated, optics provides a fertile ground to observe and utilize notions of PT symmetry. In optics, the refractive index and gain/loss profiles play the role of the real and imaginary parts of the aforementioned complex potentials. As it has been demonstrated in several studies, PT-symmetric optical structures can exhibit peculiar properties that are otherwise unattainable in traditional Hermitian (conservative) optical settings. Among them, is the possibility for breaking this symmetry through an abrupt phase transition, band merging effects and unidirectional invisibility. Here we review recent developments in the field of -symmetric optics.

  3. Thermodynamic Modeling of the Pt-Te and Pt-Sb-Te Systems

    NASA Astrophysics Data System (ADS)

    Guo, Cuiping; Huang, Liang; Li, Changrong; Shang, Shunli; Du, Zhenmin

    2015-08-01

    The Pt-Te and the Pt-Sb-Te systems are modeled using the calculation of phase diagram (CALPHAD) technique. In the Pt-Te system, the liquid phase is modeled as (Pt, PtTe2, Te) using the associate model, and four intermediates, PtTe2, Pt2Te3, Pt3Te4 and PtTe, are treated as stoichiometric compounds and their enthalpies of formation are obtained by means of first-principles calculations. The solution phases, fcc(Pt) and hex(Te), are described as substitutional solutions. Combined with the thermodynamic models of the liquid phase in the Pt-Sb and Sb-Te systems in the literature, the liquid phase of the Pt-Sb-Te ternary system is modeled as (Pt, Sb, Te, Sb2Te3, PtTe2) also using the associate model. The compounds, PtTe2, Pt2Te3, Pt3Te4 and PtTe in the Pt-Te system and PtSb2, PtSb, Pt3Sb2 and Pt7Sb in the Pt-Sb system are treated as line compounds Pt m (Sb,Te) n in the Pt-Sb-Te system, and the compound Pt5Sb is treated as (Pt,Sb)5(Pt,Sb,Te). A set of self-consistent thermodynamic parameters is obtained. Using these thermodynamic parameters, the experimental Pt-Te phase diagram, the experimental heat capacities of PtTe and PtTe2, the enthalpies of formation from first-principles calculations for PtTe2, Pt2Te3, Pt3Te4, and PtTe, and the ternary isothermal sections at 873 K, 923 K, 1073 K and 1273 K are well reproduced.

  4. Glucose repression in Saccharomyces cerevisiae.

    PubMed

    Kayikci, Ömur; Nielsen, Jens

    2015-09-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression.

  5. Chronological aging in Saccharomyces cerevisiae.

    PubMed

    Longo, Valter D; Fabrizio, Paola

    2012-01-01

    The two paradigms to study aging in Saccharomyces cerevisiae are the chronological life span (CLS) and the replicative life span (RLS). The chronological life span is a measure of the mean and maximum survival time of non-dividing yeast populations while the replicative life span is based on the mean and maximum number of daughter cells generated by an individual mother cell before cell division stops irreversibly. Here we review the principal discoveries associated with yeast chronological aging and how they are contributing to the understanding of the aging process and of the molecular mechanisms that may lead to healthy aging in mammals. We will focus on the mechanisms of life span regulation by the Tor/Sch9 and the Ras/adenylate Ras/adenylate cyclase/PKA pathways with particular emphasis on those implicating age-dependent oxidative oxidative stress stress and DNA damage/repair.

  6. Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Ostergaard, Simon; Olsson, Lisbeth; Nielsen, Jens

    2000-01-01

    Comprehensive knowledge regarding Saccharomyces cerevisiae has accumulated over time, and today S. cerevisiae serves as a widley used biotechnological production organism as well as a eukaryotic model system. The high transformation efficiency, in addition to the availability of the complete yeast genome sequence, has facilitated genetic manipulation of this microorganism, and new approaches are constantly being taken to metabolicially engineer this organism in order to suit specific needs. In this paper, strategies and concepts for metabolic engineering are discussed and several examples based upon selected studies involving S. cerevisiae are reviewed. The many different studies of metabolic engineering using this organism illustrate all the categories of this multidisciplinary field: extension of substrate range, improvements of producitivity and yield, elimination of byproduct formation, improvement of process performance, improvements of cellular properties, and extension of product range including heterologous protein production. PMID:10704473

  7. Glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Kayikci, Ömur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  8. Growth of Pt Clusters from Mixture Film of Pt-C and Dynamics of Pt Clusters

    NASA Astrophysics Data System (ADS)

    Shintaku, Masayuki; Kumamoto, Akihito; Suzuki, Hitoshi; Kaito, Chihiro

    2007-06-01

    A complete mixture film of carbon and platinum produced by coevaporation in a vacuum was directly heated in a transmission electron microscope. It was found that the diffusion and crystal growth of Pt clusters in the mixture film take place at approximately 500 °C. Pt clusters with a size of 2-5 nm were connected with each other in a parallel orientation or twin-crystal configuration in the mixture film. The growth of onion-like carbon with a hole at the center also occurred. The grown Pt clusters with twin-crystal structures appeared on and in the carbon film. The diffusion of Pt atoms in carbon was discussed as the problem of elusion in fuel cells. Direct observation of the movement of Pt clusters on and in the carbon film was carried out. The movement difference of Pt clusters in and on carbon film has been directly presented.

  9. {PT}-symmetric optical superlattices

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano

    2014-04-01

    The spectral and localization properties of {PT}-symmetric optical superlattices, either infinitely extended or truncated at one side, are theoretically investigated, and the criteria that ensure a real energy spectrum are derived. The analysis is applied to the case of superlattices describing a complex ( {PT}-symmetric) extension of the Harper Hamiltonian in the rational case.

  10. Homogeneous Pt-bimetallic Electrocatalysts

    SciTech Connect

    Wang, Chao; Chi, Miaofang; More, Karren Leslie; Markovic, Nenad; Stamenkovic, Vojislav

    2011-01-01

    Alloying has shown enormous potential for tailoring the atomic and electronic structures, and improving the performance of catalytic materials. Systematic studies of alloy catalysts are, however, often compromised by inhomogeneous distribution of alloying components. Here we introduce a general approach for the synthesis of monodispersed and highly homogeneous Pt-bimetallic alloy nanocatalysts. Pt{sub 3}M (where M = Fe, Ni, or Co) nanoparticles were prepared by an organic solvothermal method and then supported on high surface area carbon. These catalysts attained a homogeneous distribution of elements, as demonstrated by atomic-scale elemental analysis using scanning transmission electron microscopy. They also exhibited high catalytic activities for the oxygen reduction reaction (ORR), with improvement factors of 2-3 versus conventional Pt/carbon catalysts. The measured ORR catalytic activities for Pt{sub 3}M nanocatalysts validated the volcano curve established on extended surfaces, with Pt{sub 3}Co being the most active alloy.

  11. PET genes of Saccharomyces cerevisiae.

    PubMed Central

    Tzagoloff, A; Dieckmann, C L

    1990-01-01

    We describe a collection of nuclear respiratory-defective mutants (pet mutants) of Saccharomyces cerevisiae consisting of 215 complementation groups. This set of mutants probably represents a substantial fraction of the total genetic information of the nucleus required for the maintenance of functional mitochondria in S. cerevisiae. The biochemical lesions of mutants in approximately 50 complementation groups have been related to single enzymes or biosynthetic pathways, and the corresponding wild-type genes have been cloned and their structures have been determined. The genes defined by an additional 20 complementation groups were identified by allelism tests with mutants characterized in other laboratories. Mutants representative of the remaining complementation groups have been assigned to one of the following five phenotypic classes: (i) deficiency in cytochrome oxidase, (ii) deficiency in coenzyme QH2-cytochrome c reductase, (iii) deficiency in mitochondrial ATPase, (iv) absence of mitochondrial protein synthesis, and (v) normal composition of respiratory-chain complexes and of oligomycin-sensitive ATPase. In addition to the genes identified through biochemical and genetic analyses of the pet mutants, we have cataloged PET genes not matched to complementation groups in the mutant collection and other genes whose products function in the mitochondria but are not necessary for respiration. Together, this information provides an up-to-date list of the known genes coding for mitochondrial constituents and for proteins whose expression is vital for the respiratory competence of S. cerevisiae. PMID:2215420

  12. Lifetime measurements in 180Pt

    NASA Astrophysics Data System (ADS)

    Chen, Q. M.; Wu, X. G.; Chen, Y. S.; Li, C. B.; Gao, Z. C.; Li, G. S.; Chen, F. Q.; He, C. Y.; Zheng, Y.; Hu, S. P.; Zhong, J.; Wu, Y. H.; Li, H. W.; Luo, P. W.

    2016-04-01

    Lifetimes of the yrast states in 180Pt have been measured from 4+ to 8+ using the recoil distance Doppler-shift technique in the coincidence mode. These states were populated by the reaction 156Gd(28Si,4 n )180Pt at a beam energy of 144 MeV. The differential decay curve method was applied to determine the lifetimes from experimental coincidence data. The B (E 2 ) values extracted from lifetimes increase with increasing spin, implying rotor behavior, but do not show the typical shape coexistence where the B (E 2 ) values present a rapid increase at very low spins. Calculations based on the triaxial projected shell model were performed for the yrast states in 180Pt and the results of both energies and E 2 transition probabilities reproduce the experimental data very well. The result also shows that a better description of the yrast band in 180Pt requires consideration of the γ degree of freedom.

  13. Integrable discrete PT symmetric model.

    PubMed

    Ablowitz, Mark J; Musslimani, Ziad H

    2014-09-01

    An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique features such as power oscillations and singularity formation. The proposed model can be viewed as a discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.

  14. Fatal Saccharomyces Cerevisiae Aortic Graft Infection

    NASA Technical Reports Server (NTRS)

    Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua

    2002-01-01

    Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.

  15. Saccharomyces cerevisiae osteomyelitis in an immunocompetent baker.

    PubMed

    Seng, Piseth; Cerlier, Alexandre; Cassagne, Carole; Coulange, Mathieu; Legré, Regis; Stein, Andreas

    2016-01-01

    Invasive infection caused by Saccharomyces cerevisiae is rare. We report the first case of osteomyelitis caused by S. cerevisiae (baker's yeast) in a post-traumatic patient. The clinical outcome was favorable after surgical debridement, prolonged antifungal treatment and hyperbaric oxygen therapy. PMID:27347482

  16. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  17. PT quantum mechanics - Recent results

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.

    2012-09-01

    Most quantum physicists believe that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under matrix transposition and complex conjugation) to be sure that the energy eigenvalues are real and that time evolution is unitary. However, the non-Dirac-hermitian Hamiltonian H = p2+ix3 has a real positive discrete spectrum and generates unitary time evolution and defines a fully consistent and physical quantum theory. Evidently, Dirac Hermiticity is too restrictive. While H = p2+ix3 is not Dirac Hermitian, it is PT symmetric (invariant under combined space reflection P and time reversal T). Another PT-symmetric Hamiltonian whose energy levels are real, positive and discrete is H = p2-x4, which contains an upside-down potential. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics and quantum field theory are extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past two years some of these properties have been verified in laboratory experiments. Here, we first discuss PT-symmetric Hamiltonians at a simple intuitive level and explain why the energy levels of such Hamiltonians may be real, positive, and discrete. Second, we describe a recent experiment in which the PT phase transition was observed. Third, we briefly mention that PT-symmetric theories can be useful at a fundamental level. While the double-scaling limit of an O(N)-symmetric gφ4 quantum field theory appears to be inconsistent because the critical value of g is negative, this limit is in fact not inconsistent because the critical theory is PT symmetric.

  18. Pt···Pt vs Pt···S contacts between Pt-containing heterobimetallic lantern complexes.

    PubMed

    Baddour, Frederick G; Fiedler, Stephanie R; Shores, Matthew P; Bacon, Jeffrey W; Golen, James A; Rheingold, Arnold L; Doerrer, Linda H

    2013-12-01

    A trio of Pt-based heterobimetallic lantern complexes of the form [(py)PtM(SAc)4(py)] (M = Co, 1; Ni, 2; Zn, 3) with unusual octahedral coordination of Pt(II) was prepared from a reaction of [PtM(SAc)4] with excess pyridine. These dipyridine lantern complexes could be converted to monopyridine derivatives with gentle heat to give the series [PtM(SAc)4(py)] (M = Co, 4; Ni, 5; Zn, 6). An additional family of the form [PtM(SAc)4(pyNH2)] (M = Co, 7; Ni, 8; Zn, 9) was synthesized from reaction of [PtM(SAc)4(OH2)] or [PtM(SAc)4] with 4-aminopyridine. Dimethylsulfoxide and N,N-dimethylformamide were also determined to react with [PtM(SAc)4] (M = Co, Ni), respectively, to give [PtCo(SAc)4(DMSO)](DMSO), 10, and [PtNi(SAc)4(DMF)](DMF), 11. Structural and magnetic data for these compounds and those for two other previously published families, [PtM(tba)4(OH2)] and [PtM(SAc)4(L)], L = OH2, pyNO2, are used to divide the structures among three distinct categories based on Pt···Pt and Pt···S distances. In general, the weaker donors H2O and pyNO2 seem to favor metallophilicity and antiferromagnetic coupling between 3d metal centers. When Pt···S interactions are favored over Pt···Pt ones, no coupling is observed and the pKa of the pyridine donor correlates with the interlantern S···S distance. UV-vis-NIR electronic and (1)H NMR spectra provide complementary characterization as well.

  19. Saccharomyces Fungemia Associated with Esophageal Disease Identified by D1/D2 Ribosomal RNA Gene Sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disseminated Saccharomyces infection has been reported in immunosuppressed patients treated with probiotics, but disseminated Saccharomyces cerevisiae infection associated with underlying esophageal disease is not previously described. Saccharomyces cerevisiae (which occasionally colonizes the gast...

  20. Characterization of NiPt, FePt, and NiFePt nanoparticles

    NASA Astrophysics Data System (ADS)

    Sutherland, Greg; Wood, Darren; Jackson, Amy; Warren, Andrew; Coffey, Kevin; Vanfleet, Richard

    2012-10-01

    Many metal alloys can form in chemically ordered structures, often resulting in significant changes in properties. The ordered structures are preferred at low temperatures and will go through an order-disorder phase transition at a critical temperature. The formation and stability of these ordered structures in alloy nanoparticles is not well understood but may give insight into the role size plays in phase transitions. To this end we are studying FePt, NiPt, and FeNiPt alloy nanoparticles. We will focus this presentation on the characterization of these nanoparticles in a Transmission Electron Microscope (TEM) for composition, size, and structure. These nanoparticles are made by co-sputtering the constituents and annealing at different temperatures in various gas mixtures. The nanoparticle samples are prepared for TEM viewing by wedge polishing. We find FePt to be ``well behaved'' meaning this alloy forms particles, retains the as deposited composition, and chemically orders as expected. However, the order-disorder temperature is too high for the desired further studies. NiPt, which has a lower order-disorder temperature, is not ``well behaved'' in that the nanoparticle compositions are not good matches to the as deposited conditions and no chemical ordering has been achieved even under conditions that should be sufficient based on bulk processing. We will discuss these results and possible implications.

  1. Genomic Insights into the Saccharomyces sensu stricto Complex

    PubMed Central

    Borneman, Anthony R.; Pretorius, Isak S.

    2015-01-01

    The Saccharomyces sensu stricto group encompasses species ranging from the industrially ubiquitous yeast Saccharomyces cerevisiae to those that are confined to geographically limited environmental niches. The wealth of genomic data that are now available for the Saccharomyces genus is providing unprecedented insights into the genomic processes that can drive speciation and evolution, both in the natural environment and in response to human-driven selective forces during the historical “domestication” of these yeasts for baking, brewing, and winemaking. PMID:25657346

  2. The Saccharomyces Genome Database Variant Viewer

    PubMed Central

    Sheppard, Travis K.; Hitz, Benjamin C.; Engel, Stacia R.; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C.; Dalusag, Kyla S.; Demeter, Janos; Hellerstedt, Sage T.; Karra, Kalpana; Nash, Robert S.; Paskov, Kelley M.; Skrzypek, Marek S.; Weng, Shuai; Wong, Edith D.; Cherry, J. Michael

    2016-01-01

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. PMID:26578556

  3. PT-symmetric quantum theory

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.

    2015-07-01

    The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.

  4. PT3. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Thompson, Mary, Ed.; Price, Jerry, Ed.

    This document contains 142 papers on PT3 (Preparing Tomorrow's Teachers to use Technology) from the SITE (Society for Information Technology & Teacher Education) 2002 conference. Topics covered include: a technology in urban education summit; student professional development; meeting NCATE (National Council of Teachers of English) standards;…

  5. Surface termination of CePt5/Pt (111 ): The key to chemical inertness

    NASA Astrophysics Data System (ADS)

    Praetorius, C.; Zinner, M.; Held, G.; Fauth, K.

    2015-11-01

    The surface termination of CePt5/Pt (111 ) is determined experimentally by LEED-IV. In accordance with recent theoretical predictions, a dense Pt terminated surface is being found. Whereas the CePt5 volume lattice comprises Pt kagome layers, additional Pt atoms occupy the associated hole positions at the surface. This finding provides a natural explanation for the remarkable inertness of the CePt5 intermetallic. Implications of the structural relaxations determined by LEED-IV analysis are discussed with regard to observations by scanning tunneling microscopy and electron spectroscopies.

  6. Effect of Pt layers on chemical ordering in FePt thin films

    NASA Astrophysics Data System (ADS)

    Gupta, R.; Medwal, R.; Sharma, P.; Mahapatro, A. K.; Annapoorni, S.

    2013-12-01

    The tunability in the structural and magnetic phases present in RF-sputtered Fe3Pt thin films over Si (1 0 0) substrates have been studied by introducing thin films of platinum (Pt) as an underlayer and/or overlayers. Annealing of the Fe3Pt thin films with Pt underlayers (Pt/Fe3Pt) structures at 600 °C for 1 h, indicates well organized nanostructured grains as imaged through an atomic force microscope (AFM). The evolution of superstructure peaks as well as the preferred orientation along (0 0 1) plane observed in the X-ray diffraction (XRD) study is well supported by the magnetic measurements. These annealed Pt/Fe3Pt structures show high magnetocrystalline anisotropy and the presence of hard phase with a coercivity of 8.5 kOe. Here, the annealing process allows the adjacent Pt atoms to diffuse into the Fe3Pt unit cells and triggers the structural transformation to chemically ordered L10 phase. An additional L12 phase is observed in the annealed Fe3Pt thin films with Pt overlayer and underlayer (Pt/Fe3Pt/Pt) tri-layered structures.

  7. The ecology and evolution of non-domesticated Saccharomyces species

    PubMed Central

    Boynton, Primrose J; Greig, Duncan

    2014-01-01

    Yeast researchers need model systems for ecology and evolution, but the model yeast Saccharomyces cerevisiae is not ideal because its evolution has been affected by domestication. Instead, ecologists and evolutionary biologists are focusing on close relatives of S. cerevisiae, the seven species in the genus Saccharomyces. The best-studied Saccharomyces yeast, after S. cerevisiae, is S. paradoxus, an oak tree resident throughout the northern hemisphere. In addition, several more members of the genus Saccharomyces have recently been discovered. Some Saccharomyces species are only found in nature, while others include both wild and domesticated strains. Comparisons between domesticated and wild yeasts have pinpointed hybridization, introgression and high phenotypic diversity as signatures of domestication. But studies of wild Saccharomyces natural history, biogeography and ecology are only beginning. Much remains to be understood about wild yeasts' ecological interactions and life cycles in nature. We encourage researchers to continue to investigate Saccharomyces yeasts in nature, both to place S. cerevisiae biology into its ecological context and to develop the genus Saccharomyces as a model clade for ecology and evolution. © 2014 The Authors. Yeast published by John Wiley & Sons Ltd. PMID:25242436

  8. Functional relationships between the Saccharomyces cerevisiae cis-prenyltransferases required for dolichol biosynthesis.

    PubMed

    Grabińska, Kariona; Sosińska, Grazyna; Orłowski, Jacek; Swiezewska, Ewa; Berges, Thierry; Karst, Francis; Palamarczyk, Grazyna

    2005-01-01

    In the yeast Saccharomyces cerevisiae the RER2 and SRT1 genes encode Rer2 and Srt1 proteins with cis-prenyltransferase (cis-PT-ase) activity. Both cis-PT-ases utilize farnesyl diphosphate (FPP) as a starter for polyprenyl diphosphate (dolichol backbone) formation. The products of the Rer2 and Srt1 proteins consist of 14-17 and 18-23 isoprene units, respectively. In this work we demonstrate that deletion or overexpression of SRT1 up-regulates the activity of Rer2p and dolichol content. However, upon overexpression of SRT1, preferential synthesis of longer-chain dolichols and a decrease in the amount of the shorter species are observed. Furthermore, overexpression of the ERG20 gene (encoding farnesyl diphosphate synthase, Erg20p) induces transcription of SRT1 mRNA and increases the levels of mRNA for RER2 and DPM1 (dolichyl phosphate mannose synthase, Dpm1p). Subsequently the enzymatic activity of Rer2p and dolichol content are also increased. However, the amount of Dpm1p or its enzymatic activity remain unchanged.

  9. PT AND PT/NI "NEEDLE" ELETROCATALYSTS ON CARBON NANOTUBES WITH HIGH ACTIVITY FOR THE ORR

    SciTech Connect

    Colon-Mercado, H.

    2011-11-10

    Platinum and platinum/nickel alloy electrocatalysts supported on graphitized (gCNT) or nitrogen doped carbon nanotubes (nCNT) are prepared and characterized. Pt deposition onto carbon nanotubes results in Pt 'needle' formations that are 3.5 nm in diameter and {approx}100 nm in length. Subsequent Ni deposition and heat treatment results in PtNi 'needles' with an increased diameter. All Pt and Pt/Ni materials were tested as electrocatalysts for the oxygen reduction reaction (ORR). The Pt and Pt/Ni catalysts showed excellent performance for the ORR, with the heat treated PtNi/gCNT (1.06 mA/cm{sup 2}) and PtNi/nCNT (0.664 mA/cm{sup 2}) showing the highest activity.

  10. Assessing chronological aging in Saccharomyces cerevisiae.

    PubMed

    Hu, Jia; Wei, Min; Mirisola, Mario G; Longo, Valter D

    2013-01-01

    Saccharomyces cerevisiae is one of the most studied model organisms for the identification of genes and mechanisms that affect aging. The chronological lifespan (CLS) assay, which monitors the survival of a non-dividing population, is one of the two methods to study aging in yeast. To eliminate potential artifacts and identify genes and signaling pathways that may also affect aging in higher eukaryotes, it is important to determine CLS by multiple methods. Here, we describe these methods as well as the assays to study macromolecular damage during aging in yeast, with a focus on genomic instability.

  11. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae.

    PubMed

    Korbekandi, Hassan; Mohseni, Soudabeh; Mardani Jouneghani, Rasoul; Pourhossein, Meraj; Iravani, Siavash

    2016-01-01

    The objectives of this study were the biosynthesis of silver nanoparticles (NPs) by biotransformations using Saccharomyces cerevisiae and analysis of the sizes and shapes of the NPs produced. Dried and freshly cultured S. cerevisiae were used as the biocatalyst. Dried yeast synthesized few NPs, but freshly cultured yeast produced a large amount of them. Silver NPs were spherical, 2-20 nm in diameter, and the NPs with the size of 5.4 nm were the most frequent ones. NPs were seen inside the cells, within the cell membrane, attached to the cell membrane during the exocytosis, and outside of the cells.

  12. Components of microtubular structures in Saccharomyces cerevisiae.

    PubMed Central

    Pillus, L; Solomon, F

    1986-01-01

    Most studies of cytoskeletal organelles have concentrated on molecular analyses of abundant and biochemically accessible structures. In many of the classical cases, however, the nature of the system chosen has precluded a concurrent genetic analysis. The mitotic spindle of the yeast Saccharomyces cerevisiae is one example of an organelle that can be studied by both classical and molecular genetics. We show here that this microtubule structure also can be examined biochemically. The spindle can be isolated by selective extractions of yeast cells by using adaptations of methods successfully applied to animal cells. In this way, microtubule-associated proteins of the yeast spindle are identified. Images PMID:3517870

  13. The Role of Pt Complex on the Synthesis of FePt by Polyol Process

    SciTech Connect

    Aizawa, S.; Tohji, K.; Jeyadevan, B.

    2008-02-25

    Target materials in this experiment were FePt alloy nanoparticles with face-centered tetragonal structure, narrow size distribution, and the size of 6-8 nm. This type of materials was expected to have high recording-density of 1 Tbit/inch{sup 2} with high magnetic anisotropy. In this study, a detailed investigation was carried out to understand the reduction characteristics of Pt complexes, and FePt alloy nanoparticles with diameters larger than 6 nm was try to synthesize. For the synthesis of Pt nanoparticles by using polyol process, three kinds of Pt complexes, namely, H{sub 2}PtCl{sub 6}, Pt(EDTA), and Pt(acac){sub 2} was used. The size of Pt metal nanoparticles was only few nm in the case of single Pt complex, while it was increased to 7-10 nm in the case of mixed Pt complex and adjusting the reaction temperature increasing ratio. FePt alloy nanoparticles with the diameter of 7-8 nm, distorted shape, and narrow size distribution were successfully synthesized. However, composition ratio of the particle was Fe{sub 12-21}Pt{sub 79-88}, nevertheless the ratio of a Fe:Pt in the original solution was 2:1.

  14. Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Whitacre, Jay F. (Inventor)

    2010-01-01

    A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.

  15. Direct Determination of the Ionization Energies of PtC, PtO, and PtO2 with VUVRadiation

    SciTech Connect

    Citir, Murat; Metz, Ricardo B.; Belau, Leonid; Ahmed, Musahid

    2008-07-21

    Photoionization efficiency curves were measured for gas-phase PtC, PtO, and PtO2 using tunable vacuum ultraviolet (VUV) radiation at the Advanced Light Source. The molecules were prepared by laser ablation of a platinum tube, followed by reaction with CH4 or N2O and supersonic expansion. These measurements providethe first directly measured ionization energy for PtC, IE(PtC) = 9.45 +- 0.05 eV. The direct measurement also gives greatly improved ionization energies for the platinum oxides, IE(PtO) = 10.0 +- 0.1 eV and IE(PtO2) = 11.35 +- 0.05 eV. The ionization energy connects the dissociation energies of the neutral and cation, leading to greatly improved 0 K bond dissociation energies for the neutrals: D0(Pt-C) = 5.95 +- 0.07 eV, D0(Pt-O)= 4.30 +- 0.12 eV, and D0(OPt-O) = 4.41 +- 0.13 eV, as well as enthalpies of formation for the gas-phase molecules Delta H0 f,0(PtC(g)) = 701 +- 7 kJ/mol, Delta H0f,0(PtO(g)) = 396 +- 12 kJ/mol, and Delta H0f,0(PtO2(g)) = 218 +- 11 kJ/mol. Much of the error in previous Knudsen cell measurements of platinum oxide bond dissociation energies is due to the use of thermodynamic second law extrapolations. Third law values calculated using statistical mechanical thermodynamic functions are in much better agreement with values obtained from ionization energies and ion energetics. These experiments demonstrate that laser ablation production with direct VUV ionization measurements is a versatile tool to measure ionization energies and bond dissociation energies for catalytically interesting species such as metal oxides and carbides.

  16. Metabolic Engineering of Probiotic Saccharomyces boulardii

    PubMed Central

    Liu, Jing-Jing; Kong, In Iok; Zhang, Guo-Chang; Jayakody, Lahiru N.; Kim, Heejin; Xia, Peng-Fei; Kwak, Suryang; Sung, Bong Hyun; Sohn, Jung-Hoon; Walukiewicz, Hanna E.; Rao, Christopher V.

    2016-01-01

    Saccharomyces boulardii is a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae. Therefore, S. boulardii is an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2, ura3, his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools for S. cerevisiae. We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome of S. boulardii. We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii. Our results suggest that more sophisticated genetic perturbations to improve S. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineered S. boulardii. PMID:26850302

  17. Fermentation studies using Saccharomyces diastaticus yeast strains

    SciTech Connect

    Erratt, J.A.; Stewart, G.G.

    1981-01-01

    The yeast species, Saccharomyces diastaticus, has the ability to ferment starch and dextrin, because of the extracellular enzyme, glucoamylase, which hydrolyzes the starch/dextrin to glucose. A number of nonallelic genes--DEX 1, DEX 2, and dextrinase B which is allelic to STA 3--have been isolated, which impart to the yeast the ability to ferment dextrin. Various diploid yeast strains were constructed, each being either heterozygous or homozygous for the individual dextrinase genes. Using 12 (sup 0) plato hopped wort (30% corn adjunct) under agitated conditions, the fermentation rates of the various diploid yeast strains were monitored. A gene-dosage effect was exhibited by yeast strains containing DEX 1 or DEX 2, however, not with yeast strains containing dextrinase B (STA 3). The fermentation and growth rates and extents were determined under static conditions at 14.4 C and 21 C. With all yeast strains containing the dextrinase genes, both fermentation and growth were increased at the higher incubation temperature. Using 30-liter fermentors, beer was produced with the various yeast strains containing the dextrinase genes and the physical and organoleptic characteristics of the products were determined. The concentration of glucose in the beer was found to increase during a 3-mo storage period at 21 C, indicating that the glucoamylase from Saccharomyces diastaticus is not inactivated by pasteurization. (Refs. 36).

  18. Guiding SPPs with PT-symmetry

    PubMed Central

    Yang, Fan; Lei Mei, Zhong

    2015-01-01

    The concept of parity-time (PT) symmetry in SPPs is proposed and confirmed for the first time in this work. By introducing periodic modulation of the effective refractive index in SPP system, the asymmetric propagation is theoretically predicted and numerically demonstrated. After validation of this concept, we apply it in two applications: PT-waveguide and PT-cloak. Both two applications further illustrate the wide applicability of this concept in SPP system. PMID:26446520

  19. High-performance core-shell PdPt@Pt/C catalysts via decorating PdPt alloy cores with Pt

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Ni; Liao, Shi-Jun; Liang, Zhen-Xing; Yang, Li-Jun; Wang, Rong-Fang

    A core-shell structured low-Pt catalyst, PdPt@Pt/C, with high performance towards both methanol anodic oxidation and oxygen cathodic reduction, as well as in a single hydrogen/air fuel cell, is prepared by a novel two-step colloidal approach. For the anodic oxidation of methanol, the catalyst shows three times higher activity than commercial Tanaka 50 wt% Pt/C catalyst; furthermore, the ratio of forward current I f to backward current I b is high up to 1.04, whereas for general platinum catalysts the ratio is only ca. 0.70, indicating that this PdPt@Pt/C catalyst has high activity towards methanol anodic oxidation and good tolerance to the intermediates of methanol oxidation. The catalyst is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The core-shell structure of the catalyst is revealed by XRD and TEM, and is also supported by underpotential deposition of hydrogen (UPDH). The high performance of the PdPt@Pt/C catalyst may make it a promising and competitive low-Pt catalyst for hydrogen fueled polymer electrolyte membrane fuel cell (PEMFC) or direct methanol fuel cell (DMFC) applications.

  20. Inferring ethanol tolerance of Saccharomyces and non-Saccharomyces yeasts by progressive inactivation.

    PubMed

    Pina, Cristina; Couto, José António; António, José; Hogg, Tim

    2004-10-01

    The kinetics of cell inactivation in the presence of ethanol at 20, 22.5% and 25% (v/v), was measured by progressive sampling and viable counting, and used as an inference of the ethanol resistance status of five non-Saccharomyces strains and one strain of Saccharomyces cerevisiae. The capacity of standard inocula of the same strains to establish growth at increasing initial ethanol concentrations was employed as a comparison. The effect of various different pre-culture conditions on the ethanol resistance of the 6 strains was analysed by the cell inactivation method and by the cell growth method. Exposing cells to 25% (v/v) ethanol for 4 min enabled the differentiation of the yeasts in terms of their resistance to ethanol. The results suggest that the two methods are generally concordant and that the cell inactivation method can, thus, be used to infer ethanol resistance of yeast strains. PMID:15604791

  1. Polyol-synthesized PtRu/C and PtRu black for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Guo, Junsong; Sun, Gongquan; Shiguo, Sun; Shiyou, Yan; Weiqian, Yang; Jing, Qi; Yushan, Yan; Qin, Xin

    PtRu/C and PtRu black catalysts with nominal Pt:Ru atomic ratio of 1:1 are prepared by a modified polyol process (co-reduction of metal precursor salts) as anode catalysts for direct methanol fuel cells (DMFCs). Without the carbon support, PtRu nanoparticles tend to agglomerate, while the PtRu nanoparticles in PtRu/C have a good dispersion as shown by TEM. Both PtRu black and PtRu/C have the almost same alloy degree indicated by XRD, but PtRu supported on carbon could improve the influence of Ru on Pt toward methanol oxidization as shown by cyclic voltammetry. The microstructure of PtRu/C is further studied by high-resolution transmission electron microscopy (HRTEM), and the results indicate that the lattice constant of Pt in PtRu electrocatalyst has contracted despite a few parts of Pt not alloyed with Ru due to the lattice constant of Pt without contracting, which is further proved by the results of temperature-programmed reduction (TPR). Such parts of unalloyed Ru are further proved to have ability to reduce the methanol oxidation potential on Pt by comparing the catalytic behaviors of Pt/C and Pt + Ru/C prepared by mixing carbon with separately prepared Pt and Ru colloids. Moreover, the catalytic behaviors of PtRu black and PtRu/C are also compared with those of commercial ones.

  2. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus

    PubMed Central

    Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung

    2015-01-01

    Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains). PMID:26220934

  3. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus.

    PubMed

    Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung

    2015-07-27

    Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains).

  4. Roles for sphingolipids in Saccharomyces cerevisiae.

    PubMed

    Dickson, Robert C

    2010-01-01

    Studies using Saccharomyces cerevisiae, the common baker's or brewer's yeast, have progressed over the past twenty years from knowing which sphingolipids are present in cells and a basic outline of how they are made to a complete or nearly complete directory of the genes that catalyze their anabolism and catabolism. In addition, cellular processes that depend upon sphingolipids have been identified including protein trafficking/exocytosis, endocytosis and actin cytoskeleton dynamics, membrane microdomains, calcium signaling, regulation of transcription and translation, cell cycle control, stress resistance, nutrient uptake and aging. These will be summarized here along with new data not previously reviewed. Advances in our knowledge of sphingolipids and their roles in yeast are impressive but molecular mechanisms remain elusive and are a primary challenge for further progress in understanding the specific functions of sphingolipids. PMID:20919657

  5. Transcriptional Regulatory Networks in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Lee, Tong Ihn; Rinaldi, Nicola J.; Robert, François; Odom, Duncan T.; Bar-Joseph, Ziv; Gerber, Georg K.; Hannett, Nancy M.; Harbison, Christopher T.; Thompson, Craig M.; Simon, Itamar; Zeitlinger, Julia; Jennings, Ezra G.; Murray, Heather L.; Gordon, D. Benjamin; Ren, Bing; Wyrick, John J.; Tagne, Jean-Bosco; Volkert, Thomas L.; Fraenkel, Ernest; Gifford, David K.; Young, Richard A.

    2002-10-01

    We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.

  6. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.

  7. Social wasps are a Saccharomyces mating nest

    PubMed Central

    Stefanini, Irene; Dapporto, Leonardo; Berná, Luisa; Polsinelli, Mario; Turillazzi, Stefano; Cavalieri, Duccio

    2016-01-01

    The reproductive ecology of Saccharomyces cerevisiae is still largely unknown. Recent evidence of interspecific hybridization, high levels of strain heterozygosity, and prion transmission suggest that outbreeding occurs frequently in yeasts. Nevertheless, the place where yeasts mate and recombine in the wild has not been identified. We found that the intestine of social wasps hosts highly outbred S. cerevisiae strains as well as a rare S. cerevisiae×S. paradoxus hybrid. We show that the intestine of Polistes dominula social wasps favors the mating of S. cerevisiae strains among themselves and with S. paradoxus cells by providing a succession of environmental conditions prompting cell sporulation and spores germination. In addition, we prove that heterospecific mating is the only option for European S. paradoxus strains to survive in the gut. Taken together, these findings unveil the best hidden secret of yeast ecology, introducing the insect gut as an environmental alcove in which crosses occur, maintaining and generating the diversity of the ascomycetes. PMID:26787874

  8. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae.

    PubMed

    Samuelsson, T; Olsson, M

    1990-05-25

    A transfer RNA lacking modified nucleosides was produced by transcription in vitro of a cloned gene that encodes a Saccharomyces cerevisiae glycine tRNA. At least three different uridines (in nucleotide positions 13, 32, and 55) of this transcript tRNA are modified to pseudouridine by an extract of S. cerevisiae. Variants of the RNA substrate were also constructed that each had only one of these sites, thus allowing specific monitoring of pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis, enzymes producing this nucleoside were purified from an extract of S. cerevisiae. The activities corresponding to positions 13, 32, and 55 in the tRNA substrate could all be separated chromatographically, indicating that there is a separate enzyme for each of these sites. The enzyme specific for position 55 (denoted pseudouridine synthase 55) was purified approximately 4000-fold using a combination of DEAE-Sepharose, heparin-Sepharose, and hydroxylapatite.

  9. Social wasps are a Saccharomyces mating nest.

    PubMed

    Stefanini, Irene; Dapporto, Leonardo; Berná, Luisa; Polsinelli, Mario; Turillazzi, Stefano; Cavalieri, Duccio

    2016-02-23

    The reproductive ecology of Saccharomyces cerevisiae is still largely unknown. Recent evidence of interspecific hybridization, high levels of strain heterozygosity, and prion transmission suggest that outbreeding occurs frequently in yeasts. Nevertheless, the place where yeasts mate and recombine in the wild has not been identified. We found that the intestine of social wasps hosts highly outbred S. cerevisiae strains as well as a rare S. cerevisiae×S. paradoxus hybrid. We show that the intestine of Polistes dominula social wasps favors the mating of S. cerevisiae strains among themselves and with S. paradoxus cells by providing a succession of environmental conditions prompting cell sporulation and spores germination. In addition, we prove that heterospecific mating is the only option for European S. paradoxus strains to survive in the gut. Taken together, these findings unveil the best hidden secret of yeast ecology, introducing the insect gut as an environmental alcove in which crosses occur, maintaining and generating the diversity of the ascomycetes.

  10. The hexose transporter family of Saccharomyces cerevisiae.

    PubMed

    Kruckeberg, A L

    1996-11-01

    Saccharomyces cerevisiae accomplishes high rates of hexose transport. The kinetics of hexose transport are complex. The capacity and kinetic complexity of hexose transport in yeast are reflected in the large number of sugar transporter genes in the genome. Twenty hexose transporter genes exist in S. cerevisiae. Some of these have been found by genetic means; many have been discovered by the comprehensive sequencing of the yeast genome. This review codifies the nomenclature of the hexose transporter genes and describes the sequence homology and structural similarity of the proteins they encode. Information about the expression and function of the transporters is presented. Access to the sequences of the genes and proteins at three sequence databases is provided via the World Wide Web.

  11. AN ANIMAL MODEL OF PLATINUM (PT) HYPERSENSITIVITY

    EPA Science Inventory

    Exposure to Pt salts has been associated with occupational asthma. Pt, the most active component and widely used metal in catalytic converters, is released in automobile exhaust and is a proposed diesel fuel additive. Thus, with the potential for widespread environmental distrib...

  12. Shape-Controlled Synthesis of Pt Nanopeanuts

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemei; Xia, Zengzilu; Huang, Yingzhou; Jia, Yunpeng; Sun, Xiaonan; Li, Yu; Li, Xueming; Wu, Rui; Liu, Anping; Qi, Xueqiang; Wang, Shuxia; Wen, Weijia

    2016-08-01

    Exploring the novel shape of Pt nanoparticles is one of the most useful ways to improve the electrocatalytic performance of Pt in fuel cells. In this work, the Pt nanopeanuts consisting of two nanospheres grown together have been fabricated through a two-step polyol method. The high resolution scanning electron microscope (SEM) images and energy dispersive x-ray (EDX) spectrum collected at adjacent part point out the Pt nanopeanut is apparently different from the two physical attached nanospheres. To understand the growth mechanism of this nanopeanut, the final products in different synthesis situations are studied. The results indicate the interesting morphology of Pt nanopeanuts mainly benefit from the chemical reagent (FeCl3) while the size and homogeneity are greatly affected by the temperature. Furthermore, the electrocatalytic activity of the Pt nanopeanuts has also been demonstrated here. Our two-step synthesis of Pt nanopeanuts not only enlarges the group of Pt nanoparticles, but also provides a beneficial strategy for the synthesis of novel metal nanoparticles.

  13. Nonlinear waves in PT -symmetric systems

    NASA Astrophysics Data System (ADS)

    Konotop, Vladimir V.; Yang, Jianke; Zezyulin, Dmitry A.

    2016-07-01

    Recent progress on nonlinear properties of parity-time (PT )-symmetric systems is comprehensively reviewed in this article. PT symmetry started out in non-Hermitian quantum mechanics, where complex potentials obeying PT symmetry could exhibit all-real spectra. This concept later spread out to optics, Bose-Einstein condensates, electronic circuits, and many other physical fields, where a judicious balancing of gain and loss constitutes a PT -symmetric system. The natural inclusion of nonlinearity into these PT systems then gave rise to a wide array of new phenomena which have no counterparts in traditional dissipative systems. Examples include the existence of continuous families of nonlinear modes and integrals of motion, stabilization of nonlinear modes above PT -symmetry phase transition, symmetry breaking of nonlinear modes, distinctive soliton dynamics, and many others. In this article, nonlinear PT -symmetric systems arising from various physical disciplines are presented, nonlinear properties of these systems are thoroughly elucidated, and relevant experimental results are described. In addition, emerging applications of PT symmetry are pointed out.

  14. Shape-Controlled Synthesis of Pt Nanopeanuts

    PubMed Central

    Zhang, Xuemei; Xia, Zengzilu; Huang, Yingzhou; Jia, Yunpeng; Sun, Xiaonan; Li, Yu; Li, Xueming; Wu, Rui; Liu, Anping; Qi, Xueqiang; Wang, Shuxia; Wen, Weijia

    2016-01-01

    Exploring the novel shape of Pt nanoparticles is one of the most useful ways to improve the electrocatalytic performance of Pt in fuel cells. In this work, the Pt nanopeanuts consisting of two nanospheres grown together have been fabricated through a two-step polyol method. The high resolution scanning electron microscope (SEM) images and energy dispersive x-ray (EDX) spectrum collected at adjacent part point out the Pt nanopeanut is apparently different from the two physical attached nanospheres. To understand the growth mechanism of this nanopeanut, the final products in different synthesis situations are studied. The results indicate the interesting morphology of Pt nanopeanuts mainly benefit from the chemical reagent (FeCl3) while the size and homogeneity are greatly affected by the temperature. Furthermore, the electrocatalytic activity of the Pt nanopeanuts has also been demonstrated here. Our two-step synthesis of Pt nanopeanuts not only enlarges the group of Pt nanoparticles, but also provides a beneficial strategy for the synthesis of novel metal nanoparticles. PMID:27528078

  15. Shape-Controlled Synthesis of Pt Nanopeanuts.

    PubMed

    Zhang, Xuemei; Xia, Zengzilu; Huang, Yingzhou; Jia, Yunpeng; Sun, Xiaonan; Li, Yu; Li, Xueming; Wu, Rui; Liu, Anping; Qi, Xueqiang; Wang, Shuxia; Wen, Weijia

    2016-01-01

    Exploring the novel shape of Pt nanoparticles is one of the most useful ways to improve the electrocatalytic performance of Pt in fuel cells. In this work, the Pt nanopeanuts consisting of two nanospheres grown together have been fabricated through a two-step polyol method. The high resolution scanning electron microscope (SEM) images and energy dispersive x-ray (EDX) spectrum collected at adjacent part point out the Pt nanopeanut is apparently different from the two physical attached nanospheres. To understand the growth mechanism of this nanopeanut, the final products in different synthesis situations are studied. The results indicate the interesting morphology of Pt nanopeanuts mainly benefit from the chemical reagent (FeCl3) while the size and homogeneity are greatly affected by the temperature. Furthermore, the electrocatalytic activity of the Pt nanopeanuts has also been demonstrated here. Our two-step synthesis of Pt nanopeanuts not only enlarges the group of Pt nanoparticles, but also provides a beneficial strategy for the synthesis of novel metal nanoparticles. PMID:27528078

  16. Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition.

    PubMed

    Liu, Zhong-Peng; Zhang, Jing; Özdemir, Şahin Kaya; Peng, Bo; Jing, Hui; Lü, Xin-You; Li, Chun-Wen; Yang, Lan; Nori, Franco; Liu, Yu-Xi

    2016-09-01

    We propose and analyze a new approach based on parity-time (PT) symmetric microcavities with balanced gain and loss to enhance the performance of cavity-assisted metrology. We identify the conditions under which PT-symmetric microcavities allow us to improve sensitivity beyond what is achievable in loss-only systems. We discuss the application of PT-symmetric microcavities to the detection of mechanical motion, and show that the sensitivity is significantly enhanced near the transition point from unbroken- to broken-PT regimes. Our results open a new direction for PT-symmetric physical systems and it may find use in ultrahigh precision metrology and sensing. PMID:27661674

  17. Metrology with PT -Symmetric Cavities: Enhanced Sensitivity near the PT -Phase Transition

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Peng; Zhang, Jing; Özdemir, Şahin Kaya; Peng, Bo; Jing, Hui; Lü, Xin-You; Li, Chun-Wen; Yang, Lan; Nori, Franco; Liu, Yu-xi

    2016-09-01

    We propose and analyze a new approach based on parity-time (PT ) symmetric microcavities with balanced gain and loss to enhance the performance of cavity-assisted metrology. We identify the conditions under which PT -symmetric microcavities allow us to improve sensitivity beyond what is achievable in loss-only systems. We discuss the application of PT -symmetric microcavities to the detection of mechanical motion, and show that the sensitivity is significantly enhanced near the transition point from unbroken- to broken-PT regimes. Our results open a new direction for PT -symmetric physical systems and it may find use in ultrahigh precision metrology and sensing.

  18. PT-Symmetric Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.

    2011-09-01

    In 1998 it was discovered that the requirement that a Hamiltonian be Dirac Hermitian (H = H†) can be weakened and generalized to the requirement that a Hamiltonian be PT symmetric ([H,PT] = 0); that is, invariant under combined space reflection and time reversal. Weakening the constraint of Hermiticity allows one to consider new kinds of physically acceptable Hamiltonians and, in effect, it amounts to extending quantum mechanics from the real (Hermitian) domain into the complex domain. Much work has been done on the analysis of various PT-symmetric quantum-mechanical models. However, only very little analysis has been done on PT-symmetric quantum-field-theoretic models. Here, we describe some of what has been done in the context of PT-symmetric quantum field theory and describe some possible fundamental applications.

  19. The Mitochondrial Genome Impacts Respiration but Not Fermentation in Interspecific Saccharomyces Hybrids

    PubMed Central

    Rigoulet, Michel; Salin, Benedicte; Masneuf-Pomarede, Isabelle; de Vienne, Dominique; Sicard, Delphine; Bely, Marina; Marullo, Philippe

    2013-01-01

    In eukaryotes, mitochondrial DNA (mtDNA) has high rate of nucleotide substitution leading to different mitochondrial haplotypes called mitotypes. However, the impact of mitochondrial genetic variant on phenotypic variation has been poorly considered in microorganisms because mtDNA encodes very few genes compared to nuclear DNA, and also because mitochondrial inheritance is not uniparental. Here we propose original material to unravel mitotype impact on phenotype: we produced interspecific hybrids between S. cerevisiae and S. uvarum species, using fully homozygous diploid parental strains. For two different interspecific crosses involving different parental strains, we recovered 10 independent hybrids per cross, and allowed mtDNA fixation after around 80 generations. We developed PCR-based markers for the rapid discrimination of S. cerevisiae and S. uvarum mitochondrial DNA. For both crosses, we were able to isolate fully isogenic hybrids at the nuclear level, yet possessing either S. cerevisiae mtDNA (Sc-mtDNA) or S. uvarum mtDNA (Su-mtDNA). Under fermentative conditions, the mitotype has no phenotypic impact on fermentation kinetics and products, which was expected since mtDNA are not necessary for fermentative metabolism. Alternatively, under respiratory conditions, hybrids with Sc-mtDNA have higher population growth performance, associated with higher respiratory rate. Indeed, far from the hypothesis that mtDNA variation is neutral, our work shows that mitochondrial polymorphism can have a strong impact on fitness components and hence on the evolutionary fate of the yeast populations. We hypothesize that under fermentative conditions, hybrids may fix stochastically one or the other mt-DNA, while respiratory environments may increase the probability to fix Sc-mtDNA. PMID:24086452

  20. Architecturally designed Pt-MoS2 and Pt-graphene composites for electrocatalytic methanol oxidation.

    PubMed

    Patil, Sagar H; Anothumakkool, Bihag; Sathaye, Shivaram D; Patil, Kashinath R

    2015-10-21

    Thin films consisting of platinum nanoparticles (Pt NPs) with uniform size and distribution have been successfully prepared at a liquid-liquid interface. Apart from the usual substrates like glass, Si etc. the films were also deposited on the surfaces of MoS2 thin films and graphene nanosheets (GNS) respectively, by using a layer-by-layer (LbL) deposition technique to form Pt-MoS2 and Pt-GNS composites. The loading concentration of Pt NPs on MoS2 and GNS can be adjusted by selecting the number and sequence of the component layers during LbL deposition. The Pt thin films, Pt-MoS2 and Pt-GNS nanocomposite thin films are characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). TEM results of the composites show that Pt NPs with sizes in the range of 1 to 3 nm are uniformly dispersed on the MoS2/GNS surface. The catalytic activities of Pt and Pt-composites for the reaction of methanol oxidation are studied using cyclic voltammetry and chronoamperometry. Electrochemical studies reveal that both the Pt-MoS2 and Pt-GNS nanocomposites show excellent electrocatalytic activity towards methanol oxidation. Pt-MoS2 and Pt-GNS nanocomposite electrodes show excellent stability for reuse of the catalyst. A probable mechanism of catalysis has been discussed. We propose that the similar architecture reported here would be promising for the synthesis of high performance catalysts for fuel cells, gas phase reactions, and other applications such as sensors. PMID:26377752

  1. Reduction of Pt2+ species in model Pt-CeO2 fuel cell catalysts upon reaction with methanol

    NASA Astrophysics Data System (ADS)

    Neitzel, Armin; Johánek, Viktor; Lykhach, Yaroslava; Skála, Tomáš; Tsud, Nataliya; Vorokhta, Mykhailo; Matolín, Vladimír; Libuda, Jörg

    2016-11-01

    The stability of atomically dispersed Pt2+ species on the surface of nanostructured CeO2 films during the reaction with methanol has been investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The isolated Pt2+ species were prepared at low Pt concentration in Pt-CeO2 film. Additionally, Pt2+ species coexisting with metallic Pt particles were prepared at high Pt concentration. We found that adsorption of methanol yields similar decomposition products regardless of Pt concentration in Pt-CeO2 films. A small number of oxygen vacancies formed during the methanol decomposition can be replenished in the Pt-CeO2 film with low Pt concentration by diffusion of oxygen from the bulk. In the presence of supported Pt particles, a higher number of oxygen vacancies leads to a partial reduction of the Pt2+ species. The isolated Pt2+ species are reduced under rather strongly reducing conditions only, i.e. during annealing under continuous exposure to methanol. Reduction of isolated Pt2+ species results in the formation of ultra-small Pt particles containing around 25 atoms per particle or less. Such ultra-small Pt particles demonstrate excellent stability against sintering during annealing of Pt-CeO2 film with low Pt concentration under reducing conditions.

  2. Highly Active Pt(3)Pb and Core-Shell Pt(3)Pb-Pt Electrocatalysts for Formic Acid Oxidation

    SciTech Connect

    Kang Y.; Stach E.; Qi L.; Li M.; Diaz R.E.; Su D.; Adzic R.R.; Li J.; Murray C.B.

    2012-03-27

    Formic acid is a promising chemical fuel for fuel cell applications. However, due to the dominance of the indirect reaction pathway and strong poisoning effects, the development of direct formic acid fuel cells has been impeded by the low activity of existing electrocatalysts at desirable operating voltage. We report the first synthesis of Pt{sub 3}Pb nanocrystals through solution phase synthesis and show they are highly efficient formic acid oxidation electrocatalysts. The activity can be further improved by manipulating the Pt{sub 3}Pb-Pt core-shell structure. Combined experimental and theoretical studies suggest that the high activity from Pt{sub 3}Pb and the Pt-Pb core-shell nanocrystals results from the elimination of CO poisoning and decreased barriers for the dehydrogenation steps. Therefore, the Pt{sub 3}Pb and Pt-Pb core-shell nanocrystals can improve the performance of direct formic acid fuel cells at desired operating voltage to enable their practical application.

  3. Experimental and theoretical studies of ammonia decomposition activity on Fe-Pt, Co-Pt, and Cu-Pt bimetallic surfaces

    NASA Astrophysics Data System (ADS)

    Hansgen, Danielle A.; Thomanek, Lisa M.; Chen, Jingguang G.; Vlachos, Dionisios G.

    2011-05-01

    We investigate the decomposition of ammonia on bimetallic surfaces prepared by the deposition of a monolayer of Fe, Co, or Cu on a Pt(111) surface computationally and experimentally. We explore the correlation between predicted activities based on the nitrogen binding energies with experimental decomposition activity on these bimetallic and corresponding monometallic surfaces. Through density functional theory calculations and microkinetic modeling, it is predicted that the Fe-Pt-Pt(111) and Co-Pt-Pt(111) surfaces, with a monolayer of Fe or Co on top of Pt(111), are active toward decomposing ammonia. In contrast, the corresponding subsurface configurations, Pt-Fe-Pt(111) and Pt-Co-Pt(111) are inactive. These predictions were confirmed experimentally through temperature programmed desorption experiments. Decomposition was seen at temperatures below 350 K for the Fe-Pt-Pt(111) and Co-Pt-Pt(111) surfaces. For the Cu/Pt(111) system, the surface, subsurface and parent metals were each predicted to be inactive, consistent with experiments, further validating the model predictions. The stability of these bimetallic surfaces in the presence of adsorbed nitrogen is also discussed.

  4. Microstructure and electronic behavior of PtPd@Pt core-shell nanowires

    SciTech Connect

    Han, Wei-Qiang; Su, Dong; Murphy, Michael; Ward, Matthew; Sham, Tsun-Kong; Wu, Lijun; Zhu, Yimei; Hu, Yongfeng; Aoki, Toshihiro

    2010-07-19

    PtPd{at}Pt core-shell ultrathin nanowires were prepared using a one-step phase-transfer approach. The diameters of the nanowires range from 2 to 3 nm, and their lengths are up to hundreds of nanometers. Line scanning electron energy loss spectra showed that PtPd bimetallic nanowires have a core-shell structure, with a PtPd alloy core and a Pt monolayer shell. X-ray absorption near edge structure (XANES) spectra reveal that a strong Pt-Pd interaction exists in this nanowire system in that there is PtPd alloying and/or interfacial interaction. Extended x-ray absorption fine structures (EXAFS) further confirms the PtPd@Pt core-shell structure. The bimetallic nanowires were determined to be face-centered cubic structures. The long-chain organic molecules of n-dodecyl trimethylammonium bromide and octadecylamine, used as surfactants during synthesis, were clearly observed using aberration-corrected TEM operated at 80 KV. The interaction of Pt and surfactants was also revealed by EXAFS.

  5. Force Sensitivity in Saccharomyces cerevisiae Flocculins.

    PubMed

    Chan, Cho X J; El-Kirat-Chatel, Sofiane; Joseph, Ivor G; Jackson, Desmond N; Ramsook, Caleen B; Dufrêne, Yves F; Lipke, Peter N

    2016-01-01

    Many fungal adhesins have short, β-aggregation-prone sequences that play important functional roles, and in the Candida albicans adhesin Als5p, these sequences cluster the adhesins after exposure to shear force. Here, we report that Saccharomyces cerevisiae flocculins Flo11p and Flo1p have similar β-aggregation-prone sequences and are similarly stimulated by shear force, despite being nonhomologous. Shear from vortex mixing induced the formation of small flocs in cells expressing either adhesin. After the addition of Ca(2+), yeast cells from vortex-sheared populations showed greatly enhanced flocculation and displayed more pronounced thioflavin-bright surface nanodomains. At high concentrations, amyloidophilic dyes inhibited Flo1p- and Flo11p-mediated agar invasion and the shear-induced increase in flocculation. Consistent with these results, atomic force microscopy of Flo11p showed successive force-distance peaks characteristic of sequentially unfolding tandem repeat domains, like Flo1p and Als5p. Flo11p-expressing cells bound together through homophilic interactions with adhesion forces of up to 700 pN and rupture lengths of up to 600 nm. These results are consistent with the potentiation of yeast flocculation by shear-induced formation of high-avidity domains of clustered adhesins at the cell surface, similar to the activation of Candida albicans adhesin Als5p. Thus, yeast adhesins from three independent gene families use similar force-dependent interactions to drive cell adhesion. IMPORTANCE The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on

  6. Force Sensitivity in Saccharomyces cerevisiae Flocculins

    PubMed Central

    Chan, Cho X. J.; El-Kirat-Chatel, Sofiane; Joseph, Ivor G.; Jackson, Desmond N.; Ramsook, Caleen B.; Dufrêne, Yves F.

    2016-01-01

    ABSTRACT Many fungal adhesins have short, β-aggregation-prone sequences that play important functional roles, and in the Candida albicans adhesin Als5p, these sequences cluster the adhesins after exposure to shear force. Here, we report that Saccharomyces cerevisiae flocculins Flo11p and Flo1p have similar β-aggregation-prone sequences and are similarly stimulated by shear force, despite being nonhomologous. Shear from vortex mixing induced the formation of small flocs in cells expressing either adhesin. After the addition of Ca2+, yeast cells from vortex-sheared populations showed greatly enhanced flocculation and displayed more pronounced thioflavin-bright surface nanodomains. At high concentrations, amyloidophilic dyes inhibited Flo1p- and Flo11p-mediated agar invasion and the shear-induced increase in flocculation. Consistent with these results, atomic force microscopy of Flo11p showed successive force-distance peaks characteristic of sequentially unfolding tandem repeat domains, like Flo1p and Als5p. Flo11p-expressing cells bound together through homophilic interactions with adhesion forces of up to 700 pN and rupture lengths of up to 600 nm. These results are consistent with the potentiation of yeast flocculation by shear-induced formation of high-avidity domains of clustered adhesins at the cell surface, similar to the activation of Candida albicans adhesin Als5p. Thus, yeast adhesins from three independent gene families use similar force-dependent interactions to drive cell adhesion. IMPORTANCE The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends

  7. Multi-enzyme production by pure and mixed cultures of Saccharomyces and non-Saccharomyces yeasts during wine fermentation.

    PubMed

    Maturano, Y Paola; Rodríguez Assaf, Leticia A; Toro, M Eugenia; Nally, M Cristina; Vallejo, Martha; Castellanos de Figueroa, Lucía I; Combina, Mariana; Vazquez, Fabio

    2012-04-01

    Saccharomyces and non-Saccharomyces yeasts release enzymes that are able to transform neutral compounds of grape berries into active aromatic compounds, a process that enhances the sensory attributes of wines. So far, there exists only little information about enzymatic activity in mixed cultures of Saccharomyces and non-Saccharomyces during grape must fermentations. The aim of the present work was to determine the ability of yeasts to produce extracellular enzymes of enological relevance (β-glucosidases, pectinases, proteases, amylases or xylanases) in pure and mixed Saccharomyces/non-Saccharomyces cultures during fermentation. Pure and mixed cultures of Saccharomyces cerevisiae BSc562, Hanseniaspora vinae BHv438 and Torulaspora delbrueckii BTd259 were assayed: 1% S. cerevisiae/99% H. vinae, 10% S. cerevisiae/90% H. vinae, 1% S. cerevisiae/99% T. delbrueckii and 10% S. cerevisiae/90% T. delbrueckii. Microvinifications were carried out with fresh must without pressing from Vitis vinifera L. c.v. Pedro Jiménez, an autochthonous variety from Argentina. Non-Saccharomyces species survived during 15-18days (BTd259) or until the end of the fermentation (BHv438) and influenced enzymatic profiles of mixed cultures. The results suggest that high concentrations of sugars did not affect enzymatic activity. β-Glucosidase and pectinase activities seemed to be adversely affected by an increase in ethanol: activity diminished with increasing fermentation time. Throughout the fermentation, Saccharomyces and non-Saccharomyces isolates assayed produced a broad range of enzymes of enological interest that catalyze hydrolysis of polymers present in grape juice. Vinifications carried out by a pure or mixed culture of BTd259 (99% of T. delbrueckii) showed the highest production of all enzymes assayed except for β-glucosidase. In mixed cultures, S. cerevisiae outgrew H. vinae, and T. delbrueckii was only detected until halfway the fermentation process. Nevertheless, their secreted

  8. \\cal{PT} -symmetry in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Ziauddin; Chuang, You-Lin; Lee, Ray-Kuang

    2016-07-01

    We propose a scheme to realize parity-time ( {PT} )-symmetry in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. We show that Rydberg-dressed 87Rb atoms in a four-level inverted Y-type configuration is highly efficient to generate the refractive index for a probe field, with a symmetric (antisymmetric) profile spatially in the corresponding real (imaginary) part. Comparing with earlier investigations, the present scheme provides a versatile platform to control the system from {PT} -symmetry to non-PT -symmetry via different external parameters, i.e., coupling field detuning, probe field intensity and control field intensity.

  9. Filamentation of Metabolic Enzymes in Saccharomyces cerevisiae.

    PubMed

    Shen, Qing-Ji; Kassim, Hakimi; Huang, Yong; Li, Hui; Zhang, Jing; Li, Guang; Wang, Peng-Ye; Yan, Jun; Ye, Fangfu; Liu, Ji-Long

    2016-06-20

    Compartmentation via filamentation has recently emerged as a novel mechanism for metabolic regulation. In order to identify filament-forming metabolic enzymes systematically, we performed a genome-wide screening of all strains available from an open reading frame-GFP collection in Saccharomyces cerevisiae. We discovered nine novel filament-forming proteins and also confirmed those identified previously. From the 4159 strains, we found 23 proteins, mostly metabolic enzymes, which are capable of forming filaments in vivo. In silico protein-protein interaction analysis suggests that these filament-forming proteins can be clustered into several groups, including translational initiation machinery and glucose and nitrogen metabolic pathways. Using glutamine-utilising enzymes as examples, we found that the culture conditions affect the occurrence and length of the metabolic filaments. Furthermore, we found that two CTP synthases (Ura7p and Ura8p) and two asparagine synthetases (Asn1p and Asn2p) form filaments both in the cytoplasm and in the nucleus. Live imaging analyses suggest that metabolic filaments undergo sub-diffusion. Taken together, our genome-wide screening identifies additional filament-forming proteins in S. cerevisiae and suggests that filamentation of metabolic enzymes is more general than currently appreciated. PMID:27312010

  10. Stationary phase in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Werner-Washburne, M; Braun, E; Johnston, G C; Singer, R A

    1993-01-01

    Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulation of reserve carbohydrates, and acquisition of thermotolerance. Recent characterization of mutant cells that are conditionally defective only for the resumption of proliferation from stationary phase provides evidence that stationary phase is a unique developmental state. Strains with mutations affecting entry into and survival during stationary phase have also been isolated, and the mutations have been shown to affect at least seven different cellular processes: (i) signal transduction, (ii) protein synthesis, (iii) protein N-terminal acetylation, (iv) protein turnover, (v) protein secretion, (vi) membrane biosynthesis, and (vii) cell polarity. The exact nature of the relationship between these processes and survival during stationary phase remains to be elucidated. We propose that cell cycle arrest coordinated with the ability to remain viable in the absence of additional nutrients provides a good operational definition of starvation-induced stationary phase. PMID:8393130

  11. Functional profiling of the Saccharomyces cerevisiae genome.

    PubMed

    Giaever, Guri; Chu, Angela M; Ni, Li; Connelly, Carla; Riles, Linda; Véronneau, Steeve; Dow, Sally; Lucau-Danila, Ankuta; Anderson, Keith; André, Bruno; Arkin, Adam P; Astromoff, Anna; El-Bakkoury, Mohamed; Bangham, Rhonda; Benito, Rocio; Brachat, Sophie; Campanaro, Stefano; Curtiss, Matt; Davis, Karen; Deutschbauer, Adam; Entian, Karl-Dieter; Flaherty, Patrick; Foury, Francoise; Garfinkel, David J; Gerstein, Mark; Gotte, Deanna; Güldener, Ulrich; Hegemann, Johannes H; Hempel, Svenja; Herman, Zelek; Jaramillo, Daniel F; Kelly, Diane E; Kelly, Steven L; Kötter, Peter; LaBonte, Darlene; Lamb, David C; Lan, Ning; Liang, Hong; Liao, Hong; Liu, Lucy; Luo, Chuanyun; Lussier, Marc; Mao, Rong; Menard, Patrice; Ooi, Siew Loon; Revuelta, Jose L; Roberts, Christopher J; Rose, Matthias; Ross-Macdonald, Petra; Scherens, Bart; Schimmack, Greg; Shafer, Brenda; Shoemaker, Daniel D; Sookhai-Mahadeo, Sharon; Storms, Reginald K; Strathern, Jeffrey N; Valle, Giorgio; Voet, Marleen; Volckaert, Guido; Wang, Ching-yun; Ward, Teresa R; Wilhelmy, Julie; Winzeler, Elizabeth A; Yang, Yonghong; Yen, Grace; Youngman, Elaine; Yu, Kexin; Bussey, Howard; Boeke, Jef D; Snyder, Michael; Philippsen, Peter; Davis, Ronald W; Johnston, Mark

    2002-07-25

    Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.

  12. Effects of pentamidine isethionate on Saccharomyces cerevisiae.

    PubMed

    Ludewig, G; Williams, J M; Li, Y; Staben, C

    1994-05-01

    We used Saccharomyces cerevisiae as a model system in which to examine the mechanism of action of the anti-Pneumocystis drug pentamidine. Pentamidine at low concentrations inhibited S. cerevisiae growth on nonfermentable carbon sources (50% inhibitory concentration [IC50] of 1.25 micrograms/ml in glycerol). Pentamidine inhibited growth on fermentable energy sources only at much higher concentrations (IC50 of 250 micrograms/ml in glucose). Inhibition at low pentamidine concentrations in glycerol was due to cytostatic activity rather than cytotoxic or mutagenic activity. Pentamidine also rapidly inhibited respiration by intact yeast cells, although inhibitory concentrations were much higher than those inhibitory to growth (IC50 of 100 micrograms/ml for respiration). Pentamidine also induced petite mutations, although only at concentrations much higher than those required for growth inhibition. These results suggest that a function essential for respiratory growth is inhibited by pentamidine and that pentamidine affects mitochondrial processes. We propose the hypothesis that the primary cellular target of pentamidine in S. cerevisiae is the mitochondrion.

  13. Saccharomyces cerevisiae metabolism in ecological context

    PubMed Central

    Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon; Patil, Kiran R.

    2016-01-01

    The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype–metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype–phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype–environment–phenotype relationships. PMID:27634775

  14. Saccharomyces genome database: Underlying principles and organisation

    PubMed Central

    Dwight, Selina S.; Balakrishnan, Rama; Christie, Karen R.; Costanzo, Maria C.; Dolinski, Kara; Engel, Stacia R.; Feierbach, Becket; Fisk, Dianna G.; Hirschman, Jodi; Hong, Eurie L.; Issel-Tarver, Laurie; Nash, Robert S.; Sethuraman, Anand; Starr, Barry; Theesfeld, Chandra L.; Andrada, Rey; Binkley, Gail; Dong, Qing; Lane, Christopher; Schroeder, Mark; Weng, Shuai; Botstein, David; Cherry, J. Michael

    2011-01-01

    A scientific database can be a powerful tool for biologists in an era where large-scale genomic analysis, combined with smaller-scale scientific results, provides new insights into the roles of genes and their products in the cell. However, the collection and assimilation of data is, in itself, not enough to make a database useful. The data must be incorporated into the database and presented to the user in an intuitive and biologically significant manner. Most importantly, this presentation must be driven by the user’s point of view; that is, from a biological perspective. The success of a scientific database can therefore be measured by the response of its users – statistically, by usage numbers and, in a less quantifiable way, by its relationship with the community it serves and its ability to serve as a model for similar projects. Since its inception ten years ago, the Saccharomyces Genome Database (SGD) has seen a dramatic increase in its usage, has developed and maintained a positive working relationship with the yeast research community, and has served as a template for at least one other database. The success of SGD, as measured by these criteria, is due in large part to philosophies that have guided its mission and organisation since it was established in 1993. This paper aims to detail these philosophies and how they shape the organisation and presentation of the database. PMID:15153302

  15. Filamentation of Metabolic Enzymes in Saccharomyces cerevisiae.

    PubMed

    Shen, Qing-Ji; Kassim, Hakimi; Huang, Yong; Li, Hui; Zhang, Jing; Li, Guang; Wang, Peng-Ye; Yan, Jun; Ye, Fangfu; Liu, Ji-Long

    2016-06-20

    Compartmentation via filamentation has recently emerged as a novel mechanism for metabolic regulation. In order to identify filament-forming metabolic enzymes systematically, we performed a genome-wide screening of all strains available from an open reading frame-GFP collection in Saccharomyces cerevisiae. We discovered nine novel filament-forming proteins and also confirmed those identified previously. From the 4159 strains, we found 23 proteins, mostly metabolic enzymes, which are capable of forming filaments in vivo. In silico protein-protein interaction analysis suggests that these filament-forming proteins can be clustered into several groups, including translational initiation machinery and glucose and nitrogen metabolic pathways. Using glutamine-utilising enzymes as examples, we found that the culture conditions affect the occurrence and length of the metabolic filaments. Furthermore, we found that two CTP synthases (Ura7p and Ura8p) and two asparagine synthetases (Asn1p and Asn2p) form filaments both in the cytoplasm and in the nucleus. Live imaging analyses suggest that metabolic filaments undergo sub-diffusion. Taken together, our genome-wide screening identifies additional filament-forming proteins in S. cerevisiae and suggests that filamentation of metabolic enzymes is more general than currently appreciated.

  16. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae

    PubMed Central

    Fossati, Elena; Narcross, Lauren; Ekins, Andrew; Falgueyret, Jean-Pierre; Martin, Vincent J. J.

    2015-01-01

    Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, we reconstituted a 7-gene pathway for the production of codeine and morphine from (R)-reticuline. Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase and codeine-O-demethylase likely limit flux to morphine synthesis. The results of this study describe a significant advance for the synthesis of morphinans in S. cerevisiae and pave the way for their complete synthesis in recombinant microbes. PMID:25905794

  17. Killer systems of the yeast Saccharomyces cerevisiae

    SciTech Connect

    Nesterova, G.F.

    1989-01-01

    The killer systems of Saccharomyces cerevisiae are an unusual class of cytoplasmic symbionts of primitive eukaryotes. The genetic material of these symbionts is double-stranded RNA. They are characterized by the linearity of the genome, its fragmentation into a major and a minor fraction, which replicate separately, and their ability to control the synthesis of secretory mycocin proteins possessing a toxic action on closely related strains. The secretion of mycocins at the same time ensures acquiring of resistance to them. Strains containing killer symbionts are toxigenic and resistant to the action of their own toxin, but strains that are free of killer double-stranded RNAs are sensitive to the action of mycocins. The killer systems of S. cerevisiae have retained features relating them to viruses and are apparently the result of evolution of infectious viruses. The occurrences of such systems among monocellular eukaryotic organisms is an example of complication of the genome by means of its assembly from virus-like components. We discuss the unusual features of replication and the expression of killer systems and their utilization in the construction of vector molecules.

  18. Sugar and Glycerol Transport in Saccharomyces cerevisiae.

    PubMed

    Bisson, Linda F; Fan, Qingwen; Walker, Gordon A

    2016-01-01

    In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition. PMID:26721273

  19. Sugar and Glycerol Transport in Saccharomyces cerevisiae.

    PubMed

    Bisson, Linda F; Fan, Qingwen; Walker, Gordon A

    2016-01-01

    In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.

  20. Three-dimensional Structure of Saccharomyces Invertase

    PubMed Central

    Sainz-Polo, M. Angela; Ramírez-Escudero, Mercedes; Lafraya, Alvaro; González, Beatriz; Marín-Navarro, Julia; Polaina, Julio; Sanz-Aparicio, Julia

    2013-01-01

    Invertase is an enzyme that is widely distributed among plants and microorganisms and that catalyzes the hydrolysis of the disaccharide sucrose into glucose and fructose. Despite the important physiological role of Saccharomyces invertase (SInv) and the historical relevance of this enzyme as a model in early biochemical studies, its structure had not yet been solved. We report here the crystal structure of recombinant SInv at 3.3 Å resolution showing that the enzyme folds into the catalytic β-propeller and β-sandwich domains characteristic of GH32 enzymes. However, SInv displays an unusual quaternary structure. Monomers associate in two different kinds of dimers, which are in turn assembled into an octamer, best described as a tetramer of dimers. Dimerization plays a determinant role in substrate specificity because this assembly sets steric constraints that limit the access to the active site of oligosaccharides of more than four units. Comparative analysis of GH32 enzymes showed that formation of the SInv octamer occurs through a β-sheet extension that seems unique to this enzyme. Interaction between dimers is determined by a short amino acid sequence at the beginning of the β-sandwich domain. Our results highlight the role of the non-catalytic domain in fine-tuning substrate specificity and thus supplement our knowledge of the activity of this important family of enzymes. In turn, this gives a deeper insight into the structural features that rule modularity and protein-carbohydrate recognition. PMID:23430743

  1. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate. PMID:18772282

  2. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae.

    PubMed

    Fossati, Elena; Narcross, Lauren; Ekins, Andrew; Falgueyret, Jean-Pierre; Martin, Vincent J J

    2015-01-01

    Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, we reconstituted a 7-gene pathway for the production of codeine and morphine from (R)-reticuline. Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase and codeine-O-demethylase likely limit flux to morphine synthesis. The results of this study describe a significant advance for the synthesis of morphinans in S. cerevisiae and pave the way for their complete synthesis in recombinant microbes. PMID:25905794

  3. Saccharomyces cerevisiae structural cell wall mannoprotein.

    PubMed

    Frevert, J; Ballou, C E

    1985-01-29

    A novel mannoprotein fraction with an average molecular weight of 180 000 has been isolated from Saccharomyces cerevisiae mnn9 mutant cell wall that was solubilized by beta-glucanase digestion. The same material could be extracted from purified wall fragments with 1% sodium dodecyl sulfate. The protein component, 12% by weight, is rich in proline, whereas the carbohydrate, mainly mannose, is about evenly distributed between asparagine and hydroxyamino acids. Endoglucosaminidase H digestion of the isolated mannoprotein reduced its average molecular weight to 150 000, but the mannoprotein, while still embedded in the cell wall, was inaccessible to the enzyme. Biosynthesis and translocation of the mannoprotein were investigated by following incorporation of [3H]proline into this fraction. In the presence of tunicamycin, both mnn9 and wild-type X2180 cells made a mannoprotein fraction with an average molecular weight of 140 000, whereas in the absence of the glycosylation inhibitor, the mnn9 mutant made material with a molecular weight of 180 000 and the mannoprotein made by wild-type cells was too large to penetrate the polyacrylamide gel. Although the cell wall mannoprotein was resistant to heat and proteolytic enzymes, attempts to isolate the carbohydrate-free component failed to yield any characteristic peptide material. PMID:3888262

  4. Copper transport in the yeast Saccharomyces cerevisiae

    SciTech Connect

    Martinez, L.D.; Connelly, J.L.

    1987-05-01

    Biochemical processes involved in the movement of copper (Cu) into and out of the yeast Saccharomyces Cerevisiae have been investigated. Overall uptake of Cu was measured by disappearance of Cu from the reaction mixture by atomic absorption sensitive to 10/sup -10/M. The process of Cu influx is composed of a prerequisite binding and subsequent transport. The binding is non-energetic but is competitively inhibited by zinc(Zn). Transport is energetic as shown by an increased influx in the presence of added glucose. This process is prevented by 2,4-dinitrophenol(DNP). Cu influx is accompanied by an exchange for potassium(K) in a ratio of K:Cu=2:1. The process of Cu efflux involves a second type of binding site, probably of low affinity but large capacity. The presence of glucose causes the binding of extracellular Cu to these sites in a non-energy-dependent mechanism which prevents Cu efflux. Zn does not compete. DNP has no effect. The K:Cu ratio of 4:1 observed in the absence of glucose suggests a lowered net Cu uptake as a result of concomitant efflux activity. Finally, in the absence but not the presence of glucose, the pH of the extracellular solution increases. These observations are consistent with the idea that (a) yeast membrane has two Cu-binding sites, one of which participates in influx and one in efflux; (b) Cu exchanges with K during influx and with protons during efflux.

  5. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    PubMed

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-01

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. PMID:22687186

  6. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    PubMed

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-01

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations.

  7. Exploring the northern limit of the distribution of Saccharomyces cerevisiae and Saccharomyces paradoxus in North America.

    PubMed

    Charron, Guillaume; Leducq, Jean-Baptiste; Bertin, Chloé; Dubé, Alexandre K; Landry, Christian R

    2014-03-01

    We examined the northern limit of Saccharomyces cerevisiae and Saccharomyces paradoxus in northeast America. We collected 876 natural samples at 29 sites and applied enrichment methods for the isolation of mesophilic yeasts. We uncovered a large diversity of yeasts, in some cases, associated with specific substrates. Sequencing of the ITS1, 5.8S and ITS2 loci allowed to assign 226 yeast strains at the species level, including 41 S. paradoxus strains. Our intensive sampling suggests that if present, S. cerevisiae is rare at these northern latitudes. Our sampling efforts spread across several months of the year revealed that successful sampling increases throughout the summer and diminishes significantly at the beginning of the fall. The data obtained on the ecological context of yeasts corroborate what was previously reported on Pichiaceae, Saccharomycodaceae, Debaryomycetaceae and Phaffomycetaceae yeast families. We identified 24 yeast isolates that could not be assigned to any known species and that may be of taxonomic, medical, or biotechnological importance. Our study reports new data on the taxonomic diversity of yeasts and new resources for studying the evolution and ecology of S. paradoxus.

  8. Intracellular signal triggered by cholera toxin in Saccharomyces boulardii and Saccharomyces cerevisiae.

    PubMed

    Brandão, R L; Castro, I M; Bambirra, E A; Amaral, S C; Fietto, L G; Tropia, M J; Neves, M J; Dos Santos, R G; Gomes, N C; Nicoli, J R

    1998-02-01

    As is the case for Saccharomyces boulardii, Saccharomyces cerevisiae W303 protects Fisher rats against cholera toxin (CT). The addition of glucose or dinitrophenol to cells of S. boulardii grown on a nonfermentable carbon source activated trehalase in a manner similar to that observed for S.cerevisiae. The addition of CT to the same cells also resulted in trehalase activation. Experiments performed separately on the A and B subunits of CT showed that both are necessary for activation. Similarly, the addition of CT but not of its separate subunits led to a cyclic AMP (cAMP) signal in both S. boulardii and S. cerevisiae. These data suggest that trehalase stimulation by CT probably occurred through the cAMP-mediated protein phosphorylation cascade. The requirement of CT subunit B for both the cAMP signal and trehalase activation indicates the presence of a specific receptor on the yeasts able to bind to the toxin, a situation similar to that observed for mammalian cells. This hypothesis was reinforced by experiments with 125I-labeled CT showing specific binding of the toxin to yeast cells. The adhesion of CT to a receptor on the yeast surface through the B subunit and internalization of the A subunit (necessary for the cAMP signal and trehalase activation) could be one more mechanism explaining protection against the toxin observed for rats treated with yeasts.

  9. Intracellular Signal Triggered by Cholera Toxin in Saccharomyces boulardii and Saccharomyces cerevisiae

    PubMed Central

    Brandão, Rogelio L.; Castro, Ieso M.; Bambirra, Eduardo A.; Amaral, Sheila C.; Fietto, Luciano G.; Tropia, Maria José M.; Neves, Maria José; Dos Santos, Raquel G.; Gomes, Newton C. M.; Nicoli, Jacques R.

    1998-01-01

    As is the case for Saccharomyces boulardii, Saccharomyces cerevisiae W303 protects Fisher rats against cholera toxin (CT). The addition of glucose or dinitrophenol to cells of S. boulardii grown on a nonfermentable carbon source activated trehalase in a manner similar to that observed for S. cerevisiae. The addition of CT to the same cells also resulted in trehalase activation. Experiments performed separately on the A and B subunits of CT showed that both are necessary for activation. Similarly, the addition of CT but not of its separate subunits led to a cyclic AMP (cAMP) signal in both S. boulardii and S. cerevisiae. These data suggest that trehalase stimulation by CT probably occurred through the cAMP-mediated protein phosphorylation cascade. The requirement of CT subunit B for both the cAMP signal and trehalase activation indicates the presence of a specific receptor on the yeasts able to bind to the toxin, a situation similar to that observed for mammalian cells. This hypothesis was reinforced by experiments with 125I-labeled CT showing specific binding of the toxin to yeast cells. The adhesion of CT to a receptor on the yeast surface through the B subunit and internalization of the A subunit (necessary for the cAMP signal and trehalase activation) could be one more mechanism explaining protection against the toxin observed for rats treated with yeasts. PMID:9464394

  10. Adsorption of formaldehyde and formyl intermediates on Pt, PtRu-, and PtRuMo-alloy surfaces: A density functional study

    NASA Astrophysics Data System (ADS)

    Cahyanto, Wahyu Tri; Shukri, Ganes; Agusta, Mohammad Kemal; Kasai, Hideaki

    2013-02-01

    Stable binding configuration for formaldehyde (H2CO) and formyl (HCO) adsorption on Pt, PtRu, and PtRuMo are studied within the frame of density functional theory (DFT). We address this study to investigate the role of Ru and Mo on the binding characteristic of formaldehyde and formyl adsorption with respect to interaction strength and charge analysis. Several binding conformation on all possible surface adsorption sites are considered in determining the most stable adsorption geometry on three surfaces. Our results show that the presence of Ru in PtRu and Mo in PtRuMo stabilize the formaldehyde and formyl, which are indicated by stronger bond strength. Further electronic structure analysis shows that the addition of Ru in PtRu and Mo in PtRuMo modifies the electronic structure of Pt's surface significantly. The presence of both impurities shifted the derived anti-bonding state - which is originally located below the fermi level in pure Pt surface - to be above the fermi level in PtRu and PtRuMo systems. This fact explains the stronger adsorption found on PtRu & PtRuMo as compared to pure Pt surface.

  11. Synthesis and optical property characterization of elongated AuPt and Pt@Au metal nanoframes

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Hong, Soonchang; Moh, Sang Hyun; Park, Sungho

    2016-02-01

    We report a facile method to synthesize elongated nanoframes consisting of Pt and Au in solution. Pentagonal Au nanorods served as templates and successfully led to an elongated AuPt nanoframe after etching the core Au. Subsequently, the coating of Au around Pt ridges resulted in Pt@Au metal nanoframes. The resulting elongated nanostructure exhibited 5 well-defined ridges continuously connected along the long axis. During the shape evolution from pure Au nanorods to elongated Pt@Au metal nanoframes, their corresponding localized surface plasmon resonance bands were monitored. Especially, unique surface plasmon features were observed for elongated Pt@Au nanoframes where the short-axis oscillation of surface free electrons is strongly coupled but the long-axis oscillation is not coupled among the ridges.We report a facile method to synthesize elongated nanoframes consisting of Pt and Au in solution. Pentagonal Au nanorods served as templates and successfully led to an elongated AuPt nanoframe after etching the core Au. Subsequently, the coating of Au around Pt ridges resulted in Pt@Au metal nanoframes. The resulting elongated nanostructure exhibited 5 well-defined ridges continuously connected along the long axis. During the shape evolution from pure Au nanorods to elongated Pt@Au metal nanoframes, their corresponding localized surface plasmon resonance bands were monitored. Especially, unique surface plasmon features were observed for elongated Pt@Au nanoframes where the short-axis oscillation of surface free electrons is strongly coupled but the long-axis oscillation is not coupled among the ridges. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08200e

  12. Epitaxial oxide bilayer on Pt (001) nanofacets

    NASA Astrophysics Data System (ADS)

    Hennessy, Daniel; Komanicky, Vladimir; Iddir, Hakim; Pierce, Michael S.; Menzel, Andreas; Chang, Kee-Chul; Barbour, Andi; Zapol, Peter; You, Hoydoo

    2012-01-01

    We observed an epitaxial, air-stable, partially registered (2 × 1) oxide bilayer on Pt (001) nanofacets [V. Komanicky, A. Menzel, K.-C. Chang, and H. You, J. Phys. Chem. 109, 23543 (2005)]. The bilayer is made of two half Pt layers; the top layer has four oxygen bonds and the second layer two. The positions and oxidation states of the Pt atoms are determined by analyzing crystal truncation rods and resonance scattering data. The positions of oxygen atoms are determined by density functional theory (DFT) calculations. Partial registry on the nanofacets and the absence of such registry on the extended Pt (001) surface prepared similarly are explained in DFT calculations by strain relief that can be accommodated only by nanoscale facets.

  13. Heavy Lift & Propulsion Technology (HL&PT)

    NASA Video Gallery

    Cris Guidi delivers a presentation from the Heavy Lift & Propulsion Technology (HL&PT) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of ...

  14. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system...

  15. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system...

  16. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system...

  17. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system...

  18. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system...

  19. Sintering behavior of spin-coated FePt and FePtAu nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Shishou; Jia, Zhiyong; Zoto, I.; Reed, D.; Nikles, David E.; Harrell, J. W.; Thompson, Gregory; Mankey, Gary; Krishnamurthy, Vemuru V.; Porcar, L.

    2006-04-01

    FePt and [FePt]95Au5 nanoparticles with an average size of about 4 nm were chemically synthesized and spin coated onto silicon substrates. Samples were subsequently thermally annealed at temperatures ranging from 250 to 500 °C for 30 min. Three-dimensional structural characterization was carried out with small-angle neutron scattering (SANS) and small-angle x-ray diffraction (SAXRD) measurements. For both FePt and [FePt]95Au5 particles before annealing, SANS measurements gave an in-plane coherence length parameter a=7.3 nm, while SAXRD measurements gave a perpendicular coherence length parameter c=12.0 nm. The ratio of c/a is about 1.64, indicating the as-made particle array has a hexagonal close-packed superstructure. For both FePt and FePtAu nanoparticles, the diffraction peaks shifted to higher angles and broadened with increasing annealing temperature. This effect corresponds to a shrinking of the nanoparticle array, followed by agglomeration and sintering of the nanoparticles, resulting in the eventual loss of positional order with increasing annealing temperature. The effect is more pronounced for FePtAu than for FePt. Dynamic coercivity measurements show that the FePtAu nanoparticles have both higher intrinsic coercivity and higher switching volume at the same annealing temperature. These results are consistent with previous studies that show that additive Au both lowers the chemical ordering temperature and promotes sintering.

  20. Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates

    DOE PAGESBeta

    Wang, Xue; Luo, Ming; Huang, Hongwen; Chi, Miaofang; Howe, Jane; Xie, Zhaoxiong; Xia, Younan

    2016-09-06

    We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less

  1. Coating Pt-Ni Octahedra with Ultrathin Pt Shells to Enhance the Durability without Compromising the Activity toward Oxygen Reduction.

    PubMed

    Park, Jinho; Liu, Jingyue; Peng, Hsin-Chieh; Figueroa-Cosme, Legna; Miao, Shu; Choi, Sang-Il; Bao, Shixiong; Yang, Xuan; Xia, Younan

    2016-08-23

    We describe a new strategy to enhance the catalytic durability of Pt-Ni octahedral nanocrystals in the oxygen reduction reaction (ORR) by conformally depositing an ultrathin Pt shell on the surface. The Pt-Ni octahedra were synthesized according to a protocol reported previously and then employed directly as seeds for the conformal deposition of ultrathin Pt shells by introducing a Pt precursor dropwise at 200 °C. The amount of Pt precursor was adjusted relative to the number of Pt-Ni octahedra involved to obtain Pt-Ni@Pt1.5L octahedra of 12 nm in edge length for the systematic evaluation of their chemical stability and catalytic durability compared to Pt-Ni octahedra. Specifically, we compared the elemental compositions of the octahedra before and after treatment with acetic and sulfuric acids. We also examined their electrocatalytic stability toward the ORR through an accelerated durability test by using a rotating disk electrode method. Even after treatment with sulfuric acid for 24 h, the Pt-Ni@Pt1.5L octahedra maintained their original Ni content, whereas 11 % of the Ni was lost from the Pt-Ni octahedra. After 10 000 cycles of ORR, the mass activity of the Pt-Ni octahedra decreased by 75 %, whereas the Pt-Ni@Pt1.5L octahedra only showed a 25 % reduction. PMID:27460459

  2. Phosphate transport and sensing in Saccharomyces cerevisiae.

    PubMed Central

    Wykoff, D D; O'Shea, E K

    2001-01-01

    Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate; however, little is known about how phosphate concentrations are sensed. The similarity of Pho84p, a high-affinity phosphate transporter in Saccharomyces cerevisiae, to the glucose sensors Snf3p and Rgt2p has led to the hypothesis that Pho84p is an inorganic phosphate sensor. Furthermore, pho84Delta strains have defects in phosphate signaling; they constitutively express PHO5, a phosphate starvation-inducible gene. We began these studies to determine the role of phosphate transporters in signaling phosphate starvation. Previous experiments demonstrated a defect in phosphate uptake in phosphate-starved pho84Delta cells; however, the pho84Delta strain expresses PHO5 constitutively when grown in phosphate-replete media. We determined that pho84Delta cells have a significant defect in phosphate uptake even when grown in high phosphate media. Overexpression of unrelated phosphate transporters or a glycerophosphoinositol transporter in the pho84Delta strain suppresses the PHO5 constitutive phenotype. These data suggest that PHO84 is not required for sensing phosphate. We further characterized putative phosphate transporters, identifying two new phosphate transporters, PHO90 and PHO91. A synthetic lethal phenotype was observed when five phosphate transporters were inactivated, and the contribution of each transporter to uptake in high phosphate conditions was determined. Finally, a PHO84-dependent compensation response was identified; the abundance of Pho84p at the plasma membrane increases in cells that are defective in other phosphate transporters. PMID:11779791

  3. Regulation of Cation Balance in Saccharomyces cerevisiae

    PubMed Central

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  4. Immunoelectron Microscopy of Cryofixed Freeze-Substituted Yeast Saccharomyces cerevisiae.

    PubMed

    Fišerová, Jindřiška; Richardson, Christine; Goldberg, Martin W

    2016-01-01

    Immunolabeling electron microscopy is a challenging technique with demands for perfect ultrastructural and antigen preservation. High-pressure freezing offers an excellent way to fix cellular structure. However, its use for immunolabeling has remained limited because of the low frequency of labeling due to loss of protein antigenicity or accessibility. Here we present a protocol for immunogold labeling of the yeast Saccharomyces cerevisiae that gives specific and multiple labeling while keeping the finest structural details. We use the protocol to reveal the organization of individual nuclear pore complex proteins and the position of transport factors in the yeast Saccharomyces cerevisiae in relation to actual transport events. PMID:27515085

  5. Copper dusting effects on perpendicular magnetic anisotropy in Pt/Co/Pt tri-layers

    NASA Astrophysics Data System (ADS)

    Parakkat, Vineeth Mohanan; Ganesh, K. R.; Anil Kumar, P. S.

    2016-05-01

    The effect of Cu dusting on perpendicular magnetic anisotropy of sputter grown Pt/Co/Pt stack in which the Cu layer is in proximity with that of Co is investigated in this work. We used magneto optic Kerr effect microscopy measurements to study the variation in the reversal mechanisms in films with Co thicknesses below 0.8nm by systematically varying their perpendicular magnetic anisotropy using controlled Cu dusting. Cu dusting was done separately above and below the cobalt layer in order to understand the role of bottom and top Pt layers in magnetization reversal mechanisms of sputtered Pt/Co/Pt stack. The introduction of even 0.3nm thick Cu layer below the cobalt layer drastically affected the perpendicular magnetic anisotropy as evident from the nucleation behavior. On the contrary, even a 4nm thick top Cu layer had little effect on the reversal mechanism. These observations along with magnetization data was used to estimate the role of top and bottom Pt in the origin of perpendicular magnetic anisotropy as well as magnetization switching mechanism in Pt/Co/Pt thin films. Also, with an increase in the bottom Cu dusting from 0.2 to 0.4nm there was an increase in the number of nucleation sites resulting in the transformation of domain wall patterns from a smooth interface type to a finger like one and finally to maze type.

  6. Atomic Processes in Low Temperature Growth of Pt on Pt(111)

    NASA Astrophysics Data System (ADS)

    Michely, Thomas

    1996-03-01

    STM measurements performed in the temperature range from 20 - 265 K and kinetic Monte Carlo simulations were used to investigate atomic processes during Pt deposition on Pt(111). This approach allows the determination of the activation energy and attempt frequency of Pt-adatom migration on Pt(111) with only a minimum of assumptions and independent of nucleation theory. Moreover, by analysis of the shape and branch thickness of dendritic Pt adatom islands, it is found that atoms attached to just one atom of an island have an asymmetric jump probability towards higher coordinated sites. This asymmetry, which results from non-equivalent hopping paths, gives rise to the preferential growth directions of the dendrites and of the aggregation at preexistent step edges.(The contributions of Michael Hohage, Michael Bott, Markus Morgenstern, Zhengyu Zhang and George Comsa to this work are acknowledged.)

  7. Synthesis of ribosomes in Saccharomyces cerevisiae.

    PubMed Central

    Warner, J R

    1989-01-01

    The assembly of a eucaryotic ribosome requires the synthesis of four ribosomal ribonucleic acid (RNA) molecules and more than 75 ribosomal proteins. It utilizes all three RNA polymerases; it requires the cooperation of the nucleus and the cytoplasm, the processing of RNA, and the specific interaction of RNA and protein molecules. It is carried out efficiently and is exquisitely sensitive to the needs of the cell. Our current understanding of this process in the genetically tractable yeast Saccharomyces cerevisiae is reviewed. The ribosomal RNA genes are arranged in a tandem array of 100 to 200 copies. This tandem array has led to unique ways of carrying out a number of functions. Replication is asymmetric and does not initiate from every autonomously replicating sequence. Recombination is suppressed. Transcription of the major ribosomal RNA appears to involve coupling between adjacent transcription units, which are separated by the 5S RNA transcription unit. Genes for many ribosomal proteins have been cloned and sequenced. Few are linked; most are duplicated; most have an intron. There is extensive homology between yeast ribosomal proteins and those of other species. Most, but not all, of the ribosomal protein genes have one or two sites that are essential for their transcription and that bind a common transcription factor. This factor binds also to many other places in the genome, including the telomeres. There is coordinated transcription of the ribosomal protein genes under a variety of conditions. However, the cell seems to possess no mechanism for regulating the transcription of individual ribosomal protein genes in response either to a deficiency or an excess of a particular ribosomal protein. A deficiency causes slow growth. Any excess ribosomal protein is degraded very rapidly, with a half-life of 1 to 5 min. Unlike most types of cells, yeast cells appear not to regulate the translation of ribosomal proteins. However, in the case of ribosomal protein L32

  8. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    ERIC Educational Resources Information Center

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  9. Molecular mechanisms of ethanol tolerance in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yeast Saccharomyces cerevisiae is a superb ethanol producer, yet sensitive to ethanol at higher concentrations especially under high gravity or very high gravity fermentation conditions. Although significant efforts have been made to study ethanol-stress response in past decades, molecular mecha...

  10. Thermal resistance of Saccharomyces yeast ascospores in beers.

    PubMed

    Milani, Elham A; Gardner, Richard C; Silva, Filipa V M

    2015-08-01

    The industrial production of beer ends with a process of thermal pasteurization. Saccharomyces cerevisiae and Saccharomyces pastorianus are yeasts used to produce top and bottom fermenting beers, respectively. In this research, first the sporulation rate of 12 Saccharomyces strains was studied. Then, the thermal resistance of ascospores of three S. cerevisiae strains (DSMZ 1848, DSMZ 70487, Ethanol Red(®)) and one strain of S. pastorianus (ATCC 9080) was determined in 4% (v/v) ethanol lager beer. D60 °C-values of 11.2, 7.5, 4.6, and 6.0 min and z-values of 11.7, 14.3, 12.4, and 12.7 °C were determined for DSMZ 1848, DSMZ 70487, ATCC 9080, and Ethanol Red(®), respectively. Lastly, experiments with 0 and 7% (v/v) beers were carried out to investigate the effect of ethanol content on the thermal resistance of S. cerevisiae (DSMZ 1848). D55 °C-values of 34.2 and 15.3 min were obtained for 0 and 7% beers, respectively, indicating lower thermal resistance in the more alcoholic beer. These results demonstrate similar spore thermal resistance for different Saccharomyces strains and will assist in the design of appropriate thermal pasteurization conditions for preserving beers with different alcohol contents.

  11. The nucleotide sequence of Saccharomyces cerevisiae chromosome XII.

    PubMed

    Johnston, M; Hillier, L; Riles, L; Albermann, K; André, B; Ansorge, W; Benes, V; Brückner, M; Delius, H; Dubois, E; Düsterhöft, A; Entian, K D; Floeth, M; Goffeau, A; Hebling, U; Heumann, K; Heuss-Neitzel, D; Hilbert, H; Hilger, F; Kleine, K; Kötter, P; Louis, E J; Messenguy, F; Mewes, H W; Hoheisel, J D

    1997-05-29

    The yeast Saccharomyces cerevisiae is the pre-eminent organism for the study of basic functions of eukaryotic cells. All of the genes of this simple eukaryotic cell have recently been revealed by an international collaborative effort to determine the complete DNA sequence of its nuclear genome. Here we describe some of the features of chromosome XII.

  12. Social wasps promote social behavior in Saccharomyces spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This commentary provides background and an evaluation of a paper to be published in the Proceedings of the National Academy of Sciences in which social wasps were found to harbor significant populations of two species of the yeast genus Saccharomyces. Apparently, the yeasts were acquired during feed...

  13. Saccharomyces cerevisiae boulardii transient fungemia after intravenous self-inoculation.

    PubMed

    Cohen, Lola; Ranque, Stéphane; Raoult, Didier

    2013-02-14

    We report the case of a young psychotic intravenous drug user injecting herself with Saccharomyces cervisiae (boulardii). She experienced a 24 h fever, resolving spontaneously confirming, quasi experimentally, the inocuity of this yeast in a non-immunocompromised host. PMID:24432219

  14. Improving biomass sugar utilization by engineered Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient utilization of all available sugars in lignocellulosic biomass, which is more abundant than available commodity crops and starch, represents one of the most difficult technological challenges for the production of bioethanol. The well-studied yeast Saccharomyces cerevisiae has played a...

  15. CoPt nanoparticles by chemical reduction

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Zhang, Y.; Huang, Y.; Zeng, Q.; Hadjipanayis, George C.

    2004-05-01

    CoPt nanoparticles with a size of 1-2nm were synthesized by chemical reduction using the solvents of water and alcohol. A phase transformation from the originally disordered face centered cubic (FCC) structure to an ordered face centered tetragonal L10 structure occurred after annealing, which results in the coercivity up to 9kOe because of the high anisotropy of the tetragonal phase (K~2-4×107erg/cm3) (Philos. Mag. 13 (1966) 567; IEEE Trans. Magn. 20 (1984) 1625). HREM images of as-grow Co48Pt52 shows the single-crystalline FCC structure with the shape of columnar and spherical.

  16. Nuclear Data Sheets for {sup 170}Pt

    SciTech Connect

    Baglin, Coral M.

    1999-02-22

    Nuclear structure data pertaining to 170Pt have been compiled and evaluated, and incorporated into the ENSDF data file. This evaluation of170Pt supersedes the previous publication (Coral M. Baglin,Nuclear Data Sheets 77,125 (1996) (literature cutoff date October 1995)), and includes literature available by 17 February 1999. The newly incorporated references are: 98Se20, 98Ki20, 97Ju04, 96Bi07 and 95Au04. Three new data sets have been added, as follows:174Hg ? decay,171Au p decay (1.02 ms), (HI,xn?).

  17. Ion-irradiation induced chemical ordering of FePt and FePtAu nanoparticles

    NASA Astrophysics Data System (ADS)

    Seetala, Naidu V.; Harrell, J. W.; Lawson, Jeremy; Nikles, David E.; Williams, John R.; Isaacs-Smith, Tamara

    2005-12-01

    We have studied the effect of ion-beam irradiation on reducing the ordering temperature of FePt and FePtAu nanoparticles. FePt and FePt(Au14%) 4 nm particles dispersed on a Si-substrate were irradiated by 300 keV Al-ions with a dose of 1 × 1016 ions/cm2 at 43 °C using a water-cooled flange in order to minimize the vacancy migration and voids formation within the collision cascades. Partial chemical ordering has been observed in as-irradiated particles with coercivity of 60-130 Oe. Post-irradiation annealing at 220 °C enhanced chemical ordering in FePt nanoparticles with coercivity of 3500 Oe, magnetic anisotropy of 1.5 × 107 erg/cc, and thermal stability factor of 130. A much higher 375 °C post-irradiation annealing was required in FePtAu, presumably because Au atoms were trapped at Fe/Pt lattice sites at lower temperatures. As the annealing temperature increased, anomalous features in the magnetization reversal curves were observed that disappeared at higher annealing temperatures.

  18. Discovery of the Pt-Based Superconductor LaPt5As.

    PubMed

    Fujioka, Masaya; Ishimaru, Manabu; Shibuya, Taizo; Kamihara, Yoichi; Tabata, Chihiro; Amitsuka, Hiroshi; Miura, Akira; Tanaka, Masashi; Takano, Yoshihiko; Kaiju, Hideo; Nishii, Junji

    2016-08-10

    A novel superconductor, LaPt5As, which exhibits a new crystal structure was discovered by high-pressure synthesis using a Kawai-type apparatus. A superconducting transition temperature was observed at 2.6 K. Depending on the sintering pressure, LaPt5As has superconducting and non-superconducting phases with different crystal structures. A sintering pressure of around 10 GPa is effective to form single-phase superconducting LaPt5As. This material has a very unique crystal structure with an extremely long c lattice parameter of over 60 Å and corner-sharing tetrahedrons composed of network-like Pt layers. Density functional theory calculations have suggested that the superconducting current flows through these Pt layers. Also, this unique layered structure characteristic of LaPt5As is thought to play a key role in the emergence of superconductivity. Furthermore, due to a stacking structure which makes up layers, various structural modifications for the LaPt5As family are conceivable. Since such a high-pressure synthesis using a Kawai-type apparatus is not common in the field of materials science, there is large room for further exploration of unknown phases which are induced by high pressure in various materials. PMID:27461965

  19. Tailoring Curie temperature and magnetic anisotropy in ultrathin Pt/Co/Pt films

    NASA Astrophysics Data System (ADS)

    Parakkat, Vineeth Mohanan; Ganesh, K. R.; Anil Kumar, P. S.

    2016-05-01

    The dependence of perpendicular magnetization and Curie temperature (Tc) of Pt/Co/Pt thin films on the thicknesses of Pt seed (Pts) and presence of Ta buffer layer has been investigated in this work. Pt and Co thicknesses were varied between 2 to 8 nm and 0.35 to 1.31 nm (across the spin reorientation transition thickness) respectively and the Tc was measured using SQUID magnetometer. We have observed a systematic dependence of Tc on the thickness of Pts. For 8nm thickness of Pts the Co layer of 0.35nm showed ferromagnetism with perpendicular anisotropy at room temperature. As the thickness of the Pts was decreased to 2nm, the Tc went down below 250K. XRD data indicated polycrystalline growth of Pts on SiO2. On the contrary Ta buffer layer promoted the growth of Pt(111). As a consequence Ta(5nm)/Pt(3nm)/Co(0.35nm)/Pt(2nm) had much higher Tc (above 300K) with perpendicular anisotropy when compared to the same stack without the Ta layer. Thus we could tune the ferromagnetic Tc and anisotropy by varying the Pts thickness and also by introducing Ta buffer layer. We attribute these observations to the micro-structural evolution of Pts layer which hosts the Co layer.

  20. Discovery of the Pt-Based Superconductor LaPt5As.

    PubMed

    Fujioka, Masaya; Ishimaru, Manabu; Shibuya, Taizo; Kamihara, Yoichi; Tabata, Chihiro; Amitsuka, Hiroshi; Miura, Akira; Tanaka, Masashi; Takano, Yoshihiko; Kaiju, Hideo; Nishii, Junji

    2016-08-10

    A novel superconductor, LaPt5As, which exhibits a new crystal structure was discovered by high-pressure synthesis using a Kawai-type apparatus. A superconducting transition temperature was observed at 2.6 K. Depending on the sintering pressure, LaPt5As has superconducting and non-superconducting phases with different crystal structures. A sintering pressure of around 10 GPa is effective to form single-phase superconducting LaPt5As. This material has a very unique crystal structure with an extremely long c lattice parameter of over 60 Å and corner-sharing tetrahedrons composed of network-like Pt layers. Density functional theory calculations have suggested that the superconducting current flows through these Pt layers. Also, this unique layered structure characteristic of LaPt5As is thought to play a key role in the emergence of superconductivity. Furthermore, due to a stacking structure which makes up layers, various structural modifications for the LaPt5As family are conceivable. Since such a high-pressure synthesis using a Kawai-type apparatus is not common in the field of materials science, there is large room for further exploration of unknown phases which are induced by high pressure in various materials.

  1. Heterobimetallic lantern complexes that couple antiferromagnetically through noncovalent Pt···Pt interactions.

    PubMed

    Baddour, Frederick G; Fiedler, Stephanie R; Shores, Matthew P; Golen, James A; Rheingold, Arnold L; Doerrer, Linda H

    2013-05-01

    A series of Pt-based heterobimetallic lantern complexes of the form [PtM(SAc)4(OH2)] (M = Co, 1; Ni, 2; Zn, 3) were prepared using a facile, single-step procedure. These hydrated species were reacted with 3-nitropyridine (3-NO2py) to prepare three additional lantern complexes, [PtM(SAc)4(3-NO2py)] (M = Co, 4; Ni, 5; Zn, 6), or alternatively dried in vacuo to the dehydrated species [PtM(SAc)4] (M = Co, 7; Ni, 8; Zn, 9). The Co- and Ni-containing species exhibit Pt-M bonding in solution and the solid state. In the structurally characterized compounds 1-6, the lantern units form dimers in the solid state via a short Pt···Pt metallophilic interaction. Antiferromagnetic coupling between 3d metal ions in the solid state through noncovalent metallophilic interactions was observed for all the paramagnetic lantern complexes prepared, with J-coupling values of -12.7 cm(-1) (1), -50.8 cm(-1) (2), -6.0 cm(-1) (4), and -12.6 cm(-1) (5). The Zn complexes 3 and 6 also form solid-state dimers, indicating that the formation of short Pt···Pt interactions in these complexes is not predicated on the presence of a paramagnetic 3d metal ion. These contacts and the resultant antiferromagnetic coupling are also not unique to heterobimetallic lantern complexes with axially coordinated H2O or the previously reported thiobenzoate supporting ligand.

  2. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  3. Sintering Behavior of Spin-coated FePt and FePtAu Nanoparticles

    SciTech Connect

    Kang, Shishou; Jia, Zhiyong; Zoto, Ilir; Reed, R. C.; Nikles, David E.; Harrell, J. W.; Vemuru, Krishnamurthy V; Porcar, L.

    2006-01-01

    FePt and [FePt]{sub 95}Au{sub 5} nanoparticles with an average size of about 4 nm were chemically synthesized and spin coated onto silicon substrates. Samples were subsequently thermally annealed at temperatures ranging from 250 to 500 C for 30 min. Three-dimensional structural characterization was carried out with small-angle neutron scattering (SANS) and small-angle x-ray diffraction (SAXRD) measurements. For both FePt and [FePt]{sub 95}Au{sub 5} particles before annealing, SANS measurements gave an in-plane coherence length parameter a = 7.3 nm, while SAXRD measurements gave a perpendicular coherence length parameter c = 12.0 nm. The ratio of c/a is about 1.64, indicating the as-made particle array has a hexagonal close-packed superstructure. For both FePt and FePtAu nanoparticles, the diffraction peaks shifted to higher angles and broadened with increasing annealing temperature. This effect corresponds to a shrinking of the nanoparticle array, followed by agglomeration and sintering of the nanoparticles, resulting in the eventual loss of positional order with increasing annealing temperature. The effect is more pronounced for FePtAu than for FePt. Dynamic coercivity measurements show that the FePtAu nanoparticles have both higher intrinsic coercivity and higher switching volume at the same annealing temperature. These results are consistent with previous studies that show that additive Au both lowers the chemical ordering temperature and promotes sintering.

  4. Preparation of onion-like Pt-terminated Pt-Cu bimetallic nano-sized electrocatalysts for oxygen reduction reaction in fuel cells

    NASA Astrophysics Data System (ADS)

    Lim, Taeho; Kim, Ok-Hee; Sung, Yung-Eun; Kim, Hyun-Jong; Lee, Ho-Nyun; Cho, Yong-Hun; Kwon, Oh Joong

    2016-06-01

    Onion-like Pt-terminated Pt-Cu bimetallic nano-sized electrocatalysts (Pt/Cu/Pt/C) were synthesized by using an electroless deposition method. The synthesized Pt/Cu/Pt/C consisted of a Pt-enriched shell, a sandwiched Pt-Cu alloy layer, and a Pt core. The Pt/Cu/Pt/C showed higher electrocatalytic activity toward oxygen reduction reaction in half-cell test than that of commercial Pt/C due to an electronic structure change in the Pt-enriched shell, resulting from the sandwiched Pt-Cu alloy layer underneath. The stability of the Pt/Cu/Pt/C was examined by using both half-cell and single-cell degradation tests. In both tests, the Pt/Cu/Pt/C exhibited stronger resistance to catalyst degradation than that of the commercial Pt/C. It is notable that cell performance with the Pt/Cu/Pt/C was fully recovered by N2 purging after single-cell degradation testing, indicating there was no permanent damage to the electrocatalyst during the test. It is suggested that thermodynamically-stable structure of the Pt/Cu/Pt/C contributed to the improved stability.

  5. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    PubMed

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  6. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    PubMed Central

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  7. PtLGBP, a pattern recognition receptor in Portunus trituberculatus involved in the immune response against different challenges.

    PubMed

    Chen, Y-E; Jin, S; Zhao, Q-S; Zhang, Y; Wang, C-L

    2014-09-01

    Lipopolysaccharide and b-1,3-glucan binding protein (LGBP) is a pattern recognition receptor that can recognize and bind LPS and b-1,3-glucan. LGBP has crucial roles in innate immune defense against Gram-negative bacteria and fungi. In this study, LGBP functions in Portunus trituberculatus innate immunity were analyzed. First, the mRNA expression of PtLGBP in hemocytes, hepatopancreas, and muscle toward three typical pathogen-associated molecular patterns (PAMPs) stimulations were examined using real-time PCR. Results show that the overall trend of relative expressions of the LGBP gene in three tissues is consistent, showing up-down trend. In each group, the highest expression of the LGBP gene was at 3 and 12 h post-injection. The LGBP gene is also expressed significantly higher in the hemocytes and hepatopancreas than in the muscle. The highest level of LGBP was in the lipopolysaccharides (LPS) and glucan-injected group, whereas the lowest level was in the PGN-injected group. Furthermore, bacterial agglutination assay with polyclonal antibody specifically for PtLGBP proved that the recombinant PtLGBP (designated as rPtLGBP) could exhibit obvious agglutination activity toward Gram-negative bacteria Escherichia coli, Vibrio parahaemolyticus, and V. alginolyticus; Gram-positive bacteria Bacillus subtilis; and fungi Saccharomyces cerevisiae. LGBP in Portunus trituberculatus possibly served as a multi-functional PRR. In addition, LGBP is not only involved in the immune response against Gram-negative and fungi, as manifested in other invertebrates, but also has a significant role in anti-Gram-positive bacteria infection.

  8. Efficient Pt catalysts for polymer electrolyte fuel cells

    SciTech Connect

    Fournier, J.; Gaubert, G.; Tilquin, J.Y.

    1996-12-31

    Commercialization of polymer electrolyte fuel cells (PEFCs) requires an important decrease in their production cost. Cost reduction for the electrodes principally concerns the decrease in the amount of Pt catalyst necessary for the functioning of the PEFC without affecting cell performance. The first PEFCs used in the Gemini Space Program had a loading of 4-10 mg pt/cm{sup 2}. The cost of the electrodes was drastically reduced when pure colloidal Pt was replaced by Pt supported on carbon (Pt/C) with a Pt content of 0.4 Mg/cm{sup 2}. Since the occurrence of that breakthrough, many studies have been aimed at further lowering the Pt loading. Today, the lowest loadings reported for oxygen reduction are of the order of 0.05 mg pt/cm{sup 2}. The carbon support of commercial catalysts is Vulcan XC-72 from Cabot, a carbon black with a specific area of 254 m{sup 2}/g. Graphites with specific areas ranging from 20 to 305 m{sup 2}/g are now available from Lonza. The first aim of the present study was to determine the catalytic properties for 02 reduction of Pt supported on these high specific area graphites. The second aim was to use Pt inclusion synthesis on these high area graphites, and to measure the catalytic performances of these materials. Lastly, this same Pt-inclusion synthesis was extended even for use with Vulcan and Black Pearls as substrates (two carbon blacks from Cabot). All these catalysts have been labelled Pt-included materials to distinguish them from the Pt-supported ones. It will be shown that the reduced Pt content Pt-included materials obtained with high specific area substrates a are excellent catalysts for oxygen reduction, especially at high currents. Therefore, Pt inclusion synthesis appears to be a new method to decrease the cathodic Pt loading.

  9. Effect of ferroelectricity on electron transport in Pt/BaTiO3/Pt tunnel junctions.

    PubMed

    Velev, J P; Duan, Chun-Gang; Belashchenko, K D; Jaswal, S S; Tsymbal, E Y

    2007-03-30

    Based on first-principles calculations, we demonstrate the impact of the electric polarization on electron transport in ferroelectric tunnel junctions (FTJs). Using a Pt/BaTiO3/Pt FTJ as a model system, we show that the polarization of the BaTiO3 barrier leads to a substantial drop in the tunneling conductance due to changes in the electronic structure driven by ferroelectric displacements. We find a sizable change in the transmission probability across the Pt/BaTiO3 interface with polarization reversal, a signature of the electroresistance effect. These results reveal exciting prospects that FTJs offer as resistive switches in nanoscale electronic devices. PMID:17501233

  10. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation.

    PubMed

    Domizio, Paola; Romani, Cristina; Lencioni, Livio; Comitini, Francesca; Gobbi, Mirko; Mannazzu, Ilaria; Ciani, Maurizio

    2011-06-30

    The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol.

  11. PT3 Papers. [SITE 2001 Section].

    ERIC Educational Resources Information Center

    Pierson, Melissa, Ed.; Thompson, Mary, Ed.; Adams, Angelle, Ed.; Beyer, Evelyn, Ed.; Cheriyan, Saru, Ed.; Starke, Leslie, Ed.

    This document contains the papers on the PT3 (Preparing Tomorrow's Teachers to use Technology) program from the SITE (Society for Information Technology & Teacher Education) 2001 conference. Topics covered include: modeling instruction with modern information and communications technology; transforming computer coursework for preservice teachers;…

  12. PT-symmetric quantum electrodynamics and unitarity.

    PubMed

    Milton, Kimball A; Abalo, E K; Parashar, Prachi; Pourtolami, Nima; Wagner, J

    2013-04-28

    More than 15 years ago, a new approach to quantum mechanics was suggested, in which Hermiticity of the Hamiltonian was to be replaced by invariance under a discrete symmetry, the product of parity and time-reversal symmetry, PT. It was shown that, if PT is unbroken, energies were, in fact, positive, and unitarity was satisfied. Since quantum mechanics is quantum field theory in one dimension--time--it was natural to extend this idea to higher-dimensional field theory, and in fact an apparently viable version of PT-invariant quantum electrodynamics (QED) was proposed. However, it has proved difficult to establish that the unitarity of the scattering matrix, for example, the Källén spectral representation for the photon propagator, can be maintained in this theory. This has led to questions of whether, in fact, even quantum mechanical systems are consistent with probability conservation when Green's functions are examined, since the latter have to possess physical requirements of analyticity. The status of PT QED will be reviewed in this paper, as well as the general issue of unitarity.

  13. New candidates for the Pt8Ti structures in intermetallics

    NASA Astrophysics Data System (ADS)

    Gilmartin, Erin; Corbitt, Jacqueline; Hart, Gus

    2008-03-01

    The only known intermetallic structure with an 8:1 stoichiometry is that of Pt8Ti. Because of its uniqueness, this structure has been studied in Pt, Pd, and Ni rich systems. However, these metals have only been paired with a handful of other elements. Are there more elements that when alloyed with Pt, Pd, or Ni order with the Pt8Ti structure? We explored 40 different Pd- and Pt-based binary systems. We calculated their formation enthalpies for the Pt8Ti structure, compared the value to the tie line between pure Pd/Pt and experimentally-observed ground states. We find that there are other (beyond those experimentally observed) possible alloys with this structure. These new Pt/Pd-rich alloys could fin application in the jewelry and catalysis industries.

  14. Surface structure and chemistry of Pt/Cu/Pt(1 1 1) near surface alloy model catalyst in CO

    NASA Astrophysics Data System (ADS)

    Zeng, Shibi; Nguyen, Luan; Cheng, Fang; Liu, Lacheng; Yu, Ying; Tao, Franklin (Feng)

    2014-11-01

    Near surface alloy (NSA) model catalyst Pt/Cu/Pt(1 1 1) was prepared on Pt(1 1 1) through a controlled vapor deposition of Cu atoms. Different coordination environments of Pt atoms of the topmost Pt layer with the underneath Cu atoms in the subsurface result in different local electronic structures of surface Pt atoms. Surface structure and chemistry of the NAS model catalyst in Torr pressure of CO were studied with high pressure scanning tunneling microscopy (HP-STM) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). In Torr pressure of CO, the topmost Pt layer of Pt/Cu/Pt(1 1 1) is restructured to thin nanoclusters with size of about 1 nm. Photoemission feature of O 1s of CO on Pt/Cu/Pt(1 1 1) suggests CO adsorbed on both edge and surface of these formed nanoclusters. This surface is active for CO oxidation. Atomic layers of carbon are formed on Pt/Cu/Pt(1 1 1) at 573 K in 2 Torr of CO.

  15. Reactivity of Two-Dimensional Au9, Pt9, and Au18Pt18 against Common Molecules.

    PubMed

    Takahashi, Lauren; Takahashi, Keisuke

    2016-09-19

    Adsorption of common molecules over two-dimensional Au9, Pt9, and Au18Pt18 is investigated with implementation of first-principles calculations. In general, it is found that Pt9 and Au18Pt18 exhibit low adsorption energies where Au18Pt18 preserves the structural integrity of the molecule and surface. In particular, adsorption of molecules onto Au18Pt18 frequently results in low adsorption energies and high reactivity with minor surface reconstruction of Au18Pt18 and average bond lengths of molecules. The decrease in adsorption energy can be attributed to the presence of platinum, while gold can be considered responsible for structural stability. In addition, molecule dissociation is observed in the cases of H2, HCl, CH4, SO, and SO2 when Pt atoms are involved. Thus, two-dimensional Au9, Pt9, and Au18Pt18 show low adsorption energies against common molecules, reflecting adsorption energies observed in small Au and Pt clusters. These results demonstrate that Au18Pt18 can successfully utilize the low adsorption energies associated with platinum while preserving the integrity of the surface structure using gold atoms, making it possible to adsorb desired molecules using select areas of the Au18Pt18 surface. PMID:27608367

  16. Hydrogen-induced ferromagnetism in two-dimensional Pt dichalcogenides

    NASA Astrophysics Data System (ADS)

    Manchanda, P.; Enders, A.; Sellmyer, D. J.; Skomski, R.

    2016-09-01

    Electronic, structural, and magnetic properties of Pt dichalcogenide monolayers are investigated using first-principle calculations. We find that hydrogenation lifts the spin degeneracy in narrow antibonding Pt 5 d subband electrons and transforms the nonmagnetic semiconductors Pt X2(X =S ,Se ,Te ) into ferromagnetic metals, Pt X2 -1H; neither strain nor thin-film edges are necessary to support the transition. The trend towards ferromagnetism is most pronounced for X =S , decreasing with increasing atomic weight of the chalcogens.

  17. Surface diffusion modes for Pt dimers and trimers on Pt(001)

    SciTech Connect

    Kellogg, G.L.; Voter, A.F. Los Alamos National Laboratory, Los Alamos, New Mexico )

    1991-07-29

    Field-ion-microscope observations and molecular statics calculations using embedded-atom-method potentials have identified the surface diffusion modes for Pt dimers and trimers on Pt(001). Dimers migrate by a series of displacements involving exchange between one of the dimer atoms and a substrate atom and have a lower activation barrier for diffusion than monomers. Trimer diffusion involves both exchange and hopping displacements and has an activation barrier comparable to monomers.

  18. Unusual cluster shapes and directional bonding of an fcc metal: Pt/Pt(111).

    PubMed

    Schmid, Michael; Garhofer, Andreas; Redinger, Josef; Wimmer, Florian; Scheiber, Philipp; Varga, Peter

    2011-07-01

    Small clusters of Pt adatoms grown on Pt(111) exhibit a preference for the formation of linear chains, which cannot be explained by simple diffusion-limited aggregation. Density functional theory calculations show that short chains are energetically favorable to more compact configurations due to strong directional bonding by d(z)(2)-like orbitals, explaining the stability of the chains. The formation of the chains is governed by substrate distortions, leading to funneling towards the chain ends. PMID:21797553

  19. Simulation of electroforming of the Pt/NiO/Pt switching memory structure

    NASA Astrophysics Data System (ADS)

    Sysun, V. I.; Sysun, I. V.; Boriskov, P. P.

    2016-05-01

    We analyze experimental data on a transient thermal electroforming of a Pt/NiO/Pt unipolar memory switching structure. Numerical simulation of this process shows that the channel can be identified with the melting region of nickel oxide, in which its cross section is determined by the maximal breakdown current, a considerable contribution to which can come from a parasitic capacitance. Rough analytic approximations are given for estimating the channel formation parameters.

  20. Structural and magnetic properties of the ordered FePt{sub 3}, FePt and Fe{sub 3}Pt nanoparticles

    SciTech Connect

    Liu, Yang; Jiang, Yuhong; Zhang, Xiaolong; Wang, Yaxin; Zhang, Yongjun; Liu, Huilian; Zhai, Hongju; Liu, Yanqing; Yang, Jinghai; Yan, Yongsheng

    2014-01-15

    The Fe{sub x}Pt{sub 100−x} nanoparticles (NPs) with different nominal atomic rations (30≤x≤80) were synthesized at 700 °C by the sol–gel method. The structure, morphology and magnetic properties of the samples were investigated. When the Fe content in the Fe–Pt alloy NPs was 30 at%, FePt{sub 3} NPs were successfully synthesized. With the increase in Fe content up to 50 at%, it was found that the superlattice reflections (0 0 1) and (1 1 0) appeared, which indicated the formation of the L1{sub 0}-FePt phase. Meanwhile, the FePt{sub 3} fraction was reduced. When the Fe content increased to 60 at%, single-phase L1{sub 0}-FePt NPs were synthesized. The coercivity (Hc), saturation magnetization (Ms) and chemical order parameter S for Fe{sub 60}Pt{sub 40} NPs were as high as 10,200 Oe, 17.567 emu/g and 0.928, respectively. With the further increase of the Fe content to 80 at%, only Fe{sub 3}Pt phase existed and the Hc of the Fe{sub 3}Pt NPs decreased drastically to 360 Oe. - Graphical abstract: Fe{sub 3}Pt, FePt and FePt{sub 3} nanoparticles was obtained by sol–gel method. The effect of iron and platinum content on structural and magnetic properties of the FePt nanoparticles was investigated. Display Omitted - Highlights: • L1{sub 2}-FePt{sub 3}, L1{sub 0}-FePt and L1{sub 2}-Fe{sub 3}Pt NPs were synthesized by sol–gel method. • The chemical order parameter S affects the magnetic properties of the Fe–Pt alloy. • Structural and magnetic properties of the Fe–Pt alloy NPs were studied. • The synthetic route in this study will open up the possibilities of practical use.

  1. Magnetism in single-crystalline CePtSn.

    SciTech Connect

    Bordallo, H. N.; Chang, S.; Lacerda, A. H.; Nakotte, H.; Takabatake, T.; Torikachvili, M. S.

    1999-08-04

    CePtSn exhibits two antiferromagnetic transitions at low temperatures. We report on magnetoresistance and in magnetization studies of single-crystalline CePtSn in magnetic fields up to 18 T. The data were taken to establish the magnetic phase diagrams for CePtSn in fields applied along the principal directions.

  2. Effects of thermal magnetic fluctuations on spin transport in Pt

    NASA Astrophysics Data System (ADS)

    Freeman, Ryan; Zholud, Andrei; Cao, Rongxing; Urazhdin, Sergei

    Despite extensive studies and applications of Pt as a spin Hall material in spintronic devices, its spin-dependent transport properties are still debated. We present a comprehensive experimental study of spin transport in Pt, utilizing measurements of giant magnetoresistance (GMR) in nanoscale Permalloy (Py)-based spin valves with Pt inserted in the nonmagnetic spacer. The spin diffusion length and the interfacial spin flipping coefficients are extracted from the dependence of MR on the Pt thickness. For samples with Pt separated from Py by Cu spacers, the spin diffusion length is 6 nm at 7K, and decreases to 3 nm at room temperature. The interfacial spin flipping decreases with increasing temperature, resulting in nonmonotonic temperature dependence of MR in samples with thin Pt. In contrast, in samples with Pt in direct contact with Py, we do not observe such a nonmonotonic dependence, and the spin diffusion length is significantly larger than in samples with Pt surrounded by Cu spacers. Our results indicate a large effect of the giant paramagnetic fluctuations in the nearly ferromagnetic Pt. These fluctuations are suppressed due to the proximity magnetism when Pt is in contact with Py, resulting in enhanced spin diffusion length and reduced spin flipping at the Pt interfaces. These observations indicate the need for a critical revision of spin transport and spin Hall-related properties of Pt-based structures. Supported by NSF ECCS-1305586.

  3. Probing the solvent shell with 195Pt chemical shifts: density functional theory molecular dynamics study of Pt(II) and Pt(IV) anionic complexes in aqueous solution.

    PubMed

    Truflandier, Lionel A; Autschbach, Jochen

    2010-03-17

    Ab initio molecular dynamics (aiMD) simulations based on density functional theory (DFT) were performed on a set of five anionic platinum complexes in aqueous solution. (195)Pt nuclear magnetic shielding constants were computed with DFT as averages over the aiMD trajectories, using the two-component relativistic zeroth-order regular approximation (ZORA) in order to treat relativistic effects on the Pt shielding tensors. The chemical shifts obtained from the aiMD averages are in good agreement with experimental data. For Pt(II) and Pt(IV) halide complexes we found an intermediate solvent shell interacting with the complexes that causes pronounced solvent effects on the Pt chemical shifts. For these complexes, the magnitude of solvent effects on the Pt shielding constant can be correlated with the surface charge density. For square-planar Pt complexes the aiMD simulations also clearly demonstrate the influence of closely coordinated non-equatorial water molecules on the Pt chemical shift, relating the structure of the solution around the complex to the solvent effects on the metal NMR chemical shift. For the complex [Pt(CN)(4)](2-), the solvent effects on the Pt shielding constant are surprisingly small.

  4. Modification of Pt/Co/Pt film properties by ion irradiation

    NASA Astrophysics Data System (ADS)

    Avchaciov, K. A.; Ren, W.; Djurabekova, F.; Nordlund, K.; Sveklo, I.; Maziewski, A.

    2015-09-01

    We studied the structural modifications of a Pt/Co/Pt trilayer epitaxial film under Ga+ 30-keV ion irradiation by means of classical molecular dynamics and Monte Carlo simulations. The semiclassical tight-binding second-moment approximation potential was adjusted to reproduce the enthalpies of formation, the lattice constants, and the order-disorder transition temperatures for Co-Pt alloys. We found that during irradiation, the sandwich-type Pt(fcc)/Co(hcp)/Pt(fcc) film structure underwent a transition to the new solid solution α -Co /Pt (fcc ) phase. Our analysis of the short-range order indicates the formation, within a nanosecond time scale, of a homogeneous chemically disordered solution. The longer time-scale simulations employing a Monte Carlo algorithm demonstrated that the transition from the disordered phase to the ordered L 10 and L 12 phases was also possible but not significant for the changes in perpendicular magnetic anisotropy (PMA) observed experimentally. The strain analysis showed that the Co layer was under tensile strain in the lateral direction at the fluences of 1.5 ×1014-3.5 ×1014ionscm -2 ; this range of fluences corresponds to the appearance of PMA. This strain was induced in the initially relaxed hcp Co layer due to its partial transformation to the fcc phase and to the influence of atomic layers with larger lattice constants at upper/lower interfaces.

  5. Alternative alloys for platinum jewelry? New structures in Pt-Hf and Pt-Mo

    NASA Astrophysics Data System (ADS)

    Gilmartin, Erin; Corbitt, Jacqueline; Hart, Gus

    2008-10-01

    The only known intermetallic structure with an 8:1 stoichiometry is that of Pt8Ti. It is intriguing that an ordered compound would occur at such low concentrations of the minority atom. But this structure occurs in about a dozen binary intermetallic systems. The formation of an ordered structure can significantly enhance the performance of the material, particularly the hardness. Pt- and Pd-rich ordered structures have been experimentally studied in the systems Pt/Pd-X where X is Ti, V, Cr, Zr, Nb, M, Hf, Ta, and W. We took a broader look at 80 Pt/Pd rich alloys to find new candidates for the 8:1 structure and have found about 20. In order to verify our predictions, we used the cluster expansion to find the stable structures. We first applied the cluster expansion to Pt-Hf and Pt-Mo because these two candidates are the most likely to form the 8:1 structure. These new candidates can have applications in the jewelry and catalysis industries.

  6. An evaluation of Pt sulfite acid (PSA) as precursor for supported Pt catalysts

    SciTech Connect

    Regalbuto, J.R.; Ansel, O.; Miller, J.T.

    2010-11-12

    As a catalyst precursor, platinum sulfite acid (PSA) is easy to use and not relatively expensive, and is a potentially attractive precursor for many types of supported catalysts. The ultimate usefulness for many catalyst applications will depend on the extent that Pt can be dispersed and sulfur eliminated. To our knowledge, there exists no detailed characterization in the catalysis literature of PSA and the nanoparticulate Pt phases derived from it during catalyst pretreatment. To this end a series of supports including alumina, silica, magnesia, niobia, titania, magnesia and carbon were contacted with PSA solutions and subsequently analyzed with extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) analysis, and x-ray photoelectron spectroscopy (XPS) to characterize the Pt species formed upon impregnation, calcination, and reduction. While all catalysts show retention of some S, reasonably small particle sizes with relatively little Pt-S can in some instances be produced using PSA. The amount of retained sulfur appears to decrease with decreasing surface acidity, although even the most acidic supports (niobia and silica) display some storage of S even while only Pt-O bands are observed after calcination or reoxidation. More sulfur was eliminated by high temperature calcinations followed by reduction in hydrogen, at the expense of increasing Pt particle size.

  7. Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction

    PubMed Central

    Han, Lin; Liu, Hui; Cui, Penglei; Peng, Zhijian; Zhang, Suojiang; Yang, Jun

    2014-01-01

    Noble metal nanoparticles with hollow interiors and customizable shell compositions have immense potential for catalysis. Herein, we present an unique structure transformation phenomenon for the fabrication of alloy Cu3Pt nanoframes with polyhedral morphology. This strategy starts with the preparation of polyhedral Cu-Pt nanoparticles with a core-shell construction upon the anisotropic growth of Pt on multiply twinned Cu seed particles, which are subsequently transformed into alloy Cu3Pt nanoframes due to the Kirkendall effect between the Cu core and Pt shell. The as-prepared alloy Cu3Pt nanoframes possess the rhombic dodecahedral morphology of their core-shell parents after the structural evolution. In particular, the resulting alloy Cu3Pt nanoframes are more effective for oxygen reduction reaction but ineffective for methanol oxidation reaction in comparison with their original Cu-Pt core-shell precursors. PMID:25231376

  8. Dealloying of mesoporous PtCu alloy film for the synthesis of mesoporous Pt films with high electrocatalytic activity.

    PubMed

    Li, Cuiling; Malgras, Victor; Aldalbahi, Ali; Yamauchi, Yusuke

    2015-02-01

    Mesoporous Pt film with highly electrocatalytic activity is successfully synthesized by dealloying of mesoporous PtCu alloy film prepared through electrochemical micelle assembly. The resulting mesoporous electrode exhibits high current density and superior stability toward the methanol oxidation reaction.

  9. Monofunctional Platinum (PtII) Compounds - Shifting the Paradigm in Designing New Pt-based Anticancer Agents.

    PubMed

    Chong, Shu Xian; Au-Yeung, Steve Chik Fun; To, Kenneth Kin Wah

    2016-01-01

    Platinum (Pt)-based anticancer drugs, exemplified by cisplatin, are key components in combination chemotherapy. However, their effective use is hindered by toxicity and emergence of drug resistance. They bind to DNA and mainly form the Pt-GG diadduct, subsequently leading to apoptosis to mediate cell death. On the other hand, the Pt drug -proteins and -metabolites interactions, which involve the reaction between Pt and sulfur sites located in protein side chains and important bionucleophiles (e.g., glutathione), are responsible for the toxicity and drug resistance problem. Therefore, carefully designed coordinating ligands may provide the means of fine tuning the electronic environment around the core Pt atom and allow the resulting Pt compounds to bind with the DNA in a different manner. This may produce alternative cell death mechanisms in cancer cells, thereby circumventing Pt resistance. This article reviewed the recent development in monofunctional Pt complexes and their prospects in becoming a new generation of anticancer drugs.

  10. Preparation of Pt Nanocatalyst on Carbon Materials via a Reduction Reaction of a Pt Precursor in a Drying Process.

    PubMed

    Lee, Jae-Young; Lee, Woo-Kum; Rim, Hyung-Ryul; Joung, Gyu-Bum; Weidner, John W; Lee, Hong-Ki

    2016-06-01

    Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time. PMID:27427723

  11. Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction

    NASA Astrophysics Data System (ADS)

    Han, Lin; Liu, Hui; Cui, Penglei; Peng, Zhijian; Zhang, Suojiang; Yang, Jun

    2014-09-01

    Noble metal nanoparticles with hollow interiors and customizable shell compositions have immense potential for catalysis. Herein, we present an unique structure transformation phenomenon for the fabrication of alloy Cu3Pt nanoframes with polyhedral morphology. This strategy starts with the preparation of polyhedral Cu-Pt nanoparticles with a core-shell construction upon the anisotropic growth of Pt on multiply twinned Cu seed particles, which are subsequently transformed into alloy Cu3Pt nanoframes due to the Kirkendall effect between the Cu core and Pt shell. The as-prepared alloy Cu3Pt nanoframes possess the rhombic dodecahedral morphology of their core-shell parents after the structural evolution. In particular, the resulting alloy Cu3Pt nanoframes are more effective for oxygen reduction reaction but ineffective for methanol oxidation reaction in comparison with their original Cu-Pt core-shell precursors.

  12. Exceptional fermentation characteristics of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii.

    PubMed

    Gangl, Helmut; Batusic, Maria; Tscheik, Gabriele; Tiefenbrunner, Wolfgang; Hack, Claudia; Lopandic, Ksenija

    2009-04-01

    In the present article we describe the fermentation characteristics of some novel, natural yeast hybrids (S. cerevisiaexS. kudriavzevii), isolated from Austrian vineyards, and their significance for the aroma spectra of wines they produced. S. cerevisiae, S. bayanus var. uvarum and S. kudriavzevii were used for comparison. Fermentation took place at four different temperatures (14 degrees C, 18 degrees C, 22 degrees C and 26 degrees C) in two grape must varieties, Blauburger and Muskat Ottonell. The fermentation performed by the hybrids occurred more harmoniously than that carried out by the reference yeasts. At any temperature the fermentation rate was in the upper range, especially that of fructose fermentation. Furthermore, the production of ethanol was remarkable. The aroma compositions of wines created by hybrids resemble those of the parental species, but certain aroma constituents (depending on the must) are significantly more concentrated in the hybrid-produced wines. These novel criteria may be advantageous for wine making.

  13. The reference genome sequence of Saccharomyces cerevisiae: then and now.

    PubMed

    Engel, Stacia R; Dietrich, Fred S; Fisk, Dianna G; Binkley, Gail; Balakrishnan, Rama; Costanzo, Maria C; Dwight, Selina S; Hitz, Benjamin C; Karra, Kalpana; Nash, Robert S; Weng, Shuai; Wong, Edith D; Lloyd, Paul; Skrzypek, Marek S; Miyasato, Stuart R; Simison, Matt; Cherry, J Michael

    2014-03-01

    The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called "S288C 2010," was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science. PMID:24374639

  14. Bioethanol production from sweet potato using Saccharomyces diastaticus

    NASA Astrophysics Data System (ADS)

    Abdullah, Suryani, Irma; Pradia Paundradewa, J.

    2015-12-01

    Sweet potato contains about 16 to 40% dry matter and about 70-90% of the dry matter is a carbohydrate made up of starch, sugar, cellulose, hemicellulose and pectin so suitable for used as raw material for bioethanol. In this study focused on the manufacture of bioethanol with changes in temperature and concentration variations of yeast with sweet potato raw materials used yeast Saccharomyces diastaticus. Operating variables used are at a temperature of 30°C; 31,475°C; 35°C; 38,525°C; and 40°C with a yeast concentration of 25.9%; 30%; 40%; 50% and 54.1%. The experimental results obtained, the optimum conditions of ethanol fermentation with yeast Saccharomyces diastaticus on 36,67 °C temperature and yeast concentration of 43,43 % v / v.

  15. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    PubMed

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae.

  16. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    PubMed

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae. PMID:23764836

  17. Genome annotation of a Saccharomyces sp. lager brewer's yeast.

    PubMed

    De León-Medina, Patricia Marcela; Elizondo-González, Ramiro; Damas-Buenrostro, Luis Cástulo; Geertman, Jan-Maarten; Van den Broek, Marcel; Galán-Wong, Luis Jesús; Ortiz-López, Rocío; Pereyra-Alférez, Benito

    2016-09-01

    The genome of lager brewer's yeast is a hybrid, with Saccharomyces eubayanus and Saccharomyces cerevisiae as sub-genomes. Due to their specific use in the beer industry, relatively little information is available. The genome of brewing yeast was sequenced and annotated in this study. We obtained a genome size of 22.7 Mbp that consisted of 133 scaffolds, with 65 scaffolds larger than 10 kbp. With respect to the annotation, 9939 genes were obtained, and when they were submitted to a local alignment, we found that 53.93% of these genes corresponded to S. cerevisiae, while another 42.86% originated from S. eubayanus. Our results confirm that our strain is a hybrid of at least two different genomes.

  18. Saccharomyces Genome Database: the genomics resource of budding yeast

    PubMed Central

    Cherry, J. Michael; Hong, Eurie L.; Amundsen, Craig; Balakrishnan, Rama; Binkley, Gail; Chan, Esther T.; Christie, Karen R.; Costanzo, Maria C.; Dwight, Selina S.; Engel, Stacia R.; Fisk, Dianna G.; Hirschman, Jodi E.; Hitz, Benjamin C.; Karra, Kalpana; Krieger, Cynthia J.; Miyasato, Stuart R.; Nash, Rob S.; Park, Julie; Skrzypek, Marek S.; Simison, Matt; Weng, Shuai; Wong, Edith D.

    2012-01-01

    The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use. PMID:22110037

  19. Saccharomyces Genome Database: the genomics resource of budding yeast.

    PubMed

    Cherry, J Michael; Hong, Eurie L; Amundsen, Craig; Balakrishnan, Rama; Binkley, Gail; Chan, Esther T; Christie, Karen R; Costanzo, Maria C; Dwight, Selina S; Engel, Stacia R; Fisk, Dianna G; Hirschman, Jodi E; Hitz, Benjamin C; Karra, Kalpana; Krieger, Cynthia J; Miyasato, Stuart R; Nash, Rob S; Park, Julie; Skrzypek, Marek S; Simison, Matt; Weng, Shuai; Wong, Edith D

    2012-01-01

    The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use. PMID:22110037

  20. The Saccharomyces Genome Database: A Tool for Discovery.

    PubMed

    Cherry, J Michael

    2015-12-01

    The Saccharomyces Genome Database (SGD) is the main community repository of information for the budding yeast, Saccharomyces cerevisiae. The SGD has collected published results on chromosomal features, including genes and their products, and has become an encyclopedia of information on the biology of the yeast cell. This information includes gene and gene product function, phenotype, interactions, regulation, complexes, and pathways. All information has been integrated into a unique web resource, accessible via http://yeastgenome.org. The website also provides custom tools to allow useful searches and visualization of data. The experimentally defined functions of genes, mutant phenotypes, and sequence homologies archived in the SGD provide a platform for understanding many fields of biological research. The mission of SGD is to provide public access to all published experimental results on yeast to aid life science students, educators, and researchers. As such, the SGD has become an essential tool for the design of experiments and for the analysis of experimental results. PMID:26631132

  1. Genome annotation of a Saccharomyces sp. lager brewer's yeast.

    PubMed

    De León-Medina, Patricia Marcela; Elizondo-González, Ramiro; Damas-Buenrostro, Luis Cástulo; Geertman, Jan-Maarten; Van den Broek, Marcel; Galán-Wong, Luis Jesús; Ortiz-López, Rocío; Pereyra-Alférez, Benito

    2016-09-01

    The genome of lager brewer's yeast is a hybrid, with Saccharomyces eubayanus and Saccharomyces cerevisiae as sub-genomes. Due to their specific use in the beer industry, relatively little information is available. The genome of brewing yeast was sequenced and annotated in this study. We obtained a genome size of 22.7 Mbp that consisted of 133 scaffolds, with 65 scaffolds larger than 10 kbp. With respect to the annotation, 9939 genes were obtained, and when they were submitted to a local alignment, we found that 53.93% of these genes corresponded to S. cerevisiae, while another 42.86% originated from S. eubayanus. Our results confirm that our strain is a hybrid of at least two different genomes. PMID:27330999

  2. One-Step Synthesis of Pt/Graphene Composites from Pt Acid Dissolved Ethanol via Microwave Plasma Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Jo, Eun Hee; Chang, Hankwon; Kim, Sun Kyung; Choi, Ji-Hyuk; Park, Su-Ryeon; Lee, Chong Min; Jang, Hee Dong

    2016-09-01

    Pt nanoparticles-laden graphene (Pt/GR) composites were synthesized in the gas phase from a mixture of ethanol and Pt precursor by microwave plasma spray pyrolysis. The morphology of Pt/GR composites has the shape of wrinkled sheets of paper, while Pt nanoparticles (Pt NPs) that are less than 2.6 nm in the mean diameter are uniformly well deposited on the surface of GR sheets stacked in only three layers. The Pt/GR composite prepared with 20 wt% of Pt had the highest specific surface area and electrochemical surface area of up to 402 m2 g‑1 and 77 m2 g‑1 (Pt), respectively. In addition, the composite showed superior electrocatalytic activity compared with commercial Pt-carbon black. The excellent electrocatalytic activity was attributed to the high specific surface area and electrochemical surface area of the Pt/GR composite directly produced by microwave plasma spray pyrolysis. Thus, it is clearly expected that the Pt/GR composite is a promising material for DMFC catalysts.

  3. One-Step Synthesis of Pt/Graphene Composites from Pt Acid Dissolved Ethanol via Microwave Plasma Spray Pyrolysis.

    PubMed

    Jo, Eun Hee; Chang, Hankwon; Kim, Sun Kyung; Choi, Ji-Hyuk; Park, Su-Ryeon; Lee, Chong Min; Jang, Hee Dong

    2016-09-13

    Pt nanoparticles-laden graphene (Pt/GR) composites were synthesized in the gas phase from a mixture of ethanol and Pt precursor by microwave plasma spray pyrolysis. The morphology of Pt/GR composites has the shape of wrinkled sheets of paper, while Pt nanoparticles (Pt NPs) that are less than 2.6 nm in the mean diameter are uniformly well deposited on the surface of GR sheets stacked in only three layers. The Pt/GR composite prepared with 20 wt% of Pt had the highest specific surface area and electrochemical surface area of up to 402 m(2) g(-1) and 77 m(2) g(-1) (Pt), respectively. In addition, the composite showed superior electrocatalytic activity compared with commercial Pt-carbon black. The excellent electrocatalytic activity was attributed to the high specific surface area and electrochemical surface area of the Pt/GR composite directly produced by microwave plasma spray pyrolysis. Thus, it is clearly expected that the Pt/GR composite is a promising material for DMFC catalysts.

  4. One-Step Synthesis of Pt/Graphene Composites from Pt Acid Dissolved Ethanol via Microwave Plasma Spray Pyrolysis

    PubMed Central

    Jo, Eun Hee; Chang, Hankwon; Kim, Sun Kyung; Choi, Ji-Hyuk; Park, Su-Ryeon; Lee, Chong Min; Jang, Hee Dong

    2016-01-01

    Pt nanoparticles-laden graphene (Pt/GR) composites were synthesized in the gas phase from a mixture of ethanol and Pt precursor by microwave plasma spray pyrolysis. The morphology of Pt/GR composites has the shape of wrinkled sheets of paper, while Pt nanoparticles (Pt NPs) that are less than 2.6 nm in the mean diameter are uniformly well deposited on the surface of GR sheets stacked in only three layers. The Pt/GR composite prepared with 20 wt% of Pt had the highest specific surface area and electrochemical surface area of up to 402 m2 g−1 and 77 m2 g−1 (Pt), respectively. In addition, the composite showed superior electrocatalytic activity compared with commercial Pt-carbon black. The excellent electrocatalytic activity was attributed to the high specific surface area and electrochemical surface area of the Pt/GR composite directly produced by microwave plasma spray pyrolysis. Thus, it is clearly expected that the Pt/GR composite is a promising material for DMFC catalysts. PMID:27622908

  5. Investigation of the electrocatalysis for oxygen reduction reaction by Pt and binary Pt alloys: an XRD, XAS and electrochemical study

    SciTech Connect

    Mukerjee, S.; McBreen, J.; Srinivasan, S.

    1995-12-31

    Electrocatalysis for the oxygen reduction reaction (ORR) on five binary Pt alloy electrocatalysts (PtCr/C, PtMn/C, PtFe/C, PtCo/C and PtNi/C) supported on carbon have been investigated. The electrochemical characteristics for ORR in a proton conducting fuel cell environment has been correlated with the electronic and structural parameters determined under in situ conditions using XANES and EXAFS technique respectively. Results indicate that all the alloys possess higher Pt 5d band vacancies as compared to Pt/C. There is also evidence of lattice contraction in the alloys (supported by XRD results). Further, the Pt/C shows increase in Pt 5 d band vacancies during potential transitions from 0.54 to 0.84 V vs. RHE, which has been ration@ on the basis of OH type adsorption. In contrast to this, the alloys do not exhibit such an enhancement. Detailed EXAFS analysis supports the presence of OH species on Pt/C and its relative absence in the alloys. Correlation of the electrochemical results with bond distances and d-band vacancies show a volcano type behavior with the PtCr/C on top of the curve.

  6. Surface enrichment of Pt in Ga2O3 films grown on liquid Pt/Ga alloys

    NASA Astrophysics Data System (ADS)

    Grabau, Mathias; Krick Calderón, Sandra; Rietzler, Florian; Niedermaier, Inga; Taccardi, Nicola; Wasserscheid, Peter; Maier, Florian; Steinrück, Hans-Peter; Papp, Christian

    2016-09-01

    The formation of surface Ga2O3 films on liquid samples of Ga, and Pt-Ga alloys with 0.7 and 1.8 at.% Pt was examined using near-ambient pressure (NAP) X-ray photoelectron spectroscopy (XPS). Thickness, composition and growth of the oxide films were deduced as a function of temperature and Pt content of the alloys, in ultra-high vacuum and at oxygen pressures of 3 × 10- 7, 3 × 10- 3 and 1 mbar. We examined oxide layers up to a thickness of 37 Å. Different growth modes were found for oxidation at low and high pressures. The formed Ga2O3 oxide films showed an increased Pt content, while the pristine GaPt alloy showed a surface depletion of Pt at the examined temperatures. Upon growth of Ga2O3 on Pt/Ga alloys a linear increase of Pt content was observed, due to the incorporation of 3.6 at.% Pt in the Ga2O3. The Pt content in Ga2O3, at the examined temperatures and bulk Pt concentrations is found to be independent of pressure, temperature and the nominal Pt content of the metallic alloy.

  7. Granular nanostructures and magnetic characteristics of FePt-TiO{sub 2}/FePt-C stacked granular films

    SciTech Connect

    Ono, Takuya Moriya, Tomohiro; Hatayama, Masatoshi; Kikuchi, Nobuaki; Okamoto, Satoshi; Kitakami, Osamu; Shimatsu, Takehito

    2014-05-07

    To realize a granular film composed of L1{sub 0}-FePt grains with high uniaxial magnetic anisotropy energy, K{sub u}, and segregants for heat-assisted magnetic recording, the FePt-TiO{sub 2}/FePt-C stacked film was investigated. The FePt-TiO{sub 2}/FePt-C stacked film has well-isolated granular structure with average grain size of 6.7 nm because the FePt-TiO{sub 2} film follows the FePt-C template film in microstructural growth. However, the K{sub u} value is quite low for total thickness of 9 nm: 5 × 10{sup 6} erg/cm{sup 3}. Exploration of the thickness dependence of L1{sub 0}-FePt(001) peaks in XRD spectra and cross-sectional TEM images suggest that degradation of the L1{sub 0} ordering appears near the middle of the FePt-TiO{sub 2} layer. The EDX-STEM mapping reveals that Ti atoms exist within the FePt grains in addition to the grain boundary. This indicates the possibility that TiO{sub 2} tends to be incorporated into the FePt grains and that it prevents L1{sub 0}-ordering of the FePt grains along the normal-to-plane direction.

  8. One-Step Synthesis of Pt/Graphene Composites from Pt Acid Dissolved Ethanol via Microwave Plasma Spray Pyrolysis.

    PubMed

    Jo, Eun Hee; Chang, Hankwon; Kim, Sun Kyung; Choi, Ji-Hyuk; Park, Su-Ryeon; Lee, Chong Min; Jang, Hee Dong

    2016-01-01

    Pt nanoparticles-laden graphene (Pt/GR) composites were synthesized in the gas phase from a mixture of ethanol and Pt precursor by microwave plasma spray pyrolysis. The morphology of Pt/GR composites has the shape of wrinkled sheets of paper, while Pt nanoparticles (Pt NPs) that are less than 2.6 nm in the mean diameter are uniformly well deposited on the surface of GR sheets stacked in only three layers. The Pt/GR composite prepared with 20 wt% of Pt had the highest specific surface area and electrochemical surface area of up to 402 m(2) g(-1) and 77 m(2) g(-1) (Pt), respectively. In addition, the composite showed superior electrocatalytic activity compared with commercial Pt-carbon black. The excellent electrocatalytic activity was attributed to the high specific surface area and electrochemical surface area of the Pt/GR composite directly produced by microwave plasma spray pyrolysis. Thus, it is clearly expected that the Pt/GR composite is a promising material for DMFC catalysts. PMID:27622908

  9. A global topology map of the Saccharomyces cerevisiae membrane proteome.

    PubMed

    Kim, Hyun; Melén, Karin; Osterberg, Marie; von Heijne, Gunnar

    2006-07-25

    The yeast Saccharomyces cerevisiae is, arguably, the best understood eukaryotic model organism, yet comparatively little is known about its membrane proteome. Here, we report the cloning and expression of 617 S. cerevisiae membrane proteins as fusions to a C-terminal topology reporter and present experimentally constrained topology models for 546 proteins. By homology, the experimental topology information can be extended to approximately 15,000 membrane proteins from 38 fully sequenced eukaryotic genomes.

  10. Extrachromosomal circular ribosomal DNA in the yeast Saccharomyces carlsbergensis.

    PubMed Central

    Meyerink, J H; Klootwijk, J; Planta, R J; van der Ende, A; van Bruggen, E F

    1979-01-01

    Purified ribosomal DNA from Saccharomyces carlsbergensis contains a small proportion of circular DNA molecules with a contour length of 3 micron or integral multiples thereof. Hybridization of yeast ribosomal DNA with 26 S rRNA, using the R-loop technique, reveals that these circular molecules contain sequences complementary to yeast ribosomal RNA. We suggest that these extrachromosomal rRNA genes may be intermediates in the amplification of rRNA genes in yeast. Images PMID:493145

  11. Recovery of Saccharomyces cerevisiae from ethanol - induced growth inhibition

    SciTech Connect

    Walker-Caprioglio, H.M.; Rodriguez, R.J.; Parks, L.W.

    1985-09-01

    Ethanol caused altered mobility of the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene in plasma membrane preparations of Saccharomyces cerevisiae. Because lipids had been shown to protect yeast cells against ethanol toxicity, sterols, fatty acids, proteins, and combinations of these were tested; however, protection from growth inhibition was not seen. Ethanol-induced, prolonged lag periods and diminished growth rates in S. cerevisiae were reduced by an autoconditioning of the medium by the inoculum.

  12. Determination of intrinsic spin Hall angle in Pt

    SciTech Connect

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo

    2014-10-13

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  13. Exactly solvable PT -symmetric models in two dimensions

    NASA Astrophysics Data System (ADS)

    Agarwal, Kaustubh S.; Pathak, Rajeev K.; Joglekar, Yogesh N.

    2015-11-01

    Non-Hermitian, PT -symmetric Hamiltonians, experimentally realized in optical systems, accurately model the properties of open, bosonic systems with balanced, spatially separated gain and loss. We present a family of exactly solvable, two-dimensional, PT potentials for a non-relativistic particle confined in a circular geometry. We show that the PT -symmetry threshold can be tuned by introducing a second gain-loss potential or its Hermitian counterpart. Our results explicitly demonstrate that PT breaking in two dimensions has a rich phase diagram, with multiple re-entrant PT -symmetric phases.

  14. Pt skin on Pd-Co-Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR

    NASA Astrophysics Data System (ADS)

    Xiao, Weiping; Zhu, Jing; Han, Lili; Liu, Sufen; Wang, Jie; Wu, Zexing; Lei, Wen; Xuan, Cuijuan; Xin, Huolin L.; Wang, Deli

    2016-08-01

    Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). Herein, a highly active, durable, carbon supported, and monolayer Pt coated Pd-Co-Zn nanoparticle is synthesized via a simple impregnation-reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition-activity volcano curve for the Pd-Co-Zn nanoparticles and determined that Pd : Co : Zn = 8 : 1 : 1 is the optimal composition. Compared with pure Pd/C, the Pd8CoZn/C nanoparticles show a substantial enhancement in both the catalytic activity and the durability toward the ORR. Moreover, the durability and activity are further enhanced by forming a Pt skin on Pd8CoZn/C nanocatalysts. Interestingly, after 10 000 potential cycles in N2-saturated 0.1 M HClO4 solution, Pd8CoZn@Pt/C shows improved mass activity (2.62 A mg-1Pt) and specific activity (4.76 A m-2total), which are about 1.4 and 4.4 times higher than the initial values, and 37.4 and 5.5 times higher than those of Pt/C catalysts, respectively. After accelerated stability testing in O2-saturated 0.1 M HClO4 solution for 30 000 potential cycles, the half-wave potential negatively shifts about 6 mV. The results show that the Pt skin plays an important role in enhancing the activity as well as preventing degradation.Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). Herein, a highly active, durable, carbon supported, and monolayer Pt coated Pd-Co-Zn nanoparticle is synthesized via a simple impregnation-reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition-activity volcano curve for the Pd-Co-Zn nanoparticles and determined that Pd : Co : Zn = 8

  15. Experimental measurements of the heats of formation of Fe{sub 3}Pt, FePt, and FePt{sub 3} using differential scanning calorimetry

    SciTech Connect

    Wang, B.; Berry, D. C.; Chiari, Y.; Barmak, K.

    2011-07-01

    Using differential scanning calorimetry (DSC), the heats of formation of Fe{sub 3}Pt, FePt, and FePt{sub 3} were determined from the reaction of sputter deposited Fe/Pt multilayer thin-films with a periodicity of 200 nm but different overall compositions. Film compositions were measured by energy dispersive x-ray spectrometry. The phases present along the reaction path were identified by x-ray diffraction. For the most Fe-rich phase, namely, Fe{sub 3}Pt, the measured enthalpy of formation was -9.3 {+-} 1.3 kJ/mol in a film with a composition of 70.4:29.6 ({+-}0.2 at. %) Fe:Pt. For FePt, the measured enthalpy of formation was -27.2 {+-} 2.2 kJ/g-atom in a 49.0:51.0 ({+-}0.5 at. %) Fe:Pt film. For FePt{sub 3}, which is the most Pt rich intermetallic phase, the measured enthalpy of formation was -23.7 {+-} 2.2 in a film with a composition of 22.2:77.8 ({+-}0.6 at. %) Fe:Pt. The reaction enthalpies for films with Fe:Pt compositions of 44.5:55.5 ({+-}0.3 at. %) and 38.5:61.5 ({+-}0.4 at. %) were -26.9 {+-} 1.0 and -26.6 {+-} 0.6 kJ/g-atom, respectively, which taken together with the value for the 49.0:51.0 film demonstrate the relative insensitivity of the reaction enthalpy to film composition over a broad composition range in the vicinity of the equiatomic composition. The experimental heats of formation are compared with two sets of reported first-principles calculated values for each of the three phases at exact stoichiometry.

  16. Pt skin on Pd-Co-Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR.

    PubMed

    Xiao, Weiping; Zhu, Jing; Han, Lili; Liu, Sufen; Wang, Jie; Wu, Zexing; Lei, Wen; Xuan, Cuijuan; Xin, Huolin L; Wang, Deli

    2016-08-21

    Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). Herein, a highly active, durable, carbon supported, and monolayer Pt coated Pd-Co-Zn nanoparticle is synthesized via a simple impregnation-reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition-activity volcano curve for the Pd-Co-Zn nanoparticles and determined that Pd : Co : Zn = 8 : 1 : 1 is the optimal composition. Compared with pure Pd/C, the Pd8CoZn/C nanoparticles show a substantial enhancement in both the catalytic activity and the durability toward the ORR. Moreover, the durability and activity are further enhanced by forming a Pt skin on Pd8CoZn/C nanocatalysts. Interestingly, after 10 000 potential cycles in N2-saturated 0.1 M HClO4 solution, Pd8CoZn@Pt/C shows improved mass activity (2.62 A mg(-1)Pt) and specific activity (4.76 A m(-2)total), which are about 1.4 and 4.4 times higher than the initial values, and 37.4 and 5.5 times higher than those of Pt/C catalysts, respectively. After accelerated stability testing in O2-saturated 0.1 M HClO4 solution for 30 000 potential cycles, the half-wave potential negatively shifts about 6 mV. The results show that the Pt skin plays an important role in enhancing the activity as well as preventing degradation. PMID:27445114

  17. Synthesis And Characterization of Pt Clusters in Aqueous Solutions

    SciTech Connect

    Siani, A.; Wigal, K.R.; Alexeev, O.S.; Amiridis, M.D.

    2009-05-26

    Extended X-ray absorption fine structure (EXAFS) and UV-visible (UV-vis) spectroscopies were used to monitor the various steps involved in the synthesis of unprotected and poly(vinyl alcohol) (PVA)-protected aqueous colloidal Pt suspensions. The results indicate that on hydrolysis of the H{sub 2}PtCl{sub 6} precursor, the Cl{sup -} ligands were partially replaced by aquo ligands in the first coordination shell of Pt to form [PtCl{sub 2}(H{sub 2}O){sub 4}]{sup 2+}. Treatment of these species with NaBH{sub 4} under controlled pH conditions led to the formation of nearly uniform Pt{sub 4} and Pt{sub 6} clusters in the absence and presence of PVA, respectively. These highly dispersed colloidal Pt suspensions were stable for several months. The addition of 2-propanol (IPA) to both types of Pt suspensions led to some sintering of the Pt clusters, although both suspensions retained their colloidal nature. Less sintering was evident in the PVA-protected Pt suspension. Both the unprotected and the PVA-protected colloidal Pt suspensions were catalytically active for the liquid-phase selective oxidation of 2-propanol to acetone, with the unprotected suspension exhibiting the highest activity.

  18. Spin Hall effects in mesoscopic Pt films with high resistivity

    NASA Astrophysics Data System (ADS)

    Qin, Chuan; Luo, Yongming; Zhou, Chao; Cai, Yunjiao; Jia, Mengwen; Chen, Shuhan; Wu, Yizheng; Ji, Yi

    2016-10-01

    The energy efficiency of the spin Hall effects (SHE) can be enhanced if the electrical conductivity is decreased without sacrificing the spin Hall conductivity. The resistivity of Pt films can be increased to 150-300 µΩ · cm by mesoscopic lateral confinement, thereby decreasing the conductivity. The SHE and inverse spin Hall effects (ISHE) in these mesoscopic Pt films are explored at 10 K by using the nonlocal spin injection/detection method. All relevant physical quantities are determined in situ on the same substrate, and a quantitative approach is developed to characterize all processes effectively. Extensive measurements with various Pt thickness values reveal an upper limit for the Pt spin diffusion length: {λ\\text{pt}}   ⩽  0.8 nm. The average product of {λ\\text{pt}} and the Pt spin Hall angle {α\\text{H}} is substantial: {α\\text{H}}{λ\\text{pt}}   =  (0.142  ±  0.040) nm for 4 nm thick Pt, though a gradual decrease is observed at larger Pt thickness. The results suggest enhanced spin Hall effects in resistive mesoscopic Pt films.

  19. Genome Snapshot: a new resource at the Saccharomyces Genome Database (SGD) presenting an overview of the Saccharomyces cerevisiae genome.

    PubMed

    Hirschman, Jodi E; Balakrishnan, Rama; Christie, Karen R; Costanzo, Maria C; Dwight, Selina S; Engel, Stacia R; Fisk, Dianna G; Hong, Eurie L; Livstone, Michael S; Nash, Robert; Park, Julie; Oughtred, Rose; Skrzypek, Marek; Starr, Barry; Theesfeld, Chandra L; Williams, Jennifer; Andrada, Rey; Binkley, Gail; Dong, Qing; Lane, Christopher; Miyasato, Stuart; Sethuraman, Anand; Schroeder, Mark; Thanawala, Mayank K; Weng, Shuai; Dolinski, Kara; Botstein, David; Cherry, J Michael

    2006-01-01

    Sequencing and annotation of the entire Saccharomyces cerevisiae genome has made it possible to gain a genome-wide perspective on yeast genes and gene products. To make this information available on an ongoing basis, the Saccharomyces Genome Database (SGD) (http://www.yeastgenome.org/) has created the Genome Snapshot (http://db.yeastgenome.org/cgi-bin/genomeSnapShot.pl). The Genome Snapshot summarizes the current state of knowledge about the genes and chromosomal features of S.cerevisiae. The information is organized into two categories: (i) number of each type of chromosomal feature annotated in the genome and (ii) number and distribution of genes annotated to Gene Ontology terms. Detailed lists are accessible through SGD's Advanced Search tool (http://db.yeastgenome.org/cgi-bin/search/featureSearch), and all the data presented on this page are available from the SGD ftp site (ftp://ftp.yeastgenome.org/yeast/).

  20. Gaseous NH3 Confers Porous Pt Nanodendrites Assisted by Halides

    PubMed Central

    Lu, Shuanglong; Eid, Kamel; Li, Weifeng; Cao, Xueqin; Pan, Yue; Guo, Jun; Wang, Liang; Wang, Hongjing; Gu, Hongwei

    2016-01-01

    Tailoring the morphology of Pt nanocrystals (NCs) is of great concern for their enhancement in catalytic activity and durability. In this article, a novel synthetic strategy is developed to selectively prepare porous dendritic Pt NCs with different structures for oxygen reduction reaction (ORR) assisted by NH3 gas and halides (F−, Cl−, Br−). The NH3 gas plays critical roles on tuning the morphology. Previously, H2 and CO gas are reported to assist the shape control of metallic nanocrystals. This is the first demonstration that NH3 gas assists the Pt anisotropic growth. The halides also play important role in the synthetic strategy to regulate the formation of Pt NCs. As-made porous dendritic Pt NCs, especially when NH4F is used as a regulating reagent, show superior catalytic activity for ORR compared with commercial Pt/C catalyst and other previously reported Pt-based NCs. PMID:27184228

  1. Gaseous NH3 Confers Porous Pt Nanodendrites Assisted by Halides

    NASA Astrophysics Data System (ADS)

    Lu, Shuanglong; Eid, Kamel; Li, Weifeng; Cao, Xueqin; Pan, Yue; Guo, Jun; Wang, Liang; Wang, Hongjing; Gu, Hongwei

    2016-05-01

    Tailoring the morphology of Pt nanocrystals (NCs) is of great concern for their enhancement in catalytic activity and durability. In this article, a novel synthetic strategy is developed to selectively prepare porous dendritic Pt NCs with different structures for oxygen reduction reaction (ORR) assisted by NH3 gas and halides (F‑, Cl‑, Br‑). The NH3 gas plays critical roles on tuning the morphology. Previously, H2 and CO gas are reported to assist the shape control of metallic nanocrystals. This is the first demonstration that NH3 gas assists the Pt anisotropic growth. The halides also play important role in the synthetic strategy to regulate the formation of Pt NCs. As-made porous dendritic Pt NCs, especially when NH4F is used as a regulating reagent, show superior catalytic activity for ORR compared with commercial Pt/C catalyst and other previously reported Pt-based NCs.

  2. Transforming AdaPT to Ada

    NASA Technical Reports Server (NTRS)

    Goldsack, Stephen J.; Holzbach-Valero, A. A.; Waldrop, Raymond S.; Volz, Richard A.

    1991-01-01

    This paper describes how the main features of the proposed Ada language extensions intended to support distribution, and offered as possible solutions for Ada9X can be implemented by transformation into standard Ada83. We start by summarizing the features proposed in a paper (Gargaro et al, 1990) which constitutes the definition of the extensions. For convenience we have called the language in its modified form AdaPT which might be interpreted as Ada with partitions. These features were carefully chosen to provide support for the construction of executable modules for execution in nodes of a network of loosely coupled computers, but flexibly configurable for different network architectures and for recovery following failure, or adapting to mode changes. The intention in their design was to provide extensions which would not impact adversely on the normal use of Ada, and would fit well in style and feel with the existing standard. We begin by summarizing the features introduced in AdaPT.

  3. Integrability of PT-symmetric dimers

    NASA Astrophysics Data System (ADS)

    Pickton, J.; Susanto, H.

    2013-12-01

    The coupled discrete linear and Kerr nonlinear Schrödinger equations with gain and loss describing transport on dimers with parity-time (PT)-symmetric potentials are considered. The model is relevant among others to experiments in optical couplers and proposals on Bose-Einstein condensates in PT-symmetric double-well potentials. It is known that the models are integrable. Here, the integrability is exploited further to construct the phase portraits of the system. A pendulum equation with a linear potential and a constant force for the phase difference between the fields is obtained, which explains the presence of unbounded solutions above a critical threshold parameter. The behavior of all solutions of the system, including changes in the topological structure of the phase plane, is then discussed.

  4. Magnetic properties of ordered NiPt

    NASA Astrophysics Data System (ADS)

    Brommer, P. E.; Franse, J. J. M.

    1988-04-01

    Thermal expansion, forced volume magnetostriction and high magnetic field data are presented on the ordered equiatomic NiPt compound. Values are derived for the magnetovolume parameter κC (≃3 × 10 -6kg2A-2m-4), and for the electronic and lattice Grüneisen parameters (Γ e ≊ 5.6; Γ latt ≊ 2.5) . Ordering effects on the magnetoelastic properties are studied for alloys containing 40-60 at % Ni.

  5. Solitons in PT-symmetric nonlinear lattices

    SciTech Connect

    Abdullaev, Fatkhulla Kh.; Konotop, Vladimir V.; Zezyulin, Dmitry A.; Kartashov, Yaroslav V.

    2011-04-15

    The existence of localized modes supported by the PT-symmetric nonlinear lattices is reported. The system considered reveals unusual properties: unlike other typical dissipative systems, it possesses families (branches) of solutions, which can be parametrized by the propagation constant; relatively narrow localized modes appear to be stable, even when the conservative nonlinear lattice potential is absent; and finally, the system supports stable multipole solutions.

  6. Effect of nitrogen upon structural and magnetic properties of FePt in FePt/AlN multilayer structures

    SciTech Connect

    Gao, Tenghua Zhang, Cong; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji

    2014-09-01

    This paper investigates the effect of the addition of nitrogen in FePt layers for ultrathin FePt/AlN multilayer structures. X-ray diffraction results reveal that a compressive stress relaxation occurs after annealing owing to the release of interstitial nitrogen atoms in the FePt layers. The introduction of nitrogen also induces a large in-plane compressive strain during grain growth not seen in FePt deposited without nitrogen. This strain is considered to decrease the driving force for (111) grain growth and FePt ordering.

  7. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells.

    PubMed

    Wang, Gongwei; Huang, Bing; Xiao, Li; Ren, Zhandong; Chen, Hao; Wang, Deli; Abruña, Héctor D; Lu, Juntao; Zhuang, Lin

    2014-07-01

    The dependence on Pt catalysts has been a major issue of proton-exchange membrane (PEM) fuel cells. Strategies to maximize the Pt utilization in catalysts include two main approaches: to put Pt atoms only at the catalyst surface and to further enhance the surface-specific catalytic activity (SA) of Pt. Thus far there has been no practical design that combines these two features into one single catalyst. Here we report a combined computational and experimental study on the design and implementation of Pt-skin catalysts with significantly improved SA toward the oxygen reduction reaction (ORR). Through screening, using density functional theory (DFT) calculations, a Pt-skin structure on AuCu(111) substrate, consisting of 1.5 monolayers of Pt, is found to have an appropriately weakened oxygen affinity, in comparison to that on Pt(111), which would be ideal for ORR catalysis. Such a structure is then realized by substituting the Cu atoms in three surface layers of AuCu intermetallic nanoparticles (AuCu iNPs) with Pt. The resulting Pt-skinned catalyst (denoted as Pt(S)AuCu iNPs) has been characterized in depth using synchrotron XRD, XPS, HRTEM, and HAADF-STEM/EDX, such that the Pt-skin structure is unambiguously identified. The thickness of the Pt skin was determined to be less than two atomic layers. Finally the catalytic activity of Pt(S)AuCu iNPs toward the ORR was measured via rotating disk electrode (RDE) voltammetry through which it was established that the SA was more than 2 times that of a commercial Pt/C catalyst. Taking into account the ultralow Pt loading in Pt(S)AuCu iNPs, the mass-specific catalytic activity (MA) was determined to be 0.56 A/mg(Pt)@0.9 V, a value that is well beyond the DOE 2017 target for ORR catalysts (0.44 A/mg(Pt)@0.9 V). These findings provide a strategic design and a realizable approach to high-performance and Pt-efficient catalysts for fuel cells.

  8. The role of the cationic Pt sites in the adsorption properties of water and ethanol on the Pt4/Pt(111) and Pt4/CeO2(111) substrates: A density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Seminovski, Yohanna; Tereshchuk, Polina; Kiejna, Adam; Da Silva, Juarez L. F.

    2016-09-01

    Finite site platinum particles, Ptn, supported on reduced or unreduced cerium oxide surfaces, i.e., CeO2-x(111) ( 0 < x < /1 2 ), have been employed and studied as catalysts for a wide range of applications, which includes hydrogen production using the ethanol steam reforming processes. Our atomic-level understanding of the interaction of Pt with CeO2-x has been improved in the last years; however, the identification of the active sites on the Ptn/CeO2-x(111) substrates is still far from complete. In this work, we applied density functional theory based calculations with the addition of the on-site Coulomb interactions (DFT+U) for the investigation of the active sites and the role of the Pt oxidation state on the adsorption properties of water and ethanol (probe molecules) on four selected substrates, namely, Pt(111), Pt4/Pt(111), CeO2(111), and Pt4/CeO2(111). Our results show that water and ethanol preferentially bind in the cationic sites of the base of the tetrahedron Pt4 cluster instead of the anionic lower-coordinated Pt atoms located on the cluster-top or in the surface Ce (cationic) and O (anionic) sites. The presence of the Pt4 cluster contributes to increase the adsorption energy of both molecules on Pt(111) and CeO2(111) surfaces; however, its magnitude increases less for the case of Pt4/CeO2(111). Thus, the cationic Pt sites play a crucial role in the adsorption properties of water and ethanol. Both water and ethanol bind to on-top sites via the O atom and adopt parallel and perpendicular configurations on the Pt(111) and CeO2(111) substrates, respectively, while their orientation is changed once the Pt4 cluster is involved, favoring H binding with the surface sites.

  9. Crystallisation of ice in charged Pt nanochannel

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Lü, Y. J.; Chen, M.

    2013-12-01

    Using molecular dynamics simulations, we examine the crystallisation process of the extended simple point charge model (SPC/E) water confined in a charged Pt nanochannel. The presence of the external electric field enhances the surface layering of water and promotes the super-cooled water to crystallise into Ic ice within tens of nanoseconds. Ic ice is found to nucleate from the interior of the water lamina, and the Pt(111) surfaces do not show a remarkable promotion of Ic ice nucleation. Structural analysis reveals that a two-dimensional hydrogen-bond network is built among the water molecules absorbed on the charged Pt surfaces, which influences the bonding of the molecules between the first and the second layers, and disturbs the formation of tetrahedral structures that match Ic ice, finally resulting in the nucleation-free near the walls. Such arrangements of water molecules remain in the subsequent growth of Ic ice and cause the slowdown of growth velocity while approaching surfaces.

  10. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley.

    PubMed

    de Ponzzes-Gomes, Camila M P B S; de Mélo, Dângelly L F M; Santana, Caroline A; Pereira, Giuliano E; Mendonça, Michelle O C; Gomes, Fátima C O; Oliveira, Evelyn S; Barbosa, Antonio M; Trindade, Rita C; Rosa, Carlos A

    2014-01-01

    The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 × 10(5) cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production. PMID:25242923

  11. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley

    PubMed Central

    de Ponzzes-Gomes, Camila M.P.B.S.; de Mélo, Dângelly L.F.M.; Santana, Caroline A.; Pereira, Giuliano E.; Mendonça, Michelle O.C.; Gomes, Fátima C.O.; Oliveira, Evelyn S.; Barbosa, Antonio M.; Trindade, Rita C.; Rosa, Carlos A.

    2014-01-01

    The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 × 105 cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production. PMID:25242923

  12. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley.

    PubMed

    de Ponzzes-Gomes, Camila M P B S; de Mélo, Dângelly L F M; Santana, Caroline A; Pereira, Giuliano E; Mendonça, Michelle O C; Gomes, Fátima C O; Oliveira, Evelyn S; Barbosa, Antonio M; Trindade, Rita C; Rosa, Carlos A

    2014-01-01

    The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 × 10(5) cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production.

  13. Atomic-scale redistribution of Pt during reactive diffusion in Ni (5% Pt)-Si contacts.

    PubMed

    Cojocaru-Mirédin, O; Cadel, E; Blavette, D; Mangelinck, D; Hoummada, K; Genevois, C; Deconihout, B

    2009-06-01

    The NiSi silicide that forms by reactive diffusion between Ni and Si active regions of nanotransistors is used nowadays as contacts in nanoelectronics because of its low resistivity. Pt is added to the Ni film in order to stabilise the NiSi phase against the formation of the high-resistivity NiSi(2) phase and agglomeration. In situ X-ray diffraction (XRD) experiments performed on material aged at 350 degrees C (under vacuum) showed the complete consumption of the Ni (5 at% Pt) phase, the regression of Ni(2)Si phase as well as the growth of the NiSi phase after 48 min. Pt distribution for this heat treatment has been analysed by laser-assisted tomographic atom probe (LATAP). An enrichment of platinum in the middle of the NiSi phase suggests that Pt is almost immobile during the growth of NiSi at the two interfaces: Ni(2)Si/NiSi and NiSi/Si. In the peak, platinum was found to substitute for Ni in the NiSi phase. Very small amounts of Pt were also found in the Ni(2)Si phase close to the surface and at the NiSi/Si interface. PMID:19339118

  14. Pd surface and Pt subsurface segregation in Pt1-c Pd c nanoalloys

    NASA Astrophysics Data System (ADS)

    De Clercq, A.; Giorgio, S.; Mottet, C.

    2016-02-01

    The structure and chemical arrangement of Pt1-c Pd c nanoalloys with the icosahedral and face centered cubic symmetry are studied using Monte Carlo simulations with a tight binding interatomic potential fitted to density-functional theory calculations. Pd surface segregation from the lowest to the highest coordinated sites is predicted by the theory together with a Pt enrichment at the subsurface, whatever the structure and the size of the nanoparticles, and which subsists when increasing the temperature. The onion-shell chemical configuration is found for both symmetries and is initiated from the Pd surface segregation. It is amplified in the icosahedral symmetry and small sizes but when considering larger sizes, the oscillating segregation profile occurs near the surface on about three to four shells whatever the structure. Pd segregation results from the significant lower cohesive energy of Pd as compared to Pt and the weak ordering tendency leads to the Pt subsurface segregation. The very weak size mismatch does not prevent the bigger atoms (Pt) from occupying subsurface sites which are in compression whereas the smaller ones (Pd) occupy the central site of the icosahedra where the compression is an order of magnitude higher.

  15. Atomic-scale redistribution of Pt during reactive diffusion in Ni (5% Pt)-Si contacts.

    PubMed

    Cojocaru-Mirédin, O; Cadel, E; Blavette, D; Mangelinck, D; Hoummada, K; Genevois, C; Deconihout, B

    2009-06-01

    The NiSi silicide that forms by reactive diffusion between Ni and Si active regions of nanotransistors is used nowadays as contacts in nanoelectronics because of its low resistivity. Pt is added to the Ni film in order to stabilise the NiSi phase against the formation of the high-resistivity NiSi(2) phase and agglomeration. In situ X-ray diffraction (XRD) experiments performed on material aged at 350 degrees C (under vacuum) showed the complete consumption of the Ni (5 at% Pt) phase, the regression of Ni(2)Si phase as well as the growth of the NiSi phase after 48 min. Pt distribution for this heat treatment has been analysed by laser-assisted tomographic atom probe (LATAP). An enrichment of platinum in the middle of the NiSi phase suggests that Pt is almost immobile during the growth of NiSi at the two interfaces: Ni(2)Si/NiSi and NiSi/Si. In the peak, platinum was found to substitute for Ni in the NiSi phase. Very small amounts of Pt were also found in the Ni(2)Si phase close to the surface and at the NiSi/Si interface.

  16. Pd surface and Pt subsurface segregation in Pt1-c Pd c nanoalloys.

    PubMed

    De Clercq, A; Giorgio, S; Mottet, C

    2016-02-17

    The structure and chemical arrangement of Pt1-c Pd c nanoalloys with the icosahedral and face centered cubic symmetry are studied using Monte Carlo simulations with a tight binding interatomic potential fitted to density-functional theory calculations. Pd surface segregation from the lowest to the highest coordinated sites is predicted by the theory together with a Pt enrichment at the subsurface, whatever the structure and the size of the nanoparticles, and which subsists when increasing the temperature. The onion-shell chemical configuration is found for both symmetries and is initiated from the Pd surface segregation. It is amplified in the icosahedral symmetry and small sizes but when considering larger sizes, the oscillating segregation profile occurs near the surface on about three to four shells whatever the structure. Pd segregation results from the significant lower cohesive energy of Pd as compared to Pt and the weak ordering tendency leads to the Pt subsurface segregation. The very weak size mismatch does not prevent the bigger atoms (Pt) from occupying subsurface sites which are in compression whereas the smaller ones (Pd) occupy the central site of the icosahedra where the compression is an order of magnitude higher. PMID:26795206

  17. A comparative theoretical study for the methanol dehydrogenation to CO over Pt3 and PtAu2 clusters.

    PubMed

    Zhong, Wenhui; Liu, Yuxia; Zhang, Dongju

    2012-07-01

    The density functional theory (DFT) calculations are carried out to study the mechanism details and the ensemble effect of methanol dehydrogenation over Pt(3) and PtAu(2) clusters, which present the smallest models of pure Pt clusters and bimetallic PtAu clusters. The energy diagrams are drawn out along both the initial O-H and C-H bond scission pathways via the four sequential dehydrogenation processes, respectively, i.e., CH(3)OH → CH(2)OH → CH(2)O → CHO → CO and CH(3)OH → CH(3)O → CH(2)O → CHO → CO, respectively. It is revealed that the reaction kinetics over PtAu(2) is significantly different from that over Pt(3). For the Pt(3)-mediated reaction, the C-H bond scission pathway, where an ensemble composed of two Pt atoms is required to complete methanol dehydrogenation, is energetically more favorable than the O-H bond scission pathway, and the maximum barrier along this pathway is calculated to be 12.99 kcal mol(-1). In contrast, PtAu(2) cluster facilitates the reaction starting from the O-H bond scission, where the Pt atom acts as the active center throughout each elementary step of methanol dehydrogenation, and the initial O-H bond scission with a barrier of 21.42 kcal mol(-1) is the bottom-neck step of methanol decomposition. Importantly, it is shown that the complete dehydrogenation product of methanol, CO, can more easily dissociate from PtAu(2) cluster than from Pt(3) cluster. The calculated results over the model clusters provide assistance to some extent for understanding the improved catalytic activity of bimetal PtAu catalysts toward methanol oxidation in comparison with pure Pt catalysts. PMID:22160734

  18. Patterning self-assembled FePt nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Min; Nikles, David E.; Yin, Huaqin; Wang, Shoutao; Harrell, J. W.; Majetich, Sara A.

    2003-10-01

    We describe a potential way to extend the ordered domain of self-assembled FePt nanoparticles. The FePt particles, with an average diameter of 3 nm, were prepared by simultaneous thermal decomposition of Fe(CO) 5 and chemical reduction of Pt(acac) 2 and then were dispersed in a mixture of hexane and octane. When self-assembling on a plain silicon wafer, FePt nanoparticles formed ordered hexagonal arrays in a range of tens to a few hundred nanometers. A silicon wafer with patterned holes of a photoresist film, made using UV-lithographing technique, was used as a template to direct the stacking direction of the FePt nanoparticles. The FePt dispersion was dropped on the patterned holes of the photoresist film. After being heat-treated at 100°C for 30 min under vacuum condition, the photoresist was stripped out by dipping the sample in acetone. The patterned disks, with an average diameter of 2.0 μm and a height of 250 nm, of self-assembled FePt nanoparticles were examined using SEM and Auger mapping. Their magnetic properties were measured using AGM. The Auger electrons of neither Fe LMM nor Pt MNN could be detected from the sample, which indicated the adsorption of oleic acid and oleylamine on the surface of FePt nanoparticles. The coercivity of patterned FePt significantly increased with the annealing temperature above 600°C.

  19. The mechanism of charge density wave in Pt-based layered superconductors: SrPt2As2 and LaPt2Si2.

    PubMed

    Kim, Sooran; Kim, Kyoo; Min, B I

    2015-01-01

    The intriguing coexistence of the charge density wave (CDW) and superconductivity in SrPt2As2 and LaPt2Si2 has been investigated based on the ab initio density functional theory band structure and phonon calculations. We have found that the CDW instabilities for both cases arise from the q-dependent electron-phonon coupling with quasi-nesting feature of the Fermi surface. The band structure obtained by the band-unfolding technique reveals the sizable q-dependent electron-phonon coupling responsible for the CDW instability. The local split distortions of Pt atoms in the [As-Pt-As] layers play an essential role in driving the five-fold supercell CDW instability as well as the phonon softening instability in SrPt2As2. By contrast, the CDW and phonon softening instabilities in LaPt2Si2 occur without split distortions of Pt atoms. The phonon calculations suggest that the CDW and the superconductivity coexist in [X-Pt-X] layers (X = As or Si) for both cases. PMID:26449877

  20. The mechanism of charge density wave in Pt-based layered superconductors: SrPt2As2 and LaPt2Si2

    PubMed Central

    Kim, Sooran; Kim, Kyoo; Min, B. I.

    2015-01-01

    The intriguing coexistence of the charge density wave (CDW) and superconductivity in SrPt2As2 and LaPt2Si2 has been investigated based on the ab initio density functional theory band structure and phonon calculations. We have found that the CDW instabilities for both cases arise from the q-dependent electron-phonon coupling with quasi-nesting feature of the Fermi surface. The band structure obtained by the band-unfolding technique reveals the sizable q-dependent electron-phonon coupling responsible for the CDW instability. The local split distortions of Pt atoms in the [As-Pt-As] layers play an essential role in driving the five-fold supercell CDW instability as well as the phonon softening instability in SrPt2As2. By contrast, the CDW and phonon softening instabilities in LaPt2Si2 occur without split distortions of Pt atoms. The phonon calculations suggest that the CDW and the superconductivity coexist in [X-Pt-X] layers (X = As or Si) for both cases. PMID:26449877

  1. Pt-content-controlled synthesis of Pd nanohollows/Pt nanorods core/shell composites with enhanced electrocatalytic activities for the methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Lai, Shiqin; Fu, Chenglin; Chen, Yongxiang; Yu, Xiang; Lai, Xuandi; Ye, Cui; Hu, Jianqiang

    2015-01-01

    Pd nanohollows/Pt nanorods (PdNHs/PtNRs) core/shell composites have been synthesized by a multistep crystalline growth method, in which Pt NRs grow on the exterior surface of hollow Pd nanospheres in order. Moreover, the size and quantity of the Pt NRs in the PdNHs/PtNRs can be easily tailored and thus ameliorate Pt utilization efficiency through varying H2PtCl6 concentrations. By comparing with Pt NPs and commercial Pt/C (JM), the PdNHs/PtNRs prepared using 2.50 mL 0.02 M H2PtCl6 have larger surface area, better anti-CO poisoning ability and more excellent catalytic performance. Moreover, the catalytic properties of the PdNHs/PtNRs can be well tunable by modifying the Pt contents. Our studies indicate that the PdNHs/PtNRs prepared using 2.50 mL 0.02 M H2PtCl6, in which Pd NHs are nearly completely covered with Pt NRs, have the largest surface area, best antitoxic ability and most excellent catalytic performance, indicative of high Pt utilization efficiency of the PdNHs/PtNRs relative to Pt/C (JM), Pt NPs and other PdNHs/PtNRs prepared using other H2PtCl6 concentrations. Therefore, the strategy to the size and content control of the PdNHs/PtNRs nanocomposites can facilitate optimized design of Pt-based catalysts for direct methanol fuel cells.

  2. Construction of Killer Industrial Yeast Saccharomyces Cerevisiae Hau-1 and its Fermentation Performance

    PubMed Central

    Bajaj, Bijender K.; Sharma, S.

    2010-01-01

    Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccharomyces cerevisiae MTCC 475, a killer strain. The resultant fusants were characterized for desirable fermentation characteristics. All the technologically important characteristics of distillery yeast Saccharomyces cerevisiae HAU-1 were retained in the fusants, and in addition the killer trait was also introduced into them. Further, the killer activity was found to be stably maintained during hostile conditions of ethanol fermentations in dextrose or molasses, and even during biomass recycling. PMID:24031519

  3. Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing.

    PubMed

    Xu, Caixia; Liu, Yunqing; Su, Fa; Liu, Aihua; Qiu, Huajun

    2011-09-15

    Nanoporous silver (NPS) and copper (NPC) obtained by dealloying AgAl and CuAl alloys, respectively, were used as both three-dimensional templates and reducing agents for the fabrication of nanoporous PtAg (NPS-Pt) and PtCu (NPC-Pt) alloys with hollow ligaments by a simple galvanic replacement reaction with H(2)PtCl(6). Electron microscopy and X-ray diffraction characterizations demonstrate that NPS and NPC with similar ligament sizes (30-50 nm) have different effects on the formed hollow nanostructures. For NPS-Pt, the shell of the hollow ligament is seamless. However, the shell of NPC-Pt is comprised of small pores and alloy nanoparticles with a size of ∼3 nm. The as-prepared NPS-Pt and NPC-Pt exhibit remarkably improved electrocatalytic activities towards the oxidation of ethanol and H(2)O(2) compared with state-of-the-art Pt/C catalyst, and can be used for sensitive electrochemical sensing applications. The hierarchical nanoporous structure also provides a good microenvironment for enzymes. After immobilization of glucose oxidase (GOx), the enzyme modified nanoporous electrode can sensitively detect glucose in a wide linear range (0.6-20 mM). PMID:21778046

  4. Degrees and signatures of broken PT symmetry in nonuniform lattices

    SciTech Connect

    Scott, Derek D.; Joglekar, Yogesh N.

    2011-05-15

    We investigate the robustness of the parity- and time-reversal (PT) symmetric phase in an N-site lattice with a position-dependent, parity-symmetric hopping function and a pair of imaginary, PT-symmetric impurities. We find that the ''fragile''PT-symmetric phase in these lattices is stronger than its counterpart in a lattice with constant hopping. With an open system in mind, we explore the degrees of broken PT symmetry and their signatures in single-particle wave-packet evolution. We predict that, when the PT-symmetric impurities are closest to each other, the time evolution of a wave packet in an even-N lattice is remarkably different from that in an odd-N lattice. Our results suggest that PT symmetry breaking in such lattices is accompanied by rich, hitherto unanticipated, phenomena.

  5. Superior CO catalytic oxidation on novel Pt/clay nanocomposites.

    PubMed

    Varade, Dharmesh; Abe, Hideki; Yamauchi, Yusuke; Haraguchi, Kazutoshi

    2013-11-27

    Nanostructured novel Pt/Clay nanocomposites consisting of well-defined Pt nanoparticles prepared by clay-mediated in situ reduction displays very high thermal stability, large BET surface area and superior catalytic activity for CO oxidation as compared to a model reference Pt/SiO2 catalysts. CO oxidation has attracted renewed attention because of its technological importance in the area of pollution control. The Pt/Clay system consisting of Pt nanoparticles strongly immobilized between the atomic layers of clay inhibits nanoparticle sintering and loss of catalytic activity even after prolonged heating at high temperatures. At elevated temperatures (300 °C), the Pt/Clay system demonstrates significant enhancement of catalytic activity, with almost 100% CO conversion in less than 5 min. Emphasis is given to the role played by the clay supporting material which is chemically and thermally stable under the catalytic conditions of exhaust purification.

  6. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    PubMed

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  7. Superconductivity in Pd, Ir, and Pt chalcogenide

    NASA Astrophysics Data System (ADS)

    Oh, Yoon Seok; Yang, Junjie; Choi, Y. J.; Hogan, A.; Horibe, Y.; Cheong, S.-W.

    2012-02-01

    Large spin-orbit coupling in materials with heavy chalcogens can result in unique quantum states or functional properties such as topological insulator, giant thermoelectric power, and superconductivity. When materials contain heavy cations in addition to heavy chalcogens, spin-orbit coupling can be further enhanced. For these reasons, we have studied the superconductivity of Pd, Ir, and Pt tellurides and selenides. In the exploration of these chalcogenides, we have focused on the competition between superconductivity and charge density wave that is associated with superlattice reflections.

  8. Laser cleanup of Pt group metals

    SciTech Connect

    Chen, H.L.

    1980-10-28

    Due to increasing interest in chemical and fuel synthesis from syngas, the feasibility and practicality of purifying Pt group metals (Pd, Ru, Rh) using LIS technologies have been re-evaluated. Findings for the selective removal of /sup 107/Pd from Pd metal are described here. The selectivity of this technique is based on the angular momentum selection rules for atomic absorption of circularly polarized light. In principle, it is possible to selectively excite isotopes with non-zero nuclear spin, using two circularly polarized laser pulses, while leaving the isotopes with zero nuclear spin unexcited. The excited atom can then be ionized using a third photon of appropriate energy.

  9. Mutagenesis protocols in Saccharomyces cerevisiae by in vivo overlap extension.

    PubMed

    Alcalde, Miguel

    2010-01-01

    A high recombination frequency and its ease of manipulation has made Saccharomyces cerevisiae a unique model eukaryotic organism to study homologous recombination. Indeed, the well-developed recombination machinery in S. cerevisiae facilitates the construction of mutant libraries for directed evolution experiments. In this context, in vivo overlap extension (IVOE) is a particularly attractive protocol that takes advantage of the eukaryotic apparatus to carry out combinatorial saturation mutagenesis, site-directed recombination or site-directed mutagenesis, avoiding ligation steps and additional PCR reactions that are common to standard in vitro protocols. PMID:20676972

  10. Serotypes in Saccharomyces telluris: Their relation to source of isolation

    USGS Publications Warehouse

    Hasenclever, H.F.; Kocan, R.M.

    1973-01-01

    Three serotypes have been characterized with three reference strains of Saccharomyces telluris and designated as A, B, and C. One reference strain of Torpulopsis bovina, the imperfect form of S. telluris, belonged to serotype B. Strains of S. telluris isolated from four columbid species were serotyped. All 98 strains of this yeast isolated from Columba livia belonged to serotype B. Three other columbid species, C. leucocephala, C. fasciata, and Zenaidura macroura harbored strains of serotype C only. Serotype A was not isolated from any of the avian species.

  11. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae.

    PubMed Central

    Schiestl, R H; Petes, T D

    1991-01-01

    DNA fragments (generated by BamHI treatment) with no homology to the yeast genome were transformed into Saccharomyces cerevisiae. When the fragments were transformed in the presence of the BamHI enzyme, they integrated into genomic BamHI sites. When the fragments were transformed in the absence of the enzyme, they integrated into genomic G-A-T-C sites. Since the G-A-T-C sequence is present at the ends of BamHI fragments, this results indicates that four base pairs of homology are sufficient for some types of mitotic recombination. Images PMID:1881899

  12. Differential repair of UV damage in Saccharomyces cerevisiae.

    PubMed

    Terleth, C; van Sluis, C A; van de Putte, P

    1989-06-26

    Preferential repair of UV-induced damage is a phenomenon by which mammalian cells might enhance their survival. This paper presents the first evidence that preferential repair occurs in the lower eukaryote Saccharomyces cerevisiae. Moreover an unique approach is reported to compare identical sequences present on the same chromosome and only differing in expression. We determined the removal of pyrimidine dimers from two identical alpha-mating type loci and we were able to show that the active MAT alpha locus is repaired preferentially to the inactive HML alpha locus. In a sir-3 mutant, in which both loci are active this preference is not observed.

  13. RNAi-Assisted Genome Evolution (RAGE) in Saccharomyces cerevisiae.

    PubMed

    Si, Tong; Zhao, Huimin

    2016-01-01

    RNA interference (RNAi)-assisted genome evolution (RAGE) applies directed evolution principles to engineer Saccharomyces cerevisiae genomes. Here, we use acetic acid tolerance as a target trait to describe the key steps of RAGE. Briefly, iterative cycles of RNAi screening are performed to accumulate multiplex knockdown modifications, enabling directed evolution of the yeast genome and continuous improvement of a target phenotype. Detailed protocols are provided on the reconstitution of RNAi machinery, creation of genome-wide RNAi libraries, identification and integration of beneficial knockdown cassettes, and repeated RAGE cycles. PMID:27581294

  14. Mating-type gene switching in Saccharomyces cerevisiae.

    PubMed

    Haber, J E

    1998-01-01

    Saccharomyces cerevisiae can change its mating type as often as every generation by a highly choreographed, site-specific recombination event that replaces one MAT allele with different DNA sequences encoding the opposite allele. The study of this process has yielded important insights into the control of cell lineage, the silencing of gene expression, and the formation of heterochromatin, as well as the molecular events of double-strand break-induced recombination. In addition, MAT switching provides a remarkable example of a small locus control region--the Recombination Enhancer--that controls recombination along an entire chromosome arm.

  15. Factors affecting the spontaneous adsorption of Bi(III) onto Pt and PtRu nanoparticles

    NASA Astrophysics Data System (ADS)

    Sawy, Ehab N. El; Khan, M. Akhtar; Pickup, Peter G.

    2016-02-01

    The influence of Bi(III) concentration and pH on the spontaneous adsorption of Bi species onto Pt nanoparticles has been systematically investigated in order to identify the adsorbing species, determine whether the nature of the adsorbing species changes, and investigate whether the activities of the resulting Bi decorated particles for formic acid oxidation can be influenced. The adsorption of Bi follows a Temkin-type isotherm, with a pH dependence indicating that the adsorbing species is [Bi6O4(OH)4]6+. Activities of Bi decorated Pt nanoparticles for formic acid oxidation are strongly influenced by the Bi coverage, with a maximum enhancement of a factor of ca. 60 at a coverage of 70%, but not by the Bi(III) concentration or pH used to adsorb the Bi species, other than through their influence on Bi coverage. These results support the conclusion that the adsorbing species is [Bi6O4(OH)4]6+ under all conditions investigated. Adsorbed Bi also activates PtRu nanoparticles for formic acid oxidation, although the effect is not as strong as for Pt. The maximum enhancement observed was only a factor of ca. 7. This has been attributed to attenuation of the effects of Bi adatoms that are adsorbed at Ru sites.

  16. Layer-Resolved Magnetic Moments in Ni/Pt Multilayers

    NASA Astrophysics Data System (ADS)

    Wilhelm, F.; Poulopoulos, P.; Ceballos, G.; Wende, H.; Baberschke, K.; Srivastava, P.; Benea, D.; Ebert, H.; Angelakeris, M.; Flevaris, N. K.; Niarchos, D.; Rogalev, A.; Brookes, N. B.

    2000-07-01

    The magnetic moments in Ni/Pt multilayers are thoroughly studied by combining experimental and ab initio theoretical techniques. SQUID magnetometry probes the samples' magnetizations. X-ray magnetic circular dichroism separates the contribution of Ni and Pt and provides a layer-resolved magnetic moment profile for the whole system. The results are compared to band-structure calculations. Induced Pt magnetic moments localized mostly at the interface are revealed. No magnetically ``dead'' Ni layers are found. The magnetization per Ni volume is slightly enhanced compared to bulk NiPt alloys.

  17. Jarzynski Equality in PT-Symmetric Quantum Mechanics.

    PubMed

    Deffner, Sebastian; Saxena, Avadh

    2015-04-17

    We show that the quantum Jarzynski equality generalizes to PT-symmetric quantum mechanics with unbroken PT symmetry. In the regime of broken PT symmetry, the Jarzynski equality does not hold as also the CPT norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system-two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.

  18. Thermochemistry of Pt-fullerene complexes: semiempirical study.

    PubMed

    Voityuk, Alexander A

    2009-10-29

    Modified Neglect of Differential Overlap (MNDO) and MNDO/d based semiempirical methods are widely employed to explore structure and thermochemistry of molecular systems. In this work, the AM1/d method has been parametrized for systems containing platinum. The proposed scheme delivers excellent performance for binding energies of Pt complexes with ethylene and large pi conjugated hydrocarbons. The estimated bond energies accurately reproduce the results of MP4(SDQ) calculations and show significant improvement over DFT (B3LYP and M05) data. We apply the AM1/d scheme to explore the structure and thermochemistry of several Pt compounds with C(60) and C(70). The calculated binding energies of bare Pt atoms and [Pt(PH(3))(2)] units to the fullerenes are 75 and 45 kcal/mol, respectively. We find that coordination of a single metal center to C(60) activates the fullerene cage making subsequent coordination of Pt more favorable. The bond energy [C(60)-PtC(60)] is calculated to be 65 kcal/mol. The estimated reaction enthalpies are useful for exploring the stability of Pt(x)C(60) polymer systems and their interaction with phosphines. AM1/d predicts a very low barrier to rotation of the coordinated fullerenes in [Pt(C(60))(2)]. The AM1/d scheme is computationally very efficient and can be employed to obtain fast quantitative estimates for binding energies and structural parameters of Pt complexes with large pi conjugated systems like fullerenes and carbon nanotubes.

  19. Self-Diffusion Along Step-Bottoms on Pt(111)

    SciTech Connect

    Feibelman, P.J.

    1999-04-05

    First-principles total energies of periodic vicinals are used to estimate barriers for Pt-adatom diffusion along straight and kinked steps on Pt(111), and around a corner where straight steps intersect. In all cases studied, hopping diffusion has a lower barrier than concerted substitution. In conflict with simulations of dendritic Pt island formation on Pt(111), hopping from a corner site to a step whose riser is a (111)-micro facet is predicted to be more facile than to one whose riser is a (100).

  20. A novel method to evaluate spin diffusion length of Pt

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-qing; Sun, Niu-yi; Che, Wen-ru; Shan, Rong; Zhu, Zhen-gang

    2016-05-01

    Spin diffusion length of Pt is evaluated via proximity effect of spin orbit coupling (SOC) and anomalous Hall effect (AHE) in Pt/Co2FeAl bilayers. By varying the thicknesses of Pt and Co2FeAl layer, the thickness dependences of AHE parameters can be obtained, which are theoretically predicted to be proportional to the square of the SOC strength. According to the physical image of the SOC proximity effect, the spin diffusion length of Pt can easily be identified from these thickness dependences. This work provides a novel method to evaluate spin diffusion length in a material with a small value.

  1. Nanoscale PtSi Tips for Conducting Probe Technologies

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Harish; Sebastian, Abu; Despont, Michel

    2009-01-01

    A method to improve the conduction and wear properties of nanometric conducting tips by forming silicides of Pt at the tip apex is presented. Tips with PtSi apexes are fabricated in conjunction with standard Si tips. Wear measurements are carried out on both tip types of similar geometries, and a one-on-one comparison between Si and PtSi at the nanoscale is shown for the first time. Both the wear properties on tetrahedral amorphous carbon and the conduction on Au of the PtSi tip apexes are shown to be superior to the Si tips.

  2. Jarzynski equality in PT-symmetric quantum mechanics

    SciTech Connect

    Deffner, Sebastian; Saxena, Avadh

    2015-04-13

    We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with unbroken PT -symmetry. In the regime of broken PT -symmetry the Jarzynski equality does not hold as also the CPT -norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system – two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT -symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.

  3. Local PT symmetry violates the no-signaling principle.

    PubMed

    Lee, Yi-Chan; Hsieh, Min-Hsiu; Flammia, Steven T; Lee, Ray-Kuang

    2014-04-01

    Bender et al. [Phys. Rev. Lett. 80, 5243 (1998)] have developed PT-symmetric quantum theory as an extension of quantum theory to non-Hermitian Hamiltonians. We show that when this model has a local PT symmetry acting on composite systems, it violates the nonsignaling principle of relativity. Since the case of global PT symmetry is known to reduce to standard quantum mechanics A. Mostafazadeh [J. Math. Phys. 43, 205 (2001)], this shows that the PT-symmetric theory is either a trivial extension or likely false as a fundamental theory. PMID:24745396

  4. Cyclometalated heteronuclear Pt/Ag and Pt/Tl complexes: a structural and photophysical study.

    PubMed

    Jamali, Sirous; Ghazfar, Reza; Lalinde, Elena; Jamshidi, Zahra; Samouei, Hamidreza; Shahsavari, Hamid R; Moreno, M Teresa; Escudero-Adán, Eduardo; Benet-Buchholz, Jordi; Milic, Dalibor

    2014-01-21

    To investigate the factors influencing the luminescent properties of polymetallic cycloplatinated complexes a detailed study of the photophysical and structural properties of the heteronuclear complexes [Pt2Me2(bhq)2(μ-dppy)2Ag2(μ-acetone)](BF4)2, 2, [PtMe(bhq)(dppy)Tl]PF6, 3, and [Pt2Me2(bhq)2(dppy)2Tl]PF6, 4, [bhq = benzo[h]quinoline, dppy = 2-(diphenylphosphino)pyridine] was conducted. Complexes 3 and 4 synthesized by the reaction of [PtMe(bhq)(dppy)], 1, with TlPF6 (1 or 1/2 equiv.) and stabilized by unsupported Pt-Tl bonds as revealed by multinuclear NMR spectroscopy and confirmed by X-ray crystallography for 3. DFT calculations for the previously reported butterfly Pt2Ag2 cluster 2 reveal that in the optimized geometry the bridging acetone molecule is removed and the metal core displays a planar-shaped geometry in which according to a QTAIM calculation and natural bond orbital (NBO) analysis the Ag···Ag metallophilic interaction is strengthened. In contrast to the precursor 1, which is only emissive in glassy solutions ((3)MLCT 485 nm), all 2-4 heteropolynuclear complexes display intense emissions in the solid state and in glassy solutions. Time-dependent density functional theory (TD-DFT) is used to elucidate the origin of the electronic transitions in the heteronuclear complexes 2 and 3. The low energy absorption and intense orange emission for cluster 2 (solid 77 K and glass) are attributed to metal-metal to ligand charge transfer (MM'LCT) with a minor L'LCT contribution. For 3 and 4 two different bands are developed: the high energy band (602-630 nm) observed for 4 at 77 K (solid, glass) and in diluted glasses for 3 is ascribed to emission from discrete Pt2Tl units of mixed (3)L'LCT/(3)LM'CT origin. However, the low energy band (670-690 nm) observed at room temperature (solid) for both complexes and also in concentrated glasses for 3 is assigned to (3)ππ excited states arising from intermolecular interactions. PMID:24165802

  5. Spin Hall magnetoresistance in Co2FeSi/Pt thin films: dependence on Pt thickness and temperature

    NASA Astrophysics Data System (ADS)

    Huang, Xiufeng; Dai, Zhiwen; Huang, Lin; Lu, Guangduo; Liu, Min; Piao, Hongguang; Kim, Dong-Hyun; Yu, Seong-cho; Pan, Liqing

    2016-11-01

    We have investigated the temperature and the Pt layer thickness dependence of the magnetoresistances (MRs) in Co2FeSi/Pt thin films. Based on the field dependent measurements, it can be seen that the spin-current-induced spin Hall magnetoresistance (SMR) plays the dominant role in the MRs in the Co2FeSi/Pt bilayers in the whole temperature range. Meanwhile, a quite small part of anisotropic magnetoresistance (AMR) existed in the MRs. It proved to be originated from magnetic proximity effect (MPE) by measuring the Pt thickness and temperature dependence of the AMR. Moreover, the Co2FeSi layer thickness has much weaker effect on the SMR and AMR compared to the Pt layer thickness. These results indicate that the Co2FeSi/Pt interface is beneficial to be used in the spin-current-induced physical phenomena.

  6. The role of surface Pt on the coadsorption of hydrogen and CO on Pt monolayer film modified Ru(0001) surfaces

    NASA Astrophysics Data System (ADS)

    Diemant, T.; Hartmann, H.; Bansmann, J.; Behm, R. J.

    2016-10-01

    We have investigated the impact and role of the Pt surface modification on the coadsorption of hydrogen and CO on structurally well defined bimetallic Pt monolayer island/film modified Ru(0001) surfaces with Pt contents up to a complete Pt layer, employing temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS). Kinetic limitations in the surface diffusion are shown to play an important role for adsorption at 90 K, and lead to profound effects of the dosing sequence on the adsorption and desorption characteristics. Furthermore, they are responsible for spill-over effects during the TPD measurements, where COad becomes mobile and can spill-over from weakly bonding Pt monolayer areas to strongly bonding Pt-free Ru(0001) areas, which displaces Dad from these surface areas. The present findings are discussed in comparison with previous results on related metallic and bimetallic adsorption and coadsorption systems.

  7. Resolving Sulfur Oxidation and Removal from Pt and Pt3Co Electrocatalysts Using in Situ X-ray Absorption Spectroscopy

    SciTech Connect

    Ramaker, D.; Gatewood, D; Korovina, A; Garsany, Y; Swider-Lyons, K

    2010-01-01

    Adsorbed sulfur is a poison to the Pt catalysts used in proton exchange membrane fuel cells, but it can be removed by potential cycling. This process is studied for S{sub x}-poisoned nanoscale Pt- and Pt{sub 3}Co- on Vulcan carbon (Pt/VC and Pt{sub 3}Co/VC) in perchloric acid electrolyte using the {Delta}{mu} adsorbate isolation technique for in situ X-ray absorption spectroscopy. The {Delta}{mu} technique is modified to better distinguish the {Delta}{mu} signatures for H, O, and Sx on Pt. The resulting {Delta}{mu} analysis suggests that SO{sub 2} on nanoscale Pt is oxidized to bisulfate or sulfate species in two regions, near 1.05 V on the cluster edges of the Pt nanoparticle, and at higher potentials from the Pt(111) faces where oxygen is less strongly bound. The bisulfate or sulfate species desorb from the Pt surface at high potentials due to O(OH) adsorption/replacement and at low potentials due to loss of the Coulomb attraction between the bisulfate anion and the Pt. A similar oxidation process occurs for S{sub x}-poisoned Pt{sub 3}Co/VC, but at lower potentials because a ligand effect coming from Co shifts the oxidization potential of adsorbed SO{sub 2} to lower potentials while pushing OH adsorption to higher potentials. The spectroscopic results give insights into cyclic voltammetry data and are consistent with electrochemical cycling procedures for removing the sulfur.

  8. Adsorption of aromatics on the (111) surface of PtM and PtM3 (M = Fe, Ni) alloys

    SciTech Connect

    Hensley, Alyssa; Schneider, Sebastian; Wang, Yong; McEwen, Jean-Sabin

    2015-09-18

    The adsorption of benzene and phenol was studied on PtM and PtM3 (111) surfaces, with M being either Ni or Fe. Under vacuum, the most favorable near surface structures showed an enrichment in Pt over the M species. An analysis of the electronic structure of the metal species in the clean surfaces with different near surface structures was done with the d-band model and showed that the Pt's d-states are significantly shifted away from the Fermi level due to the Pt-M interactions while the M species' d-states were less affected, with Ni's d-band shifting closer to the Fermi level and Fe's d-band shifting away from the Fermi level. The adsorption of aromatics, benzene and phenol, on several near surface structures for the PtM and PtM3 (111) surfaces showed that higher surface M concentrations resulted in a stronger adsorption due to the larger amount of charge transferred between the adsorbate and surface. However, compared to the adsorption of benzene and phenol on monometallic surfaces, the adsorption of these species on the PtM and PtM3 (111) surfaces was significantly weakened. Overall, our results show that the observed behavior of these Pt/Fe and Pt/Ni alloys is similar to that seen for the previously studied Pd/Fe surfaces. Furthermore, balancing the weakly adsorbing Pt surface species with the more strongly interacting Fe or Ni species can lead to the tailored adsorption of aromatics with applications in both hydrodeoxygenation and hydrogenation reactions by increasing the desorption rate of wanted aromatic products.

  9. A multiplex set of species-specific primers for rapid identification of members of the genus Saccharomyces.

    PubMed

    Muir, Alastair; Harrison, Elizabeth; Wheals, Alan

    2011-11-01

    The Saccharomyces genus (previously Saccharomyces sensu stricto) formally comprises Saccharomyces arboricola, Saccharomyces bayanus, Saccharomyces cariocanus, Saccharomyces cerevisiae, Saccharomyces kudriavzevii, Saccharomyces mikatae, Saccharomyces paradoxus and Saccharomyces pastorianus. Species-specific primer pairs that produce a single band of known and different product size have been developed for each member of the clade with the exception of S. pastorianus, which is a polyphyletic allopolyploid hybrid only found in lager breweries, and for which signature sequences could not be reliably created. Saccharomyces cariocanus is now regarded as an American variant of S. paradoxus, and accordingly a single primer pair that recognizes both species was developed. A different orthologous and essential housekeeping gene was used to detect each species, potentially avoiding competition between PCR primers and overlap between amplicons. In multiplex format, two or more different species could be identified in a single reaction; double and triple hybrids could not always be correctly identified. Forty-two unidentified yeasts from sugar cane juice fermentations were correctly identified as S. cerevisiae. A colony PCR method was developed that is rapid, robust, inexpensive and capable of automation, requires no mycological expertise on the part of the user and is thus useful for large-scale preliminary screens.

  10. A multiplex set of species-specific primers for rapid identification of members of the genus Saccharomyces.

    PubMed

    Muir, Alastair; Harrison, Elizabeth; Wheals, Alan

    2011-11-01

    The Saccharomyces genus (previously Saccharomyces sensu stricto) formally comprises Saccharomyces arboricola, Saccharomyces bayanus, Saccharomyces cariocanus, Saccharomyces cerevisiae, Saccharomyces kudriavzevii, Saccharomyces mikatae, Saccharomyces paradoxus and Saccharomyces pastorianus. Species-specific primer pairs that produce a single band of known and different product size have been developed for each member of the clade with the exception of S. pastorianus, which is a polyphyletic allopolyploid hybrid only found in lager breweries, and for which signature sequences could not be reliably created. Saccharomyces cariocanus is now regarded as an American variant of S. paradoxus, and accordingly a single primer pair that recognizes both species was developed. A different orthologous and essential housekeeping gene was used to detect each species, potentially avoiding competition between PCR primers and overlap between amplicons. In multiplex format, two or more different species could be identified in a single reaction; double and triple hybrids could not always be correctly identified. Forty-two unidentified yeasts from sugar cane juice fermentations were correctly identified as S. cerevisiae. A colony PCR method was developed that is rapid, robust, inexpensive and capable of automation, requires no mycological expertise on the part of the user and is thus useful for large-scale preliminary screens. PMID:22093682

  11. Pt and Pt-Ru/Carbon Nanotube Nanocomposites Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells

    SciTech Connect

    Lin, Yuehe; Cui, Xiaoli; Wang, Jun; Yen, Clive; Wai, Chien M.

    2006-06-01

    In recent years, the use of supercritical fluids (SCFs) for the synthesis and processing of nanomaterials has proven to be a rapid, direct, and clean approach to develop nanomaterials and nanocomposites. The application of supercritical fluid technology can result in products (and processes) that are cleaner, less expensive, and of higher quality than those that are produced using conventional technologies and solvents. In this work, carbon nanotube (CNT)-supported Pt and Pt-Ru nanoparticles catalysts have been synthesized in supercritical carbon dioxide (scCO2). The experimental results demonstrate that Pt, Pt-Ru/CNT nanocomposites synthesized in supercritical carbon dioxide are effective electrocatalysts for low-temperature fuel cells.

  12. Electrocatalytical study of carbon supported Pt, Ru and bimetallic Pt-Ru nanoparticles for oxygen reduction reaction in alkaline media

    NASA Astrophysics Data System (ADS)

    Hosseini, M. G.; Zardari, P.

    2015-08-01

    Carbon supported Pt, Ru and bimetallic Pt-Ru nanoparticles (Pt/C, Ru/C and Pt.Ru/C) have been prepared by the chemical reduction method. Particle morphology, composition and structure of nanoparticles have been investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. SEM results showed a uniform dispersion of nanoparticles with rough and porous structure into carbon supports with the average particle size of 30-64 nm. EDX analysis demonstrated the presence of both Pt and Ru nanoparticles in each gas diffusion electrode. The Pt/C, Ru/C and Pt.Ru/C composites were used as electrocatalyst for oxygen reduction reaction (ORR) in alkaline media. The ORR activities of cathodes were characterized using cyclic voltammetry (CV), polarization technique, AC impedance spectroscopy (EIS) and chronoamperometry. CV and polarization curves showed significantly higher activity on Pt.Ru/C electrocatalyst than observed on Pt/C and Ru/C catalysts, which can be related to synergistic effect, which is playing a critical role in ORR activity. The Tafel slope values of 120 mV/dec showed that the first electron transfer is the rate determining step. The EIS results of cathodes under different polarization potentials indicated two different behaviours which depend on the applied dc potentials and reveal different electrochemical processes occurring on the electrodes.

  13. Overproduction of fatty acids in engineered Saccharomyces cerevisiae.

    PubMed

    Li, Xiaowei; Guo, Daoyi; Cheng, Yongbo; Zhu, Fayin; Deng, Zixin; Liu, Tiangang

    2014-09-01

    The long hydrocarbon fatty acyl chain is energy rich, making it an ideal precursor for liquid transportation fuels and high-value oleo chemicals. As Saccharomyces cerevisiae has many advantages for industrial production compared to Escherichia coli. Here, we attempted to engineer Saccharomyces cerevisiae for overproduction of fatty acids. First, disruption of the beta-oxidation pathway, elimination of the acyl-CoA synthetases, overexpression of different thioesterases and acetyl-CoA carboxylase ACC1, and engineering the supply of precursor acetyl-CoA. The engineered strain XL122 produced more than 120 mg/L of fatty acids. In parallel, we inactivated ADH1, the dominant gene for ethanol production, to redirect the metabolic flux to fatty acids synthesis. The engineered strain DG005 produced about 140 mg/L fatty acids. Additionally, Acetyl-CoA carboxylase was identified as a critical bottleneck of fatty acids synthesis in S. cerevisiae with a cell-free system. However, overexpression of ACC1 has little effect on fatty acids biosynthesis. As it has been reported that phosphorylation of ACC1 may influent its activity, so phosphorylation sites of ACC1 were further identified. Although the regulatory mechanisms remain unclear, our results provide rationale for future studies to target this critical step. All these efforts, particularly the discovery of the limiting step are critical for developing a "cell factory" for the overproduction of fatty acids by using type I fatty acids synthase in yeast or other fungi. PMID:24752690

  14. 'Yeast mail': a novel Saccharomyces application (NSA) to encrypt messages.

    PubMed

    Rosemeyer, Helmut; Paululat, Achim; Heinisch, Jürgen J

    2014-09-01

    The universal genetic code is used by all life forms to encode biological information. It can also be used to encrypt semantic messages and convey them within organisms without anyone but the sender and recipient knowing, i.e., as a means of steganography. Several theoretical, but comparatively few experimental, approaches have been dedicated to this subject, so far. Here, we describe an experimental system to stably integrate encrypted messages within the yeast genome using a polymerase chain reaction (PCR)-based, one-step homologous recombination system. Thus, DNA sequences encoding alphabetical and/or numerical information will be inherited by yeast propagation and can be sent in the form of dried yeast. Moreover, due to the availability of triple shuttle vectors, Saccharomyces cerevisiae can also be used as an intermediate construction device for transfer of information to either Drosophila or mammalian cells as steganographic containers. Besides its classical use in alcoholic fermentation and its modern use for heterologous gene expression, we here show that baker's yeast can thus be employed in a novel Saccharomyces application (NSA) as a simple steganographic container to hide and convey messages.

  15. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-01-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. PMID:27587784

  16. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption.

    PubMed

    Scalcinati, Gionata; Otero, José Manuel; Van Vleet, Jennifer R H; Jeffries, Thomas W; Olsson, Lisbeth; Nielsen, Jens

    2012-08-01

    Industrial biotechnology aims to develop robust microbial cell factories, such as Saccharomyces cerevisiae, to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose sugar found in lignocelluloses. Significant research efforts have focused on the metabolic engineering of S. cerevisiae for fast and efficient xylose utilization. This study aims to metabolically engineer S. cerevisiae, such that it can consume xylose as the exclusive substrate while maximizing carbon flux to biomass production. Such a platform may then be enhanced with complementary metabolic engineering strategies that couple biomass production with high value-added chemical. Saccharomyces cerevisiae, expressing xylose reductase, xylitol dehydrogenase and xylulose kinase, from the native xylose-metabolizing yeast Pichia stipitis, was constructed, followed by a directed evolution strategy to improve xylose utilization rates. The resulting S. cerevisiae strain was capable of rapid growth and fast xylose consumption producing only biomass and negligible amount of byproducts. Transcriptional profiling of this strain was employed to further elucidate the observed physiology confirms a strongly up-regulated glyoxylate pathway enabling respiratory metabolism. The resulting strain is a desirable platform for the industrial production of biomass-related products using xylose as a sole carbon source. PMID:22487265

  17. ENZYMATIC BASIS FOR D-ARBITOL PRODUCTION BY SACCHAROMYCES ROUXII.

    PubMed

    INGRAM, J M; WOOD, W A

    1965-05-01

    Ingram, Jordan M. (Michigan State University, East Lansing), and W. A. Wood. Enzymatic basis for d-arabitol production by Saccharomyces rouxii. J. Bacteriol. 89:1186-1194. 1965.-The enzymatic steps in d-arabitol synthesis by Saccharomyces rouxii were studied. The fermentation of d-glucose-6-C(14) gave rise to d-arabitol labeled at C-5; d-ribose of ribonucleic acid had the same isotope pattern. Crude extracts were able to reduce d-ribulose with reduced nicotinamide adenine dinucleotide phosphate (NADPH(2)) and d-xylulose with reduced nicotinamide adenine dinucleotide (NADH(2)). These extracts also oxidized d-arabitol with nicotinamide adenine dinucleotide phosphate and xylitol with nicotinamide adenine dinucleotide. No reduction of d-ribulose-5-phosphate or d-xylulose-5-phosphate was observed. An enzyme which reduced d-xylulose with NADH(2) was purified 33-fold and characterized as a xylitol (--> d-xylulose) dehydrogenase. Similarly, an enzyme reducing d-ribulose with NADPH(2) was purified 12-fold and characterized as a d-arabitol (--> d-ribulose) dehydrogenase. Alkaline and acid phosphatases were purified 50- and 40-fold, respectively, and their specificities were determined. Only the acid phosphatase had detectable activity on d-ribulose-5-phosphate. The data support the postulate that d-arabitol arises by dephosphorylation of d-ribulose-5-phosphate and reduction of d-ribulose by a NADPH(2)-linked d-arabitol (--> d-ribulose) dehydrogenase.

  18. Cell density-dependent linoleic acid toxicity to Saccharomyces cerevisiae.

    PubMed

    Ferreira, Túlio César; de Moraes, Lídia Maria Pepe; Campos, Elida Geralda

    2011-08-01

    Since the discovery of the apoptotic pathway in Saccharomyces cerevisiae, several compounds have been shown to cause apoptosis in this organism. While the toxicity of polyunsaturated fatty acids (PUFA) peroxides towards S. cerevisiae has been known for a long time, studies on the effect of nonoxidized PUFA are scarce. The present study deals specifically with linoleic acid (LA) in its nonoxidized form and investigates its toxicity to yeast. Saccharomyces cerevisiae is unable to synthesize PUFA, but can take up and incorporate them into its membranes. Reports from the literature indicate that LA is not toxic to yeast cells. However, we demonstrated that yeast cell growth decreased in cultures treated with 0.1 mM LA for 4 h, and 3-(4,5 dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction (a measure of respiratory activity) decreased by 47%. This toxicity was dependent on the number of cells used in the experiment. We show apoptosis induction by LA concomitant with increases in malondialdehyde, glutathione content, activities of catalase and cytochrome c peroxidase, and decreases in two metabolic enzyme activities. While the main purpose of this study was to show that LA causes cell death in yeast, our results indicate some of the molecular mechanisms of the cell toxicity of PUFA. PMID:21457450

  19. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier.

    PubMed Central

    Cameron, D R; Cooper, D G; Neufeld, R J

    1988-01-01

    The mannoprotein which is a major component of the cell wall of Saccharomyces cerevisiae is an effective bioemulsifier. Mannoprotein emulsifier was extracted in a high yield from whole cells of fresh bakers' yeast by two methods, by autoclaving in neutral citrate buffer and by digestion with Zymolase (Miles Laboratories; Toronto, Ontario, Canada), a beta-1,3-glucanase. Heat-extracted emulsifier was purified by ultrafiltration and contained approximately 44% carbohydrate (mannose) and 17% protein. Treatment of the emulsifier with protease eliminated emulsification. Kerosene-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 5% sodium chloride or up to 50% ethanol in the aqueous phase. In the presence of a low concentration of various solutes, emulsions were stable to three cycles of freezing and thawing. An emulsifying agent was extracted from each species or strain of yeast tested, including 13 species of genera other than Saccharomyces. Spent yeast from the manufacture of beer and wine was demonstrated to be a possible source for the large-scale production of this bioemulsifier. PMID:3046488

  20. Activation of Homolytic Si-Zn and Si-Hg Bond Cleavage, Mediated by a Pt(0) Complex, via Novel Pt-Zn and Pt-Hg Compounds.

    PubMed

    Kratish, Yosi; Molev, Gregory; Kostenko, Arseni; Sheberla, Dennis; Tumanskii, Boris; Botoshansky, Mark; Shimada, Shigeru; Bravo-Zhivotovskii, Dmitry; Apeloig, Yitzhak

    2015-09-28

    The thermally stable [(tBuMe2 Si)2 M] (M=Zn, Hg) generate R3 Si(.) radicals in the presence of [(dmpe)Pt(PEt3 )2 ] at 60-80 °C. The reaction proceeds via hexacoordinate Pt complexes, (M=Zn (2 a and 2 b), M=Hg (3 a and 3 b)) which were isolated and characterized. Mild warming or photolysis of 2 or 3 lead to homolytic dissociation of the Pt-MSiR3 bond generating silyl radicals and novel unstable pentacoordinate platinum paramagnetic complexes (M=Zn (5), Hg (6)) whose structures were determined by EPR spectroscopy and DFT calculations. PMID:26288342

  1. Activation of Homolytic Si-Zn and Si-Hg Bond Cleavage, Mediated by a Pt(0) Complex, via Novel Pt-Zn and Pt-Hg Compounds.

    PubMed

    Kratish, Yosi; Molev, Gregory; Kostenko, Arseni; Sheberla, Dennis; Tumanskii, Boris; Botoshansky, Mark; Shimada, Shigeru; Bravo-Zhivotovskii, Dmitry; Apeloig, Yitzhak

    2015-09-28

    The thermally stable [(tBuMe2 Si)2 M] (M=Zn, Hg) generate R3 Si(.) radicals in the presence of [(dmpe)Pt(PEt3 )2 ] at 60-80 °C. The reaction proceeds via hexacoordinate Pt complexes, (M=Zn (2 a and 2 b), M=Hg (3 a and 3 b)) which were isolated and characterized. Mild warming or photolysis of 2 or 3 lead to homolytic dissociation of the Pt-MSiR3 bond generating silyl radicals and novel unstable pentacoordinate platinum paramagnetic complexes (M=Zn (5), Hg (6)) whose structures were determined by EPR spectroscopy and DFT calculations.

  2. Adsorption of molecular hydrogen on Pd(Pt) decorated graphene

    NASA Astrophysics Data System (ADS)

    Adhikari, Narayan; Khaniya, Asim; Lamichhane, Saran; Pantha, Nurapati

    2015-03-01

    We have performed the first-principles based Density Functional Theory (DFT) calculations to study the stability, geometrical structures, and electronic properties of a Pd(Pt) atom adsorbed graphene to investigate the possibility of using Pd(Pt) decorated graphene as energy storage materials with reference to pristine graphene. The London dispersion forces have been incorporated by the DFT-D2 levels of calculations implemented in Quantum Espresso packages. Our findings show that Pd and Pt both adsorb on graphene at Bridge site. The electronic structures of Pd(Pt) adsorbed graphene possesses band gap opening due to breaking of the symmetry of graphene. Further we have studied the adsorption of moelcular hydrogen ((H 2) n , n = 1-7) on the Pd(Pt)-graphene system. The adatom Pd(Pt) enhances the binding energy per hydrogen molecule in Pd(Pt)-graphene system in comparison to that in the pristine graphene. The binding energy per hydrogen molecule of the adatom-graphene system decreases as the number of H 2 molecules increases and finally it saturates to 0.15 eV (0.16 eV) per hydrogen molecule for Pd-graphene (Pt-graphene) systems respectively. ICTP-NET 56/TWAS.

  3. Limited genetic diversity in Salmonella enterica Serovar Enteritidis PT13

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Enteritidis has emerged as a significant foodborne pathogen throughout the world and is commonly characterized by phage typing. In Canada phage types (PT) 4, 8 and 13 predominate and in 2005 a large foodborne PT13 outbreak occurred in the province of Ontario. The ability ...

  4. Positioning Evaluation and Research within PT3 Projects

    ERIC Educational Resources Information Center

    Rockman, Saul

    2004-01-01

    This special issue of JTATE is focused on evaluation and research studies conducted under the PT3 program of the U.S. Department of Education. PT3, Preparing Tomorrow's Teachers to Use Technology, is a program designed to ensure that new teachers are prepared to use computers and other technology when they reach the classroom and, in the effort to…

  5. Modifying exchange-spring behavior of CoPt/NiFe bilayer by inserting a Pt or Ru spacer

    SciTech Connect

    Hsu, Jen-Hwa Tsai, C. L.; Lee, C.-M.; Saravanan, P.

    2015-05-07

    We herein explore the possibility of obtaining tunable tilted magnetic anisotropy in ordered-CoPt (5 nm)/NiFe(t{sub NiFe}) bilayers through modifying their exchange spring behavior by inserting Pt and Ru-spacers. The tuning process of tilt angle magnetization of NiFe-layer was systematically investigated by varying the Pt or Ru thickness (t{sub Pt} or t{sub Ru}) from 0 to 8 nm at different thicknesses of NiFe (t{sub NiFe} = 1.5, 4.0, and 6.0 nm). Polar magneto-optic Kerr effect (p-MOKE) studies reveal that the bilayers grown in absence of spacers exhibit almost a rectangular hysteresis loop. With the insertion of Pt-spacer, the loop becomes more and more tilted as t{sub Pt} increases; whereas, in the case of Ru-spacer, the nature of the loops is not simply changing in one direction. The estimated SQR{sub ⊥} (= θ{sub r}/θ{sub s}) values from the p-MOKE loops are found to monotonically decrease with increasing t{sub Pt} when t{sub Pt} ≦ 4 nm. In contrast, in the case of Ru-spacer, an oscillatory behavior for the SQR{sub ⊥} values is apparent when t{sub Ru} ≦ 4 nm. As a result, an oscillatory tilted angle of NiFe spin configuration was obtained in the case of Ru-spacer; while a decoupling effect was prominent for the Pt-spacer. The results of present study reveal that the insertion of Pt and Ru-spacers as an appropriate means for realizing tunable tilted magnetic anisotropy in the CoPt/NiFe exchange springs.

  6. Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-Saccharomyces wine-related strains.

    PubMed

    Albergaria, Helena; Francisco, Diana; Gori, Klaus; Arneborg, Nils; Gírio, Francisco

    2010-04-01

    The nature of the toxic compounds produced by Saccharomyces cerevisiae CCMI 885 that induce the early death of Hanseniaspora guilliermondii during mixed fermentations, as well as their ability to inhibit the growth of other non-Saccharomyces wine-related strains, was investigated. The killing effect of mixed supernatants towards H. guilliermondii was inactivated by protease treatments, thus revealing the proteinaceous nature of the toxic compounds. Analysis of the protein pattern of mixed supernatants on Tricine SDS-PAGE showed that this S. cerevisiae strain secretes peptides (<10 kDa), which were detected only when death of H. guilliermondii was already established. Death-inducing supernatants were ultrafiltrated by 10 and 2 kDa membranes, respectively, and the inhibitory effect of those permeates were tested in H. guilliermondii cultures. Results indicated that the (2-10) kDa protein fraction of those supernatants seemed to contain antimicrobial peptides active against H. guilliermondii. Thus, the (2-10) kDa protein fraction was concentrated and its inhibitory effect tested against strains of Kluyveromyces marxianus, Kluyveromyces thermotolerans, Torulaspora delbrueckii and H. guilliermondii. Under the growth conditions used for these tests, the (2-10) kDa protein fraction of S. cerevisiae CCMI 885 supernatants exhibited a fungistatic effect against all the strains and a fungicidal effect against K. marxianus.

  7. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains.

    PubMed

    van der Aa Kühle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-05-01

    The probiotic potential of 18 Saccharomyces cerevisiae strains used for production of foods or beverages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Oxgall. Adhesion to the nontumorigenic porcine jejunal epithelial cell line (IPEC-J2) was investigated by incorporation of 3H-methionine into the yeast cells and use of liquid scintillation counting. Only few of the food-borne S. cerevisiae strains exhibited noteworthy adhesiveness with the strongest levels of adhesion (13.6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1alpha decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar effects hence indicating that food-borne strains of S. cerevisiae may possess probiotic properties in spite of low adhesiveness. PMID:15878404

  8. Serum Anti-Saccharomyces Cerevisiae Antibodies in Greek Patients with Behcet's Disease

    PubMed Central

    Vaiopoulos, George; Lakatos, Peter Laszlo; Papp, Maria; Kaklamanis, Faedon; Economou, Efrosyni; Zevgolis, Vassilis; Sourdis, John

    2011-01-01

    We tested 59 Greek patients with Behcet's Disease (BD) for serum anti-Saccharomyces cerevisiae antibodies. No increase of these antibodies was detected in the cases compared to 55 healthy unrelated blood donors from the same population. This finding is in contrast with the correlation between Saccharomyces cerevisiae antibodies and BD as reported in other populations. It seems that environmental factors may contribute to disease expression in different populations, producing different effects according to the individual's genetic predisposition. Saccharomyces cerevisiae antibodies do not seem to be of any significance in the Greek population. PMID:21319357

  9. Fine grains ceramics of PIN-PT, PIN-PMN-PT and PMN-PT systems: drift of the dielectric constant under high electric field.

    PubMed

    Pham-Thi, M; Augier, C; Dammak, H; Gaucher, P

    2006-12-22

    Lead-based ferroelectric ceramics with (1-x)Pb(B1 B2)O3-xPbTiO3 formula have emerged as a group of promising materials for various applications like ultrasonic sonars or medical imaging transducers. (1-x)PMN-xPT, (1-x)PIN-xPT and ternary solutions xPIN-yPMN-zPT ceramics are synthesised using the solid state reaction method. Our objective is to achieve higher structural transition temperatures than those of PMN-PT ceramics with as good dielectric, piezoelectric and electromechanical properties. Ceramics capacitance and loss tangent are measured when the ac field of measurement increases up to E=500 V/mm. Behaviours of these materials under ac field are related to their coercive field and Curie temperature.

  10. Anomalous Hall effect in YIG|Pt bilayers

    SciTech Connect

    Meyer, Sibylle Schlitz, Richard; Geprägs, Stephan; Opel, Matthias; Huebl, Hans; Goennenwein, Sebastian T. B.; Gross, Rudolf

    2015-03-30

    We measure the ordinary and the anomalous Hall effect in a set of yttrium iron garnet|platinum (YIG|Pt) bilayers via magnetization orientation dependent magnetoresistance experiments. Our data show that the presence of the ferrimagnetic insulator YIG leads to an anomalous Hall effect like voltage in Pt, which is sensitive to both Pt thickness and temperature. Interpretation of the experimental findings in terms of the spin Hall anomalous Hall effect indicates that the imaginary part of the spin mixing conductance G{sub i} plays a crucial role in YIG|Pt bilayers. In particular, our data suggest a sign change in G{sub i} between 10 K and 300 K. Additionally, we report a higher order Hall effect contribution, which appears in thin Pt films on YIG at low temperatures.

  11. Strong spin Hall effect in the antiferromagnet PtMn

    NASA Astrophysics Data System (ADS)

    Ou, Yongxi; Shi, Shengjie; Ralph, D. C.; Buhrman, R. A.

    2016-06-01

    Effectively manipulating magnetism in ferromagnet (FM) thin-film nanostructures with an in-plane current has become feasible since the determination of a "giant" spin Hall effect (SHE) in certain heavy metal/FM systems. Recently, both theoretical and experimental reports indicate that metallic antiferromagnet materials can have both a large anomalous Hall effect and a strong SHE. Here we report a systematic study of the SHE in PtMn with several PtMn/FM systems. By using interface engineering to reduce the "spin memory loss" we obtain, in the best instance, a spin-torque efficiency ξDLPtMn≡TintθSHPtMn≃0.24 , where Tint is the effective interface spin transparency. This is more than twice the previously reported spin-torque efficiency for PtMn. We also find that the apparent spin diffusion length in PtMn is surprisingly long, λsPtMn≈2.3 nm .

  12. Point interactions, metamaterials, and PT-symmetry

    NASA Astrophysics Data System (ADS)

    Mostafazadeh, Ali

    2016-05-01

    We express the boundary conditions for TE and TM waves at the interfaces of an infinite planar slab of homogeneous metamaterial as certain point interactions and use them to compute the transfer matrix of the system. This allows us to demonstrate the omnidirectional reflectionlessness of Veselago's slab for waves of arbitrary wavelength, reveal the translational and reflection symmetry of this slab, explore the laser threshold condition and coherent perfect absorption for active negative-index metamaterials, introduce a point interaction modeling phase-conjugation, determine the corresponding antilinear transfer matrix, and offer a simple proof of the equivalence of Veselago's slab with a pair of parallel phase-conjugating plates. We also study the connection between certain optical setups involving metamaterials and a class of PT-symmetric quantum systems defined on wedge-shape contours in the complex plane. This provides a physical interpretation for the latter.

  13. Status of Genesis Mo-Pt Foils

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Allton, J. H.; Burnett, D. S.; Butterworth, A. L.; Caffee, M. W.; Clark, B.; Jurewicz, A. J. G.; Komura, K.; Westphal, A. J.; Welten, K. C.

    2005-01-01

    A total of 8,000 sq cm of Mo-coated Pt foils were exposed to solar wind for 884 days by the Genesis mission. Solar wind ions were captured in the surface of the Mo. Our objective is the measurement of long-lived radionuclides, such as Be-10, Al-26, Cl-36, and Mn-53, and short-lived radionuclides, such as Na-22 and Mn-54, in the captured sample of solar wind. The expected flux of these nuclides in the solar wind is 100 atom/sq cm yr or less. The hard landing of the SRC (Sample Return Capsule) at UTTR (Utah Test and Training Range) has resulted in contaminated and crumpled foils. Here we present a status report and revised plan for processing the foils.

  14. Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices

    PubMed Central

    Yang, Meiyin; Cai, Kaiming; Ju, Hailang; Edmonds, Kevin William; Yang, Guang; Liu, Shuai; Li, Baohe; Zhang, Bao; Sheng, Yu; Wang, Shouguo; Ji, Yang; Wang, Kaiyou

    2016-01-01

    Current induced magnetization switching by spin-orbit torques offers an energy-efficient means of writing information in heavy metal/ferromagnet (FM) multilayer systems. The relative contributions of field-like torques and damping-like torques to the magnetization switching induced by the electrical current are still under debate. Here, we describe a device based on a symmetric Pt/FM/Pt structure, in which we demonstrate a strong damping-like torque from the spin Hall effect and unmeasurable field-like torque from Rashba effect. The spin-orbit effective fields due to the spin Hall effect were investigated quantitatively and were found to be consistent with the switching effective fields after accounting for the switching current reduction due to thermal fluctuations from the current pulse. A non-linear dependence of deterministic switching of average Mz on the in-plane magnetic field was revealed, which could be explained and understood by micromagnetic simulation. PMID:26856379

  15. Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices

    NASA Astrophysics Data System (ADS)

    Yang, Meiyin; Cai, Kaiming; Ju, Hailang; Edmonds, Kevin William; Yang, Guang; Liu, Shuai; Li, Baohe; Zhang, Bao; Sheng, Yu; Wang, Shouguo; Ji, Yang; Wang, Kaiyou

    2016-02-01

    Current induced magnetization switching by spin-orbit torques offers an energy-efficient means of writing information in heavy metal/ferromagnet (FM) multilayer systems. The relative contributions of field-like torques and damping-like torques to the magnetization switching induced by the electrical current are still under debate. Here, we describe a device based on a symmetric Pt/FM/Pt structure, in which we demonstrate a strong damping-like torque from the spin Hall effect and unmeasurable field-like torque from Rashba effect. The spin-orbit effective fields due to the spin Hall effect were investigated quantitatively and were found to be consistent with the switching effective fields after accounting for the switching current reduction due to thermal fluctuations from the current pulse. A non-linear dependence of deterministic switching of average Mz on the in-plane magnetic field was revealed, which could be explained and understood by micromagnetic simulation.

  16. Synthesis of PtCo3 polyhedral nanoparticles and evolution to Pt3Co nanoframes

    NASA Astrophysics Data System (ADS)

    Becknell, Nigel; Zheng, Cindy; Chen, Chen; Yu, Yi; Yang, Peidong

    2016-06-01

    Bimetallic nanoframes have great potential for achieving new levels of catalytic activity in various heterogeneous reactions due to their high surface area dispersion of expensive noble metals on the exterior and interior surfaces of the structure. PtCo3 nanoparticles with polyhedral shapes were synthesized by a hot-injection method. Scanning transmission electron microscopy combined with energy dispersive X-ray spectroscopy (EDS) showed that these nanoparticles demonstrated elemental segregation of platinum to the edges of the polyhedron, forming the basis for a framework nanostructure. The process of preferential oxidative leaching which removed cobalt from the interior of the framework was tracked by EDS and inductively coupled plasma optical emission spectroscopy. This evolution procedure left the platinum-rich edges intact to form a Pt3Co nanoframe. This is the first reported synthesis of a platinum-cobalt nanoframe and could have potential applications in catalytic reactions such as oxygen reduction.

  17. Evolution of anomalous Hall behavior in thin Pt/Co/Pt trilayers

    NASA Astrophysics Data System (ADS)

    Sun, Niu-yi; Zhang, Yan-qing; Che, Wen-ru; Shan, Rong; Zhu, Zhen-gang

    2016-05-01

    In this work, through controlling spin scattering mechanisms, anomalous Hall behaviors exhibit a series of evolutions in thin Pt/Co/Pt trilayers. The shape of Hall resistivity over longitudinal resistivity (ρAH /ρxx versus ρxx) curve turns from bending to linear and then bending again in most trilayers. This kind of evolution cannot be explained by the conventional linear scaling of anomalous Hall effect. It should be ascribed to the contribution of spin-phonon skew scattering. Our research may help to understand spin scattering behavior in low-dimensional systems more deeply and build a proper synergy between theory and experiment on the research of anomalous Hall effect.

  18. Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices.

    PubMed

    Yang, Meiyin; Cai, Kaiming; Ju, Hailang; Edmonds, Kevin William; Yang, Guang; Liu, Shuai; Li, Baohe; Zhang, Bao; Sheng, Yu; Wang, Shouguo; Ji, Yang; Wang, Kaiyou

    2016-01-01

    Current induced magnetization switching by spin-orbit torques offers an energy-efficient means of writing information in heavy metal/ferromagnet (FM) multilayer systems. The relative contributions of field-like torques and damping-like torques to the magnetization switching induced by the electrical current are still under debate. Here, we describe a device based on a symmetric Pt/FM/Pt structure, in which we demonstrate a strong damping-like torque from the spin Hall effect and unmeasurable field-like torque from Rashba effect. The spin-orbit effective fields due to the spin Hall effect were investigated quantitatively and were found to be consistent with the switching effective fields after accounting for the switching current reduction due to thermal fluctuations from the current pulse. A non-linear dependence of deterministic switching of average Mz on the in-plane magnetic field was revealed, which could be explained and understood by micromagnetic simulation. PMID:26856379

  19. Electrodeposited Co-Pt thin films for magnetic hard disks

    NASA Astrophysics Data System (ADS)

    Bozzini, B.; De Vita, D.; Sportoletti, A.; Zangari, G.; Cavallotti, P. L.; Terrenzio, E.

    1993-03-01

    ew baths for Co-Pt electrodeposition have been developed and developed and ECD thin films (≤0.3μm) have been prepared and characterized structurally (XRD), morphologically (SEM), chemically (EDS) and magnetically (VSM); their improved corrosion, oxidation and wear resistance have been ascertained. Such alloys appear suitable candidates for magnetic storage systems, from all technological viewpoints. The originally formulated baths contain Co-NH 3-citrate complexes and Pt-p salt (Pt(NH 3) 2(NO 2) 2). Co-Pt thin films of fcc structure are deposited obtaining microcrystallites of definite composition. At Pt ⋍ 30 at% we obtain fcc films with a=0.369 nm, HC=80 kA m, and high squareness; increasing Co and decreasing Pt content in the bath it is possible to reduce the Pt content of the deposit, obtaining fcc structures containing two types of microcrystals with a = 0.3615 nm and a = 0.369 nm deposited simultaneously. NaH 2PO 2 additions to the bath have a stabilizing influence on the fcc structure of a = 0.3615 nm, Pt ⋍ 20 at% and HC as high as 200 kA/m, with hysteresis loops suitable for both longitudinal or perpendicular recording, depending on the thickness. We have prepared 2.5 in. hard disks for magnetic recording with ECD Co-Pt 20 at% with a polished and texturized ACD Ni-P underlayer. Pulse response, 1F & 2F frequency and frequency sweep response behaviour, as well as noise and overwrite characteristics have been measured for both our disks and high-standard sputtered Co-Cr-Ta production disks, showin improved D50 for Co-Pt ECD disks. The signal-to-noise ratio could be improved by pulse electrodeposition and etching post-treatments.

  20. Structural and electronic properties of Ce overlayers and low-dimensional Pt-Ce alloys on Pt\\{111\\}

    NASA Astrophysics Data System (ADS)

    Baddeley, Christopher J.; Stephenson, Andrew W.; Hardacre, Christopher; Tikhov, Mintcho; Lambert, Richard M.

    1997-11-01

    The structural, thermal, chemisorptive, and electronic properties of Ce on Pt\\{111\\} are studied by photoemission, Auger spectroscopy, scanning tunnel microscope (STM), and low-energy electron diffraction (LEED). Stranski-Krastanov-like growth of low-density Ce layers is accompanied by substantial valence charge transfer from Ce to Pt: in line with this, the measured dipole moment and polarizability of adsorbed Ce at low coverages are 7.2×10-30 C m and ~1.3×10-29 m3, respectively. Pt-Ce intermixing commences at ~400 K and with increasing temperature a sequence of five different ordered surface alloys evolves. The symmetry, periodicities, and rotational epitaxy observed by LEED are in good accord with the STM data which reveal the true complexity of the system. The various bimetallic surface phases are based on growth of crystalline Pt5Ce, a hexagonal layer structure consisting of alternating layers of Pt2Ce and Kagomé nets of Pt atoms. This characteristic ABAB layered arrangement of the surface alloys is clearly imaged, and chemisorption data permit a distinction to be made between the more reactive Pt2Ce layer and the less reactive Pt Kagomé net. Either type of layer can appear at the surface as the terminating structure, thicker films exhibiting unit mesh parameters characteristic of the bulk alloy.

  1. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers

    NASA Astrophysics Data System (ADS)

    Bersweiler, M.; Dumesnil, K.; Lacour, D.; Hehn, M.

    2016-08-01

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm–2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  2. Investigation of nano Pt and Pt-based alloys electrocatalysts for direct methanol fuel cells and their properties

    NASA Astrophysics Data System (ADS)

    Suo, Chunguang; Zhang, Wenbin; Shi, Xinghua; Ma, Chuxia

    2014-03-01

    The electrocatalysts used in micro direct methanol fuel cell (μDMFC), such as Pt/C and Pt alloy/C, prepared by liquid-phase NaBH4 reduction method have been investigated. XC-72 (Cobalt corp. Company, U.S.A) is chosen as the activated carrier for the electrocatalysts to keep the catalysts powder in the range of several nanometers. The XRD, SEM, EDX analyses indicated that the catalysts had small particle size in several nanometers, in excellent dispersed phase and the molar ratio of the precious metals was found to be optimal. The performances of the DMFCs using cathodic catalyst with Pt percentage of 30wt% and different anodic catalysts (Pt-Ru, Pt-Ru-Mo) were tested. The polarization curves and power density curves of the cells were measured to determine the optimal alloy composition and condition for the electrocatalysts. The results showed that the micro direct methanol fuel cell with 30wt% Pt/C as the cathodic catalyst and n(Pt):n(Ru):n(Mo) = 3:2:2 PtRuMo/C as the anodic catalyst at room temperature using 2.0mol/L methanol solution has the best performances.

  3. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers

    NASA Astrophysics Data System (ADS)

    Bersweiler, M.; Dumesnil, K.; Lacour, D.; Hehn, M.

    2016-08-01

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm-2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  4. A Selective Blocking Method To Control the Overgrowth of Pt on Au Nanorods

    PubMed Central

    2013-01-01

    A method for the preparation of smooth deposits of Pt on Au nanorods is described, involving sequential deposition steps with selective blocking of surface sites that reduces Pt-on-Pt deposition. The Au–Pt nanorods prepared by this method have higher long-term stability than those prepared by standard Pt deposition. Electrochemical data show that the resulting structure has more extended regions of Pt surface and enhanced activity toward the carbon monoxide oxidation and oxygen reduction reactions. PMID:23594230

  5. Laser-excited luminescence and absorption study of mixed valence for K 2Pt(CN) 4—K 2Pt(CN) 6 crystals

    NASA Astrophysics Data System (ADS)

    Kasi Viswanath, A.; Smith, Wayne L.; Patterson, H.

    1982-04-01

    Crystals of K 2Pt(CN) 6 doped with Pt(CN) 2-4 show an absorption band at 337 nm which is assigned as a mixed-valence (MV) transition from Pt (II) to Pt(IV). From a Hush model analysis, the absorption band is interpreted to be class II in the Day—Robin scheme. When the MV band is laser excited at 337 nm, emmision is observed from Pt(CN) 2-4 clusters.

  6. Non-Saccharomyces and Saccharomyces strains co-fermentation increases acetaldehyde accumulation: effect on anthocyanin-derived pigments in Tannat red wines.

    PubMed

    Medina, Karina; Boido, Eduardo; Fariña, Laura; Dellacassa, Eduardo; Carrau, Francisco

    2016-07-01

    During fermentation, Saccharomyces cerevisiae releases into the medium secondary metabolic products, such as acetaldehyde, able to react with anthocyanins, producing more stable derived pigments. However, very limited reports are found about non-Saccharomyces effects on grape fermentation. In this study, six non-Saccharomyces yeast strains, belonging to the genera Metschnikowia and Hanseniaspora, were screened for their effect on red wine colour and wine-making capacity under pure culture conditions and mixed with Saccharomyces. An artificial red grape must was prepared, containing a phenolic extract of Tannat grapes that allows monitoring changes of key phenol parameters during fermentation, but without skin solids in the medium. When fermented in pure cultures, S. cerevisiae produced higher concentrations of acetaldehyde and vitisin B (acetaldehyde reaction-dependent) compared to M. pulcherrima M00/09G, Hanseniaspora guillermondii T06/09G, H. opuntiae T06/01G, H. vineae T02/05F and H. clermontiae (A10/82Fand C10/54F). However, co-fermentation of H. vineae and H. clermontiae with S. cerevisiae resulted in a significantly higher concentration of acetaldehyde compared with the pure S. cerevisiae control. HPLC-DAD-MS analysis confirmed an increased formation of vitisin B in co-fermentation treatments when compared to pure Saccharomyces fermentation, suggesting the key role of acetaldehyde. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26888345

  7. Non-Saccharomyces and Saccharomyces strains co-fermentation increases acetaldehyde accumulation: effect on anthocyanin-derived pigments in Tannat red wines.

    PubMed

    Medina, Karina; Boido, Eduardo; Fariña, Laura; Dellacassa, Eduardo; Carrau, Francisco

    2016-07-01

    During fermentation, Saccharomyces cerevisiae releases into the medium secondary metabolic products, such as acetaldehyde, able to react with anthocyanins, producing more stable derived pigments. However, very limited reports are found about non-Saccharomyces effects on grape fermentation. In this study, six non-Saccharomyces yeast strains, belonging to the genera Metschnikowia and Hanseniaspora, were screened for their effect on red wine colour and wine-making capacity under pure culture conditions and mixed with Saccharomyces. An artificial red grape must was prepared, containing a phenolic extract of Tannat grapes that allows monitoring changes of key phenol parameters during fermentation, but without skin solids in the medium. When fermented in pure cultures, S. cerevisiae produced higher concentrations of acetaldehyde and vitisin B (acetaldehyde reaction-dependent) compared to M. pulcherrima M00/09G, Hanseniaspora guillermondii T06/09G, H. opuntiae T06/01G, H. vineae T02/05F and H. clermontiae (A10/82Fand C10/54F). However, co-fermentation of H. vineae and H. clermontiae with S. cerevisiae resulted in a significantly higher concentration of acetaldehyde compared with the pure S. cerevisiae control. HPLC-DAD-MS analysis confirmed an increased formation of vitisin B in co-fermentation treatments when compared to pure Saccharomyces fermentation, suggesting the key role of acetaldehyde. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Effects of toluene and benzoic acid on the kinetics of ferrous oxidation on Pt and nafion-coated Pt electrodes

    SciTech Connect

    Ye, J.H.; Fedkiw, P.S. . Dept. of Chemical Engineering)

    1994-06-01

    The electrochemical kinetics of Fe[sup 2+] oxidation to Fe[sup 3+] have been investigated by cyclic and ring disk electrode voltammetry in the absence and presence of the contaminants toluene (7 mM, saturated solution) or benzoic acid (16 mM) in 1M H[sub 2]SO[sub 4] electrolyte on (1) smooth Pt electrodes, (2) Nafion-coated smooth Pt electrodes, and (3) Pt electrodes electrodeposited within a Nafion film coated onto a glassy carbon (GC) substrate. On uncoated Pt, the kinetics are adversely affected by these two organics: both the anodic transfer coefficient and the apparent standard rate constant are decreased. A 3.7 [mu]m Nafion coating, however, effectively buffers the smooth Pt electrode from toluene, but, nevertheless, benzoic acid still affects the reaction rate. In contrast, the transfer coefficient and rate constant for Fe[sup 2+] oxidation on the Pt/Nafion/GC electrode are essentially unaffected by either toluene or benzoic acid. Qualitative features of the voltammograms also indicate that the Nafion film protects the Pt from contamination by these aromatics: two current plateaus are observed using an uncoated Pt electrode in the presence of toluene or benzoic acid with a ratio which increased with rotation rate; with the Nafion coating on a smooth Pt electrode and in the presence of toluene, however, there is only one current plateau; in the presence of benzoic acid, two current plateaus remain, but the ratio is nearer unity and less sensitive to rotation rate. In contrast, only a single plateau current is observed using the Pt/Nafion/GC electrode. The Nafion coating is apparently an effective buffer layer against these two aromatics, but concurrently affects a decrease in the mass-transfer limited current due to the diffusional resistance of the film.

  9. The influence of microgravity on invasive growth in Saccharomyces cerevisiae.

    PubMed

    Van Mulders, Sebastiaan E; Stassen, Catherine; Daenen, Luk; Devreese, Bart; Siewers, Verena; van Eijsden, Rudy G E; Nielsen, Jens; Delvaux, Freddy R; Willaert, Ronnie

    2011-01-01

    This study investigates the effects of microgravity on colony growth and the morphological transition from single cells to short invasive filaments in the model eukaryotic organism Saccharomyces cerevisiae. Two-dimensional spreading of the yeast colonies grown on semi-solid agar medium was reduced under microgravity in the Σ1278b laboratory strain but not in the CMBSESA1 industrial strain. This was supported by the Σ1278b proteome map under microgravity conditions, which revealed upregulation of proteins linked to anaerobic conditions. The Σ1278b strain showed a reduced invasive growth in the center of the yeast colony. Bud scar distribution was slightly affected, with a switch toward more random budding. Together, microgravity conditions disturb spatially programmed budding patterns and generate strain-dependent growth differences in yeast colonies on semi-solid medium.

  10. Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae.

    PubMed

    Rødkaer, Steven V; Faergeman, Nils J

    2014-08-01

    Pro- and eukaryotic cells are constantly challenged by varying concentrations of nutrients in their environment. Perceiving and adapting to such changes are therefore crucial for cellular viability. Thus, numerous specialized cellular receptors continuously sense and react to the availability of nutrients such as glucose and nitrogen. When stimulated, these receptors initiate various cellular signaling pathways, which in concert constitute a complex regulatory network. To ensure a highly specific response, these pathways and networks cross-communicate with each other and are regulated at several steps and by numerous different regulators. As numerous of these regulating proteins, biochemical mechanisms, and cellular pathways are evolutionary conserved, complex biochemical information relevant to humans can be obtained by studying simple organisms. Thus, the yeast Saccharomyces cerevisiae has been recognized as a powerful model system to study fundamental biochemical processes. In the present review, we highlight central signaling pathways and molecular circuits conferring nitrogen- and glucose sensing in S. cerevisiae.

  11. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts.

    PubMed

    Gallone, Brigida; Steensels, Jan; Prahl, Troels; Soriaga, Leah; Saels, Veerle; Herrera-Malaver, Beatriz; Merlevede, Adriaan; Roncoroni, Miguel; Voordeckers, Karin; Miraglia, Loren; Teiling, Clotilde; Steffy, Brian; Taylor, Maryann; Schwartz, Ariel; Richardson, Toby; White, Christopher; Baele, Guy; Maere, Steven; Verstrepen, Kevin J

    2016-09-01

    Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP. PMID:27610566

  12. Energy-dependent effects of resveratrol in Saccharomyces cerevisiae.

    PubMed

    Madrigal-Perez, Luis Alberto; Canizal-Garcia, Melina; González-Hernández, Juan Carlos; Reynoso-Camacho, Rosalia; Nava, Gerardo M; Ramos-Gomez, Minerva

    2016-06-01

    The metabolic effects induced by resveratrol have been associated mainly with the consumption of high-calorie diets; however, its effects with standard or low-calorie diets remain unclear. To better understand the interactions between resveratrol and cellular energy levels, we used Saccharomyces cerevisiae as a model. Herein it is shown that resveratrol: (a) decreased cell viability in an energy-dependent manner; (b) lessening of cell viability occurred specifically when cells were under cellular respiration; and (c) inhibition of oxygen consumption in state 4 occurred at low and standard energy levels, whereas at high energy levels oxygen consumption was promoted. These findings indicate that the effects of resveratrol are dependent on the cellular energy status and linked to metabolic respiration. Importantly, our study also revealed that S. cerevisiae is a suitable and useful model to elucidate the molecular targets of resveratrol under different nutritional statuses. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration.

    PubMed

    Lin, Su-Ju; Kaeberlein, Matt; Andalis, Alex A; Sturtz, Lori A; Defossez, Pierre-Antoine; Culotta, Valeria C; Fink, Gerald R; Guarente, Leonard

    2002-07-18

    Calorie restriction (CR) extends lifespan in a wide spectrum of organisms and is the only regimen known to lengthen the lifespan of mammals. We established a model of CR in budding yeast Saccharomyces cerevisiae. In this system, lifespan can be extended by limiting glucose or by reducing the activity of the glucose-sensing cyclic-AMP-dependent kinase (PKA). Lifespan extension in a mutant with reduced PKA activity requires Sir2 and NAD (nicotinamide adenine dinucleotide). In this study we explore how CR activates Sir2 to extend lifespan. Here we show that the shunting of carbon metabolism toward the mitochondrial tricarboxylic acid cycle and the concomitant increase in respiration play a central part in this process. We discuss how this metabolic strategy may apply to CR in animals.

  14. Isolation and Partial Purification of the Saccharomyces cerevisiae Cytokinetic Apparatus

    PubMed Central

    Young, Brian A.; Buser, Christopher; Drubin, David G.

    2009-01-01

    Cytokinesis is the process by which a cell physically divides in two at the conclusion of a cell cycle. In animal and fungal cells, this process is mediated by a conserved set of proteins including actin, type II myosin, IQGAP proteins, F-BAR proteins, and the septins. To facilitate biochemical and ultrastructural analysis of cytokinesis, we have isolated and partially purified the Saccharomyces cerevisiae cytokinetic apparatus. The isolated apparatus contains all components of the actomyosin ring for which we tested—actin, myosin heavy and light chain, and IQGAP—as well as septins and the cytokinetic F-BAR protein, Hof1p. We also present evidence indicating that the actomyosin rings associated with isolated cytokinetic apparati may be contractile in vitro, and show preliminary electron microscopic imaging of the cytokinetic apparatus. This first successful isolation of the cytokinetic apparatus from a genetically tractable organism promises to make possible a deeper understanding of cytokinesis. PMID:19790107

  15. Isolation of an osmotolerant ale strain of Saccharomyces cerevisiae.

    PubMed

    Pironcheva, G

    1998-01-01

    Saccharomyces cerevisiae (ale strain) grown in batch culture to stationary phase was tested for its tolerance to heat (50 degrees C for 5 min), hydrogen peroxide (0.3 M) and salt (growth in 1.5 M sodium chloride/YPD medium). Yeast cells which have been exposed previously to heat shock are more tolerant to hydrogen peroxide and high salt concentrations (1.5 M NaCl) than the controls. Their fermentative activity as judged by glucose consumption and their viability, as judged by cell number and density have higher levels when compared with cells not previously exposed to heat shock. Experimental conditions facilitated the isolation of S. cerevisiae ale strain, which was tolerant to heat, and other agents such as hydrogen peroxide and sodium chloride.

  16. Using weighted features to predict recombination hotspots in Saccharomyces cerevisiae.

    PubMed

    Liu, Guoqing; Xing, Yongqiang; Cai, Lu

    2015-10-01

    Characterization and accurate prediction of recombination hotspots and coldspots have crucial implications for the mechanism of recombination. Several models have predicted recombination hot/cold spots successfully, but there is still much room for improvement. We present a novel classifier in which k-mer frequency, physical and thermodynamic properties of DNA sequences are incorporated in the form of weighted features. Applying the classifier to recombination hot/cold ORFs in Saccharomyces cerevisiae, we achieved an accuracy of 90%, which is ~5% higher than existing methods, such as iRSpot-PseDNC, IDQD and Random Forest. The model also predicted non-ORF recombination hot/cold spots sequences in S. cerevisiae with high accuracy. A broad applicability of the model in the field of classification is expected.

  17. [Tolerance of Saccharomyces cerevisiae to monoterpenes--a review].

    PubMed

    Liu, Jidong; Zhou, Jingwen; Chen, Jian

    2013-06-01

    Tolerance of Saccharomyces cerevisiae to monoterpenes is important in both metabolic engineering of the yeast to produce these chemicals de novo and efficient use of biomass containing these chemicals. Understanding the mechanisms in the tolerance of S. cerevisiae to monoterpenes could facilitate the construction of yeast strains with enhanced monoterpenes resistance, and therefore improve related bioprocesses. Monoterpenes could disturb the redox balance in S. cerevisiae, therefore increase the accumulation of reactive oxygen species (ROS) and result in cell death. S. cerevisiae has to systematically improve its antioxidative ability to deal with the ROS induced damage. The current review summarized the recent developments in demonstration of the tolerance of S. cerevisiae to different typical monoterpenes mainly from the aspect of the antioxidative mechanisms. Based on the analysis of the previous works, further attempts to demonstrate the mechanisms were proposed. PMID:24028054

  18. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.

  19. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts.

    PubMed

    Gallone, Brigida; Steensels, Jan; Prahl, Troels; Soriaga, Leah; Saels, Veerle; Herrera-Malaver, Beatriz; Merlevede, Adriaan; Roncoroni, Miguel; Voordeckers, Karin; Miraglia, Loren; Teiling, Clotilde; Steffy, Brian; Taylor, Maryann; Schwartz, Ariel; Richardson, Toby; White, Christopher; Baele, Guy; Maere, Steven; Verstrepen, Kevin J

    2016-09-01

    Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP.

  20. Diversity and adaptive evolution of Saccharomyces wine yeast: a review.

    PubMed

    Marsit, Souhir; Dequin, Sylvie

    2015-11-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains.

  1. Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae.

    PubMed Central

    Kirchman, P A; Kim, S; Lai, C Y; Jazwinski, S M

    1999-01-01

    Replicative capacity, which is the number of times an individual cell divides, is the measure of longevity in the yeast Saccharomyces cerevisiae. In this study, a process that involves signaling from the mitochondrion to the nucleus, called retrograde regulation, is shown to determine yeast longevity, and its induction resulted in postponed senescence. Activation of retrograde regulation, by genetic and environmental means, correlated with increased replicative capacity in four different S. cerevisiae strains. Deletion of a gene required for the retrograde response, RTG2, eliminated the increased replicative capacity. RAS2, a gene previously shown to influence longevity in yeast, interacts with retrograde regulation in setting yeast longevity. The molecular mechanism of aging elucidated here parallels the results of genetic studies of aging in nematodes and fruit flies, as well as the caloric restriction paradigm in mammals, and it underscores the importance of metabolic regulation in aging, suggesting a general applicability. PMID:10224252

  2. Advanced biofuel production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Siewers, Verena; Nielsen, Jens

    2013-06-01

    Replacement of conventional transportation fuels with biofuels will require production of compounds that can cover the complete fuel spectrum, ranging from gasoline to kerosene. Advanced biofuels are expected to play an important role in replacing fossil fuels because they have improved properties compared with ethanol and some of these may have the energy density required for use in heavy duty vehicles, ships, and aviation. Moreover, advanced biofuels can be used as drop-in fuels in existing internal combustion engines. The yeast cell factory Saccharomyces cerevisiae can be turned into a producer of higher alcohols (1-butanol and isobutanol), sesquiterpenes (farnesene and bisabolene), and fatty acid ethyl esters (biodiesel), and here we discusses progress in metabolic engineering of S. cerevisiae for production of these advanced biofuels. PMID:23628723

  3. Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae.

    PubMed

    Bertl, A; Bihler, H; Kettner, C; Slayman, C L

    1998-11-01

    Since the mid-1980s, use of the budding yeast, Saccharomyces cerevisiae, for expression of heterologous (foreign) genes and proteins has burgeoned for several major purposes, including facile genetic manipulation, large-scale production of specific proteins, and preliminary functional analysis. Expression of heterologous membrane proteins in yeast has not kept pace with expression of cytoplasmic proteins for two principal reasons: (1) although plant and fungal proteins express and function easily in yeast membranes, animal proteins do not, at least yet; and (2) the yeast plasma membrane is generally regarded as a difficult system to which to apply the standard electrophysiological techniques for detailed functional analysis of membrane proteins. Especially now, since completion of the genome-sequencing project for Saccharomyces, yeast membranes themselves can be seen as an ample source of diverse membrane proteins - including ion channels, pumps, and cotransporters - which lend themselves to electrophysiological analysis, and specifically to patch-clamping. Using some of these native proteins for assay, we report systematic methods to prepare both the yeast plasma membrane and the yeast vacuolar membrane (tonoplast) for patch-clamp experiments. We also describe optimized ambient conditions - such as electrode preparation, buffer solutions, and time regimens - which facilitate efficient patch recording from Saccharomyces membranes. There are two main keys to successful patch-clamping with Saccharomyces. The first is patience; the second is scrupulous cleanliness. Large cells, such as provided by polyploid strains, are also useful in yeast patch recording, especially while the skill required for gigaseal formation is being learned. Cleanliness is aided by (1) osmotic extrusion of protoplasts, after minimal digestion of yeast walls; (2) use of a rather spare suspension of protoplasts in the recording chamber; (3) maintenance of continuous chamber perfusion prior to

  4. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  5. Purification of fluorescently labeled Saccharomyces cerevisiae Spindle Pole Bodies

    PubMed Central

    Davis, Trisha N.

    2016-01-01

    Centrosomes are components of the mitotic spindle responsible for organizing microtubules and establishing a bipolar spindle for accurate chromosome segregation. In budding yeast, Saccharomyces cerevisiae, the centrosome is called the spindle pole body, a highly organized tri-laminar structure embedded in the nuclear envelope. Here we describe a detailed protocol for the purification of fluorescently labeled spindle pole bodes from S. cerevisiae. Spindle pole bodies are purified from yeast using a TAP-tag purification followed by velocity sedimentation. This highly reproducible TAP-tag purification method improves upon previous techniques and expands the scope of in vitro characterization of yeast spindle pole bodies. The genetic flexibility of this technique allows for the study of spindle pole body mutants as well as the study of spindle pole bodies during different stages of the cell cycle. The ease and reproducibility of the technique makes it possible to study spindle pole bodies using a variety of biochemical, biophysical, and microscopic techniques. PMID:27193850

  6. Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae.

    PubMed

    Osterberg, Marie; Kim, Hyun; Warringer, Jonas; Melén, Karin; Blomberg, Anders; von Heijne, Gunnar

    2006-07-25

    Large-scale protein overexpression phenotype screens provide an important complement to the more common gene knockout screens. Here, we have targeted the so far poorly understood Saccharomyces cerevisiae membrane proteome and report growth phenotypes for a strain collection overexpressing approximately 600 C-terminally tagged integral membrane proteins grown both under normal and three different stress conditions. Although overexpression of most membrane proteins reduce the growth rate in synthetic defined medium, we identify a large number of proteins that, when overexpressed, confer specific resistance to various stress conditions. Our data suggest that regulation of glycosylphosphatidylinositol anchor biosynthesis and the Na(+)/K(+) homeostasis system constitute major downstream targets of the yeast PKA/RAS pathway and point to a possible connection between the early secretory pathway and the cells' response to oxidative stress. We also have quantified the expression levels for >550 membrane proteins, facilitating the choice of well expressing proteins for future functional and structural studies.

  7. Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae.

    PubMed

    Bertl, A; Bihler, H; Kettner, C; Slayman, C L

    1998-11-01

    Since the mid-1980s, use of the budding yeast, Saccharomyces cerevisiae, for expression of heterologous (foreign) genes and proteins has burgeoned for several major purposes, including facile genetic manipulation, large-scale production of specific proteins, and preliminary functional analysis. Expression of heterologous membrane proteins in yeast has not kept pace with expression of cytoplasmic proteins for two principal reasons: (1) although plant and fungal proteins express and function easily in yeast membranes, animal proteins do not, at least yet; and (2) the yeast plasma membrane is generally regarded as a difficult system to which to apply the standard electrophysiological techniques for detailed functional analysis of membrane proteins. Especially now, since completion of the genome-sequencing project for Saccharomyces, yeast membranes themselves can be seen as an ample source of diverse membrane proteins - including ion channels, pumps, and cotransporters - which lend themselves to electrophysiological analysis, and specifically to patch-clamping. Using some of these native proteins for assay, we report systematic methods to prepare both the yeast plasma membrane and the yeast vacuolar membrane (tonoplast) for patch-clamp experiments. We also describe optimized ambient conditions - such as electrode preparation, buffer solutions, and time regimens - which facilitate efficient patch recording from Saccharomyces membranes. There are two main keys to successful patch-clamping with Saccharomyces. The first is patience; the second is scrupulous cleanliness. Large cells, such as provided by polyploid strains, are also useful in yeast patch recording, especially while the skill required for gigaseal formation is being learned. Cleanliness is aided by (1) osmotic extrusion of protoplasts, after minimal digestion of yeast walls; (2) use of a rather spare suspension of protoplasts in the recording chamber; (3) maintenance of continuous chamber perfusion prior to

  8. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    PubMed Central

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  9. Replication of Avocado Sunblotch Viroid in the Yeast Saccharomyces cerevisiae▿

    PubMed Central

    Delan-Forino, Clémentine; Maurel, Marie-Christine; Torchet, Claire

    2011-01-01

    Viroids are the smallest known pathogenic agents. They are noncoding, single-stranded, closed-circular, “naked” RNAs, which replicate through RNA-RNA transcription. Viroids of the Avsunviroidae family possess a hammerhead ribozyme in their sequence, allowing self-cleavage during their replication. To date, viroids have only been detected in plant cells. Here, we investigate the replication of Avocado sunblotch viroid (ASBVd) of the Avsunviroidae family in a nonconventional host, the yeast Saccharomyces cerevisiae. We demonstrate that ASBVd RNA strands of both polarities are able to self-cleave and to replicate in a unicellular eukaryote cell. We show that the viroid monomeric RNA is destabilized by the nuclear 3′ and the cytoplasmic 5′ RNA degradation pathways. For the first time, our results provide evidence that viroids can replicate in other organisms than plants and that yeast contains all of the essential cellular elements for the replication of ASBVd. PMID:21270165

  10. Yap1: A DNA damage responder in Saccharomyces cerevisiae

    PubMed Central

    Rowe, Lori A.; Degtyareva, Natalya; Doetsch, Paul W.

    2012-01-01

    Activation of signaling pathways in response to genotoxic stress is crucial for cells to properly repair DNA damage. In response to DNA damage, intracellular levels of reactive oxygen species increase. One important function of such a response could be to initiate signal transduction processes. We have employed the model eukaryote Saccharomyces cerevisiae to delineate DNA damage sensing mechanisms. We report a novel, unanticipated role for the transcription factor Yap1 as a DNA damage responder, providing direct evidence that reactive oxygen species are an important component of the DNA damage signaling process. Our findings reveal an epistatic link between Yap1 and the DNA base excision repair pathway. Corruption of the Yap1-mediated DNA damage response influences cell survival and genomic stability in response to exposure to genotoxic agents. PMID:22433435

  11. Hormetic Effect of H2O2 in Saccharomyces cerevisiae

    PubMed Central

    Valishkevych, Bohdana V.

    2016-01-01

    In this study, we investigated the relationship between target of rapamycin (TOR) and H2O2-induced hormetic response in the budding yeast Saccharomyces cerevisiae grown on glucose or fructose. In general, our data suggest that: (1) hydrogen peroxide (H2O2) induces hormesis in a TOR-dependent manner; (2) the H2O2-induced hormetic dose–response in yeast depends on the type of carbohydrate in growth medium; (3) the concentration-dependent effect of H2O2 on yeast colony growth positively correlates with the activity of glutathione reductase that suggests the enzyme involvement in the H2O2-induced hormetic response; and (4) both TOR1 and TOR2 are involved in the reciprocal regulation of the activity of glucose-6-phosphate dehydrogenase and glyoxalase 1. PMID:27099601

  12. Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae

    SciTech Connect

    Batt, C.A.; Carvallo, S.; Easson, D.D.; Akedo, M.; Sinskey, A.J.

    1986-04-01

    Xylose transport, xylose reductase, and xylitol dehydrogenase activities are demonstrated in Saccharomyces cerevisiae. The enzymes in the xylose catabolic pathway necessary for the conversion of xylose xylulose are present, although S. cerevisiae cannot grow on xylose as a sole carbon source. Xylose transport is less efficient than glucose transport, and its rate is dependent upon aeration. Xylose reductase appears to be a xylose inducible enzyme and xylitol dehydrogenase activity is constitutive, although both are repressed by glucose. Both xylose reductase and xylitol dehydrogenase activities are five- to tenfold lower in S. cerevisie as compared to Candida utilis. In vivo conversion of /sup 14/C-xylose in S. cerevisiage is demonstrated and xylitol is detected, although no significant levels of any other /sup 14/C-labeled metabolites (e.g., ethanol) are observed. 22 references.

  13. ROG1 encodes a monoacylglycerol lipase in Saccharomyces cerevisiae.

    PubMed

    Vishnu Varthini, Lakshmanaperumal; Selvaraju, Kandasamy; Srinivasan, Malathi; Nachiappan, Vasanthi

    2015-01-01

    Lipid metabolism is extensively studied in Saccharomyces cerevisiae. Here, we report that revertant of glycogen synthase kinase mutation-1 (Rog1p) possesses monoacylglycerol (MAG) lipase activity in S. cerevisiae. The lipase activity of Rog1p was confirmed in two ways: through analysis of a strain with a double deletion of ROG1 and monoglyceride lipase YJU3 (yju3Δrog1Δ) and by site-directed mutagenesis of the ROG1 lipase motif (GXSXG). Rog1p is localized in both the cytosol and the nucleus. Overexpression of ROG1 in a ROG1-deficient strain resulted in an accumulation of reactive oxygen species. These results suggest that Rog1p is a MAG lipase that regulates lipid homeostasis.

  14. On the Mechanism of Gene Silencing in Saccharomyces cerevisiae.

    PubMed

    Steakley, David Lee; Rine, Jasper

    2015-06-16

    Multiple mechanisms have been proposed for gene silencing in Saccharomyces cerevisiae, ranging from steric occlusion of DNA binding proteins from their recognition sequences in silenced chromatin to a specific block in the formation of the preinitiation complex to a block in transcriptional elongation. This study provided strong support for the steric occlusion mechanism by the discovery that RNA polymerase of bacteriophage T7 could be substantially blocked from transcribing from its cognate promoter when embedded in silenced chromatin. Moreover, unlike previous suggestions, we found no evidence for stalled RNA polymerase II within silenced chromatin. The effectiveness of the Sir protein-based silencing mechanism to block transcription activated by Gal4 at promoters in the domain of silenced chromatin was marginal, yet it improved when tested against mutant forms of the Gal4 protein, highlighting a role for specific activators in their sensitivity to gene silencing.

  15. Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress.

    PubMed

    de Sá, Rafael A; de Castro, Frederico A V; Eleutherio, Elis C A; de Souza, Raquel M; da Silva, Joaquim F M; Pereira, Marcos D

    2013-01-01

    Propolis is a natural product widely used for humans. Due to its complex composition, a number of applications (antimicrobial, antiinflammatory, anesthetic, cytostatic and antioxidant) have been attributed to this substance. Using Saccharomyces cerevisiae as a eukaryotic model we investigated the mechanisms underlying the antioxidant effect of propolis from Guarapari against oxidative stress. Submitting a wild type (BY4741) and antioxidant deficient strains (ctt1Δ, sod1Δ, gsh1Δ, gtt1Δ and gtt2Δ) either to 15 mM menadione or to 2 mM hydrogen peroxide during 60 min, we observed that all strains, except the mutant sod1Δ, acquired tolerance when previously treated with 25 μg/mL of alcoholic propolis extract. Such a treatment reduced the levels of ROS generation and of lipid peroxidation, after oxidative stress. The increase in Cu/Zn-Sod activity by propolis suggests that the protection might be acting synergistically with Cu/Zn-Sod.

  16. Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae

    SciTech Connect

    Hayashi, Naoyuki Kobayashi, Masahiko; Shimizu, Hiroko; Yamamoto, Ken-ichi; Murakami, Seishi; Nishimoto, Takeharu

    2007-11-23

    The Ran GTPase system regulates the direction and timing of several cellular events, such as nuclear-cytosolic transport, centrosome formation, and nuclear envelope assembly in telophase. To gain insight into the Ran system's involvement in chromatin formation, we investigated gene silencing at the telomere in several mutants of the budding yeast Saccharomyces cerevisiae, which had defects in genes involved in the Ran system. A mutation of the RanGAP gene, rna1-1, caused reduced silencing at the telomere, and partial disruption of the nuclear Ran binding factor, yrb2-{delta}2, increased this silencing. The reduced telomere silencing in rna1-1 cells was suppressed by a high dosage of the SIR3 gene or the SIT4 gene. Furthermore, hyperphosphorylated Sir3 protein accumulated in the rna1-1 mutant. These results suggest that RanGAP is required for the heterochromatin structure at the telomere in budding yeast.

  17. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers.

    PubMed

    Generoso, Wesley Cardoso; Schadeweg, Virginia; Oreb, Mislav; Boles, Eckhard

    2015-06-01

    Saccharomyces cerevisiae has decisive advantages in industrial processes due to its tolerance to alcohols and fermentation conditions. Butanol isomers are considered as suitable fuel substitutes and valuable biomass-derived chemical building blocks. Whereas high production was achieved with bacterial systems, metabolic engineering of yeast for butanol production is in the beginning. For isobutanol synthesis, combination of valine biosynthesis and degradation, and complete pathway re-localisation into cytosol or mitochondria gave promising results. However, competing pathways, co-factor imbalances and FeS cluster assembly are still major issues. 1-Butanol production via the Clostridium pathway seems to be limited by cytosolic acetyl-CoA, its central precursor. Endogenous 1-butanol pathways have been discovered via threonine or glycine catabolism. 2-Butanol production was established but was limited by B12-dependence.

  18. Yap1: a DNA damage responder in Saccharomyces cerevisiae.

    PubMed

    Rowe, Lori A; Degtyareva, Natalya; Doetsch, Paul W

    2012-04-01

    Activation of signaling pathways in response to genotoxic stress is crucial for cells to properly repair DNA damage. In response to DNA damage, intracellular levels of reactive oxygen species increase. One important function of such a response could be to initiate signal transduction processes. We have employed the model eukaryote Saccharomyces cerevisiae to delineate DNA damage sensing mechanisms. We report a novel, unanticipated role for the transcription factor Yap1 as a DNA damage responder, providing direct evidence that reactive oxygen species are an important component of the DNA damage signaling process. Our findings reveal an epistatic link between Yap1 and the DNA base excision repair pathway. Corruption of the Yap1-mediated DNA damage response influences cell survival and genomic stability in response to exposure to genotoxic agents.

  19. Protein disorder reduced in Saccharomyces cerevisiae to survive heat shock.

    PubMed

    Vicedo, Esmeralda; Gasik, Zofia; Dong, Yu-An; Goldberg, Tatyana; Rost, Burkhard

    2015-01-01

    Recent experiments established that a culture of Saccharomyces cerevisiae (baker's yeast) survives sudden high temperatures by specifically duplicating the entire chromosome III and two chromosomal fragments (from IV and XII). Heat shock proteins (HSPs) are not significantly over-abundant in the duplication. In contrast, we suggest a simple algorithm to " postdict " the experimental results: Find a small enough chromosome with minimal protein disorder and duplicate this region. This algorithm largely explains all observed duplications. In particular, all regions duplicated in the experiment reduced the overall content of protein disorder. The differential analysis of the functional makeup of the duplication remained inconclusive. Gene Ontology (GO) enrichment suggested over-representation in processes related to reproduction and nutrient uptake. Analyzing the protein-protein interaction network (PPI) revealed that few network-central proteins were duplicated. The predictive hypothesis hinges upon the concept of reducing proteins with long regions of disorder in order to become less sensitive to heat shock attack. PMID:26673203

  20. Higher-order structure of Saccharomyces cerevisiae chromatin

    SciTech Connect

    Lowary, P.T.; Widom, J. )

    1989-11-01

    We have developed a method for partially purifying chromatin from Saccharomyces cerevisiae (baker's yeast) to a level suitable for studies of its higher-order folding. This has required the use of yeast strains that are free of the ubiquitous yeast killer virus. Results from dynamic light scattering, electron microscopy, and x-ray diffraction show that the yeast chromatin undergoes a cation-dependent folding into 30-nm filaments that resemble those characteristic of higher-cell chromatin; moreover, the packing of nucleosomes within the yeast 30-nm filaments is similar to that of higher cells. These results imply that yeast has a protein or protein domain that serves the role of the histone H 1 found in higher cells; physical and genetic studies of the yeast activity could help elucidate the structure and function of H 1. Images of the yeast 30-nm filaments can be used to test crossed-linker models for 30-nm filament structure.

  1. Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Pelling, Andrew E.; Sehati, Sadaf; Gralla, Edith B.; Valentine, Joan S.; Gimzewski, James K.

    2004-08-01

    We demonstrate that the cell wall of living Saccharomyces cerevisiae (baker's yeast) exhibits local temperature-dependent nanomechanical motion at characteristic frequencies. The periodic motions in the range of 0.8 to 1.6 kHz with amplitudes of ~3 nm were measured using the cantilever of an atomic force microscope (AFM). Exposure of the cells to a metabolic inhibitor causes the periodic motion to cease. From the strong frequency dependence on temperature, we derive an activation energy of 58 kJ/mol, which is consistent with the cell's metabolism involving molecular motors such as kinesin, dynein, and myosin. The magnitude of the forces observed (~10 nN) suggests concerted nanomechanical activity is operative in the cell.

  2. Construction of a flocculent Saccharomyces cerevisiae fermenting lactose.

    PubMed

    Domingues, L; Teixeira, J A; Lima, N

    1999-05-01

    A flocculent Saccharomyces cerevisiae strain with the ability to express both the LAC4 (coding for beta-galactosidase) and LAC12 (coding for lactose permease) genes of Kluyveromyces marxianus was constructed. This recombinant strain is not only able to grow on lactose, but it can also ferment this substrate. To our knowledge this is the first time that a recombinant S. cervisiae has been found to ferment lactose in a way comparable to that of the existing lactose-fermenting yeast strains. Moreover, the flocculating capacity of the strain used in this work gives the process several advantages. On the one hand, it allows for operation in a continuous mode at high cell concentration, thus increasing the system's overall productivity; on the other hand, the biomass concentration in the effluent is reduced, thus decreasing product separation/purification costs. PMID:10390820

  3. Saccharomyces cerevisiae Yta7 regulates histone gene expression.

    PubMed

    Gradolatto, Angeline; Rogers, Richard S; Lavender, Heather; Taverna, Sean D; Allis, C David; Aitchison, John D; Tackett, Alan J

    2008-05-01

    The Saccharomyces cerevisiae Yta7 protein is a component of a nucleosome bound protein complex that maintains distinct transcriptional zones of chromatin. We previously found that one protein copurifying with Yta7 is the yFACT member Spt16. Epistasis analyses revealed a link between Yta7, Spt16, and other previously identified members of the histone regulatory pathway. In concurrence, Yta7 was found to regulate histone gene transcription in a cell-cycle-dependent manner. Association at the histone gene loci appeared to occur through binding of the bromodomain-like region of Yta7 with the N-terminal tail of histone H3. Our work suggests a mechanism in which Yta7 is localized to chromatin to establish regions of transcriptional silencing, and that one facet of this cellular mechanism is to modulate transcription of histone genes.

  4. Characterization of oligosaccharides from an antigenic mannan of Saccharomyces cerevisiae.

    PubMed

    Young, M; Davies, M J; Bailey, D; Gradwell, M J; Smestad-Paulsen, B; Wold, J K; Barnes, R M; Hounsell, E F

    1998-08-01

    Mannans of the yeast Saccharomyces cerevisiae have been implicated as containing the allergens to which bakers and brewers are sensitive and also the antigen recognized by patients with Crohn's disease. A fraction of S. cerevisiae mannan, Sc500, having high affinity for antibodies in Crohn's patients has been characterized by NMR spectroscopy followed by fragmentation using alkaline elimination, partial acid hydrolysis and acetolysis. The released oligosaccharides were separated by gel filtration on a Biogel P4 column and analyzed by fluorescence labeling, HPLC and methylation analysis. The relationship between structure and antigen activity was measured by competitive ELISA. The antigenic activity of the original high molecular weight mannan could be ascribed to terminal Manalpha1-->3Manalpha1-->2 sequences which are rarely found in human glycoproteins but were over-represented in Sc500 compared to other yeast mannans.

  5. Cadmium-induced oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Muthukumar, Kannan; Nachiappan, Vasanthi

    2010-12-01

    The present study was undertaken to determine the effect of cadmium (Cd) on the antioxidant status of the yeast Saccharomyces cerevisiae. S. cerevisiae serves as a good eukaryotic model system for the study of the molecular mechanisms of oxidative stress. We investigated the adaptative response of S. cerevisiae exposed to Cd. Yeast cells could tolerate up to 100 microM Cd and an inhibition in the growth and viability was observed. Exposure of yeast cells to Cd showed an increase in malondialdehyde and glutathione. The activities of catalase, superoxide dismutase and glutathione peroxidase were also high in Cd-exposed cells. The incorporation of Cd led to significant increase in iron, zinc and inversely the calcium, copper levels were reduced. The results suggest that antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumably, these enzymes are essential for counteracting the pro-oxidant effects of Cd. PMID:21355423

  6. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae.

    PubMed

    Raj, Abhishek; Nachiappan, Vasanthi

    2016-06-01

    Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites. PMID:27016252

  7. Mutants of Saccharomyces cerevisiae with defective vacuolar function

    SciTech Connect

    Kitamoto, K.; Yoshizawa, K.; Ohsumi, Y.; Anraku, Y.

    1988-06-01

    Mutants of the yeast Saccharomyces cerevisiae that have a small vacuolar lysine pool were isolated and characterized. Mutant KL97 (lys1 slp1-1) and strain KL197-1A (slp1-1), a prototrophic derivative of KL97, did not grow well in synthetic medium supplemented with 10 mM lysine. Genetic studies indicated that the slp1-1mutation (for small lysine pool) is recessive and is due to a single chromosomal mutation. Mutant KL97 shows the following pleiotropic defects in vacuolar functions. (i) It has small vacuolar pools for lysine, arginine, and histidine. (ii) Its growth is sensitive to lysine, histidine, Ca/sup 2 +/, heavy metal ions, and antibiotics. (iii) It has many small vesicles but no large central vacuole. (iv) It has a normal amount of the vacuolar membrane marker ..cap alpha..-mannosidase but shows reduced activities of the vacuole sap markers proteinase A, proteinase B, and carboxypeptidase Y.

  8. Inhibition of leucine transport in Saccharomyces by S-adenosylmethionine.

    PubMed

    Law, R E; Ferro, A J

    1980-07-01

    S-Adenoxyl-L-methionine (SAM) inhibited leucine transport in Saccharomyces cerevisiae. By using a mutant defective in the active transport of SAM, we demonstrated that the inhibitory effect was exerted at an extracellular site. Cells preincubated wtih SAM for 120 min became refractory to its inhibitory effect, which was not a result of either the active transport or the metabolism of SAM. The quantitative recovery of labeled SAM from the incubation medium indicated that SAM, and not a metabolite, was the true inhibitory molecule. S-Adenosyl-L-homocysteine and S-adenosyl-L-ethionine also functioned as inhibitors of leucine transport, whereas S-adenosyl-D-methionine, S-adenosyl-D-homocystein, 5'-methylthioadenosine, 5'-dimethylthioadenosine, and adenosine lacked this property. Kinetic studies demonstrated that SAM was a competitive inhibitor of leucine transport.

  9. Inhibition of leucine transport in Saccharomyces by S-adenosylmethionine.

    PubMed Central

    Law, R E; Ferro, A J

    1980-01-01

    S-Adenoxyl-L-methionine (SAM) inhibited leucine transport in Saccharomyces cerevisiae. By using a mutant defective in the active transport of SAM, we demonstrated that the inhibitory effect was exerted at an extracellular site. Cells preincubated wtih SAM for 120 min became refractory to its inhibitory effect, which was not a result of either the active transport or the metabolism of SAM. The quantitative recovery of labeled SAM from the incubation medium indicated that SAM, and not a metabolite, was the true inhibitory molecule. S-Adenosyl-L-homocysteine and S-adenosyl-L-ethionine also functioned as inhibitors of leucine transport, whereas S-adenosyl-D-methionine, S-adenosyl-D-homocystein, 5'-methylthioadenosine, 5'-dimethylthioadenosine, and adenosine lacked this property. Kinetic studies demonstrated that SAM was a competitive inhibitor of leucine transport. PMID:6995442

  10. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.

    PubMed

    Sun, Xiang-Yu; Zhao, Yu; Liu, Ling-Ling; Jia, Bo; Zhao, Fang; Huang, Wei-Dong; Zhan, Ji-Cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China's stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.

  11. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    PubMed

    Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella

    2015-04-01

    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a

  12. Design criteria for stable Pt/C fuel cell catalysts

    PubMed Central

    Katsounaros, Ioannis; Witte, Jonathon; Bongard, Hans J; Topalov, Angel A; Baldizzone, Claudio; Mezzavilla, Stefano; Schüth, Ferdi

    2014-01-01

    Summary Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS). All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested. PMID:24605273

  13. Atomic Layer Deposition of Ir−Pt Alloy Films;

    SciTech Connect

    Christensen, S. T.; Elam, J. W.

    2010-01-01

    Atomic layer deposition (ALD) was used to prepare thin-film mixtures of iridium and platinum. By controlling the ratio between the iridium(III) acetylacetonate/oxygen cycles for Ir ALD and the (trimethyl)methylcyclopentadienyl platinum(IV)/oxygen cycles for Pt ALD, the Ir/Pt ratio in the films could be controlled precisely. We first examined the growth mechanisms for the pure Ir and Pt ALD films, as well as the mixed-metal Ir-Pt ALD films, using in situ quartz crystal microbalance and quadrupole mass spectrometer measurements. These studies revealed that the nucleation and growth of each of the noble metals proceeds smoothly, with negligible perturbation caused by the presence of the other metal. As a consequence of this mutual compatibility, the composition, as well as the growth per cycle for the Ir-Pt films, followed rule-of-mixtures formulas that were based on the ratio of the metal ALD cycles and the growth rates of pure Ir and Pt ALD. X-ray diffraction (XRD) measurements revealed that the films deposit as single-phase alloys in which the lattice parameter varies linearly with the composition. Similar to the pure noble-metal films, the Ir-Pt alloy films grow conformally on high-aspect-ratio trenches. This capability should open up new opportunities in microelectronics, catalysis, and other applications.

  14. Macromolecular Pt(IV) Prodrugs from Poly(organo)phosphazenes.

    PubMed

    Henke, Helena; Kryeziu, Kushtrim; Banfić, Jelena; Theiner, Sarah; Körner, Wilfried; Brüggemann, Oliver; Berger, Walter; Keppler, Bernhard K; Heffeter, Petra; Teasdale, Ian

    2016-08-01

    The preparation of novel macromolecular prodrugs via the conjugation of two platinum(IV) complexes to suitably functionalized poly(organo)phosphazenes is presented. The inorganic/organic polymers provide carriers with controlled dimensions due to the use of living cationic polymerization and allow the preparation of conjugates with excellent aqueous solubility but long-term hydrolytic degradability. The macromolecular Pt(IV) prodrugs are designed to undergo intracellular reduction and simultaneous release from the macromolecular carrier to present the active Pt(II) drug derivatives. In vitro investigations show a significantly enhanced intracellular uptake of Pt for the macromolecular prodrugs when compared to small molecule Pt complexes, which is also reflected in an increase in cytotoxicity. Interestingly, drug-resistant sublines also show a significantly smaller resistance against the conjugates compared to clinically established platinum drugs, indicating that an alternative uptake route of the Pt(IV) conjugates might also be able to overcome acquired resistance against Pt(II) drugs. In vivo studies of a selected conjugate show improved tumor shrinkage compared to the respective Pt(IV) complex. PMID:27169668

  15. Macromolecular Pt(IV) Prodrugs from Poly(organo)phosphazenes.

    PubMed

    Henke, Helena; Kryeziu, Kushtrim; Banfić, Jelena; Theiner, Sarah; Körner, Wilfried; Brüggemann, Oliver; Berger, Walter; Keppler, Bernhard K; Heffeter, Petra; Teasdale, Ian

    2016-08-01

    The preparation of novel macromolecular prodrugs via the conjugation of two platinum(IV) complexes to suitably functionalized poly(organo)phosphazenes is presented. The inorganic/organic polymers provide carriers with controlled dimensions due to the use of living cationic polymerization and allow the preparation of conjugates with excellent aqueous solubility but long-term hydrolytic degradability. The macromolecular Pt(IV) prodrugs are designed to undergo intracellular reduction and simultaneous release from the macromolecular carrier to present the active Pt(II) drug derivatives. In vitro investigations show a significantly enhanced intracellular uptake of Pt for the macromolecular prodrugs when compared to small molecule Pt complexes, which is also reflected in an increase in cytotoxicity. Interestingly, drug-resistant sublines also show a significantly smaller resistance against the conjugates compared to clinically established platinum drugs, indicating that an alternative uptake route of the Pt(IV) conjugates might also be able to overcome acquired resistance against Pt(II) drugs. In vivo studies of a selected conjugate show improved tumor shrinkage compared to the respective Pt(IV) complex.

  16. Nanosized Pt-Co catalysts for the preferential CO oxidation.

    PubMed

    Ko, Eun-Yong; Park, Eun Duck; Seo, Kyung Won; Lee, Hyun Chul; Lee, Doohwan; Kim, Soonho

    2006-11-01

    The preferential CO oxidation in the presence of excess hydrogen was studied over Pt-Co/gamma-Al2O3. CO chemisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDX) and temperature programmed reduction (TPR) were conducted to characterize active catalysts. The catalytic activity for CO oxidation and methanation at low temperatures increased with the amounts of cobalt in Pt-Co/gamma-Al2O3. This accompanied the TPR peak shift to lower temperatures. The optimum molar ratio between Co and Pt was determined to be 10. The co-impregnated Pt-Co/gamma-Al2O3 appeared to be superior to Pt/Co/gamma-Al2O3 and Co/Pt/gamma-Al2O3. The reductive pretreatment at high temperature such as 773 K increased the CO2 selectivity over a wide reaction temperature. The bimetallic phase of Pt-Co seems to give rise to high catalytic activity in selective oxidation of CO in H2-rich stream. PMID:17252813

  17. Macromolecular Pt(IV) Prodrugs from Poly(organo)phosphazenes

    PubMed Central

    Banfić, Jelena; Theiner, Sarah; Körner, Wilfried; Brüggemann, Oliver; Berger, Walter; Keppler, Bernhard K.; Heffeter, Petra; Teasdale, Ian

    2016-01-01

    The preparation of novel macromolecular prodrugs via the conjugation of two platinum(IV) complexes to suitably functionalized poly(organo)phosphazenes is presented. The inorganic/organic polymers provide carriers with controlled dimensions due to the use of living cationic polymerization and allow the preparation of conjugates with excellent aqueous solubility but long-term hydrolytic degradability. The macromolecular Pt(IV) prodrugs are designed to undergo intracellular reduction and simultaneous release from the macromolecular carrier to present the active Pt(II) drug derivatives. In vitro investigations show a significantly enhanced intracellular uptake of Pt for the macromolecular prodrugs when compared to small molecule Pt complexes, which is also reflected in an increase in cytotoxicity. Interestingly, drug-resistant sublines also show a significantly smaller resistance against the conjugates compared to clinically established platinum drugs, indicating that an alternative uptake route of the Pt(IV) conjugates might also be able to overcome acquired resistance against Pt(II) drugs. In vivo studies of a selected conjugate show improved tumor shrinkage compared to the respective Pt(IV) complex. PMID:27169668

  18. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    SciTech Connect

    Krauter, Paula A. W.; Krauter, Gordon W.

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  19. Development of a PtSn bimetallic catalyst for direct fuel cells using bio-butanol fuel.

    PubMed

    Puthiyapura, V K; Brett, D J L; Russell, A E; Lin, W F; Hardacre, C

    2015-09-01

    Pt and PtSn catalysts were studied for n-butanol electro-oxidation at various temperatures. PtSn showed a higher activity towards butanol electro-oxidation compared to Pt in acidic media. The onset potential for n-butanol oxidation on PtSn is ∼520 mV lower than that found on Pt, and significantly lower activation energy was found for PtSn compared with that for Pt. PMID:26214283

  20. Interactions between Kluyveromyces marxianus and Saccharomyces cerevisiae in tequila must type medium fermentation.

    PubMed

    Lopez, Claudia Lorena Fernandez; Beaufort, Sandra; Brandam, Cédric; Taillandier, Patricia

    2014-08-01

    Traditional tequila fermentation is a complex microbial process performed by different indigenous yeast species. Usually, they are classified in two families: Saccharomyces and Non-Saccharomyces species. Using mixed starter cultures of several yeasts genera and species is nowadays considered to be beneficial to enhance the sensorial characteristics of the final products (taste, odor). However, microbial interactions occurring in such fermentations need to be better understood to improve the process. In this work, we focussed on a Saccharomyces cerevisiae/Kluyveromyces marxianus yeast couple. Indirect interactions due to excreted metabolites, thanks to the use of a specific membrane bioreactor, and direct interaction due to cell-to-cell contact have been explored. Comparison of pure and mixed cultures was done in each case. Mixed cultures in direct contact showed that both yeast were affected but Saccharomyces rapidly dominated the cultures whereas Kluyveromyces almost disappeared. In mixed cultures with indirect contact the growth of Kluyveromyces was decreased compared to its pure culture but its concentration could be maintained whereas the growth of Saccharomyces was enhanced. The loss of viability of Kluyveromyces could not be attributed only to ethanol. The sugar consumption and ethanol production in both cases were similar. Thus the interaction phenomena between the two yeasts are different in direct and indirect contact, Kluyveromyces being always much more affected than Saccharomyces.

  1. Whole body retention in rats of different 191Pt compounds following inhalation exposure.

    PubMed Central

    Moore, W; Malanchuk, M; Crocker, W; Hysell, D; Cohen, A; Stara, J F

    1975-01-01

    The whole body retention, excretion, lung clearance, distribution, and concentration of 191Pt in other tissues was determined in rats following a single inhalation exposure to different chemical forms of 191Pt. The chemical forms of 191Pt used in study were 191PtCl4, 191Pt(SO4)2, 191PtO, and 191Pt metal. Immediately after exposure most of the 191Pt was found in the gastrointestinal and respiratory tract. Movement of the 191Pt through the gastrointestinal tract was rapid, most of the 191Pt being eliminated within 24 hr after exposure. Lung clearance was much slower, with a clearance half-time of about 8 days. In addition to the lungs, kidney and bone contained the highest concentrations of 191Pt. PMID:1227859

  2. Kinetically induced irreversibility in electro-oxidation and reduction of Pt surface.

    PubMed

    Jinnouchi, Ryosuke; Kodama, Kensaku; Suzuki, Takahisa; Morimoto, Yu

    2015-05-14

    A mean field kinetic model was developed for electrochemical oxidations and reductions of Pt(111) on the basis of density functional theory calculations, and the reaction mechanisms were analyzed. The model reasonably describes asymmetric shapes of cyclic voltammograms and small Tafel slopes of relevant redox reactions observed in experiments without assuming any unphysical forms of rate equations. Simulations using the model indicate that the oxidation of Pt(111) proceeds via an electrochemical oxidation from Pt to PtOH and a disproportionation reaction from PtOH to PtO and Pt, while its reduction proceeds via two electrochemical reductions from PtO to PtOH and from PtOH to Pt.

  3. Nanopatterned CoPt alloys with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Makarov, D.; Bermúdez-Ureña, E.; Schmidt, O. G.; Liscio, F.; Maret, M.; Brombacher, C.; Schulze, S.; Hietschold, M.; Albrecht, M.

    2008-10-01

    CoPt alloy films with perpendicular magnetic anisotropy were grown on SiO2 nanoparticle arrays with particle sizes as small as 10 nm. In order to induce perpendicular magnetic anisotropy in the CoPt film, a MgO seed layer was sputter deposited. Despite the fact that neighboring CoPt film caps are interconnected, individual caps appear as single domain and for most of them their magnetization orientation can be reversed individually. This behavior might be caused by domain wall nucleation and pinning preferentially at the rim of each cap. Thus, arrays of magnetic caps with defined pinning sites can be considered as a percolated perpendicular medium.

  4. Non-Hermitian quantum Hamiltonians with PT symmetry

    SciTech Connect

    Jones-Smith, Katherine; Mathur, Harsh

    2010-10-15

    We formulate quantum mechanics for non-Hermitian Hamiltonians that are invariant under PT, where P is the parity and T denotes time reversal, for the case that time-reversal symmetry is odd (T{sup 2}=-1), generalizing prior work for the even case (T{sup 2}=1). We discover an analog of Kramer's theorem for PT quantum mechanics, present a prototypical example of a PT quantum system with odd time reversal, and discuss potential applications of the formalism.

  5. Giant Goos-Hänchen shift using PT symmetry

    NASA Astrophysics Data System (ADS)

    Ziauddin; Chuang, You-Lin; Lee, Ray-Kuang

    2015-07-01

    Influence of PT symmetry on the Goos-Hänchen (GH) shift in the reflected light is presented for an ensemble of atomic medium in a cavity, in the configuration of four-level N -type (87Rb atoms) systems driving by two copropagating strong laser fields and a weak probe field. The atom-field interaction follows the realization of PT symmetry by adjusting the coupling field detunings [J. Shenget al., Phys. Rev. A 88, 041803(R) (2013), 10.1103/PhysRevA.88.041803]. A giant enhancement for the GH shift in the reflected light is revealed when the PT -symmetry condition is satisfied.

  6. Inverse spin Hall effect in Pt/(Ga,Mn)As

    SciTech Connect

    Nakayama, H.; Chen, L.; Chang, H. W.; Ohno, H.; Matsukura, F.

    2015-06-01

    We investigate dc voltages under ferromagnetic resonance in a Pt/(Ga,Mn)As bilayer structure. A part of the observed dc voltage is shown to originate from the inverse spin Hall effect. The sign of the inverse spin Hall voltage is the same as that in Py/Pt bilayer structure, even though the stacking order of ferromagnetic and nonmagnetic layers is opposite to each other. The spin mixing conductance at the Pt/(Ga,Mn)As interface is determined to be of the order of 10{sup 19 }m{sup −2}, which is about ten times greater than that of (Ga,Mn)As/p-GaAs.

  7. Mesoporous Trimetallic PtPdRu Spheres as Superior Electrocatalysts.

    PubMed

    Jiang, Bo; Ataee-Esfahani, Hamed; Li, Cuiling; Alshehri, Saad M; Ahamad, Tansir; Henzie, Joel; Yamauchi, Yusuke

    2016-05-17

    Mesoporous Trimetallic PtPdRu Spheres with well-defined spherical morphology and uniformly sized pores were synthesized in an aqueous solution using ascorbic acid as the reducing agent and triblock copolymer F127 as the pore directing agent. These mesoporous PtPdRu spheres exhibited enhanced electrocatalytic activity compared to commercial Pt black, resulting in a ∼4.9 times improvement in mass activity for the methanol oxidation reaction. The excellent electrocatalytic activity and stability are due to the unique mesoporous architecture and electronic landscape between different elements. PMID:27072776

  8. Xylose Isomerase Improves Growth and Ethanol Production Rates from Biomass Sugars for Both Saccharomyces Pastorianus and Saccharomyces Cerevisiae

    PubMed Central

    Miller, Kristen P.; Gowtham, Yogender Kumar; Henson, J. Michael; Harcum, Sarah W.

    2013-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. PMID:22866331

  9. Ecological Success of a Group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii Hybrids in the Northern European Wine-Making Environment

    PubMed Central

    Erny, C.; Raoult, P.; Alais, A.; Butterlin, G.; Delobel, P.; Matei-Radoi, F.; Casaregola, S.

    2012-01-01

    The hybrid nature of lager-brewing yeast strains has been known for 25 years; however, yeast hybrids have only recently been described in cider and wine fermentations. In this study, we characterized the hybrid genomes and the relatedness of the Eg8 industrial yeast strain and of 24 Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrid yeast strains used for wine making in France (Alsace), Germany, Hungary, and the United States. An array-based comparative genome hybridization (aCGH) profile of the Eg8 genome revealed a typical chimeric profile. Measurement of hybrids DNA content per cell by flow cytometry revealed multiple ploidy levels (2n, 3n, or 4n), and restriction fragment length polymorphism analysis of 22 genes indicated variable amounts of S. kudriavzevii genetic content in three representative strains. We developed microsatellite markers for S. kudriavzevii and used them to analyze the diversity of a population isolated from oaks in Ardèche (France). This analysis revealed new insights into the diversity of this species. We then analyzed the diversity of the wine hybrids for 12 S. cerevisiae and 7 S. kudriavzevii microsatellite loci and found that these strains are the products of multiple hybridization events between several S. cerevisiae wine yeast isolates and various S. kudriavzevii strains. The Eg8 lineage appeared remarkable, since it harbors strains found over a wide geographic area, and the interstrain divergence measured with a (δμ)2 genetic distance indicates an ancient origin. These findings reflect the specific adaptations made by S. cerevisiae/S. kudriavzevii cryophilic hybrids to winery environments in cool climates. PMID:22344648

  10. On stable solitons and interactions of the generalized Gross-Pitaevskii equation with PT- and non- PT-symmetric potentials.

    PubMed

    Yan, Zhenya; Chen, Yong; Wen, Zichao

    2016-08-01

    We report the bright solitons of the generalized Gross-Pitaevskii (GP) equation with some types of physically relevant parity-time- ( PT-) and non- PT-symmetric potentials. We find that the constant momentum coefficient Γ can modulate the linear stability and complicated transverse power-flows (not always from the gain toward loss) of nonlinear modes. However, the varying momentum coefficient Γ(x) can modulate both unbroken linear PT-symmetric phases and stability of nonlinear modes. Particularly, the nonlinearity can excite the unstable linear mode (i.e., broken linear PT-symmetric phase) to stable nonlinear modes. Moreover, we also find stable bright solitons in the presence of non- PT-symmetric harmonic-Gaussian potential. The interactions of two bright solitons are also illustrated in PT-symmetric potentials. Finally, we consider nonlinear modes and transverse power-flows in the three-dimensional (3D) GP equation with the generalized PT-symmetric Scarff-II potential. PMID:27586605

  11. Monolayer PtSe 2 , a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt

    DOE PAGESBeta

    Wang, Yeliang; Li, Linfei; Yao, Wei; Song, Shiru; Sun, J. T.; Pan, Jinbo; Ren, Xiao; Li, Chen; Okunishi, Eiji; Wang, Yu-Qi; et al

    2015-05-21

    For single-layer transition-metal dichalcogenides (TMDs) receive significant attention due to their intriguing physical properties for both fundamental research and potential applications in electronics, optoelectronics, spintronics, catalysis, and so on. Here, we demonstrate the epitaxial growth of high-quality single-crystal, monolayer platinum diselenide (PtSe2), a new member of the layered TMDs family, by a single step of direct selenization of a Pt(111) substrate. We found that a combination of atomic-resolution experimental characterizations and first-principle theoretic calculations reveals the atomic structure of the monolayer PtSe2/Pt(111). Angle-resolved photoemission spectroscopy measurements confirm for the first time the semiconducting electronic structure of monolayer PtSe2 (in contrastmore » to its semimetallic bulk counterpart). The photocatalytic activity of monolayer PtSe2 film is evaluated by a methylene-blue photodegradation experiment, demonstrating its practical application as a promising photocatalyst. Moreover, circular polarization calculations predict that monolayer PtSe2 has also potential applications in valleytronics.« less

  12. Crystallographic parameters of compounds and solid solutions in binary systems Cu-Pt and Ga-Pt

    SciTech Connect

    Potekaev, Alexandr; Probova, Svetlana; Klopotov, Anatolii; Vlasov, Viktor; Markov, Tatiana; Klopotov, Vladimir

    2015-10-27

    The study establishes that the packing index in compounds of the system Cu-Pt is close to the value 0.74 against a slight deviation from the Zen law of atomic volumes. The compounds in the system Ga-Pt have the highest values of the packing index in the range of the equiatomic composition, which greatly exceed ψ for close-packed structures based on FCC and HCP lattices for compounds made of the same kind of atoms. A correlation between singular points on the phase diagram of the system Ga-Pt and high values of the packing index in compounds is established.

  13. Synthesis, structures, and photoluminescence properties of novel lanthanide tetracyanoplatinates lacking Pt-Pt interactions

    SciTech Connect

    Stojanovic, Milorad; Robinson, Nicholas J.; Chen Xi; Smith, Philip A.; Sykora, Richard E.

    2010-04-15

    The synthesis of a series of lanthanide tetracyanoplatinates all incorporating 2,2':6',2''-terpyridine (terpy) have been carried out by reaction of Ln{sup 3+} nitrate salts with terpy and potassium tetracyanoplatinate. The incorporation of different Ln{sup 3+} cations results in the isolation of [Ln(DMF){sub 2}(C{sub 15}H{sub 11}N{sub 3})(H{sub 2}O){sub 2}(NO{sub 3})]Pt(CN){sub 4} (Ln=La-Nd, Sm-Yb) under otherwise identical reaction conditions. These compounds have been isolated as single crystals and X-ray diffraction has been used to investigate their structural features. All of the reported compounds are isostructural. Crystallographic data for the representative Eu{sup 3+} compound (EuPt) are (MoKalpha, lambda=0.71073 A): monoclinic, space group P2{sub 1}/c, a=10.1234(4) A, b=18.7060(7) A, c=17.1642(5) A, beta=97.249(3){sup o}, V=3224.4(2), Z=4, R(F)=2.78% for 426 parameters with 7724 reflections with I>2sigma(I). The structure consists of a zero-dimensional, ionic salt containing complex [Eu(DMF){sub 2}(C{sub 15}H{sub 11}N{sub 3})(H{sub 2}O){sub 2}(NO{sub 3})]{sup 2+} cations and Pt(CN){sub 4}{sup 2-} anions. The complex cations contain the Eu{sup 3+} ions in a tri-capped trigonal prismatic coordination environment with one terdentate 2,2':6',2''-terpyridine molecule, one bidentate nitrate anion, two O-bound dimethylformamide molecules, and two coordinated water molecules. Photoluminescence data illustrate that EuPt displays intramolecular energy transfer from the coordinated terpy molecule to the Eu{sup 3+} cation. The uncoordinated tetracyanoplatinate anion also exhibits visible emission. - Graphical abstract: The synthesis of an isostructural series of lanthanide tetracyanoplatinates incorporating 2,2':6',2''-terpyridine are presented. Solid-state absorption and luminescence properties are discussed for the Eu{sup 3+} and La{sup 3+} compounds.

  14. Glucose sensing based on Pt-MWCNT and MWCNT

    NASA Astrophysics Data System (ADS)

    Aryasomayajula, Lavanya; Xie, Jining; Wang, Shouyan; Varadan, Vijay K.

    2007-04-01

    It is known that multi walled carbon nanotubes (MWCNTs) is an excellent materials for biosensing applications and with the introduction of Pt nanoparticles (Pt-MWCNTs) of about 3nm in diameter in MWCNTs greatly increases the current sensitivity and also the signal to noise ratio. We fabricated the CNT- based glucose sensor by immobilization the bio enzyme, glucose oxidase (GoX), on the Pt-MWCNT and electrode were prepared. The sensor has been tested effectively for both the abnormal blood glucose levels- greater than 6.9 mM and less than 3.5 mM which are the prediabetic and diabetic glucose levels, respectively. The current signal obtained from the Pt-MWCNT was much higher compared to the MWCNT based sensors.

  15. Observation of optical solitons in PT-symmetric lattices

    NASA Astrophysics Data System (ADS)

    Wimmer, Martin; Regensburger, Alois; Miri, Mohammad-Ali; Bersch, Christoph; Christodoulides, Demetrios N.; Peschel, Ulf

    2015-07-01

    Controlling light transport in nonlinear active environments is a topic of considerable interest in the field of optics. In such complex arrangements, of particular importance is to devise strategies to subdue chaotic behaviour even in the presence of gain/loss and nonlinearity, which often assume adversarial roles. Quite recently, notions of parity-time (PT) symmetry have been suggested in photonic settings as a means to enforce stable energy flow in platforms that simultaneously employ both amplification and attenuation. Here we report the experimental observation of optical solitons in PT-symmetric lattices. Unlike other non-conservative nonlinear arrangements where self-trapped states appear as fixed points in the parameter space of the governing equations, discrete PT solitons form a continuous parametric family of solutions. The possibility of synthesizing PT-symmetric saturable absorbers, where a nonlinear wave finds a lossless path through an otherwise absorptive system is also demonstrated.

  16. Tunable topological states in electron-doped HTT-Pt

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Wang, Zhenhai; Zhao, Mingwen; Liu, Feng

    2016-04-01

    Modulating topologically nontrivial states in trivial materials is of both scientific and technological interest. Using first-principles calculations, we propose a demonstration of electron-doping- (or gate-voltage-) induced multiple quantum states; namely, quantum spin Hall (QSH) and quantum anomalous Hall (QAH) states, in a single material of the organometallic framework (HTT-Pt) synthesized from triphenylene hexathiol molecules (HTT) and PtC l2 . At a low doping level, the trivial HTT-Pt converts to a QSH insulator protected by time-reversal symmetry (TRS). When the electronic doping concentration is further increased, TRS will be broken, making the HTT-Pt a QAH insulator. The band gaps of these topologically nontrivial states can be as large as 42.5 meV, suggesting robustness at high temperatures. The possibility of switching between the QSH and QAH states offers an intriguing platform for a different device paradigm by interfacing between QSH and QAH states.

  17. Electrical oscillation in Pt/VO{sub 2} bilayer strips

    SciTech Connect

    Wang, Ying; Qi, Long; Xu, Yanjun; Wu, Yihong; Chai, Jianwei; Wang, Shijie; Yang, Yumeng; Tanaka, Hidekazu

    2015-02-14

    We report on the observation of stable electrical oscillation in Pt/vanadium dioxide (VO{sub 2}) bilayer strips, in which the Pt overlayer serves the dual purposes of heating up the VO{sub 2} and weakening the electric field in the VO{sub 2} layer. Systematic measurements in an ultrahigh vacuum nanoprobe system show that the oscillation frequency increases with the bias current and/or with decreasing device dimension. In contrast to most VO{sub 2}-based oscillators reported to date, which are electrically triggered, current-induced Joule heating in the Pt overlayer is found to play a dominant role in the generation of oscillation in Pt/VO{sub 2} bilayers. A simple model involving thermally triggered transition of VO{sub 2} on a heat sink is able to account for the experimental observations. The results in this work provide an alternative view of the triggering mechanism in VO{sub 2}-based oscillators.

  18. Controlling magnetic anisotropy in epitaxial FePt(001) films

    SciTech Connect

    Lu Zhihong; Walock, M. J.; LeClair, P.; Butler, W. H.; Mankey, G. J.

    2009-07-15

    Epitaxial equiatomic Fe{sub 50}Pt{sub 50} thin films with a variable order parameter ranging from 0 to 0.9 and Fe{sub 100-x}Pt{sub x} thin films with x ranging from 33 to 50 were deposited on MgO (001) substrates by dc sputtering. A seed layer consisting of nonmagnetic Cr (4 nm)/Pt (12 nm) was used to promote the crystallinity of the magnetic films. The crystal structure and magnetic properties were gauged using x-ray diffraction and magnetometry. The magnetic anisotropy can be controlled by changing the order parameter. For Fe{sub 100-x}Pt{sub x} films, the increase in Fe composition leads to an increase in coercivity in the hard axis loop and causes a loss of perpendicular anisotropy.

  19. Mixed-Metal Pt Monolayer Electrocatalysts with Improved CO Tolerance

    SciTech Connect

    Nilekar, Anand U.; Sasaki, Kotaro; Farberow, Carrie A.; Adzic, Radoslav R.; Mavrikakis, Manos

    2011-11-23

    Using a combination of periodic, self-consistent, density functional theory (DFT) calculations and COstripping voltammetry experiments, we have designed a new class of Pt-M bimetallic monolayer catalysts supported on a non-Pt metal, which exhibit improved stability against CO poisoning and might be suitable for proton-exchange membrane fuel cell anodes. These surfaces help in reducing the overpotential associated with anodic CO oxidation and minimize the amount of Pt used, thereby reducing materials cost. DFT calculations predict highly repulsive interactions between adsorbed CO molecules on these surfaces, leading to weaker binding and lower coverage of CO than on pure Pt, which in turn facilitates oxidative removal of CO from these catalytic surfaces.

  20. Mixed-Metal Pt Monolayer Electrocatalysts with Improved CO Tolerance

    SciTech Connect

    Sasaki K.; Nilekar A.U.; Farberow C.A.; Adzic R.R.; Mavrikakis M.

    2011-11-23

    Using a combination of periodic, self-consistent, density functional theory (DFT) calculations and CO-stripping voltammetry experiments, we have designed a new class of Pt-M bimetallic monolayer catalysts supported on a non-Pt metal, which exhibit improved stability against CO poisoning and might be suitable for proton-exchange membrane fuel cell anodes. These surfaces help in reducing the overpotential associated with anodic CO oxidation and minimize the amount of Pt used, thereby reducing materials cost. DFT calculations predict highly repulsive interactions between adsorbed CO molecules on these surfaces, leading to weaker binding and lower coverage of CO than on pure Pt, which in turn facilitates oxidative removal of CO from these catalytic surfaces.

  1. Anomalous surface phase formation on Pt sub 3 Sn <110>

    SciTech Connect

    Haner, A.N.; Ross, P.N. ); Bardi, U. . Dipt. di Chimica)

    1990-06-01

    LEED analysis of the clean annealed surface of a {l angle}110{r angle} oriented Pt{sub 3}Sn single crystal surface indicates the formation of a multilayer surface phase which does not have the L1{sub 2} bulk structure. LEISS analysis indicates a surface stoichiometry of ca. 1:1 with Sn atoms displaced ca. 1.4 above the plane of Pt atoms. The surface phase is hypothesized to be a rhombic distortion of the {l angle}0001{r angle} plant of PtSn, which has a B8{sub 1} (NiAs-type) bulk structure. It is not clear whether the phase forms by precipitation of PtSn due to a slight (0.5%) stoichiometric excess of Sn in the bulk, or due to multilayer reconstruction driven by surface segregation. 20 refs., 3 figs.

  2. Observation of optical solitons in PT-symmetric lattices

    PubMed Central

    Wimmer, Martin; Regensburger, Alois; Miri, Mohammad-Ali; Bersch, Christoph; Christodoulides, Demetrios N.; Peschel, Ulf

    2015-01-01

    Controlling light transport in nonlinear active environments is a topic of considerable interest in the field of optics. In such complex arrangements, of particular importance is to devise strategies to subdue chaotic behaviour even in the presence of gain/loss and nonlinearity, which often assume adversarial roles. Quite recently, notions of parity-time (PT) symmetry have been suggested in photonic settings as a means to enforce stable energy flow in platforms that simultaneously employ both amplification and attenuation. Here we report the experimental observation of optical solitons in PT-symmetric lattices. Unlike other non-conservative nonlinear arrangements where self-trapped states appear as fixed points in the parameter space of the governing equations, discrete PT solitons form a continuous parametric family of solutions. The possibility of synthesizing PT-symmetric saturable absorbers, where a nonlinear wave finds a lossless path through an otherwise absorptive system is also demonstrated. PMID:26215165

  3. Single Pt nanowire electrode: preparation, electrochemistry, and electrocatalysis.

    PubMed

    Li, Yongxin; Wu, Qingqing; Jiao, Shoufeng; Xu, Chaodi; Wang, Lun

    2013-04-16

    A single Pt nanowire electrode (SPNE) was fabricated through HF etching process from Pt disk nanoelectrode and an underpotential deposition (UPD) redox replacement technique. The electrochemical experiments showed that SPNE had steady-state electrochemical responses at redox species solution and the mass transfer rates were affected by the lengths and radii of SPNEs. The prepared SPNEs were utilized to examine the oxygen-reduction reaction in a KOH solution to explore the feasibility of electrocatalytic activity of single Pt nanowire and the results showed that the electrocatalytic activity of SPNE was dependent on the surface position of single Pt nanowire: the tip end position is more active than the sidewall position. Meanwhile, the electrocatalytic activity of SPNE was related to the radius of nanowire. These observations are not only important to understand the structure-function relationship in single nanowire level but have significant implications for the synthesis and selection of novel catalysts with high efficiency used in electrochemistry, energy, bioanalysis, etc.

  4. Formation of FePt nanoparticles by organometallic synthesis

    SciTech Connect

    Bagaria, H. G.; Johnson, D. T.; Srivastava, C.; Thompson, G. B.; Shamsuzzoha, M.; Nikles, D. E.

    2007-05-15

    Our interest in determining the mechanism of FePt nanoparticle formation has led to this study of the evolution of particle size and composition during synthesis. FePt nanoparticles were prepared by the simultaneous reduction of platinum acetylacetonate and thermal decomposition of iron pentacarbonyl. During the course of the reaction, samples were removed and the particle structure, size, and composition were determined using x-ray diffraction, transmission electron microscopy (TEM), and scanning electron microscopy-energy dispersive x-ray spectrometry. Early in the reaction the particles were Pt rich (greater than 95 at. % Pt) and as the reaction proceeded the Fe content increased to the target of 50%. The particle diameter increased from 3.1 to 4.6 nm during the reaction. Energy dispersive x-ray spectrometry measurements of individual particle compositions using a high resolution TEM showed a broad distribution of particle compositions with a standard deviation greater than 15% of the average composition.

  5. Thermal Fluctuations in the Structure of Naturally Chiral Pt Surfaces

    SciTech Connect

    ASTHAGIRI,ARAVIND; FEIBELMAN,PETER J.; SHOLL,DAVID S.

    2000-07-20

    The intrinsic chirality of metal surfaces with kinked steps (e.g. Pt(643)) endows them with enantiospecific adsorption properties (D. S. Shell, Langmuir, 14, 1998, 862). To understand these properties quantitatively the impact of thermally-driven step wandering must be assessed. The authors derive a lattice-gas model of step motion on Pt(111) surfaces using diffusion barriers from Density Functional Theory. This model is used to examine thermal fluctuations of straight and kinked steps.

  6. FePt/BN granular films with texture

    NASA Astrophysics Data System (ADS)

    Daniil, M.; Farber, P.; Okumura, H.; Hadjipanayis, G. C.

    2001-03-01

    The driving force for higher magnetic recording density leads to future materials with very small sizes, below 10 nm. At these sizes thermal fluctuations lead to the superparamagnetic effect, resulting in unstable magnetization. This obstacle can be overcome by using materials with higher anisotropy, such as CoPt and FePt, which have magnetocrystalline anisotropy above 10^7 erg/cc. Another vital requirement for low noise recording media is the isolation of the grains, to reduce the intergrain interactions. This can be succeeded by growing the FePt/CoPt nanoparticles in a non magnetic matrix. In the present work we report on the effect of BN matrix in the structure, microstructure and magnetic properties of FePt nanoparticles. FePt particles with the highly anisotropic L10 structure were obtained by annealing the as-deposited multilayers at temperatures above 600^oC. Films with thicker bilayer thickness were found to have a strong [111] texture, which is less developed in thinner bilayer films. For special bilayer thickness (FePt(20 ÅBN(40 Åa special type of ordering is observed, in which the c-axis of all particles has an out of plane component, that makes these materials promising for both perpendicular and longitudinal recording. Magnetic measurements showed that a wide range of coercivities (2-18 kOe) can be obtained by varying the annealing temperature and time and the layer thickness. The coercivity increases with the annealing temperature and time, due to the increase of average grain size, which according to TEM studies it was ranged from 3 to 15 nm. The amount of BN was found to control the intergrain interactions, which for higher concentrations lead to decoupling of the FePt grains. This work has been supported by NSF-DMR 9972035.

  7. The role of hydrogen during Pt-Ga nanocatalyst formation.

    PubMed

    Filez, Matthias; Redekop, Evgeniy A; Galvita, Vladimir V; Poelman, Hilde; Meledina, Maria; Turner, Stuart; Van Tendeloo, Gustaaf; Bell, Alexis T; Marin, Guy B

    2016-01-28

    Hydrogen plays an essential role during the in situ assembly of tailored catalytic materials, and serves as key ingredient in multifarious chemical reactions promoted by these catalysts. Despite intensive debate for several decades, the existence and nature of hydrogen-involved mechanisms - such as hydrogen-spillover, surface migration - have not been unambiguously proven and elucidated up to date. Here, Pt-Ga alloy formation is used as a probe reaction to study the behavior and atomic transport of H and Ga, starting from Pt nanoparticles on hydrotalcite-derived Mg(Ga)(Al)Ox supports. In situ XANES spectroscopy, time-resolved TAP kinetic experiments, HAADF-STEM imaging and EDX mapping are combined to probe Pt, Ga and H in a series of H2 reduction experiments up to 650 °C. Mg(Ga)(Al)Ox by itself dissociates hydrogen, but these dissociated hydrogen species do not induce significant reduction of Ga(3+) cations in the support. Only in the presence of Pt, partial reduction of Ga(3+) into Ga(δ+) is observed, suggesting that different reaction mechanisms dominate for Pt- and Mg(Ga)(Al)Ox-dissociated hydrogen species. This partial reduction of Ga(3+) is made possible by Pt-dissociated H species which spillover onto non-reducible Mg(Al)Ox or partially reducible Mg(Ga)(Al)Ox and undergo long-range transport over the support surface. Moderately mobile Ga(δ+)Ox migrates towards Pt clusters, where Ga(δ+) is only fully reduced to Ga(0) on condition of immediate stabilization inside Pt-Ga alloyed nanoparticles. PMID:26742561

  8. FAST-PT: Convolution integrals in cosmological perturbation theory calculator

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.; Blazek, Jonathan A.

    2016-03-01

    FAST-PT calculates 1-loop corrections to the matter power spectrum in cosmology. The code utilizes Fourier methods combined with analytic expressions to reduce the computation time down to scale as N log N, where N is the number of grid point in the input linear power spectrum. FAST-PT is extremely fast, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation.

  9. Construction of modified embedded atom method potentials for Cu, Pt and Cu-Pt and modelling surface segregation in Cu 3Pt alloys

    NASA Astrophysics Data System (ADS)

    Luyten, Jan; Schurmans, Maarten; Creemers, Claude; Bunnik, Bouke S.; Kramer, Gert Jan

    2007-07-01

    In this work, surface segregation to Cu 3Pt surfaces is studied with the modified embedded atom method (MEAM). This work is triggered by the catalytic importance of Cu-Pt alloys, together with the contradictory experimental results for the surface segregation in Cu 3Pt(1 1 1) alloys based on low energy ion scattering (LEIS) [Y.G. Shen, D.J. O'Connor, K. Wandelt, R.J. MacDonald, Surf. Sci. 328 (1995) 21] and low energy electron diffraction (LEED) [Y. Gauthier, A. Senhaji, B. Legrand, G. Tréglia, C. Becker, K. Wandelt, Surf. Sci. 527 (2003) 71]. In order to accurately describe the segregation behaviour in the Cu 3Pt system, a reliable potential, that is also applicable to surface phenomena, is indispensable. Therefore, first, new MEAM parameters are derived, consistently based on ab initio density functional theory (DFT) calculations, according to a method that is a modification of previous work [P. van Beurden, G.J. Kramer, Phys. Rev. B 63 (2001) 165106]. Upon testing, these parameters prove to reproduce very well various surface properties of this system. Next, Monte Carlo (MC) simulations combined with the newly derived MEAM potentials are set up to investigate surface segregation to low index single crystal surfaces. For the Cu 3Pt(1 1 1) surface, our MC/MEAM simulations agree completely with the available LEIS evidence and contradict the unusual depth profile based on LEED. However, the slight Pt enrichment observed in the LEED experiments can be reproduced by assuming a slight Pt excess in the bulk of the sample. The simulated composition depth profile, on the other hand, does not agree with the LEED evidence. Also, for the Cu 3Pt(1 0 0) surface, the MC/MEAM results agree completely with LEIS experiments. For the Cu 3Pt(1 1 0) surface, finally, the MC/MEAM simulations show a somewhat deviating behaviour with respect to the experimental LEIS evidence. The possibility of a missing-row reconstruction is evaluated, but cannot explain the discrepancy for the Cu 3Pt

  10. Atomic layer deposition synthesis and evaluation of core–shell Pt-WC electrocatalysts

    SciTech Connect

    Hsu, Irene J.; Chen, Jingguang G. E-mail: bgwillis@engr.uconn.edu; Jiang, Xiaoqiang; Willis, Brian G. E-mail: bgwillis@engr.uconn.edu

    2015-01-15

    Pt-WC core shell particles were produced using atomic layer deposition (ALD) to deposit Pt layers onto WC particle substrates. A range of Pt depositions were used to determine the growth mechanism for the Pt-WC powder system. TEM imaging and Cu stripping voltammetry found that Pt ALD growth on WC powder substrates was similar to that on WC thin films. However, excess free carbon was found to affect Pt ALD by blocking adsorption sites on WC. The Pt-WC samples were evaluated for the oxygen reduction reaction using a rotating disk electrode to obtain quantitative activity information. The mass and specific activities for the 30 and 50 ALD cycle samples were found to be comparable to a 10 wt. % Pt/C catalyst. However, higher overpotentials and lower limiting currents were observed with ALD Pt-WC compared to Pt/C catalysts, indicating that the oxygen reduction mechanism is not as efficient on Pt-WC as on bulk Pt. Additionally, these Pt-WC catalysts were used to demonstrate hydrogen evolution reaction activity and were found to perform as well as bulk Pt catalyst but with a fraction of the Pt loading, in agreement with the previous work on Pt-WC thin film catalysts.

  11. The nature of the cataclysmic variable PT Per

    NASA Astrophysics Data System (ADS)

    Watson, M. G.; Bruce, A.; MacLeod, C.; Osborne, J. P.; Schwope, A. D.

    2016-08-01

    We present a study of the cataclysmic variable star PT Per based on archival XMM-Newton X-ray data and new optical spectroscopy from the William Herschel Telescope (WHT) with Intermediate dispersion Spectrograph and Imaging System (ISIS). The X-ray data show deep minima which recur at a period of 82 min and a hard, unabsorbed X-ray spectrum. The optical spectra of PT Per show a relatively featureless blue continuum. From an analysis of the X-ray and optical data we conclude that PT Per is likely to be a magnetic cataclysmic variable of the polar class in which the minima correspond to those phase intervals when the accretion column rotates out of the field of view of the observer. We suggest that the optical spectrum, obtained around 4 yr after the X-ray coverage, is dominated by the white dwarf in the system, implying that PT Per was in a low accretion state at the time of the observations. An analysis of the likely system parameters for PT Per suggests a distance of ≈90 pc and a very low mass secondary, consistent with the idea that PT Per is a `period-bounce' binary. Matching the observed absorption features in the optical spectrum with the expected Zeeman components constrains the white dwarf polar field to be Bp ≈ 25-27 MG.

  12. Design of Low Pt Concentration Electrocatalyst Surfaces with High Oxygen Reduction Reaction Activity Promoted by Formation of a Heterogeneous Interface between Pt and CeO(x) Nanowire.

    PubMed

    Chauhan, Shipra; Mori, Toshiyuki; Masuda, Takuya; Ueda, Shigenori; Richards, Gary J; Hill, Jonathan P; Ariga, Katsuhiko; Isaka, Noriko; Auchterlonie, Graeme; Drennan, John

    2016-04-13

    Pt-CeO(x) nanowire (NW)/C electrocatalysts for the improvement of oxygen reduction reaction (ORR) activity on Pt were prepared by a combined process involving precipitation and coimpregnation. A low, 5 wt % Pt-loaded CeO(x) NW/C electrocatalyst, pretreated by an optimized electrochemical conditioning process, exhibited high ORR activity over a commercially available 20 wt % Pt/C electrocatalyst although the ORR activity observed for a 5 wt % Pt-loaded CeO(x) nanoparticle (NP)/C was similar to that of 20 wt % Pt/C. To investigate the role of a CeO(x) NW promotor on the enhancement of ORR activity on Pt, the Pt-CeO(x) NW interface was characterized by using hard X-ray photoelectron spectroscopy (HXPS), transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Microanalytical data obtained by these methods were discussed in relation to atomistic simulation performed on the interface structures. The combined techniques of HXPS, TEM-EELS, and atomistic simulation indicate that the Pt-CeO(x) NW interface in the electrocatalyst contains two different defect clusters: Frenkel defect clusters (i.e., 2Pt(i)(••) - 4O(i)″ - 4V(o)(••) - V(Ce)″″) formed in the surface around the Pt-CeO(x) NW interface and Schottky defect clusters (i.e., (Pt(Ce)″ - 2V(O)(••) - 2Ce(Ce)') and (Pt(Ce)″ - V(O)(••))) which appear in the bulk of the Pt-CeO(x) NW interface similarly to Pt-CeO(x) NP/C. It is concluded that the formation of both Frenkel defect clusters and Schottky defect clusters at the Pt-CeO(x) NW heterointerface contributes to the promotion of ORR activity and permits the use of lower Pt-loadings in these electrocatalysts.

  13. Activity of dealloyed PtCo 3 and PtCu 3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Oezaslan, Mehtap; Strasser, Peter

    We report a comparative study of the alloy formation and electrochemical activity of dealloyed PtCo 3 and PtCu 3 nanoparticle electrocatalysts for the oxygen reduction reaction (ORR). For the Pt-Co system the maximum annealing temperatures were 650 °C, 800 °C and 900 °C for 7 h to drive the Pt-Co alloy formation and the particle growth. EDS and XRD were employed for the characterization of catalyst powders. The RDE and RRDE experiments were conducted in 0.1 M HClO 4 at room temperature. We demonstrate that the mass and surface area specific ORR activities of Pt-Co and Pt-Cu alloys after voltammetric activation exhibit a considerable improvement compared to those of pure Pt/C. The dealloyed PtCo 3 (800 °C/7 h) electrocatalyst performs 3 times higher in terms of Pt-based mass activity and 4-5 times higher in terms of ECSA-based specific activity than a 28.2 wt.% Pt/C. Dealloyed Pt-Co catalysts (800 °C/7 h) show the most favorable balance between mass and specific ORR activity with a particle size of 2.2 ± 0.1 nm. We hypothesize that geometric strain effects of the dealloyed Pt-Co nanoparticles, similar to those found in dealloyed PtCu 3 nanoparticles, are responsible for the improvement in ORR activity [1].

  14. Effects of Alloyed Metal on the Catalysis Activity of Pt for Ethanol Partial Oxidation: Adsorption and Dehydrogenation on Pt3M (M=Pt, Ru, Sn, Re, Rh, and Pd)

    PubMed Central

    Xu, Zhen-Feng; Wang, Yixuan

    2011-01-01

    The adsorption and dehydrogenation reactions of ethanol over bimetallic clusters, Pt3M (M = Pt, Ru, Sn, Re, Rh, and Pd), have been extensively investigated with density functional theory. Both the α-hydrogen and hydroxyl adsorptions on Pt as well as on the alloyed transition metal M sites of PtM were considered as initial reaction steps. The adsorptions of ethanol on Pt and M sites of some PtM via the α-hydrogen were well established. Although the α-hydrogen adsorption on Pt site is weaker than the hydroxyl, the potential energy profiles show that the dehydrogenation via the α-hydrogen path has much lower energy barrier than that via the hydroxyl path. Generally for the α-hydrogen path the adsorption is a rate-determining-step because of rather low dehydrogenation barrier for the α-hydrogen adsorption complex (thermodynamic control), while the hydroxyl path is determined by its dehydrogenation step (kinetic control). The effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation, including adsorption energy, energy barrier, electronic structure, and eventually rate constant were discussed. Among all of the alloyed metals only Sn enhances the rate constant of the dehydrogenation via the α-hydrogen path on the Pt site of Pt3Sn as compared with Pt alone, which interprets why the PtSn is the most active to the oxidation of ethanol. PMID:22102920

  15. Effects of Alloyed Metal on the Catalysis Activity of Pt for Ethanol Partial Oxidation: Adsorption and Dehydrogenation on Pt(3)M (M=Pt, Ru, Sn, Re, Rh, and Pd).

    PubMed

    Xu, Zhen-Feng; Wang, Yixuan

    2011-10-27

    The adsorption and dehydrogenation reactions of ethanol over bimetallic clusters, Pt(3)M (M = Pt, Ru, Sn, Re, Rh, and Pd), have been extensively investigated with density functional theory. Both the α-hydrogen and hydroxyl adsorptions on Pt as well as on the alloyed transition metal M sites of PtM were considered as initial reaction steps. The adsorptions of ethanol on Pt and M sites of some PtM via the α-hydrogen were well established. Although the α-hydrogen adsorption on Pt site is weaker than the hydroxyl, the potential energy profiles show that the dehydrogenation via the α-hydrogen path has much lower energy barrier than that via the hydroxyl path. Generally for the α-hydrogen path the adsorption is a rate-determining-step because of rather low dehydrogenation barrier for the α-hydrogen adsorption complex (thermodynamic control), while the hydroxyl path is determined by its dehydrogenation step (kinetic control). The effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation, including adsorption energy, energy barrier, electronic structure, and eventually rate constant were discussed. Among all of the alloyed metals only Sn enhances the rate constant of the dehydrogenation via the α-hydrogen path on the Pt site of Pt(3)Sn as compared with Pt alone, which interprets why the PtSn is the most active to the oxidation of ethanol. PMID:22102920

  16. Surface segregation effects in electrocatalysis: Kinetics ofoxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces

    SciTech Connect

    Stamenkovic, V.; Schmidt, T.J.; Ross, P.N.; Markovic, N.M.

    2002-11-01

    Effects of surface segregation on the oxygen reduction reaction (ORR) have been studied on a polycrystalline Pt3Ni alloy in acid electrolyte using ultra high vacuum (UHV) surface sensitive probes and the rotating ring disk electrode (RRDE) method. Preparation, modification and characterization of alloy surfaces were done in ultra high vacuum (UHV). Depending on the preparation method, two different surface compositions of the Pt3Ni alloy are produced: a sputtered surface with 75 % Pt and an annealed surface (950 K ) with 100 % Pt. The latter surface is designated as the 'Pt-skin' structure, and is a consequence of surface segregation, i.e., replacement of Ni with Pt atoms in the first few atomic layers. Definitive surface compositions were established by low energy ion scattering spectroscopy (LEISS). The cyclic voltammetry of the 'Pt-skin' surface as well as the pseudocapacitance in the hydrogen adsorption/desorption potential region is similar to a polycrystalline Pt electrode. Activities of ORR on Pt3Ni alloy surfaces were compared to polycrystalline Pt in 0.1M HClO4 electrolyte for the observed temperature range of 293 < T < 333 K. The order of activities at 333 K was: 'Pt-skin' > Pt3Ni (75% Pt) > Pt with the maximum catalytic enhancement obtained for the 'Pt-skin' being 4 times that for pure Pt. Catalytic improvement of the ORR on Pt3Ni and 'Pt-skin' surfaces was assigned to the inhibition of Pt-OHad formation (on Pt sites) versus polycrystalline Pt. Production of H2O2 on both surfaces were similar compared to the pure Pt. Kinetic analyses of RRDE data confirmed that kinetic parameters for the ORR on the Pt3Ni and 'Pt-skin' surfaces are the same as on pure Pt: reaction order, m=1, two identical Tafel slopes, activation energy, {approx} 21-25 kJ/mol. Therefore the reaction mechanism on both Pt3Ni and 'Pt-skin' surfaces is the same as one proposed for pure Pt i.e. 4e{sup -} reduction pathway.

  17. Interfacial oxygen migration and its effect on the magnetic anisotropy in Pt/Co/MgO/Pt films

    SciTech Connect

    Chen, Xi; Feng, Chun E-mail: ghyu@mater.ustb.edu.cn; Liu, Yang; Jiang, Shaolong; Hua Li, Ming; Hua Yu, Guang E-mail: ghyu@mater.ustb.edu.cn; Long Wu, Zheng; Yang, Feng

    2014-02-03

    This paper reports the interfacial oxygen migration effect and its induced magnetic anisotropy evolution in Pt/Co/MgO/Pt films. During depositing the MgO layer, oxygen atoms from the MgO combine with the neighboring Co atoms, leading to the formation of CoO at the Co/MgO interface. Meanwhile, the films show in-plane magnetic anisotropy (IMA). After annealing, most of the oxygen atoms in CoO migrate back to the MgO layer, resulting in obvious improvement of Co/MgO interface and the enhancement of effective Co-O orbital hybridization. These favor the evolution of magnetic anisotropy from IMA to perpendicular magnetic anisotropy (PMA). The oxygen migration effect is achieved by the redox reaction at the Co/MgO interface. On the contrary, the transfer from IMA to PMA cannot be observed in Pt/Co/Pt films due to the lack of interfacial oxygen migration.

  18. The PtAl{sup −} and PtAl{sub 2}{sup −} anions: Theoretical and photoelectron spectroscopic characterization

    SciTech Connect

    Zhang, Xinxing; Ganteför, Gerd; Bowen, Kit H. E-mail: ana@chem.ucla.edu; Alexandrova, Anastassia N. E-mail: ana@chem.ucla.edu

    2014-04-28

    We report a joint photoelectron spectroscopic and theoretical study of the PtAl{sup −} and PtAl{sub 2}{sup −} anions. The ground state structures and electronic configurations of these species were identified to be C{sub ∞v}, {sup 1}Σ{sup +} for PtAl{sup −}, and C{sub 2v}, {sup 2}B{sub 1} for PtAl{sub 2}{sup −}. Structured anion photoelectron spectra of these clusters were recorded and interpreted using ab initio calculations. Good agreement between theory and experiment was found. All experimental features were successfully assigned to one-electron transitions from the ground state of the anions to the ground or excited states of the corresponding neutral species.

  19. New tests to detect antiphospholipid antibodies: antiprothrombin (aPT) and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies.

    PubMed

    Sciascia, Savino; Khamashta, Munther A; Bertolaccini, Maria Laura

    2014-05-01

    Antiprothrombin antibodies have been proposed as potential new biomarkers for thrombosis and/or pregnancy morbidity in the setting of the antiphospholipid syndrome (APS). Antiprothrombin antibodies are commonly detected by ELISA, using prothrombin coated onto irradiated plates (aPT), or prothrombin in complex with phosphatidylserine (aPS/PT), as antigen. Although these antibodies can co-exist in the same patient, aPT and aPS/PT seem to belong to different populations of autoantibodies. Early research explored the role of antibodies to prothrombin as potential antigenic targets for the lupus anticoagulant (LA). To date their clinical significance is being investigated and their potential role in identifying patients at higher risk of developing thrombotic events or pregnancy morbidity is being probed.

  20. Lack of support for adaptive superstructure NiPt7 : Experiment and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Schönfeld, B.; Engelke, M.; Ruban, A. V.

    2009-02-01

    Order and effective interaction parameters on the Pt-rich side of solid Ni-Pt alloys have been investigated by experimental and first-principles theoretical techniques. Diffuse x-ray scattering was taken from single-crystalline Ni-87.8at.%Pt aged at 603 K to set up a state of thermal equilibrium. From the separated short-range order scattering, effective pair interaction parameters were determined. These experimentally deduced values do not produce the suggested NiPt7 superstructure at lower temperatures. Instead of that, phase separation into NiPt3 regions with L12 structure and a Pt-rich matrix is observed in Monte Carlo simulations and supported by x-ray scattering of Ni-75.2at.%Pt . First-principles calculations at 0 K also show that the suggested NiPt7 phase is unstable against decomposition into NiPt3 and Pt.

  1. Spectroscopic in situ Measurements of the Relative Pt Skin Thicknesses and Porosities of Dealloyed PtMn (Ni, Co) Electrocatalysts

    PubMed Central

    Caldwell, Keegan M.; Ramaker, David E.; Jia, Qingying; Mukerjee, Sanjeev; Ziegelbauer, Joseph M.; Kukreja, Ratandeep S.; Kongkanand, Anusorn

    2015-01-01

    X-ray adsorption near edge structure (XANES) data at the Co or Ni K-edge, analyzed using the Δμ difference procedure, are reported for dealloyed PtCox and PtNix catalysts (six different catalysts at different stages of life). All catalysts meet the 2017 DOE beginning of life target Pt mass activity target (>0.44 A mgPt−1), but exhibit varying activities and durabilities. The variance factors include different initial precursors, dealloying in HNO3 vs H2SO4, if a postdealloying thermal annealing step was performed, and different morphologies (some with a multi PtMx core and porous Pt skin, some single core with nonporous skin). Data are obtained at the initial beginning of life (BOL, ~200 voltage cycles) and after 10k and 30k (end of life, EOL) voltage cycles following DOE protocol (0.6–1.0 V vs reversible hydrogen electrode). The Δμ data are used to determine at what potential (Vpen) the Pt skin is penetrated by O. The durability, related to a drop in the electrochemical surface areas (ECSAs) after extensive voltage cycling, directly correlates with the Vpen at BOL. The data indicate that cycling produces a “characteristic” Pt skin robustness (porosity or thickness). When the Pt skin at BOL is “thin” (Vpen < 0.9 V) it grows to a “characteristic” thickness consistent with a Vpen of ≈1.1 V, and if it begins very thick, it thins to the same “characteristic” thickness. Particles dealloyed in H2SO4 appear to have a thicker Pt skin at BOL than those dealloyed in HNO3, and a postdealloying annealing procedure appears to produce a particularly nonporous skin with high Vpen, but not necessarily thicker. Furthermore, the PtM3 catalysts exhibited a fast skin “healing” process whereby the initial porous skin appears to become more nonporous after holding the potential at 0.9 V. This work is believed to be the first in situ XAS study to shed light on the nature of the Pt skin, its thickness, and/or porosity, and how it changes with respect to

  2. Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance.

    PubMed

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2013-05-01

    Aerobic organisms have devised several enzymatic and non-enzymatic antioxidant defenses to deal with reactive oxygen species (ROS) produced by cellular metabolism. To combat such stress, cells induce ROS scavenging enzymes such as catalase, peroxidase, superoxide dismutase (SOD) and glutathione reductase. In the present research, we have used a double staining technique of SOD and catalase enzymes in the same polyacrylamide gel to analyze the different antioxidant enzymatic activities and protein isoforms present in Saccharomyces and non-Saccharomyces yeast species. Moreover, we used a technique to differentially detect Sod1p and Sod2p on gel by immersion in NaCN, which specifically inhibits the Sod1p isoform. We observed unique SOD and catalase zymogram profiles for all the analyzed yeasts and we propose this technique as a new approach for Saccharomyces and non-Saccharomyces yeast strains differentiation. In addition, we observed functional correlations between SOD and catalase enzyme activities, accumulation of essential metabolites, such as glutathione and trehalose, and the fermentative performance of different yeasts strains with industrial relevance. PMID:23354444

  3. FMR studies of exchange-coupled multiferroic polycrystalline Pt/BiFeO3/Ni81Fe19/Pt heterostructures

    NASA Astrophysics Data System (ADS)

    Ben Youssef, Jamal; Richy, Jérôme; Beaulieu, Nathan; Hauguel, Tony; Dekadjevi, David T.; Jay, Jean-Philippe; Spenato, David; Pogossian, Souren P.

    2016-09-01

    An experimental study of the in-plane azimuthal behaviour and frequency dependence of the ferromagnetic resonance field and the resonance linewidth as a function of BiFeO3 thickness is carried out in a polycrystalline exchange-biased BiFeO3/Ni81Fe19 system. The magnetization decrease of the Pt/BiFeO3/Ni81Fe19/Pt heterostructure with BiFeO3 thickness deduced from static measurements has been confirmed by dynamic investigations. Ferromagnetic resonance measurements have shown lower gyromagnetic ratio in a perpendicular geometry compared with that of parallel geometry. The monotonous decrease of gyromagnetic ratio in perpendicular geometry as a function of the BiFeO3 film thickness seems to be related to the spin-orbit interactions due to the neighbouring Pt film at its interface with Ni81Fe19 film. The enhancement of gyromagnetic ratio in Pt/Ni81Fe19/Pt is attributed to the Pt. The in-plane azimuthal shape of the total linewidth of the uniform mode shows isotropic behaviour that increases with BiFeO3 thickness. The study of the frequency dependence of the resonance linewidth in a broad band of 3-35 GHz has allowed the determination of intrinsic and extrinsic contributions to the relaxation as a function of BiFeO3 thickness in perpendicular geometry. In our system the magnetic relaxation is dominated by the spin-pumping mechanism due to the presence of Pt. The insertion of BiFeO3 between Pt and Ni81Fe19 attenuates the spin-pumping damping at one interface.

  4. Visible light photoactivity of TiO2 loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles

    NASA Astrophysics Data System (ADS)

    Gołąbiewska, Anna; Lisowski, Wojciech; Jarek, Marcin; Nowaczyk, Grzegorz; Zielińska-Jurek, Anna; Zaleska, Adriana

    2014-10-01

    TiO2 modified with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles have been prepared using a water-in-oil microemulsion system (water/AOT/cyclohexane) followed by calcination step. The effect of metal ratio, reducing agent type (NaBH4 or N2H4), TiO2 matrix type (P-25, ST-01, TiO-5, TiO2 nanotubes or TiO2 obtained by TIP hydrolysis) as well as calcination temperature (from 350 to 650 °C) were systematically investigated. Obtained photocatalysts were characterized by UV-vis diffuse-reflectance spectroscopy (DRS), BET surface area measurements, scanning transmission microscopy (STEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity under visible light (λ > 420 nm) has been estimated in phenol degradation reaction in aqueous phase. The results showed that phenol degradation rate under visible light in the presence of TiO2 loaded with Au/Pt nanoparticles differed from 0.7 to 2.2 μmol dm-3 min-1 for samples prepared using different reducing agent. Sodium borohydride (NaBH4) favors formation of smaller Au/Pt nanoparticles and higher amount gold in Au/Pt is in the form of electronegative species (Auδ-) resulted in higher photoactivity. TiO2 obtained by TIP hydrolysis in microemulsion system seems to be the best support for Au/Pt nanoparticles from all among investigated matrix. It was also observed that enhancement of calcination temperature from 450 to 650 °C resulted in rapid drop of Au/Pt-TiO2 photoactivity under visible light due to surface area shrinkage, crystal structure change and probably change in Au/Pt nanoparticles morphology.

  5. Electric field mediated non-volatile tuning magnetism in CoPt/PMN-PT heterostructure for magnetoelectric memory devices

    NASA Astrophysics Data System (ADS)

    Yang, Y. T.; Li, J.; Peng, X. L.; Wang, X. Q.; Wang, D. H.; Cao, Q. Q.; Du, Y. W.

    2016-02-01

    We report a power efficient non-volatile magnetoelectric memory in the CoPt/(011)PMN-PT heterostructure. Two reversible and stable electric field induced coercivity states (i.e., high-HC or low-HC) are obtained due to the strain mediated converse magnetoelectric effect. The reading process of the different coercive field information written by electric fields is demonstrated by using a magnetoresistance read head. This result shows good prospects in the application of novel multiferroic devices.

  6. Spatiospectral separation of exceptional points in PT-symmetric optical potentials

    NASA Astrophysics Data System (ADS)

    Yu, Sunkyu; Piao, Xianji; Mason, Daniel R.; In, Sungjun; Park, Namkyoo

    2012-09-01

    Non-Hermitian Hamiltonians satisfying parity-time (PT) symmetry reveal unusual physical phenomena related to exceptional points, where the onset of PT symmetry breaking occurs. Here, by permitting dispersive variations in the PT-symmetric potential along the propagation axis of a wave, we show that it is possible to obtain PT-induced exceptional points of spatiospectral separation. As an example, we demonstrate “rainbow nonreciprocity” using a PT-symmetric chirped optical potential.

  7. Combining voltammetry and ion chromatography: application to the selective reduction of nitrate on Pt and PtSn electrodes.

    PubMed

    Yang, Jian; Kwon, Youngkook; Duca, Matteo; Koper, Marc T M

    2013-08-20

    To overcome the shortcomings of electroanalytical methods in analyzing the ionic reaction products that are either electrochemically inert or lack distinct electrochemical/spectroscopic fingerprints, we suggest combining voltammetry with ion chromatography by applying online sample collection to the electrochemical cell and offline ion chromatographic analysis. This combination allows a quantitative analysis including the potential dependence of the product distribution in a straightforward way. As a proof-of-concept example, we discuss the formation of ionic reaction products from nitrate reduction on Pt and Sn-modified Pt electrode in acid. On the Pt electrode, ammonia was the only identifiable product. After Sn modification of the Pt electrode, a change in selectivity was observed to hydroxylamine as the dominant product. Moreover, the rate determining step of nitrate reduction (reduction to nitrite) was enhanced by Sn modification of the Pt electrode, and a significant concentration of nitrite was evidenced on a Pt electrode with a high coverage of Sn species. The suggested combination of voltammetry and online ion chromatography hence proves very useful in the quantitative elucidation of electrocatalytic reactions with different ionic products.

  8. First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals

    SciTech Connect

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Kasai, Hideaki

    2015-03-15

    Catalytic oxidation of NO to NO{sub 2} is a significant research interest for improving the quality of air through exhaust gas purification systems. In this paper, the authors studied this reaction on pure Pt and Pt overlayer on 3d transition metals using kinetic Monte Carlo simulations coupled with density functional theory based first principles calculations. The authors found that on the Pt(111) surface, NO oxidation proceeds via the Eley–Rideal mechanism, with O{sub 2} dissociative adsorption as the rate-determining step. The oxidation path via the Langmuir–Hinshelwood mechanism is very slow and does not significantly contribute to the overall reaction. However, in the Pt overlayer systems, the oxidation of NO on the surface is more thermodynamically and kinetically favorable compared to pure Pt. These findings are attributed to the weaker binding of O and NO on the Pt overlayer systems and the binding configuration of NO{sub 2} that promotes easier N-O bond formation. These results present insights for designing affordable and efficient catalysts for NO oxidation.

  9. New potential structure for jewelry application. Does it exist in Pt-Mo, Pt-Hf, or other systems?

    NASA Astrophysics Data System (ADS)

    Gilmartin, Erin; Corbitt, Jacqueline; Hart, Gus

    2009-10-01

    The only known intermetallic structure with an 8:1 stoichiometry is that of Pt8Ti. It is intriguing that an ordered phase would occur at such low concentrations of the minority atom, but this structure occurs in about a dozen binary intermetallic systems. The formation of an ordered phase in an alloy can significantly enhance the performance of the material, particularly the hardness. We have taken a broad look at possible systems where this phase forms. Using first-principles, we calculated the stability of this structure relative to experimentally known phases for more than 70 Pt/Pd binary systems. We find the Pt8Ti structure is a possible ground state in more than 20 cases. Our experimental collaborators have verified our prediction in Pt-Mo and observed order-hardening in Pt-Hf. We discuss the discovery of new ground states via the cluster expansion that are likely to be verified experimentally and their impact on Pt- and Pd-based jewelry and catalysts.

  10. Alternative alloys for catalysts and platinum jewelry? New structures in Pt-Hf and Pt-Mo

    NASA Astrophysics Data System (ADS)

    Gilmartin, Erin; Corbitt, Jacqueline; Hart, Gus

    2009-03-01

    The only known intermetallic structure with an 8:1 stoichiometry is that of Pt8Ti. It is intriguing that an ordered phase would occur at such low concentrations of the minority atom, but this structure occurs in about a dozen binary intermetallic systems. The formation of an ordered phase in an alloy can significantly enhance the performance of the material, particularly the hardness. We have taken a broad look at possible systems where this phase forms. Using first-principles, we calculated the stability of this structure relative to experimentally known phases for more than 80 Pt/Pd binary systems. We find the Pt8Ti structure is a possible ground state in more than 20 cases. Our experimental collaborators have verified our prediction in Pt-Mo and observed order-hardening in Pt-Hf. We discuss the discovery of new ground states that are likely to be verified experimentally and their impact on materials for Pt- and Pd-based catalysts and jewelry.

  11. Microscopic evidence of strain-mediated magnetoelectric coupling in Co/Pt multilayers/PMN-PT(011) heterostructures

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Wang, Wenbo; Wu, Weida; Zheng, Xiaoli; Cai, Jianwang; Zhao, Yonggang; Liu, Ming

    A promising way to control magnetization(M) via an electric field(E-field) is using magnetoelectric(ME) effect in FM/FE heterostructures. We use magnetic(electric) force microscopy(M(e)FM) to study the strain-mediated E-field modulation of M in (Co/Pt)n with perpendicular magnetic anisotropy(PMA) or in-plane anisotropy on PMN-PT(011) substrates. MFM were performed on (Co/Pt)n with an DC E-field applied to PMN-PT. In MeFM, we superimpose an AC modulation on a DC one and utilize lock-in technique to detect weak ME effect. For (Co/Pt)n with PMA, MFM images show stripe domains with no obvious changes at varied DC E-fields. However, MeFM shows interesting structures and the image contrast reverses sign at opposite strain slopes of the PMN-PT substrate. For sample with in-plane anisotropy, both MFM and MeFM images show dipole-like domains. Interestingly, the MeFM image contrast reverses sign at opposite strain slopes of the substrate. The sign reversal of MeFM contrast indicates that features revealed by MeFM are intrinsic local ME effect. Our MeFM data are consistent with the ferromagnetic resonance results showing that strain-induced anisotropy change will cause part of M switching to the in-plane direction. Possible scenarios will be discussed.

  12. Dynamic linear electro-optic frequency dependence in PMN-32%PT and PZN-8%PT for RF microwave photonics

    NASA Astrophysics Data System (ADS)

    Johnson, Shikik T.

    The electrooptic effect (at lambda = 633nm) in both PMN-32%PT and PZN-8%PT relaxor ferroelectric single crystals was investigated as a function of small signal modulation frequencies. Piezo-resonance measurements were also conducted to examine piezooptic coupling in these materials for selected resonance modes to observe the influence of piezoelectric activity on the electro-optic behavior. The electrooptic rC coefficient in PMN-32PT and PZN-8%PT crystals were found to have strong frequency dependence at frequencies below 100s Hz apparently due to space charge effects. Anomalous electrooptic properties near piezoelectric resonance frequencies are reported to be attributed to a synchronization of the low frequency piezoelectric resonance and high frequency transverse lattice vibrations near 4th harmonics. Also reported is enhanced electrooptic properties near piezoelectric resonant frequencies that may be attributed to synchronization of the low frequency fundamental modes and up to their 5th order harmonics accompanied by nonlinear extrinsic activity in the form of lateral domain region motion. A constructive interaction with overlapping high order piezoelectric and electrooptic resonances can be engineered, using PMN-32%PT rhombohedral and PZN-8%PT crystals as an example, so that a small signal (.25V/mm) amplified electro-optic detector in the RF frequency region may be envisaged.

  13. Atomic structure of PtCu nanoparticles in PtCu/C catalysts prepared by simultaneous and sequential deposition of components on carbon support

    NASA Astrophysics Data System (ADS)

    Bugaev, L. A.; Srabionyan, V. V.; Pryadchenko, V. V.; Bugaev, A. L.; Avakyan, L. A.; Belenov, S. V.; Guterman, V. E.

    2016-05-01

    Nanocatalysts PtCu/C with different distribution of components in bimetallic PtCu nanoparticles (NPs) were synthesized by simultaneous and sequential deposition of Cu and Pt on carbon support. Electrochemical stability of the obtained samples PtCu/C was studied using the cyclic voltammetry. Characterization of atomic structure of as prepared PtCu NPs and obtained after acid treatment was performed by Pt L 3- and Cu K-edge EXAFS using the technique for determining local structure parameters of the absorbing atom under strong correlations among them. EXAFS derived parameters were used for generation of structural models of PtCu NPs by the method of cluster simulations. Within this approach, the models of atomic structure of PtCu NPs obtained by the two methods of synthesis, before and after post treatment and after two months from their preparation were revealed.

  14. Class C ABC transporters and Saccharomyces cerevisiae vacuole fusion

    PubMed Central

    Sasser, Terry L; Fratti, Rutilio A

    2014-01-01

    Membrane fusion is carried out by core machinery that is conserved throughout eukaryotes. This is comprised of Rab GTPases and their effectors, and SNARE proteins, which together are sufficient to drive the fusion of reconstituted proteoliposomes. However, an outer layer of factors that are specific to individual trafficking pathways in vivo regulates the spatial and temporal occurrence of fusion. The homotypic fusion of Saccharomyces cerevisiae vacuolar lysosomes utilizes a growing set of factors to regulate the fusion machinery that include members of the ATP binding cassette (ABC) transporter family. Yeast vacuoles have five class C ABC transporters that are known to transport a variety of toxins into the vacuole lumen as part of detoxifying the cell. We have found that ABCC transporters can also regulate vacuole fusion through novel mechanisms. For instance Ybt1 serves as negative regulator of fusion through its effects on vacuolar Ca2+ homeostasis. Additional studies showed that Ycf1 acts as a positive regulator by affecting the efficient recruitment of the SNARE Vam7. Finally, we discuss the potential interface between the translocation of lipids across the membrane bilayer, also known as lipid flipping, and the efficiency of fusion. PMID:25610719

  15. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae

    PubMed Central

    Welch, Aaron Z.; Gibney, Patrick A.; Botstein, David; Koshland, Douglas E.

    2013-01-01

    Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000–fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance. PMID:23171550

  16. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.

    PubMed

    Kim, Soo Rin; Park, Yong-Cheol; Jin, Yong-Su; Seo, Jin-Ho

    2013-11-01

    Efficient and rapid fermentation of all sugars present in cellulosic hydrolysates is essential for economic conversion of renewable biomass into fuels and chemicals. Xylose is one of the most abundant sugars in cellulosic biomass but it cannot be utilized by wild type Saccharomyces cerevisiae, which has been used for industrial ethanol production. Therefore, numerous technologies for strain development have been employed to engineer S. cerevisiae capable of fermenting xylose rapidly and efficiently. These include i) optimization of xylose-assimilating pathways, ii) perturbation of gene targets for reconfiguring yeast metabolism, and iii) simultaneous co-fermentation of xylose and cellobiose. In addition, the genetic and physiological background of host strains is an important determinant to construct efficient and rapid xylose-fermenting S. cerevisiae. Vibrant and persistent researches in this field for the last two decades not only led to the development of engineered S. cerevisiae strains ready for industrial fermentation of cellulosic hydrolysates, but also deepened our understanding of operational principles underlying yeast metabolism. PMID:23524005

  17. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae

    PubMed Central

    Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M

    2014-01-01

    The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. PMID:24483210

  18. Electroinduced release of recombinant β-galactosidase from Saccharomyces cerevisiae.

    PubMed

    Ganeva, Valentina; Stefanova, Debora; Angelova, Boyana; Galutzov, Bojidar; Velasco, Isabel; Arévalo-Rodríguez, Miguel

    2015-10-10

    Yeasts are one of the most commonly used systems for recombinant protein production. When the protein is intracelullarly expressed the first step comprises a cell lysis, achieved usually by a mechanical disintegration. This leads to non-selective liberation of the cytoplasmic content, which complicates the following downstream process. Here, we present a new approach suitable for more selective and efficient recovery of large intracellular proteins from yeast, based on the combination of electropermeabilisation and subsequent treatment with lytic enzyme. The experiments were performed with Saccharomyces cerevisiae strains expressing LYTAG-β-galactosidase from Escherichia coli. The permeabilzation of plasma membrane was induced by application of rectangular electric pulses, with 1.25ms duration and field intensity of 4.3-5.4kV/cm. In the presence of a reducing agent the cells released approximately 80% of the total protein 4h after electrical treatment. At the same conditions the release of the recombinant protein was very slow, reaching 45% from total activity 20h after pulse application. The great difference in the release kinetics enabled to remove a part of the total protein, without significant loss of β-galactosidase activity, only by substituting the incubation buffer. The subsequent addition of lyticase (1-2U/ml) led to recovery of approximately 70% from the recombinant enzyme, with a factor of purification 2.6, without provoking a significant cell lysis. The applicability of similar protocol for liberation of large recombinant and native proteins from yeast is discussed. PMID:26142064

  19. Distribution and regulation of stochasticity and plasticity in Saccharomyces cerevisiae

    DOE PAGESBeta

    Dar, R. D.; Karig, D. K.; Cooke, J. F.; Cox, C. D.; Simpson, M. L.

    2010-09-01

    Stochasticity is an inherent feature of complex systems with nanoscale structure. In such systems information is represented by small collections of elements (e.g. a few electrons on a quantum dot), and small variations in the populations of these elements may lead to big uncertainties in the information. Unfortunately, little is known about how to work within this inherently noisy environment to design robust functionality into complex nanoscale systems. Here, we look to the biological cell as an intriguing model system where evolution has mediated the trade-offs between fluctuations and function, and in particular we look at the relationships and trade-offsmore » between stochastic and deterministic responses in the gene expression of budding yeast (Saccharomyces cerevisiae). We find gene regulatory arrangements that control the stochastic and deterministic components of expression, and show that genes that have evolved to respond to stimuli (stress) in the most strongly deterministic way exhibit the most noise in the absence of the stimuli. We show that this relationship is consistent with a bursty 2-state model of gene expression, and demonstrate that this regulatory motif generates the most uncertainty in gene expression when there is the greatest uncertainty in the optimal level of gene expression.« less

  20. A novel selection system for chromosome translocations in Saccharomyces cerevisiae.

    PubMed Central

    Tennyson, Rachel B; Ebran, Nathalie; Herrera, Anissa E; Lindsley, Janet E

    2002-01-01

    Chromosomal translocations are common genetic abnormalities found in both leukemias and solid tumors. While much has been learned about the effects of specific translocations on cell proliferation, much less is known about what causes these chromosome rearrangements. This article describes the development and use of a system that genetically selects for rare translocation events using the yeast Saccharomyces cerevisiae. A translocation YAC was created that contains the breakpoint cluster region from the human MLL gene, a gene frequently involved in translocations in leukemia patients, flanked by positive and negative selection markers. A translocation between the YAC and a yeast chromosome, whose breakpoint falls within the MLL DNA, physically separates the markers and forms the basis for the selection. When RAD52 is deleted, essentially all of the selected and screened cells contain simple translocations. The detectable translocation rates are the same in haploids and diploids, although the mechanisms involved and true translocation rates may be distinct. A unique double-strand break induced within the MLL sequences increases the number of detectable translocation events 100- to 1000-fold. This novel system provides a tractable assay for answering basic mechanistic questions about the development of chromosomal translocations. PMID:11973293

  1. Effect of polygodial on the mitochondrial ATPase of Saccharomyces cerevisiae.

    PubMed

    Lunde, C S; Kubo, I

    2000-07-01

    The fungicidal mechanism of a naturally occurring sesquiterpene dialdehyde, polygodial, was investigated in Saccharomyces cerevisiae. In an acidification assay, polygodial completely suppressed the glucose-induced decrease in external pH at 3.13 microgram/ml, the same as the fungicidal concentration. Acidification occurs primarily through the proton-pumping action of the plasma membrane ATPase, Pma1p. Surprisingly, this ATPase was not directly inhibited by polygodial. In contrast, the two other membrane-bound ATPases in yeast were found to be susceptible to the compound. The mitochondrial ATPase was inhibited by polygodial in a dose-dependent manner at concentrations similar to the fungicidal concentration, whereas the vacuolar ATPase was only slightly inhibited. Cytoplasmic petite mutants, which lack mitochondrial DNA and are respiration deficient, were significantly less susceptible to polygodial than the wild type, as was shown in time-kill curves. A pet9 mutant which lacks a functional ADP-ATP translocator and is therefore respiration dependent was rapidly inhibited by polygodial. The results of these susceptibility assays link enzyme inhibition to physiological effect. Previous studies have reported that plasma membrane disruption is the mechanism of polygodial-induced cell death; however, these results support a more complex picture of its effect. A major target of polygodial in yeast is mitochondrial ATP synthase. Reduction of the ATP supply leads to a suppression of Pma1 ATPase activity and impairs adaptive responses to other facets of polygodial's cellular inhibition.

  2. Genotoxicity assessment of amaranth and allura red using Saccharomyces cerevisiae.

    PubMed

    Jabeen, Hafiza Sumara; ur Rahman, Sajjad; Mahmood, Shahid; Anwer, Sadaf

    2013-01-01

    Amaranth (E123) and Allura red (E129), very important food azo dyes used in food, drug, paper, cosmetic and textile industries, were assessed for their genotoxic potential through comet assay in yeast cells. Comet assay was standardized by with different concentration of H(2)O(2). Concentrations of Amaranth and Allura red were maintained in sorbitol buffer starting from 9.76 to 5,000 μg/mL and 1 × 10(4) cells were incubated at two different incubation temperatures 28 and 37°C. Amaranth (E123) and Allura red (E129) were found to exhibit their genotoxic effect directly in Saccharomyces cerevisiae. No significant genotoxic activity was observed for Amaranth and Allura red at 28°C but at 37°C direct relation of Amaranth concentration with comet tail was significant and no positive relation was seen with time exposure factor. At 37°C the minimum concentration of Amaranth and Allura red at which significant DNA damage observed through comet assay was 1,250 μg/mL in 2nd h post exposure time. The results indicated that food colors should be carefully used in baking products as heavy concentration of food colors could affect the fermentation process of baking.

  3. Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation.

    PubMed

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-09-10

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains.

  4. Purification and Characterization of Put1p from Saccharomyces cerevisiae

    PubMed Central

    Wanduragala, Srimevan; Sanyal, Nikhilesh; Liang, Xinwen; Becker, Donald F.

    2010-01-01

    In Saccharomyces cerevisiae, the PUT1 and PUT2 genes are required for the conversion of proline to glutamate. The PUT1 gene encodes Put1p, a proline dehydrogenase (PRODH)1 enzyme localized in the mitochondrion. Put1p was expressed and purified from Escherichia coli and shown to have a UV-visible absorption spectrum that is typical of a bound flavin cofactor. A Km value of 36 mM proline and a kcat = 27 s−1 were determined for Put1p using an artificial electron acceptor. Put1p also exhibited high activity using ubiquinone-1 (CoQ1) as an electron acceptor with a kcat = 9.6 s−1 and a Km of 33 µM for CoQ1. In addition, knockout strains of the electron transfer flavoprotein (ETF) homolog in S. cerevisiae were able to grow on proline as the sole nitrogen source demonstrating that ETF is not required for proline utilization in yeast. PMID:20450881

  5. The cryptic beta-fructofuranosidase of Saccharomyces rouxii.

    PubMed

    Arnold, W N

    1982-05-28

    The synthesis of beta-fructofuranosidase in synchronously dividing cells of S. rouxii was continuous (as opposed to periodic) throughout the budding cycle and followed the increase in cell mass. Similar patterns for cell mass and enzyme increases were observed even in phosphate-deprived cells which did not divide. The beta-fructofuranosidase activity remained physically cryptic throughout the cell cycle as evidenced by analyses on equilibrium density gradient fractions. The beta-fructofuranosidase activity released from mechanically disrupted cells resisted sedimentation when subjected to 131 000 g for 1 h, thus ruling out membrane association. Ethyl acetate was routinely employed to break the crypticity barrier. Enzyme in cell-free extract or in cells was equally sensitive to inactivation at pH values below 5 in the presence of ethyl acetate, which suggested that this is an inherent property of the enzyme in question and not a reflection of proteolytic inactivation. The status of beta-fructofuranosidase in selected species of Saccharomyces was compared with that for S. rouxii and a close similarity with S. bisporus var. mellis was noted. The degree of crypticity encountered in genetically defined strains of S. cerevisiae (e.g. X2180 a/alpha) was relatively high (42%) compared with that for commercially derived bakers' and brewers' strains (about 6%). Extant data on the cryptic beta-fructofuranosidase of S. rouxii are evaluated and the utility of this system for studying enzyme translocation is discussed.

  6. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose.

    PubMed

    Liu, Jing-Jing; Zhang, Guo-Chang; Oh, Eun Joong; Pathanibul, Panchalee; Turner, Timothy L; Jin, Yong-Su

    2016-09-20

    Lactose is an inevitable byproduct of the dairy industry. In addition to cheese manufacturing, the growing Greek yogurt industry generates excess acid whey, which contains lactose. Therefore, rapid and efficient conversion of lactose to fuels and chemicals would be useful for recycling the otherwise harmful acid whey. Saccharomyces cerevisiae, a popular metabolic engineering host, cannot natively utilize lactose. However, we discovered that an engineered S. cerevisiae strain (EJ2) capable of fermenting cellobiose can also ferment lactose. This finding suggests that a cellobiose transporter (CDT-1) can transport lactose and a β-glucosidase (GH1-1) can hydrolyze lactose by acting as a β-galactosidase. While the lactose fermentation by the EJ2 strain was much slower than the cellobiose fermentation, a faster lactose-fermenting strain (EJ2e8) was obtained through serial subcultures on lactose. The EJ2e8 strain fermented lactose with a consumption rate of 2.16g/Lh. The improved lactose fermentation by the EJ2e8 strain was due to the increased copy number of cdt-1 and gh1-1 genes. Looking ahead, the EJ2e8 strain could be exploited for the production of other non-ethanol fuels and chemicals from lactose through further metabolic engineering. PMID:27457698

  7. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress

    PubMed Central

    Cheng, Yanfei; Du, Zhaoli; Zhu, Hui; Guo, Xuena; He, Xiuping

    2016-01-01

    Yeast cells are challenged by various environmental stresses in the process of industrial fermentation. As the currently main organism for bio-ethanol production, Saccharomyces cerevisiae suffers from ethanol stress. Some amino acids have been reported to be related to yeast tolerance to stresses. Here the relationship between arginine and yeast response to ethanol stress was investigated. Marked inhibitions of ethanol on cell growth, expression of genes involved in arginine biosynthesis and intracellular accumulation of arginine were observed. Furthermore, extracellular addition of arginine can abate the ethanol damage largely. To further confirm the protective effects of arginine on yeast cells, yeast strains with different levels of arginine content were constructed by overexpression of ARG4 involved in arginine biosynthesis or CAR1 encoding arginase. Intracellular arginine was increased by 18.9% or 13.1% respectively by overexpression of ARG4 or disruption of CAR1, which enhanced yeast tolerance to ethanol stress. Moreover, a 41.1% decrease of intracellular arginine was observed in CAR1 overexpressing strain, which made yeast cells keenly sensitive to ethanol. Further investigations indicated that arginine protected yeast cells from ethanol damage by maintaining the integrity of cell wall and cytoplasma membrane, stabilizing the morphology and function of organellae due to low ROS generation. PMID:27507154

  8. Proteomic Profiling of Autophagosome Cargo in Saccharomyces cerevisiae

    PubMed Central

    Morimoto, Mayumi; Fujii, Kiyonaga; Noda, Nobuo N.; Inagaki, Fuyuhiko; Ohsumi, Yoshinori

    2014-01-01

    Macroautophagy (autophagy) is a bulk protein-degradation system ubiquitously conserved in eukaryotic cells. During autophagy, cytoplasmic components are enclosed in a membrane compartment, called an autophagosome. The autophagosome fuses with the vacuole/lysosome and is degraded together with its cargo. Because autophagy is important for the maintenance of cellular homeostasis by degrading unwanted proteins and organelles, identification of autophagosome cargo proteins (i.e., the targets of autophagy) will aid in understanding the physiological roles of autophagy. In this study, we developed a method for monitoring intact autophagosomes ex vivo by detecting the fluorescence of GFP-fused aminopeptidase I, the best-characterized selective cargo of autophagosomes in Saccharomyces cerevisiae. This method facilitated optimization of a biochemical procedure to fractionate autophagosomes. A combination of LC-MS/MS with subsequent statistical analyses revealed a list of autophagosome cargo proteins; some of these are selectively enclosed in autophagosomes and delivered to the vacuole in an Atg11-independent manner. The methods we describe will be useful for analyzing the mechanisms and physiological significance of Atg11-independent selective autophagy. PMID:24626240

  9. Tor1 regulates protein solubility in Saccharomyces cerevisiae

    PubMed Central

    Peters, Theodore W.; Rardin, Matthew J.; Czerwieniec, Gregg; Evani, Uday S.; Reis-Rodrigues, Pedro; Lithgow, Gordon J.; Mooney, Sean D.; Gibson, Bradford W.; Hughes, Robert E.

    2012-01-01

    Accumulation of insoluble protein in cells is associated with aging and aging-related diseases; however, the roles of insoluble protein in these processes are uncertain. The nature and impact of changes to protein solubility during normal aging are less well understood. Using quantitative mass spectrometry, we identify 480 proteins that become insoluble during postmitotic aging in Saccharomyces cerevisiae and show that this ensemble of insoluble proteins is similar to those that accumulate in aging nematodes. SDS-insoluble protein is present exclusively in a nonquiescent subpopulation of postmitotic cells, indicating an asymmetrical distribution of this protein. In addition, we show that nitrogen starvation of young cells is sufficient to cause accumulation of a similar group of insoluble proteins. Although many of the insoluble proteins identified are known to be autophagic substrates, induction of macroautophagy is not required for insoluble protein formation. However, genetic or chemical inhibition of the Tor1 kinase is sufficient to promote accumulation of insoluble protein. We conclude that target of rapamycin complex 1 regulates accumulation of insoluble proteins via mechanisms acting upstream of macroautophagy. Our data indicate that the accumulation of proteins in an SDS-insoluble state in postmitotic cells represents a novel autophagic cargo preparation process that is regulated by the Tor1 kinase. PMID:23097491

  10. Crystal structure of Saccharomyces cerevisiae cytosolic aspartate aminotransferase.

    PubMed Central

    Jeffery, C. J.; Barry, T.; Doonan, S.; Petsko, G. A.; Ringe, D.

    1998-01-01

    The crystal structure of Saccharomyces cerevisiae cytoplasmic aspartate aminotransferase (EC 2.6.1.1) has been determined to 2.05 A resolution in the presence of the cofactor pyridoxal-5'-phosphate and the competitive inhibitor maleate. The structure was solved by the method of molecular replacement. The final value of the crystallographic R-factor after refinement was 23.1% with good geometry of the final model. The yeast cytoplasmic enzyme is a homodimer with two identical active sites containing residues from each subunit. It is found in the "closed" conformation with a bound maleate inhibitor in each active site. It shares the same three-dimensional fold and active site residues as the aspartate aminotransferases from Escherichia coli, chicken cytoplasm, and chicken mitochondria, although it shares less than 50% sequence identity with any of them. The availability of four similar enzyme structures from distant regions of the evolutionary tree provides a measure of tolerated changes that can arise during millions of years of evolution. PMID:9655342

  11. Properties of yeast Saccharomyces cerevisiae plasma membrane dicarboxylate transporter.

    PubMed

    Aliverdieva, D A; Mamaev, D V; Bondarenko, D I; Sholtz, K F

    2006-10-01

    Transport of succinate into Saccharomyces cerevisiae cells was determined using the endogenous coupled mitochondrial succinate oxidase system. The dependence of succinate oxidation rate on the substrate concentration was a curve with saturation. At neutral pH the K(m) value of the mitochondrial "succinate oxidase" was fivefold less than that of the cellular "succinate oxidase". O-Palmitoyl-L-malate, not penetrating across the plasma membrane, completely inhibited cell respiration in the presence of succinate but not glucose or pyruvate. The linear inhibition in Dixon plots indicates that the rate of succinate oxidation is limited by its transport across the plasmalemma. O-Palmitoyl-L-malate and L-malate were competitive inhibitors (the K(i) values were 6.6 +/- 1.3 microM and 17.5 +/- 1.1 mM, respectively). The rate of succinate transport was also competitively inhibited by the malonate derivative 2-undecyl malonate (K(i) = 7.8 +/- 1.2 microM) but not phosphate. Succinate transport across the plasma membrane of S. cerevisiae is not coupled with proton transport, but sodium ions are necessary. The plasma membrane of S. cerevisiae is established to have a carrier catalyzing the transport of dicarboxylates (succinate and possibly L-malate and malonate).

  12. Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16.

    PubMed Central

    Bang, D D; Timmermans, V; Verhage, R; Zeeman, A M; van de Putte, P; Brouwer, J

    1995-01-01

    The RAD16 gene product has been shown to be essential for the repair of the silenced mating type loci [Bang et al. (1992) Nucleic Acids Res. 20, 3925-3931]. More recently we demonstrated that the RAD16 and RAD7 proteins are also required for repair of non-transcribed strands of active genes in Saccharomyces cerevisiae [Waters et al. (1993) Mol. Gen. Genet. 239, 28-32]. We have studied the regulation of the RAD16 gene and found that the RAD16 transcript levels increased up to 7-fold upon UV irradiation. Heat shock at 42 degrees C also results in elevated levels of RAD16 mRNA. In sporulating MAT alpha/MATa diploid cells RAD16 mRNA is also induced. The basal level of the RAD16 transcript is constant during the mitotic cell cycle. G1-arrested cells show normal induction of RAD16 mRNA upon UV irradiation demonstrating that the induction is not a secondary consequence of G2 cell cycle arrest following UV irradiation. However, in cells arrested in G1 the induction of RAD16 mRNA after UV irradiation is not followed by a rapid decline as occurs in normal growing cells suggesting that the down regulation of RAD16 transcription is dependent on progression into the cell cycle. Images PMID:7784171

  13. The Network Architecture of the Saccharomyces cerevisiae Genome

    PubMed Central

    Hoang, Stephen A.; Bekiranov, Stefan

    2013-01-01

    We propose a network-based approach for surmising the spatial organization of genomes from high-throughput interaction data. Our strategy is based on methods for inferring architectural features of networks. Specifically, we employ a community detection algorithm to partition networks of genomic interactions. These community partitions represent an intuitive interpretation of genomic organization from interaction data. Furthermore, they are able to recapitulate known aspects of the spatial organization of the Saccharomyces cerevisiae genome, such as the rosette conformation of the genome, the clustering of centromeres, as well as tRNAs, and telomeres. We also demonstrate that simple architectural features of genomic interaction networks, such as cliques, can give meaningful insight into the functional role of the spatial organization of the genome. We show that there is a correlation between inter-chromosomal clique size and replication timing, as well as cohesin enrichment. Together, our network-based approach represents an effective and intuitive framework for interpreting high-throughput genomic interaction data. Importantly, there is a great potential for this strategy, given the rich literature and extensive set of existing tools in the field of network analysis. PMID:24349163

  14. Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production.

    PubMed

    Feng, Xueyang; Lian, Jiazhang; Zhao, Huimin

    2015-01-01

    Fatty alcohols are important components of a vast array of surfactants, lubricants, detergents, pharmaceuticals and cosmetics. We have engineered Saccharomyces cerevisiae to produce 1-hexadecanol by expressing a fatty acyl-CoA reductase (FAR) from barn owl (Tyto alba). In order to improve fatty alcohol production, we have manipulated both the structural genes and the regulatory genes in yeast lipid metabolism. The acetyl-CoA carboxylase gene (ACC1) was over-expressed, which improved 1-hexadecanol production by 56% (from 45mg/L to 71mg/L). Knocking out the negative regulator of the INO1 gene in phospholipid metabolism, RPD3, further enhanced 1-hexadecanol production by 98% (from 71mg/L to 140mg/L). The cytosolic acetyl-CoA supply was next engineered by expressing a heterologous ATP-dependent citrate lyase, which increased the production of 1-hexadecanol by an additional 136% (from 140mg/L to 330mg/L). Through fed-batch fermentation using resting cells, over 1.1g/L 1-hexadecanol can be produced in glucose minimal medium, which represents the highest titer reported in yeast to date. PMID:25466225

  15. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae.

    PubMed

    Chang, Qing; Griest, Terry A; Harter, Theresa M; Petrash, J Mark

    2007-03-01

    We utilized the budding yeast Saccharomyces cerevisiae as a model to systematically explore physiological roles for yeast and mammalian aldo-keto reductases. Six open reading frames encoding putative aldo-keto reductases were identified when the yeast genome was queried against the sequence for human aldose reductase, the prototypical mammalian aldo-keto reductase. Recombinant proteins produced from five of these yeast open reading frames demonstrated NADPH-dependent reductase activity with a variety of aldehyde and ketone substrates. A triple aldo-keto reductase null mutant strain demonstrated a glucose-dependent heat shock phenotype which could be rescued by ectopic expression of human aldose reductase. Catalytically-inactive mutants of human or yeast aldo-keto reductases failed to effect a rescue of the heat shock phenotype, suggesting that the phenotype results from either an accumulation of one or more unmetabolized aldo-keto reductase substrates or a synthetic deficiency of aldo-keto reductase products generated in response to heat shock stress. These results suggest that multiple aldo-keto reductases fulfill functionally redundant roles in the stress response in yeast. PMID:17140678

  16. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae*

    PubMed Central

    Chang, Qing; Griest, Terry A.; Harter, Theresa M.; Petrash, J. Mark

    2007-01-01

    SUMMARY We utilized the budding yeast Saccharomyces cerevisiae as a model to systematically explore physiological roles for yeast and mammalian aldo-keto reductases. Six open reading frames encoding putative aldo-keto reductases were identified when the yeast genome was queried against the sequence for human aldose reductase, the prototypical mammalian aldo-keto reductase. Recombinant proteins produced from five of these yeast open reading frames demonstrated NADPH-dependent reductase activity with a variety of aldehyde and ketone substrates. A triple aldo-keto reductase null mutant strain demonstrated a glucose-dependent heat shock phenotype which could be rescued by ectopic expression of human aldose reductase. Catalytically-inactive mutants of human or yeast aldo-keto reductases failed to effect a rescue of the heat shock phenotype, suggesting that the phenotype results from either an accumulation of one or more unmetabolized aldo-keto reductase substrates or a synthetic deficiency of aldo-keto reductase products generated in response to heat shock stress. These results suggest that multiple aldo-keto reductases fulfill functionally redundant roles in the stress response in yeast. PMID:17140678

  17. The postmitotic Saccharomyces cerevisiae after spaceflight showed higher viability

    NASA Astrophysics Data System (ADS)

    Yi, Zong-Chun; Li, Xiao-Fei; Wang, Yan; Wang, Jie; Sun, Yan; Zhuang, Feng-Yuan

    2011-06-01

    The budding yeast Saccharomyces cerevisiae has been proposed as an ideal model organism for clarifying the biological effects caused by spaceflight conditions. The postmitotic S. cerevisiae cells onboard Practice eight recoverable satellite were subjected to spaceflight for 15 days. After recovery, the viability, the glycogen content, the activities of carbohydrate metabolism enzymes, the DNA content and the lipid peroxidation level in yeast cells were analyzed. The viability of the postmitotic yeast cells after spaceflight showed a three-fold increase as compared with that of the ground control cells. Compared to the ground control cells, the lipid peroxidation level in the spaceflight yeast cells markedly decreased. The spaceflight yeast cells also showed an increase in G2/M cell population and a decrease in Sub-G1 cell population. The glycogen content and the activities of hexokinase and succinate dehydrogenase significantly decreased in the yeast cells after spaceflight. In contrast, the activity of malate dehydrogenase showed an obvious increase after spaceflight. These results suggested that microgravity or spaceflight could promote the survival of postmitotic S. cerevisiae cells through regulating carbohydrate metabolism, ROS level and cell cycle progression.

  18. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    PubMed

    Roberts, Stephen K; McAinsh, Martin; Cantopher, Hanna; Sandison, Sean

    2014-01-01

    Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  19. Redundant Regulation of Cdk1 Tyrosine Dephosphorylation in Saccharomyces cerevisiae.

    PubMed

    Kennedy, Erin K; Dysart, Michael; Lianga, Noel; Williams, Elizabeth C; Pilon, Sophie; Doré, Carole; Deneault, Jean-Sebastien; Rudner, Adam D

    2016-03-01

    Cdk1 activity drives both mitotic entry and the metaphase-to-anaphase transition in all eukaryotes. The kinase Wee1 and the phosphatase Cdc25 regulate the mitotic activity of Cdk1 by the reversible phosphorylation of a conserved tyrosine residue. Mutation of cdc25 in Schizosaccharomyces pombe blocks Cdk1 dephosphorylation and causes cell cycle arrest. In contrast, deletion of MIH1, the cdc25 homolog in Saccharomyces cerevisiae, is viable. Although Cdk1-Y19 phosphorylation is elevated during mitosis in mih1∆ cells, Cdk1 is dephosphorylated as cells progress into G1, suggesting that additional phosphatases regulate Cdk1 dephosphorylation. Here we show that the phosphatase Ptp1 also regulates Cdk1 dephosphorylation in vivo and can directly dephosphorylate Cdk1 in vitro. Using a novel in vivo phosphatase assay, we also show that PP2A bound to Rts1, the budding yeast B56-regulatory subunit, regulates dephosphorylation of Cdk1 independently of a function regulating Swe1, Mih1, or Ptp1, suggesting that PP2A(Rts1) either directly dephosphorylates Cdk1-Y19 or regulates an unidentified phosphatase. PMID:26715668

  20. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  1. Functional Profiling Using the Saccharomyces Genome Deletion Project Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-01-01

    The ability to measure and quantify the fitness of an entire organism requires considerably more complex approaches than simply using traditional "omic" methods that examine, for example, the abundance of RNA transcripts, proteins, or metabolites. The yeast deletion collections represent the only systematic, comprehensive set of null alleles for any organism in which such fitness measurements can be assayed. Generated by the Saccharomyces Genome Deletion Project, these collections allow the systematic and parallel analysis of gene functions using any measurable phenotype. The unique 20-bp molecular barcodes engineered into the genome of each deletion strain facilitate the massively parallel analysis of individual fitness. Here, we present functional genomic protocols for use with the yeast deletion collections. We describe how to maintain, propagate, and store the deletion collections and how to perform growth fitness assays on single and parallel screening platforms. Phenotypic fitness analyses of the yeast mutants, described in brief here, provide important insights into biological functions, mechanisms of drug action, and response to environmental stresses. It is important to bear in mind that the specific assays described in this protocol represent some of the many ways in which these collections can be assayed, and in this description particular attention is paid to maximizing throughput using growth as the phenotypic measure. PMID:27587776

  2. Efficient Sporulation of Saccharomyces cerevisiae in a 96 Multiwell Format.

    PubMed

    Paulissen, Scott M; Huang, Linda S

    2016-01-01

    During times of nutritional stress, Saccharomyces cerevisiae undergoes gametogenesis, known as sporulation. Diploid yeast cells that are starved for nitrogen and carbon will initiate the sporulation process. The process of sporulation includes meiosis followed by spore formation, where the haploid nuclei are packaged into environmentally resistant spores. We have developed methods for the efficient sporulation of budding yeast in 96 multiwell plates, to increase the throughput of screening yeast cells for sporulation phenotypes. These methods are compatible with screening with yeast containing plasmids requiring nutritional selection, when appropriate minimal media is used, or with screening yeast with genomic alterations, when a rich presporulation regimen is used. We find that for this method, aeration during sporulation is critical for spore formation, and have devised techniques to ensure sufficient aeration that are compatible with the 96 multiwell plate format. Although these methods do not achieve the typical ~80% level of sporulation that can be achieved in large-volume flask based experiments, these methods will reliably achieve about 50-60% level of sporulation in small-volume multiwell plates. PMID:27684273

  3. Initiation of recombination in Saccharomyces cerevisiae haploid meiosis.

    PubMed Central

    De Massy, B; Baudat, F; Nicolas, A

    1994-01-01

    In most eukaryotes during prophase I of meiosis, homologous chromosomes pair and recombine by coordinated molecular and cellular processes. To directly test whether or not the early steps of the initiation of recombination depend on the presence of a homologous chromosome, we have examined the formation and processing of DNA double-strand breaks (DSBs, the earliest physical landmark of recombination initiation) in various haploid Saccharomyces cerevisiae strains capable of entering meiosis. We find that DSBs occur in haploid meiosis, showing that the presence of a homolog is not required for DSB formation. DSBs occur at the same positions in haploid and diploid meioses. However, these two types of meiosis exhibit subtle differences with respect to the timing of formation and levels of DSBs. In haploid meiosis, a slower rate of DSB formation and a reduction in the frequency of DSB (at one of the three sites analyzed) were observed. These results might indicate that interactions between homologs play a role in the formation of meiotic DSBs. Furthermore, haploid strains exhibit a pronounced delay in the disappearance of meiotic DSBs compared to diploid strains, which suggests that sister chromatid interactions for DSB repair are inhibited in haploid meiosis. Images PMID:7991559

  4. An overview of membrane transport proteins in Saccharomyces cerevisiae.

    PubMed

    Andre, B

    1995-12-01

    All eukaryotic cells contain a wide variety of proteins embedded in the plasma and internal membranes, which ensure transmembrane solute transport. It is now established that a large proportion of these transport proteins can be grouped into families apparently conserved throughout organisms. This article presents the data of an in silicio analysis aimed at establishing a preliminary classification of membrane transport proteins in Saccharomyces cerevisiae. This analysis was conducted at a time when about 65% of all yeast genes were available in public databases. In addition to approximately 60 transport proteins whose function was at least partially known, approximately 100 deduced protein sequences of unknown function display significant sequence similarity to membrane transport proteins characterized in yeast and/or other organisms. While some protein families have been well characterized by classical genetic experimental approaches, others have largely if not totally escaped characterization. The proteins revealed by this in silicio analysis also include a putative K+ channel, proteins similar to aquaporins of plant and animal origin, proteins similar to Na+-solute symporters, a protein very similar to electroneural cation-chloride cotransporters, and a putative Na+-H+ antiporter. A new research area is anticipated: the functional analysis of many transport proteins whose existence was revealed by genome sequencing.

  5. PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae

    PubMed Central

    2010-01-01

    Background In Saccharomyces cerevisiae galactose is initially metabolized through the Leloir pathway after which glucose 6-phosphate enters glycolysis. Galactose is controlled both by glucose repression and by galactose induction. The gene PGM2 encodes the last enzyme of the Leloir pathway, phosphoglucomutase 2 (Pgm2p), which catalyses the reversible conversion of glucose 1-phosphate to glucose 6-phosphate. Overexpression of PGM2 has previously been shown to enhance aerobic growth of S. cerevisiae in galactose medium. Results In the present study we show that overexpression of PGM2 under control of the HXT7'promoter from an integrative plasmid increased the PGM activity 5 to 6 times, which significantly reduced the lag phase of glucose-pregrown cells in an anaerobic galactose culture. PGM2 overexpression also increased the anaerobic specific growth rate whereas ethanol production was less influenced. When PGM2 was overexpressed from a multicopy plasmid instead, the PGM activity increased almost 32 times. However, this increase of PGM activity did not further improve aerobic galactose fermentation as compared to the strain carrying PGM2 on the integrative plasmid. Conclusion PGM2 overexpression in S. cerevisiae from an integrative plasmid is sufficient to reduce the lag phase and to enhance the growth rate in anaerobic galactose fermentation, which results in an overall decrease in fermentation duration. This observation is of particular importance for the future development of stable industrial strains with enhanced PGM activity. PMID:20507616

  6. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress.

    PubMed

    Modig, Tobias; Granath, Katarina; Adler, Lennart; Lidén, Gunnar

    2007-05-01

    Glycerol formation is vital for reoxidation of nicotinamide adenine dinucleotide (reduced form; NADH) under anaerobic conditions and for the hyperosmotic stress response in the yeast Saccharomyces cerevisiae. However, relatively few studies have been made on hyperosmotic stress under anaerobic conditions. To study the combined effect of salt stress and anaerobic conditions, industrial and laboratory strains of S. cerevisiae were grown anaerobically on glucose in batch-cultures containing 40 g/l NaCl. The time needed for complete glucose conversion increased considerably, and the specific growth rates decreased by 80-90% when the cells were subjected to the hyperosmotic conditions. This was accompanied by an increased yield of glycerol and other by-products and reduced biomass yield in all strains. The slowest fermenting strain doubled its glycerol yield (from 0.072 to 0.148 g/g glucose) and a nearly fivefold increase in acetate formation was seen. In more tolerant strains, a lower increase was seen in the glycerol and in the acetate, succinate and pyruvate yields. Additionally, the NADH-producing pathway from acetaldehyde to acetate was analysed by overexpressing the stress-induced gene ALD3. However, this had no or very marginal effect on the acetate and glycerol yields. In the control experiments, the production of NADH from known sources well matched the glycerol formation. This was not the case for the salt stress experiments in which the production of NADH from known sources was insufficient to explain the formed glycerol.

  7. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions.

    PubMed

    Pham, Trong Khoa; Chong, Poh Kuan; Gan, Chee Sian; Wright, Phillip C

    2006-12-01

    Saccharomyces cerevisiae KAY446 was utilized for ethanol production, with glucose concentrations ranging from 120 g/L (normal) to 300 g/L (high). Although grown in a high glucose environment, S. cerevisiae still retained the ability to produce ethanol with a high degree of glucose utilization. iTRAQ-mediated shotgun proteomics was applied to identify relative expression change of proteins under the different glucose conditions. A total of 413 proteins were identified from three replicate, independent LC-MS/MS runs. Unsurprisingly, many proteins in the glycolysis/gluconeogenesis pathway showed significant changes in expression level. Twenty five proteins involved in amino acid metabolism decreased their expression, while the expressions of 12 heat-shock related proteins were also identified. Under high glucose conditions, ethanol was produced as a major product. However, the assimilation of glucose as well as a number of byproducts was also enhanced. Therefore, to optimize the ethanol production under very high gravity conditions, a number of pathways will need to be deactivated, while still maintaining the correct cellular redox or osmotic state. Proteomics is demonstrated here as a tool to aid in this forward metabolic engineering.

  8. Quantifying separation and similarity in a Saccharomyces cerevisiae metapopulation

    PubMed Central

    Knight, Sarah; Goddard, Matthew R

    2015-01-01

    Eukaryotic microbes are key ecosystem drivers; however, we have little theory and few data elucidating the processes influencing their observed population patterns. Here we provide an in-depth quantitative analysis of population separation and similarity in the yeast Saccharomyces cerevisiae with the aim of providing a more detailed account of the population processes occurring in microbes. Over 10 000 individual isolates were collected from native plants, vineyards and spontaneous ferments of fruit from six major regions spanning 1000 km across New Zealand. From these, hundreds of S. cerevisiae genotypes were obtained, and using a suite of analytical methods we provide comprehensive quantitative estimates for both population structure and rates of gene flow or migration. No genetic differentiation was detected within geographic regions, even between populations inhabiting native forests and vineyards. We do, however, reveal a picture of national population structure at scales above ∼100 km with distinctive populations in the more remote Nelson and Central Otago regions primarily contributing to this. In addition, differential degrees of connectivity between regional populations are observed and correlate with the movement of fruit by the New Zealand wine industry. This suggests some anthropogenic influence on these observed population patterns. PMID:25062126

  9. Water-Transfer Slows Aging in Saccharomyces cerevisiae.

    PubMed

    Cohen, Aviv; Weindling, Esther; Rabinovich, Efrat; Nachman, Iftach; Fuchs, Shai; Chuartzman, Silvia; Gal, Lihi; Schuldiner, Maya; Bar-Nun, Shoshana

    2016-01-01

    Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR), the unfolded protein response (UPR) and the endoplasmic reticulum-associated protein degradation (ERAD), was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process. PMID:26862897

  10. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae.

    PubMed

    Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M

    2014-03-01

    The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.

  11. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects.

    PubMed

    Moysés, Danuza Nogueira; Reis, Viviane Castelo Branco; de Almeida, João Ricardo Moreira; de Moraes, Lidia Maria Pepe; Torres, Fernando Araripe Gonçalves

    2016-01-01

    Many years have passed since the first genetically modified Saccharomyces cerevisiae strains capable of fermenting xylose were obtained with the promise of an environmentally sustainable solution for the conversion of the abundant lignocellulosic biomass to ethanol. Several challenges emerged from these first experiences, most of them related to solving redox imbalances, discovering new pathways for xylose utilization, modulation of the expression of genes of the non-oxidative pentose phosphate pathway, and reduction of xylitol formation. Strategies on evolutionary engineering were used to improve fermentation kinetics, but the resulting strains were still far from industrial application. Lignocellulosic hydrolysates proved to have different inhibitors derived from lignin and sugar degradation, along with significant amounts of acetic acid, intrinsically related with biomass deconstruction. This, associated with pH, temperature, high ethanol, and other stress fluctuations presented on large scale fermentations led the search for yeasts with more robust backgrounds, like industrial strains, as engineering targets. Some promising yeasts were obtained both from studies of stress tolerance genes and adaptation on hydrolysates. Since fermentation times on mixed-substrate hydrolysates were still not cost-effective, the more selective search for new or engineered sugar transporters for xylose are still the focus of many recent studies. These challenges, as well as under-appreciated process strategies, will be discussed in this review. PMID:26927067

  12. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.

    PubMed

    Vemuri, G N; Eiteman, M A; McEwen, J E; Olsson, L; Nielsen, J

    2007-02-13

    Respiratory metabolism plays an important role in energy production in the form of ATP in all aerobically growing cells. However, a limitation in respiratory capacity results in overflow metabolism, leading to the formation of byproducts, a phenomenon known as "overflow metabolism" or "the Crabtree effect." The yeast Saccharomyces cerevisiae has served as an important model organism for studying the Crabtree effect. When subjected to increasing glycolytic fluxes under aerobic conditions, there is a threshold value of the glucose uptake rate at which the metabolism shifts from purely respiratory to mixed respiratory and fermentative. It is well known that glucose repression of respiratory pathways occurs at high glycolytic fluxes, resulting in a decrease in respiratory capacity. Despite many years of detailed studies on this subject, it is not known whether the onset of the Crabtree effect is due to limited respiratory capacity or is caused by glucose-mediated repression of respiration. When respiration in S. cerevisiae was increased by introducing a heterologous alternative oxidase, we observed reduced aerobic ethanol formation. In contrast, increasing nonrespiratory NADH oxidation by overexpression of a water-forming NADH oxidase reduced aerobic glycerol formation. The metabolic response to elevated alternative oxidase occurred predominantly in the mitochondria, whereas NADH oxidase affected genes that catalyze cytosolic reactions. Moreover, NADH oxidase restored the deficiency of cytosolic NADH dehydrogenases in S. cerevisiae. These results indicate that NADH oxidase localizes in the cytosol, whereas alternative oxidase is directed to the mitochondria.

  13. Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae.

    PubMed

    Clowers, Katie J; Heilberger, Justin; Piotrowski, Jeff S; Will, Jessica L; Gasch, Audrey P

    2015-09-01

    How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causal genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.

  14. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Ramprecht, Claudia; Zellnig, Günther; Leitner, Erich; Hermetter, Albin; Daum, Günther

    2015-01-01

    In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity. PMID:26241051

  15. Genomic Analysis of ATP Efflux in Saccharomyces cerevisiae.

    PubMed

    Peters, Theodore W; Miller, Aaron W; Tourette, Cendrine; Agren, Hannah; Hubbard, Alan; Hughes, Robert E

    2015-11-19

    Adenosine triphosphate (ATP) plays an important role as a primary molecule for the transfer of chemical energy to drive biological processes. ATP also functions as an extracellular signaling molecule in a diverse array of eukaryotic taxa in a conserved process known as purinergic signaling. Given the important roles of extracellular ATP in cell signaling, we sought to comprehensively elucidate the pathways and mechanisms governing ATP efflux from eukaryotic cells. Here, we present results of a genomic analysis of ATP efflux from Saccharomyces cerevisiae by measuring extracellular ATP levels in cultures of 4609 deletion mutants. This screen revealed key cellular processes that regulate extracellular ATP levels, including mitochondrial translation and vesicle sorting in the late endosome, indicating that ATP production and transport through vesicles are required for efflux. We also observed evidence for altered ATP efflux in strains deleted for genes involved in amino acid signaling, and mitochondrial retrograde signaling. Based on these results, we propose a model in which the retrograde signaling pathway potentiates amino acid signaling to promote mitochondrial respiration. This study advances our understanding of the mechanism of ATP secretion in eukaryotes and implicates TOR complex 1 (TORC1) and nutrient signaling pathways in the regulation of ATP efflux. These results will facilitate analysis of ATP efflux mechanisms in higher eukaryotes.

  16. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

  17. Membrane trafficking in the yeast Saccharomyces cerevisiae model.

    PubMed

    Feyder, Serge; De Craene, Johan-Owen; Bär, Séverine; Bertazzi, Dimitri L; Friant, Sylvie

    2015-01-09

    The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.

  18. Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

    PubMed

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2014-10-01

    Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans.

  19. Water-Transfer Slows Aging in Saccharomyces cerevisiae

    PubMed Central

    Cohen, Aviv; Weindling, Esther; Rabinovich, Efrat; Nachman, Iftach; Fuchs, Shai; Chuartzman, Silvia; Gal, Lihi; Schuldiner, Maya; Bar-Nun, Shoshana

    2016-01-01

    Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR), the unfolded protein response (UPR) and the endoplasmic reticulum-associated protein degradation (ERAD), was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process. PMID:26862897

  20. Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress.

    PubMed

    Ma, Manli; Han, Pei; Zhang, Ruimin; Li, Hao

    2013-09-01

    In the fermentative process using Saccharomyces cerevisiae to produce bioethanol, the performance of cells is often compromised by the accumulation of ethanol. However, the mechanism of how S. cerevisiae responds against ethanol stress remains elusive. In the current study, S. cerevisiae cells were cultured in YPD (yeast extract - peptone - dextrose) medium containing various concentrations of ethanol (0%, 2.5%, 5%, 7.5%, 10%, and 15% (v/v)). Compared with the control group without ethanol, the mean cell volume of S. cerevisiae decreased significantly in the presence of 7.5% and 10% ethanol after incubation for 16 h (P < 0.05), and in the presence of 15% ethanol at all 3 sampling time points (1, 8, and 16 h) (P < 0.05). The exposure of S. cerevisiae cells to ethanol also led to an increase in malonyldialdehyde content (P < 0.05) and a decrease in sulfhydryl group content (P < 0.05). Moreover, the observations through transmission electron microscopy enabled us to relate ultrastructural changes elicited by ethanol with the cellular stress physiology. Under ethanol stress, the integrity of the cell membrane was compromised. The swelling or distortion of mitochondria together with the occurrence of a single and large vacuole was correlated with the addition of ethanol. These results suggested that the cell membrane is one of the targets of ethanol, and the degeneration of mitochondria promoted the accumulation of intracellular reactive oxygen species.

  1. The Saccharomyces Genome Database: Exploring Genome Features and Their Annotations.

    PubMed

    Cherry, J Michael

    2015-12-01

    Genomic-scale assays result in data that provide information over the entire genome. Such base pair resolution data cannot be summarized easily except via a graphical viewer. A genome browser is a tool that displays genomic data and experimental results as horizontal tracks. Genome browsers allow searches for a chromosomal coordinate or a feature, such as a gene name, but they do not allow searches by function or upstream binding site. Entry into a genome browser requires that you identify the gene name or chromosomal coordinates for a region of interest. A track provides a representation for genomic results and is displayed as a row of data shown as line segments to indicate regions of the chromosome with a feature. Another type of track presents a graph or wiggle plot that indicates the processed signal intensity computed for a particular experiment or set of experiments. Wiggle plots are typical for genomic assays such as the various next-generation sequencing methods (e.g., chromatin immunoprecipitation [ChIP]-seq or RNA-seq), where it represents a peak of DNA binding, histone modification, or the mapping of an RNA sequence. Here we explore the browser that has been built into the Saccharomyces Genome Database (SGD).

  2. Plasmid Recombination in a Rad52 Mutant of Saccharomyces Cerevisiae

    PubMed Central

    Dornfeld, K. J.; Livingston, D. M.

    1992-01-01

    Using plasmids capable of undergoing intramolecular recombination, we have compared the rates and the molecular outcomes of recombination events in a wild-type and a rad52 strain of Saccharomyces cerevisiae. The plasmids contain his3 heteroalleles oriented in either an inverted or a direct repeat. Inverted repeat plasmids recombine approximately 20-fold less frequently in the mutant than in the wild-type strain. Most events from both cell types have continuous coconversion tracts extending along one of the homologous segments. Reciprocal exchange occurs in fewer than 30% of events. Direct repeat plasmids recombine at rates comparable to those of inverted repeat plasmids in wild-type cells. Direct repeat conversion tracts are similar to inverted repeat conversion tracts in their continuity and length. Inverted and direct repeat plasmid recombination differ in two respects. First, rad52 does not affect the rate of direct repeat recombination as drastically as the rate of inverted repeat recombination. Second, direct repeat plasmids undergo crossing over more frequently than inverted repeat plasmids. In addition, crossovers constitute a larger fraction of mutant than wild-type direct repeat events. Many crossover events from both cell types are unusual in that the crossover HIS3 allele is within a plasmid containing the parental his3 heteroalleles. PMID:1644271

  3. Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae

    PubMed Central

    Haber, James E.

    2012-01-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442

  4. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Ono, Fumihisa; Shibata, Michiko; Torigoe, Motoki; Matsumoto, Yuta; Yamamoto, Shinsuke; Takizawa, Noboru; Hada, Yoshio; Mori, Yoshihisa; Takarabe, Kenichi

    2013-06-01

    In our previous studies on the tolerance of small plants and animals to the high hydrostatic pressure of 7.5 GPa, it was shown that all the living samples could be borne at this high pressure, which is more than one order of magnitude higher than the proteinic denaturation pressure. To make this inconsistency clear, we have extended these studies to a smaller sized fungus, budding yeast Saccharomyces cerevisiae. A several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate (PC72, Sumitomo 3M), and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar (PDA). It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for 12 and 24 h were found dead. The high pressure tolerance of budding yeast is weaker than that of tardigrades.

  5. Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae.

    PubMed Central

    Kron, S J; Styles, C A; Fink, G R

    1994-01-01

    Laboratory strains of Saccharomyces cerevisiae are dimorphic; in response to nitrogen starvation they switch from a yeast form (YF) to a filamentous pseudohyphal (PH) form. Time-lapse video microscopy of dividing cells reveals that YF and PH cells differ in their cell cycles and budding polarity. The YF cell cycle is controlled at the G1/S transition by the cell-size checkpoint Start. YF cells divide asymmetrically, producing small daughters from full-sized mothers. As a result, mothers and daughters bud asynchronously. Mothers bud immediately but daughters grow in G1 until they achieve a critical cell size. By contrast, PH cells divide symmetrically, restricting mitosis until the bud grows to the size of the mother. Thus, mother and daughter bud synchronously in the next cycle, without a G1 delay before Start. YF and PH cells also exhibit distinct bud-site selection patterns. YF cells are bipolar, producing their second and subsequent buds at either pole. PH cells are unipolar, producing their second and subsequent buds only from the end opposite the junction with their mother. We propose that in PH cells a G2 cell-size checkpoint delays mitosis until bud size reaches that of the mother cell. We conclude that yeast and PH forms are distinct cell types each with a unique cell cycle, budding pattern, and cell shape. Images PMID:7841518

  6. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol. PMID:25545362

  7. Analysis of Meiotic Recombination Pathways in the Yeast Saccharomyces Cerevisiae

    PubMed Central

    Mao-Draayer, Y.; Galbraith, A. M.; Pittman, D. L.; Cool, M.; Malone, R. E.

    1996-01-01

    In the yeast, Saccharomyces cerevisiae, several genes appear to act early in meiotic recombination. HOP1 and RED1 have been classified as such early genes. The data in this paper demonstrate that neither a red1 nor a hop1 mutation can rescue the inviable spores produced by a rad52 spo13 strain; this phenotype helps to distinguish these two genes from other early meiotic recombination genes such as SPO11, REC104, or MEI4. In contrast, either a red1 or a hop1 mutation can rescue a rad50S spo13 strain; this phenotype is similar to that conferred by mutations in the other early recombination genes (e.g., REC104). These two different results can be explained because the data presented here indicate that a rad50S mutation does not diminish meiotic intrachromosomal recombination, similar to the mutant phenotypes conferred by red1 or hop1. Of course, RED1 and HOP1 do act in the normal meiotic interchromosomal recombination pathway; they reduce interchromosomal recombination to ~10% of normal levels. We demonstrate that a mutation in a gene (REC104) required for initiation of exchange is completely epistatic to a mutation in RED1. Finally, mutations in either HOP1 or RED1 reduce the number of double-strand breaks observed at the HIS2 meiotic recombination hotspot. PMID:8878674

  8. Transcriptional Response of Saccharomyces cerevisiae to Desiccation and Rehydration†

    PubMed Central

    Singh, Jatinder; Kumar, Deept; Ramakrishnan, Naren; Singhal, Vibha; Jervis, Jody; Garst, James F.; Slaughter, Stephen M.; DeSantis, Andrea M.; Potts, Malcolm; Helm, Richard F.

    2005-01-01

    A transcriptional analysis of the response of Saccharomyces cerevisiae strain BY4743 to controlled air-drying (desiccation) and subsequent rehydration under minimal glucose conditions was performed. Expression of genes involved in fatty acid oxidation and the glyoxylate cycle was observed to increase during drying and remained in this state during the rehydration phase. When the BY4743 expression profile for the dried sample was compared to that of a commercially prepared dry active yeast, strikingly similar expression changes were observed. The fact that these two samples, dried by different means, possessed very similar transcriptional profiles supports the hypothesis that the response to desiccation is a coordinated event independent of the particular conditions involved in water removal. Similarities between “stationary-phase-essential genes” and those upregulated during desiccation were also noted, suggesting commonalities in different routes to reduced metabolic states. Trends in extracellular and intracellular glucose and trehalose levels suggested that the cells were in a “holding pattern” during the rehydration phase, a concept that was reinforced by cell cycle analyses. Application of a “redescription mining” algorithm suggested that sulfur metabolism is important for cell survival during desiccation and rehydration. PMID:16332871

  9. Copper oxide nanoparticles inhibit the metabolic activity of Saccharomyces cerevisiae.

    PubMed

    Mashock, Michael J; Kappell, Anthony D; Hallaj, Nadia; Hristova, Krassimira R

    2016-01-01

    Copper oxide nanoparticles (CuO NPs) are used increasingly in industrial applications and consumer products and thus may pose risk to human and environmental health. The interaction of CuO NPs with complex media and the impact on cell metabolism when exposed to sublethal concentrations are largely unknown. In the present study, the short-term effects of 2 different sized manufactured CuO NPs on metabolic activity of Saccharomyces cerevisiae were studied. The role of released Cu(2+) during dissolution of NPs in the growth media and the CuO nanostructure were considered. Characterization showed that the 28 nm and 64 nm CuO NPs used in the present study have different primary diameter, similar hydrodynamic diameter, and significantly different concentrations of dissolved Cu(2+) ions in the growth media released from the same initial NP mass. Exposures to CuO NPs or the released Cu(2+) fraction, at doses that do not have impact on cell viability, showed significant inhibition on S. cerevisiae cellular metabolic activity. A greater CuO NP effect on the metabolic activity of S. cerevisiae growth under respiring conditions was observed. Under the tested conditions the observed metabolic inhibition from the NPs was not explained fully by the released Cu ions from the dissolving NPs.

  10. In vivo Reconstitution of Algal Triacylglycerol Production in Saccharomyces cerevisiae.

    PubMed

    Hung, Chun-Hsien; Kanehara, Kazue; Nakamura, Yuki

    2016-01-01

    The current fascination with algal biofuel production stems from a high lipid biosynthetic capacity and little conflict with land plant cultivation. However, the mechanisms which enable algae to accumulate massive oil remain elusive. An enzyme for triacylglycerol (TAG) biosynthesis in Chlamydomonas reinhardtii, CrDGTT2, can produce a large amount of TAG when expressed in yeast or higher plants, suggesting a unique ability of CrDGTT2 to enhance oil production in a heterologous system. Here, we performed metabolic engineering in Saccharomyces cerevisiae by taking advantage of CrDGTT2. We suppressed membrane phospholipid biosynthesis at the log phase by mutating OPI3, enhanced TAG biosynthetic pathway at the stationary phase by overexpressing PAH1 and CrDGTT2, and suppressed TAG hydrolysis on growth resumption from the stationary phase by knocking out DGK1. The resulting engineered yeast cells accumulated about 70-fold of TAG compared with wild type cells. Moreover, TAG production was sustainable. Our results demonstrated the enhanced and sustainable TAG production in the yeast synthetic platform. PMID:26913021

  11. Electroinduced release of recombinant β-galactosidase from Saccharomyces cerevisiae.

    PubMed

    Ganeva, Valentina; Stefanova, Debora; Angelova, Boyana; Galutzov, Bojidar; Velasco, Isabel; Arévalo-Rodríguez, Miguel

    2015-10-10

    Yeasts are one of the most commonly used systems for recombinant protein production. When the protein is intracelullarly expressed the first step comprises a cell lysis, achieved usually by a mechanical disintegration. This leads to non-selective liberation of the cytoplasmic content, which complicates the following downstream process. Here, we present a new approach suitable for more selective and efficient recovery of large intracellular proteins from yeast, based on the combination of electropermeabilisation and subsequent treatment with lytic enzyme. The experiments were performed with Saccharomyces cerevisiae strains expressing LYTAG-β-galactosidase from Escherichia coli. The permeabilzation of plasma membrane was induced by application of rectangular electric pulses, with 1.25ms duration and field intensity of 4.3-5.4kV/cm. In the presence of a reducing agent the cells released approximately 80% of the total protein 4h after electrical treatment. At the same conditions the release of the recombinant protein was very slow, reaching 45% from total activity 20h after pulse application. The great difference in the release kinetics enabled to remove a part of the total protein, without significant loss of β-galactosidase activity, only by substituting the incubation buffer. The subsequent addition of lyticase (1-2U/ml) led to recovery of approximately 70% from the recombinant enzyme, with a factor of purification 2.6, without provoking a significant cell lysis. The applicability of similar protocol for liberation of large recombinant and native proteins from yeast is discussed.

  12. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains. PMID:27430512

  13. Population genetics of the wild yeast Saccharomyces paradoxus.

    PubMed Central

    Johnson, Louise J; Koufopanou, Vassiliki; Goddard, Matthew R; Hetherington, Richard; Schäfer, Stefanie M; Burt, Austin

    2004-01-01

    Saccharomyces paradoxus is the closest known relative of the well-known S. cerevisiae and an attractive model organism for population genetic and genomic studies. Here we characterize a set of 28 wild isolates from a 10-km(2) sampling area in southern England. All 28 isolates are homothallic (capable of mating-type switching) and wild type with respect to nutrient requirements. Nine wild isolates and two lab strains of S. paradoxus were surveyed for sequence variation at six loci totaling 7 kb, and all 28 wild isolates were then genotyped at seven polymorphic loci. These data were used to calculate nucleotide diversity and number of segregating sites in S. paradoxus and to investigate geographic differentiation, population structure, and linkage disequilibrium. Synonymous site diversity is approximately 0.3%. Extensive incompatibilities between gene genealogies indicate frequent recombination between unlinked loci, but there is no evidence of recombination within genes. Some localized clonal growth is apparent. The frequency of outcrossing relative to inbreeding is estimated at 1.1% on the basis of heterozygosity. Thus, all three modes of reproduction known in the lab (clonal replication, inbreeding, and outcrossing) have been important in molding genetic variation in this species. PMID:15020405

  14. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.

    PubMed

    Ohta, Erika; Nakayama, Yasumune; Mukai, Yukio; Bamba, Takeshi; Fukusaki, Eiichiro

    2016-04-01

    The budding yeast Saccharomyces cerevisiae is widely used for brewing and ethanol production. The ethanol sensitivity of yeast cells is still a serious problem during ethanol fermentation, and a variety of genetic approaches (e.g., random mutant screening under selective pressure of ethanol) have been developed to improve ethanol tolerance. In this study, we developed a strategy for improving ethanol tolerance of yeast cells based on metabolomics as a high-resolution quantitative phenotypic analysis. We performed gas chromatography-mass spectrometry analysis to identify and quantify 36 compounds on 14 mutant strains including knockout strains for transcription factor and metabolic enzyme genes. A strong relation between metabolome of these mutants and their ethanol tolerance was observed. Data mining of the metabolomic analysis showed that several compounds (such as trehalose, valine, inositol and proline) contributed highly to ethanol tolerance. Our approach successfully detected well-known ethanol stress related metabolites such as trehalose and proline thus, to further prove our strategy, we focused on valine and inositol as the most promising target metabolites in our study. Our results show that simultaneous deletion of LEU4 and LEU9 (leading to accumulation of valine) or INM1 and INM2 (leading to reduction of inositol) significantly enhanced ethanol tolerance. This study shows the potential of the metabolomic approach to identify target genes for strain improvement of S. cerevisiae with higher ethanol tolerance.

  15. Biochemical basis of mitochondrial acetaldehyde dismutation in Saccharomyces cerevisiae.

    PubMed Central

    Thielen, J; Ciriacy, M

    1991-01-01

    As reported previously, Saccharomyces cerevisiae cells deficient in all four known genes coding for alcohol dehydrogenases (ADH1 through ADH4) produce considerable amounts of ethanol during aerobic growth on glucose. It has been suggested that ethanol production in such adh0 cells is a corollary of acetaldehyde dismutation in mitochondria. This could be substantiated further by showing that mitochondrial ethanol formation requires functional electron transport, while the proton gradient or oxidative phosphorylation does not interfere with reduction of acetaldehyde in isolated mitochondria. This acetaldehyde-reducing activity is different from classical alcohol dehydrogenases in that it is associated with the inner mitochondrial membrane and also is unable to carry out ethanol oxidation. The putative cofactor is NADH + H+ generated by a soluble, matrix-located aldehyde dehydrogenase upon acetaldehyde oxidation to acetate. This enzyme has been purified from mitochondria of glucose-grown cells. It is clearly different from the known mitochondrial aldehyde dehydrogenase, which is absent in glucose-grown cells. Both acetaldehyde-reducing and acetaldehyde-oxidizing activities are also present in the mitochondrial fraction of fermentation-proficient (ADH+) cells. Mitochondrial acetaldehyde dismutation may have some significance in the removal of surplus acetaldehyde and in the formation of acetate in mitochondria during aerobic glucose fermentation. Images FIG. 4 PMID:1938903

  16. Mating-type genes and MAT switching in Saccharomyces cerevisiae.

    PubMed

    Haber, James E

    2012-05-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break.

  17. Biogeographical characterization of Saccharomyces cerevisiae wine yeast by molecular methods

    PubMed Central

    Tofalo, Rosanna; Perpetuini, Giorgia; Schirone, Maria; Fasoli, Giuseppe; Aguzzi, Irene; Corsetti, Aldo; Suzzi, Giovanna

    2013-01-01

    Biogeography is the descriptive and explanatory study of spatial patterns and processes involved in the distribution of biodiversity. Without biogeography, it would be difficult to study the diversity of microorganisms because there would be no way to visualize patterns in variation. Saccharomyces cerevisiae, “the wine yeast,” is the most important species involved in alcoholic fermentation, and in vineyard ecosystems, it follows the principle of “everything is everywhere.” Agricultural practices such as farming (organic versus conventional) and floor management systems have selected different populations within this species that are phylogenetically distinct. In fact, recent ecological and geographic studies highlighted that unique strains are associated with particular grape varieties in specific geographical locations. These studies also highlighted that significant diversity and regional character, or ‘terroir,’ have been introduced into the winemaking process via this association. This diversity of wild strains preserves typicity, the high quality, and the unique flavor of wines. Recently, different molecular methods were developed to study population dynamics of S. cerevisiae strains in both vineyards and wineries. In this review, we will provide an update on the current molecular methods used to reveal the geographical distribution of S. cerevisiae wine yeast. PMID:23805132

  18. D-xylulose fermentation to ethanol by Saccharomyces cerevisiae

    SciTech Connect

    Chiang, L.C.; Gong, C.S.; Chen, L.F.; Tsao, G.T.

    1981-08-01

    Commercial bakers' yeast (Saccharomyces cerevisiae) was used to study the conversion of D-xylulose to ethanol in the presence of D-xylose. The rate of ethanol production increased with an increase in yeast cell density. The optimal temperature for D-xylulose fermentation was 35 degrees Celcius, and the optimal pH range was 4 to 6. The fermentation of D-xylulose by yeast resulted in the production of ethanol as the major product; small amounts of xylitol and glycerol were also produced. The production of xylitol was influenced by pH as well as temperature. High pH values and low temperatures enhanced xylitol production. The rate of D-xylulose fermentation decreased when the production of ethanol yielded concentrations of 4% or more. The slow conversion rate of D-xylulose to ethanol was increased by increasing the yeast cell density. The overall production of ethanol from D-xylulose by yeast cells under optimal conditions was 90% of the theoretical yield. (Refs. 21).

  19. Ciclohexadespipeptide beauvericin degradation by different strains of Saccharomyces cerevisiae.

    PubMed

    Meca, G; Zhou, T; Li, X Z; Ritieni, A; Mañes, J

    2013-09-01

    The interaction between the mycotoxin beauvericin (BEA) and 9 yeast strains of Saccharomyces cerevisiae named LO9, YE-2, YE5, YE-6, YE-4, A34, A17, A42 and A08 was studied. The biological degradations were carried out under aerobic conditions in the liquid medium of Potato Dextrose Broth (PDB) at 25°C for 48 h and in a food/feed system composed of corn flour at 37°C for 3 days, respectively. BEA present in fermented medium and corn flour was determined using liquid chromatography coupled to the mass spectrometry detector in tandem (LC-MS/MS) and the BEA degradation products produced during the fermentations were determined using the technique of the liquid chromatography coupled to a linear ion trap (LIT). Results showed that the S. cerevisiae strains reduced meanly the concentration of the BEA present in PDB by 86.2% and in a food system by 71.1%. All the S. cerevisiae strains used in this study showed a significant BEA reduction during the fermentation process employed.

  20. Structure of the Glycosyltransferase Ktr4p from Saccharomyces cerevisiae

    PubMed Central

    Possner, Dominik D. D.; Claesson, Magnus; Guy, Jodie E.

    2015-01-01

    In the yeast Saccharomyces cerevisiae, members of the Kre2/Mnt1 protein family have been shown to be α-1,2-mannosyltransferases or α-1,2-mannosylphosphate transferases, utilising an Mn2+-coordinated GDP-mannose as the sugar donor and a variety of mannose derivatives as acceptors. Enzymes in this family are localised to the Golgi apparatus, and have been shown to be involved in both N- and O-linked glycosylation of newly-synthesised proteins, including cell wall glycoproteins. Our knowledge of the nine proteins in this family is however very incomplete at present. Only one family member, Kre2p/Mnt1p, has been studied by structural methods, and three (Ktr4p, Ktr5p, Ktr7p) are completely uncharacterised and remain classified only as putative glycosyltransferases. Here we use in vitro enzyme activity assays to provide experimental confirmation of the predicted glycosyltransferase activity of Ktr4p. Using GDP-mannose as the donor, we observe activity towards the acceptor methyl-α-mannoside, but little or no activity towards mannose or α-1,2-mannobiose. We also present the structure of the lumenal catalytic domain of S. cerevisiae Ktr4p, determined by X-ray crystallography to a resolution of 2.2 Å, and the complex of the enzyme with GDP to 1.9 Å resolution. PMID:26296208