Sample records for saccular otoliths lapilli

  1. Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish

    NASA Technical Reports Server (NTRS)

    Riley, B. B.; Moorman, S. J.

    2000-01-01

    We have been studying the consequences of embryonic vestibular dysfunction caused by the monolith (mnl) mutation in zebrafish. mnl is a dominant mutation that specifically inhibits formation of utricular otoliths. However, briefly immobilizing mnl/mnl embryos in agarose with the otic vesicle orientated at certain angles selectively induces or prevents formation of utricular and/or saccular otoliths. With this noninvasive technique, we generated six phenotypic classes of mnl/mnl mutants, designated S-S, U-U, U-S, S-US, U-US, and US-US, depending on which otoliths are present on each side (U, utricular otolith; S, saccular otolith). All mnl/mnl larvae survived through day 10 of development. Thereafter, S-S larvae showed a rapid decline, probably because of starvation, and none survived to adulthood. Survival rates in all other classes of mnl/mnl larvae (those having at least one utricular otolith) were close to normal. The presence or absence of utricular otoliths also correlated with vestibular function during early larval development, as measured by three criteria: First, unlike wild-type larvae, S-S mutant larvae showed almost no detectable counter-rotation of the eyes when tilted tail up or tail down. Second, 95% of S-S mutant larvae never acquired the ability to maintain a balanced dorsal-up posture. Third, although most wild-type larvae responded to gentle prodding by swimming in a straight line, S-S larvae responded by swimming in rapid circles, showing sudden and frequent changes in direction ("zigzagging"), and/or rolling and spiraling. All other phenotypic classes of mnl/mnl larvae behaved normally in these assays. These data demonstrate that bilateral loss of utricular otoliths disrupts the ability to sense gravity, severely impairs balance and motor coordination, and is invariably lethal. The presence of a utricular otolith in at least one inner ear is necessary and sufficient for vestibular function and survival. In contrast, saccular otoliths are

  2. Clinorotation Increases the Growth of Utricular Otoliths of Developing Cichlid Fish

    NASA Astrophysics Data System (ADS)

    Anken, Ralf H.; Baur, Ulrich; Hilbig, Reinhard

    2010-04-01

    It has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish as an adaptation towards increased environmental gravity. Suggesting that otolith growth is regulated by the central nervous system, thus adjusting otolithic weight to produce a test mass, applying functional weightlessness should yield an opposite effect, i.e. larger than normal otoliths. Therefore, larval siblings of cichlid fish ( Oreochromis mossambicus) were housed for 7 days in a submersed, two-dimensional clinostat, which provided a residual gravity of approximately 0.007g. After the experiment, otoliths were dissected and their size (area grown during the experiment) was determined. Maintenance in the clinostat resulted in significantly larger utricular otoliths (lapilli, involved in graviperception). There were no statistical significant differences regarding saccular otoliths obtained (sagittae, involved in transmitting linear acceleration and, especially, in the hearing process). These results indicated, that the animals had in fact received functional weightlessness. In line and contrasting results on the otoliths of other teleost species kept at actual microgravity (spaceflight) or within rotating wall vessels are discussed.

  3. The morphology of saccular otoliths as a tool to identify different mugilid species from the Northeastern Atlantic and Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Callicó Fortunato, Roberta; Benedito Durà, Vicent; Volpedo, Alejandra

    2014-06-01

    In the Northeastern Atlantic and Mediterranean Sea there are 8 species of the Mugilidae family: Mugil cephalus, Liza aurata, Liza ramada, Oedalechilus labeo, Chelon labrosus, Liza saliens, Liza carinata and Liza haematocheila. The identification of mugilids is very important for local fisheries management and regulations, but it is difficult using gross morphological characters. This work aims to contribute to the identification of mullets present in the Northeastern Atlantic Ocean and Mediterranean Sea using saccular otolith features of each species. Specimens of C. labrosus, L. aurata, L. ramada, L. saliens and M. cephalus were obtained from Delta del Ebro (40°38'N-0°44'E) in artisanal catches. For L. carinata and O. labeo photographs extracted from AFORO online database were used. L. haematocheila was not studied for lack of otolith samples. A general pattern of the saccular otoliths for this family was identified: the shape of the otoliths are rectangular to oblong with irregular margins; they present a heterosulcoid, ostial sulcus acusticus, with an open funnel-like ostium to the anterior margin and a closed, tubular cauda, ending towards the posterior ventral corner, always larger than the ostium. In the present study, the mugilid species could be recognized using their saccular otolith morphology. Here we give the first key to identify Northeastern Atlantic and Mediterranean mullets. The distinctive features between the species were the position and centrality of the sulcus, the curvature of the cauda, the presence of areal depositions and plateaus, and the type of anterior and posterior regions. These features could be used not only to reinforce the identification keys through morphological and meristic characters of the species, but also to identify the species consumed by piscivores, being the otoliths the only identifiable remains of the individuals.

  4. Fish Otolith Growth in 1g and 3g Depends on the Gravity Vector

    NASA Astrophysics Data System (ADS)

    Anken, R. H.; Werner, K.; Breuer, J.; Rahmann, H.

    Size and asymmetry (size difference between the left and the right side) as well as calcium (Ca) content of inner ear otoliths of larval cichlid fish Oreochromis mossambicus were determined after a long-term stay at hypergravity conditions (3g; centrifuge). Both utricular and saccular otoliths (lapilli and sagittae, respectively) were significantly smaller after hyper-g exposure as compared to parallely raised 1g-control specimens and the absolute amount of otolith-Ca was diminished. The asymmetry of sagittae was significantly increased in the experimental animals, whereas the respective asymmetry concerning lapilli was markedly decreased. In the course of another experiment, larvae were raised in aquarium hatch baskets, from which one was placed directly above aeration equipment, which resulted in random water circulation shifting the fish around (``shifted'' specimens). The lapillar asymmetry of the ``stationary'' specimens showed a highly significant increase during early development when larvae were forced to lay on their sides due to their prominent yolk-sacs. In later developmental stages, when they began to swim freely, a dramatic decrease in lapillar asymmetry was apparent. Taken together with own previous findings according to which otolith growth stops after vestibular nerve transection, the results presented here suggest that the growth and the development of bilateral asymmetry of otoliths is guided by the environmental gravity vector, obviously involving a feedback loop between the brain and the inner ear

  5. On the influence of altered gravity on the growth of fish inner ear otoliths

    NASA Astrophysics Data System (ADS)

    Beier, Marion

    1999-09-01

    Inner ear stones (otoliths) of developing cichlid fish ( Oreochromis mossambicus) were marked with the calcium tracer alizarin-complexone (AC) at 1g-earth gravity before and after a long-term (20 days) stay of the animals at moderate hypergravity conditions (3g; centrifuge). AC deposition at the otoliths resulted in two fluorescence bands, which enclosed the area grown during exposure to altered gravity. This area was measured with regard to size and asymmetry (size difference between the left and the right stones). Both utricular and saccular otoliths (lapilli and sagittae, respectively) were significantly smaller after hyper-g exposure as compared to parallely raised 1g-control specimens. The asymmetry concerning the lapilli was pronouncedly decreased in comparison to the 1g-controls. These findings suggest, that the growth and the development of bilateral asymmetry of otoliths is guided by the environmental gravity vector. Some of the hyper-g animals revealed a kinetotic behaviour at the transfer from hyper-g to normal 1g-earth gravity conditions, which was qualitatively similar to the behaviour observed in previous experiments at the transfer from 1g to microgravity in the course of parabolic aircraft flights. The lapillar asymmetry of kinetotic samples was found to be significantly higher than that of normally behaving experimental specimens. This result supports an earlier theoretical concept, according to which human static space sickness might be based on asymmetric utricular otoliths.

  6. Saccular and utricular inputs to sternocleidomastoid motoneurons of decerebrate cats.

    PubMed

    Kushiro, K; Zakir, M; Ogawa, Y; Sato, H; Uchino, Y

    1999-06-01

    Connections from the otolithic organs to sternocleidomastoid (SCM) motoneurons were studied in 20 decerebrate cats. The electrical stimulation was selective for the saccular or the utricular nerves. Postsynaptic potentials were recorded from antidromically identified SCM motoneurons; these muscles participate mainly in neck rotation and flexion. Partial transections of the brainstem at the level of the obex were performed to identify the possible pathway from the otolithic organs to the SCM motoneurons. Saccular or utricular nerve stimulation mainly evoked inhibitory postsynaptic potentials (IPSPs) in the ipsilateral SCM motoneurons. Some of the sacculus-induced IPSPs were preceded by small-amplitude excitatory PSPs (EPSPs). The latencies of the PSPs ranged from 1.8 to 3.1 ms after saccular nerve stimulation and from 1.7 to 2.8 ms after utricular nerve stimulation, indicating that most of the ipsilateral connections were disynaptic. In the contralateral SCM motoneurons, saccular nerve stimulation had no or faint effects, whereas utricular nerve stimulation evoked EPSPs in about two-thirds of neurons, and no visible PSPs in about one-third of neurons. The latencies of the EPSPs ranged from 1.5 to 2.0 ms, indicating the disynaptic connection. Thus, the results suggest a difference between the two otolithic innervating patterns of SCM motoneurons. After transection of the medial vestibulospinal tract (MVST), saccular nerve stimulation did not evoke IPSPs at all in ipsilateral SCM motoneurons, but some (11/40) neurons showed small-amplitude EPSPs. Most (24/33) of the utricular-activated IPSPs disappeared after transection, whereas the other 9 neurons still indicated IPSPs. In the contralateral SCM motoneurons, no utricular-activated EPSPs were recorded after transection. These MVST transection results suggest that most of the otolith-SCM pathways are located in the MVST at the obex level. However, the results also suggest the possibility that other otolith-SCM pathways

  7. Verification of otolith identity used by fisheries scientists for aging channel catfish

    USGS Publications Warehouse

    Long, James M.; Stewart, David R.

    2010-01-01

    Previously published studies of the age estimation of channel catfish Ictalurus punctatus based on otoliths have reported using the sagittae, whereas it is likely they were actually using the lapilli. This confusion may have resulted because in catfishes (ostariophyseans) the lapilli are the largest of the three otoliths, whereas in nonostariophysean fish the sagittae are the largest. Based on (1) scanning electron microscope microphotographs of channel catfish otoliths, (2) X-ray computed tomography scans of a channel catfish head, (3) descriptions of techniques used to removed otoliths from channel catfish reported in the literature, and (4) a sample of channel catfish otoliths received from fisheries biologists from around the country, it is clear that lapilli are most often used for channel catfish aging studies, not sagittae, as has been previously reported. Fisheries scientists who obtain otoliths from channel catfish can use the information in this paper to correctly identify otolith age.

  8. Otolith growth during hypergravity

    NASA Astrophysics Data System (ADS)

    Lychakov, Dmitri

    Background. It is suggested, that the weight of the otolith mass on the sensory epithelium is the direct regulating factor controlling the growth of the otolith via negative-feedback loop between the brain and the inner ear. This means that if the mass of the individual otolith will stand above the normal mass the afferent input arising from fish tilts will not match the expected responses based on the internal sensory model, and the feedback mechanism will slow down the otolith growth. This suggests that the altered gravity such as hyper- or microgravity can affect the normal otolith growth. Methods. Two experiments each lasted 121 and 128 days have been performed on the guppy larvae (n = 12/12 and 18/20; control/ experiment fish) raised from 10 days after birth within a centrifuge at ~2g hypergravity. The masses of utricilar, saccular and lagenar otoliths are analyzed. Results. There are no statistically significant differences between controls (1g) and experiments (2g) in masses and lengths of fishes, and in masses of uticular, saccular and lagenar otoliths. Conclusions. Otolith weight seems to be not involved in the feedback regulation of its growth. This conclusion is in accord with our previous conclusions based on results of space and centrifuge experiments on guppy larvae and Xenopus embryos (Lychakov, 2002). This work was partly supported by Russian grant RFFI 14-04-00601.

  9. Otolith development in larval and juvenile Schizothorax davidi: ontogeny and growth increment characteristics

    NASA Astrophysics Data System (ADS)

    Yan, Taiming; Hu, Jiaxiang; Cai, Yueping; Xiong, Sen; Yang, Shiyong; Wang, Xiongyan; He, Zhi

    2017-09-01

    Laboratory-reared Schizothorax davidi larvae and juveniles were examined to assess the formation and characteristics of David's schizothoracin otoliths. Otolith development was observed and their formation period was verified by monitoring larvae and juveniles of known age. The results revealed that lapilli and sagittae developed before hatching, and the first otolith increment was identified at 2 days post hatching in both. The shape of lapilli was relatively stable during development compared with that of sagittae; however, growth of four sagittae and lapilli areas was consistent, but the posterior area grew faster than the anterior area and the ventral surface grew faster than the dorsal surface. Similarly, the sum length of the radius of the anterior and posterior areas on sagittae and lapilli were linearly and binomially related to total fish length, respectively. Moreover, daily deposition rates were validated by monitoring knownage larvae and juveniles. The increase in lapilli width was 1.88±0.080 0 μm at the ninth increment, which reached a maximum and the decreased gradually toward the otolith edge, whereas that of sagittae increased more slowly. These results illustrate the developmental biology of S. davidi, which will aid in population conservation and fish stock management.

  10. Validation of daily increments in otoliths of northern squawfish larvae

    USGS Publications Warehouse

    Wertheimer, R.H.; Barfoot, C.A.

    1998-01-01

    Otoliths from laboratory-reared northern squawfish, Ptychocheilus oregonensis, larvae were examined to determine the periodicity of increment deposition. Increment deposition began in both sagittae and lapilli after hatching. Reader counts indicated that increment formation was daily in sagittae of 1-29-day-old larvae. However, increment counts from lapilli were significantly less than the known ages of northern squawfish larvae, possibly because some increments were not detectable. Otolith readability and age agreement among readers were greatest for young (<11 days) northern squawfish larvae. This was primarily because a transitional zone of low-contrast material began forming in otoliths of 8-11-day-old larvae and persisted until approximately 20 days after hatching. Formation of the transition zone appeared to coincide with the onset of exogenous feeding and continued through yolk sac absorption. Our results indicate that aging wild-caught northern squawfish larvae using daily otolith increment counts is possible.

  11. Otoliths developed in microgravity

    NASA Technical Reports Server (NTRS)

    Wiederhold, M. L.; Harrison, J. L.; Parker, K.; Nomura, H.

    2000-01-01

    Little is known about mechanisms that regulate the development of the otoliths in the gravity-sensing organs. Several reported experiments suggest that the growth of the otoliths is adjusted to produce a test mass of the appropriate weight. If this is the case, larger than normal otoliths would be expected in animals reared in reduced gravity and a reduced mass, relative to 1-g controls, would be expected in animals reared at elevated g. In gastropod mollusks, the gravity-sensing organ is the statocyst, a spherical organ whose wall is made largely of sensory receptor cells with motile cilia facing the lumen. Dense statoconia in the cyst lumen interact with cilia of receptor cells at the bottom of the cyst and action potentials in their axons carry information on direction and magnitude of gravity and linear acceleration. In the marine mollusk, Aplysia californica, larvae reared at 2 to 5-g, the volume of statoconia was reduced in a graded manner, compared to 1-g control animals. In the statocyst of the fresh-water pond snail, Biomphalaria glabrata, reared in space in the Closed Equilibrated Biological Aquatic System (CEBAS), the number and total volume of statoconia was increased approximately 50%, relative to ground-reared controls. Lychakov found the utricular otolith to be 30% larger in space-reared Xenopus, whereas we found the saccular otolith to be significantly larger in newt larvae reared in space. In cichlid fish reared on a centrifuge, the saccular otolith was smaller than in 1-g controls. Here, we demonstrate that the otoliths of late-stage embryos of the swordtail fish, Xiphophorus helleri, reared in space on STS-89 and STS-90 (Neurolab) were significantly larger than those of ground-controls reared in functionally identical hardware.

  12. Decline in semicircular canal and otolith function with age

    PubMed Central

    Agrawal, Yuri; Zuniga, M. Geraldine; Davalos-Bichara, Marcela; Schubert, Michael C.; Walston, Jeremy D.; Hughes, Jennifer; Carey, John P.

    2012-01-01

    Objective To characterize the physiologic nature of the vestibular dysfunction that occurs with the normative aging process. Study design Cross-sectional study. Setting Tertiary care academic medical center. Patients Fifty individuals age 70 and above. Interventions Head thrust dynamic visual acuity testing (htDVA) and cervical and ocular vestibular-evoked myogenic potential (VEMP) testing. Main Outcome Measures Semicircular canal function measured by htDVA in each of the three semicircular canal planes, and saccular and utricular function measured by cVEMP and oVEMP testing, respectively. Results We observed significant declines in semicircular canal function in each of the canal planes as well as otolith function associated with aging. We found that individuals with impaired horizontal and superior semicircular canal function were likely to also have concomitant deficits in utricular but not saccular function. Overall, we noted that the prevalence of semicircular canal dysfunction was highest followed by saccular then utricular impairment, although we did observe individuals with isolated otolith deficits. Conclusions These data suggest an overall decline in semicircular canal as well as otolith function associated with aging, although the magnitude of impairment was greater for the semicircular canals than the otoliths in this elderly population. A better understanding of the specific vestibular deficits that occur with aging can inform the development of rational screening, vestibular rehabilitation and fall risk reduction strategies in older individuals. PMID:22699991

  13. Ontogenetic development of otoliths in Alligator Gar

    USGS Publications Warehouse

    Long, James M.; Snow, Richard A.

    2016-01-01

    The Alligator Gar Atractosteus spatula is a species of conservation concern throughout its range, and better definition of otoliths during early development would aid understanding its life history and ecology. We conducted X-ray computed tomography scans, scanning electron microscopy, and light microscopy to examine the three pairs of otoliths and how they developed over time in relation to fish size and age. The sagittae are the largest, possessing distinct dorsal and ventral lobes covered with small otoconia concentrated in the sulcul region. The sagittae exhibited allometric growth, increasing more rapidly in the ventral lobe than in the dorsal. The asterisci were smaller and also exhibited small otoconia on their surface, but much less than the sagittae. The lapilli were oriented laterally, in contrast to the sagittae and asterisci, which were oriented vertically, with a hump on the dorsum and very large otoconia on the lateral surface that appeared to fuse into the main otolith as the fish grew. Based on size measurements and ring counts in all three pairs of otoliths from 101 known-age Alligator Gar sampled weekly through 91 d after hatch, we developed regression models to examine otolith growth and predict age. All relationships were significant and highly explanatory, but the strongest relationships were between otolith and fish size (for measurements from sagittae) and for age predictions from the lapillus. Age prediction models all resulted in a slope near unity, indicating that ring deposition occurred approximately daily. The first ring in sagittae and lapilli corresponded to swim-up, whereas the first ring formed in asterisci approximately 8 d after swim-up. These results fill a gap in knowledge and can aid understanding of evolutionary processes as well as provide useful information for management and conservation.

  14. Comparative studies on the influence of "simulated weigthlessness" on fish otolith growth

    NASA Astrophysics Data System (ADS)

    Brungs, Sonja; Hendrik Anken, Ralf; Li, Xiao-Yan; Hauslage, Jens; Wang, Gaohong; Liu, Yongding; Hilbig, Reinhard; Hemmersbach, Ruth

    Stimulus dependence is a general feature of all developing sensory systems. Concerning the vestibular organ of fish, it has been shown earlier that the growth of inner ear otoliths of developing Cichlid fish (Oreochromis mossambicus) and Zebrafish (Danio rerio) is slowed down by increased gravity (hypergravity) as an adaptation. Several studies proposed that otolith growth actively is adjusted via a feedback mechanism to produce a test mass of the appropriate physical capacity. Applying diminished gravity such as microgravity during spaceflight yielded an opposite effect, i.e., larger than normal otoliths in swordtails Xiphophorus helleri. Since there are no data on spaceflown early larval stages of the Cichlid fish and the Zebrafish available, these model organisms were subjected to simulated weightlessness using a submersed clinostat with one axis of rotation (O. mossambicus) and rotating-wall vessels (RWVs; O. mossambicus was maintained within a submersed RWV, which was recently developed at DLR, whereas D. rerio was kept within a modified RWV, developed by NASA). Developmental stages were subjected to clinorotation (60 rpm) and wall vessel rotation (Cichlid fish: 44 rpm; Zebrafish: 12.5 rpm; at these speeds, the larvae did neither sediment nor were they centrifuged away from the center of the RWVs) at a point of time when inner ear otolith mineralisation began. The experimental runs were discontinued when the animals hatched (O. mossambicus, stage 12, reached after 2-3 days at 22° C) or when they began to actively move within the devices (D. rerio, after 6 days at 28° C). After clinostat exposure, both utricular and saccular otoliths (Lapilli and Sagittae, respectively) of the Cichlids were significantly larger as compared to otoliths from the 1g controls. A similar result was obtained after wall vessel rotation for 3 and 6 days of the Zebrafish. These results support the idea that a feedback mechanism correlates the gravity level with the physical capacity

  15. Estimating ages of Utah chubs by use of pectoral fin rays, otoliths, and scales

    USGS Publications Warehouse

    Griffin, Kayla M; Beard, Zachary S.; Flinders, John M.; Quist, Michael C.

    2017-01-01

    Utah chub Gila atraria is native to the Upper Snake River system in Wyoming and Idaho and to the Lake Bonneville Basin in Utah and southeastern Idaho. However, the Utah chub has been introduced into many other waterbodies in the western United States, where it competes with ecologically and economically important species. The objectives of this study were to evaluate between-reader precision and reader confidence in age estimates obtained from pectoral fin rays, lapilli (otoliths), asterisci (otoliths), and scales for Utah chubs collected from Henrys Lake, Idaho. Lapilli have been previously shown to provide accurate age estimates for Utah chubs; therefore, we sought to compare age estimates from fin rays, asterisci, and scales to those from lapilli. The between-reader coefficient of variation (CV) in age estimates was lowest and the percent of exact reader agreement (PA-0) was highest for pectoral fin rays (CV = 4.7, PA-0 = 74%), followed by scales (CV = 10.3, PA-0 = 52.3%), lapilli (CV = 11.6, PA-0 = 48.2%), and asterisci (CV = 13.0, PA-0 = 41.7%). Consensus age estimates from pectoral fin rays showed high concordance with consensus age estimates from lapilli. Our results indicate that pectoral fin rays provide the most precise age estimates for Utah chub. Pectoral fin rays are easily collected and processed and also provide age estimates without requiring fish sacrifice.

  16. Fish Inner Ear Otolith Growth Under Real Microgravity (Spaceflight) and Clinorotation

    NASA Astrophysics Data System (ADS)

    Anken, Ralf; Brungs, Sonja; Grimm, Dennis; Knie, Miriam; Hilbig, Reinhard

    2016-06-01

    Using late larval stages of cichlid fish ( Oreochromis mossambicus) we have shown earlier that the biomineralization of otoliths is adjusted towards gravity by means of a neurally guided feedback loop. Centrifuge experiments, e.g., revealed that increased gravity slows down otolith growth. Microgravity thus should yield an opposite effect, i.e., larger than normal otoliths. Consequently, late larval cichlids (stage 14, vestibular system operational) were subjected to real microgravity during the 12 days FOTON-M3 spaceflight mission (OMEGAHAB-hardware). Controls were kept at 1 g on ground within an identical hardware. Animals of another batch were subsequently clinorotated within a submersed fast-rotating clinostat with one axis of rotation (2d-clinostat), a device regarded to simulate microgravity. Temperature and light conditions were provided in analogy to the spaceflight experiment. Controls were maintained at 1 g within the same aquarium. After all experiments, animals had reached late stage 21 (fish can swim freely). Maintenance under real microgravity during spaceflight resulted in significantly larger than normal otoliths (both lapilli and sagittae, involved in sensing gravity and the hearing process, respectively). This result is fully in line with an earlier spaceflight study in the course of which otoliths from late-staged swordtails Xiphophorus helleri were analyzed. Clinorotation resulted in larger than 1 g sagittae. However, no effect on lapilli was obtained. Possibly, an effect was present but too light to be measurable. Overall, spaceflight obviously induces an adaptation of otolith growth, whereas clinorotation does not fully mimic conditions of microgravity regarding late larval cichlids.

  17. Physiology of primary saccular afferents of goldfish: implications for Mauthner cell response.

    PubMed

    Fay, R R

    1995-01-01

    Mauthner cells receive neurally coded information from the otolith organs in fishes, and it is most likely that initiation and directional characteristics of the C-start response depend on this input. In the goldfish, saccular afferents are sensitive to sound pressure (< -30 dB re: 1 dyne cm-2) in the most sensitive frequency range (200 to 800 Hz). This input arises from volume fluctuations of the swimbladder in response to the sound pressure waveform and is thus nondirectional. Primary afferents of the saccule, lagena, and utricle of the goldfish also respond with great sensitivity to acoustic particle motion (< 1 nanometer between 100 and 200 Hz). This input arises from the acceleration of the fish in a sound field and is inherently directional. Saccular afferents can be divided into two groups based on their tuning: one group is tuned at about 250 Hz, and the other tuned between 400 Hz and 1 kHz. All otolithic primary afferents phaselock to sinusoids throughout the frequency range of hearing (up to about 2 kHz). Based on physiological and behavioral studies on Mauthner cells, it appears that highly correlated binaural input to the M-cell, from the sacculi responding to sound pressure, may be required for a decision to respond but that the direction of the response is extracted from small deviations from a perfect interaural correlation arising from the directional response of otolith organs to acoustic particle motion.

  18. Magnetic resonance imaging of the saccular otolithic mass.

    PubMed Central

    Sbarbati, A; Leclercq, F; Antonakis, K; Osculati, F

    1992-01-01

    The frog's inner ear was studied in vivo by high spatial resolution magnetic resonance imaging at 7 Tesla. The vestibule, the internal acoustic meatus, and the auditory tube have been identified. The large otolithic mass contained in the vestibule showed a virtual absence of magnetic resonance signal probably due to its composition of closely packed otoconia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:1295875

  19. Effects of simulated weightlessness on fish otolith growth: Clinostat versus Rotating-Wall Vessel

    NASA Astrophysics Data System (ADS)

    Brungs, Sonja; Hauslage, Jens; Hilbig, Reinhard; Hemmersbach, Ruth; Anken, Ralf

    2011-09-01

    Stimulus dependence is a general feature of developing sensory systems. It has been shown earlier that the growth of inner ear heavy stones (otoliths) of late-stage Cichlid fish ( Oreochromis mossambicus) and Zebrafish ( Danio rerio) is slowed down by hypergravity, whereas microgravity during space flight yields an opposite effect, i.e. larger than 1 g otoliths, in Swordtail ( Xiphophorus helleri) and in Cichlid fish late-stage embryos. These and related studies proposed that otolith growth is actively adjusted via a feedback mechanism to produce a test mass of the appropriate physical capacity. Using ground-based techniques to apply simulated weightlessness, long-term clinorotation (CR; exposure on a fast-rotating Clinostat with one axis of rotation) led to larger than 1 g otoliths in late-stage Cichlid fish. Larger than normal otoliths were also found in early-staged Zebrafish embryos after short-term Wall Vessel Rotation (WVR; also regarded as a method to simulate weightlessness). These results are basically in line with the results obtained on Swordtails from space flight. Thus, the growth of fish inner ear otoliths seems to be an appropriate parameter to assess the quality of "simulated weightlessness" provided by a particular simulation device. Since CR and WVR are in worldwide use to simulate weightlessness conditions on ground using small-sized specimens, we were prompted to directly compare the effects of CR and WVR on otolith growth using developing Cichlids as model organism. Animals were simultaneously subjected to CR and WVR from a point of time when otolith primordia had begun to calcify both within the utricle (gravity perception) and the saccule (hearing); the respective otoliths are the lapilli and the sagittae. Three such runs were subsequently carried out, using three different batches of fish. The runs were discontinued when the animals began to hatch. In the course of all three runs performed, CR led to larger than normal lapilli, whereas WVR

  20. Development of the otolith organs and semicircular canals in the Japanese red-bellied newt, Cynops pyrrhogaster

    NASA Technical Reports Server (NTRS)

    Wiederhold, M. L.; Yamashita, M.; Larsen, K. A.; Batten, J. S.; Koike, H.; Asashima, M.

    1995-01-01

    The sequence in which the otoliths and semicircular canals and their associated sensory epithelia appear and develop in the newt are described. Three-dimensional reconstruction of serial sections through the otic vesicle of newt embryos from stages 31 through 58 demonstrate the first appearance, relative position and growth of the otoliths. A single otolith is first seen in stage 33 embryos (approximately 9 days old); this splits into separate utricular and saccular otoliths at stage 40 (13 days). The lateral semicircular canal is the first to appear, at stage 41 (14 days). The anterior and posterior canals appear approximately one week later and the vestibular apparatus is essentially fully formed at stage 58 (approximately 5 weeks). The data reported here will serve as ground-based controls for fertilized newt eggs flown on the International Microgravity Laboratory-2 Space Shuttle flight, to investigate the influence of microgravity on the development of the gravity-sensing organs.

  1. The influence of unilateral saccular impairment on functional balance performance and self-report dizziness.

    PubMed

    McCaslin, Devin L; Jacobson, Gary P; Grantham, Sarah L; Piker, Erin G; Verghese, Susha

    2011-09-01

    Postural stability in humans is largely maintained by vestibular, visual, and somatosensory inputs to the central nervous system. Recent clinical advances in the assessment of otolith function (e.g., cervical and ocular vestibular evoked myogenic potentials [cVEMPs and oVEMPs], subjective visual vertical [SVV] during eccentric rotation) have enabled investigators to identify patients with unilateral otolith impairments. This research has suggested that patients with unilateral otolith impairments perform worse than normal healthy controls on measures of postural stability. It is not yet known if patients with unilateral impairments of the saccule and/or inferior vestibular nerve (i.e., unilaterally abnormal cVEMP) perform differently on measures of postural stability than patients with unilateral impairments of the horizontal SCC (semicircular canal) and/or superior vestibular nerve (i.e., unilateral caloric weakness). Further, it is not known what relationship exists, if any, between otolith system impairment and self-report dizziness handicap. The purpose of this investigation was to determine the extent to which saccular impairments (defined by a unilaterally absent cVEMP) and impairments of the horizontal semicircular canal (as measured by the results of caloric testing) affect vestibulospinal function as measured through the Sensory Organization Test (SOT) of the computerized dynamic posturography (CDP). A secondary objective of this investigation was to measure the effects, if any, that saccular impairment has on a modality-specific measure of health-related quality of life. A retrospective cohort study. Subjects were assigned to one of four groups based on results from balance function testing: Group 1 (abnormal cVEMP response only), Group 2 (abnormal caloric response only), Group 3 (abnormal cVEMP and abnormal caloric response), and Group 4 (normal control group). Subjects were 92 adult patients: 62 were seen for balance function testing due to complaints

  2. Cryptoachneliths: Hidden glassy ash in composite spheroidal lapilli

    NASA Astrophysics Data System (ADS)

    Carracedo Sánchez, M.; Arostegui, J.; Sarrionandia, F.; Larrondo, E.; Gil Ibarguchi, J. I.

    2010-09-01

    Cryptoachneliths, perceptible by means of electron microscopy but unresolved under the optical microscope, occur unnoticed inside spheroidal lapilli of ultrabasic composition of the Cabezo Segura volcano (Calatrava volcanic province, Spain). The cryptoachneliths are glassy spherical particles that have compositions of Al-rich silicate with minor amounts of Fe, Ca and other elements. The smallest cryptoachneliths of < 1 μm in diameter (nanoachneliths) joined by coalescence to form microspheres > 1 μm (microachneliths) and homogeneous less regular masses of similar composition. Nano and microachneliths welded each other or to other types of volcanic particles (crystals, crystal fragments, spinning droplets, cognate lithic clasts, etc.) to form spheroidal lapilli and even bomb size clasts within proximal fall deposits of the Cabezo Segura volcano. The welding processes took place inside the eruptive column, previous to the fall of the spheroidal lapilli on top of the volcanic cone. The presence of the cryptoachneliths implies that lapilli and even bomb size tephra within deposits formed during explosive eruptions of low-viscosity basic to ultrabasic magmas should be carefully examined in order to establish key parameters of eruption dynamics, like size, amount and distribution of juvenile fine particles.

  3. Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Torres, M. A.; Schuff, N. R.

    1993-01-01

    Adult bullfrog were given single intraotic injections of the aminoglycoside antibiotic gentamicin sulfate and sacrificed at postinjection times ranging from 0.5 to 9 days. The saccular and utricular maculae of normal and injected animals were examined in wholemount and cross-section. Intraotic 200 microM gentamicin concentrations resulted in the uniform destruction of the hair bundles and, at later times, the cell bodies of saccular hair cells. In the utriculus, striolar hair cells were selectively damaged while extrastriolar hair cells were relatively unaffected. Regenerating hair cells, identified in sectioned material by their small cell bodies and short, well-formed hair bundles, were seen in the saccular and utricular maculae as early as 24-48 h postinjection. Immature versions of mature hair cell types in both otolith organs were recognized by the presence or absence of a bulbed kinocilia and the relative lengths of their kinocilia and longest stereocilia. Utricular hair cell types with kinocilia longer than their longest stereocilia were observed at earlier than hair cell types with shorter kinocilia. In the sacculus, the hair bundles of gentamicin-treated animals, even at 9 days postinjection, were significantly smaller than those of normal animals. The hair bundles of utricular hair cells, on the other hand, reached full maturity within the same time period.

  4. Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Torres, M. A.; Schuff, N. R.

    1994-01-01

    Adult bullfrogs were given single intraotic injections of the aminoglycoside antibiotic gentamicin sulfate and sacrificed at postinjection times ranging from 0.5 to 9 days. The saccular and utricular maculae of normal and injected animals were examined in wholemount and cross-section. Intraotic 200 (mu) M gentamicin concentrations resulted in the uniform destruction of the hair bundles and, at later times, the cell bodies of saccular hair cells. In the utriculus, striolar hair cells were selectively damaged while extrastriolar hair cells were relatively unaffected. Regenerating hair cells, identified in sectioned material by their small cell bodies and short, well-formed hair bundles, were seen in the saccular and utricular maculae as early as 24-48 h postinjection. Immature versions of mature hair cell types in both otolith organs were recognized by the presence of absence of a bulbed kinocilia and the relative lengths of their kinocilia and longest sterocilia. Utricular hair cell types with kinocilia longer than their longest stereocilia were observed at earlier times than hair cell types with shorter kinocilia. In the same sacculus, the hair bundles of gentamicin-treated animals, even at 9 days postinjection, were significantly smaller than those of normal animals. The hair bundles of utricular hair cells, on the other hand, reached full maturity within the same time period.

  5. Intracellular distributions and putative functions of calcium-binding proteins in the bullfrog vestibular otolith organs

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Steyger, P. S.; Schuff, N. R.

    1997-01-01

    Hair cells in the bullfrog vestibular otolith organs were immunolabeled by monoclonal and polyclonal antisera against calbindin (CaB), calmodulin (CaM), calretinin (CaR), and parvalbumin (PA). S-100, previously shown to immunolabel striolar hair cells in fish vestibular organs, only weakly immunolabeled hair cells in the bullfrog vestibular otolith organs. Immunolabeling was not detected in supporting cells. With the exception of CaR, myelinated axons and unmyelinated nerve terminals were immunolabeled by all of the above antisera. Immunolabeling was seen in all saccular hair cells, although hair cells at the macular margins were immunolabeled more intensely for CaB, CaM, and PA than more centrally located hair cells. As the macula margins are known to be a growth zone, this labeling pattern suggests that marginal hair cells up-regulate their calcium-binding proteins during hair cell development. In the utriculus, immunolabeling for CaM and PA was generally restricted to striolar hair cells. CaR immunolabeling was restricted to the stereociliary array. Immunolabeling for other calcium-binding proteins was generally seen in both the cell body and hair bundles of hair cells, although this labeling was often localized to the stereociliary array and the apical portion of the cell body. CaM and PA immunolabeling in the stereociliary array in saccular and utricular striolar cells suggests a functional role for these proteins in mechanoelectric transduction and adaptation.

  6. Swimming Behaviour and Otolith Characteristics of wildtype and mutant Zebrafish (AIE) under diminished Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Weigele, J.; Anken, R.; Hilbig, R.

    During microgravity humans often suffer from sensorimotor disorders e g motion sickness a kinetosis Using fish as vertebrate model systems we could previously provide ample evidence that the individually different susceptibility to such disorders is based on an individually differently pronounced asymmetric mineralisation calcification of inner ear stones otoliths In the course of a preliminary study we subjected mutant zebrafish Danio rerio due to malformation of the inner ear - see below - this mutant was termed Asymmetric Inner Ear AIE to diminished gravity conditions during parabolic aircraft flight PF As compared to wildtype WT animals the mutants showed a pronounced kinetotic behaviour The gross-morphology of the inner ears of AIE and WT animals strikingly differed In WT specimens the saccular otoliths were located at the periphery of the inner ear whereas the utricular stones were positioned mediad as it is usually the case in teleosts in most AIE animals dissected however the respective otoliths were positioned in an opposite arrangement Moreover the mutants sported transparent otoliths whereas the otoliths of WT specimens had an opaque appearance This finding clearly indicates that mutant otoliths differed from wildtype ones in their lattice structure i e the calcium carbonate polymorph and thus the compostion of the proteinacious matrix which is a template for calcium carbonate deposition In the course of the present study the PF experiment is scheduled to be carried out in March 2006 we intend to statistically verify

  7. Effects of extreme habitat conditions on otolith morphology: a case study on extremophile live bearing fishes (Poecilia mexicana, P. sulphuraria).

    PubMed

    Schulz-Mirbach, Tanja; Riesch, Rüdiger; García de León, Francisco J; Plath, Martin

    2011-12-01

    Our study was designed to evaluate if, and to what extent, restrictive environmental conditions affect otolith morphology. As a model, we chose two extremophile livebearing fishes: (i) Poecilia mexicana, a widespread species in various Mexican freshwater habitats, with locally adapted populations thriving in habitats characterized by the presence of one (or both) of the natural stressors hydrogen sulphide and darkness, and (ii) the closely related Poecilia sulphuraria living in a highly sulphidic habitat (Baños del Azufre). All three otolith types (lapilli, sagittae, and asterisci) of P. mexicana showed a decrease in size ranging from the non-sulphidic cave habitat (Cueva Luna Azufre), to non-sulphidic surface habitats, to the sulphidic cave (Cueva del Azufre), to sulphidic surface habitats (El Azufre), to P. sulphuraria. Although we found a distinct differentiation between ecotypes with respect to their otolith morphology, no clear-cut pattern of trait evolution along the two ecological gradients was discernible. Otoliths from extremophiles captured in the wild revealed only slight similarities to aberrant otoliths found in captive-bred fish. We therefore hypothesize that extremophile fishes have developed coping mechanisms enabling them to avoid aberrant otolith growth - an otherwise common phenomenon in fishes reared under stressful conditions. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Use of an otolith-deficient mutant in studies of fish behavior in microgravity

    NASA Astrophysics Data System (ADS)

    Ijiri, K.; Mizuno, R.; Eguchi, H.

    2003-10-01

    The mutant strain ( ha) of medaka ( Oryzias latipes) lack utricular otoliths as fry, and some never form otoliths for life. The cross (Fl generation) between the strain having good eyesight and another strain having ordinary eyesight augmented visual acuity of the Fl generation. Crossing the good eyesight strain and ha mutant produced fish having good eyesight and less sensitivity to gravity in the F2 population. Their tolerance to microgravity was tested by parabolic flight using an airplane. The fish exhibited less looping and no differences in degree of looping between light and dark conditions, suggesting that loss of eyesight (in darkness) is not a direct cause for looping behavior in microgravity. The ha embryos could not form utricular otoliths. They did form saccular otoliths, but with a delay. Fry of the mutant fish lacking the utricular otoliths are highly dependent on light upon hatching and exhibit a perfect dorsal-light response (DLR). As they grow, they eventually shift from being light-dependent to being gravity-dependent. Continuous treatment of the fry with altered light direction suppressed this shift to gravity dependence. Being less dependent on gravity, these fish can serve as models in studying the differences expected for the vestibular system of fish reared in microgravity. When these fish were exposed to microgravity (parabolic flights) of an airplane, they spent far less time looping than fish reared in an ordinary light regimen.

  9. Vestibular Response to Electrical Stimulation of the Otolith Organs. Implications in the Development of A Vestibular Implant for the Improvement of the Sensation of Gravitoinertial Accelerations.

    PubMed

    Ramos de Miguel, Angel; Falcon Gonzalez, Juan Carlos; Ramos Macias, Angel

    2017-08-01

    Electrical stimulation of the utricular and saccular portions of the vestibular nerve improves stability in patients suffering from vestibular dysfunction. The main objective of this study was to evaluate a new technique, vestibular response telemetry (VRT), for measuring the electrically evoked vestibular compound action potential (saccular and utricular) after stimulating the otolith organ (saccular and utricular) in adults. This study used evidence that the otolith organ can be electrically stimulated in order to develop a new vestibular implant design to improve the sensation of gravitoinertial acceleration. Four adult patients were evaluated by using a variety of measurement procedures with novel VRT software. VRT values were obtained by stimulating with three full-band Nucleus CI24RE (ST) electrodes. Specific stimuli were used. Simultaneously, electrical ocular vestibular evoked myogenic potentials (eoVEMPs) were recorded in the contralateral side. Electrically evoked compound action potentials were obtained in 10 of the 12 electrodes tested, and eoVEMPs were recorded when VRT was present. In addition to the validation of this technique, a set of default clinical test parameters was established. The VRT response morphology consisted of a biphasic waveform with an initial negative peak (N1) followed by a positive peak (P1), and latencies were typically 400 μs for N1 and 800 μs for P1. The consequences for the development of a vestibular implant for the improvement of gravitoinertial acceleration sensation are also presented. The VRT measurement technique has been shown to be a useful tool to record neural response on the otolith organ, and thus it is a convenient tool to evaluate whether the implanted electrodes provide a neural response or not. This can be used for the early development of vestibular implants to improve gravitoinertial acceleration sensation.

  10. Origin of accretionary lapilli from the Pompeii and Avellino deposits of Vesuvius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheridan, M.F.; Wohletz, K.H.

    1983-01-01

    Accretionary lapilli from the Pompeii and Avellino Plinian ash deposits of Vesuvius consist of centimeter-sized spheroids composed of glass, crystal, and lithic fragments of submillimeter size. The typical structure of the lapilli consists of a central massive core surrounded by concentric layers of fine ash with concentrations of larger clasts and vesicles and a thin outer layer of dust. Clasts within the lapilli larger than 125 ..mu..m are extremely rare. The median grain-size of the fine ash is about 50 ..mu..m and the size-distribution is well sorted. Most constituent particles of accretionary lapilli display blocky shapes characteristic of grains producedmore » by phreatomagmatic hydroexplosions. We have used the scanning electron microscope (SEM) in conjunction with energy dispersive spectral analysis (EDS) to investigate the textural and chemical variation along traverses from the core to the rim of lapilli from Vesuvius.« less

  11. Comparative Transduction Mechanisms of Vestibular Otolith Hair Cells

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    1994-01-01

    Hair cells in the bullfrog vestibular otolith organs regenerate following aminoglycoside ototoxicity. Hair cells in these organs are differentially sensitive to gentamicin, with saccular hair cells and hair cells in the utricular striola being damaged at lower gentamicin concentrations than hair cells in the utricular extrastriola. Regenerating hair cells in these organs have short hair bundles and can be classified into a number of phenotypes using the same morphological criteria used to identify their mature counterparts. Our studies suggest that some supporting cells can convert, or transdifferentiate,into hair cells without an intervening cell division. By stimulating these processes in humans, clinicians may be able to alleviate human deafness and peripheral vestibular disorders by regenerating and replacing lost hair cells. In vivo and in vitro studies were done on cell proliferation and hair cell regeneration.

  12. Flotation Experiments with Seafloor-Sampled Pumice Lapilli, IODP 340 - Preliminary Results

    NASA Astrophysics Data System (ADS)

    Jutzeler, M.; Manga, M.; White, J. D.

    2012-12-01

    A 1.25-m-thick, unconsolidated unit of pink pumice lapilli was recovered at site U1396, IODP expedition 340. The drilling site lies at the top of an entirely submarine ridge in a back-arc of the Lesser Antilles volcanic arc, 35 km offshore from Montserrat Island. The unit was recovered from 122 m below sea floor, at a water depth of ~800 m. Preliminary biostratigraphy and paleomagnetic analysis yield an age of ~4 Ma. This age is much older than any rocks from the island of Montserrat, suggesting that the pumice lapilli unit may have submarine origin. In addition, the pumice lapilli unit has a grading and sorting that does not match conventional eruption-fed products from air-fall or turbidity currents. The pumice lapilli unit was recovered at two holes 40 m apart, and is identical in the two cores. The change in grain size in the stratigraphy of the unit defines a weak stratification. The pumice lapilli unit comprises two main sub-units, with four ash-rich intervals. The lower sub-unit is ~20 cm thick, framework-supported, and dominated by angular white tube-pumice lapilli (2-4 mm); dense lithic clasts (2 mm) are concentrated at the base of this sub-unit. The upper sub-unit is 1 m thick, and mostly composed of angular to sub-angular, white tube pumice lapilli (average 4 mm, max 32 mm), in a pink ash matrix. The ash is chiefly composed of micro-pumice clasts, feldspar and ferromagnesian crystal fragments, glass shards, and lithic clasts that commonly contain fresh pyrite. Three main parameters constrain the floatability of pumice clasts in water: vesicularity, clast size and shape, and clast temperature. The connected vesicularity of the pumice clasts was measured by subtracting the weight of dry pumice clasts from their water-saturated weight, and by functional stereology applied on SEM images. Clast-size distribution and clast shape were measured by particle size analyzer (CILAS) and sieving. We carried out pyroclast flotation and settling experiments in an

  13. A critical period for gravitational effects on otolith formation

    NASA Astrophysics Data System (ADS)

    Wiederhold, M.; Harrison, J.

    Gravity and linear acceleration are sensed in fish by the saccule, utricle (as in mammals) and lagena, each with a solid otolith. Previous experiments in which eggs or larvae of a marine mollusk ( plysia) or fish larvae were raised on aA centrifuge, demonstrated that the size of the otolith or statoconia (in Aplysia) were reduced, in a graded manner, as the gfield was increased, suggesting that some- control mechanism was acting to normalize the weight of the mass. Pre-mated adult female swordtail fish (Xiphophorus helleri) were flown in the CEBAS aquarium system on space shuttle missions STS 89 and STS-90 (Neurolab). Developing- larvae were removed from the adult ovaries after shuttle landing. Otolith sizes were compared between ground- and flight -reared larvae of similar sizes. For later-stage swordtail larvae, with spine lengths from 3 to 6 mm from STS-90 (16 days), the growth of the otolith with increasing spine length was significantly greater in the flight - reared fish for all three otoliths, from the saccule (saggita), utricle (lapillus) and lagena (astericus). However, juvenile fish, 1 cm long at launch, showed no significant difference in otolith size between flight - and ground-reared animals. In very early stage larvae from STS-89 (9 days), with spine length of 1.5 to 3.5 mm, the utricular and saccular otoliths were actually larger in the ground-reared larvae. Thus, it appears that late-stage fish embryos reared in space do produce larger-than - normal otoliths, apparently in an attempt to c mpensate for the reduced weight ofo the test mass in space. However, the results from very early-stage larvae and juvenile fish suggest that there is a fairly short critical period during which altered gravity can affect the size of the test mass. Recent studies on the development of the inner ear of the zebrafish (Danio raria) may explain the critical period for gravitational effects on otolith growth. By 16 hours after zebrafish fertilization (at 28.5 o

  14. Hearing capacities and otolith size in two ophidiiform species (Ophidion rochei and Carapus acus).

    PubMed

    Kéver, Loïc; Colleye, Orphal; Herrel, Anthony; Romans, Pascal; Parmentier, Eric

    2014-07-15

    Numerous studies have highlighted the diversity of fish inner ear morphology. However, the function of the shape, size and orientation of the different structures remains poorly understood. The saccule (otolithic endorgan) is considered to be the principal hearing organ in fishes and it has been hypothesized that sagitta (saccular otolith) shape and size affect hearing capacities: large sagittae are thought to increase sensitivity. The sagittae of many ophidiids and carapids occupy a large volume inside the neurocranium. Hence they are a good structure with which to test the size hypothesis. The main aim of this study was to investigate hearing capacities and inner ear morphology in two ophidiiform species: Ophidion rochei and Carapus acus. We used a multidisciplinary approach that combines dissections, μCT-scan examinations and auditory evoked potential techniques. Carapus acus and O. rochei sagittae have similar maximal diameters; both species have larger otoliths than many non-ophidiiform species, especially compared with the intra-neurocranium volume. Both species are sensitive to sounds up to 2100 Hz. Relative to the skull, O. rochei has smaller sagittae than the carapid, but better hearing capacities from 300 to 900 Hz and similar sensitivities at 150 Hz and from 1200 to 2100 Hz. Results show that hearing capacities of a fish species cannot be predicted only based on sagitta size. Larger otoliths (in size relative to the skull) may have evolved mainly for performing vestibular functions in fishes, especially those species that need to execute precise and complex movements. © 2014. Published by The Company of Biologists Ltd.

  15. Comparison of the precision of age estimates generated from fin rays, scales, and otoliths of Blue Sucker

    USGS Publications Warehouse

    Acre, Matthew R.; Alejandrez, Celeste; East, Jessica; Massure, Wade A.; Miyazono, S.; Pease, Jessica E.; Roesler, Elizabeth L.; Williams, H.M.; Grabowski, Timothy B.

    2017-01-01

    Evaluating the precision of age estimates generated by different readers and different calcified structures is an important part of generating reliable estimations of growth, recruitment, and mortality for fish populations. Understanding the potential loss of precision associated with using structures harvested without sacrificing individuals, such as scales or fin rays, is particularly important when working with imperiled species, such as Cycleptus elongatus (Blue Sucker). We collected otoliths (lapilli), scales, and the first fin rays of the dorsal, anal, pelvic, and pectoral fins of 9 Blue Suckers. We generated age estimates from each structure by both experienced (n = 5) and novice (n = 4) readers. We found that, independent of the structure used to generate the age estimates, the mean coefficient of variation (CV) of experienced readers was approximately 29% lower than that of novice readers. Further, the mean CV of age estimates generated from pectoral-fin rays, pelvic-fin rays, and scales were statistically indistinguishable and less than those of dorsal-fin rays, anal-fin rays, and otoliths. Anal-, dorsal-, and pelvic-fin rays and scales underestimated age compared to otoliths, but age estimates from pectoral-fin rays were comparable to those from otoliths. Skill level, structure, and fish total-length influenced reader precision between subsequent reads of the same aging structure from a particular fish. Using structures that can be harvested non-lethally to estimate the age of Blue Sucker can provide reliable and reproducible results, similar to those that would be expected from using otoliths. Therefore, we recommend the use of pectoral-fin rays as a non-lethal method to obtain age estimates for Blue Suckers.

  16. Use of 64-channel electroencephalography to study neural otolith-evoked responses.

    PubMed

    McNerney, Kathleen M; Lockwood, Alan H; Coad, Mary Lou; Wack, David S; Burkard, Robert F

    2011-03-01

    The vestibular evoked myogenic potential (VEMP) is a myogenic response that can be used clinically to evaluate the function of the saccule. However, to date, little is known about the thalamo-cortical representation of saccular activation. It is important to understand all aspects of the VEMP, as this test is currently used clinically in the evaluation of saccular function. To identify the areas of the brain that are activated in response to stimuli used clinically to evoke the VEMP. Electroencephalography (EEG) recordings combined with current density analyses were used to identify the areas of the brain that are activated in response to stimuli presented above VEMP threshold (500 Hz, 120 dB peak SPL [pSPL] tone bursts), as compared to stimuli presented below VEMP threshold (90 dB pSPL, 500 Hz tone bursts). Ten subjects without any history of balance or hearing impairment participated in the study. The neural otolith-evoked responses (NOERs) recorded in response to stimuli presented below VEMP threshold were absent or smaller than NOERs that were recorded in response to stimuli presented above VEMP threshold. Subsequent analyses with source localization techniques, followed by statistical analysis with SPM5 (Statistical Parametric Mapping), revealed several areas that were activated in response to the 120 dB pSPL tone bursts. These areas included the primary visual cortex, the precuneus, the precentral gyrus, the medial temporal gyrus, and the superior temporal gyrus. The present study found a number of specific brain areas that may be activated by otolith stimulation. Given the findings and source localization techniques (which required limited input from the investigator as to where the sources are believed to be located in the brain) used in the present study as well as the similarity in findings between studies employing galvanic stimuli, fMRI (functional magnetic resonance imaging), and scalp-recorded potentials in response to VEMP-eliciting stimuli, our

  17. Surgical management of congenital saccular cysts of the larynx.

    PubMed

    Ward, R F; Jones, J; Arnold, J A

    1995-09-01

    Congenital saccular cysts of the larynx are unusual lesions that commonly present with respiratory obstruction in infants and children. The saccular cyst may result from an atresia of the laryngeal saccule orifice or may represent the retention of mucus in the collecting ducts of submucosal glands located around the ventricle. Traditionally, the treatment of the lesions has been endoscopic unroofing or marsupialization. Frequently, this modality requires multiple procedures as well as concomitant tracheotomy. There also have been reports of acquired subglottic stenosis. We have found that removal of the recurrent saccular cyst can be achieved relatively safely and effectively via a lateral cervical approach to the thyrohyoid membrane. We review our experience with four patients with congenital saccular cysts and detail the evaluation and surgical management of these lesions.

  18. Effect of aging on saccular function

    PubMed Central

    Maleki, Mehri; Jafari, Zahra; Zarrinkoob, Homa; Akbarzadeh Baghban, Alireza

    2014-01-01

    Background: Aging can cause loss of balance, which may lead to physical and psychological problems. As the role of the otolith organs in maintaining postural stability has been emphasized in recent years, the present study investigated the effect of aging on saccular function using cervical vestibular evoked myogenic potentials (cVEMP). Methods: The participants were assigned into two groups; group one included 31 young adults with a mean age of 22.15 (range: 19-26 yr) and group two consisted of 31 old adults with a mean age of 69.76 years (range: 61-79 yr). All participants hearing sensitivity was normal with no history of balance problems. VEMP was recorded for all subjects using tone burst 500 Hz stimuli at the threshold level and 95 dB nHL intensity level through air-conduction stimulation via an insert receiver. Results: There was a significant difference in the cVEMP response threshold (p< 0.001), P1 wave latency (p<0.001), P1/N1 amplitude (p< 0.001), and asymmetry ratio of P1/N1 amplitude (p< 0.05) between the two groups. No significant difference was found between the left and right ears or in N1 wave latency between the two groups. Conclusion: VEMP abnormalities observed in healthy older adults showed the sensitivity of this test in identifying early signs of vestibular dysfunction. VEMP is an easy-to-use test that requires a short time to be performed. Therefore, it can be used as a selective objective screening test to detect vestibular disorders PMID:25678996

  19. Analysis of saccular aneurysms in the Barrow Ruptured Aneurysm Trial.

    PubMed

    Spetzler, Robert F; Zabramski, Joseph M; McDougall, Cameron G; Albuquerque, Felipe C; Hills, Nancy K; Wallace, Robert C; Nakaji, Peter

    2018-01-01

    OBJECTIVE The Barrow Ruptured Aneurysm Trial (BRAT) is a prospective, randomized trial in which treatment with clipping was compared to treatment with coil embolization. Patients were randomized to treatment on presentation with any nontraumatic subarachnoid hemorrhage (SAH). Because all other randomized trials comparing these 2 types of treatments have been limited to saccular aneurysms, the authors analyzed the current BRAT data for this subgroup of lesions. METHODS The primary BRAT analysis included all sources of SAH: nonaneurysmal lesions; saccular, blister, fusiform, and dissecting aneurysms; and SAHs from an aneurysm associated with either an arteriovenous malformation or a fistula. In this post hoc review, the outcomes for the subgroup of patients with saccular aneurysms were further analyzed by type of treatment. The extent of aneurysm obliteration was adjudicated by an independent neuroradiologist not involved in treatment. RESULTS Of the 471 patients enrolled in the BRAT, 362 (77%) had an SAH from a saccular aneurysm. Patients with saccular aneurysms were assigned equally to the clipping and the coiling cohorts (181 each). In each cohort, 3 patients died before treatment and 178 were treated. Of the 178 clip-assigned patients with saccular aneurysms, 1 (1%) was crossed over to coiling, and 64 (36%) of the 178 coil-assigned patients were crossed over to clipping. There was no statistically significant difference in poor outcome (modified Rankin Scale score > 2) between these 2 treatment arms at any recorded time point during 6 years of follow-up. After the initial hospitalization, 1 of 241 (0.4%) clipped saccular aneurysms and 21 of 115 (18%) coiled saccular aneurysms required retreatment (p < 0.001). At the 6-year follow-up, 95% (95/100) of the clipped aneurysms were completely obliterated, compared with 40% (16/40) of the coiled aneurysms (p < 0.001). There was no difference in morbidity between the 2 treatment groups (p = 0.10). CONCLUSIONS In the

  20. Individual Behavioral Adaptability to Diminished G-Forces and Calcium Uptake of Inner ear Otoliths in Fish. A Sounding Rocket Experiment (TX 48)

    NASA Astrophysics Data System (ADS)

    Knie, Miriam; Shcherbakov, Denis; Hilbig, Reinhard

    2013-02-01

    In the course of the TEXUS 45 experiment we were able to show that the time-course of a habituation to diminished gravity depends on the respective G-level HQM (high quality microgravity, 10-4g) vs. LQM (low quality microgravity, 10-2g) and on the symmetric morphology of the gravity sensing components of the inner ear. An individually different regulation of inner ear otolith calcification plays a role in this process. With this study, the results of the TEXUS 45 flight were validated for another g-level (9x10-4g). In the course of the behavioural investigations we were able to show that most fish could adapt to these μg condition. Fish experiencing permanently 9x10-4g during the whole flight exhibit less kinetotic movements and from this we conclude, that they might use this minimal g-force for orientation. Furthermore these behavioural data were correlated with the morphology of otoliths (Lapilli and Sagittae).

  1. Identification of a structural constituent and one possible site of postembryonic formation of a teleost otolithic membrane

    PubMed Central

    Davis, James G.; Burns, Frank R.; Navaratnam, Dasakumar; Lee, A. Masaji; Ichimiya, Shingo; Oberholtzer, J. Carl; Greene, Mark I.

    1997-01-01

    A gelatinous otolithic membrane (OM) couples a single calcified otolith to the sensory epithelium in the bluegill sunfish (Lepomis macrochirus) saccule, one of the otolithic organs in the inner ear. Though the OM is an integral part of the anatomic network of endorgan structures that result in vestibular function in the inner ear, the identity of the proteins that make up this sensory accessory membrane in teleosts, or in any vertebrate, is not fully known. Previously, we identified a cDNA from the sunfish saccular otolithic organ that encoded a new member of the collagen family of structural proteins. In this study, we examined biochemical features and the localization of the saccular collagen (SC) protein in vivo using polyclonal antisera that recognize the noncollagenous domains of the SC protein. The SC protein, in vivo, was identified as a 95-kDa glycoprotein in sunfish whole-saccule lysate and in homogenates of microdissected saccular OMs. Immunohistochemical analyses demonstrated that the SC protein was localized within one of the two distinct layers of the sunfish saccular OM. The SC protein was also detected within the cytoplasm of supporting cells at the edges of the saccular sensory epithelium, indicating that these cells are a primary site for the synthesis of this structural protein. Further studies of the organization of this matrix molecule in the OM may help clarify the role of this sensory accessory membrane in vestibular sensory function. PMID:9012849

  2. Computerized tomography of the otic capsule and otoliths in the oyster toadfish, Opsanus tau.

    PubMed

    Edds-Walton, Peggy L; Arruda, Julie; Fay, Richard R; Ketten, Darlene R

    2015-02-01

    The neurocranium of the toadfish (Opsanus tau) exhibits a distinct translucent region in the otic capsule (OC) that may have functional significance for the auditory pathway. This study used ultrahigh resolution computerized tomography (100 µm voxels) to compare the relative density of three sites along the OC (dorsolateral, midlateral, and ventromedial) and two reference sites (dorsal: supraoccipital crest; ventral: parasphenoid bone) in the neurocranium. Higher attenuation occurs where structural density is greater; thus, we compared the X-ray attenuations measured, which provided a measure of relative density. The maximum attenuation value was recorded for each of the five sites (x and y) on consecutive sections throughout the OC and for each of the three calcareous otoliths associated with the sensory maculae (lagena, saccule, and utricle) in the OC. All three otoliths had higher attenuations than any sites in the neurocranium. Both dorsal and ventral reference sites (supraoccipital crest and parasphenoid bone, respectively) had attenuation levels consistent with calcified bone and had relatively small, irregular variations along the length of the OC in all individuals. The lowest relative attenuations (lowest densities) occurred consistently at the three sites along the OC. In addition, the lowest attenuations measured along the OC occurred at the ventromedial site around the saccular otolith for all seven fish. The decrease in bone density along the OC is consistent with the hypothesis that there is a low-density channel in the skull to facilitate transmission of acoustic stimuli to the auditory endorgans of the ear. © 2014 Wiley Periodicals, Inc.

  3. In vivo imaging of saccular hydrops in humans reflects sensorineural hearing loss rather than Meniere's disease symptoms.

    PubMed

    Attyé, Arnaud; Eliezer, Michael; Medici, Maud; Tropres, Irène; Dumas, Georges; Krainik, Alexandre; Schmerber, Sébastien

    2018-07-01

    A case-controlled imaging study demonstrated that saccular hydrops was specific to Meniere's disease (MD), but only present in a subset of patients. Here, we compared patients with definite MD, vertigo and sensorineural hearing loss (SNHL) to elucidate the relationship between saccular hydrops and extent of SNHL. In this prospective study, we performed 3D-FLAIR sequences between 4.5 and 5.5 h after contrast media injection in patients with MD (n=20), SNHL (n=20), vertigo (n=20) and 30 healthy subjects. Two radiologists independently graded saccular hydrops. ROC analysis was performed to determine the hearing loss threshold to differentiate patients with saccular hydrops. Saccular hydrops was found in 11 of 20 MD patients, 10 of 20 SNHL patients and in none of the vertigo patients and healthy subjects. In SNHL patients, 45 dB was the threshold above which there was a significant association with saccular hydrops, with sensitivity of 100 % and specificity of 90 %. In MD patients, 40 dB was the threshold above which there was a significant association with saccular hydrops, with sensitivity of 100 % and specificity of 44 %. Our results indicate saccular hydrops as a feature of worse than moderate SNHL rather than MD itself. • MRI helps clinicians to assess patients with isolated low-tone sensorineural hearing loss. • Saccular hydrops correlates with sensorineural hearing loss at levels above 40 dB. • Vertigo patients without sensorineural hearing loss do not have saccular hydrops. • Saccular hydrops is described in patients without clinical diagnosis of Meniere's disease.

  4. Characterizing saccular aortic arch aneurysms from the geometry-flow dynamics relationship.

    PubMed

    Natsume, Kayoko; Shiiya, Norihiko; Takehara, Yasuo; Sugiyama, Masataka; Satoh, Hiroshi; Yamashita, Katsushi; Washiyama, Naoki

    2017-06-01

    Low wall shear stress (WSS) has been reported to be associated with accelerated atherosclerosis, aneurysm growth, or rupture. We evaluated the geometry of aortic arch aneurysms and their relationship with WSS by using the 4-dimensional flow magnetic resonance imaging to better characterize the saccular aneurysms. We analyzed the geometry in 100 patients using multiplanar reconstruction of computed tomography. We evaluated WSS and vortex flow using 4-dimensional flow magnetic resonance imaging in 16 of them, which were compared with 8 age-matched control subjects and eight healthy young volunteers. Eighty-two patients had a saccular aneurysm, and 18 had a fusiform aneurysm. External diameter/aneurysm length ratio and sac depth/neck width ratio of the fusiform aneurysms were constant at 0.76 ± 0.18 and 0.23 ± 0.09, whereas those of saccular aneurysms, especially those involving the outer curvature, were higher and more variable. Vortex flow was always present in the aneurysms, resulting in low WSS. When the sac depth/neck width ratio was less than 0.8, peak WSS correlated inversely with luminal diameter even in the saccular aneurysms. When this ratio exceeded 0.8, which was the case only with the saccular aneurysms, such correlation no longer existed and WSS was invariably low. Fusiform aneurysms elongate as they dilate, and WSS is lower as the diameter is larger. Saccular aneurysms dilate without proportionate elongation, and they, especially those occupying the inner curvature, have higher and variable sac depth/neck width ratio. When this ratio exceeds 0.8, WSS is low regardless of diameter, which may explain their malignant clinical behavior. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  5. Scanning electron microscopic study of the otolithic organs in the bichir (Polypterus bichir) and shovel-nose sturgeon (Scaphirhynchus platorynchus).

    PubMed

    Popper, A N

    1978-09-01

    The anatomy and ultrastructure of the sacculus, lagena, and utriculus of the ear of Polypterus bichir and Scaphirhynchus platorynchus were studied using the scanning electron microscope. The otolithic organs each contain a single dense calcareous otolith in close contact with a sensory epithelium (macula). The maculae have sensory hair cells typical of those found in other vertebrates, surrounded by microvilli-covered supporting cells. The hair cells on each macula are divided into several groups, with all of the cells in each group morphologically polarized in the same direction. The cells of the utricular macula in both species are divided into opposing groups in a pattern similar to that found in other vertebrates. The saccular and lagenar maculae are located in a single large chamber in both species. In Scaphirhychus the two maculae are on the same plane, while in Polypterus they are at right angles to one another. The hair cells on the saccular maculae of both species are divided into two oppositely oriented groups. In Scaphirhynchus the cells on the posterior half of the macula are oriented dorsally on the dorsal half of the macula and ventrally on the ventral half. The anterior region of the macula is rotated and the cells of the dorsal and ventral groups are shifted so that they are oriented on the animal's horizon plane. A similar pattern is found in Polypterus, except that this macula is shaped like a "J" with the vertical portion of the J having horizontal cells and the bottom portion vertical cells. The lagenar maculae in both species have dorsally oriented cells on the anterior side of the macula and ventrally oriented cells on the posterior half of the macula. While these data are not sufficient for clarifying the taxonomic relationship between the two species studied, it is clear that the ears in these species have a number of significant differences from the teleost ear that could have functional and/or taxonomic significance.

  6. Neural correlates of hemispheric dominance and ipsilaterality within the vestibular system.

    PubMed

    Janzen, J; Schlindwein, P; Bense, S; Bauermann, T; Vucurevic, G; Stoeter, P; Dieterich, M

    2008-10-01

    Earlier functional imaging studies on the processing of vestibular information mainly focused on cortical activations due to stimulation of the horizontal semicircular canals in right-handers. Two factors were found to determine its processing in the temporo-parietal cortex: a dominance of the non-dominant hemisphere and an ipsilaterality of the neural pathways. In an investigation of the role of these factors in the vestibular otoliths, we used vestibular evoked myogenic potentials (VEMPs) in a fMRI study of monaural saccular-otolith stimulation. Our aim was to (1) analyze the hemispheric dominance for saccular-otolith information in healthy left-handers, (2) determine if there is a predominance of the ipsilateral saccular-otolith projection, and (3) evaluate the impact of both factors on the temporo-parieto-insular activation pattern. A block design with three stimulation and rest conditions was applied: (1) 102 dB-VEMP stimulation; (2) 65 dB-control-acoustic stimulation, (3) 102 dB-white-noise-control stimulation. After subtraction of acoustic side effects, bilateral activations were found in the posterior insula, the superior/middle/transverse temporal gyri, and the inferior parietal lobule. The distribution of the saccular-otolith activations was influenced by the two factors but with topographic disparity: whereas the inferior parts of the temporo-parietal cortex were mainly influenced by the ipsilaterality of the pathways, the upper parts reflected the dominance of the non-dominant hemisphere. This is in contrast to the processing of acoustic stimulation, which showed a predominance of the contralateral pathways. Our study proves the importance of the hemispheric preponderance also in left-handers, which is of relevance in the superior parts of the insula gyrus V, the inferior parietal lobule, and the superior temporal gyri.

  7. Heroin Use Is Associated with Ruptured Saccular Aneurysms.

    PubMed

    Can, Anil; Castro, Victor M; Ozdemir, Yildirim H; Dagen, Sarajune; Dligach, Dmitriy; Finan, Sean; Yu, Sheng; Gainer, Vivian; Shadick, Nancy A; Savova, Guergana; Murphy, Shawn; Cai, Tianxi; Weiss, Scott T; Du, Rose

    2017-11-04

    While cocaine use is thought to be associated with aneurysmal rupture, it is not known whether heroin use increases the risk of rupture in patients with non-mycotic saccular aneurysms. Our goal was to investigate the association between heroin and cocaine use and the rupture of saccular non-mycotic aneurysms. The medical records of 4701 patients with 6411 intracranial aneurysms, including 1201 prospective patients, diagnosed at the Brigham and Women's Hospital and Massachusetts General Hospital between 1990 and 2016 were reviewed and analyzed. Patients were separated into ruptured and non-ruptured groups. Univariable and multivariable logistic regression analyses were performed to determine the association between heroin, cocaine, and methadone use and the presence of ruptured intracranial aneurysms. In multivariable analysis, current heroin use was significantly associated with rupture status (OR 3.23, 95% CI 1.33-7.83) whereas former heroin use (with and without methadone replacement therapy), and current and former cocaine use were not significantly associated with intracranial aneurysm rupture. In the present study, heroin rather than cocaine use is significantly associated with intracranial aneurysm rupture in patients with non-mycotic saccular cerebral aneurysms, emphasizing the possible role of heroin in the pathophysiology of aneurysm rupture and the importance of heroin cessation in patients harboring unruptured intracranial aneurysms.

  8. The OTOLITH Experiment - Assessment of Otolith Function During Postflight Re-adaption

    NASA Technical Reports Server (NTRS)

    Clarke, A. H.; Wood, S. J.; Schoenfeld, U.

    2010-01-01

    The ongoing "Otolith" experiment is designed to comprehensively assess the otolith function during the re-adaptation phase after spaceflight. The novel protocol includes unilateral testing of each of the two otolith organs the utricle and the saccule. To assess utricle function, the otolith-ocular response (OOR) and the subjective visual vertical (SVV) are measured during unilateral centrifugation, which permits independent stimulation of the right and left ear. Measurement of the unilateral otolith-ocular response (uOOR) yields information on the response behaviour of the right and left peripheral utricles, whereas the SVV reflects the behaviour of the entire pathway from the peripheral otolith receptors to the vestibular cortex. Thus, by comparative evaluation of the results from the two tests, the degree of peripheral versus central adaptation during the post-flight period can be determined. To assess unilateral saccule function, vestibular evoked myogenic potentials (VEMP) are recorded. Since the saccules are predominantly aligned to gravity, and interplay with the antigravity muscles, it is hypothesised that these potentials shall be altered after spaceflight. To date the study has been conducted with 5 of a planned 8 short-flight Shuttle astronauts. Preliminary results will be discussed together with those from clinical studies of dizziness patients, where the same test protocol is employed. ACKNOWLEDGEMENT This work is supported by the German Aerospace Center (Grant DLR W130729) and is conducted under the auspices of ESA, in cooperation with NASA.

  9. North American sturgeon otolith morphology

    USGS Publications Warehouse

    Chalupnicki, Marc A.; Dittman, Dawn E.

    2016-01-01

    Accurate expedient species identification of deceased sturgeon (Acipenseridae) when external physical characteristic analysis is inconclusive has become a high priority due to the endangered or threatened status of sturgeon species around the world. Examination of otoliths has provided useful information to aid in population management, age and size-class analysis, understanding predator–prey interactions, and archeological research in other fish species. The relationship between otolith characteristics and sturgeon species has remained unknown. Therefore, we analyzed the shape of otoliths from the eight species of sturgeon found in North America to test the utility of otolith characteristic morphology in species identification. There were distinct differences in the size and shape of the otoliths between species of sturgeon with little shape variation among individuals of the same species. The relationship between otolith length axes was linear, and most of the variability was explained by a Log (axis + 1) transformation of the x and y axes (r2 = 0.8983) using the equation y = 0.73x + 0.0612. Images of otoliths from all eight North American species are presented to assist in the identification process.

  10. Vestibular Evoked Myogenic Potentials (VEMP) Can Detect Asymptomatic Saccular Hydrops

    PubMed Central

    Lin, Ming-Yee; Timmer, Ferdinand C. A.; Oriel, Brad S.; Zhou, Guangwei; Guinan, John J.; Kujawa, Sharon G.; Herrmann, Barbara S.; Merchant, Saumil N.; Rauch, Steven D.

    2009-01-01

    Objective The objective of this study was to explore the useful of vestibular evoked myogenic potential (VEMP) testing for detecting endolymphatic hydrops, especially in the second ear of patients with unilateral Ménière disease (MD). Methods This study was performed at a tertiary care academic medical center. Part I consisted of postmortem temporal bone specimens from the temporal bone collection of the Massachusetts Eye & Ear Infirmary; part II consisted of consecutive consenting adult patients (n = 82) with unilateral MD by American Academy of Otolaryngology–Head and Neck Surgery criteria case histories. Out-come measures consisted of VEMP thresholds in patients and histologic saccular endolymphatic hydrops in postmortem temporal bones. Results Saccular hydrops was observed in the asymptomatic ear in six of 17 (35%) of temporal bones from donors with unilateral MD. Clinic patients with unilateral MD showed elevated mean VEMP thresholds and altered VEMP tuning in their symptomatic ears and, to a lesser degree, in their asymptomatic ears. Specific VEMP frequency and tuning criteria were used to define a “Ménière-like” response. This “Ménière-like” response was seen in 27% of asymptomatic ears of our patients with unilateral MD. Conclusions Bilateral involvement is seen in approximately one third of MD cases. Saccular hydrops appears to precede symptoms in bilateral MD. Changes in VEMP threshold and tuning appear to be sensitive to these structural changes in the saccule. If so, then VEMP may be useful as a detector of asymptomatic saccular hydrops and as a predictor of evolving bilateral MD. PMID:16735912

  11. Vestibular evoked myogenic potentials (VEMP) can detect asymptomatic saccular hydrops.

    PubMed

    Lin, Ming-Yee; Timmer, Ferdinand C A; Oriel, Brad S; Zhou, Guangwei; Guinan, John J; Kujawa, Sharon G; Herrmann, Barbara S; Merchant, Saumil N; Rauch, Steven D

    2006-06-01

    The objective of this study was to explore the useful of vestibular evoked myogenic potential (VEMP) testing for detecting endolymphatic hydrops, especially in the second ear of patients with unilateral Ménière disease (MD). This study was performed at a tertiary care academic medical center. Part I consisted of postmortem temporal bone specimens from the temporal bone collection of the Massachusetts Eye & Ear Infirmary; part II consisted of consecutive consenting adult patients (n = 82) with unilateral MD by American Academy of Otolaryngology-Head and Neck Surgery criteria case histories. Outcome measures consisted of VEMP thresholds in patients and histologic saccular endolymphatic hydrops in postmortem temporal bones. Saccular hydrops was observed in the asymptomatic ear in six of 17 (35%) of temporal bones from donors with unilateral MD. Clinic patients with unilateral MD showed elevated mean VEMP thresholds and altered VEMP tuning in their symptomatic ears and, to a lesser degree, in their asymptomatic ears. Specific VEMP frequency and tuning criteria were used to define a "Ménière-like" response. This "Ménière-like" response was seen in 27% of asymptomatic ears of our patients with unilateral MD. Bilateral involvement is seen in approximately one third of MD cases. Saccular hydrops appears to precede symptoms in bilateral MD. Changes in VEMP threshold and tuning appear to be sensitive to these structural changes in the saccule. If so, then VEMP may be useful as a detector of asymptomatic saccular hydrops and as a predictor of evolving bilateral MD.

  12. Seasonal plasticity of auditory saccular sensitivity in the vocal plainfin midshipman fish, Porichthys notatus.

    PubMed

    Sisneros, Joseph A

    2009-08-01

    The plainfin midshipman fish, Porichthys notatus, is a seasonally breeding species of marine teleost fish that generates acoustic signals for intraspecific social and reproductive-related communication. Female midshipman use the inner ear saccule as the main acoustic endorgan for hearing to detect and locate vocalizing males that produce multiharmonic advertisement calls during the breeding season. Previous work showed that the frequency sensitivity of midshipman auditory saccular afferents changed seasonally with female reproductive state such that summer reproductive females became better suited than winter nonreproductive females to encode the dominant higher harmonics of the male advertisement calls. The focus of this study was to test the hypothesis that seasonal reproductive-dependent changes in saccular afferent tuning is paralleled by similar changes in saccular sensitivity at the level of the hair-cell receptor. Here, I examined the evoked response properties of midshipman saccular hair cells from winter nonreproductive and summer reproductive females to determine if reproductive state affects the frequency response and threshold of the saccule to behaviorally relevant single tone stimuli. Saccular potentials were recorded from populations of hair cells in vivo while sound was presented by an underwater speaker. Results indicate that saccular hair cells from reproductive females had thresholds that were approximately 8 to 13 dB lower than nonreproductive females across a broad range of frequencies that included the dominant higher harmonic components and the fundamental frequency of the male's advertisement call. These seasonal-reproductive-dependent changes in thresholds varied differentially across the three (rostral, middle, and caudal) regions of the saccule. Such reproductive-dependent changes in saccule sensitivity may represent an adaptive plasticity of the midshipman auditory sense to enhance mate detection, recognition, and localization during the

  13. 3D Tomography of Accretionary Lapilli From The Island of Stromboli (Aeolian Archipelago, Italy): Spatial Arrangement, Internal Structure, Grain Size Distribution and Chemical Characterization

    NASA Astrophysics Data System (ADS)

    Morgavi, D.; Ielpo, M.; Valentini, L.; Laeger, K.; Paredes, J.; Petrelli, M.; Costa, A.; Perugini, D.

    2015-12-01

    The Secche di Lazzaro formation (7 Ka) is a phreatomagmatic deposit in the south-western part of the island of Stromboli (Aeolian Archipelago, Italy). The volcanic sequence is constituted by three main sub-units. In two of them abundant accretionary lapilli are present. We performed granulometric analysis to describe the spatial arrangement and the grain-size distribution of the lapilli inside the deposit. Lapilli were characterized by SEM investigations (BSE images). EMPA and LA-ICP-MS analyses of major and trace elements on glasses and minerals were performed. Although BSE images provide accurate morphological information, they do not allow the real 3D microstructure to be accessed. Therefore, non-invasive 3D imaging of the lapilli was performed by X-ray micro-tomography (X-mCT). The results of the X-mCT measurements provided a set of 2D cross-sectional slices stacked along the vertical axis, with a voxel size varying between 2.7 and 4.1 mm, depending on the size of the sample. The X-mCT images represent a mapping of X-ray attenuation, which in turn depends on the density of the phases distributed within the sample. This technique helped us to better constrain the particle and crystal distribution inside the accretionary lapilli. The recognized phases are: glass, clinopyroxene, plagioclase and Ti-Fe minerals. We discover also a high concentration of Na, Cl and SO3 in the ash matrix. This evidence is ubiquitous in all the accretionary lapilli. The work presented here could define a new route for future studies in the field of physical volcanology as X-ray micro-tomography could be a useful, non destructive technique to better characterize the internal structure of accretionary lapilli helping us to describe grain-size distribution of component particles and their spatial distribution within aggregates.

  14. Otolith Trace Element Chemistry of Juvenile Black Rockfish

    NASA Astrophysics Data System (ADS)

    Hardin, W.; Bobko, S. J.; Jones, C. M.

    2002-12-01

    In the summer of 1997 we collected young-of -the-year (YOY) black rockfish, Sebastes melanops, from floating docks and seagrass beds in Newport and Coos Bay, Oregon. Otoliths were extracted from randomly selected fish, sectioned and polished under general laboratory conditions, and cleaned in a class 100 clean room. We used Laser Ablation - Inductively Coupled Mass Spectrometry (LA-ICPMS) to analyze elemental composition of the estuarine phase of the otoliths. While we observed differences in Mn/Ca ratios between the two estuaries, there was no statistical difference in otolith trace element chemistry ratios between estuaries using MANOVA. To determine if laboratory processing of otoliths might have impeded us from detecting differences in otolith chemistry, we conducted a second experiment. Right and left otoliths from 10 additional Coos Bay fish were randomly allocated to two processing methods. The first method was identical to our initial otolith processing, sectioning and polishing under normal laboratory conditions. In the second method, polishing was done in the clean room. For both methods otoliths went through a final cleaning in the clean room and analyzed with LA-ICPMS. While we did not detect statistical differences in element ratios between the two methods, otoliths polished outside the clean room had much higher variances. This increased variance might have lowered our ability to detect differences in otolith chemistry between estuaries. Based on our results, we recommend polishing otoliths under clean room conditions to reduce contamination.

  15. Development of the gravity-sensing organs in the Japanese red-bellied newt, Cynops pyrrhogaster

    NASA Technical Reports Server (NTRS)

    Wiederhold, Michael L.; Yamashita, Masamichi; Asashima, Makoto

    1992-01-01

    Pre-mated adult female newts and fertilized eggs will be flown on the International Microgravity Laboratory-2 flight, schedule for 1994. One objective of the flight will be to observe the influence of microgravity on the development of the gravity-sensing organs in the inner ear. These organs contain sensory hair cells covered by a layer of dense stones (otoliths). Gravity and linear acceleration exert forces on these masses, leading to excitation of the nerve fibers innervating the hair cells. If the production of the otoliths is regulated to reach an optimal weight, their development would be abnormal in microgravity. Ground-based control experiments are reported describing the developmental sequence in which the otoliths and their associated sensory epithelium appear and increase in size. Three-dimensional reconstruction of serial sections through the otic vesicle of newt embryos at stages 31 through 40 demonstrate the first appearance, relative position and growth of the otoliths. In adult newts, the otoconia in the utricle appear similar to mammalian otoconia, which are composed of calcite. The newt saccular otoconia are at least 99% aragonite, as is found in most aquatic species. Reports of experiments in which fertilized frog eggs were flown on a Russian Cosmos mission conclude that the utricular otolith is increased in volume, whereas the saccular otolith maintains normal size, suggesting that at least the utricular weight might be regulated.

  16. Finite element model of size, shape and blood pressure on rupture of intracranial saccular aneurysms

    NASA Astrophysics Data System (ADS)

    Rica Nabong, Jennica; David, Guido

    2017-10-01

    Rupture of intracranial saccular aneurysms is a primary concern for neurologists and patients because it leads to stroke and permanent disability. This paper examines the role of blood pressure, in connection with size of and wall thickness, in the rupture of saccular aneurysms. A bulb-shaped geometry of a saccular aneurysm is obtained from angiographic images of a patient and modeled using Finite Elements based on the principle of virtual work under the Fung stress-strain relationship. The numerical model is subjected to varying levels of systolic blood pressure. Rupture is assumed to occur when the wall stress exceeded its mechanical strength. The results show which sizes of this class of aneurysms are at high risk of rupture for varying levels of blood pressure.

  17. Intracranial Arterial Dissection Mimicking a Saccular Aneurysm: Clinical Image.

    PubMed

    Rodríguez-Hernández, Ana; Torné, Ramon; Arikan, Fuat

    2017-02-01

    This report portrays our pitfall in the initial diagnosis of an intracranial arterial dissection that we misinterpreted as a saccular aneurysm. Intracranial arterial dissections presenting with convexity subarachnoid hemorrhage are rare, thus being easily mistaken with mild traumatic head injuries and therefore preventing transfer to a tertiary hospital. Even in those cases where the dissection is suspected and the patient is transferred to the appropriate facility for a diagnostic angiogram, misdiagnosis is not infrequent. The typical radiographic signs such as the double lumen or "pearl and string" are scarcely present in the diagnostic angiogram. Thrombus within the dissected segment can be mistaken by vasospasm and may even reveal fake images of saccular aneurysms, thus prompting inadequate endovascular or surgical treatment. The case reported here illustrates all these likely pitfalls in the diagnosis and management of intracranial arterial dissections. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Alternative method of removing otoliths from sturgeon

    USGS Publications Warehouse

    Chalupnicki, Marc A.; Dittman, Dawn E.

    2016-01-01

    Extracting the otoliths (ear bones) from fish that have very thick skulls can be difficult and very time consuming. The common practice of making a transverse vertical incision on the top of the skull with a hand or electrical saw may damage the otolith if not performed correctly. Sturgeons (Acipenseridae) are one family in particular that have a very large and thick skull. A new laboratory method entering the brain cavity from the ventral side of the fish to expose the otoliths was easier than other otolith extraction methods found in the literature. Methods reviewed in the literature are designed for the field and are more efficient at processing large quantities of fish quickly. However, this new technique was designed to be more suited for a laboratory setting when time is not pressing and successful extraction from each specimen is critical. The success of finding and removing otoliths using this technique is very high and does not compromise the structure in any manner. This alternative technique is applicable to other similar fish species for extracting the otoliths.

  19. Saccular lung cannulation in a ball python (Python regius) to treat a tracheal obstruction.

    PubMed

    Myers, Debbie A; Wellehan, James F X; Isaza, Ramiro

    2009-03-01

    An adult male ball python (Python regius) presented in a state of severe dyspnea characterized by open-mouth breathing and vertical positioning of the head and neck. The animal had copious discharge in the tracheal lumen acting as an obstruction. A tube was placed through the body wall into the caudal saccular aspect of the lung to allow the animal to breathe while treatment was initiated. The ball python's dyspnea immediately improved. Diagnostics confirmed a bacterial respiratory infection with predominantly Providencia rettgeri. The saccular lung (air sac) tube was removed after 13 days. Pulmonary endoscopy before closure showed minimal damage with a small amount of hemorrhage in the surrounding muscle tissue. Respiratory disease is a common occurrence in captive snakes and can be associated with significant morbidity and mortality. Saccular lung cannulation is a relatively simple procedure that can alleviate tracheal narrowing or obstruction, similar to air sac cannulation in birds.

  20. Otolith patterns of rockfishes from the northeastern Pacific.

    PubMed

    Tuset, Victor M; Imondi, Ralph; Aguado, Guillermo; Otero-Ferrer, José L; Santschi, Linda; Lombarte, Antoni; Love, Milton

    2015-04-01

    Sagitta otolith shape was analysed in twenty sympatric rockfishes off the southern California coast (Northeastern Pacific). The variation in shape was quantified using canonical variate analysis based on fifth wavelet function decomposition of otolith contour. We selected wavelets because this representation allow the identifications of zones or single morphological points along the contour. The entire otoliths along with four subsections (anterior, ventral, posterodorsal, and anterodorsal) with morphological meaning were examined. Multivariate analyses (MANOVA) showed significant differences in the contours of whole otolith morphology and corresponding subsection among rockfishes. Four patterns were found: fusiform, oblong, and two types of elliptic. A redundancy analysis indicated that anterior and anterodorsal subsections contribute most to define the entire otolith shape. Complementarily, the eco-morphological study indicated that the depth distribution and strategies for capture prey were correlated to otolith shape, especially with the anterodorsal zone. © 2014 Wiley Periodicals, Inc.

  1. Sturgeon and paddlefish (Acipenseridae) saggital otoliths are composed of the calcium carbonate polymorphs vaterite and calcite: acipenseridae otoliths are vaterite and calcite

    DOE PAGES

    Pracheil, Brenda M.; Chakoumakos, Bryan C.; Feygenson, Mikhail; ...

    2016-07-27

    The otoliths of modern fishes are most commonly comprised of the metastable aragonite polymorph of calcium carbonate (CaCO3); however, sturgeons have otoliths reportedly comprised of the least stable of the three most-common polymorphs, vaterite. In this study, we used neutron diffraction to characterize CaCO3 polymorph composition of lake sturgeon and paddlefish otoliths. Based on previous summaries of CaCO3 composition over fish evolutionary history, we hypothesized that sturgeon and paddlefish otoliths would have similar polymorph composition. We found that despite previous reports of sturgeon otoliths being comprised entirely of vaterite, that all otoliths we examined in this study also had amore » calcite fraction that ranged from 17.9+ 6.0 wt. % to 35.9 + 2.9 wt. %. We also conducted a grinding experiment that demonstrated that calcite fractions were due to biological variation and not an artifact of polymorph transformation during preparation. Our study provides the initial characterization of the polymorph composition of the otoliths of lake sturgeon, and paddlefish and also provides the first-ever report of otoliths of Acipenserids as having a calcite fraction.« less

  2. Sturgeon and paddlefish (Acipenseridae) saggital otoliths are composed of the calcium carbonate polymorphs vaterite and calcite: acipenseridae otoliths are vaterite and calcite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pracheil, Brenda M.; Chakoumakos, Bryan C.; Feygenson, Mikhail

    The otoliths of modern fishes are most commonly comprised of the metastable aragonite polymorph of calcium carbonate (CaCO3); however, sturgeons have otoliths reportedly comprised of the least stable of the three most-common polymorphs, vaterite. In this study, we used neutron diffraction to characterize CaCO3 polymorph composition of lake sturgeon and paddlefish otoliths. Based on previous summaries of CaCO3 composition over fish evolutionary history, we hypothesized that sturgeon and paddlefish otoliths would have similar polymorph composition. We found that despite previous reports of sturgeon otoliths being comprised entirely of vaterite, that all otoliths we examined in this study also had amore » calcite fraction that ranged from 17.9+ 6.0 wt. % to 35.9 + 2.9 wt. %. We also conducted a grinding experiment that demonstrated that calcite fractions were due to biological variation and not an artifact of polymorph transformation during preparation. Our study provides the initial characterization of the polymorph composition of the otoliths of lake sturgeon, and paddlefish and also provides the first-ever report of otoliths of Acipenserids as having a calcite fraction.« less

  3. Saccular aortic aneurysm that resembled a mediastinal neoplasm

    PubMed Central

    Nose, Naohiro; Kataoka, Hiroumi; Hamada, Masakatsu; Kosako, Yukio; Matsuno, Yasuji; Ishii, Takahiro

    2012-01-01

    INTRODUCTION Saccular aortic arch aneurysms in unusual sites may be misdiagnosed as a neoplasm. We present the case of a rare saccular aortic arch aneurysm between trachea and esophagus that resembled a mediastinal neoplasm in the preoperative findings. PRESENTATION OF CASE A 63-year-old male with an abnormal mediastinal shadow on chest X-ray was referred to the hospital. An axial plain computed tomogram of the chest revealed mediastinal soft tissue next to the right side of the aortic arch resembling a neoplasm originating from the gap between the trachea and the esophagus. The coronal view constructed by enhanced 64-row multi detector computed tomography revealed the soft tissue was an aneurysm arising from the inner side of the aortic arch. An aortic arch replacement was performed via a median sternotomy. DISCUSSION A thoracic aortic aneurysm sometimes behaves like a mediastinal neoplasm. The multiple cross-sectional image from multidetector computed tomography was useful for the correct diagnosis of such an aneurysm. CONCLUSION The possibility of an aneurysm should be considered whenever a mass in contact with the aortic wall is identified. PMID:22995656

  4. [Inferior vestibular neuritis: diagnosis using VEMP].

    PubMed

    Walther, L E; Repik, I

    2012-02-01

    Vestibular evoked myogenic potentials (VEMP) are a new method to establish the functional status of the otolith organs. The sacculocollic reflex of the cervical VEMP to air conduction (AC) reflects predominantly saccular function due to saccular afferents to the inferior vestibular nerve. We describe a case of inferior vestibular neuritis as a rare differential diagnosis of vestibular neuritis. Clinical signs were a normal caloric response, unilaterally absent AC cVEMPs and bilaterally preserved ocular VEMPs (AC oVEMPs).

  5. Accretionary lapilli, tektites, or concretions: the ubiquitous spherules of Meridiani Planum

    NASA Astrophysics Data System (ADS)

    DiGregorio, Barry E.

    2004-11-01

    One of the most enigmatic discoveries made by the NASA Mars Exploration Rover Opportunity (MER-B) at the Meridiani Planum landing site are the ubiquitous spherules referred to as "blueberries" by the science team. They cover the entire landing area and can be seen in every direction within view of the rover cameras. Subsequent analysis of a small grouping of the spherules laying on top of a rock outcrop by Mossbauer spectroscopy showed an intense hematite signature not found on the rock or in the surrounding basaltic soils. Spherules were also found attached to and embedded within sedimentary sulfate rock outcrops found at the landing area that have been determined by the MER science team as having been formed in an acidic liquid water environment. The appearance of most of the Meridiani spherules is strikingly similar to the morphology and size of terrestrial accretionary lapilli and show similarities to terrestrial tektites. Accretionary lapilli are spherical balls and fragments with a concentric layered structure that are formed by a variety of mechanisms including hydrovolcanic eruptions, geysers and large meteorite impacts in water. Tektites are glassy impact spherules that form as a result of large meteorite impacts and also seem apparent in some of the rover images. Tektites can be perfectly spherical or have teardrop and dumbbell shapes. A lack of a visible volcanic source capable of producing high volumes of accretionary lapilli as seen in the MER-B images, in combination with the strong spectral signature of hematite, that some of the spherules display, led the MER science team to favor a concretion hypothesis thus far. All of these types of spherules involve interaction of with surface water or ice to form. Problems exist in explaining how the Martian "concretions", if that is indeed what they are, are of such uniform size and have such a wide distribution. Evidence from Martian orbit and on the surface indicate that the Meridiani Planum landing ellipse

  6. Mechanistic basis of otolith formation during teleost inner ear development

    PubMed Central

    Wu, David; Freund, Jonathan B.; Fraser, Scott E.; Vermot, Julien

    2011-01-01

    Otoliths, which are connected to stereociliary bundles in the inner ear, serve as inertial sensors for balance. In teleostei, otolith development is critically dependant on flow forces generated by beating cilia; however, the mechanism by which flow controls otolith formation remains unclear. Here, we have developed a non-invasive flow probe using optical tweezers and a viscous flow model in order to demonstrate how the observed hydrodynamics influence otolith assembly. We show that rotational flow stirs and suppresses precursor agglomeration in the core of the cilia-driven vortex. The velocity field correlates with the shape of the otolith and we provide evidence that hydrodynamics is actively involved in controlling otolith morphogenesis. An implication of this hydrodynamic effect is that otolith self-assembly is mediated by the balance between Brownian motion and cilia-driven flow. More generally, this flow feature highlights an alternative biological strategy for controlling particle localization in solution. PMID:21316594

  7. Prevalence of Incidental Clinoid Segment Saccular Aneurysms.

    PubMed

    Revilla-Pacheco, Francisco; Escalante-Seyffert, María Cecilia; Herrada-Pineda, Tenoch; Manrique-Guzman, Salvador; Perez-Zuniga, Irma; Rangel-Suarez, Sergio; Rubalcava-Ortega, Johnatan; Loyo-Varela, Mauro

    2018-04-12

    Clinoid segment aneurysms are cerebral vascular lesions recently described in the neurosurgical literature. They arise from the clinoid segment of the internal carotid artery, which is the segment limited rostrally by the dural carotid ring and caudally, by the carotid-oculomotor membrane. Even although clinoid segment aneurysms represent a common incidental finding in magnetic resonance studies, its prevalence has not been yet reported. To determine the prevalence of incidental clinoid segment saccular aneurysms diagnosed by magnetic resonance imaging as well as their anatomic architecture and their association with smoking, arterial hypertension, age, and sex of patients. A total of 500 patients were prospectively studied with magnetic resonance imaging time-of-flight sequence and angioresonance with contrast material, to search for incidental saccular intracranial aneurysms. The site of primary interest was the clinoid segment, but the presence of aneurysms in any other location was determined for comparison. The relation among the presence of clinoid segment aneurysms, demographic factors, and secondary diagnosis of arterial hypertension, smoking, and other vascular/neoplastic cerebral lesions was analyzed. We found a global prevalence of incidental aneurysms of 7% (95% confidence interval, 5-9), with a prevalence of clinoid segment aneurysms of 3% (95% confidence interval, 2-4). Univariate logistic regression analysis showed a statistically significant relationship among incidental aneurysms, systemic arterial hypertension (P = 0.000), and smoking (P = 0.004). In the studied population, incidental clinoid segment aneurysms constitute the variety with highest prevalence. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Development and Application of Otoliths as Paleoclimate Proxies.

    NASA Astrophysics Data System (ADS)

    Andrus, C. T.; Crowe, D. E.; Sandweiss, D. H.

    2001-12-01

    Otoliths are small (<20 mm) accretionary aragonite ear structures in teleost fish. Otolith aragonite is precipitated in oxygen isotope equilibrium with ambient water, thus otolith δ 18O values are proxies for temperature. Otolith growth is marked by concentric bands that reflect, in most species, daily to annual growth periods. New techniques of high-resolution CO2 extraction from aragonite, such as laser microprobe and micromill, permit measurement of δ 18O at temporal resolutions fine enough to discern seasonal climate variation. Otoliths are abundant in most maritime archaeological sites and are also found as fossils as old as the Jurassic. Gross otolith morphology is taxon-specific, often permitting identification to the species level. Depending on the behavior and natural history of each species, conditions within different environments and habitats may be recorded in the isotope chemistry. These environments range from abyssal oceanic depths to mid-continental rivers and lakes, but the most abundant archaeological otoliths are from fish that inhabit shallow coastal waters. Unlike most proxies that are sessile, fish are pelagic and thus record a paleoclimate record indicative of the range of habitats in which the individual grew. In fish with well-understood life histories, such as most economically significant species, this permits evaluation of multiple habitat climates through ontogeny as recorded in the incremental growth. In species with a defined home range (i.e. non-migratory), an integrated temperature history of region can be reconstructed from the δ 18O values, thus avoiding micro-environmental biases sometimes associated with sessile proxies. An example of such use of otoliths is our recent analyses of δ 18O profiles from mid-Holocene archaeological sites in coastal Peru that reflect sea surface temperature (SST) histories. This is an area of coast that lacks more traditional proxies, such as coral, yet is central to the understanding of a

  9. A method of mounting multiple otoliths for beam-based microchemical analyses

    USGS Publications Warehouse

    Donohoe, C.J.; Zimmerman, C.E.

    2010-01-01

    Beam-based analytical methods are widely used to measure the concentrations of elements and isotopes in otoliths. These methods usually require that otoliths be individually mounted and prepared to properly expose the desired growth region to the analytical beam. Most analytical instruments, such as LA-ICPMS and ion and electron microprobes, have sample holders that will accept only one to six slides or mounts at a time. We describe a method of mounting otoliths that allows for easy transfer of many otoliths to a single mount after they have been prepared. Such an approach increases the number of otoliths that can be analyzed in a single session by reducing the need open the sample chamber to exchange slides-a particularly time consuming step on instruments that operate under vacuum. For ion and electron microprobes, the method also greatly reduces the number of slides that must be coated with an electrical conductor prior to analysis. In this method, a narrow strip of cover glass is first glued at one end to a standard microscope slide. The otolith is then mounted in thermoplastic resin on the opposite, free end of the strip. The otolith can then be ground and flipped, if needed, by reheating the mounting medium. After otolith preparation is complete, the cover glass is cut with a scribe to free the otolith and up to 20 small otoliths can be arranged on a single petrographic slide. ?? 2010 The Author(s).

  10. In vitro and in vivo Evaluation of a Shape Memory Polymer Foam-over-Wire Embolization Device Delivered in Saccular Aneurysm Models

    PubMed Central

    Boyle, Anthony J.; Landsman, Todd L.; Wierzbicki, Mark A.; Nash, Landon D.; Hwang, Wonjun; Miller, Matthew W.; Tuzun, Egemen; Hasan, Sayyeda M.; Maitland, Duncan J.

    2015-01-01

    Current endovascular therapies for intracranial saccular aneurysms result in high recurrence rates due to poor tissue healing, coil compaction, and aneurysm growth. We propose treatment of saccular aneurysms using shape memory polymer (SMP) foam to improve clinical outcomes. SMP foam-over-wire (FOW) embolization devices were delivered to in vitro and in vivo porcine saccular aneurysm models to evaluate device efficacy, aneurysm occlusion, and acute clotting. FOW devices demonstrated effective delivery and stable implantation in vitro. In vivo porcine aneurysms were successfully occluded using FOW devices with theoretical volume occlusion values greater than 72% and rapid, stable thrombus formation. PMID:26227115

  11. Use of fish-otolith-length regressions to infer size of double-crested cormorant prey fish from recovered otoliths in Lake Ontario

    USGS Publications Warehouse

    Ross, Robert M.; Johnson, James H.; Adams, Connie M.

    2005-01-01

    To provide a method for estimating fish size from fish otoliths for forensic applications or other predictive uses, morphometric measurements were obtained from three centrarchid fishes (pumpkinseed [Lepomis gibbosus], rock bass [Ambloplites rupestris], and smallmouth bass [Micropterus dolomieu]), two percids (yellow perch [Perca flavescens] and walleye [Stizostedion vitreum]), and one clupeid (alewife [Alosa pseudoharengus]) from the eastern basin of Lake Ontario. These species are the principal or economically important prey of Double-crested Cormorants (Phalacrocorax auritus), whose diet can be determined from regurgitated digestive pellets containing fish otoliths. A fuller understanding of the ecosystem roles of cormorants requires estimation of prey-fish size, obtainable from regressions of otolith length on fish length. Up to 100 fish of each species were collected from eastern Lake Ontario and measured for total length and otolith length. Least-squares regressions of otolith length on fish length were calculated for all species, covering life-stage ranges of immature fish to large adults near maximum known size. The regressions with 95% confidence intervals may be applicable outside the Lake Ontario ecosystem if used with caution.

  12. Validation of Centrifugation as a Countermeasure for Otolith Deconditioning During Spaceflight

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.

    2004-01-01

    In contrast to previous studies, post-flight measures of both otolith-ocular function and orthostatic tolerance were unimpaired in four payload crewmembers exposed to artificial gravity generated by in-flight centrifugation during the Neurolab (STS-90) mission. The aim of the current proposal is to obtain control measures of otolith and orthostatic function following short duration missions, utilizing the centrifugation and autonomic testing techniques developed for the Neurolab mission, from astronauts who have not been exposed to in-flight centrifugation. This will enable a direct comparison with data obtained from the Neurolab crew. Deficits in otolith-ocular reflexes would support the hypothesis that intermittent exposure to in-flight centripetal acceleration is a countermeasure for otolith deconditioning. Furthermore, a correlation between post-flight otolith deconditioning and orthostatic intolerance would establish an otolithic basis for this condition.

  13. Low-Frequency Otolith Function in Microgravity: A Re-Evaluation of the Otolith Tilt-Translation Reinterpretation (OTTR) Hypothesis

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.; Cohen, Bernard; Clement, Gilles; Raphan, Theodore

    1999-01-01

    On Earth, the low-frequency afferent signal from the otoliths encodes head tilt with respect to the gravitational vertical, and the higher frequency components reflect both tilt and linear acceleration of the head. In microgravity, static tilt of the head does not influence otolith output, and the relationship between sensory input from the vestibular organs, and the visual, proprioceptive and somatosensory systems, would be disrupted. Several researchers have proposed that in 0-g this conflict may induce a reinterpretation of all otolith signals by the brain to encode only linear translation (otolith tilt-translation reinterpretation or OTTR). Ocular counter-rolling (OCR) is a low-frequency otolith-mediated reflex, which generates compensatory torsional eye movements (rotation about the visual axis) towards the spatial vertical during static roll tilt with a gain of approximately 10%. Transient linear acceleration and off-axis centrifugation at a constant angular velocity can also generate OCR. According to the OTTR hypothesis, OCR should be reduced in microgravity, and immediately upon return from a 0-g environment. Results to date have been inconclusive. OCR was reduced following the 10 day Spacelab-1 mission in response to leftward roll tilts (28-56% in 3 subjects and unchanged in one subject), and sinusoidal linear oscillations at 0.4 and 0.8 Hz. OCR gain declined 70% in four monkeys following a 14 day COSMOS mission. Following a 30 day MIR mission OCR gain decreased in one astronaut, but increased in two others following a 180 day mission. We have studied the affect of microgravity on low-frequency otolith function as part of a larger study of the interaction of vision and the vestibular system. This experiment (E-047) involved off-axis centrifugation of payload crewmembers and flew aboard the recent Neurolab mission (STS 90). Presented below are preliminary results focusing on perception and the OCR response during both centrifugation and static tilt.

  14. Plasticity of the human otolith-ocular reflex

    NASA Technical Reports Server (NTRS)

    Wall, C. 3rd; Smith, T. R.; Furman, J. M.

    1992-01-01

    The eye movement response to earth vertical axis rotation in the dark, a semicircular canal stimulus, can be altered by prior exposure to combined visual-vestibular stimuli. Such plasticity of the vestibulo-ocular reflex has not been described for earth horizontal axis rotation, a dynamic otolith stimulus. Twenty normal human subjects underwent one of two types of adaptation paradigms designed either to attenuate or enhance the gain of the semicircular canal-ocular reflex prior to undergoing otolith-ocular reflex testing with horizontal axis rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about a vertical axis with a 0.2 Hz optokinetic stripe pattern that was deliberately mismatched in peak velocity. Pre- and post-adaptation horizontal axis rotations were at 60 degrees/s in the dark and produced a modulation in the slow component velocity of nystagmus having a frequency of 0.17 Hz due to putative stimulation of the otolith organs. Results showed that the magnitude of this modulation component response was altered in a manner similar to the alteration in semicircular canal-ocular responses. These results suggest that physiologic alteration of the vestibulo-ocular reflex using deliberately mismatched visual and semicircular canal stimuli induces changes in both canal-ocular and otolith-ocular responses. We postulate, therefore, that central nervous system pathways responsible for controlling the gains of canal-ocular and otolith-ocular reflexes are shared.

  15. Do vestibular otolith organs participate in human orthostatic blood pressure control?

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.; Cothron, Adriena V.; Wasmund, Stephen L.; Wasmund, Wendy L.; Carter, Robert 3rd; Muenter, Nicolette K.; Smith, Michael L.

    2002-01-01

    We hypothesized that vestibular otolith organ stimulation contributes to human orthostatic responses. Twelve subjects underwent three 60 degrees upright tilts: (1) with the neck flexed from 0 degrees to 30 degrees relative to the body during 60 degrees tilt, such that the head moved from horizontal to 90 degrees above horizontal (0 to 1 Gz otolith stimulation); (2) with the head and body aligned, such that they tilted together to 60 degrees (0 to 0.87 Gz otolith stimulation); and (3) with the neck flexed 30 degrees relative to the body during supine conditions, and the neck then extended to -30 degrees during 60 degrees body tilting, such that the head remained at 30 degrees above horizontal throughout body tilting (constant 0.5 Gz otolith stimulation). All three tilt procedures increased thoracic impedance, sympathetic nerve activity (N = 8 of 12), arterial pressure, and heart rate relative to supine conditions (all P < 0.04). Within the first 20 s of tilt, arterial pressure increased most obviously in the 0 to 1 Gz otolith condition. Thoracic impedance tended to increase more in otolith-constant conditions, but no dependent variable differed significantly between tilt conditions, and no significant time x tilt interactions emerged. Otolith inputs may contribute to early transient adjustments to orthostasis. However, lack of significant main effects of tilt condition and time x tilt interactions suggests that potential otolith effects on the variables we studied are relatively subtle and ephemeral, or that other mechanisms compensate for a lack of change in otolith input with orthostasis.

  16. A system for saccular intracranial aneurysm analysis and virtual stent planning

    NASA Astrophysics Data System (ADS)

    Baloch, Sajjad; Sudarsky, Sandra; Zhu, Ying; Mohamed, Ashraf; Geiger, Berhard; Dutta, Komal; Namburu, Durga; Nias, Puthenveettil; Martucci, Gary; Redel, Thomas

    2012-02-01

    Recent studies have found correlation between the risk of rupture of saccular aneurysms and their morphological characteristics, such as volume, surface area, neck length, among others. For reliably exploiting these parameters in endovascular treatment planning, it is crucial that they are accurately quantified. In this paper, we present a novel framework to assist physicians in accurately assessing saccular aneurysms and efficiently planning for endovascular intervention. The approach consists of automatically segmenting the pathological vessel, followed by the construction of its surface representation. The aneurysm is then separated from the vessel surface through a graph-cut based algorithm that is driven by local geometry as well as strong prior information. The corresponding healthy vessel is subsequently reconstructed and measurements representing the patient-specific geometric parameters of pathological vessel are computed. To better support clinical decisions on stenting and device type selection, the placement of virtual stent is eventually carried out in conformity with the shape of the diseased vessel using the patient-specific measurements. We have implemented the proposed methodology as a fully functional system, and extensively tested it with phantom and real datasets.

  17. Bisphenol A induces otolith malformations during vertebrate embryogenesis

    PubMed Central

    2011-01-01

    Background The plastic monomer and plasticizer bisphenol A (BPA), used for manufacturing polycarbonate plastic and epoxy resins, is produced at over 2.5 million metric tons per year. Concerns have been raised that BPA acts as an endocrine disruptor on both developmental and reproductive processes and a large body of evidence suggests that BPA interferes with estrogen and thyroid hormone signaling. Here, we investigated BPA effects during embryonic development using the zebrafish and Xenopus models. Results We report that BPA exposure leads to severe malformations of the otic vesicle. In zebrafish and in Xenopus embryos, exposure to BPA during the first developmental day resulted in dose-dependent defects in otolith formation. Defects included aggregation, multiplication and occasionally failure to form otoliths. As no effects on otolith development were seen with exposure to micromolar concentrations of thyroid hormone, 17-ß-estradiol or of the estrogen receptor antagonist ICI 182,780 we conclude that the effects of BPA are independent of estrogen receptors or thyroid-hormone receptors. Na+/K+ ATPases are crucial for otolith formation in zebrafish. Pharmacological inhibition of the major Na+/K+ ATPase with ouabain can rescue the BPA-induced otolith phenotype. Conclusions The data suggest that the spectrum of BPA action is wider than previously expected and argue for a systematic survey of the developmental effects of this endocrine disruptor. PMID:21269433

  18. Bisphenol A induces otolith malformations during vertebrate embryogenesis.

    PubMed

    Gibert, Yann; Sassi-Messai, Sana; Fini, Jean-Baptiste; Bernard, Laure; Zalko, Daniel; Cravedi, Jean-Pierre; Balaguer, Patrick; Andersson-Lendahl, Monika; Demeneix, Barbara; Laudet, Vincent

    2011-01-26

    The plastic monomer and plasticizer bisphenol A (BPA), used for manufacturing polycarbonate plastic and epoxy resins, is produced at over 2.5 million metric tons per year. Concerns have been raised that BPA acts as an endocrine disruptor on both developmental and reproductive processes and a large body of evidence suggests that BPA interferes with estrogen and thyroid hormone signaling. Here, we investigated BPA effects during embryonic development using the zebrafish and Xenopus models. We report that BPA exposure leads to severe malformations of the otic vesicle. In zebrafish and in Xenopus embryos, exposure to BPA during the first developmental day resulted in dose-dependent defects in otolith formation. Defects included aggregation, multiplication and occasionally failure to form otoliths. As no effects on otolith development were seen with exposure to micromolar concentrations of thyroid hormone, 17-ß-estradiol or of the estrogen receptor antagonist ICI 182,780 we conclude that the effects of BPA are independent of estrogen receptors or thyroid-hormone receptors. Na+/K+ ATPases are crucial for otolith formation in zebrafish. Pharmacological inhibition of the major Na+/K+ ATPase with ouabain can rescue the BPA-induced otolith phenotype. The data suggest that the spectrum of BPA action is wider than previously expected and argue for a systematic survey of the developmental effects of this endocrine disruptor.

  19. Optical manipulation for optogenetics: otoliths manipulation in zebrafish (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Favre-Bulle, Itia A.; Scott, Ethan; Rubinsztein-Dunlop, Halina

    2016-03-01

    Otoliths play an important role in Zebrafish in terms of hearing and sense of balance. Many studies have been conducted to understand its structure and function, however the encoding of its movement in the brain remains unknown. Here we developed a noninvasive system capable of manipulating the otolith using optical trapping while we image its behavioral response and brain activity. We'll also present our tools for behavioral response detection and brain activity mapping. Acceleration is sensed through movements of the otoliths in the inner ear. Because experimental manipulations involve movements, electrophysiology and fluorescence microscopy are difficult. As a result, the neural codes underlying acceleration sensation are poorly understood. We have developed a technique for optically trapping otoliths, allowing us to simulate acceleration in stationary larval zebrafish. By applying forces to the otoliths, we can elicit behavioral responses consistent with compensation for perceived acceleration. Since the animal is stationary, we can use calcium imaging in these animals' brains to identify the functional circuits responsible for mediating responses to acceleration in natural settings.

  20. Stock discrimination of spottedtail goby ( Synechogobius ommaturus) in the Yellow Sea by analysis of otolith shape

    NASA Astrophysics Data System (ADS)

    Wang, Yingjun; Ye, Zhenjiang; Liu, Qun; Cao, Liang

    2011-01-01

    Otolith shape is species specific and is an ideal marker of fish population affiliation. In this study, otolith shape of spottedtail goby Synechogobius ommaturus is used to identify stocks in different spawning locations in the Yellow Sea. The main objectives of this study are to explore the potential existence of local stocks of spottedtail goby in the Yellow Sea by analysis of otolith shape, and to investigate ambient impacts on otolith shape. Spottedtail goby was sampled in five locations in the Yellow Sea in 2007 and 2008. Otoliths are described using variables correlated to size (otolith area, perimeter, length, width, and weight) and shape (rectangularity, circularity, and 20 Fourier harmonics). Only standardized otolith variables are used so that the effect of otolith size on the shape variables could be eliminated. There is no significant difference among variables of sex, year, and side (left and right). However, the otolith shapes of the spring stocks and the autumn stocks differ significantly. Otolith shape differences are greater among locations than between years. Correct classification rate of spottedtail goby with the otolith shape at different sampling locations range from 29.7%-77.4%.

  1. Provenance of whitefish in the Gulf of Bothnia determined by elemental analysis of otolith cores

    NASA Astrophysics Data System (ADS)

    Lill, J.-O.; Finnäs, V.; Slotte, J. M. K.; Jokikokko, E.; Heimbrand, Y.; Hägerstrand, H.

    2018-02-01

    The strontium concentration in the core of otoliths was used to determine the provenance of whitefish found in the Gulf of Bothnia, Baltic Sea. To that end, a database of strontium concentration in fish otoliths representing different habitats (sea, river and fresh water) had to be built. Otoliths from juvenile whitefish were therefore collected from freshwater ponds at 5 hatcheries, from adult whitefish from 6 spawning sites at sea along the Finnish west coast, and from adult whitefish ascending to spawn in the Torne River, in total 67 otoliths. PIXE was applied to determine the elemental concentrations in these otoliths. While otoliths from the juveniles raised in the freshwater ponds showed low but varying strontium concentrations (194-1664 μg/g,), otoliths from sea-spawning fish showed high uniform strontium levels (3720-4333 μg/g). The otolith core analysis of whitefish from Torne River showed large variations in the strontium concentrations (1525-3650 μg/g). These otolith data form a database to be used for provenance studies of wild adult whitefish caught at sea. The applicability of the database was evaluated by analyzing the core of polished otoliths from 11 whitefish from a test site at sea in the Larsmo archipelago. Our results show that by analyzing strontium in the otolith core, we can differentiate between hatchery-origin and wild-origin whitefish, but not always between river and sea spawning whitefish.

  2. Impact of wall thickness and saccular geometry on the computational wall stress of descending thoracic aortic aneurysms.

    PubMed

    Shang, Eric K; Nathan, Derek P; Sprinkle, Shanna R; Fairman, Ronald M; Bavaria, Joseph E; Gorman, Robert C; Gorman, Joseph H; Jackson, Benjamin M

    2013-09-10

    Wall stress calculated using finite element analysis has been used to predict rupture risk of aortic aneurysms. Prior models often assume uniform aortic wall thickness and fusiform geometry. We examined the effects of including local wall thickness, intraluminal thrombus, calcifications, and saccular geometry on peak wall stress (PWS) in finite element analysis of descending thoracic aortic aneurysms. Computed tomographic angiography of descending thoracic aortic aneurysms (n=10 total, 5 fusiform and 5 saccular) underwent 3-dimensional reconstruction with custom algorithms. For each aneurysm, an initial model was constructed with uniform wall thickness. Experimental models explored the addition of variable wall thickness, calcifications, and intraluminal thrombus. Each model was loaded with 120 mm Hg pressure, and von Mises PWS was computed. The mean PWS of uniform wall thickness models was 410 ± 111 kPa. The imposition of variable wall thickness increased PWS (481 ± 126 kPa, P<0.001). Although the addition of calcifications was not statistically significant (506 ± 126 kPa, P=0.07), the addition of intraluminal thrombus to variable wall thickness (359 ± 86 kPa, P ≤ 0.001) reduced PWS. A final model incorporating all features also reduced PWS (368 ± 88 kPa, P<0.001). Saccular geometry did not increase diameter-normalized stress in the final model (77 ± 7 versus 67 ± 12 kPa/cm, P=0.22). Incorporation of local wall thickness can significantly increase PWS in finite element analysis models of thoracic aortic aneurysms. Incorporating variable wall thickness, intraluminal thrombus, and calcifications significantly impacts computed PWS of thoracic aneurysms; sophisticated models may, therefore, be more accurate in assessing rupture risk. Saccular aneurysms did not demonstrate a significantly higher normalized PWS than fusiform aneurysms.

  3. Otolith and Vertical Canal Contributions to Dynamic Postural Control

    NASA Technical Reports Server (NTRS)

    Black, F. Owen

    1999-01-01

    The objective of this project is to determine: 1) how do normal subjects adjust postural movements in response to changing or altered otolith input, for example, due to aging? and 2) how do patients adapt postural control after altered unilateral or bilateral vestibular sensory inputs such as ablative inner ear surgery or ototoxicity, respectively? The following hypotheses are under investigation: 1) selective alteration of otolith input or abnormalities of otolith receptor function will result in distinctive spatial, frequency, and temporal patterns of head movements and body postural sway dynamics. 2) subjects with reduced, altered, or absent vertical semicircular canal receptor sensitivity but normal otolith receptor function or vice versa, should show predictable alterations of body and head movement strategies essential for the control of postural sway and movement. The effect of altered postural movement control upon compensation and/or adaptation will be determined. These experiments provide data for the development of computational models of postural control in normals, vestibular deficient subjects and normal humans exposed to unusual force environments, including orbital space flight.

  4. Age estimation of burbot using pectoral fin rays, brachiostegal rays, and otoliths

    USGS Publications Warehouse

    Klein, Zachary B.; Terrazas, Marc M.; Quist, Michael C.

    2014-01-01

    Throughout much of its native distribution, burbot (Lota lota) is a species of conservation concern. Understanding dynamic rate functions is critical for the effective management of sensitive burbot populations, which necessitates accurate and precise age estimates. Managing sensitive burbot populations requires an accurate and precise non-lethal alternative. In an effort to identify a non-lethal ageing structure, we compared the precision of age estimates obtained from otoliths, pectoral fin rays, dorsal fin rays and branchiostegal rays from 208 burbot collected from the Green River drainage, Wyoming. Additionally, we compared the accuracy of age estimates from pectoral fin rays, dorsal fin rays and branchiostegal rays to those of otoliths. Dorsal fin rays were immediately deemed a poor ageing structure and removed from further analysis. Age-bias plots of consensus ages derived from branchiostegal rays and pectoral fin rays were appreciably different from those obtained from otoliths. Exact agreement between readers and reader confidence was highest for otoliths and lowest for branchiostegal rays. Age-bias plots indicated that age estimates obtained from branchiostegal rays and pectoral fin rays were substantially different from age estimates obtained from otoliths. Our results indicate that otoliths provide the most precise age estimates for burbot.

  5. Nitrogen isotopic analysis of carbonate-bound organic matter in modern and fossil fish otoliths

    NASA Astrophysics Data System (ADS)

    Lueders-Dumont, Jessica A.; Wang, Xingchen T.; Jensen, Olaf P.; Sigman, Daniel M.; Ward, Bess B.

    2018-03-01

    The nitrogen isotopic composition (δ15N) of otolith-bound organic matter (OM) is a potential source of information on dietary history of bony fishes. In contrast to the δ15N of white muscle tissue, the most commonly used tissue for ecological studies, the δ15N of otolith-bound OM (δ15Noto) provides a record of whole life history. More importantly, δ15Noto can be measured in contexts where tissue is not available, for example, in otolith archives and sedimentary deposits. The utility and robustness of otolith δ15N analysis was heretofore limited by the low N content of otoliths, which precluded the routine measurement of individual otoliths as well as the thorough cleaning of otolith material prior to analysis. Here, we introduce a new method based on oxidation to nitrate followed by bacterial conversion to N2O. The method requires 200-fold less N compared to traditional combustion approaches, allowing for thorough pre-cleaning and replicated analysis of individual otoliths of nearly any size. Long term precision of δ15Noto is 0.3‰. Using an internal standard of Atlantic cod (Gadus morhua) otoliths, we examine the parameters of the oxidative cleaning step with regard to oxidant (potassium persulfate and sodium hypochlorite), temperature, and time. We also report initial results that verify the usefulness of δ15Noto for ecological studies. For three salmonid species, left and right otoliths from the same fish are indistinguishable. We find that the δ15Noto of pink salmon (Oncorhynchus gorbuscha) is related to the size of the fish for this species. We find that intra-cohort δ15Noto standard deviation for wild pink salmon, farmed brown trout (Salmo trutta), and farmed rainbow trout (Oncorhynchus mykiss) are all 0.4‰ or less, suggesting that δ15Noto will be valuable for population-level studies. Lastly, our protocol yields reproducible data for both δ15Noto and otolith N content in 17th century Atlantic cod otoliths. We find that 17th century cod are

  6. The imprint of anthropogenic CO2 emissions on Atlantic bluefin tuna otoliths

    NASA Astrophysics Data System (ADS)

    Fraile, Igaratza; Arrizabalaga, Haritz; Groeneveld, Jeroen; Kölling, Martin; Santos, Miguel Neves; Macías, David; Addis, Piero; Dettman, David L.; Karakulak, Saadet; Deguara, Simeon; Rooker, Jay R.

    2016-06-01

    Otoliths of Atlantic bluefin tuna (Thunnus thynnus) collected from the Mediterranean Sea and North Atlantic Ocean were analyzed to evaluate changes in the seawater isotopic composition over time. We report an annual otolith δ13C record that documents the magnitude of the δ13C depletion in the Mediterranean Sea between 1989 and 2010. Atlantic bluefin tuna in our sample (n = 632) ranged from 1 to 22 years, and otolith material corresponding to the first year of life (back-calculated birth year) was used to reconstruct seawater isotopic composition. Otolith δ18O remained relatively stable between 1989 and 2010, whereas a statistically significant decrease in δ13C was detected across the time interval investigated, with a rate of decline of 0.05‰ yr- 1 (- 0.94‰ depletion throughout the recorded period). The depletion in otolith δ13C over time was associated with the oceanic uptake of anthropogenically derived CO2.

  7. The Regional Patterns of Chemical Composition in the Otolith Core of Larval Fish

    NASA Astrophysics Data System (ADS)

    Chang, M. Y.; Geffen, A. J.; Nash, R. D. M.; Clemmesen, C.

    2012-04-01

    The elemental composition of fish otoliths can record the environmental information because once a trace element is deposited in the otolith; it presents a permanent record of the environmental conditions experienced by the fish at a particular time. The elemental signature of the otolith nucleus, the area lying within the first annual growth ring, is likely to be characteristic of the nursery areas of the species, and could be used as biological tracer for tracking origin and dispersal. However, ocean acidification may alter otolith growth and element incorporation, and it is important to establish baseline information about the sources of variation - both biotic and abiotic. The objectives of this study, as part of the wider CalMarO network, is to examine the regional differences in the otolith cores of selected fish species, contrast these differences with those measured between these same species in areas where their larvae co-exist and to find out the maternal effect to the chemical composition during the first forming of otoliths. The laboratory and field experiments were included to produce otolith material reflecting the maternal and regional patterns. Otolith composition was measured using laser-ablation ICPMS. For clarifying the regional patterns, juveniles from six locations and seven spawning groups along the west of the British Isles and larvae from the North Sea were sampled to distinguish the origin of spawning herring. There are three main nursery-ground groups, the Irish Sea, Scottish sea lochs and the Minch, contributing to the spawning herring in the west of the British Isles according to the otolith elemental composition data. However, the spawning origin of the North Sea herring larvae was still unclear. The otolith concentrations of Li, Na, Mg, Mn, Cu, Ru and Sr were significantly different among nursery-ground populations. Together with length-at-age data, at least two nursery-ground groups contributed to each spawning population. The

  8. Mass-marking of otoliths of lake trout sac fry by temperature manipulation

    USGS Publications Warehouse

    Bergstedt, Roger A.; Eshenroder, Randy L.; Bowen, Charles; Seelye, James G.; Locke, Jeffrey C.

    1990-01-01

    The otoliths of 676,000 sac fry of lake trout Salvelinus namaycush in 1986, and of 1,100,000 in 1987, were marked by daily manipulation of water temperature. The fish were stocked into Lake Huron in the spring. Otolith marks consisted of groups of daily growth rings accentuated into recognizable patterns by steadily raising and lowering the temperature about 10 degrees C (from a base of 1-4 degrees C) over 14 h. In 1987, groups of marked and control fish were held for 6 months. The otoliths were removed from samples of the fish, embedded in epoxy, thin sectioned by grinding in the sagittal plane, etched, and viewed by using a combination of a compound microscope (400-1000x) and a video enhancement system. One or more readable otolith sections were obtained from 39 of a sample of 40 fish. Three independent readers examined 41 otoliths for marks and correctly classified the otoliths, with accuracies of 85, 98, and 100%, as being from marked or unmarked fish. The exact number of rings in a recognizable pattern sometimes differed from the number of temperature cycles to which the fish were exposed. Counts of daily rings within groups of six rings varied less than counts within groups of rings.

  9. Mass-marking of otoliths of lake trout sac fry by temperature manipulation

    USGS Publications Warehouse

    Bergstedt, R.A.; Eshenroder, R.L.; Bowen, C. II; Seelye, J.G.; Locke, J.C.; Parker, N.C.; Giorgi, A.E.; Heidenger, R.C.; Jester, D. B.; Prince, E.D.; Winans, G.A.

    1990-01-01

    The otoliths of 676,000 sac fry of lake trout Salvelinus namaycush in 1986, and of 1,100,000 in 1987, were marked by daily manipulation of water temperature. The fish were stocked into Lake Huron in the spring. Otolith marks consisted of groups of daily growth rings accentuated into recognizable patterns by steadily raising and lowering the temperature about IOA?C (from a base of 1-4A?C) over 14h. In 1987, groups of marked and control fish were held for 6 months. The otoliths were removed from samples of the fish, embedded in epoxy, thin-sectioned by grinding in the sagittal plane, etched, and viewed by using a combination of a compound microscope (400-1000x) and a video enhancement system. One or more readable otolith sections were obtained from 39 of a sample of 40 fish. Three independent readers examined 41 otoliths for marks and correctly classified the otoliths, with accuracies of 85, 98,and 100%, as being from marked or unmarked fish. The exact number of rings in a recognizable pattern sometimes differed from the number of temperature cycles to which the fish were exposed. Counts of daily rings within groups of six rings varied less than counts within groups of three rings.

  10. Migratory Patterns of American Shad (Alosa Sapidissima) Revealed by Natural Geochemical Tags in Otoliths

    DTIC Science & Technology

    2007-02-01

    cyanoacrylic glue. Mounted otoliths were ground to the midplane using fine-grained lapping film. Ground otoliths were examined for oxytetracycline marks...were mounted and ground to the midplane with fine-grained lapping film. Ground otoliths were examined for oxytetracycline marks under a UV light source

  11. Swimming behaviour and calcium incorporation into inner ear otoliths of fish after vestibular nerve transection

    NASA Astrophysics Data System (ADS)

    Edelmann, E.; Anken, R. H.; Rahmann, H.

    2004-01-01

    Previous investigations on neonate swordtail fish (Xiphophorus helleri) revealed that otolithic calcium incorporation (visualized using the calcium tracer alizarin complexone) and thus otolith growth had ceased after nerve transection, supporting a hypothesis according to which the gravity-dependent otolith growth is regulated neuronally. Subsequent investigations on larval cichlid fish (Oreochromis mossambicus) yielded contrasting results, repeatedly depending on the particular batch of cichlids investigated. Like most neonate swordtails, Type I cichlids revealed a stop of calcium incorporation after unilateral vestibular nerve transection. Their behaviour after transection was normal, and the otolithic calcium incorporation in controls of the same batch was symmetric. In Type II cichlids, however, vestibular nerve transection had no effect on otolithic calcium incorporation. They behaved kinetotically after transection (this kind of kinetosis was qualitatively similar to the swimming behaviour exhibited by larval cichlids during microgravity in the course of parabolic aircraft flights). The otolithic calcium incorporation in control animals was asymmetric. These results show that the effects of vestibular nerve transection as well as the efficacy of the mechanism, which regulates otolith growth/otolithic calcium incorporation, are - depending on the particular batch of animals - genetically predispositioned. In conclusion, the regulation of otolithic calcium incorporation is guided neuronally, in part via the vestibular nerve and, in part, via a further pathway, which remains to be addressed in the course of future investigations.

  12. Swimming Behavior and Calcium Incorporation into inner Ear Otoliths of Fish after vestibular Nerve Transection

    NASA Astrophysics Data System (ADS)

    Edelmann, E.; Anken, R.; Rahmann, H.

    Previous investigations on neonate swordtail fish (Xiphophorus helleri) revealed that otolithic calcium incorporation (visualized using the calcium-tracer alizarin- complexone) and thus otolith growth had ceased after nerve transection, supporting a hypothesis according to which the gravity-dependent otolith growth is regulated neuronally. Subsequent investigations on larval cichlid fish (Oreochromis mossambicus) yielded contrasting results, repeatedly depending on the particular batch of cichlids investigated: Like neonate swordtails, type I cichlids revealed a stop of calcium incorporation after unilateral vestibular nerve transection. Their behaviour after transection was normal and the otolithic calcium incorporation in controls of the same batch was symmetrical. In type II cichlids, however, vestibular nerve transection had no effect on otolithic calcium incorporation. They behaved kinetotically after transection (this kind of kinetosis was qualitatively similar to the swimming behaviour exhibited by larval cichlids during microgravity in the course of parabolic aircraft flights). The otolithic calcium incorporation in control animals was asymmetrical. These results stongly suggest that the effects of vestibular nerve transection as well as the efficacy of the mechanism, which regulates otolith growth/otolithic calcium incorporation, are - depending on the particular batch of animals - genetically predispositioned. Thus, it is assumed that the mechanisms regulating otolith growth and equlibibrium differ in the two types of cichlid fish. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  13. Spatial and ontogenetic variability in the chemical composition of juvenile common sole ( Solea solea) otoliths

    NASA Astrophysics Data System (ADS)

    Tanner, S. E.; Vasconcelos, R. P.; Reis-Santos, P.; Cabral, H. N.; Thorrold, S. R.

    2011-01-01

    A description of variations in the chemical composition of fish otoliths at different spatial scales and life history stages is a prerequisite for their use as natural tags in fish population connectivity and migration studies. Otolith geochemistry of juvenile common sole ( Solea solea), a marine migrant species collected in six Portuguese estuaries was examined. Elemental ratios (Mg:Ca, Mn:Ca, Cu:Ca, Sr:Ca, Ba:Ca, Pb:Ca) were analysed in two zones of the right otolith (corresponding to late larval and juvenile stages) using laser ablation inductively coupled plasma mass spectrometry (ICP-MS). Stable carbon and oxygen isotopes (δ 13C and δ 18O) were determined in left otoliths using isotopic ratio monitoring mass spectrometry (irm-MS). Significant differences in otolith geochemical signatures were found among estuaries, among sites within estuaries and between otolith zones. Several elemental ratios (Mg:Ca, Mn:Ca, Cu:Ca and Sr:Ca) showed consistent patterns between otolith zones and were likely influenced by environmental factors and ontogenetic effects associated with physiological changes during metamorphosis. Assignment of individuals to their collection estuary based on the otolith geochemical signatures was more accurate at the site level (81%) than among estuaries (69%). Site temperature was not correlated with any of the elemental or isotope ratios, but salinity was significantly correlated with Ba:Ca, δ 13C and δ 18O. Observed spatial variations among estuaries and sites within estuaries indicate that geochemical signatures in otoliths are accurate natural tags of estuarine habitat in common sole. Nevertheless, the significant variations observed between otolith zones should be taken into account in the design of population connectivity studies.

  14. Decreased otolith-mediated vestibular response in 25 astronauts induced by long-duration spaceflight

    PubMed Central

    Hallgren, Emma; Kornilova, Ludmila; Fransen, Erik; Glukhikh, Dmitrii; Moore, Steven T.; Clément, Gilles; Van Ombergen, Angelique; MacDougall, Hamish; Naumov, Ivan

    2016-01-01

    The information coming from the vestibular otolith organs is important for the brain when reflexively making appropriate visual and spinal corrections to maintain balance. Symptoms related to failed balance control and navigation are commonly observed in astronauts returning from space. To investigate the effect of microgravity exposure on the otoliths, we studied the otolith-mediated responses elicited by centrifugation in a group of 25 astronauts before and after 6 mo of spaceflight. Ocular counterrolling (OCR) is an otolith-driven reflex that is sensitive to head tilt with regard to gravity and tilts of the gravito-inertial acceleration vector during centrifugation. When comparing pre- and postflight OCR, we found a statistically significant decrease of the OCR response upon return. Nine days after return, the OCR was back at preflight level, indicating a full recovery. Our large study sample allows for more general physiological conclusions about the effect of prolonged microgravity on the otolith system. A deconditioned otolith system is thought to be the cause of several of the negative effects seen in returning astronauts, such as spatial disorientation and orthostatic intolerance. This knowledge should be taken into account for future long-term space missions. PMID:27009158

  15. Adaptation of orientation vectors of otolith-related central vestibular neurons to gravity.

    PubMed

    Eron, Julia N; Cohen, Bernard; Raphan, Theodore; Yakushin, Sergei B

    2008-09-01

    Behavioral experiments indicate that central pathways that process otolith-ocular and perceptual information have adaptive capabilities. Because polarization vectors of otolith afferents are directly related to the electro-mechanical properties of the hair cell bundle, it is unlikely that they change their direction of excitation. This indicates that the adaptation must take place in central pathways. Here we demonstrate for the first time that otolith polarization vectors of canal-otolith convergent neurons in the vestibular nuclei have adaptive capability. A total of 10 vestibular-only and vestibular-plus-saccade neurons were recorded extracellularly in two monkeys before and after they were in side-down positions for 2 h. The spatial characteristics of the otolith input were determined from the response vector orientation (RVO), which is the projection of the otolith polarization vector, onto the head horizontal plane. The RVOs had no specific orientation before animals were in side-down positions but moved toward the gravitational axis after the animals were tilted for extended periods. Vector reorientations varied from 0 to 109 degrees and were linearly related to the original deviation of the RVOs from gravity in the position of adaptation. Such reorientation of central polarization vectors could provide the basis for changes in perception and eye movements related to prolonged head tilts relative to gravity or in microgravity.

  16. Effect of ocean acidification on otolith development in larvae of a tropical marine fish

    NASA Astrophysics Data System (ADS)

    Munday, P. L.; Hernaman, V.; Dixson, D. L.; Thorrold, S. R.

    2011-03-01

    Calcification in many invertebrate species is predicted to decline due to ocean acidification. The potential effects of elevated pCO2 and reduced carbonate saturation state on other species, such as fish, are less well understood. Fish otoliths (earbones) are composed of aragonite, and thus, might be susceptible to either the reduced availability of carbonate ions in seawater at low pH, or to changes in extracellular concentrations of bicarbonate and carbonate ions caused by acid-base regulation in fish exposed to high pCO2. We reared larvae of the clownfish Amphiprion percula from hatching to settlement at three pHNBS and pCO2 levels (control: pH 8.15 and 404 μatm CO2; intermediate: pH 7.8 and 1050 μatm CO2; extreme: pH 7.6 and 1721 μatm CO2) to test the possible effects of ocean acidification on otolith development. There was no effect of the intermediate treatment (pH 7.8 and 1050 μatm CO2) on otolith size, shape, symmetry between left and right otoliths, or otolith elemental chemistry, compared with controls. However, in the more extreme treatment (pH 7.6 and 1721 μatm CO2) otolith area and maximum length were larger than controls, although no other traits were affected. Our results support the hypothesis that pH regulation in the otolith endolymph of fish exposed to elevated pCO2 can lead to increased precipitation of CaCO3 in otoliths of larval fish, as proposed by an earlier study, however, our results also show that sensitivity varies considerably among species. Importantly, our results suggest that otolith development in clownfishes is robust to even the more pessimistic changes in ocean chemistry predicted to occur by 2100.

  17. Effect of ocean acidification on otolith development in larvae of a tropical marine fish

    NASA Astrophysics Data System (ADS)

    Munday, P. L.; Hernaman, V.; Dixson, D. L.; Thorrold, S. R.

    2011-06-01

    Calcification in many invertebrate species is predicted to decline due to ocean acidification. The potential effects of elevated CO2 and reduced carbonate saturation state on other species, such as fish, are less well understood. Fish otoliths (earbones) are composed of aragonite, and thus, might be susceptible to either the reduced availability of carbonate ions in seawater at low pH, or to changes in extracellular concentrations of bicarbonate and carbonate ions caused by acid-base regulation in fish exposed to high pCO2. We reared larvae of the clownfish Amphiprion percula from hatching to settlement at three pHNBS and pCO2 levels (control: ~pH 8.15 and 404 μatm CO2; intermediate: pH 7.8 and 1050 μatm CO2; extreme: pH 7.6 and 1721 μatm CO2) to test the possible effects of ocean acidification on otolith development. There was no effect of the intermediate treatment (pH 7.8 and 1050 μatm CO2) on otolith size, shape, symmetry between left and right otoliths, or otolith elemental chemistry, compared with controls. However, in the more extreme treatment (pH 7.6 and 1721 μatm CO2) otolith area and maximum length were larger than controls, although no other traits were significantly affected. Our results support the hypothesis that pH regulation in the otolith endolymph can lead to increased precipitation of CaCO3 in otoliths of larval fish exposed to elevated CO2, as proposed by an earlier study, however, our results also show that sensitivity varies considerably among species. Importantly, our results suggest that otolith development in clownfishes is robust to even the more pessimistic changes in ocean chemistry predicted to occur by 2100.

  18. An evaluation of agreement between pectoral spines and otoliths for estimating ages of catfishes

    USGS Publications Warehouse

    Olive, J.A.; Schramm, Harold; Gerard, Patrick D.; Irwin, E.

    2011-01-01

    Otoliths have been shown to provide more accurate ages than pectoral spine sections for several catfish populations; but sampling otoliths requires euthanizing the specimen, whereas spines can be sampled non-lethally. To evaluate whether, and under what conditions, spines provide the same or similar age estimates as otoliths, we examined data sets of individual fish aged from pectoral spines and otoliths for six blue catfish Ictalurus furcatus populations (n=420), 14 channel catfish Ictalurus punctatus populations (n=997), and 10 flathead catfish Pylodictus olivaris populations (n=947) from lotic and lentic waters throughout the central and eastern U.S. Logistic regression determined that agreement between ages estimated from otoliths and spines was consistently related to age, but inconsistently related to growth rate. When modeled at mean growth rate, we found at least 80% probability of no difference in spine- and otolith-assigned ages up to ages 4 and 5 for blue and channel catfish, respectively. For flathead catfish, an 80% probability of agreement between spine- and otolith-assigned ages did not occur at any age due to high incidence of differences in assigned ages even for age-1 fish. Logistic regression models predicted at least 80% probability that spine and otolith ages differed by ≤1 year up to ages 13, 16, and 9 for blue, channel, and flathead catfish, respectively. Age-bias assessment found mean spine-assigned age differed by less than 1 year from otolith-assigned age up to ages 19, 9, and 17 for blue catfish, channel catfish, and flathead catfish, respectively. These results can be used to help guide decisions about which structure is most appropriate for estimating catfish ages for particular populations and management objectives.

  19. Otolith research for Puget Sound

    USGS Publications Warehouse

    Larsen, K.; Reisenbichler, R.

    2007-01-01

    Otoliths are hard structures located in the brain cavity of fish. These structures are formed by a buildup of calcium carbonate within a gelatinous matrix that produces light and dark bands similar to the growth rings in trees. The width of the bands corresponds to environmental factors such as temperature and food availability. As juvenile salmon encounter different environments in their migration to sea, they produce growth increments of varying widths and visible 'checks' corresponding to times of stress or change. The resulting pattern of band variations and check marks leave a record of fish growth and residence time in each habitat type. This information helps Puget Sound restoration by determining the importance of different habitats for the optimal health and management of different salmon populations. The USGS Western Fisheries Research Center (WFRC) provides otolith research findings directly to resource managers who put this information to work.

  20. Examining the utility of bulk otolith δ13C to describe diet in wild-caught black rockfish Sebastes melanops

    USGS Publications Warehouse

    von Biela, Vanessa; Newsome, Seth D.; Zimmerman, Christian E.

    2015-01-01

    Otolith carbon isotope δ13C values may provide temporally resolved diet proxies in fish. If otolith δ13C values reflect diet, isotope values from recent otolith and muscle tissue should correlate and known ontogenetic diet shifts should be reflected in comparisons between otolith material deposited during different life history stages. We analyzed paired otolith and muscle samples for δ13C from black rockfish Sebastes melanops to examine the potential of otoliths to reflect diet in small (200-299 mm fork length) and large (≥300 mm) fish. We found a significant positive regression between δ13C values from recent (~12 mo) otolith material and muscle in large fish, but not in small fish. Within individual otoliths, δ13C values were enriched by ~3‰ in recent otolith edge material compared to age-0 otolith core material and were consistent with known nearshore-offshore gradients in δ13C values at the base of the food web. Bulk otolith δ13C appeared to provide a broad indicator of dietary carbon sources, but variation in metabolism and dissolved inorganic carbon δ13C among and within individuals likely influences otolith δ13C as well and limits precision. Nevertheless, the results are promising and bulk otolith δ13C may be an appropriate tool to examine large trophic and ecosystem level shifts that have occurred concurrently with changes in habitat, commercial fishing, invasive species, climate change, and other direct or indirect human impacts using historic or ancient otoliths. Future studies should continue to consider the utility of bulk otolith δ13C to describe diet in other marine fish using this simple approach.

  1. Effects of simulated microgravity on otoliths growth and microstructure of Larval Zebrafish, Danio rerio

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Wang, Gaohong; Liu, Yongding

    2012-07-01

    Otolith is the vestibular endorgan that takes part in gravitational signal initiation. Environmental change can leave mark on otolith microstructure. In this study, we use zebrafish from embryo stage of 10hpf to middle larval stage of 12dpf to investigate the effect of microgravity on otolith development. It was found that otoliths size of microgravity group was larger than the control before 6dpf, but after that both groups kept nearly the same size. Surface scanning of otolith morphology with SEM showed that otolith of microgravity group were much smoother than the control. After etching with HCl, we found both groups formed daily increments, but microgravity group lack clear check marks in some special developmental stage. Widths between increments were wider, and granule shape was much sharper in microgravity group. Analysis of crystal orientation disclosed the increments of microgravity group formed irregularly. The surface etched with PKb also exhibited different granule size and orientation: the granules in the control had nearly the same size and direction, while the particles in microgravity were smaller and orientated differently along the translucent ring. The organic leftover were also found between layers in microgravity group. These results suggest that microgravity can affect otolith development, the component and structural mode of inorganic and organic parts change with different gravitation environment, which may be involved in orientation adjustment of SMS (Space Movement Sickness).

  2. Biodegradable Magnesium Stent Treatment of Saccular Aneurysms in a Rat Model - Introduction of the Surgical Technique.

    PubMed

    Nevzati, Edin; Rey, Jeannine; Coluccia, Daniel; D'Alonzo, Donato; Grüter, Basil; Remonda, Luca; Fandino, Javier; Marbacher, Serge

    2017-10-01

    The steady progess in the armamentarium of techniques available for endovascular treatment of intracranial aneurysms requires affordable and reproducable experimental animal models to test novel embolization materials such as stents and flow diverters. The aim of the present project was to design a safe, fast, and standardized surgical technique for stent assisted embolization of saccular aneurysms in a rat animal model. Saccular aneurysms were created from an arterial graft from the descending aorta.The aneurysms were microsurgically transplanted through end-to-side anastomosis to the infrarenal abdominal aorta of a syngenic male Wistar rat weighing >500 g. Following aneurysm anastomosis, aneurysm embolization was performed using balloon expandable magnesium stents (2.5 mm x 6 mm). The stent system was retrograde introduced from the lower abdominal aorta using a modified Seldinger technique. Following a pilot series of 6 animals, a total of 67 rats were operated according to established standard operating procedures. Mean surgery time, mean anastomosis time, and mean suturing time of the artery puncture site were 167 ± 22 min, 26 ± 6 min and 11 ± 5 min, respectively. The mortality rate was 6% (n=4). The morbidity rate was 7.5% (n=5), and in-stent thrombosis was found in 4 cases (n=2 early, n=2 late in stent thrombosis). The results demonstrate the feasibility of standardized stent occlusion of saccular sidewall aneurysms in rats - with low rates of morbidity and mortality. This stent embolization procedure combines the opportunity to study novel concepts of stent or flow diverter based devices as well as the molecular aspects of healing.

  3. The developmental segregation of posterior crista and saccular vestibular fibers in mice: a carbocyanine tracer study using confocal microscopy

    NASA Technical Reports Server (NTRS)

    Maklad, Adel; Fritzsch, Bernd

    2002-01-01

    The developmental segregation of gravistatic input mediated by saccular fibers and of angular acceleration input mediated by posterior crista (PC) fibers was analyzed for the first time in a developing mammal using carbocyanine dye tracing in fixed tissue. The data reveal a more extensive projection of either endorgan in 7-day-old mice (P7) than has previously been reported in adult mammals. While we confirm and extend many previous findings, we also describe a novel segregation of saccular and posterior crista fibers in the anterior half of the medial vestibular nucleus (Mv) not reported before. Our developmental analysis shows a progressive segregation of posterior crista and saccular fibers to their respective discrete projection areas between embryonic day 15 (E15) and birth (P0). Retention of overlap in young adult animals appears to reflect the early embryonic overlap found in most areas. The vestibular projection does not show a topological projection as has been described in many other sensory systems. We propose that the unique projection features of the vestibular endorgans may relate to the transformation of vestibular signals into a motor output in the three neuron reflex arc of the VOR, of which the primary vestibular projection constitutes the first leg.

  4. Otolith microchemistry of tropical diadromous fishes: spatial and migratory dynamics

    USGS Publications Warehouse

    Smith, William E.; Kwak, Thomas J.

    2014-01-01

    Otolith microchemistry was applied to quantify migratory variation and the proportion of native Caribbean stream fishes that undergo full or partial marine migration. Strontium and barium water chemistry in four Puerto Rico, U.S.A., rivers was clearly related to a salinity gradient; however, variation in water barium, and thus fish otoliths, was also dependent on river basin. Strontium was the most accurate index of longitudinal migration in tropical diadromous fish otoliths. Among the four species examined, bigmouth sleeper Gobiomorus dormitor, mountain mullet Agonostomus monticola, sirajo goby Sicydium spp. and river goby Awaous banana, most individuals were fully amphidromous, but 9-12% were semi-amphidromous as recruits, having never experienced marine or estuarine conditions in early life stages and showing no evidence of marine elemental signatures in their otolith core. Populations of one species, G. dormitor, may have contained a small contingent of semi-amphidromous adults, migratory individuals that periodically occupied marine or estuarine habitats (4%); however, adult migratory elemental signatures may have been confounded with those related to diet and physiology. These findings indicate the plasticity of migratory strategies of tropical diadromous fishes, which may be more variable than simple categorization might suggest.

  5. Otolith geochemistry does not reflect dispersal history of clownfish larvae

    NASA Astrophysics Data System (ADS)

    Berumen, M. L.; Walsh, H. J.; Raventos, N.; Planes, S.; Jones, G. P.; Starczak, V.; Thorrold, S. R.

    2010-12-01

    Natural geochemical signatures in calcified structures are commonly employed to retrospectively estimate dispersal pathways of larval fish and invertebrates. However, the accuracy of the approach is generally untested due to the absence of individuals with known dispersal histories. We used genetic parentage analysis (genotyping) to divide 110 new recruits of the orange clownfish, Amphiprion percula, from Kimbe Island, Papua New Guinea, into two groups: “self-recruiters” spawned by parents on Kimbe Island and “immigrants” that had dispersed from distant reefs (>10 km away). Analysis of daily increments in sagittal otoliths found no significant difference in PLDs or otolith growth rates between self-recruiting and immigrant larvae. We also quantified otolith Sr/Ca and Ba/Ca ratios during the larval phase using laser ablation inductively coupled plasma mass spectrometry. Again, we found no significant differences in larval profiles of either element between self-recruits and immigrants. Our results highlight the need for caution when interpreting otolith dispersal histories based on natural geochemical tags in the absence of water chemistry data or known-origin larvae with which to test the discriminatory ability of natural tags.

  6. Comparison of rainbow smelt age estimates from fin rays and otoliths

    USGS Publications Warehouse

    Walsh, M.G.; Maloy, A.P.; O'Brien, T. P.

    2008-01-01

    Rainbow smelt Osmerus mordax, although nonnative, are an important component of the offshore food web in the Laurentian Great Lakes. In Lake Ontario, we estimate ages of rainbow smelt annually to study population dynamics such as year-class strength and age-specific growth and mortality. Since the early 1980s, we have used pectoral fin rays to estimate rainbow smelt ages, but the sectioning and mounting of fin rays are time and labor intensive. Our objective was to assess the feasibility of using otoliths rather than fin rays to estimate rainbow smelt ages. Three readers interpreted the ages of 172 rainbow smelt (60-198 mm total length) based on thin sections of pectoral fin rays, whole otoliths with no preparation, and whole otoliths that had been cleared for 1 month in a 70:30 ethanol : glycerin solution. Bias was lower and precision was greater for fin rays than for otoliths; these results were consistent for comparisons within readers (first and second readings by one individual; three readers were used) and between readers (one reading for each reader within a pair). Both otolith methods appeared to misclassify age-1 rainbow smelt. Fin ray ages had the highest precision and provided the best approximation of age estimates inferred from the Lake Ontario population's length frequency distribution and from our understanding of this population. ?? American Fisheries Society 2008.

  7. Susceptibility to kinetotic Behaviour during Parabolic Aircraft Flights and otolithic Calcium Incorporation in Fish

    NASA Astrophysics Data System (ADS)

    Forster, A.; Anken, R.; Hilbig, R.

    According to an earlier concept, otolith (or statolith) asymmetry is the cause for susceptibility to kinetoses (e.g., human static space sickness). Indeed, we could recently show that fish showing a kinetotic behaviour after development at hypergravity had incorporated significantly more otolithic calcium (and had an higher otolith asymmetry concerning calcium incorporation) as had normally swimming hyper-g specimens. In order to determine whether a (predispositioned) high asymmetry of otolithic calcium incorporation may also be the cause for kinetosis susceptibility in the microgravity environment (to be achived during parabolic aircraft flights, PFs), larval cichlid fish (Oreochromis mossambicus) were (prior to the PFs) maintained in aquarium water containing alizarin-complexone (AC), a fluorescent calcium tracer. Subsequently, the behaviour of the animals during the microgravity phases of the PF experiment was qualitatively assessed and the specimens were seperated into normally and kinetotically swimming individuals (the latter performed spinning movements). Finally, otolithic AC (and thus calzium) incorporation was densitometrically determined in the otoliths and correlated with the animals' behavior. The respective data will be communicated at the meeting. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 9997).

  8. ZAG-Otolith: Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control during Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, <20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. One result of this study will be to characterize the variability (gain, asymmetry) in both otolithocular responses and motion perception during variable radius centrifugation, and measure the time course of postflight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual

  9. Influence of hypergravity on fish inner ear otoliths: II. Incorporation of calcium and kinetotic behaviour.

    PubMed

    Beier, M; Anken, R H; Rahmann, H

    2002-01-01

    Larval siblings of cichlid fish (Oreochromis mossambicus) were subjected to hypergravity (hg; 3 g, 14 days) during development. Following the transfer to 1 g (i.e., stopping the centrifuge) they were separated into normally and kinetotically swimming individuals (the latter performed spinning movements). During hg, the animals were maintained in aquarium water containing alizarin-complexone (AC), a fluorescent calcium tracer. Densitometric measurements of AC uptake into inner ear otoliths (optical density of AC/micrometers2) revealed that the kinetotic individuals had incorporated significantly more AC/calcium than the normally behaving fish. Since the amount of otolithic calcium can be taken as an approximation for otolith weight, the present results indicate that the otoliths of kinetotically swimming samples were heavier than those of the normally behaving larvae, thus exhibiting a higher absolute weight asymmetry of the otoliths between the right vs. the left side of the body. This supports an earlier concept according to which otolith (or statolith) asymmetry is the cause for kinetoses such as human static space sickness. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  10. Otolith edge fingerprints as approach for stock identification of Genidens barbus

    NASA Astrophysics Data System (ADS)

    Avigliano, Esteban; Maichak de Carvalho, Barbara; Leisen, Mathieu; Romero, Rurik; Velasco, Gonzalo; Vianna, Marcelo; Barra, Fernando; Volpedo, Alejandra Vanina

    2017-07-01

    The purpose of this paper is to assess the use of multi-elemental otolith fingerprints as a tool to delimit catfish Genidens barbus fish stocks in four estuaries from the southwestern Atlantic Ocean. Barium:Calcium (Ca), Magnesium:Ca, Manganese:Ca, Sodium:Ca and Strontium:Ca ratios in the otolith edge were determined by LA-ICPMS. PERMANOVA analysis reveal significant differences in the multi-element signatures among estuaries (p = 0.0001-0.002). Reclassification rates of quadratic discriminant analysis are high, averaging 89.9% (78-100%). The new data presented here show that the otolith chemistry is a potential tool for stock identification, and indicates the presence of at least four stocks which should probably be handled independently.

  11. Otoliths of Five Extant Species of the Annual Killifish Nothobranchius from the East African Savannah

    PubMed Central

    Reichenbacher, Bettina; Reichard, Martin

    2014-01-01

    This study presents, for the first time, a comprehensive dataset that documents the range of inter- and intraspecific otolith variation in aplocheiloid killifish, based on a total of 86 individuals representing five extant species of Nothobranchius PETERS, 1868, from East Africa: the sympatric pairs N. rubripinnis SEEGERS, 1986 and N. ruudwildekampi COSTA, 2009 (Eastern Tanzania), and N. orthonotus (PETERS, 1844) and N. furzeri JUBB, 1971 (Southern Mozambique), and two isolated populations of N. korthausae MEINKEN, 1973 (Eastern Tanzania). Otolith characters were analysed based on SEM images, and otolith morphometry was conducted using uni- and multivariate statistics. Two ancient clades of probably Early to Middle Miocene age in eastern Tanzania and southern Mozambique can be recognized based on otolith morphologies, which is consistent with previous work based on molecular data. The distinctive sulcus morphologies in the otoliths of sympatric species may be linked to species-specific hearing capabilities, perhaps constituting a case of character displacement in an area of secondary sympatry. The otoliths of the studied species of Nothobranchius are diagnostic at the species level, even in the case of closely related species diagnosable otherwise only by minor differences in coloration. The two populations of N. korthausae also displayed some differences in their otolith characters. The new data may facilitate future recognition of fossil species of Nothobranchius. As no fossil remains of extant aplocheiloid killifishes have yet been described, the discovery of fossil otoliths of Nothobranchius would significantly advance understanding of the evolutionary history of this interesting group of fishes. PMID:25383789

  12. Near-reef elemental signals in the otoliths of settling Pomacentrus amboinensis (Pomacentridae)

    NASA Astrophysics Data System (ADS)

    Sih, Tiffany L.; Kingsford, Michael J.

    2016-03-01

    Settlement is a key life history transition for coral reef fishes, and how long a fish spends close to a reef prior to settlement is poorly understood. We used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and otolith microstructure analysis (daily increments and settlement marks) to determine the length of time larval fish spend near a reef prior to settlement. The otoliths of Pomacentrus amboinensis collected from four neighbouring reefs in the southern Great Barrier Reef showed clear and consistent differences in their elemental signatures prior to and following settlement. Elevated Ba:Ca near settlement and post-settlement was found in fish from all four reefs. However, there was individual variation in elemental profiles, with an increased otolith Ba-to-Ca ratio (near-reef signature) at settlement in 33 % of fish, and up to 8 d prior to settlement in others. Increment widths, often used as a proxy for growth, decreased approaching the settlement mark for all fish, providing further evidence for a "search phase" in larvae. We demonstrated experimentally that otoliths of fish kept in reefal or inter-reefal waters had different elemental chemistry. There were differences in the elemental composition of water samples within the study area, but no consistent trends with distance from reefs. There was poor discrimination of multi-element signatures among fish from different reefs during their pre-settlement phases. However, discrimination improved in the settlement and post-settlement phases of otoliths, indicating that reef waters and perhaps stage of ontogeny affected otolith chemistry. This study demonstrated clear near-reef elemental signatures in fish around settlement. We suggest these differences are due to a combination of water chemistry and physiological influences (e.g., growth). Combining LA-ICP-MS with otolith microstructure analysis can provide high-resolution information on the early life history of reef fishes. Further, a

  13. Otolith microchemistry of tropical diadromous fishes: spatial and migratory dynamics.

    PubMed

    Smith, W E; Kwak, T J

    2014-04-01

    Otolith microchemistry was applied to quantify migratory variation and the proportion of native Caribbean stream fishes that undergo full or partial marine migration. Strontium and barium water chemistry in four Puerto Rico, U.S.A., rivers was clearly related to a salinity gradient; however, variation in water barium, and thus fish otoliths, was also dependent on river basin. Strontium was the most accurate index of longitudinal migration in tropical diadromous fish otoliths. Among the four species examined, bigmouth sleeper Gobiomorus dormitor, mountain mullet Agonostomus monticola, sirajo goby Sicydium spp. and river goby Awaous banana, most individuals were fully amphidromous, but 9-12% were semi-amphidromous as recruits, having never experienced marine or estuarine conditions in early life stages and showing no evidence of marine elemental signatures in their otolith core. Populations of one species, G. dormitor, may have contained a small contingent of semi-amphidromous adults, migratory individuals that periodically occupied marine or estuarine habitats (4%); however, adult migratory elemental signatures may have been confounded with those related to diet and physiology. These findings indicate the plasticity of migratory strategies of tropical diadromous fishes, which may be more variable than simple categorization might suggest. © 2014 The Fisheries Society of the British Isles.

  14. Validation of daily increments periodicity in otoliths of spotted gar

    USGS Publications Warehouse

    Snow, Richard A.; Long, James M.; Frenette, Bryan D.

    2017-01-01

    Accurate age and growth information is essential in successful management of fish populations and for understanding early life history. We validated daily increment deposition, including the timing of first ring formation, for spotted gar (Lepisosteus oculatus) through 127 days post hatch. Fry were produced from hatchery-spawned specimens, and up to 10 individuals per week were sacrificed and their otoliths (sagitta, lapillus, and asteriscus) removed for daily age estimation. Daily age estimates for all three otolith pairs were significantly related to known age. The strongest relationships existed for measurements from the sagitta (r2 = 0.98) and the lapillus (r2 = 0.99) with asteriscus (r2 = 0.95) the lowest. All age prediction models resulted in a slope near unity, indicating that ring deposition occurred approximately daily. Initiation of ring formation varied among otolith types, with deposition beginning 3, 7, and 9 days for the sagitta, lapillus, and asteriscus, respectively. Results of this study suggested that otoliths are useful to estimate daily age of spotted gar juveniles; these data may be used to back calculate hatch dates, estimate early growth rates, and correlate with environmental factor that influence spawning in wild populations. is early life history information will be valuable in better understanding the ecology of this species. 

  15. Seasonal Temperature Estimates From Late Holocene Barents Sea cod Otoliths: Problems and Potential

    NASA Astrophysics Data System (ADS)

    Andersson, C.; Folkvord, A.; Geffen, A.; Høie, H.

    2008-12-01

    Realistic models of climate change require accurate data of past seasonal temperature regimes. In many marine settings this is difficult to achieve using the marine sedimentary record. This study tests the feasibility to use archaeological cod otoliths to reconstruct changes in the seasonal temperature cycle in the Barents Sea. Potentially, stable oxygen isotope records from cod otoliths could be used to produce records of Holocene temperature change on a seasonal time scale. Human settlements along the coast of northern Norway have exploited the cod (Gadus morhua) population of the Barents Sea from the earliest occupation, through the middle ages, to the present day. A pilot project has been carried out in Bergen to exploit the availability of a collection of cod otoliths from archeological excavations that is housed by the Bergen Museum. Cod otoliths from archaeological excavations in northern Norway, 26 specimens from from Måsøy (Finnmark) and 17 specimens from Vanna (Troms), were selected for this study. These specimens were AMS radiocarbon dated and the ages are spanning approximately 1400 to 1780 AD. Most of the otoliths are from cod that were captured during the Little Ice Age. Seasonal growth patterns were identifiable in the archeological otoliths, comparable to those in modern otoliths. Micromilling was used to sample for stable oxygen isotopes over a 2-year growth period in each of a total of 43 fossil cod otoliths. There are large differences in the temperature ranges experienced by the fish over the 2-year period analyzed. For the Måsøy specimens the temperature range experienced by the fish is between 2.7 to 9.9 °C. The Vanna cod experienced temperature ranges between 1.7 to 7.2 °C. The maximum temperature ranges for both Vanna and Måsøy specimens are higher than the seasonal instrumental measurements for the 0-200 m depth interval in the Kola section in the Barents Sea. The cod otoliths in our study have not yet been divided into different

  16. High prevalence of vaterite in sagittal otoliths causes hearing impairment in farmed fish

    PubMed Central

    Reimer, T.; Dempster, T.; Warren-Myers, F.; Jensen, A. J.; Swearer, S. E.

    2016-01-01

    The rapid growth of aquaculture raises questions about the welfare status of mass-produced species. Sagittal otoliths are primary hearing structures in the inner ear of all teleost (bony) fishes and are normally composed of aragonite, though abnormal vaterite replacement is sometimes seen in the wild. We provide the first widespread evaluation of the prevalence of vaterite in otoliths, showing that farmed fish have levels of vaterite replacement over 10 times higher than wild fish, regardless of species. We confirm this observation with extensive sampling of wild and farmed Atlantic salmon in Norway, the world’s largest producer, and verify that vateritic otoliths are common in farmed salmon worldwide. Using a mechanistic model of otolith oscillation in response to sound, we demonstrate that average levels of vaterite replacement result in a 28–50% loss of otolith functionality across most of a salmonid’s known hearing range and throughout its life cycle. The underlying cause(s) of vaterite formation remain unknown, but the prevalence of hearing impairment in farmed fish has important implications for animal welfare, the survival of escapees and their effects on wild populations, and the efficacy of restocking programs based on captive-bred fish. PMID:27121086

  17. Documenting utility of paddlefish otoliths for quantification of metals using inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Long, James M.; Schaffler, James J.

    2013-01-01

    RATIONALE The otoliths of the inner ear of fishes record the environment of their surrounding water throughout their life. For paddlefish (Polyodon spathula), otoliths have not been routinely used by scientists since their detriments were outlined in the early 1940s. We sought to determine if paddlefish otoliths were useful for resolving elemental information contained within. METHODS Adult paddlefish were collected from two wild, self-sustaining populations in Oklahoma reservoirs in the Arkansas River basin. Juveniles were obtained from a hatchery in the Red River basin of Oklahoma. Otoliths were removed and laser ablation, inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify eight elements (Li, Mg, Mn, Rb, Sr, Y, Ba, and Pb) along the core and edge portions, which were analyzed for differences between otolith regions and among paddlefish sources. RESULTS Differences were found among samples for six of the eight elements examined. Otoliths from Red River basin paddlefish born in a hatchery had significantly lower amounts of Mg and Mn, but higher levels of Rb than otoliths from wild paddlefish in the Arkansas River basin. Concentrations of Y, Sr, and Ba were reduced on the edges of adult paddlefish from both reservoirs compared with the cores. CONCLUSIONS This research shows the utility of using an ICP-MS analysis of paddlefish otoliths. Future research that seeks to determine sources of paddlefish production, such as which reservoir tributaries are most important for reproduction or what proportion of the population is composed of wild versus hatchery-produced individuals, appears promising. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  18. ARE ELEMENTAL FINGERPRINTS OF FISH OTOLITHS DISTINCT AMONG GREAT LAKES COASTAL NURSERY AREAS?

    EPA Science Inventory

    Elemental composition of an otolith reflects a fish's rearing environment,
    so otolith geochemistry can record differences in ambient water conditions
    specific to habitats used during a fish's life history. Although few studies
    have been conducted in freshwater, trace ...

  19. The potential dysfunction of otolith organs in patients after mumps infection

    PubMed Central

    Tian, Liang; Han, Zhao; Wang, Jing; Chi, Fang-Lu

    2017-01-01

    Objective To investigate the relationship between mumps and the extent of hearing impairment and otolith organ damage. Methods A total of 27 patients with unilateral hearing impairment following mumps were enrolled. The degrees of hearing loss and otolith organ damage were confirmed by audiometric and vestibular evoked myogenic potential [VEMP] tests. All the results were compared and analyzed using Stata 13.0 software for Windows. Results The VEMP thresholds of the affected ears were significantly higher than those of the unaffected ears in both tests (cervical VEMP [cVEMP] test and ocular VEMP [oVEMP] test; p = 0.000 and 0.001, respectively). The mean cVEMP and oVEMP threshold values of the affected ears with hearing impairment for ≤10 years were significantly lower than those of affected ears with hearing impairment for >10 years [p = 0.009 and 0.004, respectively]. Conclusions Deafness resulting from mumps is usually profound and permanent, which indicates severe damage to the cochlea due to the disease. The functions of otolith organs in the vestibular system are also impaired. Over time, the function of the otolith organs or their neural pathway may suffer secondary damage. PMID:28746415

  20. Author's reply to "Letter to the editor on the article: Saccular measurements in routine MRI can predict hydrops in Menière's disease by Simon F et al."

    PubMed

    Simon, François; Guichard, Jean-Pierre; Kania, Romain; Franc, Julie; Herman, Philippe; Hautefort, Charlotte

    2018-01-01

    This is an answer to the Letter to the Editor regarding our previously published article « Saccular measurements in routine MRI can predict hydrops in Menière's disease ». We thank the authors for their interest in our article and their insightful comments. We would like to emphasise that our article was a preliminary study and to our knowledge the first published series establishing a correlation between measurements of saccular morphology in T2-weighed 3D CISS images and clinical definite Menière's disease. Therefore, we agree with the authors of the Letter that verifying reproducibility is paramount for the technique to be widely used. Further studies should be conducted to investigate the risk of artefacts reducing the reliability of saccular width measurements and to confirm the clinical implications. We recommend the use of saccular height measurements which have higher reliability. Also, the goal of the study was to present a possible radiological alternative to the more established methods of endolymphatic hydrops visualisation. If accessible, we agree that the latter techniques should be preferred, but we find that they are unfortunately too often unavailable in routine clinical practice to ENT physicians.

  1. Geographic and Oceanographic Information within Trace Metals in Moray Eel Otoliths

    NASA Astrophysics Data System (ADS)

    Savidge, W.; Windom, H.; Buck, C.

    2016-02-01

    Adult moray eels exhibit high site fidelity to particular reefs. We hypothesized that the trace metal composition of otoliths of eels could potentially provide insight into gradients in oceanographic processes on the South Atlantic Bight continental shelf where eels are resident on patchy hardbottom reefs throughout the entire region. Otoliths of moray eels collected from the mid-shelf of South Carolina were examined for their trace metal composition (Ba, Sr, Pb, Cu, Li, Mg, V, Mn, Zn). Samples were broadly lumped into four regions: "North," "North Cape Romain," "South Cape Romain," and "South". Trace metal composition within otoliths showed no latitudinal trends. However, factor analysis of the trace metals revealed that otoliths from the South Cape Romain region appeared as a compositionally distinct subgroup, based primarily on their Li and Mg content. Recent work on corals (Montagna et al. 2014) has shown the Li/Mg ratio within coral skeletons is sensitive to calcification temperature and can be used as a paleothermometer. If analogous processes influence Li/Mg ratios within otoliths, the data suggest that the bottom water at the South Cape Romain site is colder than other locations along the South Carolina shelf, perhaps as a result of locally enhanced upwelling. Additional samples from NC, SC, GA, and FL are being examined to see if other sites within the South Atlantic Bight show similar patterns. Montagna, P., McCulloch, M., Douville, E., et al. 2014. Li/Mg systematics in scleratinian corals: Calibration of the thermometer. Geochim Cosmochim Acta 132: 288-310.

  2. Otolith shape lends support to the sensory drive hypothesis in rockfishes.

    PubMed

    Tuset, V M; Otero-Ferrer, J L; Gómez-Zurita, J; Venerus, L A; Stransky, C; Imondi, R; Orlov, A M; Ye, Z; Santschi, L; Afanasiev, P K; Zhuang, L; Farré, M; Love, M S; Lombarte, A

    2016-10-01

    The sensory drive hypothesis proposes that environmental factors affect both signalling dynamics and the evolution of signals and receivers. Sound detection and equilibrium in marine fishes are senses dependent on the sagittae otoliths, whose morphological variability appears intrinsically linked to the environment. The aim of this study was to understand if and which environmental factors could be conditioning the evolution of this sensory structure, therefore lending support to the sensory drive hypothesis. Thus, we analysed the otolith shape of 42 rockfish species (Sebastes spp.) to test the potential associations with the phylogeny, biological (age), ecological (feeding habit and depth distribution) and biogeographical factors. The results showed strong differences in the otolith shapes of some species, noticeably influenced by ecological and biogeographical factors. Moreover, otolith shape was clearly conditioned by phylogeny, but with a strong environmental effect, cautioning about the use of this structure for the systematics of rockfishes or other marine fishes. However, our most relevant finding is that the data supported the sensory drive hypothesis as a force promoting the radiation of the genus Sebastes. This hypothesis holds that adaptive divergence in communication has significant influence relative to other life history traits. It has already been established in Sebastes for visual characters and organs; our results showed that it applies to otolith transformations as well (despite the clear influence of feeding and depth), expanding the scope of the hypothesis to other sensory structures. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  3. Formation of otoconia in the Japanese red-bellied newt, Cynops pyrrhogaster

    NASA Technical Reports Server (NTRS)

    Wiederhold, M. L.; Yamashita, M.; Larsen, K.; Asashima, M.

    1994-01-01

    Pre-mated adult female newts and fertilized eggs will be flown on the International Microgravity Laboratory-2 flight, in 1994. One objective of the flight will be to observe the influence of microgravity on the development of the gravity-sensing organs in the inner ear. These organs contain sensory hair cells covered by a layer of dense stones (otoconia). Gravity and linear acceleration exert forces on these masses, leading to excitation of the nerve fibers innervating the hair cells. If the production of the otoliths is regulated to reach an optimal weight, their development might be abnormal in microgravity. Ground-based control experiments are reported describing the developmental sequence in which both the otoliths and their associated sensory epithelium and the semicircular canals appear and develop. Three-dimensional reconstruction of serial sections through the otic vesicle of newt embryos at stages 31 through 58 demonstrate the first appearance, relative position and growth of the otoliths. Reports of experiments in which fertilized frog eggs were flown on a Russian Cosmos mission conclude that the utricular otolith is increased in volume, whereas the saccular otolith maintains normal size, suggesting that at least in the utricle, the weight of the otolith might be regulated.

  4. Physiology of Developing Gravity Receptors and Otolith-Ocular Reflexes in Rat

    NASA Technical Reports Server (NTRS)

    Blanks, Robert H.

    1997-01-01

    This proposal had the long-term objective of examining the effects of microgravity on the physiology of the adult and developing mammalian gravity receptors. The grant outlined three-years of ground-based studies to examine. 1) the physiologic responses or otolith afferents in the adult rat and during postnatal development, and 2) the otolith organ contributions to the vertical vestibulo-ocular (VOR) and postural reflexes.

  5. Temporal stability of otolith elemental fingerprints discriminates among lagoon nursery habitats

    NASA Astrophysics Data System (ADS)

    Tournois, Jennifer; Ferraton, Franck; Velez, Laure; McKenzie, David J.; Aliaume, Catherine; Mercier, Lény; Darnaude, Audrey M.

    2013-10-01

    The chemical composition of fish otoliths reflects that of the water masses that they inhabit. Otolith elemental compositions can, therefore, be used as natural tags to discriminate among habitats. However, for retrospective habitat identification to be valid and reliable for any adult, irrespective of its age, significant differences in environmental conditions, and therefore otolith signatures, must be temporally stable within each habitat, otherwise connectivity studies have to be carried out by matching year-classes to the corresponding annual fingerprints. This study investigated how various different combinations of chemical elements in otoliths could distinguish, over three separate years, between four coastal lagoon habitats used annually as nurseries by gilthead sea bream (Sparus aurata L.) in the Gulf of Lions (NW Mediterranean). A series of nine elements were measured in otoliths of 301 S. aurata juveniles collected in the four lagoons in 2008, 2010 and 2011. Percentages of correct re-assignment of juveniles to their lagoon of origin were calculated with the Random Forest classification method, considering every possible combination of elements. This revealed both spatial and temporal variations in accuracy of habitat identification, with correct re-assignment to each lagoon ranging from 44 to 99% depending on the year and the lagoon. There were also annual differences in the combination of elements that provided the best discrimination among the lagoons. Despite this, when the data from the three years were pooled, a combination of eight elements (B, Ba, Cu, Li, Mg, Rb, Sr and Y) provided greater than 70% correct re-assignment to each single lagoon, with a multi-annual global accuracy of 79%. When considering the years separately, discrimination accuracy with these elemental fingerprints was above 90% for 2008 and 2010. It decreased to 61% in 2011, when unusually heavy rainfall occurred, which presumably reduced chemical differences among several of the

  6. Effects of Saccular Function on Recovery of Subjective Dizziness After Vestibular Rehabilitation.

    PubMed

    Jeong, Junhui; Jung, Jinsei; Lee, Jeon Mi; Suh, Michelle J; Kwak, Sang Hyun; Kim, Sung Huhn

    2017-08-01

    We attempted to investigate whether the integrity of saccular function influences the severity of subjective dizziness after vestibular rehabilitation in vestibular neuritis. Retrospective analysis. Tertiary referral center. Forty-six patients with acute unilateral vestibular neuritis were included. Diagnostic, therapeutic, and rehabilitative. All the patients completed vestibular rehabilitation therapy until their computerized dynamic posturography and rotary chair test results were significantly improved. The rehabilitation patients were classified into the normal to mild subjective dizziness and moderate to severe subjective dizziness groups according to the dizziness handicap inventory score (cutoff of 40). Differences between the two groups were analyzed. After rehabilitation, 32.6% of the patients still complained of moderate to severe dizziness. Age, sex distribution, the presence of comorbidities, caloric weakness, pre- and postrehabilitation gain values in rotary chair test, postrehabilitation composite scores in posturography, and the duration of rehabilitation were not significantly different between the two groups. However, initial dizziness handicap inventory (DHI) score and composite score in dynamic posturography were worse and the proportion of patients with absent cervical vestibular-evoked myogenic potential in the moderate to severe group was much higher (93.3% vs. 35.5%, p < 0.001). After multiple regression analysis of those factors, initial DHI score and absent cervical vestibular-evoked myogenic potential response were identified as being associated with higher postrehabilitation DHI score. Saccular dysfunction in acute vestibular neuritis can contribute to persistent subjective dizziness, even after the objective parameters of vestibular function tests have been improved by vestibular rehabilitation.

  7. Saccular function in otosclerosis patients: bone conducted-vestibular evoked myogenic potential analysis.

    PubMed

    Amali, Amin; Mahdi, Parvane; Karimi Yazdi, Alireza; Khorsandi Ashtiyani, Mohammad Taghi; Yazdani, Nasrin; Vakili, Varasteh; Pourbakht, Akram

    2014-01-01

    Vestibular involvements have long been observed in otosclerotic patients. Among vestibular structures saccule has the closest anatomical proximity to the sclerotic foci, so it is the most prone vestibular structure to be affected during the otosclerosis process. The aim of this study was to investigate the saccular function in patients suffering from otosclerosis, by means of Vestibular Evoked Myogenic Potential (VEMP). The material consisted of 30 otosclerosis patients and 20 control subjects. All participants underwent audiometric and VEMP testing. Analysis of tests results revealed that the mean values of Air-Conducted Pure Tone Average (AC-PTA) and Bone-Conducted Pure Tone Average (BC-PTA) in patients were 45.28 ± 15.57 and 19.68 ± 10.91, respectively and calculated 4 frequencies Air Bone Gap (ABG) was 25.64 ± 9.95. The VEMP response was absent in 14 (28.57%) otosclerotic ears. A statistically significant increase in latency of the p13 was found in the affected ears (P=0.004), differences in n23 latency did not reach a statistically significant level (P=0.112). Disparities in amplitude of p13-n23 in between two study groups was statistically meaningful (P=0.009), indicating that the patients with otosclerosis had lower amplitudes. This study tends to suggest that due to the direct biotoxic effect of the materials released from the otosclerosis foci on saccular receptors, there might be a possibility of vestibular dysfunction in otosclerotic patients.

  8. Inactivation of Semicircular Canals Causes Adaptive Increases in Otolith-driven Tilt Responses

    NASA Technical Reports Server (NTRS)

    Angelaki, Dora E.; Newlands, Shawn D.; Dickman, J. David

    2002-01-01

    Growing experimental and theoretical evidence suggests a functional synergy in the processing of otolith and semicircular canal signals for the generation of the vestibulo-ocular reflexes (VORs). In this study we have further tested this functional interaction by quantifying the adaptive changes in the otolith-ocular system during both rotational and translational movements after surgical inactivation of the semicircular canals. For 0.1- 0.5 Hz (stimuli for which there is no recovery of responses from the plugged canals), pitch and roll VOR gains recovered during earth- horizontal (but not earth-vertical) axis rotations. Corresponding changes were also observed in eye movements elicited by translational motion (0.1 - 5 Hz). Specifically, torsional eye movements increased during lateral motion, whereas vertical eye movements increased during fore-aft motion. The findings indicate that otolith signals can be adapted according to compromised strategy that leads to improved gaze stabilization during motion. Because canal-plugged animals permanently lose the ability to discriminate gravitoinertial accelerations, adapted animals can use the presence of gravity through otolith-driven tilt responses to assist gaze stabilization during earth-horizontal axis rotations.

  9. Otolith chemical signature and growth of Chaetodon speculum in coastal areas of New Caledonia

    NASA Astrophysics Data System (ADS)

    Labonne, M.; Morize, E.; Kulbicki, M.; Ponton, D.; Marec, L.

    2008-07-01

    Coral reefs are one of the most diverse ecosystems on Earth. They are currently exposed to increasing levels of anthropogenic perturbations. Several recent reviews point to the lack of good indicators for these perturbations especially to monitor their effects on fish populations or fish assemblages. The SW lagoon of New Caledonia is an ideal location to test indicator species in this context as contrasting sites are present within a small geographical range. This study analysed fish from four sites, one with heavy industrial pollution, another dominated by domestic waste, a third with historic mining activities, and the fourth as a control. The butterfly fish, Chaetodon speculum, was chosen to determine C. speculum's potential as an indicator species due to its link to coral, its sedentary behaviour and its wide geographical distribution. The size distribution, growth rate, age distribution and whole otolith composition were analysed at each site. Age and mean growth rate were analysed from daily increments of the otoliths. The concentrations of eight elements (Li, Mg, Co, Ni, Cu, Rb, Sr, and Ba) were measured by ICP-MS in the otoliths of a subset of individuals. The sites under anthropogenic impact were distinct from the control site by fish size frequencies, age distributions, and the chemical content of their otoliths. The chemical elements Mg, Co, Ni, Cu, and Rb showed differences amongst sites. Fish belonging to the sites furthest from Nouméa could be discriminated in nearly 80% of samples or 60% of the cases when otolith weight or fish age respectively were taken into account. Ni concentrations of the otoliths were also higher in the bays where water concentrations of this element were known to be higher, but these differences were no longer significant once corrected for otolith weight. These results should be mitigated by the fact that: (1) despite significant differences between sites in age distribution and size frequencies there were no differences in

  10. Is Exposure to Macondo Oil Reflected in the Otolith Chemistry of Marsh-Resident Fish?

    PubMed Central

    López-Duarte, Paola C.; Fodrie, F. Joel; Jensen, Olaf P.; Whitehead, Andrew; Galvez, Fernando; Dubansky, Benjamin; Able, Kenneth W.

    2016-01-01

    Genomic and physiological responses in Gulf killifish (Fundulus grandis) in the northern Gulf of Mexico have confirmed oil exposure of resident marsh fish following the Macondo blowout in 2010. Using these same fish, we evaluated otolith microchemistry as a method for assessing oil exposure history. Laser-ablation inductively-coupled-plasma mass spectrometry was used to analyze the chemical composition of sagittal otoliths to assess whether a trace metal signature could be detected in the otoliths of F. grandis collected from a Macondo-oil impacted site in 2010, post-spill relative to pre-spill, as well as versus fish from areas not impacted by the spill. We found no evidence of increased concentrations of two elements associated with oil contamination (nickel and vanadium) in F. grandis otoliths regardless of Macondo oil exposure history. One potential explanation for this is that Macondo oil is relatively depleted of those metals compared to other crude oils globally. During and after the spill, however, elevated levels of barium, lead, and to a lesser degree, copper were detected in killifish otoliths at the oil-impacted collection site in coastal Louisiana. This may reflect oil contact or other environmental perturbations that occurred concomitant with oiling. For example, increases in barium in otoliths from oil-exposed fish followed (temporally) freshwater diversions in Louisiana in 2010. This implicates (but does not conclusively demonstrate) freshwater diversions from the Mississippi River (with previously recorded higher concentrations of lead and copper), designed to halt the ingress of oil, as a mechanism for elevated elemental uptake in otoliths of Louisiana marsh fishes. These results highlight the potentially complex and indirect effects of the Macondo oil spill and human responses to it on Gulf of Mexico ecosystems, and emphasize the need to consider the multiple stressors acting simultaneously on inshore fish communities. PMID:27682216

  11. Species‐ and habitat‐specific otolith chemistry patterns inform riverine fisheries management

    USGS Publications Warehouse

    Radigan, William; Carlson, Andrew K.; Kientz, Jeremy; Chipps, Steven R.; Fincel, Mark J.; Graeb, Brian D. S.

    2018-01-01

    Geology and hydrology are drivers of water chemistry and thus important considerations for fish otolith chemistry research. However, other factors such as species and habitat identity may have predictive ability, enabling selection of appropriate elemental signatures prior to costly, perhaps unnecessary water/age‐0 fish sampling. The goal of this study was to develop a predictive methodology for using species and habitat identity to design efficient otolith chemistry studies. Duplicate water samples and age‐0 fish were collected from 61 sites in 4 Missouri River reservoirs for walleye Sander vitreus and one impoundment (Lake Sharpe, South Dakota) for other fishes (bluegill Lepomis macrochirus, black crappie Pomoxis nigromaculatus, gizzard shad Dorosoma cepedianum, largemouth bass Micropterus salmoides, smallmouth bass M. dolomieu, white bass Morone chrysops, white crappie P. annularis, and yellow perch Perca flavescens). Water chemistry (barium:calcium [Ba:Ca], strontium:calcium [Sr:Ca]) was temporally stable, spatially variable, and highly correlated with otolith chemistry for all species except yellow perch. Classification accuracies based on bivariate Ba:Ca and Sr:Ca signatures were high (84% across species) yet varied between floodplain and main‐channel habitats in a species‐specific manner. Thus, to maximize the reliability of otolith chemistry, researchers can use species classifications presented herein to inform habitat selection (e.g., study reservoir‐oriented species such as white bass in main‐channel environments) and habitat‐based classifications to inform species selection (e.g., focus floodplain studies on littoral species such as largemouth bass). Overall, species and habitat identity are important considerations for efficient, effective otolith chemistry studies that inform and advance fisheries and aquatic resource management.

  12. An evaluation of the precision of fin ray, otolith, and scale age determinations for brook trout

    USGS Publications Warehouse

    Stolarski, J.T.; Hartman, K.J.

    2008-01-01

    The ages of brook trout Salvelinus fontinalis are typically estimated using scales despite a lack of research documenting the effectiveness of this technique. The use of scales is often preferred because it is nonlethal and is believed to require less effort than alternative methods. To evaluate the relative effectiveness of different age estimation methodologies for brook trout, we measured the precision and processing times of scale, sagittal otolith, and pectoral fin ray age estimation techniques. Three independent readers, age bias plots, coefficients of variation (CV = 100 x SD/mean), and percent agreement (PA) were used to measure within-reader, among-structure bias and within-structure, among-reader precision. Bias was generally minimal; however, the age estimates derived from scales tended to be lower than those derived from otoliths within older (age > 2) cohorts. Otolith, fin ray, and scale age estimates were within 1 year of each other for 95% of the comparisons. The measures of precision for scales (CV = 6.59; PA = 82.30) and otoliths (CV = 7.45; PA = 81.48) suggest higher agreement between these structures than with fin rays (CV = 11.30; PA = 65.84). The mean per-sample processing times were lower for scale (13.88 min) and otolith techniques (12.23 min) than for fin ray techniques (22.68 min). The comparable processing times of scales and otoliths contradict popular belief and are probably a result of the high proportion of regenerated scales within samples and the ability to infer age from whole (as opposed to sectioned) otoliths. This research suggests that while scales produce age estimates rivaling those of otoliths for younger (age > 3) cohorts, they may be biased within older cohorts and therefore should be used with caution. ?? Copyright by the American Fisheries Society 2008.

  13. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic contribution of otolith signals to three-dimensional angular vestibuloocular reflex (VOR) was studied during off-vertical axis rotations in rhesus monkeys. In an attempt to separate response components to head velocity from those to head position relative to gravity during low-frequency sinusoidal oscillations, large oscillation amplitudes were chosen such that peak-to-peak head displacements exceeded 360 degrees. Because the waveforms of head position and velocity differed in shape and frequency content, the particular head position and angular velocity sensitivity of otolith-ocular responses could be independently assessed. 2. During both constant velocity rotation and low-frequency sinusoidal oscillations, the otolith system generated two different types of oculomotor responses: 1) modulation of three-dimensional eye position and/or eye velocity as a function of head position relative to gravity, as presented in the preceding paper, and 2) slow-phase eye velocity as a function of head angular velocity. These two types of otolith-ocular responses have been analyzed separately. In this paper we focus on the angular velocity responses of the otolith system. 3. During constant velocity off-vertical axis rotations, a steady-state nystagmus was elicited that was maintained throughout rotation. During low-frequency sinusoidal off-vertical axis oscillations, dynamic otolith stimulation resulted primarily in a reduction of phase leads that characterize low-frequency VOR during earth-vertical axis rotations. Both of these effects are the result of an internally generated head angular velocity signal of otolithic origin that is coupled through a low-pass filter to the VOR. No change in either VOR gain or phase was observed at stimulus frequencies larger than 0.1 Hz. 4. The dynamic otolith contribution to low-frequency angular VOR exhibited three-dimensional response characteristics with some quantitative differences in the different response components. For

  14. The Effect of Otolith Malformation on Behavior and Cortisol Levels in Juvenile Red Drum Fish (Sciaenops ocellatus)

    PubMed Central

    Browning, Zoe S; Wilkes, Allison A; Moore, Erica J; Lancon, Trevor W; Clubb, Fred J

    2012-01-01

    Captive-raised red drum fish were observed with phenotypic abnormalities, including deformities of the spine, jaw, and cephalic region, that were consistent with vitamin C deficiency during the larval stage. In light of their visible exterior skeletal abnormalities, we suspected that the affected fish would also have abnormal otoliths. Otoliths are dense calcareous structures that function in fish hearing. We hypothesized that abnormal fish would have irregular otoliths that would alter behavior and cortisol levels as compared with those of phenotypically normal fish. The normal and abnormal fish had statistically significant differences in behavior, cortisol levels, and otolith volume and density. MicroCT assessment of abnormal fish revealed operculum abnormalities, malocclusions, and several types of otolith malformations. Therefore, the affected fish had not only an abnormal skeletal appearance but also significantly abnormal behavior and cortisol responses. PMID:23043776

  15. Comparison of flow diversion and coiling in large unruptured intracranial saccular aneurysms.

    PubMed

    Chalouhi, Nohra; Tjoumakaris, Stavropoula; Starke, Robert M; Gonzalez, L Fernando; Randazzo, Ciro; Hasan, David; McMahon, Jeffrey F; Singhal, Saurabh; Moukarzel, Lea A; Dumont, Aaron S; Rosenwasser, Robert; Jabbour, Pascal

    2013-08-01

    Flow diversion has emerged as an important tool for the management of intracranial aneurysms. The purpose of this study was to compare flow diversion and traditional embolization strategies in terms of safety, efficacy, and clinical outcomes in patients with unruptured, large saccular aneurysms (≥10 mm). Forty patients treated with the Pipeline Embolization Device (PED) were matched in a 1:3 fashion with 120 patients treated with coiling based on patient age and aneurysm size. Fusiform and anterior communicating artery aneurysms were eliminated from the analysis. Procedural complications, angiographic results, and clinical outcomes were analyzed and compared. There were no differences between the 2 groups in terms of patient age, sex, aneurysm size, and aneurysm location. The rate of procedure-related complications did not differ between the PED (7.5%) and the coil group (7.5%; P=1). At the latest follow-up, a significantly higher proportion of aneurysms treated with PED (86%) achieved complete obliteration compared with coiled aneurysms (41%; P<0.001). In multivariable analysis, coiling was an independent predictor of nonocclusion. Retreatment was necessary in fewer patients in the PED group (2.8%) than the coil group (37%; P<0.001). A similar proportion of patients attained a favorable outcome (modified Rankin Scale, 0-2) in the PED group (92%) and in the coil group (94%; P=0.8). The PED provides higher aneurysm occlusion rates than coiling, with no additional morbidity and similar clinical outcomes. These findings suggest that the PED might be a preferred treatment option for large unruptured saccular aneurysms.

  16. Relationship of otolith strontium-to-calcium ratios and salinity: Experimental validation for juvenile salmonids

    USGS Publications Warehouse

    Zimmerman, C.E.

    2005-01-01

    Analysis of otolith strontium (Sr) or strontium-to-calcium (Sr:Ca) ratios provides a powerful tool to reconstruct the chronology of migration among salinity environments for diadromous salmonids. Although use of this method has been validated by examination of known individuals and translocation experiments, it has never been validated under controlled experimental conditions. In this study, incorporation of otolith Sr was tested across a range of salinities and resulting levels of ambient Sr and Ca concentrations in juvenile chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), sockeye salmon (Oncorhynchus nerka), rainbow trout (Oncorhynchus rnykiss), and Arctic char (Salvelinus alpinus). Experimental water was mixed, using stream water and seawater as end members, to create experimental salinities of 0.1, 6.3, 12.7, 18.6, 25.5, and 33.0 psu. Otolith Sr and Sr:Ca ratios were significantly related to salinity for all species (r2 range: 0.80-0.91) but provide only enough predictive resolution to discriminate among fresh water, brackish water, and saltwater residency. These results validate the use of otolith Sr:Ca ratios to broadly discriminate salinity histories encountered by salmonids but highlight the need for further research concerning the influence of osmoregulation and physiological changes associated with smoking on otolith microchemistry.

  17. Use of an otolith-deficient mutant in studies of fish behavior under microgravity

    NASA Astrophysics Data System (ADS)

    Ijiri, K.; Mizuno, R.; Eguchi, H.

    In Medaka (Oryzias latipes ), fish of a mutant strain (ha strain) had a malfunction in otolith-vestibular system. The phenotype is expressed when the fish have this recessive gene h a) in a homozygous fashion, and the gene is autosomal. Their( difference from the normal fish was first recognizable in their embryonic stages, with abnormally larger ear vesicles and absence of otoliths called Lapillus inside the vesicles. The time-course study was carried out for the subsequent development of their otoliths. X ray phot ographs of the fish revealed that some adult fish of ha- strain still lack a pair of Lapillus, which mainly serve in sensing the direction of gravity, while others have formed the otoliths partially or completely. Changing the light direction within each day, the ha mutant fish were reared from hatching to young fish. The fish treated showed less dependence on gravity even at the age of 50 days or more. Parabolic flight experiments were carried out to observe the fish behavior under microgravity for ha strain.

  18. Otoliths - Accelerometer and seismometer; Implications in Vestibular Evoked Myogenic Potential (VEMP).

    PubMed

    Grant, Wally; Curthoys, Ian

    2017-09-01

    Vestibular otolithic organs are recognized as transducers of head acceleration and they function as such up to their corner frequency or undamped natural frequency. It is well recognized that these organs respond to frequencies above their corner frequency up to the 2-3 kHz range (Curthoys et al., 2016). A mechanics model for the transduction of these organs is developed that predicts the response below the undamped natural frequency as an accelerometer and above that frequency as a seismometer. The model is converted to a transfer function using hair cell bundle deflection. Measured threshold acceleration stimuli are used along with threshold deflections for threshold transfer function values. These are compared to model predicted values, both below and above their undamped natural frequency. Threshold deflection values are adjusted to match the model transfer function. The resulting threshold deflection values were well within in measure threshold bundle deflection ranges. Vestibular Evoked Myogenic Potentials (VEMPs) today routinely uses stimulus frequencies of 500 and 1000 Hz, and otoliths have been established incontrovertibly by clinical and neural evidence as the stimulus source. The mechanism for stimulus at these frequencies above the undamped natural frequency of otoliths is presented where otoliths are utilizing a seismometer mode of response for VEMP transduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Pre- and post-bomb radiocarbon in fish otoliths

    NASA Astrophysics Data System (ADS)

    Kalish, John M.

    1993-02-01

    Measurements of radiocarbon in seawater dissolved inorganic carbon (DIC), or suitable proxies such as hermatypic corals, are a valuable source of information on carbon flux and ocean circulation. However, knowledge of the global distribution of both pre- and post-bomb radiocarbon is limited due to the sources of these data. Suitable hermatypic corals are restricted to shallow tropical and subtropical waters and oceanographic collections of seawater are prohibitively expensive. What is needed is a proxy for ocean radiocarbon that can be collected at most latitudes and depths, and which can be reliably aged. Here I report accelerator mass spectrometry analyses of radiocarbon from selected regions of fish otoliths and show that such measurements are suitable for determining both pre- and post-bomb radiocarbon in all oceans and at most depths. Radiocarbon data obtained from otoliths can extend our knowledge of carbon flux in the oceans and atmosphere and help to develop further understanding of the fate of atmospheric CO 2 and ocean circulation. The data presented here represent the first pre- and post-bomb time series of radiocarbon levels from temperate waters. Furthermore, I demonstrate that the dramatic increase in radiocarbon in the atmosphere and oceans, attributable to the atmospheric testing of thermonuclear bombs during the 1950's and 1960's, provides a chemical mark on fish otoliths that is suitable for the validation of age in fishes.

  20. Otolith marking of juvenile shortnose gar by immersion in oxytetracycline

    USGS Publications Warehouse

    Snow, Richard A.; Long, James M.

    2017-01-01

    Oxytetracycline (OTC) has been used to mark a variety of fish species at multiple developmental stages; however, there is little information on batch-marking Lepisosteidae. Juvenile Shortnose Gar Lepisosteus platostomus (53 ± 3 mm TL) were seined from an Oklahoma State University research pond and transported to the Oklahoma Fishery Research Lab. Juvenile Shortnose Gar were exposed to a range of OTC concentrations—0, 500, 600, and 700 mg/L—for 4, 5, or 6 h. Lapillus and sagitta otoliths were examined 14 d postexposure for mark presence and evaluation using fluorescent microscopy. Overall, 93.3% of otoliths exposed to OTC exhibited a mark. Concentration of OTC affected the mean mark quality, whereas duration and otolith type examined did not. However, as concentration increased, so did mortality, suggesting a balance is needed to achieve marking goals. Based on our findings, batch marking of Shortnose Gar can be successful at OTC concentrations from 500 to 700 mg/L for 4–6 h, although mark quality may vary and mortality rates increase at the higher concentrations and longer durations.

  1. Walleye age estimation using otoliths and dorsal spines: Preparation techniques and sampling guidelines based on sex and total length

    USGS Publications Warehouse

    Dembkowski, Daniel J.; Isermann, Daniel A.; Koenigs, Ryan P.

    2017-01-01

    We used dorsal spines and otoliths from 735 Walleye Sander vitreus collected from 35 Wisconsin water bodies to evaluate whether 1) otolith and dorsal spine cross sections provided age estimates similar to simpler methods of preparation (e.g., whole otoliths and dorsal spines, cracked otoliths); and 2) between-reader precision and differences between spine and otolith ages varied in relation to total length (TL), sex, and growth rate. Ages estimated from structures prepared using simpler techniques were generally similar to ages estimated using thin sections of dorsal spines and otoliths, suggesting that, in some instances, much of the additional processing time and specialized equipment associated with thin sectioning could be avoided. Overall, between-reader precision was higher for sectioned otoliths (mean coefficient of variation [CV] = 3.28%; standard error [SE] = 0.33%) than for sectioned dorsal spines (mean CV = 9.20%; SE = 0.56%). When using sectioned otoliths for age assignment, between-reader precision did not vary between sexes or growth categories (i.e., fast, moderate, slow), but between-reader precision was higher for females than males when using sectioned dorsal spines. Dorsal spines were generally effective at replicating otolith ages for male Walleye <450 mm TL and female Walleye <600 mm TL, suggesting that dorsal spines can be used to estimate ages for male Walleye <450 mm TL and female Walleye <600 mm TL. If sex is unknown, we suggest dorsal spines be used to estimate ages for Walleye <450 mm TL, but that otoliths be used for fish >450 mm TL. Our results provide useful guidance on structure and preparation technique selection for Walleye age estimation, thereby allowing biologists to develop sampling guidelines that could be implemented using information that is always (TL) or often (sex) available at the time of fish collection.

  2. Analysis of Saccular Function With Vestibular Evoked Myogenic Potential Test in Meniere's Disease.

    PubMed

    Dabiri, Sasan; Yazdani, Nasrin; Esfahani, Mahdis; Tari, Niloufar; Adil, Susan; Mahvi, Zahra; Rezazadeh, Nima

    2017-02-01

    Meniere's disease is the disorder of inner ear characterized by vertigo, tinnitus and sensorineural hearing loss. The vestibular evoked myogenic potential (VEMP) test could be useful in the analysis of saccular function, and diagnosis of Meniere's disease. In this study, we've analyzed the saccular function, using VEMP test in different groups of Meniere's disease. Patients were categorized as possible, probable or definite Meniere's disease groups according to the guideline of American Academy of Otolaryngology-Head and Neck Surgery. The exclusion criteria were neuromuscular system diseases, diseases of central nervous system, inner ear disorders, conductive hearing loss, a history of ototoxic drug consumption, being a drug abuser and a positive history of inner ear surgery or manipulations. The VEMP test is the recording of positive and negative waves from sternocleidomastoid muscle that is made by an auditory click to the ear. From the total of 100 patients, the waves of VEMP test was seen in 59 patients which 19 patients had abnormal amplitude, and latency and 40 patients were with normally recorded waves. There was a significant relationship between the severity of hearing loss and a VEMP test without any recorded waves. Most of the cases with 'no wave recorded' VEMP test, were patients with severe hearing loss. However, there wasn't any relation between the pattern of hearing loss and 'no wave recorded' VEMP test. VEMP test could be a valuable diagnostic clue especially in patients with definite Meniere's disease.

  3. Torsional vestibulo-ocular reflex measurements for identifying otolith asymmetries possibly related to space motion sickness susceptibility

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.

    1993-01-01

    Recent studies have identified significant correlations between space motion sickness susceptibility and measures of disconjugate torsional eye movements recorded during parabolic flights. These results support an earlier proposal which hypothesized that an asymmetry of otolith function between the two ears is the cause of space motion sickness. It may be possible to devise experiments that can be performed in the 1 g environment on earth that could identify and quantify the presence of asymmetric otolith function. This paper summarizes the known physiological and anatomical properties of the otolith organs and the properties of the torsional vestibulo-ocular reflex which are relevant to the design of a stimulus to identify otolith asymmetries. A specific stimulus which takes advantage of these properties is proposed.

  4. Otolith mass asymmetry: natural, and after weightlessness and hypergravity

    NASA Astrophysics Data System (ADS)

    Lychakov, Dmitri

    It is believed that otolith mass asymmetry (OA) can play an essential role in genesis of vestibular space disturbances in human subjects and fish. This review poster presents data on values and characters of OA in animals of various species and classes and on the effect of weightlessness and hypergravity on OA; the issue of the effect of OA on vestibular and auditory functions also is considered (Lychakov, Rebane, 2004, 2005; Lychakov et al., 2006, 2008). In symmetric vertebrates, OA was shown to be fluctuating, its coefficient chiχ ranges from - 0.2 to + 0.2 (±± 20%). It should be stressed that in the overwhelming majority of individuals absolute values of chiχ << 0.06. The low OA level enables the paired otolith organs to work in coordination; this is why the OA level is equally low regardless of the individual taxonomic and ecological position, size, age, and otolith growth rate. Individuals with the abnormally high OA level can experience difficulties in analyzing auditory and vestibular stimuli; therefore, most of such individuals are eliminated by natural selection. Unlike symmetric vertebrates, labyrinths of many Pleuronectiformes have pronounced OA. Otoliths in the lower labyrinth, on average, are significantly heavier than those in the upper labyrinth. The organs of flatfish represent the only example when OA, being directional, seem to play an essential role in lateralized behavior and are suggested to be used in the spatial localization of the source of sound. The short-term weightlessness and relatively weak hypergravity (<< 2g) do not affect OA. However, it cannot be ruled out that the long-term weightlessness and hypergravity >> 3g as well as some diseases and age-related changes can indirectly enhance OA and cause some functional disturbances. This work was partly supported by Russian grant RFFI 14-04-00601.

  5. Latitudinal Gradient in Otolith Shape among Local Populations of Atlantic Herring (Clupea harengus L.) in Norway

    PubMed Central

    Libungan, Lísa Anne; Slotte, Aril; Husebø, Åse; Godiksen, Jane A.; Pálsson, Snæbjörn

    2015-01-01

    Otolith shape analysis of Atlantic herring (Clupea harengus) in Norwegian waters shows significant differentiation among fjords and a latitudinal gradient along the coast where neighbouring populations are more similar to each other than to those sampled at larger distances. The otolith shape was obtained using quantitative shape analysis, the outlines were transformed with Wavelet and analysed with multivariate methods. The observed morphological differences are likely to reflect environmental differences but indicate low dispersal among the local herring populations. Otolith shape variation suggests also limited exchange between the local populations and their oceanic counterparts, which could be due to differences in spawning behaviour. Herring from the most northerly location (69°N) in Balsfjord, which is genetically more similar to Pacific herring (Clupea pallasii), differed in otolith shape from all the other populations. Our results suggest that the semi-enclosed systems, where the local populations live and breed, are efficient barriers for dispersal. Otolith shape can thus serve as a marker to identify the origin of herring along the coast of Norway. PMID:26101885

  6. Double Stent Assist Coiling of Ruptured Large Saccular Aneurysm in Proximal Basilar Artery Fenestration.

    PubMed

    Park, Woong Bae; Sung, Jae Hoon; Huh, Joon; Cho, Chul Bum; Yang, Seung Ho; Kim, Il Sup; Hong, Jae Taek; Lee, Sang Won

    2015-09-01

    Basilar artery fenestration is infrequent and even rarer in association with a large aneurysm. With proximity to brain stem and vital perforators, endovascular coiling can be considered first. If the large ruptured aneurysm with a wide neck originated from fenestra of the proximal basilar artery and the fenestration loop has branches of posterior circulation, therapeutic consideration should be thorough and fractionized. We report endovascular therapeutic details for a case of a ruptured large saccular aneurysm in proximal basilar artery fenestration.

  7. Validating the use of embryonic fish otoliths as recorders of sublethal exposure to copper in estuarine sediments.

    PubMed

    Barbee, Nicole C; Greig, Alan; Swearer, Stephen E

    2013-07-01

    In this study we explore the use of fish otoliths ('earbones') as a tool for detecting exposure to heavy metals in sediments. Because otoliths are metabolically inert and incorporate chemical impurities during growth, they can potentially provide a more permanent record of pollutant exposure history in aquatic environments than soft tissues. To validate this technique we cultured embryos of a native Australian fish, the common Galaxias (Galaxias maculatus), in the laboratory on sediments spiked with copper in a concentration gradient. Our aims were to test whether exposure to copper contaminated sediments is recorded in the otoliths of embryos and determine over what range in concentrations we can detect differences in exposure. We found elevated copper levels in otoliths of embryos exposed to high copper concentrations in sediments, suggesting that otoliths can be used as a tool to track a history of exposure to elevated copper levels in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Torsional vestibulo-ocular reflex measurements for identifying otolith asymmetries possibly related to space motion sickness susceptibility

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    1994-01-01

    Recent studies by Diamond and Markham have identified significant correlations between space motion sickness susceptibility and measures of disconjugate torsional eye movements recorded during parabolic flights. These results support an earlier proposal by von Baumgarten and Thumler which hypothesized that an asymmetry of otolith function between the two ears is the cause of space motion sickness. It may be possible to devise experiments that can be performed in the 1 g environment on earth that could identify and quantify the presence of asymmetric otolith function. This paper summarizes the known physiological and anatomical properties of the otolith organs and the properties of the torsional vestibulo-ocular reflex which are relevant to the design of a stimulus to identify otolith asymmetries. A specific stimulus which takes advantage of these properties is proposed.

  9. Calcium Gradients in the Fish inner Ear sensory Epithelium and otolithic Membrane: an Energy filtering Transmission electron Microscopy (EFTEM) Study

    NASA Astrophysics Data System (ADS)

    Ibsch, M.; Anken, R.; Rahmann, H.

    Inner ear otolith formation in fish is supposed to be performed by the molecular release of proteinacious precursor material from the sensory epithelia, followed by an undirected and diffuse precipitation of calcium carbonate (which is mainly responsible for the functionally important weight of otoliths). Previous experiments have shown, however, that otolith formation in terms of provision both of the protein matrix and of calcium is regulated by a (likely neuronal) feedback mechanism. This regulating mechanism effects a symmetrical crystallisation of the corresponding otoliths in the inner ears of both sides of the head, which is necessary for a correct graviperception and for maintenance of postural control; thus, asymmetrical otoliths can induce kinetoses (e.g., space motion sickness) both in human and fish. On the background of an obviously directed incorporation of calcium into otoliths, the site of origin of the otoliths's inorganic components such as calcium still remains obscure. Therefore, ultrastructural and element analytical investigations were undertaken to screen the calcium distribution within the macular epithelial region using fish as model system. Electron spectroscopic imaging (ESI) and electron energy loss spectra (EELS) revealed discrete calcium-precipitations in the extracellular space of the otolithic membrane as well as within the lumina of the epithelial sensory cells. The calcium particles were accumulated at the macular tight junctions and seemed to be distributed in an ascending intracellular and a descending extracellular gradient towards the otolith. Further distinct calcium containing crystals covered the peripheral proteinacious layer of the otolith. The remaining endolymphatic space of the otocyst was lacking calcium precipitates. Overall, the present results indicate that the apical region of the macular epithelium is involved in the controlled release of calcium. This finding is in complete agreement with a study using calcium

  10. [Sagittal otolith morphology and the relationship between its mass and the age of Liza haematocheila in the Yangtze Estuary, China].

    PubMed

    Ji, Yan; Zhao, Feng; Yang, Qin; Ma, Rong Rong; Yang, Gang; Zhang, Tao; Zhuang, Ping

    2018-03-01

    To examine the relationship of morphological characters of sagittal otolith and the age of Liza haematocheila in the Yangtze Estuary, we analyzed the morphological parameters of 324 pairs of otoliths extracted from 358 L. haematocheila specimens from the Yangtze Estuary in February to June of 2017. The results showed that sagittal otolith had rostrum, antirostrum and obvious central notch. The size and shape of sagittal otolith significantly changed with their growth, from regular melon seeds shape outline to long narrow leaf shape and increasing irregular wavy outline. The average density of sagittal otolith was 1.52 mg·mm -2 . The average rectangularity was 0.68. The length of sagittal otolith was 0.021%-0.047% of entire body length (BL), the width was 0.009%-0.021% of entire BL, and the mass was 0.045‰-0.731‰ of the entire body mass (BM). Otolith length (OL), otolith width (OW) and otolith mass (OM) were all significantly related to the BL, with the determination coefficient for OW and OM model being the highest (R 2 =0.928). The relationship between OM and BL was described best by exponential regression: OM=0.0009BL 1.8737 (R 2 =0.967). The relationships between OM and age (A), BL and A were well fitted by multinomial regressions, respectively: OM=2.9262A 2 +4.8437A+2.1894 (R 2 =0.847), BL=-3.2248A 2 +102.54A+38.373 (R 2 =0.858). In addition, OM was linearly correlated with A. The estimated otolith's ages from the model did not significantly variate from the real ages counting from annulus counts. Therefore, OM could be an effective parameter for the age estimation of L. haematocheila.

  11. Efficacy of otoliths and first dorsal spines for preliminary age and growth determination in Atlantic Tripletails

    USGS Publications Warehouse

    Parr, Russell T.; Bringolf, Robert B.; Jennings, Cecil A.

    2018-01-01

    The Atlantic Tripletail Lobotes surinamensis is a popular sport fish for which age and growth data are scarce in general and nonexistent for Georgia (GA), USA, waters. These data are necessary to ensure that management regulations are adequate to protect this species, especially given its popularity as a sport fish. We evaluated whether otoliths and spines were suitable for determining the estimated age (hereafter, “age”) and growth rates of Atlantic Tripletails, and we ascertained whether one method was more accurate than the other. Atlantic Tripletails were sampled by angling and trawling during March 30–August 10, 2009, and March 14–August 6, 2010, in nearshore GA waters of the Atlantic Ocean. During the study, 243 Atlantic Tripletails were captured and sampled for aging structures. Sagittal otoliths and the first dorsal spine were removed from each fish and used to estimate the age and growth rate. Mean differences in TL at age for spine and otolith data were evaluated with ANOVA. Estimated ages for males and females ranged from 1 to 5 years based on otoliths and spines. Both otolith and spine mean TLs at ages 1 and 2 were significantly different from each other as well as all other age‐classes, whereas mean TLs for ages 3–5 were not significantly different. Differences in Atlantic Tripletail TL among the otolith‐ and spine‐derived age‐classes were not significant. Each method used to age Atlantic Tripletails had advantages and disadvantages. Otoliths had higher initial reader agreement than spines, although agreement between the structures was 84.1%. However, otoliths require sacrifice of the fish, whereas a spine can be taken without sacrificing the fish. The lack of concrete life history data and population estimates suggests that when feasible, nonlethal aging methods would be preferred over lethal methods to ensure the survival of Atlantic Tripletail populations.

  12. On the role of the central nervous system in regulating the mineralisation of inner-ear otoliths of fish.

    PubMed

    Anken, Ralf H

    2006-12-01

    Stato- or otoliths are calcified structures in the organ of balance and equilibrium of vertebrates, the inner ear, where they enhance its sensitivity to gravity. The compact otoliths of fish are composed of the calcium carbonate polymorph aragonite and a small fraction of organic molecules. The latter form a protein skeleton which determines the morphology of an otolith as well as its crystal lattice structure. This short review addresses findings according to which the brain obviously plays a prominent role in regulating the mineralisation of fish otoliths and depends on the gravity vector. Overall, otolith mineralisation has thus been identified to be a unique, neuronally guided biomineralisation process. The following is a hypothetical model for regulation of calcification by efferent vestibular neurons: (1) release of calcium at tight junctions in the macular epithelia, (2) macular carbonic anhydrase activity (which in turn is responsible for carbonate deposition), (3) chemical composition of matrix proteins. The rationale and evidence that support this model are discussed.

  13. Tests of size and growth effects on Arctic charr (Salvelinus alpinus) otolith δ18 O and δ13 C values.

    PubMed

    Burbank, J; Kelly, B; Nilsson, J; Power, M

    2018-06-06

    Otolith δ 18 O and δ 13 C values have been used extensively to reconstruct thermal and diet histories. Researchers have suggested that individual growth rate and size may have an effect on otolith isotope ratios and subsequently confound otolith based thermal and diet reconstructions. As few explicit tests of the effect of fish in freshwater environments exist, here we determine experimentally the potential for related growth rate and size effects on otolith δ 18 O and δ 13 C values. Fifty Arctic charr were raised in identical conditions for two years after which their otoliths were removed and analyzed for their δ 18 O and δ 13 C values. The potential effects of final length and the Thermal Growth Coefficient (TGC) on otolith isotope ratios were tested using correlation and regression analysis to determine if significant effects were present and to quantify effects when present. The analyses indicated that TGC and size had significant and similar positive non-linear relationships with δ 13 C values and explained 35% and 42% of the variability, respectively. Conversely, both TGC and size were found to have no significant correlation with otolith δ 18 O values. There was no significant correlation between δ 18 O and δ 13 C values. The investigation indicated the presence of linked growth rate and size effects on otolith δ 13 C values, the nature of which requires further study. Otolith δ 18 O values were unaffected by individual growth rate and size, confirming the applicability of applying these values to thermal reconstructions of fish habitat. This article is protected by copyright. All rights reserved.

  14. Seasonal plasticity of auditory saccular sensitivity in "sneaker" type II male plainfin midshipman fish, Porichthys notatus.

    PubMed

    Bhandiwad, Ashwin A; Whitchurch, Elizabeth A; Colleye, Orphal; Zeddies, David G; Sisneros, Joseph A

    2017-03-01

    Adult female and nesting (type I) male midshipman fish (Porichthys notatus) exhibit an adaptive form of auditory plasticity for the enhanced detection of social acoustic signals. Whether this adaptive plasticity also occurs in "sneaker" type II males is unknown. Here, we characterize auditory-evoked potentials recorded from hair cells in the saccule of reproductive and non-reproductive "sneaker" type II male midshipman to determine whether this sexual phenotype exhibits seasonal, reproductive state-dependent changes in auditory sensitivity and frequency response to behaviorally relevant auditory stimuli. Saccular potentials were recorded from the middle and caudal region of the saccule while sound was presented via an underwater speaker. Our results indicate saccular hair cells from reproductive type II males had thresholds based on measures of sound pressure and acceleration (re. 1 µPa and 1 ms -2 , respectively) that were ~8-21 dB lower than non-reproductive type II males across a broad range of frequencies, which include the dominant higher frequencies in type I male vocalizations. This increase in type II auditory sensitivity may potentially facilitate eavesdropping by sneaker males and their assessment of vocal type I males for the selection of cuckoldry sites during the breeding season.

  15. New insights into saccular development and vascular formation in lung allografts under the renal capsule

    PubMed Central

    Vu, Thiennu H.; Alemayehu, Yemisrach; Werb, Zena

    2009-01-01

    The study of distal lung morphogenesis and vascular development would be greatly facilitated by an in vitro or ex vivo experimental model. In this study we show that the growth of mouse embryonic day 12.5 lung rudiments implanted underneath the kidney capsules of syngeneic or immunodeficient hosts follows closely lung development in utero. The epithelium develops extensively with both proximal and distal differentiation to the saccular stage. The vasculature also develops extensively. Large blood vessels accompany large airways and capillaries develop within the saccular walls. Interestingly, vessels in the lung grafts develop from endothelial progenitor cells endogenous to the explants and host vessels do not vascularize the grafts independently. This suggests that embryonic lungs possess mechanisms to prevent the inappropriate ingrowth of surrounding vessels. However, vessels in the lung grafts do connect to host vessels, showing that embryonic lungs have the ability to stimulate host angiogenesis and recruit host vessel connections. These data support the hypothesis that the lung vasculature develops by both vasculogenic and angiogenic processes: a vascular network develops in situ in lung mesenchyme, which is then connected to angiogenic processes from central vessels. The lung renal capsule allograft is thus an excellent model to study the development of the pulmonary vasculature and of late fetal lung development that requires a functional blood supply. PMID:12591600

  16. Non-invasive assessment of otolith formation during development of the Japanese red-bellied newt, Cynops pyrrhogaster

    NASA Technical Reports Server (NTRS)

    Koike, H.; Nakamura, K.; Nishimura, K.; Kashima, I.; Wiederhold, M. L.; Asashima, M.

    1995-01-01

    Pre-mated adult female newts and embryos have been flown on the International Microgravity Laboratory-2 (IML-2) Space Shuttle flight in 1994 (Wiederhold et al., 1992b). With the specimens available from this flight, the calcification of otoliths, ulna, radius and backbone of the flown larvae and adult newts were analyzed. The experiments presented here studied the development of the otoliths on the ground. Otoliths of living newts, from embryo to adult, were observed in situ with the application of a new X-ray and bio-imaging analyzer system. For the establishment of this method, newts at different developmental stages were used. An imaging plate temporarily stores the X-ray energy pattern at the bio-imaging analyzer. A latent image on the imaging plate was transformed into a digital time series signal with an image reader. Acquired digital information was computed with the image processor. The processed information was recorded on film with an image recorder, in order to visualize it on an enlargement computed radiograph. To analyze development of the otoliths, photo-stimulated luminescence level was detected by an image analyzer, using transmitted X-ray photons. A single clump of otoconia could first be seen at stage 33. Stage-36 embryos first have distinguishable otoliths, with the utricle in front and saccule behind. Our results show that this X-ray method detects the otoliths equally as well as sectioning. In the newt, the mandibular/maxillary bone formed before the spine. It is suspected that for the newt embryo, living in water, feeding becomes necessary prior to support of the body.

  17. Discrimination among populations of sockeye salmon fry with Fourier analysis of otolith banding patterns formed during incubation

    USGS Publications Warehouse

    Finn, James E.; Burger, Carl V.; Holland-Bartels, Leslie E.

    1997-01-01

    We used otolith banding patterns formed during incubation to discriminate among hatchery- and wild-incubated fry of sockeye salmon Oncorhynchus nerka from Tustumena Lake, Alaska. Fourier analysis of otolith luminance profiles was used to describe banding patterns: the amplitudes of individual Fourier harmonics were discriminant variables. Correct classification of otoliths to either hatchery or wild origin was 83.1% (cross-validation) and 72.7% (test data) with the use of quadratic discriminant function analysts on 10 Fourier amplitudes. Overall classification rates among the six test groups (one hatchery and five wild groups) were 46.5% (cross-validation) and 39.3% (test data) with the use of linear discriminant function analysis on 16 Fourier amplitudes. Although classification rates for wild-incubated fry from any one site never exceeded 67% (cross-validation) or 60% (test data), location-specific information was evident for all groups because the probability of classifying an individual to its true incubation location was significantly greater than chance. Results indicate phenotypic differences in otolith microstructure among incubation sites separated by less than 10 km. Analysis of otolith luminance profiles is a potentially useful technique for discriminating among and between various populations of hatchery and wild fish.

  18. Elemental signatures in otoliths of hatchery rainbow trout (Oncorhynchus mykiss): Distinctiveness and utility fo detecting origins and movement

    USGS Publications Warehouse

    Gibson-Reinemer, D. K.; Johnson, B.M.; Martinez, P.J.; Winkelman, D.L.; Koenig, A.E.; Woodhead, J.D.

    2009-01-01

    Otolith chemistry in freshwater has considerable potential to reveal patterns of origin and movement, which would benefit traditional fisheries management and provide a valuable tool to curb the spread of invasive and illicitly stocked species. We evaluated the relationship between otolith and water chemistry for five markers (Ba/Ca, Mn/Ca, Sr/ Ca, Zn/Ca, and 87Sr/86Sr) in rainbow trout (Oncorhynchus mykiss) using the existing hatchery system in Colorado and Wyoming, USA, to provide controlled, seminatural conditions. Otolith Ba/Ca, Sr/Ca, and 87Sr/86Sr reflected ambient levels, whereas Mn/Ca and Zn/Ca did not. Using only the markers correlated with water chemistry, we classified fish to their hatchery of origin with up to 96% accuracy when element and isotope data were used together. Large changes in 87Sr/Sr were evident in otolith transects, although subtler changes in Sr/Ca were also detectable. Our results suggest the relatively few otolith markers that reflect ambient chemistry can discriminate among locations and track movements well enough to provide valuable insight in a variety of applied contexts.

  19. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties

  20. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex

    NASA Technical Reports Server (NTRS)

    Watt, D. G.; Money, K. E.; Tomi, L. M.

    1986-01-01

    Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, "falls" were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot be ruled out.

  1. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission. III - Effects of prolonged weightlessness on a human otolith-spinal reflex

    NASA Technical Reports Server (NTRS)

    Watt, D. G. D.; Money, K. E.; Tomi, L. M.

    1986-01-01

    Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, 'falls' were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot by ruled out.

  2. Parameterization of the shape of intracranial saccular aneurysms using Legendre polynomials.

    PubMed

    Banatwala, M; Farley, C; Feinberg, D; Humphrey, J D

    2005-04-01

    Our recent studies of the nonlinear mechanics of saccular aneurysms suggest that it is unlikely that these lesions enlarge or rupture via material (limit point) or dynamic (resonance) instabilities. Rather, there is a growing body of evidence from both vascular biology and biomechanical analyses that implicate mechanosensitive growth and remodeling processes. There is, therefore, a pressing need to quantify regional multiaxial wall stresses which, because of the membrane-like behavior of many aneurysms, necessitates better information on the applied loads and regional surface curvatures. Herein, we present and illustrate a method whereby regional curvatures can be estimated easily for sub-classes of human aneurysms based on clinically available data from magnetic resonance angiography (MRA). Whereas Legendre polynomials are used to illustrate this approach, different functions may prove useful for different sub-classes of lesions.

  3. Fully-automated identification of fish species based on otolith contour: using short-time Fourier transform and discriminant analysis (STFT-DA).

    PubMed

    Salimi, Nima; Loh, Kar Hoe; Kaur Dhillon, Sarinder; Chong, Ving Ching

    2016-01-01

    Background. Fish species may be identified based on their unique otolith shape or contour. Several pattern recognition methods have been proposed to classify fish species through morphological features of the otolith contours. However, there has been no fully-automated species identification model with the accuracy higher than 80%. The purpose of the current study is to develop a fully-automated model, based on the otolith contours, to identify the fish species with the high classification accuracy. Methods. Images of the right sagittal otoliths of 14 fish species from three families namely Sciaenidae, Ariidae, and Engraulidae were used to develop the proposed identification model. Short-time Fourier transform (STFT) was used, for the first time in the area of otolith shape analysis, to extract important features of the otolith contours. Discriminant Analysis (DA), as a classification technique, was used to train and test the model based on the extracted features. Results. Performance of the model was demonstrated using species from three families separately, as well as all species combined. Overall classification accuracy of the model was greater than 90% for all cases. In addition, effects of STFT variables on the performance of the identification model were explored in this study. Conclusions. Short-time Fourier transform could determine important features of the otolith outlines. The fully-automated model proposed in this study (STFT-DA) could predict species of an unknown specimen with acceptable identification accuracy. The model codes can be accessed at http://mybiodiversityontologies.um.edu.my/Otolith/ and https://peerj.com/preprints/1517/. The current model has flexibility to be used for more species and families in future studies.

  4. Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?

    PubMed Central

    Darnaude, Audrey M.; Sturrock, Anna; Trueman, Clive N.; Mouillot, David; EIMF; Campana, Steven E.; Hunter, Ewan

    2014-01-01

    Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified. PMID:25279667

  5. Perforator and secondary branch origin in relation to the neck of saccular, cerebral bifurcation aneurysms.

    PubMed

    Pritz, Michael B

    2014-11-01

    Perforator and secondary branch origin in relation to the neck of cerebral, saccular bifurcation aneurysms were analyzed. These two features were considered important for treatment. From a series of microsurgically clipped saccular cerebral aneurysms, 142 bifurcation aneurysms had detailed imaging studies and operative records that could be analyzed. The incidence of perforator origin from the aneurysm neck was as follows: basilar, 1/15 (7%); internal carotid artery bifurcation, 4/23 (17%); main stem of the middle cerebral artery/secondary branch of the middle cerebral artery, 6/52 (12%); anterior communicating artery region, 5/46 (11%); and distal bifurcation vessels, 0/6 (0%). Aneurysms arising from the anterior communicating artery between the anterior cerebral arteries had a high incidence of perforator origin from the aneurysm neck. The location of secondary branch origin from the aneurysm neck varied depending on the aneurysm group. Perforator origin from the aneurysm neck was infrequent. A subgroup of anterior communicating artery region aneurysms had a high incidence of perforator origin from the aneurysm neck. Although protection of these neck perforators will be difficult, their identification may be even more challenging. Secondary branch origin from the aneurysm neck varied depending on the aneurysm group. Advanced endovascular techniques are needed to obliterate aneurysms in which the secondary branch(es) arise from the aneurysm neck. If this is not possible, craniotomy and clip ligation will be required if complete aneurysm obliteration is the goal. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Precision of four otolith techniques for estimating age of white perch from a thermally altered reservoir

    USGS Publications Warehouse

    Snow, Richard A.; Porta, Michael J.; Long, James M.

    2018-01-01

    The White Perch Morone americana is an invasive species in many Midwestern states and is widely distributed in reservoir systems, yet little is known about the species' age structure and population dynamics. White Perch were first observed in Sooner Reservoir, a thermally altered cooling reservoir in Oklahoma, by the Oklahoma Department of Wildlife Conservation in 2006. It is unknown how thermally altered systems like Sooner Reservoir may affect the precision of White Perch age estimates. Previous studies have found that age structures from Largemouth Bass Micropterus salmoides and Bluegills Lepomis macrochirus from thermally altered reservoirs had false annuli, which increased error when estimating ages. Our objective was to quantify the precision of White Perch age estimates using four sagittal otolith preparation techniques (whole, broken, browned, and stained). Because Sooner Reservoir is thermally altered, we also wanted to identify the best month to collect a White Perch age sample based on aging precision. Ages of 569 White Perch (20–308 mm TL) were estimated using the four techniques. Age estimates from broken, stained, and browned otoliths ranged from 0 to 8 years; whole‐view otolith age estimates ranged from 0 to 7 years. The lowest mean coefficient of variation (CV) was obtained using broken otoliths, whereas the highest CV was observed using browned otoliths. July was the most precise month (lowest mean CV) for estimating age of White Perch, whereas April was the least precise month (highest mean CV). These results underscore the importance of knowing the best method to prepare otoliths for achieving the most precise age estimates and the best time of year to obtain those samples, as these factors may affect other estimates of population dynamics.

  7. Matching watershed and otolith chemistry to establish natal origin of an endangered desert lake sucker

    USGS Publications Warehouse

    Strohm, Deanna D.; Budy, Phaedra; Crowl, Todd A.

    2017-01-01

    Stream habitat restoration and supplemental stocking of hatchery-reared fish have increasingly become key components of recovery plans for imperiled freshwater fish; however, determining when to discontinue stocking efforts, prioritizing restoration areas, and evaluating restoration success present a conservation challenge. In this study, we demonstrate that otolith microchemistry is an effective tool for establishing natal origin of the June Sucker Chasmistes liorus, an imperiled potamodromous fish. This approach allows us to determine whether a fish is of wild or hatchery origin in order to assess whether habitat restoration enhances recruitment and to further identify areas of critical habitat. Our specific objectives were to (1) quantify and characterize chemical variation among three main spawning tributaries; (2) understand the relationship between otolith microchemistry and tributary chemistry; and (3) develop and validate a classification model to identify stream origin using otolith microchemistry data. We quantified molar ratios of Sr:Ca, Ba:Ca, and Mg:Ca for water and otolith chemistry from three main tributaries to Utah Lake, Utah, during the summer of 2013. Water chemistry (loge transformed Sr:Ca, Ba:Ca, and Mg:Ca ratios) differed significantly across all three spawning tributaries. We determined that Ba:Ca and Sr:Ca ratios were the most important variables driving our classification models, and we observed a strong linear relationship between water and otolith values for Sr:Ca and Ba:Ca but not for Mg:Ca. Classification models derived from otolith element : Ca signatures accurately sorted individuals to their experimental tributary of origin (classification tree: 89% accuracy; random forest model: 91% accuracy) and determined wild versus hatchery origin with 100% accuracy. Overall, this study aids in evaluating the effectiveness of restoration, tracking progress toward recovery, and prioritizing future restoration plans for fishes of conservation

  8. Striped Bass Habitat use in the San Francisco Estuary Determined Using Otolith Microchemistry Techniques

    NASA Astrophysics Data System (ADS)

    Phillis, C. C.; Ostrach, D. J.; Weber, P. K.; Ingram, B. L.; Zinkl, J. G.

    2005-12-01

    Habitat use has been shown to be an important factor in the bioaccumulation of contaminants in striped bass ( Morone saxatilis). This study explores techniques to determine migration in striped bass as part of a larger study investigating maternal transfer of xenobiotics to progeny in the San Francisco Estuary. The timing of movement of fish between salt and fresh water can easily be determined using a number of chemical markers in otoliths. Determining movement within estuaries, however, is a more difficult problem because mesohaline geochemical signatures approach the marine end member at very low salinities. Two tracers were used to reconstruct the migration history of striped bass in the San Francisco Estuary: Sr/Ca (measured by electron microprobe and LA-ICP-MS) and Sr isotope ratio (measured by LA-MC-ICP-MS). Both tracers can be used to map the salinity the fish is exposed to at the time of otolith increment deposition. Salinity, in turn, is mapped to location within the San Francisco Bay estuary based on monthly salinity surveys. The two methods have their respective benefits. Sr/Ca can be measured with higher spatial resolution (<10 microns). Sr isotope ratios are not modulated by metabolism. Sr isotope measurements were made to check the Sr/Ca results. In the San Francisco Estuary, low 87Sr/86Sr (0.706189) river water mixes with high 87Sr/86Sr (0.709168) marine water to 80% of the marine signal (0.7085) when the salinity is only 5% (1.8 ppt) seawater, and 95% of the marine signal (0.7090) at salinities of 20% (6.6 ppt) seawater (Ingram and Sloan, 1992). This salinity model should map directly to the otolith because there is no biological fractionation of Sr isotopes. The Sr/Ca otolith and salinity models predict a similar response. For both models, calculated otolith salinity is mapped to location within the San Francisco Estuary based on monthly salinity surveys. Using previously published salinity models, the otolith Sr/Ca and Sr isotope results are

  9. Linking otolith microchemistry and surface water contamination from natural gas mining.

    PubMed

    Keller, David H; Zelanko, Paula M; Gagnon, Joel E; Horwitz, Richard J; Galbraith, Heather S; Velinsky, David J

    2018-09-01

    Unconventional natural gas drilling and the use of hydraulic fracturing technology have expanded rapidly in North America. This expansion has raised concerns of surface water contamination by way of spills and leaks, which may be sporadic, small, and therefore difficult to detect. Here we explore the use of otolith microchemistry as a tool for monitoring surface water contamination from generated waters (GW) of unconventional natural gas drilling. We exposed Brook Trout in the laboratory to three volumetric concentrations of surrogate generated water (SGW) representing GW on day five of drilling. Transects across otolith cross-sections were analyzed for a suite of elements by LA-ICP-MS. Brook Trout exposed to a 0.01-1.0% concentration of SGW for 2, 15, and 30 days showed a significant (p < 0.05) relationship of increasing Sr and Ba concentrations in all but one treatment. Analyses indicate lesser concentrations than used in this experiment could be detectable in surface waters and provide support for the use of this technique in natural habitats. To our knowledge, this is the first demonstration of how trace elements in fish otoliths may be used to monitor for surface water contamination from GW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Characterization of estuary use by Nisqually Hatchery Chinook based on Otolith analysis

    USGS Publications Warehouse

    Lind-Null, Angie M.; Larsen, Kim A.; Reisenbichler, Reg

    2008-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem are planned to assist in recovery of the stock. A pre-restoration baseline including life history types, estuary residence time, growth rates, and habitat use are needed to evaluate the potential response of hatchery and wild Chinook salmon to restoration. Otolith analysis has been selected as a means to examine Chinook salmon life history, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: 1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, 2) compare pre- and post- restoration residence times and growth rates, 3) suggest whether estuary restoration yields substantial benefits for Chinook salmon through (1) and (2), and 4) compare differences in habitat use between hatchery and wild Chinook to further protect ESA listed stock. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile hatchery Chinook salmon are generally released as smolts that move quickly through the delta with much shorter residence times than for many wild fish and are not dependent on the delta as nursery habitat (Myers and Horton 1982; Mace 1983; Levings et al. 1986). The purpose of this study is to use and

  11. In Vitro Measurement of Tissue Integrity during Saccular Aneurysm Embolizations for Simulator-Based Training

    PubMed Central

    Tercero, C.; Ikeda, S.; Ooe, K.; Fukuda, T.; Arai, F.; Negoro, M.; Takahashi, I.; Kwon, G.

    2012-01-01

    Summary In the domain of endovascular neurosurgery, the measurement of tissue integrity is needed for simulator-based training and for the development of new intravascular instruments and treatment techniques. In vitro evaluation of tissue manipulation can be achieved using photoelastic stress analysis and vasculature modeling with photoelastic materials. In this research we constructed two types of vasculature models of saccular aneurysms for differentiation of embolization techniques according to the respect for tissue integrity measurements based on the stress within the blood vessel model wall. In an aneurysm model with 5 mm dome diameter, embolization using MicroPlex 10 (Complex 1D, with 4 mm diameter loops), a maximum area of 3.97 mm2 with stress above 1 kPa was measured. This area increased to 5.50 mm2 when the dome was touched deliberately with the release mechanism of the coil, and to 4.87 mm2 for an embolization using Micrusphere, (Spherical 18 Platinum Coil). In a similar way trans-cell stent-assisted coil embolization was also compared to human blood pressure simulation using a model of a wide-necked saccular aneurysm with 7 mm diameter. The area with stress above 1kPa was below 1 mm2 for the pressure simulation and maximized at 3.79 mm2 during the trans-cell insertion of the micro-catheter and at 8.92 mm2 during the embolization. The presented results show that this measurement system is useful for identifying techniques compromising tissue integrity, comparing and studying coils and embolization techniques for a specific vasculature morphology and comparing their natural stress variations such as that produced by blood pressure. PMID:23217635

  12. Migration and rearing histories of chinook salmon (Oncorhynchus tshawytscha) determined by ion microprobe Sr isotope and Sr/Ca transects of otoliths

    USGS Publications Warehouse

    Bacon, C.R.; Weber, P.K.; Larsen, K.A.; Reisenbichler, R.; Fitzpatrick, J.A.; Wooden, J.L.

    2004-01-01

    Strontium isotope and Sr/Ca ratios measured in situ by ion microprobe along radial transects of otoliths of juvenile chinook salmon (Oncorhynchus tshawytscha) vary between watersheds with contrasting geology. Otoliths from ocean-type chinook from Skagit River estuary, Washington, had prehatch regions with 87Sr/86Sr ratios of ???0.709, suggesting a maternally inherited marine signature, extensive fresh water growth zones with 87Sr/86Sr ratios similar to those of the Skagit River at ???0.705, and marine-like 87Sr/86Sr ratios near their edges. Otoliths from stream-type chinook from central Idaho had prehatch 87Sr/86Sr ratios ???0.711, indicating that a maternal marine Sr isotopic signature is not preserved after the ???1000- to 1400-km migration from the Pacific Ocean. 87Sr/86Sr ratios in the outer portions of otoliths from these Idaho juveniles were similar to those of their respective streams (???0.708-0.722). For Skagit juveniles, fresh water growth was marked by small decreases in otolith Sr/Ca, with increases in Sr/Ca corresponding to increases in 87Sr/86Sr with migration into salt water. Otoliths of Idaho fish had Sr/Ca radial variation patterns that record seasonal fluctuation in ambient water Sr/Ca ratios. The ion microprobe's ability to measure both 87Sr/86Sr and Sr/Ca ratios of otoliths at high spatial resolution in situ provides a new tool for studies of fish rearing and migration. ?? 2004 NRC Canada.

  13. Lake trout otolith chronologies as multidecadal indicators of high-latitude freshwater ecosystems

    USGS Publications Warehouse

    Black, B.A.; Von Biela, V.R.; Zimmerman, C.E.; Brown, Randy J.

    2013-01-01

    High-latitude ecosystems are among the most vulnerable to long-term climate change, yet continuous, multidecadal indicators by which to gauge effects on biology are scarce, especially in freshwater environments. To address this issue, dendrochronology (tree-ring analysis) techniques were applied to growth-increment widths in otoliths from lake trout (Salvelinus namaycush) from the Chandler Lake system, Alaska (68.23°N, 152.70°W). All otoliths were collected in 1987 and exhibited highly synchronous patterns in growth-increment width. Increments were dated, the widths were measured, and age-related growth declines were removed using standard dendrochronology techniques. The detrended time series were averaged to generate an annually resolved chronology, which continuously spanned 1964–1984. The chronology positively and linearly correlated with August air temperature over the 22-year interval (p < 0.01), indicating that warmer summers were beneficial for growth, perhaps by increasing fish metabolic rate or lake productivity. Given the broad distribution of lake trout within North America, this study suggests that otolith chronologies could be used to examine responses between freshwater ecosystems and environmental variability across a range of temporal and spatial scales.

  14. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function.

    PubMed

    Bignami, Sean; Enochs, Ian C; Manzello, Derek P; Sponaugle, Su; Cowen, Robert K

    2013-04-30

    Ocean acidification affects a wide diversity of marine organisms and is of particular concern for vulnerable larval stages critical to population replenishment and connectivity. Whereas it is well known that ocean acidification will negatively affect a range of calcareous taxa, the study of fishes is more limited in both depth of understanding and diversity of study species. We used new 3D microcomputed tomography to conduct in situ analysis of the impact of ocean acidification on otolith (ear stone) size and density of larval cobia (Rachycentron canadum), a large, economically important, pantropical fish species that shares many life history traits with a diversity of high-value, tropical pelagic fishes. We show that 2,100 μatm partial pressure of carbon dioxide (pCO2) significantly increased not only otolith size (up to 49% greater volume and 58% greater relative mass) but also otolith density (6% higher). Estimated relative mass in 800 μatm pCO2 treatments was 14% greater, and there was a similar but nonsignificant trend for otolith size. Using a modeling approach, we demonstrate that these changes could affect auditory sensitivity including a ∼50% increase in hearing range at 2,100 μatm pCO2, which may alter the perception of auditory information by larval cobia in a high-CO2 ocean. Our results indicate that ocean acidification has a graded effect on cobia otoliths, with the potential to substantially influence the dispersal, survival, and recruitment of a pelagic fish species. These results have important implications for population maintenance/replenishment, connectivity, and conservation efforts for other valuable fish stocks that are already being deleteriously impacted by overfishing.

  15. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function

    PubMed Central

    Bignami, Sean; Enochs, Ian C.; Manzello, Derek P.; Sponaugle, Su; Cowen, Robert K.

    2013-01-01

    Ocean acidification affects a wide diversity of marine organisms and is of particular concern for vulnerable larval stages critical to population replenishment and connectivity. Whereas it is well known that ocean acidification will negatively affect a range of calcareous taxa, the study of fishes is more limited in both depth of understanding and diversity of study species. We used new 3D microcomputed tomography to conduct in situ analysis of the impact of ocean acidification on otolith (ear stone) size and density of larval cobia (Rachycentron canadum), a large, economically important, pantropical fish species that shares many life history traits with a diversity of high-value, tropical pelagic fishes. We show that 2,100 μatm partial pressure of carbon dioxide (pCO2) significantly increased not only otolith size (up to 49% greater volume and 58% greater relative mass) but also otolith density (6% higher). Estimated relative mass in 800 μatm pCO2 treatments was 14% greater, and there was a similar but nonsignificant trend for otolith size. Using a modeling approach, we demonstrate that these changes could affect auditory sensitivity including a ∼50% increase in hearing range at 2,100 μatm pCO2, which may alter the perception of auditory information by larval cobia in a high-CO2 ocean. Our results indicate that ocean acidification has a graded effect on cobia otoliths, with the potential to substantially influence the dispersal, survival, and recruitment of a pelagic fish species. These results have important implications for population maintenance/replenishment, connectivity, and conservation efforts for other valuable fish stocks that are already being deleteriously impacted by overfishing. PMID:23589887

  16. Otolith Length-Fish Length Relationships of Eleven US Arctic Fish Species and Their Application to Ice Seal Diet Studies

    NASA Astrophysics Data System (ADS)

    Walker, K. L.; Norcross, B.

    2016-02-01

    The Arctic ecosystem has moved into the spotlight of scientific research in recent years due to increased climate change and oil and gas exploration. Arctic fishes and Arctic marine mammals represent key parts of this ecosystem, with fish being a common part of ice seal diets in the Arctic. Determining sizes of fish consumed by ice seals is difficult because otoliths are often the only part left of the fish after digestion. Otolith length is known to be positively related to fish length. By developing species-specific otolith-body morphometric relationships for Arctic marine fishes, fish length can be determined for fish prey found in seal stomachs. Fish were collected during ice free months in the Beaufort and Chukchi seas 2009 - 2014, and the most prevalent species captured were chosen for analysis. Otoliths from eleven fish species from seven families were measured. All species had strong linear relationships between otolith length and fish total length. Nine species had coefficient of determination values over 0.75, indicating that most of the variability in the otolith to fish length relationship was explained by the linear regression. These relationships will be applied to otoliths found in stomachs of three species of ice seals (spotted Phoca largha, ringed Pusa hispida, and bearded Erignathus barbatus) and used to estimate fish total length at time of consumption. Fish lengths can in turn be used to calculate fish weight, enabling further investigation into ice seal energetic demands. This application will aid in understanding how ice seals interact with fish communities in the US Arctic and directly contribute to diet comparisons among and within ice seal species. A better understanding of predator-prey interactions in the US Arctic will aid in predicting how ice seal and fish species will adapt to a changing Arctic.

  17. Dipole source encoding and tracking by the goldfish auditory system.

    PubMed

    Coombs, Sheryl; Fay, Richard R; Elepfandt, Andreas

    2010-10-15

    In goldfish and other otophysans, the Weberian ossicles mechanically link the saccule of the inner ear to the anterior swimbladder chamber (ASB). These structures are correlated with enhanced sound-pressure sensitivity and greater sensitivity at high frequencies (600-2000 Hz). However, surprisingly little is known about the potential impact of the ASB on other otolithic organs and about how auditory responses are modulated by discrete sources that change their location or orientation with respect to the ASB. In this study, saccular and lagenar nerve fiber responses and conditioned behaviors of goldfish were measured to a small, low-frequency (50 Hz) vibrating sphere (dipole) source as a function of its location along the body and its orientation with respect to the ASB. Conditioned behaviors and saccular nerve fiber activity exhibited response characteristics nearly identical to those measured from a hydrophone in the same relative position as the ASB. By contrast, response patterns from lagena fibers could not be predicted by pressure inputs to the ASB. Deflation of the ASB abolished the characteristic spatial response pattern of saccular but not lagena fibers. These results show that: (1) the lagena is not driven by ASB-mediated pressure inputs to the ear; (2) the ASB-saccule pathway dominates behavioral responsiveness, operating effectively at frequencies as low as 50 Hz; and (3) behavioral and neural (saccular) responses are strongly modulated by the position and orientation of the dipole with respect to the ASB.

  18. Smad1 and WIF1 genes are downregulated during saccular stage of lung development in the nitrofen rat model.

    PubMed

    Fujiwara, Naho; Doi, Takashi; Gosemann, Jan-Hendrik; Kutasy, Balazs; Friedmacher, Florian; Puri, Prem

    2012-02-01

    The exact pathogenesis of pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia (CDH) still remains unclear. Smad1, one of the bone morphogenesis protein (BMP) receptor downstream signaling proteins, plays a key role in organogenesis including lung development and maturation. Smad1 knockout mice display reduced sacculation, an important feature of pulmonary hypoplasia. Wnt inhibitor factor 1 (Wif1) is a target gene of Smad1 in the developing lung epithelial cells (LECs). Smad1 directly regulates Wif1 gene expression and blockade of Smad1 function in fetal LECs is reported to downregulate Wif1 gene expression. We designed this study to test the hypothesis that pulmonary Smad1 and Wif1 gene expression is downregulated during saccular stage of lung development in the nitrofen CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetuses were harvested on D18, and D21. Fetal lungs were dissected and divided into 2 groups: control and nitrofen (n = 9 at each time point, respectively). Pulmonary gene expression of Smad1 and Wif1 were analyzed by real-time RT-PCR. Immunohistochemistry was performed to evaluate protein expression/distribution of Smad1 and Wif1. The relative mRNA expression levels of Smad1 and Wif1 were significantly downregulated in the nitrofen group compared to controls on D18 and D21 (*p < 0.01, **p < 0.05). Immunoreactivity of Smad1 and Wif1 was also markedly decreased in nitrofen lungs compared to controls on D18 and D21. We provide evidence, for the first time, that the pulmonary gene expression of Smad1 and Wif1 is downregulated on D18 and D21 (saccular stage of lung development) in the nitrofen-induced hypoplastic lung. These findings suggest that the downregulation of Smad1/Wif1 gene expression may contribute to pulmonary hypoplasia in the nitrofen CDH model by retardation of lung development during saccular stage.

  19. Human otolith-ocular reflexes during off-vertical axis rotation: effect of frequency on tilt-translation ambiguity and motion sickness

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Paloski, W. H. (Principal Investigator)

    2002-01-01

    The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.

  20. Experimental study of physiological flow in a cerebral saccular basilar tip aneurysm

    NASA Astrophysics Data System (ADS)

    Tsai, William; Savas, Omer; Ortega, Jason; Maitland, Duncan; Saloner, David

    2008-11-01

    The subject matter of the research is the flow within cerebral saccular basilar tip aneurysms and exploring correlations with their growth and rupture. The flow phantom consists of an inlet pipe branching out 90^o into two outlets, simulating the basilar artery bifurcation and a nearly spherical dome at the flow divider simulating the aneurysm. Input flow is a physiological waveform for the basilar artery. Flow outlet branching ratios are controlled at will. Experiments are done at Reynolds numbers 221-376 and Sexl-Wormersley number 4.46. Flow visualization and particle image velocimetry are used to study velocity, vorticity, and wall shear stress. All flows can be characterized by an off-center inlet jet and a circulation region, whose transient strength and behavior depends on the outflow ratios.

  1. Progressive Occlusion of Small Saccular Aneurysms Incompletely Occluded After Stent-Assisted Coil Embolization : Analysis of Related Factors and Long-Term Outcomes.

    PubMed

    Lim, Jeong Wook; Lee, Jeongjun; Cho, Young Dae

    2017-08-08

    Incompletely occluded aneurysms after coil embolization are subject to recanalization but occasionally progress to a totally occluded state. Deployed stents may actually promote thrombosis of coiled aneurysms. We evaluated outcomes of small aneurysms (<10 mm) wherein saccular filling with contrast medium was evident after stent-assisted coiling, assessing factors implicated in subsequent progressive occlusion. Between September 2012 and June 2016, a total of 463 intracranial aneurysms were treated by stent-assisted coil embolization. Of these, 132 small saccular aneurysms displayed saccular filling with contrast medium in the immediate aftermath of coiling. Progressive thrombosis was defined as complete aneurysmal occlusion at the 6‑month follow-up point. Rates of progressive occlusion and factors predisposing to this were analyzed via binary logistic regression. In 101 (76.5%) of the 132 intracranial aneurysms, complete occlusion was observed in follow-up imaging studies at 6 months. Binary logistic regression analysis indicated that progressive occlusion was linked to smaller neck diameter (odds ratio [OR] = 1.533; p = 0.003), hyperlipidemia (OR = 3.329; p = 0.036) and stent type (p = 0.031). The LVIS stent is especially susceptible to progressive thrombosis, more so than Neuroform (OR = 0.098; p = 0.008) or Enterprise (OR = 0.317; p = 0.098) stents. In 57 instances of progressive thrombosis, followed for ≥12 months (mean 25.0 ± 10.7 months), 56 (98.2%) were stable, with minor recanalization noted once (1.8%) and no major recanalization. Aneurysms associated with smaller diameter necks, hyperlipidemic states and LVIS stent deployment may be inclined to possible thrombosis, if occlusion immediately after stent-assisted coil embolization is incomplete. In such instances, excellent long-term durability is anticipated.

  2. Numerous Fusiform and Saccular Cerebral Aneurysms in Central Nervous System Lupus Presenting with Ischemic Stroke.

    PubMed

    Majidi, Shahram; Leon Guerrero, Christopher R; Gandhy, Shreya; Burger, Kathleen M; Sigounas, Dimitri

    2017-07-01

    Central nervous system (CNS) involvement occurs in up to 50% of patients with systemic lupus erythematosus (SLE). Cerebral aneurysm formation is a rare complication of CNS lupus. The majority of these patients present with subarachnoid hemorrhage. We report a patient with an active SLE flare who presented with a recurrent ischemic stroke and was found to have numerous unruptured fusiform and saccular aneurysms in multiple vascular territories. He was treated with high-dose steroid and rituximab along with aspirin and blood pressure control for stroke prevention. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. [Re-operation for Saccular Aneurysm after Ascending Aortic Replacement with Homograft;Report of a Case].

    PubMed

    Ikeda, Masahiro; Asakura, Toshihisa; Uwabe, Kazuhiko; Morita, Kozo; Iguchi, Atsushi; Niinami, Hiroshi

    2017-09-01

    A 62-years-old female had undergone ascending aortic replacement with homograft for graft infection and mediastinitis after initial replacement of ascending aorta due to acute type A dissection. Ten years after homograft replacement, follow up computed tomography showed acute growing saccular aneurysm of the homograft without infectious symptoms. We urgently performed Bentall procedure and hemiarch replacement successfully. Pathological diagnosis was true aneurysm of the homograft. She was discharged from hospital without any complication and has been quite uneventful 7 years after surgery. True aneurysm of the homograft is very rare and our case is the 1st report of successful reoperation.

  4. Clinical verification of a unilateral otolith test

    NASA Astrophysics Data System (ADS)

    Wetzig, J.; Hofstetter-Degen, K.; Maurer, J.; von Baumgarten, R. J.

    In a previous study 13 we reported promising results for a new test to differentiate in vivo unilateral otolith functions. That study pointed to a need for further validation on known pathological cases. In this presentation we will detail the results gathered on a group of clinically verified vestibular defectives (verum) and a normal (control) group. The subjects in the verum group were former patients of the ENT clinic of the university hospital. These subjects had usually suffered from neurinoma of the VIIth cranial nerve or inner ear infections. All had required surgical intervention including removal of the vestibular system. The patients were contacted usually two or more years postoperatively. A group of students from the pre- and clinical phase of medical training served as control. Both groups were subjected to standardized clinical tests. These tests served to reconfirm the intra- or postoperative diagnosis of unilateral vestibular loss in the verum group. In the control group they had to establish the normalcy of the responses of the vestibular system. Both groups then underwent testing on our exccentric rotary chair in the manner described before 13. Preliminary results of the trials indicate that this test may indeed for the first time offer a chance to look at isolated otolith apparati in vivo.

  5. Life history of the Small Sandeel, Ammodytes tobianus, inferred from otolith microchemistry. A methodological approach

    NASA Astrophysics Data System (ADS)

    Laugier, F.; Feunteun, E.; Pecheyran, C.; Carpentier, A.

    2015-11-01

    Knowledge of life history and connectivity between essential ecological habitats are relevant for conservation and management of species and some natural tracers could be used to study the lifecycles of small or short-lived marine fishes. Although sandeels are central in marine food webs and are key species, there is incomplete knowledge about population mixing and migration patterns. For the first time the use of the otolith microchemistry on sandeel species is evaluated in the case of the Small Sandeel. Variations in microchemical fingerprints of 13 trace elements are performed with a Femtosecond LA-ICPM from the core to the margin of sagittal otolith and are compared within and between otoliths extracted from 34 fishes sampled in three different sites along the coast of the south-western English Channel in France. Firstly, preliminary investigations on the validity of the method revealed that Mg/Ca was the only ratio significantly dependant on fish ontogeny and sampling season. Secondly, the Mn/Ca, Zn/Ca, and Cu/Ca ratios enabled us to significantly discriminate among sampling sites. Thirdly, microchemical fingerprints of each life stage varied significantly among sampling sites but not within them, suggesting high site fidelity over relatively short distances. Finally, the fingerprints of all life stages were significantly different from those of the larval and metamorphosis stages. The otolith microchemistry could detect change of signature relative to the shift from a pelagic behaviour to a resident bentho-pelagic behaviour during the middle of the juvenile stage in Small Sandeels. Hence, analysis of trace element fingerprints in otoliths appears to be a valuable method to further studies on ontogenic habitat change, population mixing and variation of life history and be helpful for the management at local or regional scales of short-lived species such as those belonging to other Ammodytidae.

  6. Movement patterns and dispersal potential of Pecos bluntnose shiner (Notropis simus pecosensis) revealed using otolith microchemistry

    USGS Publications Warehouse

    Chase, Nathan M.; Caldwell, Colleen A.; Carleton, Scott A.; Gould, William R.; Hobbs, James A.

    2015-01-01

    Natal origin and dispersal potential of the federally threatened Pecos bluntnose shiner (Notropis simus pecosensis) were successfully characterized using otolith microchemistry and swimming performance trials. Strontium isotope ratios (87Sr:86Sr) of otoliths within the resident plains killifish (Fundulus zebrinus) were successfully used as a surrogate for strontium isotope ratios in water and revealed three isotopically distinct reaches throughout 297 km of the Pecos River, New Mexico, USA. Two different life history movement patterns were revealed in Pecos bluntnose shiner. Eggs and fry were either retained in upper river reaches or passively dispersed downriver followed by upriver movement during the first year of life, with some fish achieving a minimum movement of 56 km. Swimming ability of Pecos bluntnose shiner confirmed upper critical swimming speeds (Ucrit) as high as 43.8 cm·s−1 and 20.6 body lengths·s−1 in 30 days posthatch fish. Strong swimming ability early in life supports our observations of upriver movement using otolith microchemistry and confirms movement patterns that were previously unknown for the species. Understanding patterns of dispersal of this and other small-bodied fishes using otolith microchemistry may help redirect conservation and management efforts for Great Plains fishes.

  7. High transmittance of X-rays in the utricular otolith of upside-down swimming catfish, Synodontis nigriventris.

    PubMed

    Ohnishi, Ken; Yamamoto, Toshihiro; Ogawa, Yoichi; Takahashi, Akihisa; Yamashita, Masayuki; Ohnishi, Takeo

    2002-03-01

    The upside-down swimming catfish (Synodontis nigriventris) has unique behavior, i.e., it frequently shows a stable upside-down posture during swimming and resting. To examine whether the unique postural control in S. nigriventris results from the characteristics of the vestibular organ, we observed the morphological aspects of the otolith and the orientation of sensory hair cells in the utricle. Soft X-ray densitometry analysis showed that the transmittance of soft X-rays in the otolith of S. nigriventris was higher than that in a closely related species (Synodontis multipunctatus) belonging to Synodontis family, goldfish (Carassius auratus) or miniature catfish (Corydoras paleatus) which shows upside-up swimming. The higher transmittance of soft X-rays suggests that the density of the otolith in S. nigriventris is lower than that in S. multipunctatus, C. auratus or C. paleatus. It is possible that the low density of the otolith may have a relation to the control of the unique upside-down posture of S. nigriventris. The hair cells in S. nigriventris were present at the ventral to ventro-lateral site of the utricular epithelium, forming a single hair cell layer as in the other 3 species of fish. The orientation of the sensory hair cells does not appear to cause the unique postural control.

  8. Spatial and temporal variability in the otolith chemistry of the Brazilian snapper Lutjanus alexandrei from estuarine and coastal environments.

    PubMed

    Aschenbrenner, A; Ferreira, B P; Rooker, J R

    2016-07-01

    Otolith chemistry of juvenile and adult individuals of the Brazilian snapper Lutjanus alexandrei was measured to assess the utility of natural markers for investigating individual movements. Individuals were collected over a 3-year period (2010-2012) along the north-eastern coast of Brazil from both estuarine (juvenile to sub-adult stages) and coastal (sub-adult to adult stages) areas. Six elements ((7) Li, (24) Mg, (55) Mn, (59) Co, (88) Sr and (137) Ba) were measured in sectioned otoliths of L. alexandrei using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Edge composition analysis indicated that element:Ca ratios in the otoliths of juvenile and sub-adult L. alexandrei from estuaries were not significantly different among the three consecutive years (2010, 2011 and 2012), suggesting that physicochemical conditions within the nursery area investigated were temporally stable. Similarly, apart from two elements (Ba and Co), element:Ca ratios for larger L. alexandrei inhabiting coastal waters were also similar. In contrast, otolith chemistry of similar sized L. alexandrei from estuarine and coastal areas was significantly different (based on recently accreted material). Otolith Mn:Ca and Ba:Ca were both significantly higher for L. alexandrei collected in estuaries compared to fish from adjacent coastal reefs, while the opposite trend was observed for Sr:Ca. Given the pronounced differences in otolith chemistry between estuarine and coastal areas, element:Ca transects were constructed from the core to margin of the otoliths for adults (age 7+ years) collected on reefs to determine the timing of movement (ontogenetic migration) from estuarine to coastal areas. Based on observed patterns of decline for both Mn:Ca and Ba:Ca, it appears that L. alexandrei begin the move to more coastal habitats (i.e. lower element:Ca ratios) after age 2 years. The patterns observed for this species highlight the importance of conserving connectivity between

  9. Effect of long-term microgravity on the mineralisation of inner ear otoliths of fish - a spaceflight study

    NASA Astrophysics Data System (ADS)

    Anken, Ralf

    The "heavy bodies" (i.e., statoliths or otoliths, mainly made up of calcium carbonate and protein) in the inner ears of vertebrates transform the physical parameter "gravity" to biological signals needed for postural control. It has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish (via a down-regulation of carbonic anhydrase reactivity) as an adaptation towards altered environmental gravity. We were thus prompted to elucidate whether long-term microgravity would possibly yield opposite effects. Therefore, larval siblings of cichlid fish (Oreochromis mossambicus) were housed in a bioregenerative life support system (OMEGAHAB) using green algae (Euglena gracilis) for oxygen supply. The experiment was successfully flown on the FOTON M-3 mission. Prior to launch, otoliths were stained with a fluorescent calcium tracer (Alizarin Complexone). This treatment both allowed an assessment of otolith growth (size) after recovery as well as an analysis of relocations of calcium deposits. Calcium and strontium contents were determined using inductively coupled plasma mass spectrometry. The results will be communicated at the meeting. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 0527).

  10. FAR and NEAR Target Dynamic Visual Acuity: A Functional Assessment of Canal and Otolith Performance

    NASA Technical Reports Server (NTRS)

    Peters, Brian T.; Brady, Rachel A.; Landsness, Eric C.; Black, F. Owen; Bloomberg, Jacob J.

    2004-01-01

    Upon their return to earth, astronauts experience the effects of vestibular adaptation to microgravity. The postflight changes in vestibular information processing can affect postural and locomotor stability and may lead to oscillopsia during activities of daily living. However, it is likely that time spent in microgravity affects canal and otolith function differently. As a result, the isolated rotational stimuli used in traditional tests of canal function may fail to identify vestibular deficits after spaceflight. Also, the functional consequences of deficits that are identified often remain unknown. In a gaze control task, the relative contributions of the canal and otolith organs are modulated with viewing distance. The ability to stabilize gaze during a perturbation, on visual targets placed at different distances from the head may therefore provide independent insight into the function of this systems. Our goal was to develop a functional measure of gaze control that can also offer independent information about the function of the canal and otolith organs.

  11. A novel biphasic calcium phosphate derived from fish otoliths

    NASA Astrophysics Data System (ADS)

    Montañez-Supelano, N. D.; Sandoval-Amador, A.; Estupiñan-Durán, H. A.; Y Peña-Ballesteros, D.

    2017-12-01

    Calcium phosphates are bioceramics that have been widely used as bone substitutes because they encourage the formation of bone on their surface and can improve the healing of the bone. Hydroxyapatite HA (calcium/phosphorus ratio of 1.67) and tricalcium phosphate TCP (calcium/phosphorus ratio of 1.50) are the most common calcium phosphates. Natural materials have begun to be tested to make HA or TCP such as shells of cardiidae (family of mollusks) and eggshells. The calcium phosphate obtained has a high ability to precipitate apatite. In this work, the mixed phase ceramic of beta-Tri-calcium phosphate / hydroxyapatite (β-TCP/HA) was synthesized by aqueous precipitation from fish otoliths, which are monomineralic species composed of aragonite. Otoliths of the specie Plagioscion squamosissimus, commonly called the river croaker, were used. Techniques such as DRX, Raman spectroscopy and SEM-EDS were used to characterize the raw material and the obtained material. X-ray diffraction analysis revealed the presence of two crystalline phases of calcium phosphates with 86.2% crystallinity. SEM micrographs showed agglomeration of particles with porous structure and submicron particle sizes.

  12. Establishing nursery estuary otolith geochemical tags for Sea Bass (Dicentrarchus labrax): Is temporal stability estuary dependent?

    NASA Astrophysics Data System (ADS)

    Ryan, Diarmuid; Wögerbauer, Ciara; Roche, William

    2016-12-01

    The ability to determine connectivity between juveniles in nursery estuaries and adult populations is an important tool for fisheries management. Otoliths of juvenile fish contain geochemical tags, which reflect the variation in estuarine elemental chemistry, and allow discrimination of their natal and/or nursery estuaries. These tags can be used to investigate connectivity patterns between juveniles and adults. However, inter-annual variability of geochemical tags may limit the accuracy of nursery origin determinations. Otolith elemental composition was used to assign a single cohort of 0-group sea bass Dicentrarchus labrax to their nursery estuary thus establishing an initial baseline for stocks in waters around Ireland. Using a standard LDFA model, high classification accuracies to nursery sites (80-88%) were obtained. Temporal stability of otolith geochemical tags was also investigated to assess if annual sampling is required for connectivity studies. Geochemical tag stability was found to be strongly estuary dependent.

  13. Distinguishing wild vs. stocked lake trout (Salvelinus namaycush) in Lake Ontario: Evidence from carbon and oxygen stable isotope values of otoliths

    USGS Publications Warehouse

    Schaner, T.; Patterson, W.P.; Lantry, B.F.; O'Gorman, R.

    2007-01-01

    We investigated the potential for using carbon and oxygen isotope values of otolith carbonate as a method to distinguish naturally produced (wild) lake trout (Salvelinus namaycush) from hatchery-reared lake trout in Lake Ontario. We determined δ 13C(CaCO3) and δ 18O(CaCO3) values of otoliths from juvenile fish taken from two hatcheries, and of otoliths from wild yearlings. Clear differences in isotope values were observed between the three groups. Subsequently we examined otoliths from large marked and unmarked fish captured in the lake, determining isotope values for regions of the otolith corresponding to the first year of life. Marked (i.e., stocked) fish showed isotope ratios similar to one of the hatchery groups, whereas unmarked fish, (wild fish or stocked fish that lost the mark) showed isotope ratios similar either to one of the hatchery groups or to the wild group. We interpret these data to suggest that carbon and oxygen isotope values can be used to determine the origin of lake trout in Lake Ontario, if a catalogue of characteristic isotope values from all candidate years and hatcheries is compiled.

  14. Precision and accuracy of age estimates obtained from anal fin spines, dorsal fin spines, and sagittal otoliths for known-age largemouth bass

    USGS Publications Warehouse

    Klein, Zachary B.; Bonvechio, Timothy F.; Bowen, Bryant R.; Quist, Michael C.

    2017-01-01

    Sagittal otoliths are the preferred aging structure for Micropterus spp. (black basses) in North America because of the accurate and precise results produced. Typically, fisheries managers are hesitant to use lethal aging techniques (e.g., otoliths) to age rare species, trophy-size fish, or when sampling in small impoundments where populations are small. Therefore, we sought to evaluate the precision and accuracy of 2 non-lethal aging structures (i.e., anal fin spines, dorsal fin spines) in comparison to that of sagittal otoliths from known-age Micropterus salmoides (Largemouth Bass; n = 87) collected from the Ocmulgee Public Fishing Area, GA. Sagittal otoliths exhibited the highest concordance with true ages of all structures evaluated (coefficient of variation = 1.2; percent agreement = 91.9). Similarly, the low coefficient of variation (0.0) and high between-reader agreement (100%) indicate that age estimates obtained from sagittal otoliths were the most precise. Relatively high agreement between readers for anal fin spines (84%) and dorsal fin spines (81%) suggested the structures were relatively precise. However, age estimates from anal fin spines and dorsal fin spines exhibited low concordance with true ages. Although use of sagittal otoliths is a lethal technique, this method will likely remain the standard for aging Largemouth Bass and other similar black bass species.

  15. Validation of daily ring deposition in the otoliths of age-0 channel catfish

    USGS Publications Warehouse

    Sakaris, P.C.; Irwin, E.R.

    2008-01-01

    We developed and validated methods for estimating the daily age of age-0 channel catfish Ictalurus punctatus. Two clutches of channel catfish eggs were hatched in the laboratory; subsequently, one was stocked in a 186-m2 earthen nursery pond and the other in a 757-L outdoor circular tank. Before stocking, subsamples of fish were collected at swim-up and 3 d after swim-up to evaluate early ring formation. Fish were sampled from the pond and tank on eight occasions ranging from 30 to 119 d posthatch. Distinct differences in early ring formation were found between yolk sac and free-swimming larval stages. Mean ring count and known age were closely related for tank- and pond-raised fish, indicating that daily ring deposition occurred in the otoliths of age-0 channel catfish up to 119 d posthatch. The accuracy of daily age estimation was similar between tank and pond samples, and daily ring counts were considerably accurate up to 60 d posthatch. Pond-raised fish were more difficult to age than tank-raised fish, which we attributed to ring compression resulting from slower growth among pond-raised fish after 30 d. The total length of tank- and pond-raised fish was positively related to otolith size; however, the slopes of the relationships between fish length and otolith radius were different between treatments. Therefore, we could not confirm that the relationship between fish length and otolith size was directly proportional for age-0 channel catfish. We encourage researchers to use this aging technique to determine how abiotic and biotic factors influence early life history characteristics and ultimately the population dynamics of catfishes (Ictaluridae). ?? Copyright by the American Fisheries Society 2008.

  16. Temporal variability in estuarine fish otolith elemental fingerprints: Implications for connectivity assessments

    NASA Astrophysics Data System (ADS)

    Reis-Santos, Patrick; Gillanders, Bronwyn M.; Tanner, Susanne E.; Vasconcelos, Rita P.; Elsdon, Travis S.; Cabral, Henrique N.

    2012-10-01

    The chemical composition of fish otoliths can provide valuable information for determining the nursery value of estuaries to adult populations of coastal fishes. However, understanding temporal variation in elemental fingerprints at different scales is important as it can potentially confound spatial discrimination among estuaries. Otolith elemental ratios (Li:Ca, Mg:Ca, Mn:Ca, Cu:Ca, Sr:Ca, Ba:Ca and Pb:Ca) of Platichthys flesus and Dicentrarchus labrax, from several estuaries along the Portuguese coast in two years and three seasons (spring, summer and autumn) within a year, were determined via Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Elemental fingerprints varied significantly among years and seasons within a year but we achieved accurate classifications of juvenile fish to estuarine nursery of origin (77-96% overall cross-validated accuracy). Although elemental fingerprints were year-specific, variation among seasons did not hinder spatial discrimination. Estuarine fingerprints of pooled seasonal data were representative of the entire juvenile year class and attained high discrimination (77% and 80% overall cross-validated accuracy for flounder and sea bass, respectively). Incorporating seasonal variation resulted in up to an 11% increase in correct classification of individual estuaries, in comparison to seasons where accuracies were lowest. Overall, understanding the implications of temporal variations in otolith chemistry for spatial discrimination is key to establish baseline data for connectivity studies.

  17. Traveling around Cape Horn: Otolith chemistry reveals a mixed stock of Patagonian hoki with separate Atlantic and Pacific spawning grounds

    USGS Publications Warehouse

    Schuchert, P.C.; Arkhipkin, A.I.; Koenig, A.E.

    2010-01-01

    Trace element fingerprints of edge and core regions in otoliths from 260 specimens of Patagonian hoki, Macruronus magellanicus L??nnberg, 1907, were analyzed by LA-ICPMS to reveal whether this species forms one or more population units (stocks) in the Southern Oceans. Fish were caught on their spawning grounds in Chile and feeding grounds in Chile and the Falkland Islands. Univariate and multivariate analyses of trace element concentrations in the otolith edges, which relate to the adult life of fish, could not distinguish between Atlantic (Falkland) and Pacific (Chile) hoki. Cluster analyses of element concentrations in the otolith edges produced three different clusters in all sample areas indicating high mixture of the stocks. Cluster analysis of trace element concentrations in the otolith cores, relating to juvenile and larval life stages, produced two separate clusters mainly distinguished by 137Ba concentrations. The results suggest that Patagonian hoki is a highly mixed fish stock with at least two spawning grounds around South America. ?? 2009 Elsevier B.V.

  18. Efficiency of the Regulation of Otolith Mineralisation and Susceptibility to kinetotic Behaviour in Parabolic Aircraft Flights

    NASA Astrophysics Data System (ADS)

    Knie, M.; Weigele, J.; Hilbig, R.; Anken, R.

    Under diminished gravity e g during the respective phase in the course of parabolic aircraft flight PF humans often suffer from motion sickness a kinetsosis due to sensorimotor disorders Using fish as a model system we previously provided ample evidence that an individually differently pronounced asymmetric mineralisation calcification of inner ear stones otoliths leads to the individually different susceptibility to such disorders Depending on the disposition of an individual fish the mineralisation of otoliths is more or less strictly regulated by the central nervous system via a gravity-dependent feedback loop Long-term hypergravity centrifuge e g slows down otolith mineralisation whereas simulated microgravity clinostat yields opposite results Such long-term experiments under altered gravity moreover affect otolith asymmetry According to our working hypothesis the efficiency of the respective regulatory mechanism differs among individual animals This efficiency is postulated to be high in animals who behave normally under microgravity conditions whereas it is assumed to be low in such individuals who reveal a kinetotic behaviour at diminished G-forces In order to test this hypothesis two groups of larval cichlid fish Oreochromis mossambicus were kept under long-term hypergravity centrifuge and simulated microgravity clinostat respectively in order to manipulate the efficiency of the aforementioned regulatory mechanism Subsequently the animals were subjected to diminished gravity in the course of PFs and it was analysed

  19. Genetic factors have a major effect on growth, number of vertebrae and otolith shape in Atlantic herring (Clupea harengus).

    PubMed

    Berg, Florian; Almeland, Oda W; Skadal, Julie; Slotte, Aril; Andersson, Leif; Folkvord, Arild

    2018-01-01

    Atlantic herring, Clupea harengus, have complex population structures. Mixing of populations is known, but the extent of connectivity is still unclear. Phenotypic plasticity results in divergent phenotypes in response to environmental factors. A marked salinity gradient occurs from Atlantic Ocean (salinity 35) into the Baltic Sea (salinity range 2-12). Herring from both habitats display phenotypic and genetic variability. To explore how genetic factors and salinity influence phenotypic traits like growth, number of vertebrae and otolith shape an experimental population consisting of Atlantic purebreds and Atlantic/Baltic F1 hybrids were incubated and co-reared at two different salinities, 16 and 35, for three years. The F1-generation was repeatedly sampled to evaluate temporal variation. A von Bertalanffy growth model indicated that reared Atlantic purebreds had a higher maximum length (26.2 cm) than Atlantic/Baltic hybrids (24.8 cm) at salinity 35, but not at salinity 16 (25.0 and 24.8 cm, respectively). In contrast, Atlantic/Baltic hybrids achieved larger size-at-age than the wild caught Baltic parental group. Mean vertebral counts and otolith aspect ratios were higher for reared Atlantic purebreds than Atlantic/Baltic hybrids, consistent with the differences between parental groups. There were no significant differences in vertebral counts and otolith aspect ratios between herring with the same genotype but raised in different salinities. A Canonical Analysis of Principal Coordinates was applied to analyze the variation in wavelet coefficients that described otolith shape. The first discriminating axis identified the differences between Atlantic purebreds and Atlantic/Baltic hybrids, while the second axis represented salinity differences. Assigning otoliths based on genetic groups (Atlantic purebreds vs. Atlantic/Baltic hybrids) yielded higher classification success (~90%) than based on salinities (16 vs. 35; ~60%). Our results demonstrate that otolith shape and

  20. Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Anken, Ralf; Liu, Liyue; Wang, Gaohong; Liu, Yongding

    2017-02-01

    Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths

  1. Otolith oxygen isotopes measured by high-precision secondary ion mass spectrometry reflect life history of a yellowfin sole (Limanda aspera).

    PubMed

    Matta, Mary Elizabeth; Orland, Ian J; Ushikubo, Takayuki; Helser, Thomas E; Black, Bryan A; Valley, John W

    2013-03-30

    The oxygen isotope ratio (δ(18)O value) of aragonite fish otoliths is dependent on the temperature and the δ(18)O value of the ambient water and can thus reflect the environmental history of a fish. Secondary ion mass spectrometry (SIMS) offers a spatial-resolution advantage over conventional acid-digestion techniques for stable isotope analysis of otoliths, especially given their compact nature. High-precision otolith δ(18)O analysis was conducted with an IMS-1280 ion microprobe to investigate the life history of a yellowfin sole (Limanda aspera), a Bering Sea species known to migrate ontogenetically. The otolith was cut transversely through its core and one half was roasted to eliminate organic contaminants. Values of δ(18)O were measured in 10-µm spots along three transects (two in the roasted half, one in the unroasted half) from the core toward the edge. Otolith annual growth zones were dated using the dendrochronology technique of crossdating. Measured values of δ(18)O ranged from 29.0 to 34.1‰ (relative to Vienna Standard Mean Ocean Water). Ontogenetic migration from shallow to deeper waters was reflected in generally increasing δ(18)O values from age-0 to approximately age-7 and subsequent stabilization after the expected onset of maturity at age-7. Cyclical variations of δ(18)O values within juvenile otolith growth zones, up to 3.9‰ in magnitude, were caused by a combination of seasonal changes in the temperature and the δ(18)O value of the ambient water. The ion microprobe produced a high-precision and high-resolution record of the relative environmental conditions experienced by a yellowfin sole that was consistent with population-level studies of ontogeny. Furthermore, this study represents the first time that crossdating has been used to ensure the dating accuracy of δ(18)O measurements in otoliths. Copyright © 2013 John Wiley & Sons, Ltd.

  2. The video ocular counter-roll (vOCR): a clinical test to detect loss of otolith-ocular function

    PubMed Central

    Otero-Millan, Jorge; Treviño, Carolina; Winnick, Ariel; Zee, David S.; Carey, John P.; Kheradmand, Amir

    2017-01-01

    Conclusion vOCR can detect loss of otolith-ocular function without specifying the side of vestibular loss. Since vOCR is measured with a simple head tilt maneuver, it can be potentially used as a bedside clinical test in combination with video head impulse test. Objective Video-oculography (VOG) goggles are being integrated into the bedside assessment of patients with vestibular disorders. Lacking, however, is a method to evaluate otolith function. This study validated a VOG test for loss of otolith function. Methods VOG was used to measure ocular counter-roll (vOCR) in 12 healthy controls, 14 patients with unilateral vestibular loss (UVL), and six patients with bilateral vestibular loss (BVL) with a static lateral head tilt of 30°. The results were compared with vestibular evoked myogenic potentials (VEMP), a widely-used laboratory test of otolith function. Results The average vOCR for healthy controls (4.6°) was significantly different from UVL (2.7°) and BVL (1.6°) patients (p < 0.0001). The vOCR and VEMP measurements were correlated across subjects, especially the click and tap oVEMPs (click oVEMP R = 0.45, tap oVEMP R = 0.51; p < 0.0003). The receiver operator characteristic (ROC) analysis showed that vOCR and VEMPs detected loss of otolith function equally well. The best threshold for vOCR to detect vestibular loss was at 3°. The vOCR values from the side of vestibular loss and the healthy side were not different in UVL patients (2.53° vs 2.8°; p = 0.59). PMID:28084887

  3. Identification of steelhead and resident rainbow trout progeny in the Deschutes River, Oregon, revealed with otolith microchemistry

    USGS Publications Warehouse

    Zimmerman, C.E.; Reeves, G.H.

    2002-01-01

    Comparisons of strontium:calcium (Sr:Ca) ratios in otolith primordia and freshwater growth regions were used to identify the progeny of steelhead Oncorhynchus mykiss (anadromous rainbow trout) and resident rainbow trout in the Deschutes River, Oregon. We cultured progeny of known adult steelhead and resident rainbow trout to confirm the relationship between Sr:Ca ratios in otolith primordia and the life history of the maternal parent. The mean (??SD) Sr:Ca ratio was significantly higher in the otolith primordia of the progeny of steelhead (0.001461 ?? 0.00029; n = 100) than in those of the progeny of resident rainbow trout (0.000829 ?? 0.000012; n = 100). We used comparisons of Sr:Ca ratios in the primordia and first-summer growth regions of otoliths to determine the maternal origin of unknown O. mykiss juveniles (n = 272) collected from rearing habitats within the main-stem Deschutes River and tributary rearing habitats and thus to ascertain the relative proportion of each life history morph in each rearing habitat. Resident rainbow trout fry dominated the bi-monthly samples collected from main-stem rearing habitats between May and November 1995. Steelhead fry dominated samples collected from below waterfalls on two tributaries in 1996 and 1998.

  4. Relationships between otolith size and fish length in some mesopelagic teleosts (Myctophidae, Paralepididae, Phosichthyidae and Stomiidae).

    PubMed

    Battaglia, P; Malara, D; Ammendolia, G; Romeo, T; Andaloro, F

    2015-09-01

    Length-mass relationships and linear regressions are given for otolith size (length and height) and standard length (LS ) of certain mesopelagic fishes (Myctophidae, Paralepididae, Phosichthyidae and Stomiidae) living in the central Mediterranean Sea. The length-mass relationship showed isometric growth in six species, whereas linear regressions of LS and otolith size fit the data well for all species. These equations represent a useful tool for dietary studies on Mediterranean marine predators. © 2015 The Fisheries Society of the British Isles.

  5. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis

    USGS Publications Warehouse

    Lind-Null, Angela; Larsen, Kimberly; Reisenbichler, Reginald

    2007-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act. The preservation of the Nisqually delta ecosystem coupled with extensive restoration of approximately 1,000 acres of diked estuarine habitat is identified as the highest priority action for the recovery of naturally spawning Nisqually River Fall Chinook salmon (Oncorhynchus tshawytscha) in the Nisqually Chinook Recovery Plan. In order to evaluate the response of Chinook salmon to restoration, a pre-restoration baseline of life history diversity and estuary utilization must be established. Otolith analysis has been proposed as a means to measure Chinook salmon life history diversity, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: (1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, (2) compare pre and post restoration residence times and growth rates, and (3) suggest whether estuary restoration yields substantial benefits for Chinook salmon. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile Chinook salmon can exhibit a variety of life history trajectories ? some enter the sea (or Puget Sound) as fry, some rear in the estuary before entering the sea, and some rear in the river and then move rapidly through the estuary into the sea as smolts. The

  6. Otolith chemistry discriminates natal signatures of yellowfin tuna (Thunnus albacares) in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Kitchens, L. L.; Rooker, J. R.

    2016-02-01

    In this study, the otolith chemistry of young-of-the-year (YOY) yellowfin tuna (Thunnus albacares) was examined to determine whether chemical signatures are distinct across different putative spawning areas in the Atlantic Ocean. Yellowfin tuna is a highly migratory species that is currently managed as a single panmictic stock in the Atlantic Ocean; however, uncertainty remains regarding the population structure of yellowfin in this region, particularly concerning the degree of mixing between spawning populations. Analysis of naturally occurring chemical tracers in otoliths provides a valuable means to reconstruct a fish's environmental history and is thus a promising approach for delineating stock structure of Atlantic yellowfin tuna. YOY yellowfin tuna otoliths were collected from 5 locations in the Atlantic Ocean (Gulf of Mexico, SE Caribbean, Brazil, Cape Verde, and Gulf of Guinea) from 2013-2015 and trace element (Li, Mg, Mn, Co, Cu, Sr, Zn, and Ba) and stable isotope (δ13C and δ18O) analyses were conducted to investigate regional variation in otolith chemical composition. Results show significant differences among nursery areas in both trace element (MANOVA, p<0.001) and δ13C and δ18O signatures (ANOVA, p=0.017 and p=0.001, respectively). Particularly high spatial separation was observed based on eastern Atlantic (Gulf of Guinea + Cape Verde) and western Atlantic (Gulf of Mexico + Brazil + Martinique) nursery areas, indicating the approach has promise for distinguishing migrants displaying trans-ocean movement. These chemical signatures will be used to assign adult yellowfin tuna to their nursery of origin, ultimately providing an improved understanding of the stock structure and movement of yellowfin tuna in the Atlantic Ocean.

  7. Vestibular control of sympathetic activity. An otolith-sympathetic reflex in humans

    NASA Technical Reports Server (NTRS)

    Kaufmann, H.; Biaggioni, I.; Voustianiouk, A.; Diedrich, A.; Costa, F.; Clarke, R.; Gizzi, M.; Raphan, T.; Cohen, B.

    2002-01-01

    It has been proposed that a vestibular reflex originating in the otolith organs and other body graviceptors modulates sympathetic activity during changes in posture with regard to gravity. To test this hypothesis, we selectively stimulated otolith and body graviceptors sinusoidally along different head axes in the coronal plane with off-vertical axis rotation (OVAR) and recorded sympathetic efferent activity in the peroneal nerve (muscle sympathetic nerve activity, MSNA), blood pressure, heart rate, and respiratory rate. All parameters were entrained during OVAR at the frequency of rotation, with MSNA increasing in nose-up positions during forward linear acceleration and decreasing when nose-down. MSNA was correlated closely with blood pressure when subjects were within +/-90 degrees of nose-down positions with a delay of 1.4 s, the normal latency of baroreflex-driven changes in MSNA. Thus, in the nose-down position, MSNA was probably driven by baroreflex afferents. In contrast, when subjects were within +/-45 degrees of the nose-up position, i.e., when positive linear acceleration was maximal along the naso-ocipital axis, MSNA was closely related to gravitational acceleration at a latency of 0.4 s. This delay is too short for MSNA changes to be mediated by the baroreflex, but it is compatible with the delay of a response originating in the vestibular system. We postulate that a vestibulosympathetic reflex, probably originating mainly in the otolith organs, contributes to blood pressure maintenance during forward linear acceleration. Because of its short latency, this reflex may be one of the earliest mechanisms to sustain blood pressure upon standing.

  8. Vestibular control of sympathetic activity. An otolith-sympathetic reflex in humans.

    PubMed

    Kaufmann, H; Biaggioni, I; Voustianiouk, A; Diedrich, A; Costa, F; Clarke, R; Gizzi, M; Raphan, T; Cohen, B

    2002-04-01

    It has been proposed that a vestibular reflex originating in the otolith organs and other body graviceptors modulates sympathetic activity during changes in posture with regard to gravity. To test this hypothesis, we selectively stimulated otolith and body graviceptors sinusoidally along different head axes in the coronal plane with off-vertical axis rotation (OVAR) and recorded sympathetic efferent activity in the peroneal nerve (muscle sympathetic nerve activity, MSNA), blood pressure, heart rate, and respiratory rate. All parameters were entrained during OVAR at the frequency of rotation, with MSNA increasing in nose-up positions during forward linear acceleration and decreasing when nose-down. MSNA was correlated closely with blood pressure when subjects were within +/-90 degrees of nose-down positions with a delay of 1.4 s, the normal latency of baroreflex-driven changes in MSNA. Thus, in the nose-down position, MSNA was probably driven by baroreflex afferents. In contrast, when subjects were within +/-45 degrees of the nose-up position, i.e., when positive linear acceleration was maximal along the naso-ocipital axis, MSNA was closely related to gravitational acceleration at a latency of 0.4 s. This delay is too short for MSNA changes to be mediated by the baroreflex, but it is compatible with the delay of a response originating in the vestibular system. We postulate that a vestibulosympathetic reflex, probably originating mainly in the otolith organs, contributes to blood pressure maintenance during forward linear acceleration. Because of its short latency, this reflex may be one of the earliest mechanisms to sustain blood pressure upon standing.

  9. Species and life-history affects the utility of otolith chemical composition to determine natal stream-of-origin in Pacific salmon

    USGS Publications Warehouse

    Zimmerman, Christian E.; Swanson, Heidi K.; Volk, Eric C.; Kent, Adam J.R.

    2013-01-01

    To test the utility of otolith chemical composition as a tool for determining the natal stream of origin for salmon, we examined water chemistry and otoliths of juvenile and adult Chum Salmon Oncorhynchus keta and Coho Salmon O. kisutch from three watersheds (five rivers) in the Norton Sound region of Alaska. The two species are characterized by different life histories: Coho Salmon rear in freshwater for up to 3 years, whereas Chum Salmon emigrate from freshwater shortly after emergence. We used laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) to quantify element: Ca ratios for Mg, Mn, Zn, Sr, and Ba, and we used multicollector LA-ICP-MS to determine 87Sr:86Sr ratios in otolith regions corresponding to the period of freshwater residence. Significant differences existed in both water and otolith elemental composition, suggesting that otolith composition could be used to discriminate the natal origin of Coho Salmon and Chum Salmon but only when 87Sr:86Sr ratios were included in the discriminant function analyses. The best discriminant model included 87Sr:86Sr ratios, and without 87Sr:86Sr ratios it was difficult to discriminate among watersheds and rivers. Classification accuracy was 80% for Coho Salmon and 68% for Chum Salmon, indicating that this method does not provide sufficient sensitivity to estimate straying rates of Pacific salmon at the scale we studied.

  10. Pulmonary FGF-18 gene expression is downregulated during the canalicular-saccular stages in nitrofen-induced hypoplastic lungs.

    PubMed

    Takahashi, Hiromizu; Friedmacher, Florian; Fujiwara, Naho; Hofmann, Alejandro; Kutasy, Balazs; Gosemann, Jan-Hendrik; Puri, Prem

    2013-11-01

    Pulmonary hypoplasia (PH) associated with congenital diaphragmatic hernia (CDH) represents one of the major challenges in neonatal intensive care. However, the molecular pathogenesis of PH is still poorly understood. In developing fetal lungs, fibroblast growth factor 18 (FGF-18) plays a crucial role in distal airway maturation. FGF-18 knockouts show smaller lung sizes with reduced alveolar spaces and thicker interstitial mesenchymal compartments, highlighting its important function for fetal lung growth and differentiation. We hypothesized that pulmonary FGF-18 gene expression is downregulated during late gestation in nitrofen-induced hypoplastic lungs. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetuses were harvested on D18 and D21, and lungs were divided into three groups: controls, hypoplastic lungs without CDH [CDH(-)], and hypoplastic lungs with CDH [CDH(+)] (n = 24 at each time-point). Pulmonary FGF-18 gene expression levels were analyzed by qRT-PCR. Immunohistochemistry was performed to investigate FGF-18 protein expression/distribution. Relative mRNA levels of pulmonary FGF-18 gene expression were significantly decreased in CDH(-) and CDH(+) on D18 and D21 compared to controls (p < 0.05 and p < 0.01, respectively). Immunoreactivity of FGF-18 was markedly diminished in mesenchymal cells surrounding the airway epithelium on D18 and D21 compared to controls. Downregulation of FGF-18 gene expression in nitrofen-induced hypoplastic lungs suggests that decreased FGF-18 expression during the canalicular-saccular stages may interfere with saccular-alveolar differentiation and distal airway maturation resulting in PH.

  11. Stable carbon and oxygen isotope ratios of winter flounder otoliths assess connectivity between juvenile and adult habitats

    NASA Astrophysics Data System (ADS)

    Pruell, Richard; Taplin, Bryan

    2017-04-01

    Winter flounder populations (Pseudopleuronectes americanus) have significantly declined in recent years along the Rhode Island, USA coastline. The reasons for this decline are not completely clear; however, habitat loss may be a factor. Therefore, knowledge of connectivity between juvenile nearshore habitats and the adult offshore populations may be important for improved management of this fishery. This study was undertaken to determine if stable carbon (δ13C) and oxygen (δ18O) isotope ratios in otoliths could be used to differentiate the locations that serve as important juvenile habitats for winter flounder. It is generally believed that winter flounder spawn during late winter in nearshore areas, and juvenile fish reside in shallow-water habitats along the coastline during their first summer. Once young-of-the-year flounder undergo metamorphosis and settle, they remain in close proximity to that site until fall. Adult fish move offshore during the late winter and spring, and then return to their natal estuaries during the fall and winter to spawn. Juvenile flounder were collected yearly over a three-year period from 18 juvenile habitats with a wide range of salinities. Several years later adult flounder of the same cohorts were obtained from similar inshore locations and also from the offshore fishery. Sagital otoliths were removed from the adult flounder and the core of the otolith representing the juvenile period was obtained using a Micromill drilling system. These juvenile otolith cores from adult fish and whole sagittal otoliths from juvenile flounder were analyzed for δ13C and δ18O using continuous-flow isotope ratio mass spectrometry. Results from these analyses show significant differences in δ13C and δ18O signatures among water bodies (bay, coastal ponds and an estuarine river). Preliminary analysis indicates that the isotope ratios of the juvenile cores from adult flounder and whole otoliths from juvenile fish collected at the same locations

  12. Otolith-Canal Convergence In Vestibular Nuclei Neurons

    NASA Technical Reports Server (NTRS)

    Dickman, J. David; Si, Xiao-Hong

    2002-01-01

    The current final report covers the period from June 1, 1999 to May 31, 2002. The primary objective of the investigation was to determine how information regarding head movements and head position relative to gravity is received and processed by central vestibular nuclei neurons in the brainstem. Specialized receptors in the vestibular labyrinths of the inner ear function to detect angular and linear accelerations of the head, with receptors located in the semicircular canals transducing rotational head movements and receptors located in the otolith organs transducing changes in head position relative to gravity or linear accelerations of the head. The information from these different receptors is then transmitted to central vestibular nuclei neurons which process the input signals, then project the appropriate output information to the eye, head, and body musculature motor neurons to control compensatory reflexes. Although a number of studies have reported on the responsiveness of vestibular nuclei neurons, it has not yet been possible to determine precisely how these cells combine the information from the different angular and linear acceleration receptors into a correct neural output signal. In the present project, rotational and linear motion stimuli were separately delivered while recording responses from vestibular nuclei neurons that were characterized according to direct input from the labyrinth and eye movement sensitivity. Responses from neurons receiving convergent input from the semicircular canals and otolith organs were quantified and compared to non-convergent neurons.

  13. A study in motion sickness - Saccular hair cells in the adult bullfrog

    NASA Technical Reports Server (NTRS)

    Cohen, G. M.; Reschke, M.; Homick, J.

    1982-01-01

    The bullfrog's saccule were examined using light and scanning electron microscopy. No evidence of a striola was found. Type A hair cells were not only distributed peripherally, but also throughout the central macula, though far less frequently than the dominant type D. Two primary hair cell types were distinguished, which corresponded to the ciliary patterns: type A cilia are associated with short, conical hair cells, and type D cilia are associated with long, cylindrical hair cells. Each displays at least one subtype, which may represent developmental precursors. The otolithic membrane is crisscrossed with tunnels and topped with statoconia.

  14. Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control During Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, less than 20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. One result of this study will be to characterize the variability (gain, asymmetry) in both otolith-ocular responses and motion perception during variable radius centrifugation, and measure the time course of post-flight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved

  15. Comparison of two viewing methods for estimating largemouth bass and walleye ages from sectioned otoliths and dorsal spines

    USGS Publications Warehouse

    Wegleitner, Eric J.; Isermann, Daniel A.

    2017-01-01

    Many biologists use digital images for estimating ages of fish, but the use of images could lead to differences in age estimates and precision because image capture can produce changes in light and clarity compared to directly viewing structures through a microscope. We used sectioned sagittal otoliths from 132 Largemouth Bass Micropterus salmoides and sectioned dorsal spines and otoliths from 157 Walleyes Sander vitreus to determine whether age estimates and among‐reader precision were similar when annuli were enumerated directly through a microscope or from digital images. Agreement of ages between viewing methods for three readers were highest for Largemouth Bass otoliths (75–89% among readers), followed by Walleye otoliths (63–70%) and Walleye dorsal spines (47–64%). Most discrepancies (72–96%) were ±1 year, and differences were more prevalent for age‐5 and older fish. With few exceptions, mean ages estimated from digital images were similar to ages estimated via directly viewing the structures through the microscope, and among‐reader precision did not vary between viewing methods for each structure. However, the number of disagreements we observed suggests that biologists should assess potential differences in age structure that could arise if images of calcified structures are used in the age estimation process.

  16. Loss of otolith function with age is associated with increased postural sway measures.

    PubMed

    Serrador, Jorge M; Lipsitz, Lewis A; Gopalakrishnan, Gosala S; Black, F Owen; Wood, Scott J

    2009-11-06

    Loss of balance and increased fall risk is a common problem associated with aging. Changes in vestibular function occur with aging but the contribution of reduced vestibular otolith function to fall risk remains unknown. We examined a population of 151 healthy individuals (aged 21-93) for both balance (sway measures) and ocular counter-rolling (OCR) function. We assessed balance function with eyes open and closed on a firm surface, eyes open and closed on a foam surface and OCR during +/-20 degree roll tilt at 0.005 Hz. Subjects demonstrated a significant age-related reduction in OCR and increase in postural sway. The effect of age on OCR was greater in females than males. The reduction in OCR was strongly correlated with the mediolateral measures of sway with eyes closed. This correlation was also present in the elderly group alone, suggesting that aging alone does not account for this effect. OCR decreased linearly with age and at a greater rate in females than males. This loss of vestibular otolith-ocular function is associated with increased mediolateral measures of sway which have been shown to be related to increased risk of falls. These data suggest a role for loss of otolith function in contributing to fall risk in the elderly. Further prospective, longitudinal studies are necessary to confirm these findings.

  17. Mammalian Gravity Receptors: Structure and Metabolism

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1985-01-01

    Calcium metabolism in mammalian gravity receptors is examined. To accomplish this objective it is necessary to study both the mineral deposits of the receptors, the otoconia, and the sensory areas themselves, the saccular and utricular maculas. The main focus was to elucidate the natures of the organic and inorganic phases of the crystalline masses, first in rat otoconia but more recently in otoliths and otoconia of a comparative series of vertebrates. Some of the ultrastructural findings in rat maculas, however, have prompted a more thorough study of the organization of the hair cells and innervation patterns in graviceptors.

  18. Experimental Evaluation of Stable Isotope Fractionation in Fish Muscle and Otoliths

    EPA Science Inventory

    We investigated an unresolved question in the use of stable isotopes to determine diet and trophic position of fish using both muscle and otoliths. We determined: i) the degree of fractionation of δ13C and δ15N between diet and muscle, and assessed if fractionation was consistent...

  19. The efficacy of mass-marking channel catfish fingerlings by immersion in oxytetracycline

    USGS Publications Warehouse

    Stewart, David R.

    2011-01-01

    Oxytetracycline (OTC) has been extensively used for marking a variety of fish species, but has never been successfully used to mark channel catfish Ictalurus punctatus. Channel catfish fingerlings (~ 25 mm TL) obtained from the Oklahoma Department of Wildlife Conservation at Byron Fish Hatchery were kept in Living Streams (791 to 1,018 L) equipped with recirculation units. Marking trials consisted of immersing channel catfish in one of three concentrations (250, 450, and 700 mg/L) OTC hydrochloride [HCl] for 6 hours. Samples of channel catfish were obtained from each group at 1-week and 4-week postimmersion. Lapilli otoliths and pectoral spines were removed to assess mark presence with an epi-fluorescent compound microscope. After one week, no marks were detected on pectoral spines for all treatments, mark detection on otoliths depended on concentration, but never exceeded 43% (700 mg/L). After four weeks, all otoliths and pectoral spines were determined marked for 700 mg/L OTC, 20% for fish immersed in 450 mg/L OTC, and 0% were marked after four weeks at the 250 mg/L OTC. Results show, channel catfish fingerlings can be successfully marked with immersion in OTC at 700 mg/L for at least 6 hours.

  20. Life history of abyssal and hadal fishes from otolith growth zones and oxygen isotopic compositions

    NASA Astrophysics Data System (ADS)

    Gerringer, M. E.; Andrews, A. H.; Huss, G. R.; Nagashima, K.; Popp, B. N.; Linley, T. D.; Gallo, N. D.; Clark, M. R.; Jamieson, A. J.; Drazen, J. C.

    2018-02-01

    Hadal trenches are isolated habitats that cover the greatest ocean depths (6,500-11,000 m) and are believed to host high levels of endemism across multiple taxa. A group of apparent hadal endemics is within the snailfishes (Liparidae), found in at least five geographically separated trenches. Little is known about their biology, let alone the reasons for their success at hadal depths around the world. This study investigated the life history of hadal liparids using sagittal otoliths of two species from the Kermadec (Notoliparis kermadecensis) and Mariana (Pseudoliparis swirei) trenches in comparison to successful abyssal macrourids found at the abyssal-hadal transition zone. Otoliths for each species revealed alternating opaque and translucent growth zones that could be quantified in medial sections. Assuming these annuli represent annual growth, ages were estimated for the two hadal liparid species to be from five to 16 years old. These estimates were compared to the shallower-living snailfish Careproctus melanurus, which were older than described in previous studies, expanding the potential maximum age for the liparid family to near 25 years. Age estimates for abyssal macrourids ranged from eight to 29 years for Coryphaenoides armatus and six to 16 years for C. yaquinae. In addition, 18O/16O ratios (δ18O) were measured across the otolith using secondary ion mass spectrometry (SIMS) to investigate the thermal history of the three liparids, and two macrourids. Changes in δ18O values were observed across the otoliths of C. melanurus, C. armatus, and both hadal liparids, the latter of which may represent a change of >5 °C in habitat temperature through ontogeny. The results would indicate there is a pelagic larval stage for the hadal liparids that rises to a depth above 1000 m, followed by a return to the hadal environment as these liparids grow. This result was unexpected for the hadal liparids given their isolated environment and large eggs, and the biological

  1. Not All Inner Ears are the Same: Otolith Matrix Proteins in the Inner Ear of Sub-Adult Cichlid Fish, Oreochromis Mossambicus, Reveal Insights Into the Biomineralization Process.

    PubMed

    Weigele, Jochen; Franz-Odendaal, Tamara A; Hilbig, Reinhard

    2016-02-01

    The fish ear stones (otoliths) consist mainly of calcium carbonate and have lower amounts of a proteinous matrix. This matrix consists of macromolecules, which directly control the biomineralization process. We analyzed the composition of this proteinous matrix by mass spectrometry in a shotgun approach. For this purpose, an enhanced protein purification technique was developed that excludes any potential contamination of proteins from body fluids. Using this method we identified eight proteins in the inner ear of Oreochromis mossambicus. These include the common otolith matrix proteins (OMP-1, otolin-1, neuroserpin, SPARC and otoconin), and three proteins (alpha tectorin, otogelin and transferrin) not previously localized to the otoliths. Moreover, we were able to exclude the occurrence of two matrix proteins (starmaker and pre-cerebellin-like protein) known from other fish species. In further analyses, we show that the absence of the OMP starmaker corresponds to calcitic otoliths and that pre-cerebellin-like protein is not present at any stage during the development of the otoliths of the inner ear. This study shows O. mossambicus does not have all of the known otolith proteins indicating that the matrix proteins in the inner ear of fish are not the same across species. Further functional studies of the novel proteins we identified during otolith development are required. © 2015 Wiley Periodicals, Inc.

  2. Fingerprints of lagoonal life: Migration of the marine flatfish Solea solea assessed by stable isotopes and otolith microchemistry

    NASA Astrophysics Data System (ADS)

    Dierking, Jan; Morat, Fabien; Letourneur, Yves; Harmelin-Vivien, Mireille

    2012-06-01

    The commercially important marine flatfish common sole (Solea solea) facultatively uses NW Mediterranean lagoons as nurseries. To assess the imprint left by the lagoonal passage, muscle carbon (C) and nitrogen (N) isotope values of S. solea juveniles caught in Mauguio lagoon in spring (shortly after arrival from the sea) and in autumn (before the return to the sea) were compared with values of juveniles from adjacent coastal marine nurseries. In addition, in the lagoon, sole otolith stable isotope (C and oxygen (O)) and elemental (11 elements) composition in spring and autumn, and the stable isotope composition (C and N) of organic matter sources in autumn, were determined. Overall, our data indicate that a distinct lagoonal signature existed. Specifically, lagoon soles showed a strong enrichment in muscle tissue 15N (>6‰) compared to their coastal relatives, likely linked to sewage inputs (see below), and a depletion in 13C (1-2‰), indicative of higher importance of 13C depleted terrestrial POM in the lagoon compared to coastal nurseries. In addition, over the time spent in the lagoon, sole otolith δ13C and δ18O values and otolith elemental composition changed significantly. Analysis of the lagoon sole foodweb based on C and N isotopes placed sediment particulate organic matter (POM) at the base. Seagrasses, formerly common but in decline in Mauguio lagoon, played a minor role in the detritus cycle. The very strong 15N enrichment of the entire foodweb (+7 to +11‰) compared to little impacted lagoons and coastal areas testified of important human sewage inputs. Regarding the S. solea migration, the analysis of higher turnover and fast growth muscle tissue and metabolically inert and slower growth otoliths indicated that soles arrived at least several weeks prior to capture in spring, and that no migrations took place in summer. In the autumn, the high muscle δ15N value acquired in Mauguio lagoon would be a good marker of recent return to the sea, whereas

  3. Origin, growth, and rupture of saccular aneurysms: a review.

    PubMed

    Sekhar, L N; Heros, R C

    1981-02-01

    Pathological and hemodynamic concepts regarding the origin, growth, and rupture of intracranial saccular aneurysms are reviewed. Aneurysms form as a result of an interplay between hemodynamic factors, such as axial stream impingement and the water hammer effect, and structural weaknesses at apices of arterial bifurcations, such as congenital and acquired medial defects, funnel-shaped dilatations, and areas of thinning. Hypertension and time aid the formation of aneurysms. Unknown factors in women and in some families also play a role. Enlargement of aneurysms results from an interplay between mechanical factors, such as self-excitation and resonance, that produce structural fatigue and pathological processes of repair of the aneurysmal wall. Rupture of aneurysms is caused by the same hemodynamic factors that effect growth and is also influenced by extramural pressure. Pathologically, a major rupture may be preceded by fibrinous and leukocytic infiltration of the wall, bleb formation, and a minor hemorrhage. Such minor leaks can be followed by healing and growth. Aneurysms that escape major hemorrhage or heal successfully after a hemorrhage can grow to giant proportions, but remain susceptible to rupture despite their size, unless they become completely thrombosed. Intramural thrombosis may be stimulated by minor leaks and is dependent upon the physical characteristics of aneurysms. Experimental, angiographic, and clinical studies that pertain to the origin, growth, and rupture of aneurysms are also reviewed.

  4. Oxygen isotopic distribution along the otolith growth axis by secondary ion mass spectrometry: Applications for studying ontogenetic change in the depth inhabited by deep-sea fishes

    NASA Astrophysics Data System (ADS)

    Shiao, Jen-Chieh; Itoh, Shoichi; Yurimoto, Hisayoshi; Iizuka, Yoshiyuki; Liao, Yun-Chih

    2014-02-01

    This study using tuna otoliths as working standards established a high lateral resolution and precision analysis to measure δ18Ootolith by secondary ion mass spectrometry. This analytical approach of the ion probe was applied to deep-sea fishes to reconstruct the likely depths inhabited by the fishes at different life history stages based on the measured δ18Ootolith values as a proxy of water temperature. Dramatic increases up to 5-6‰ in δ18Ootolith, representing a temperature decrease of approximately 20 °C, were detected in a blind cusk eel (Barathronus maculatus) otolith and in the otoliths of Synaphobranchus kaupii during leptocephalus metamorphosis to glass eel, inferred from the drop of otolith Sr/Ca ratios and increase of otolith growth increment width. δ18Ootolith profiles clearly divided the fish's life history into a planktonic stage in the mixed layer of the ocean and a benthic stage on the deep-sea ocean bottom. The habitat shift signal was recorded within a 150 μm width of otolith growth zone, which was too narrow to be clearly detected by mechanical drilling and conventional isotopic ratio mass spectrometry. However, variations down to -7‰ were found in δ18Ootolith profiles as the result of Cs2+ beam sputter in the core and larval portions of the otoliths. Carbon mapping by electron probe microanalyzer and staining by toluidine blue suggested abundant proteins existed in the areas with anomaly negative δ18Ootolith values, which cannot be interpreted as a habitat change but due to the isotopic fractionation by O emission from the proteins. These results implied that careful design and understanding of the chemical composition of the analytical areas or tracks on the heterogeneous otolith was essential for highly accurate and precise analysis.

  5. Long-term angiographic outcome of stent-assisted coiling compared to non-assisted coiling of intracranial saccular aneurysms

    PubMed Central

    Ozretić, David; Radoš, Marko; Pavliša, Goran; Poljaković, Zdravka

    2015-01-01

    Aim To compare angiographic result at long-term follow-up, and rates of progressive occlusion, recurrence, and retreatment of stent-assisted coiled (SAC) and non-assisted coiled (NAC) intracranial saccular aneurysms. Methods Retrospective evaluation of department records identified 260 patients with 283 saccular intracranial aneurysms who had long-term angiographic follow-up (more than 12 months) and were successfully treated with SAC (89 aneurysms) or NAC (194 aneurysms) at the University Hospital Center Zagreb from June 2005 to July 2012. Initial and control angiographic results in both groups were graded using Roy/Raymond scale, converted to descriptive terms, and the differences between them were evaluated for statistical significance. A multivariate analysis was performed to identify factors related to progression of aneurysm occlusion and recurrence at follow-up, and those related to aneurysm retreatment. Results There were more progressively occluded aneurysms in SAC group (38 of 89 aneurysms, 42.7%) than in NAC group (46 of 194, 23.7%) (P = 0.002), but there were no significant differences in the rates of recanalization, regrowth, and stable result. Multivariate logistic regression identified the use of stent as the most important factor associated with progressive occlusion (P = 0.015, odds ratio 2.22, 95% confidence interval 1.17-4.21), and large aneurysm size and posterior circulation location as most predictive of aneurysm recurrence and retreatment. Conclusion The use of stent is associated with delayed occlusion of initially incompletely coiled aneurysms during follow-up, but does not reduce the rate of recurrence and retreatment compared to coiling alone. Long-term angiographic follow-up is needed for both SAC and NAC aneurysms. PMID:25727039

  6. Trace element-protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry.

    PubMed

    Thomas, Oliver R B; Ganio, Katherine; Roberts, Blaine R; Swearer, Stephen E

    2017-03-22

    Otoliths, the biomineralised hearing "ear stones" from the inner ear of fish, grow throughout the lifespan of an individual, with deposition of alternating calciferous and proteinaceous bands occurring daily. Trace element : calcium ratios within daily increments measured by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are often used in fisheries science to reconstruct environmental histories. There is, however, considerable uncertainty as to which elements are interacting with either the proteinaceous or calciferous zones of the otolith, and thus their utility as indicators of environmental change. To answer this, we used size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) of endolymph, the otolith growth medium, to determine the binding interactions for a range of elements. In addition, we used solution ICP-MS to quantify element concentrations in paired otolith and endolymph samples and determined relative enrichment factors for each. We found 12 elements that are present only in the proteinaceous fraction, 6 that are present only in the salt fraction, and 4 that are present in both. These findings have important implications for the reconstruction of environmental histories based on changes in otolith elemental composition: (1) elements occurring only in the salt fraction are most likely to reflect changes in the physico-chemical environment experienced during life; (2) elements occurring only in the proteinaceous fraction are more likely to reflect physiological rather than environmental events; and (3) elements occurring in both the salt and proteinaceous fractions are likely to be informative about both endogenous and exogenous processes, potentially reducing their utility in environmental reconstructions.

  7. Otolith shape analysis for stock discrimination of two Collichthys genus croaker (Pieces: Sciaenidae,) from the northern Chinese coast

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Liu, Jinhu; Song, Junjie; Cao, Liang; Dou, Shuozeng

    2017-08-01

    The otolith morphology of two croaker species (Collichthys lucidus and Collichthys niveatus) from three areas (Liaodong Bay, LD; Huanghe (Yellow) River estuary, HRE; Jiaozhou Bay, JZ) along the northern Chinese coast were investigated for species identification and stock discrimination. The otolith contour shape described by elliptic Fourier coefficients (EFC) were analysed using principal components analysis (PCA) and stepwise canonical discriminant analysis (CDA) to identify species and stocks. The two species were well differentiated, with an overall classification success rate of 97.8%. And variations in the otolith shapes were significant enough to discriminate among the three geographical samples of C. lucidus (67.7%) or C. niveatus (65.2%). Relatively high mis-assignment occurred between the geographically adjacent LD and HRE samples, which implied that individual mixing may exist between the two samples. This study yielded information complementary to that derived from genetic studies and provided information for assessing the stock structure of C. lucidus and C. niveatus in the Bohai Sea and the Yellow Sea.

  8. Rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis: a new hypothesis to explain neurovestibular spaceflight adaptation.

    PubMed

    Merfeld, Daniel M

    2003-01-01

    Normally, the nervous system must process ambiguous graviceptor (e.g., otolith) cues to estimate tilt and translation. The neural processes that help perform these estimation processes must adapt upon exposure to weightlessness and readapt upon return to Earth. In this paper we present a review of evidence supporting a new hypothesis that explains some aspects of these adaptive processes. This hypothesis, which we label the rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis, suggests that the neural processes resulting in spaceflight adaptation include deterioration in the ability of the nervous system to use rotational cues to help accurately estimate the relative orientation of gravity ("tilt"). Changes in the ability to estimate gravity then also influence the ability of the nervous system to estimate linear acceleration ("translation"). We explicitly hypothesize that such changes in the ability to estimate "tilt" and "translation" will be measurable upon return to Earth and will, at least partially, explain the disorientation experienced when astronauts return to Earth. In this paper, we present the details and implications of ROTTR, review data related to ROTTR, and discuss the relationship of ROTTR to the influential otolith tilt-translation reinterpretation (OTTR) hypothesis as well as discuss the distinct differences between ROTTR and OTTR.

  9. Structural properties of the intrinsically disordered, multiple calcium ion-binding otolith matrix macromolecule-64 (OMM-64).

    PubMed

    Poznar, Monika; Hołubowicz, Rafał; Wojtas, Magdalena; Gapiński, Jacek; Banachowicz, Ewa; Patkowski, Adam; Ożyhar, Andrzej; Dobryszycki, Piotr

    2017-11-01

    Fish otoliths are calcium carbonate biominerals that are involved in hearing and balance sensing. An organic matrix plays a crucial role in their formation. Otolith matrix macromolecule-64 (OMM-64) is a highly acidic, calcium-binding protein (CBP) found in rainbow trout otoliths. It is a component of high-molecular-weight aggregates, which influence the size, shape and polymorph of calcium carbonate in vitro. In this study, a protocol for the efficient expression and purification of OMM-64 was developed. For the first time, the complete structural characteristics of OMM-64 were described. Various biophysical methods were combined to show that OMM-64 occurs as an intrinsically disordered monomer. Under denaturing conditions (pH, temperature) OMM-64 exhibits folding propensity. It was determined that OMM-64 binds approximately 61 calcium ions with millimolar affinity. The folding-unfolding experiments showed that calcium ions induced the collapse of OMM-64. The effect of other counter ions present in trout endolymph on OMM-64 conformational changes was studied. The significance of disordered properties of OMM-64 and the possible function of this protein is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Detection of transgenerational barium dual-isotope marks in salmon otoliths by means of LA-ICP-MS.

    PubMed

    Huelga-Suarez, Gonzalo; Fernández, Beatriz; Moldovan, Mariella; García Alonso, J Ignacio

    2013-03-01

    The present study evaluates the use of an individual-specific transgenerational barium dual-isotope procedure and its application to salmon specimens from the Sella River (Asturias, Spain). For such a purpose, the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in combination with multiple linear regression for the determination of the isotopic mark in the otoliths of the specimens is presented. In this sense, a solution in which two barium-enriched isotopes ((137)Ba and (135)Ba) were mixed at a molar ratio of ca. 1:3 (N Ba137/N Ba135) was administered to eight returning females caught during the spawning period. After injection, these females, as well as their offspring, were reared in a governmental hatchery located in the council of Cangas de Onís (Asturias, Spain). For comparison purposes, as well as for a time-monitoring control, egg and larva data obtained by solution analysis ICP-MS are also given. Otoliths (9-month-old juveniles) of marked offspring were analysed by LA-ICP-MS demonstrating a 100 % marking efficacy of this methodology. The capabilities of the molar fraction approach for 2D imaging of fish otoliths are also addressed.

  11. Otolith-Canal Convergence in Vestibular Nuclei Neurons

    NASA Technical Reports Server (NTRS)

    Dickman, J. David

    1996-01-01

    During manned spaceflight, acute vestibular disturbances often occur, leading to physical duress and a loss of performance. Vestibular adaptation to the weightless environment follows within two to three days yet the mechanisms responsible for the disturbance and subsequent adaptation are still unknown In order to understand vestibular system function in space and normal earth conditions the basic physiological mechanisms of vestibular information co coding must be determined. Information processing regarding head movement and head position with respect to gravity takes place in the vestibular nuclei neurons that receive signals From the semicircular canals and otolith organs in the vestibular labyrinth. These neurons must synthesize the information into a coded output signal that provides for the head and eye movement reflexes as well as the conscious perception of the body in three-dimensional space The current investigation will for the first time. determine how the vestibular nuclei neurons quantitatively synthesize afferent information from the different linear and angular acceleration receptors in the vestibular labyrinths into an integrated output signal. During the second year of funding, progress on the current project has been focused on the anatomical orientation of semicircular canals and the spatial orientation of the innervating afferent responses. This information is necessary in order to understand how vestibular nuclei neurons process the incoming afferent spatial signals particularly with the convergent otolith afferent signals that are also spatially distributed Since information from the vestibular nuclei is presented to different brain regions associated with differing reflexive and sensory functions it is important to understand the computational mechanisms used by vestibular neurons to produce the appropriate output signal.

  12. Evaluation of removal of the size effect using data scaling and elliptic Fourier descriptors in otolith shape analysis, exemplified by the discrimination of two yellow croaker stocks along the Chinese coast

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Liu, Jinhu; Song, Junjie; Cao, Liang; Dou, Shuozeng

    2017-11-01

    Removal of the length effect in otolith shape analysis for stock identification using length scaling is an important issue; however, few studies have attempted to investigate the effectiveness or weakness of this methodology in application. The aim of this study was to evaluate whether commonly used size scaling methods and normalized elliptic Fourier descriptors (NEFDs) could effectively remove the size effect of fish in stock discrimination. To achieve this goal, length groups from two known geographical stocks of yellow croaker, Larimichthys polyactis, along the Chinese coast (five groups from the Changjiang River estuary of the East China Sea and three groups from the Bohai Sea) were subjected to otolith shape analysis. The results indicated that the variation of otolith shape caused by intra-stock fish length might exceed that due to inter-stock geographical separation, even when otolith shape variables are standardized with length scaling methods. This variation could easily result in misleading stock discrimination through otolith shape analysis. Therefore, conclusions about fish stock structure should be carefully drawn from otolith shape analysis because the observed discrimination may primarily be due to length effects, rather than differences among stocks. The application of multiple methods, such as otoliths shape analysis combined with elemental fingering, tagging or genetic analysis, is recommended for sock identification.

  13. Validation of a freshwater Otolith microstructure pattern for Nisqually Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2011-01-01

    The Nisqually Fall Chinook salmon (Oncorhynchus tshawytscha) population is one of 27 stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem has taken place to assist in recovery of the stock since estuary habitat is a critical transition zone for juvenile fall Chinook salmon. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith microstructure analysis was selected as a tool to examine Chinook salmon life history, growth and residence in the Nisqually River estuary. The purpose of the current study is to incorporate microstructural analysis from the otoliths of juvenile Nisqually Chinook salmon collected at the downstream migrant trap within true freshwater (FW) habitat of the Nisqually River. The results from this analysis confirmed the previously documented Nisqually-specific FW microstructure pattern and revealed a Nisqually-specific microstructure pattern early in development (“developmental pattern”). No inter-annual variation in the microstructure pattern was visually observed when compared to samples from previous years. Furthermore, the Nisqually-specific “developmental pattern” and the FW microstructure pattern used in combination during analysis will allow us to recognize and separate with further confidence future unmarked Chinook salmon otolith collections into Nisqually-origin (natural or unmarked hatchery) and non-Nisqually origin categories. Freshwater mean increment width, growth rate and residence time were also calculated.

  14. Vestibular reflexes of otolith origin

    NASA Technical Reports Server (NTRS)

    Wilson, Victor J.

    1988-01-01

    The vestibular system and its role in the maintenance of posture and in motion sickness is investigated using cats as experimental subjects. The assumption is that better understanding of the physiology of vestibular pathways is not only of intrinsic value, but will help to explain and eventually alleviate the disturbances caused by vestibular malfunction, or by exposure to an unusual environment such as space. The first project deals with the influence on the spinal cord of stimulation of the vestibular labyrinth, particularly the otoliths. A second was concerned with the properties and neural basis of the tonic neck reflex. These two projects are related, because vestibulospinal and tonic neck reflexes interact in the maintenance of normal posture. The third project began with an interest in mechanisms of motion sickness, and eventually shifted to a study of central control of respiratory muscles involved in vomiting.

  15. A novel method to develop an otolith microchemistry model to determine striped bass habitat use in the San Francisco Estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillis, C C; Ostrach, D J; Gras, M

    2006-06-14

    Otolith Sr/Ca has become a popular tool for hind casting habitat utilization and migration histories of euryhaline fish. It can readily identify habitat shifts of diadromous fish in most systems. Inferring movements of fish within estuarine habitat, however, requires a model of that accounts of the local water chemistry and the response of individual species to that water chemistry, which is poorly understood. Modeling is further complicated by the fact that high marine Sr and Ca concentrations results in a rapid, nonlinear increase in water Sr/Ca and {sup 87}Sr/{sup 86}Sr between fresh and marine waters. Here we demonstrate a novelmore » method for developing a salinity-otolith Sr/Ca model for the purpose of reconstructing striped bass (Morone saxatilis) habitat use in the San Francisco Bay estuary. We used correlated Sr/Ca and {sup 87}Sr/{sup 86}Sr ratios measurements from adult otoliths from striped bass that experienced a range of salinities to infer striped bass otolith Sr/Ca response to changes in salinity and water Sr/Ca ratio. Otolith {sup 87}Sr/{sup 86}Sr can be assumed to accurately record water {sup 87}Sr/{sup 86}Sr because there is no biological fractionation of Sr isotopes. Water {sup 87}Sr/{sup 86}Sr can in turn be used to estimate water salinity based on the mixing of fresh and marine water with known {sup 87}Sr/{sup 86}Sr ratios. The relationship between adjacent analyses on otoliths of Sr/Ca and {sup 87}Sr/{sup 86}Sr by LA-ICP-MS and MC-ICP-MS (r{sup 2} = 0.65, n = 66) is used to predict water salinity from a measured Sr/Ca ratio. The nature of this non-linear model lends itself well to identifying residence in the Delta and to a lesser extent Suisun Bay, but does not do well locating residence within the more saline bays west of Carquinez Strait. An increase in the number of analyses would improve model confidence, but ultimately the precision of the model is limited by the variability in the response of individual fish to water Sr/Ca.« less

  16. Role of irregular otolith afferents in the steady-state nystagmus during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Perachio, A. A.; Mustari, M. J.; Strunk, C. L.

    1992-01-01

    1. During constant velocity off-vertical axis rotations (OVAR) in the dark a compensatory ocular nystagmus is present throughout rotation despite the lack of a maintained signal from the semicircular canals. Lesion experiments and canal plugging have attributed the steady-state ocular nystagmus during OVAR to inputs from the otolith organs and have demonstrated that it depends on an intact velocity storage mechanism. 2. To test whether irregularly discharging otolith afferents play a crucial role in the generation of the steady-state eye nystagmus during OVAR, we have used anodal (inhibitory) currents bilaterally to selectively and reversibly block irregular vestibular afferent discharge. During delivery of DC anodal currents (100 microA) bilaterally to both ears, the slow phase eye velocity of the steady-state nystagmus during OVAR was reduced or completely abolished. The disruption of the steady-state nystagmus was transient and lasted only during the period of galvanic stimulation. 3. To distinguish a possible effect of ablation of the background discharge rates of irregular vestibular afferents on the velocity storage mechanism from specific contributions of the dynamic responses from irregular otolith afferents to the circuit responsible for the generation of the steady-state nystagmus, bilateral DC anodal galvanic stimulation was applied during optokinetic nystagmus (OKN) and optokinetic afternystagmus (OKAN). No change in OKN and OKAN was observed.(ABSTRACT TRUNCATED AT 250 WORDS).

  17. [Verification of the eclossion mark on the sagittal otolith of the larvae of Sardinella aurita (Pisces: Clupeidae)].

    PubMed

    Balza, M A; Marín, B

    2000-12-01

    The study of otolith in larvae is important to determine fish age and growth, essential parameters in the study and management of fisheries resources. In this study, the formation of the hatching mark in Sardinella aurita was verified on ichthyoplankton samples collected off southern Cubagua island, Venezuela, from May 1998 to January 1999. The embryos were kept alive using a culture system until they hatched and daily a group of 10 to 30 larvae were fixed in 95% ethanol. An image analysis system was used to measure morphometric characteristics of larvae and sagittal otoliths. Following are mean values in newly hatched larvae: otolith hatching mark distance from nucleus 4.78 m (I.C. 0.36 m, p 0.05 n = 30), increase width 1.46 m (I.C. 0.17 microm, p 0.05, n = 30) and diameter 14.28 m (IC 1.11 m, p 0.05, n = 30). The mean standard length of larvae at age 0 was 3.31 mm (I.C. 0.08 mm, p 0.05, n = 200). The identification of the hatching mark allows the exact calculation of the number of rings in larvae from the natural environment.

  18. Motion sickness and otolith sensitivity - A pilot study of habituation to linear acceleration

    NASA Technical Reports Server (NTRS)

    Potvin, A. R.; Sadoff, M.; Billingham, J.

    1977-01-01

    Astronauts, particularly in Skylab flights, experienced varying degrees of motion sickness lasting 3-5 days. One possible mechanism for this motion sickness adaptation is believed to be a reduction in otolith sensitivity with an attendant reduction in sensory conflict. In an attempt to determine if this hypothesis is valid, a ground-based pilot study was conducted on a vertical linear accelerator. The extent of habituation to accelerations which initially produced motion sickness was evaluated, along with the possible value of habituation training to minimize the space motion sickness problem. Results showed that habituation occurred for 6 of the 8 subjects tested. However, in tests designed to measure dynamic and static otolith function, no significant differences between pre- and post-habituation tests were observed. Cross habituation effects to a standard Coriolis acceleration test were not significant. It is unlikely that ground-based pre-habituation to linear accelerations of the type examined would alter susceptibility to space motion sickness.

  19. Geographical origin of Amazonian freshwater fishes fingerprinted by ⁸⁷Sr/⁸⁶Sr ratios on fish otoliths and scales.

    PubMed

    Pouilly, Marc; Point, David; Sondag, Francis; Henry, Manuel; Santos, Roberto V

    2014-08-19

    Calcified structures such as otoliths and scales grow continuously throughout the lifetime of fishes. The geochemical variations present in these biogenic structures are particularly relevant for studying fish migration and origin. In order to investigate the potential of the (87)Sr/(86)Sr ratio as a precise biogeochemical tag in Amazonian fishes, we compared this ratio between the water and fish otoliths and scales of two commercial fish species, Hoplias malabaricus and Schizodon fasciatus, from three major drainage basins of the Amazon: the Madeira, Solimões, and Tapajós rivers, displaying contrasted (87)Sr/(86)Sr ratios. A comparison of the (87)Sr/(86)Sr ratios between the otoliths and scales of the same individuals revealed similar values and were very close to the Sr isotopic composition of the local river where they were captured. This indicates, first, the absence of Sr isotopic fractionation during biological uptake and incorporation into calcified structures and, second, that scales may represent an interesting nonlethal alternative for (87)Sr/(86)Sr ratio measurements in comparison to otoliths. Considering the wide range of (87)Sr/(86)Sr variations that exist across Amazonian rivers, we used variations of (87)Sr/(86)Sr to discriminate fish origin at the basin level, as well as at the sub-basin level between the river and savannah lakes of the Beni River (Madeira basin).

  20. Stable Oxygen isotopes in otoliths to reconstruct salmon and striped bass habitat use within the San Francisco Bay estuary

    NASA Astrophysics Data System (ADS)

    Malamud-Roam, F.; Phillis, C.; Ingram, B. L.; Schmitt, A. K.; Weber, P. K.

    2008-12-01

    Understanding the habitat use of anadromous fish species within major riverine and estuarine settings can provide useful information for protecting these fish populations. The inner ear bone, or otolith, of these fish is an accretionary carbonate structure that contains a high-resolution record of the life history of the fish, including certain chemical properties of the ambient waters occupied by the fish. Stable isotopes measured in the daily-accreting otolith layers can provide highly-resolved histories of habitat occupation. For the salmon, the juvenile phase is a critical life history period and researchers, as well as agencies charged with protecting these fish, seek detailed information about habitat use during this phase. We have measured isotopic ratios of 18O/16O (δ18O permil) in the otoliths of Chinook Salmon and striped bass, sampling along the growth axis, to produce a history of habitat use by these fish. The 18O/16O ratios of the carbonate otolith samples are primarily influenced by the 18O/16O ratio of the surrounding waters (which range from ~0 permil near the Golden Gate to -11 permil for river water), modified by temperature (- 0.326 permil/°C, so a range of approximately 1.6 permil over the course of a year. We have modeled the expected values for carbonate samples for locations throughout the estuary based upon seasonally averaged salinity and temperature values for these locations; for example, we expect delta 18O values of about -7.5 permil in otoliths for fish at the entrance to the estuary and about 2.7 permil in the ocean. We find good agreement between the δ18O data and 87/86Sr data collected earlier on the same fish samples (which also varies as a function of salinity). The value of the oxygen isotope data is that they provide great dynamic range in the brackish to saline portion of the estuary. The combined data provide a record of where the fish spent significant portions of their lives.

  1. The nature of thrombosis induced by platinum and tungsten coils in saccular aneurysms.

    PubMed

    Byrne, J V; Hope, J K; Hubbard, N; Morris, J H

    1997-01-01

    To compare the efficacy and biocompatability of electrolytic and mechanically detachable embolization coils of two metal types. Experimental saccular aneurysms in pigs were used to assess embolization induced by platinum or tungsten coils. Longitudinal angiographic and histologic studies were performed on treated and untreated (control) aneurysms to compare thrombosis and cellular responses after embolization with electrolytically detachable platinum coils and with mechanically detached tungsten coils. Fewer tungsten than platinum coils were needed to induce thrombosis. The inflammatory response within the aneurysmal lumen was more florid in embolized aneurysms than in control aneurysms. No difference was found in the timing or extent of accumulation of eosinophils, lymphocytes, or polymorphs between the two coils used. Giant cell responses were more marked in treated aneurysms; tungsten coils more than platinum coils. The amount of collagen and fibrosis present increased over the study period and was similar in treated and control aneurysms. The coil type influenced the initial cellular response but had little effect on the rate or degree to which blood clot within the aneurysm was replaced by fibrous tissue.

  2. Development of Gravity-Sensing Organs in Altered Gravity Conditions: Opposite Conclusions From an Amphibian and a Molluscan Preparation

    NASA Technical Reports Server (NTRS)

    Wiederhold, Michael L.; Pedrozo, Hugo A.; Harrison, Jeffrey L.; Hejl, Robert; Gao, Wenyuan

    1997-01-01

    Several components of the systems animals use to orient to gravity might develop differently in micrograms. If the growth of the "test masses" on which gravity acts (otoliths, in vertebrates, statoliths or statoconia in most invertebrates) is controlled on the basis of their weight, larger otoliths (or their analogs) would be expected to develop in micrograms. The vestibular systems in animals reared in altered gravity have been studied in several species, with varied results being reported. Early Russian reports of Xenopus larvae reared in space indicated no qualitative differences in the vestibular organs, compared to ground-reared controls. A similar lack of differences in Xenopus were reported. The ultricular otolith was 30% larger in space-reared Xenopus. No differences in saccular otolith volume between centrifuged and control adult rats were found. A delay in otoconial development in chick embryos reared at 2 grams on a centrifuge was reported but in a later report, no differences in otolith weight between 2 grams and control chicks were found. Increased optokinetic responses in flight-reared Xenopus tadpoles, suggesting that the animals reared in the absence of gravity made greater relative use of their visual system, rather than the vestibular system, in orienting to a moving stimulus was reported. To test early Japanese newt, CYnops pyrrhogaster, were maintained in orbit for 15 days on the IML-2 mission in 1994. All specimens reached orbit before any otoconia were formed and all major components of the inner ear were formed by the end of the flight. In ground-based studies of he Aplysia statocyst, the volume of the statolith in embryos and the number statoconia in post-metamorphic animals were compared between 1-gram controls and specimens reared at 2 to 5.7 grams.

  3. 87Sr/86Sr isotope ratio analysis by laser ablation MC-ICP-MS in scales, spines, and fin rays as a nonlethal alternative to otoliths for reconstructing fish life history

    USGS Publications Warehouse

    Willmes, Malte; Glessner, Justin J. G.; Carleton, Scott A.; Gerrity, Paul C.; Hobbs, James A.

    2016-01-01

    Strontium isotope ratios (87Sr/86Sr) in otoliths are a well-established tool to determine origins and movement patterns of fish. However, otolith extraction requires sacrificing fish, and when working with protected or endangered species, the use of nonlethal samples such as scales, spines, and fin rays is preferred. Unlike otoliths that are predominantly aragonite, these tissues are composed of biological apatite. Laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) analysis of biological apatite can induce significant interference on mass 87, causing inaccurate 87Sr/86Sr measurements. To quantify this interference, we applied LA-MC-ICP-MS to three marine samples (white seabass (Atractoscion nobilis) otolith; green sturgeon (Acipenser medirostris) pectoral fin ray; salmon shark (Lamna ditropis) tooth), and freshwater walleye (Sander vitreus) otoliths, scales, and spines). Instrument conditions that maximize signal intensity resulted in elevated 87Sr/86Sr isotope ratios in the bioapatite samples, related to a polyatomic interference (40Ca31P16O, 40Ar31P16O). Retuning instrument conditions to reduce oxide levels removed this interference, resulting in accurate 87Sr/86Sr ratios across all tissue samples. This method provides a novel, nonlethal alternative to otolith analysis to reconstruct fish life histories.

  4. Composition of biomineral organic matrices with special emphasis on turbot (Psetta maxima) otolith and endolymph.

    PubMed

    Borelli, G; Mayer-Gostan, N; Merle, P L; De Pontual, H; Boeuf, G; Allemand, D; Payan, P

    2003-06-01

    The soluble organic matrix (OM) of various biominerals (red coral skeleton, oyster shell, sea urchin test, turbot otolith, chicken eggshell) was extracted after demineralization with acetic acid. The protein content of the OM varies strongly from 0.02 to 1.6 microg/mg biomineral whereas proteoglycans present less variations (from 0.7 to 1.4 microg/mg biomineral). Electrophoresis of biominerals OM shows differences in their protein pattern although several bands are present in all matrices. OM of all biominerals shows carbonic anhydrase activity but no activity was detectable in the endolymph. OM of all biominerals also displays an anticalcifying activity. After separation of the OM extracts by chloroform-methanol, 80% of the anticalcifying activity was found in the methanol phase except in the urchin test. After OM precipitation with trichloracetic acid, 70% of the activities was found in the supernatants. Partial biochemical characterization suggests that the anticalcifying factor is a polyanionic and water-soluble molecule, which could be proteoglycans. The endolymph surrounding the otolith also displays an anticalcifying activity although its inhibitous activity was 50 times lower than that of the otolith OM. However, the anticalcifying activity of the endolymph is assumed by a proteic structure (80% activity precipitated with TCA treatment). Our results suggest that both carbonic anhydrase and anticalcifying activities are widespread and play a significant role in the regulation of biomineral formation. Results are discussed in relation to the calcification process that takes place at the fluid-mineral interface.

  5. Effect of betel nut chewing on the otolithic reflex system.

    PubMed

    Lin, Chuan-Yi; Young, Yi-Ho

    2017-01-01

    This study investigated the effect of betel nut chewing on the otolithic reflex system. Seventeen healthy volunteers without any experience of chewing betel nut (fresh chewers) and 17 habitual chewers underwent vital sign measurements, ocular vestibular-evoked myogenic potential (oVEMP), and cervical VEMP (cVEMP) tests prior to the study. Each subject then chewed two pieces of betel nut for 2min (dosing). The same paradigm was repeated immediately, 10min, and 20min after chewing. On a different day, 10 fresh chewers masticated chewing gum as control. Fresh chewers exhibited significantly decreased response rates of oVEMP (53%) and cVEMP (71%) after dosing compared with those from the predosing period. These abnormal VEMPs returned to normal 20min after dosing. In contrast, 100% response rates of oVEMP and cVEMP were observed before and after masticating chewing gum. In habitual chewers, the response rates of oVEMP and cVEMP were 32% and 29%, respectively, 20min after dosing. Chewing betel nuts induced a transient loss of the otolithic reflexes in fresh chewers but may cause permanent loss in habitual chewers. Chewing betel nuts can cause a loss of otholitic reflex function. This creates a risk for disturbed balance and malfunction, for instance, during driving. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. HABITAT FINGERPRINTS FOR LAKE SUPERIOR COASTAL WETLANDS DERIVED FROM ELEMENTAL ANALYSIS OF YELLOW PERCH OTOLITHS

    EPA Science Inventory

    Assessing the ecological importance of coastal habitats to Great Lakes ecosystems requires an understanding of the ecological linkages between coastal and offshore waters. . . . Our results suggest that otolith elemental fingerprints may be useful for quantifying the relative con...

  7. Otolith morphology varies between populations, sexes and male alternative reproductive tactics in a vocal toadfish Porichthys notatus.

    PubMed

    Bose, A P H; Adragna, J B; Balshine, S

    2017-01-01

    In this study, the morphology of sagittal otoliths of the plainfin midshipman fish Porichthys notatus was compared between populations, sexes and male alternative reproductive phenotypes (known as 'type I males or guarders' and 'type II males or sneakers'). Sagitta size increased with P. notatus size and changes in shape were also detected with increasing body size. Porichthys notatus sagittae begin as simple rounded structures, but then elongate as they grow and take on a more triangular and complex shape with several prominent notches and indentations along the dorsal and caudal edges. Moreover, the sagittae of the two geographically and genetically distinct populations of P. notatus (northern and southern) differed in shape. Porichthys notatus from the north possessed taller sagittae with deeper caudal indentations compared to P. notatus from the south. Sagitta shape also differed between females and males of the conventional guarder tactic. Furthermore, guarder males had smaller sagittae for their body size than did sneaker males or females. These differences in sagittal otolith morphology are discussed in relation to ecological and life history differences between the sexes and male tactics of this species. This is the first study to investigate teleost otolith morphology from the perspective of alternative reproductive tactics. © 2016 The Fisheries Society of the British Isles.

  8. Stable Carbon and Oxygen Isotope Ratios of Otoliths Differentiate Winter Flounder (Pseudopleuonectes americanus) Habitats

    EPA Science Inventory

    Stable carbon (13C) and oxygen (18O) isotope ratios were measured in otoliths of juvenile winter flounder (Pseudopleuronectes americanus) collected from 18 nursery areas along the coast of Rhode Island, USA. Samples were obtained during June and July of 2002 from locations tha...

  9. Stabel Carbon and Oxygen Isotope Ratios of Otoliths from Juvenile and Adult Winter Flounder

    EPA Science Inventory

    This study was designed to determine if stable carbon (13C) and oxygen (18O) isotope ratios in otoliths could be used to differentiate the locations that serve as important nursery areas for winter flounder along the Rhode Island, USA coastline. In recent years the populations ...

  10. Defining fish nursery habitats: an application of otolith elemental fingerprinting in Tampa Bay, Florida

    USGS Publications Warehouse

    Ley, Janet A.; McIvor, Carole C.; Peebles, Ernst B; Rolls, Holly; Cooper, Suzanne T.

    2009-01-01

    Fishing in Tampa Bay enhances the quality of life of the area's residents and visitors. However, people's desire to settle along the Bay's shorelines and tributaries has been detrimental to the very habitat believed to be crucial to prime target fishery species. Common snook (Centropomus undecimalis) and red drum (Sciaenops ocellatus) are part of the suite of estuarine fishes that 1) are economically or ecologically prominent, and 2) have complex life cycles involving movement between open coastal waters and estuarine nursery habitats, including nursery habitats that are located within upstream, low-salinity portions of the Bay?s tidal tributaries. We are using an emerging microchemical technique -- elemental fingerprinting of fish otoliths -- to determine the degree to which specific estuarine locations contribute to adult fished populations in Tampa Bay. In ongoing monitoring surveys, over 1,000 young-of-the-year common snook and red drum have already been collected from selected Tampa Bay tributaries. Using laser ablation-inductively coupled plasma - mass spectrometry (LA-ICP-MS), we are currently processing a subsample of these archived otoliths to identify location-specific fingerprints based on elemental microchemistry. We will then analyze older fish from the local fishery in order to match them to their probable nursery areas, as defined by young-of-the-year otoliths. We expect to find that some particularly favorable nursery locations contribute disproportionately to the fished population. In contrast, other nursery areas may be degraded, or act as 'sinks', thereby decreasing their contribution to the fish population. Habitat managers can direct strategic efforts to protect any nursery locations that are found to be of prime importance in contributing to adult stocks.

  11. Interannual variations in the hatching pattern, larval growth and otolith size of a sand-dwelling fish from central Chile

    NASA Astrophysics Data System (ADS)

    Rodríguez-Valentino, Camilo; Landaeta, Mauricio F.; Castillo-Hidalgo, Gissella; Bustos, Claudia A.; Plaza, Guido; Ojeda, F. Patricio

    2015-09-01

    The interannual variation (2010-2013) of larval abundance, growth and hatching patterns of the Chilean sand stargazer Sindoscopus australis (Pisces: Dactyloscopidae) was investigated through otolith microstructure analysis from samples collected nearshore (<500 m from shore) during austral late winter-early spring off El Quisco bay, central Chile. In the studied period, the abundance of larval stages in the plankton samples varied from 2.2 to 259.3 ind. 1000 m-3; larval abundance was similar between 2010 and 2011, and between 2012 and 2013, but increased significantly from 2011 to 2012. The estimated growth rates increased twice, from 0.09 to 0.21 mm day-1, between 2011 and 2013. Additionally, otolith size (radius, perimeter and area), related to body length of larvae, significantly decreased from 2010 to 2012, but increases significantly in 2013. Although the mean values of microincrement widths of sagitta otoliths were similar between 2010 and 2011 (around 0.6-0.7 μm), the interindividual variability increases in 2011 and 2013, suggesting large environmental variability experienced by larvae during these years. Finally, the hatching pattern of S. australis changed significantly from semi-lunar to lunar cycle after 2012.

  12. Use of otolith for detecting strontium-90 in fish from the harbor of Fukushima Dai-ichi Nuclear Power Plant.

    PubMed

    Fujimoto, Ken; Miki, Shizuho; Kaeriyama, Hideki; Shigenobu, Yuya; Takagi, Kaori; Ambe, Daisuke; Ono, Tsuneo; Watanabe, Tomowo; Morinaga, Kenji; Nakata, Kaoru; Morita, Takami

    2015-06-16

    To clarify the level of contamination with radioactive cesium (radiocesium) discharged from Fukushima Dai-ichi Nuclear Power Plant (FDNPP), three fish species caught in the main harbor of FDNPP were subjected to γ-ray analysis. The concentration of radiocesium in muscle differed among individual fish, even those of similar size of the same species, and showed little relation to the standard length of fish. The maximum concentration of radiocesium (202 kBq/kg wet) was detected from fat greenling samples. A comparison to data from outside the port indicated that the level of radiocesium contamination inside the port was higher than that outside. We found that β-rays were emitted from otoliths of fishes caught in the port of FDNPP. β-ray intensities were correlated with the concentrations of radiocesium in muscles of the three fish species. In Japanese rockfish, the β-ray count rates from otoliths were significantly correlated with the concentration of radiocesium and (90)Sr in the whole body without internal organs of Japanese rockfish. However, no β-rays were detected from brown hakeling samples collected around FDNPP, suggesting that the detection of β-rays from otoliths may indicate living in the main harbor of FDNPP.

  13. The otolithic contribution to vertical ocular stability in the cat.

    PubMed

    Pettorossi, V E; Draicchio, F; Ferraresi, A; Bruni, R

    1994-10-01

    In cats, horizontal (HVOR) and vertical (VVOR) vestibulo-ocular reflexes were studied alone and combined with optokinetic stimulation. The upright VVOR (VVOR O degree) only showed higher gain and smaller phase lead compared to those of HVOR at frequencies below 0.05 Hz. The addition of optokinetic stimulation to the vestibular stimulation increased the gain of the horizontal and vertical ocular responses close to 1. VVOR was also studied in side down position (VVOR 90 degrees). In VVOR 90 degrees the ocular responses were asymmetric. The downward directed eye responses of VVOR 90 degrees showed lower gain and greater phase lead compared to those of VVOR 0 degree for the whole range of tested frequencies (0.01-0.4 Hz), while the upward eye responses only showed a lower gain at the lower range of frequencies tested. In the light the gain of VVOR 90 degrees increased, but the gain of downward directed eye responses was consistently lower than 1 at lower frequencies. The higher gain of the VVOR 0 degree compared to the VVOR 90 degrees and HVOR was attributed to the maculo-ocular reflex (MOR) evoked by the gravity modulation of the otolithic receptors, when the animals were oscillated in the pitch plane. The MOR was isolated from the VVOR 0 degree by plugging all semicircular canals. At very low frequencies the gain of the MOR was 0.3-0.35 and the phase was close to 0 degree. This reflex showed a progressive gain decrease and phase lag by increasing the stimulation frequencies. This suggests a low pass filtering process of the otolithic signal. Furthermore in plugged animals the asymmetry of the vertical optokinetic responses was reduced by adding the MOR. The quick phases (QPs) of the vestibular responses were also different depending upon the stimulation plane. The QPs of VVOR 0 degree were smaller and more delayed than those of HVOR and VVOR 90 degrees. In conclusion the main effects observed during otolithic coactivation in the VVOR 0 of the cat are: 1) the

  14. Unravelling the life history of Amazonian fishes through otolith microchemistry

    PubMed Central

    Hermann, Theodore W.; Stewart, Donald J.; Limburg, Karin E.; Castello, Leandro

    2016-01-01

    Amazonian fishes employ diverse migratory strategies, but the details of these behaviours remain poorly studied despite numerous environmental threats and heavy commercial exploitation of many species. Otolith microchemistry offers a practical, cost-effective means of studying fish life history in such a system. This study employed a multi-method, multi-elemental approach to elucidate the migrations of five Amazonian fishes: two ‘sedentary’ species (Arapaima sp. and Plagioscion squamosissimus), one ‘floodplain migrant’ (Prochilodus nigricans) and two long-distance migratory catfishes (Brachyplatystoma rousseauxii and B. filamentosum). The Sr : Ca and Zn : Ca patterns in Arapaima were consistent with its previously observed sedentary life history, whereas Sr : Ca and Mn : Ca indicated that Plagioscion may migrate among multiple, chemically distinct environments during different life-history stages. Mn : Ca was found to be potentially useful as a marker for identifying Prochilodus's transition from its nursery habitats into black water. Sr : Ca and Ba : Ca suggested that B. rousseauxii resided in the Amazon estuary for the first 1.5–2 years of life, shown by the simultaneous increase/decrease of otolith Sr : Ca/Ba : Ca, respectively. Our results further suggested that B. filamentosum did not enter the estuary during its life history. These results introduce what should be a productive line of research desperately needed to better understand the migrations of these unique and imperilled fishes. PMID:27429777

  15. Before the freeze: otoliths from the Eocene of Seymour Island, Antarctica, reveal dominance of gadiform fishes (Teleostei)

    PubMed Central

    Schwarzhans, Werner; Mörs, Thomas; Engelbrecht, Andrea; Reguero, Marcelo; Kriwet, Jürgen

    2017-01-01

    The first record of fossil teleostean otoliths from Antarctica is reported. The fossils were obtained from late Early Eocene shell beds of the La Meseta Formation, Seymour Island that represent the last temperate marine climate phase in Antarctica prior to the onset of cooling and subsequent glaciation during the late Eocene. A total of 17 otolith-based teleost taxa are recognized, with 10 being identifiable to species level containing nine new species and one new genus: Argentina antarctica sp. nov., Diaphus? marambionis sp. nov., Macruronus eastmani sp. nov., Coelorinchus balushkini sp. nov., Coelorinchus nordenskjoeldi sp. nov., Palimphemus seymourensis sp. nov., Hoplobrotula? antipoda sp. nov., Notoberyx cionei gen. et sp. nov. and Cepola anderssoni sp. nov. Macruronus eastmani sp. nov. is also known from the late Eocene of Southern Australia, and Tripterophycis immutatus Schwarzhans, widespread in the southern oceans during the Eocene, has been recorded from New Zealand, southern Australia, and now Antarctica. The otolith assemblage shows a typical composition of temperate fishes dominated by gadiforms, very similar at genus and family levels to associations known from middle Eocene strata of New Zealand and the late Eocene of southern Australia, but also to the temperate Northern Hemisphere associations from the Paleocene of Denmark. The Seymour Island fauna bridges a gap in the record of global temperate marine teleost faunas during the early Eocene climate maximum. The dominant gadiforms are interpreted as the main temperate faunal component, as in the Paleocene of Denmark. Here they are represented by the families Moridae, Merlucciidae (Macruroninae), Macrouridae and Gadidae. Nowadays Gadidae are a chiefly Northern Hemisphere temperate family. Moridae, Macruroninae and Macrouridae live today on the lower shelf to deep-water or mesopelagically with Macruroninae being restricted to the Southern Ocean. The extant endemic Antarctic gadiform family

  16. Before the freeze: otoliths from the Eocene of Seymour Island, Antarctica, reveal dominance of gadiform fishes (Teleostei).

    PubMed

    Schwarzhans, Werner; Mörs, Thomas; Engelbrecht, Andrea; Reguero, Marcelo; Kriwet, Jürgen

    2017-01-01

    The first record of fossil teleostean otoliths from Antarctica is reported. The fossils were obtained from late Early Eocene shell beds of the La Meseta Formation, Seymour Island that represent the last temperate marine climate phase in Antarctica prior to the onset of cooling and subsequent glaciation during the late Eocene. A total of 17 otolith-based teleost taxa are recognized, with 10 being identifiable to species level containing nine new species and one new genus: Argentina antarctica sp. nov., Diaphus? marambionis sp. nov., Macruronus eastmani sp. nov., Coelorinchus balushkini sp. nov., Coelorinchus nordenskjoeldi sp. nov., Palimphemus seymourensis sp. nov., Hoplobrotula? antipoda sp. nov., Notoberyx cionei gen. et sp. nov. and Cepola anderssoni sp. nov. Macruronus eastmani sp. nov. is also known from the late Eocene of Southern Australia, and Tripterophycis immutatus Schwarzhans, widespread in the southern oceans during the Eocene, has been recorded from New Zealand, southern Australia, and now Antarctica. The otolith assemblage shows a typical composition of temperate fishes dominated by gadiforms, very similar at genus and family levels to associations known from middle Eocene strata of New Zealand and the late Eocene of southern Australia, but also to the temperate Northern Hemisphere associations from the Paleocene of Denmark. The Seymour Island fauna bridges a gap in the record of global temperate marine teleost faunas during the early Eocene climate maximum. The dominant gadiforms are interpreted as the main temperate faunal component, as in the Paleocene of Denmark. Here they are represented by the families Moridae, Merlucciidae (Macruroninae), Macrouridae and Gadidae. Nowadays Gadidae are a chiefly Northern Hemisphere temperate family. Moridae, Macruroninae and Macrouridae live today on the lower shelf to deep-water or mesopelagically with Macruroninae being restricted to the Southern Ocean. The extant endemic Antarctic gadiform family

  17. The Great Melting Pot. Common Sole Population Connectivity Assessed by Otolith and Water Fingerprints

    PubMed Central

    Morat, Fabien; Letourneur, Yves; Dierking, Jan; Pécheyran, Christophe; Bareille, Gilles; Blamart, Dominique; Harmelin-Vivien, Mireille

    2014-01-01

    Quantifying the scale and importance of individual dispersion between populations and life stages is a key challenge in marine ecology. The common sole (Solea solea), an important commercial flatfish in the North Sea, Atlantic Ocean and the Mediterranean Sea, has a marine pelagic larval stage, a benthic juvenile stage in coastal nurseries (lagoons, estuaries or shallow marine areas) and a benthic adult stage in deeper marine waters on the continental shelf. To date, the ecological connectivity among these life stages has been little assessed in the Mediterranean. Here, such an assessment is provided for the first time for the Gulf of Lions, NW Mediterranean, based on a dataset on otolith microchemistry and stable isotopic composition as indicators of the water masses inhabited by individual fish. Specifically, otolith Ba/Ca and Sr/Ca profiles, and δ13C and δ18O values of adults collected in four areas of the Gulf of Lions were compared with those of young-of-the-year collected in different coastal nurseries. Results showed that a high proportion of adults (>46%) were influenced by river inputs during their larval stage. Furthermore Sr/Ca ratios and the otolith length at one year of age revealed that most adults (∼70%) spent their juvenile stage in nurseries with high salinity, whereas the remainder used brackish environments. In total, data were consistent with the use of six nursery types, three with high salinity (marine areas and two types of highly saline lagoons) and three brackish (coastal areas near river mouths, and two types of brackish environments), all of which contributed to the replenishment of adult populations. These finding implicated panmixia in sole population in the Gulf of Lions and claimed for a habitat integrated management of fisheries. PMID:24475151

  18. The great melting pot. Common sole population connectivity assessed by otolith and water fingerprints.

    PubMed

    Morat, Fabien; Letourneur, Yves; Dierking, Jan; Pécheyran, Christophe; Bareille, Gilles; Blamart, Dominique; Harmelin-Vivien, Mireille

    2014-01-01

    Quantifying the scale and importance of individual dispersion between populations and life stages is a key challenge in marine ecology. The common sole (Solea solea), an important commercial flatfish in the North Sea, Atlantic Ocean and the Mediterranean Sea, has a marine pelagic larval stage, a benthic juvenile stage in coastal nurseries (lagoons, estuaries or shallow marine areas) and a benthic adult stage in deeper marine waters on the continental shelf. To date, the ecological connectivity among these life stages has been little assessed in the Mediterranean. Here, such an assessment is provided for the first time for the Gulf of Lions, NW Mediterranean, based on a dataset on otolith microchemistry and stable isotopic composition as indicators of the water masses inhabited by individual fish. Specifically, otolith Ba/Ca and Sr/Ca profiles, and δ(13)C and δ(18)O values of adults collected in four areas of the Gulf of Lions were compared with those of young-of-the-year collected in different coastal nurseries. Results showed that a high proportion of adults (>46%) were influenced by river inputs during their larval stage. Furthermore Sr/Ca ratios and the otolith length at one year of age revealed that most adults (∼70%) spent their juvenile stage in nurseries with high salinity, whereas the remainder used brackish environments. In total, data were consistent with the use of six nursery types, three with high salinity (marine areas and two types of highly saline lagoons) and three brackish (coastal areas near river mouths, and two types of brackish environments), all of which contributed to the replenishment of adult populations. These finding implicated panmixia in sole population in the Gulf of Lions and claimed for a habitat integrated management of fisheries.

  19. Effect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops.

    PubMed

    Perry, Dean M; Redman, Dylan H; Widman, James C; Meseck, Shannon; King, Andrew; Pereira, Jose J

    2015-09-01

    Increasing amounts of atmospheric carbon dioxide (CO2) from human industrial activities are causing changes in global ocean carbonate chemistry, resulting in a reduction in pH, a process termed "ocean acidification." It is important to determine which species are sensitive to elevated levels of CO2 because of potential impacts to ecosystems, marine resources, biodiversity, food webs, populations, and effects on economies. Previous studies with marine fish have documented that exposure to elevated levels of CO2 caused increased growth and larger otoliths in some species. This study was conducted to determine whether the elevated partial pressure of CO2 (pCO2) would have an effect on growth, otolith (ear bone) condition, survival, or the skeleton of juvenile scup, Stenotomus chrysops, a species that supports both important commercial and recreational fisheries. Elevated levels of pCO2 (1200-2600 μatm) had no statistically significant effect on growth, survival, or otolith condition after 8 weeks of rearing. Field data show that in Long Island Sound, where scup spawn, in situ levels of pCO2 are already at levels ranging from 689 to 1828 μatm due to primary productivity, microbial activity, and anthropogenic inputs. These results demonstrate that ocean acidification is not likely to cause adverse effects on the growth and survivability of every species of marine fish. X-ray analysis of the fish revealed a slightly higher incidence of hyperossification in the vertebrae of a few scup from the highest treatments compared to fish from the control treatments. Our results show that juvenile scup are tolerant to increases in seawater pCO2, possibly due to conditions this species encounters in their naturally variable environment and their well-developed pH control mechanisms.

  20. Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture.

    PubMed

    Paloski, W H; Black, F O; Reschke, M F; Calkins, D S; Shupert, C

    1993-01-01

    Orbital spaceflight exposes astronauts to an environment in which gravity is reduced to negligible magnitudes of 10(-3) to 10(-6) G. Upon insertion into earth orbit, the abrupt loss of the constant linear acceleration provided by gravity removes the otolith stimulus for vestibular sensation of vertical orientation constantly present on Earth. Since the central nervous system (CNS) assesses spatial orientation by simultaneously interpreting sensory inputs from the vestibular, visual, and proprioceptive systems, loss of the otolith-mediated vertical reference input results in an incorrect estimation of spatial orientation, which, in turn, causes a degradation in movement control. Over time, however, the CNS adapts to the loss of gravitational signals. Upon return to Earth, the vertical reference provided by gravitational stimulation of the otolith organ reappears. As a result, a period of CNS readaptation must occur upon return to terrestrial environment. Among the physiological changes observed during the postflight CNS readaptation period is a disruption of postural equilibrium control. Using a dynamic posturography system (modified NeuroCom EquiTest), 16 astronauts were tested at 60, 30, and 10 days preflight and retested at 1 to 5 hours, and 8 days postflight. All astronauts tested demonstrated decreased postural stability immediately upon return to Earth. The most dramatic increases in postural sway occurred during those sensory conditions in which both the visual and proprioceptive feedback information used for postural control were altered by the dynamic posturography system, requiring reliance primarily upon vestibular function for control of upright stance. Less marked but statistically significant increases in sway were observed under those conditions in which visual and foot support surface inputs alone were altered.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Temperature history of Coregonus artedi in the St. Marys River, Laurentian Great Lakes, inferred from oxygen isotopes in otoliths

    USGS Publications Warehouse

    Joukhadar, Zeina; Patterson, W.P.; Todd, T.N.; Smith, G.R.

    2002-01-01

    The population of Coregonus artedi in the St. Marys River, between lakes Superior and Huron, was sampled and otoliths were analyzed for oxygen isotopic composition to determine whether the fish are residents in the St. Marys River and its warm bays or migrants to and from cold Lake Huron. Otoliths were extracted, sectioned, and growth ring-specific samples of calcium carbonate were milled to obtain samples for determination of oxygen isotope ratios (18O values). The 18O values of calcium carbonate (CaCO3) in accretionary structures such as otoliths allow calculation of growth temperatures of the fish, because of differential fractionation of oxygen isotopes at different temperatures. Growth temperatures of 10 St. Marys River lake herring were compared with lake and catch data as well as growth temperatures of lake herring collected from Lake Huron and other ciscoes from the Great Lakes. Results of this analysis indicate that these fish remained in the bays of the St. Marys River for their entire life history. After their second year they grew at average temperatures between 11 C and 13 C, consistent with temperature in the warmer bays of the St. Marys River and 6 C higher than expected for growth of this species in Lake Huron.

  2. Asymmetric otolith function and increased susceptibility to motion sickness during exposure to variations in gravitoinertial acceleration level

    NASA Technical Reports Server (NTRS)

    Lackner, James R.; Graybiel, Ashton; Johnson, Walter H.; Money, Kenneth E.

    1987-01-01

    Von Baumgarten and coworkers (1979, 1981) have suggested that asymmetries in otolith function between the left and right labyrinths may result from differences in otoconial mass and could play a role in space motion sickness. Such asymmetries would be centrally compensated for under terrestrial conditions, but on exposure to weightlessness the persisting central compensation would produce a central imbalance that could lead to motion sickness. In this work ocular counterrolling was used as a way of measuring the relative 'efficiency' of the left and right otoliths; the ocular counterrolling scores of individuals were compared with their susceptibility to motion sickness during passive exposure to variations in Gz in parabolic flight maneuvers. The experimental findings indicate that large asymmetries in counterrolling for leftward and rightward body tilts are associated with greater susceptibility to motion sickness in parabolic flight.

  3. Waiting for the evidence: VEMP testing and the ability to differentiate utricular versus saccular function.

    PubMed

    Welgampola, Miriam S; Carey, John P

    2010-08-01

    The advent of cervical vestibular evoked myogenic potentials (CVEMPs) marked a milestone in clinical vestibular testing because they provided a simple means of assessing human otolith function. The availability of air-conducted (AC) sound and bone-conducted vibration (BCV) to evoke CVEMPs and development of a new technique of recording ocular vestibular-evoked myogenic potentials (OVEMPs) have increased the complexity of this simple test, yet extended its diagnostic capabilities. Here we highlight the evidence-based assumptions that guide interpretation of AC sound- and BCV-evoked VEMPs and the gaps in VEMP research thus far. Copyright (c) 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  4. Integration of Canal and Otolith Inputs by Central Vestibular Neurons Is Subadditive for Both Active and Passive Self-Motion: Implication for Perception

    PubMed Central

    Carriot, Jerome; Jamali, Mohsen; Brooks, Jessica X.

    2015-01-01

    Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather comprises both rotational and translational motion that will simultaneously stimulate receptors in the semicircular canals and otoliths. In addition, natural self-motion is the result of self-generated and externally generated movements. However, to date, it remains unknown how information about rotational and translational components of self-motion is integrated by vestibular pathways during active and/or passive motion. Accordingly, here, we compared the responses of neurons at the first central stage of vestibular processing to rotation, translation, and combined motion. Recordings were made in alert macaques from neurons in the vestibular nuclei involved in postural control and self-motion perception. In response to passive stimulation, neurons did not combine canal and otolith afferent information linearly. Instead, inputs were subadditively integrated with a weighting that was frequency dependent. Although canal inputs were more heavily weighted at low frequencies, the weighting of otolith input increased with frequency. In response to active stimulation, neuronal modulation was significantly attenuated (∼70%) relative to passive stimulation for rotations and translations and even more profoundly attenuated for combined motion due to subadditive input integration. Together, these findings provide insights into neural computations underlying the integration of semicircular canal and otolith inputs required for accurate posture and motor control, as well as perceptual stability, during everyday life. PMID:25716854

  5. Otolith analysis of pre-restoration habitat use by Chinook salmon in the delta-flats and nearshore regions of the Nisqually River Estuary

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2010-01-01

    The Nisqually Fall Chinook population is one of 27 salmon stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent on the estuary. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith analysis was selected as a tool to examine Chinook salmon life history, growth, and residence in the Nisqually River estuary. Previously funded work on samples collected in 2004 (marked and unmarked) and 2005 (unmarked only) partially established a juvenile baseline on growth rates and length of residence associated with various habitats (freshwater, forested riverine tidal, emergent forested transition, estuarine emergent marsh, delta-flats and nearshore). However, residence times and growth rates for the delta-flats (DF) and nearshore (NS) habitats have been minimally documented due to small sample sizes. The purpose of the current study is to incorporate otolith microstructural analysis using otoliths from fish collected within the DF and NS habitats during sampling years 2004-08 to increase sample size and further evaluate between-year variation in otolith microstructure. Our results from this analysis indicated the delta-flats check (DFCK) on unmarked and marked Chinook samples in 2005-08 varied slightly in appearance from that seen on samples previously analyzed only from 2004. A fry migrant life history was observed on otoliths of unmarked Chinook collected in 2005, 2007, and 2008. Generally, freshwater mean increment width of unmarked fish, on average, was smaller compared to marked

  6. Comparison of secondary ion mass spectrometry and micromilling/continuous flow isotope ratio mass spectrometry techniques used to acquire intra-otolith delta18O values of wild Atlantic salmon (Salmo salar).

    PubMed

    Hanson, N N; Wurster, C M; Todd, C D

    2010-09-15

    The chemical signals in the sequential layers of fish otoliths have the potential to provide fisheries biologists with temporal and spatial details of migration which are difficult to obtain without expensive tracking methods. Signal resolution depends, however, on the extraction technique used. We compared the use of mechanical micromilling and continuous flow isotope ratio mass spectrometry (CF-IRMS) methods with secondary ion mass spectrometry (SIMS) to obtain delta(18)O profiles from otoliths of wild Atlantic salmon (Salmo salar) and used these to corroborate the time of freshwater emigration of the juvenile with macroscopic patterns within the otolith. Both techniques showed the transition occurring at the same visible feature on the otolith, allowing future analyses to easily identify the juvenile (freshwater) versus adult (marine) life-stages. However, SIMS showed a rapid and abrupt transition whereas micromilling provided a less distinct signal. The number of samples that could be obtained per unit area sampled using SIMS was 2 to 3 times greater than that when using micromilling/CF-IRMS although the delta(18)O values and analytical precisions (approximately 0.2 per thousand) of the two methods were comparable. In addition, SIMS delta(18)O results were used to compare otolith aragonite values with predicted values calculated using various isotope fractionation equations. Copyright 2010 John Wiley & Sons, Ltd.

  7. Canal–Otolith Interactions and Detection Thresholds of Linear and Angular Components During Curved-Path Self-Motion

    PubMed Central

    MacNeilage, Paul R.; Turner, Amanda H.

    2010-01-01

    Gravitational signals arising from the otolith organs and vertical plane rotational signals arising from the semicircular canals interact extensively for accurate estimation of tilt and inertial acceleration. Here we used a classical signal detection paradigm to examine perceptual interactions between otolith and horizontal semicircular canal signals during simultaneous rotation and translation on a curved path. In a rotation detection experiment, blindfolded subjects were asked to detect the presence of angular motion in blocks where half of the trials were pure nasooccipital translation and half were simultaneous translation and yaw rotation (curved-path motion). In separate, translation detection experiments, subjects were also asked to detect either the presence or the absence of nasooccipital linear motion in blocks, in which half of the trials were pure yaw rotation and half were curved path. Rotation thresholds increased slightly, but not significantly, with concurrent linear velocity magnitude. Yaw rotation detection threshold, averaged across all conditions, was 1.45 ± 0.81°/s (3.49 ± 1.95°/s2). Translation thresholds, on the other hand, increased significantly with increasing magnitude of concurrent angular velocity. Absolute nasooccipital translation detection threshold, averaged across all conditions, was 2.93 ± 2.10 cm/s (7.07 ± 5.05 cm/s2). These findings suggest that conscious perception might not have independent access to separate estimates of linear and angular movement parameters during curved-path motion. Estimates of linear (and perhaps angular) components might instead rely on integrated information from canals and otoliths. Such interaction may underlie previously reported perceptual errors during curved-path motion and may originate from mechanisms that are specialized for tilt-translation processing during vertical plane rotation. PMID:20554843

  8. Multi-element otolith chemistry of juvenile sole ( Solea solea), whiting ( Merlangius merlangus) and European seabass ( Dicentrarchus labrax) in the Thames Estuary and adjacent coastal regions

    NASA Astrophysics Data System (ADS)

    Leakey, Chris D. B.; Attrill, Martin J.; Fitzsimons, Mark F.

    2009-04-01

    Estuaries are regarded as valuable nursery habitats for many commercially important marine fishes, potentially providing a thermal resource, refuge from predators and a source of abundant prey. To assess the extent of estuarine use by juvenile (0+) common sole ( Solea solea), whiting ( Merlangius merlangus) and European seabass ( Dicentrarchus labrax) we: (1) developed techniques to distinguish between estuarine and coastally-caught juveniles using otolith chemistry; and (2) examined the accuracy with which multi-elemental signatures could re-classify juveniles to their region of collection. High-resolution solution-based inductively coupled plasma mass spectrometry (HB-SB-ICPMS) was used to quantify 32 elements within the juvenile otoliths; 14 elements occurred above detection limits for all samples. Some elemental distributions demonstrated clear differences between estuarine and coastally-caught fish. Multivariate analysis of the otolith chemistry data resulted in 95-100% re-classification accuracy to the region of collection. Estuarine and coastal signatures were most clearly defined for sole which, compared to bass and whiting, have low mobility and are less likely to move from estuarine to coastal habitats between larval settlement and later migration to adult stocks. Sole were the only species to reveal an energetic benefit associated with an estuarine juvenile phase. The physiological ability of bass to access upper estuarine regions was consistent with some elemental data, while the high mobility and restricted range of whiting resulted in less distinct otolith chemistries.

  9. Age validation of canary rockfish (Sebastes pinniger) using two independent otolith techniques: lead-radium and bomb radiocarbon dating.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, A H; Kerr, L A; Cailliet, G M

    2007-11-04

    Canary rockfish (Sebastes pinniger) have long been an important part of recreational and commercial rockfish fishing from southeast Alaska to southern California, but localized stock abundances have declined considerably. Based on age estimates from otoliths and other structures, lifespan estimates vary from about 20 years to over 80 years. For the purpose of monitoring stocks, age composition is routinely estimated by counting growth zones in otoliths; however, age estimation procedures and lifespan estimates remain largely unvalidated. Typical age validation techniques have limited application for canary rockfish because they are deep dwelling and may be long lived. In this study, themore » unaged otolith of the pair from fish aged at the Department of Fisheries and Oceans Canada was used in one of two age validation techniques: (1) lead-radium dating and (2) bomb radiocarbon ({sup 14}C) dating. Age estimate accuracy and the validity of age estimation procedures were validated based on the results from each technique. Lead-radium dating proved successful in determining a minimum estimate of lifespan was 53 years and provided support for age estimation procedures up to about 50-60 years. These findings were further supported by {Delta}{sup 14}C data, which indicated a minimum estimate of lifespan was 44 {+-} 3 years. Both techniques validate, to differing degrees, age estimation procedures and provide support for inferring that canary rockfish can live more than 80 years.« less

  10. Application of otolith shape analysis for stock discrimination and species identification of five goby species (Perciformes: Gobiidae) in the northern Chinese coastal waters

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Cao, Liang; Liu, Jinhu; Zhao, Bo; Shan, Xiujuan; Dou, Shuozeng

    2014-09-01

    We tested the use of otolith shape analysis to discriminate between species and stocks of five goby species ( Ctenotrypauchen chinensis, Odontamblyopus lacepedii, Amblychaeturichthys hexanema, Chaeturichthys stigmatias, and Acanthogobius hasta) found in northern Chinese coastal waters. The five species were well differentiated with high overall classification success using shape indices (83.7%), elliptic Fourier coefficients (98.6%), or the combination of both methods (94.9%). However, shape analysis alone was only moderately successful at discriminating among the four stocks (Liaodong Bay, LD; Bohai Bay, BH; Huanghe (Yellow) River estuary HRE, and Jiaozhou Bay, JZ stocks) of A. hasta (50%-54%) and C. stigmatias (65.7%-75.8%). For these two species, shape analysis was moderately successful at discriminating the HRE or JZ stocks from other stocks, but failed to effectively identify the LD and BH stocks. A large number of otoliths were misclassified between the HRE and JZ stocks, which are geographically well separated. The classification success for stock discrimination was higher using elliptic Fourier coefficients alone (70.2%) or in combination with shape indices (75.8%) than using only shape indices (65.7%) in C. stigmatias whereas there was little difference among the three methods for A. hasta. Our results supported the common belief that otolith shape analysis is generally more effective for interspecific identification than intraspecific discrimination. Moreover, compared with shape indices analysis, Fourier analysis improves classification success during inter- and intra-species discrimination by otolith shape analysis, although this did not necessarily always occur in all fish species.

  11. Potential Effects of Hydroelectric Dam Development in the Mekong River Basin on the Migration of Siamese Mud Carp (Henicorhynchus siamensis and H. lobatus) Elucidated by Otolith Microchemistry

    PubMed Central

    Fukushima, Michio; Jutagate, Tuantong; Grudpan, Chaiwut; Phomikong, Pisit; Nohara, Seiichi

    2014-01-01

    The migration of Siamese mud carp (Henicorhynchus siamensis and H. lobatus), two of the most economically important fish species in the Mekong River, was studied using an otolith microchemistry technique. Fish and river water samples were collected in seven regions throughout the whole basin in Thailand, Laos and Cambodia over a 4 year study period. There was coherence between the elements in the ambient water and on the surface of the otoliths, with strontium (Sr) and barium (Ba) showing the strongest correlation. The partition coefficients were 0.409–0.496 for Sr and 0.055 for Ba. Otolith Sr-Ba profiles indicated extensive synchronized migrations with similar natal origins among individuals within the same region. H. siamensis movement has been severely suppressed in a tributary system where a series of irrigation dams has blocked their migration. H. lobatus collected both below and above the Khone Falls in the mainstream Mekong exhibited statistically different otolith surface elemental signatures but similar core elemental signatures. This result suggests a population originating from a single natal origin but bypassing the waterfalls through a passable side channel where a major hydroelectric dam is planned. The potential effects of damming in the Mekong River are discussed. PMID:25099147

  12. Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm

    NASA Astrophysics Data System (ADS)

    Valencia, Alvaro; Zarate, Alvaro; Galvez, Marcelo; Badilla, Lautaro

    2006-02-01

    Flow dynamics plays an important role in the pathogenesis and treatment of cerebral aneurysms. The temporal and spatial variations of wall shear stress in the aneurysm are hypothesized to be correlated with its growth and rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This work describes the flow dynamics in a patient-specific model of carotid artery with a saccular aneurysm under Newtonian and non-Newtonian fluid assumptions. The model was obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for incompressible and unsteady laminar flow were solved with a commercial software using non-structured fine grid with 283 115 tetrahedral elements. The intra-aneurysmal flow shows complex vortex structure that change during one pulsatile cycle. The effect of the non-Newtonian properties of blood on the wall shear stress was important only in the arterial regions with high velocity gradients, on the aneurysmal wall the predictions with the Newtonian and non-Newtonian blood models were similar.

  13. Of travertine and time: otolith chemistry and microstructure detect provenance and demography of endangered humpback chub in Grand Canyon, USA

    USGS Publications Warehouse

    Limburg, Karin E.; Hayden, Todd A.; Pine, William E.; Yard, Michael D.; Kozdon, Reinhard; Valley, John W.

    2013-01-01

    We developed a geochemical atlas of the Colorado River in Grand Canyon and in its tributary, the Little Colorado River, and used it to identify provenance and habitat use by Federally Endangered humpback chub, Gila cypha. Carbon stable isotope ratios (δ13C) discriminate best between the two rivers, but fine scale analysis in otoliths requires rare, expensive instrumentation. We therefore correlated other tracers (SrSr, Ba, and Se in ratio to Ca) to δ13C that are easier to quantify in otoliths with other microchemical techniques. Although the Little Colorado River’s water chemistry varies with major storm events, at base flow or near base flow (conditions occurring 84% of the time in our study) its chemistry differs sufficiently from the mainstem to discriminate one from the other. Additionally, when fish egress from the natal Little Colorado River to the mainstem, they encounter cold water which causes the otolith daily growth increments to decrease in size markedly. Combining otolith growth increment analysis and microchemistry permitted estimation of size and age at first egress; size at first birthday was also estimated. Emigrants < 1 year old averaged 51.2 ± 4.4 (SE) days and 35.5 ± 3.6 mm at egress; older fish that had recruited to the population averaged 100 ± 7.8 days old and 51.0 ± 2.2 mm at egress, suggesting that larger, older emigrants recruit better. Back-calculated size at age 1 was unimodal and large (78.2 ± 3.3 mm) in Little Colorado caught fish but was bimodally distributed in Colorado mainstem caught fish (49.9 ± 3.6 and 79 ± 4.9 mm) suggesting that humpback chub can also rear in the mainstem. The study demonstrates the coupled usage of the two rivers by this fish and highlights the need to consider both rivers when making management decisions for humpback chub recovery.

  14. Of Travertine and Time: Otolith Chemistry and Microstructure Detect Provenance and Demography of Endangered Humpback Chub in Grand Canyon, USA

    PubMed Central

    Limburg, Karin E.; Hayden, Todd A.; Pine, William E.; Yard, Michael D.; Kozdon, Reinhard; Valley, John W.

    2013-01-01

    We developed a geochemical atlas of the Colorado River in Grand Canyon and in its tributary, the Little Colorado River, and used it to identify provenance and habitat use by Federally Endangered humpback chub, Gila cypha.  Carbon stable isotope ratios (δ13C) discriminate best between the two rivers, but fine scale analysis in otoliths requires rare, expensive instrumentation. We therefore correlated other tracers (SrSr, Ba, and Se in ratio to Ca) to δ13C that are easier to quantify in otoliths with other microchemical techniques. Although the Little Colorado River’s water chemistry varies with major storm events, at base flow or near base flow (conditions occurring 84% of the time in our study) its chemistry differs sufficiently from the mainstem to discriminate one from the other. Additionally, when fish egress from the natal Little Colorado River to the mainstem, they encounter cold water which causes the otolith daily growth increments to decrease in size markedly. Combining otolith growth increment analysis and microchemistry permitted estimation of size and age at first egress; size at first birthday was also estimated. Emigrants < 1 year old averaged 51.2 ± 4.4 (SE) days and 35.5 ± 3.6 mm at egress; older fish that had recruited to the population averaged 100 ± 7.8 days old and 51.0 ± 2.2 mm at egress, suggesting that larger, older emigrants recruit better. Back-calculated size at age 1 was unimodal and large (78.2 ± 3.3 mm) in Little Colorado caught fish but was bimodally distributed in Colorado mainstem caught fish (49.9 ± 3.6 and 79 ± 4.9 mm) suggesting that humpback chub can also rear in the mainstem. The study demonstrates the coupled usage of the two rivers by this fish and highlights the need to consider both rivers when making management decisions for humpback chub recovery. PMID:24358346

  15. Growth characteristics and Otolith analysis on Age-0 American Shad

    USGS Publications Warehouse

    Sauter, Sally T.; Wetzel, Lisa A.

    2011-01-01

    Otolith microstructure analysis provides useful information on the growth history of fish (Campana and Jones 1992, Bang and Gronkjaer 2005). Microstructure analysis can be used to construct the size-at-age growth trajectory of fish, determine daily growth rates, and estimate hatch date and other ecologically important life history events (Campana and Jones 1992, Tonkin et al. 2008). This kind of information can be incorporated into bioenergetics modeling, providing necessary data for estimating prey consumption, and guiding the development of empirically-based modeling scenarios for hypothesis testing. For example, age-0 American shad co-occur with emigrating juvenile fall Chinook salmon originating from Hanford Reach and the Snake River in the lower Columbia River reservoirs during the summer and early fall. The diet of age-0 American shad appears to overlap with that of juvenile fall Chinook salmon (Chapter 1, this report), but juvenile fall Chinook salmon are also known to feed on age-0 American shad in the reservoirs (USGS unpublished data). Abundant, energy-dense age-0 American shad may provide juvenile fall Chinook salmon opportunities for rapid growth during the time period when large numbers of age-0 American shad are available. Otolith analysis of hatch dates and the growth curve of age-0 American shad could be used to identify when eggs, larvae, and juveniles of specific size classes are temporally available as food for fall Chinook salmon in the lower Columbia River reservoirs. This kind of temporally and spatially explicit life history information is important to include in bioenergetics modeling scenarios. Quantitative estimates of prey consumption could be used with spatially-explicit estimates of prey abundance to construct a quantitative assessment of the age-0 American shad impact on a reservoir food web.

  16. Parabolic flight reveals independent binocular control of otolith-induced eye torsion

    NASA Technical Reports Server (NTRS)

    Markham, C. H.; Diamond, S. G.; Stoller, D. F.

    2000-01-01

    To examine otolith-governed ocular torsion in hyper- and hypogravity, eight subjects, including two astronauts, underwent parabolic flight while seated upright with head fixed. A mask fitted with two video cameras provided synchronized images of both eyes at a rate of 25/sec during 15 parabolas, the individual parabolas separated by a few minutes of level 1 G flight. Three main findings emerged: 1) After the first parabola, most subjects showed differential torsional offset of the two eyes in the 1 G portions between parabolas, compared to the conjugate baseline position of the eyes prior to the first parabola. 2) Changes in binocular torsion in the 0 G and 1.8 G portions of parabolic flight revealed in most subjects systematic reversal of direction. The reversal was consistent within, but not across subjects. 3) Disconjugacy defined as the moment-to-moment difference in the movements of the two eyes, and evaluated without the contribution of the differential offset, found two subjects with relatively high disconjugacy scores, and the remaining six with low scores. On the basis of prior studies (9, 20), we would predict the first two would be subject to SMS, the remainder not. The two astronauts, who did not have SMS on their space missions, fell into the low scoring group. We propose that the disconjugacies may be due to intrinsic asymmetries in the otolith receptors on the two sides of the head, which appear to be independently linked to the extraocular muscles of the two eyes, a phenomenon masked in normal 1 G states by adaptation. The apparently independent control of the two sides cannot be detected by the simpler and more common monocular studies.

  17. The Mangrove Nursery Paradigm Revisited: Otolith Stable Isotopes Support Nursery-to-Reef Movements by Indo-Pacific Fishes

    PubMed Central

    Kimirei, Ismael A.; Nagelkerken, Ivan; Mgaya, Yunus D.; Huijbers, Chantal M.

    2013-01-01

    Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ13C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65–72%) as opposed to inshore vegetated habitats (28–35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations. PMID:23776658

  18. San Francisco Estuary Striped Bass Migration History Determined by Electron-microprobe Analysis of Otolith Sr/Ca Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrach, D J; Phillis, C C; Weber, P K

    2004-09-17

    Habitat use has been shown to be an important factor in the bioaccumulation of contaminants in striped bass. This study examines migration in striped bass as part of a larger study investigating bioaccumulation and maternal transfer of xenobiotics to progeny in the San Francisco Estuary system. Habitat use, residence time and spawning migration over the life of females (n = 23) was studied. Female striped bass were collected between Knights Landing and Colusa on the Sacramento River during the spawning runs of 1999 and 2001. Otoliths were removed, processed and aged via otolith microstructure. Subsequently, otoliths were analyzed for strontium/calciummore » (Sr/Ca) ratio using an electron-microprobe to measure salinity exposure and to distinguish freshwater, estuary, and marine habitat use. Salinity exposure during the last year before capture was examined more closely for comparison of habitat use by the maternal parent to contaminant burden transferred to progeny. Results were selectively confirmed by ion microprobe analyses for habitat use. The Sr/Ca data demonstrate a wide range of migratory patterns. Age of initial ocean entry differs among individuals before returning to freshwater, presumably to spawn. Some fish reside in freshwater year-round, while others return to more saline habitats and make periodic migrations to freshwater. Frequency of habitat shifts and residence times differs among fish, as well as over the lifetime of individual fish. While at least one fish spent its final year in freshwater, the majority of spawning fish spent their final year in elevated salinity. However, not all fish migrated to freshwater to spawn in the previous year. Results from this investigation concerning migration history in striped bass can be combined with contaminant and histological developmental analyses to better understand the bioaccumulation of contaminants and the subsequent effects they and habitat use have on fish populations in the San Francisco Estuary

  19. The mangrove nursery paradigm revisited: otolith stable isotopes support nursery-to-reef movements by Indo-Pacific fishes.

    PubMed

    Kimirei, Ismael A; Nagelkerken, Ivan; Mgaya, Yunus D; Huijbers, Chantal M

    2013-01-01

    Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ(13)C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65-72%) as opposed to inshore vegetated habitats (28-35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.

  20. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate.

    PubMed

    Rountrey, Adam N; Coulson, Peter G; Meeuwig, Jessica J; Meekan, Mark

    2014-08-01

    Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long-term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed-effects modeling to examine the sensitivity of growth in a long-lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi-decadal biochronology (1952-2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries. © 2014 John Wiley & Sons Ltd.

  1. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis: An Additional Year

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2009-01-01

    The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the Federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent upon the estuary. A pre-restoration baseline that includes characterization of life history types, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and determine restoration success. Otolith analysis was selected to examine Chinook salmon life history, growth, and residence in the Nisqually Estuary. Previously funded work on wild samples collected in 2004 established the growth rate and length of residence associated with various habitats. The purpose of the current study is to build on the previous work by incorporating otolith microstructure analysis from 2005 (second sampling year), to verify findings from 2004, and to evaluate between-year variation in otolith microstructure. Our results from this second year of analysis indicated no inter-annual variation in the appearance of the tidal delta check (TDCK) and delta-flats check (DFCK). However, a new life history type (fry migrant) was observed on samples collected in 2005. Fish caught in the tidal delta regardless of capture date spent an average of 17 days in the tidal delta. There was a corresponding increase in growth rate as the fish migrated from freshwater (FW) to tidal delta to nearshore (NS) habitats. Fish grew 33 percent faster in the tidal delta than in FW habitat and slightly faster (14 percent) in the delta flats (DF) habitat compared to the tidal delta.

  2. Otolith Dysfunction Alters Exploratory Movement in Mice

    PubMed Central

    Blankenship, Philip A.; Cherep, Lucia A.; Donaldson, Tia N.; Brockman, Sarah N.; Trainer, Alexandria D.; Yoder, Ryan M.; Wallace, Douglas G.

    2017-01-01

    The organization of rodent exploratory behavior appears to depend on self-movement cue processing. As of yet, however, no studies have directly examined the vestibular system’s contribution to the organization of exploratory movement. The current study sequentially segmented open field behavior into progressions and stops in order to characterize differences in movement organization between control and otoconia-deficient tilted mice under conditions with and without access to visual cues. Under completely dark conditions, tilted mice exhibited similar distance traveled and stop times overall, but had significantly more circuitous progressions, larger changes in heading between progressions, and less stable clustering of home bases, relative to control mice. In light conditions, control and tilted mice were similar on all measures except for the change in heading between progressions. This pattern of results is consistent with otoconia-deficient tilted mice using visual cues to compensate for impaired self-movement cue processing. This work provides the first empirical evidence that signals from the otolithic organs mediate the organization of exploratory behavior, based on a novel assessment of spatial orientation. PMID:28235587

  3. Recombinant human SDF-1α administration accelerates aneurysm neck reendothelialization in rabbit saccular aneurysm after flow diverter treatment.

    PubMed

    Li, Zifu; Zhao, Rui; Fang, Xinggen; Huang, Qinghai; Liu, Jianmin

    2017-03-01

    Reendothelialization in the aneurysm neck is pivotal to vascular repair for intracranial aneurysm after flow diverter (FD) implantation. Recombinant human stromal cell-derived factor 1α (rhSDF-1α) is a vital chemoattractant to stem cells and potentially facilitates reendothelialization. Here, we sought to investigate the therapeutic effects of intravenous administration of rhSDF-1α and uncover its potential mechanism for promoting aneurysm neck reendothelialization. Recombinant pET32a-186 plasmid was transformed into Escherichia coli to produce the rhSDF-1α protein with biological activity. FD was implanted into the elastase-induced saccular aneurysm in New Zealand white rabbits. rhSDF-1α (50 μg/kg/day) was intravenously administrated for consecutive 7 days after FD implantation. After these procedures, aneurysms were harvested after 2 or 4 weeks. Scanning electron microscopy was used to measure the neointima thickness and count the endothelial-like cells at aneurysm neck. Four weeks later, the mRNA levels of endothelial markers in the neointima at aneurysm neck were examined. Migration assay showed that rhSDF-1α could induce migration of endothelial progenitor cells in a dose-dependent manner. Two weeks after stent implantation, follow-up angiography showed partial aneurysm occlusion in one of each group and total aneurysm occlusion in 17 saccular aneurysm rabbits (9 of the rhSDF-1α group and 8 of the control group). No significant change of neointima thickness at aneurysm neck was observed. Intriguingly, more endothelial-like cells were observed at aneurysm neck in the rhSDF-1α group at 2 weeks (55 vs 13 cells per high-power field) and 4 weeks (104 vs 60 cells per high-power field). The mRNA levels of Tie-2, VE-cadherin, KDR and E-selectin were significantly enhanced compared with those of the control group. These results showed that intravenous administration of rhSDF-1α can accelerate reendothelialization in the aneurysm neck after FD implantation

  4. Strontium isotopes in otoliths of a non-migratory fish (slimy sculpin): Implications for provenance studies

    USGS Publications Warehouse

    Brennan, Sean R.; Fernandez, Diego P.; Zimmerman, Christian E.; Cerling, Thure E.; Brown, Randy J.; Wooller, Matthew J.

    2015-01-01

    Heterogeneity in 87Sr/86Sr ratios of river-dissolved strontium (Sr) across geologically diverse environments provides a useful tool for investigating provenance, connectivity and movement patterns of various organisms and materials. Evaluation of site-specific 87Sr/86Sr temporal variability throughout study regions is a prerequisite for provenance research, but the dynamics driving temporal variability are generally system-dependent and not accurately predictable. We used the time-keeping properties of otoliths from non-migratory slimy sculpin (Cottus cognatus) to evaluate multi-scale 87Sr/86Sr temporal variability of river waters throughout the Nushagak River, a large (34,700 km2) remote watershed in Alaska, USA. Slimy sculpin otoliths incorporated site-specific temporal variation at sub-annual resolution and were able to record on the order of 0.0001 changes in the 87Sr/86Sr ratio. 87Sr/86Sr profiles of slimy sculpin collected in tributaries and main-stem channels of the upper watershed indicated that these regions were temporally stable, whereas the Lower Nushagak River exhibited some spatio-teporal variability. This study illustrates how the behavioral ecology of a non-migratory organism can be used to evaluate sub-annual 87Sr/86Sr temporal variability and has broad implications for provenance studies employing this tracer.

  5. Connectivity between migrating and landlocked populations of a diadromous fish species investigated using otolith microchemistry.

    PubMed

    Tulp, Ingrid; Keller, Marieke; Navez, Jacques; Winter, Hendrik V; de Graaf, Martin; Baeyens, Willy

    2013-01-01

    Smelt Osmerus eperlanus has two different life history strategies in The Netherlands. The migrating population inhabits the Wadden Sea and spawns in freshwater areas. After the closure of the Afsluitdijk in 1932, part of the smelt population became landlocked. The fresh water smelt population has been in severe decline since 1990, and has strongly negatively impacted the numbers of piscivorous water birds relying on smelt as their main prey. The lakes that were formed after the dike closure, IJsselmeer and Markermeer have been assigned as Natura 2000 sites, based on their importance for (among others) piscivorous water birds. Because of the declining fresh water smelt population, the question arose whether this population is still supported by the diadromous population. Opportunities for exchange between fresh water and the sea are however limited to discharge sluices. The relationship between the diadromous and landlocked smelt population was analysed by means of otolith microchemistry. Our interpretation of otolith strontium ((88)Sr) patterns from smelt specimens collected in the fresh water area of Lake IJsselmeer and Markermeer, compared to those collected in the nearby marine environment, is that there is currently no evidence for a substantial contribution from the diadromous population to the spawning stock of the landlocked population.

  6. Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes

    NASA Astrophysics Data System (ADS)

    Patterson, William P.; Smith, Gerald R.; Lohmann, Kyger C.

    To investigate the applicability of oxygen isotope themometry using fish aragonite, the δ18O values of paired otolith and water samples were analyzed from six large modem temperate lakes. Otoliths are accretionaiy aragonitic structures which are precipitated within the sacculus of fish ears. Deep-water obligate benthic species from the hypolimnion of the Laurentian Great Lakes of North America and Lake Baikal, Siberia, provided cold-water end member values for aragonite δ18O. Warm-water values were obtained from naturally grown warm-water stenothermic species and from fish grown in aquaria under controlled conditions. These two groups, which represent growth over a temperature range of 3.2-30.3°C. were employed to determine the oxygen isotope temperature fractionation relationship for aragonite-water: 103lnα = 18.56 (±0.319)·(103)T-1 K -33.49 (±0.307). Empirical calibration of a fish aragonite thennometry equation allows its direct application to studies of paleoclimate. For example, high-resolution sampling of shallow-water eurythermic species coupled with a knowledge of the isotopic composition of meteoric waters can be used to determine seasonal temperature variation. This approach was tested using a modem shallow-water eurythermic species from Sandusky Bay, Lake Erie. Temperatures calculated from carbonate composition agree with meteorological records from the Sandusky Bay weather station for the same time period.

  7. Analysis of biogenic carbonates by inductively coupled plasma-mass spectrometry (ICP-MS). Flow injection on-line solid-phase preconcentration for trace element determination in fish otoliths.

    PubMed

    Arslan, Z; Paulson, A J

    2002-04-01

    The aragonite deposits within the ear bones (otoliths) of teleost fish retain a chemical signal reflecting the life history of fish (similar to rings of trees) and the nature of fish habitats. Otoliths dissolved in acid solutions contain high concentrations of calcium and a variety of proteins. Elimination of matrix salts and organic interferences during preconcentration is essential for accurate determination of trace elements in otolith solutions by inductively coupled plasma-quadrupole mass spectrometry. An iminodiacetate-based chelating resin (Toyopearl AF-Chelate 650 M) has been used for on-line preconcentration and matrix separation for the determination of 31 transition and rare elements. Successful preconcentration of the elements was achieved at pH 5 by on-line buffering, except Mn which required pH 8.8. Sample solutions were loaded on to the column for 1 min at 3.2 mL min(-1), and then eluted directly into the mass spectrometer with 4% v/v nitric acid. This procedure enabled up to 25-fold preconcentration with successful removal of the calcium matrix. The effect of heat-assisted oxidation with concentrated nitric acid was investigated to eliminate the organic matrix. It was found that heating to dryness after dissolution and further mineralization with the acid significantly improved the retention of the transition elements. The method was validated by analysis of a certified reference material produced from saggittal otoliths of emperor snapper ( Lutjanus sebae), and then applied to the determination of trace metal concentrations in juvenile bluefin tuna ( Thunnus thynnus) from the Western Pacific Ocean.

  8. Enhancement of Otolith Specific Ocular Responses Using Vestibular Stochastic Resonance

    NASA Technical Reports Server (NTRS)

    Fiedler, Matthew; De Dios, Yiri E.; Esteves, Julie; Galvan, Raquel; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar

    2011-01-01

    Introduction: Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Our goal is to develop a countermeasure based on vestibular stochastic resonance (SR) that could improve central interpretation of vestibular input and mitigate these risks. SR is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. Methods: Eye movement data were collected from 10 subjects during variable radius centrifugation (VRC). Subjects performed 11 trials of VRC that provided equivalent tilt stimuli from otolith and other graviceptor input without the normal concordant canal cues. Bipolar stochastic electrical stimulation, in the range of 0-1500 microamperes, was applied to the vestibular system using a constant current stimulator through electrodes placed over the mastoid process behind the ears. In the VRC paradigm, subjects were accelerated to 216 deg./s. After the subjects no longer sensed rotation, the chair oscillated along a track at 0.1 Hz to provide tilt stimuli of 10 deg. Eye movements were recorded for 6 cycles while subjects fixated on a target in darkness. Ocular counter roll (OCR) movement was calculated from the eye movement data during periods of chair oscillations. Results: Preliminary analysis of the data revealed that 9 of 10 subjects showed an average increase of 28% in the magnitude of OCR responses to the equivalent tilt stimuli while experiencing vestibular SR. The signal amplitude at which performance was maximized was in the range of 100-900 microamperes. Discussion: These results indicate that stochastic electrical stimulation of the vestibular system can improve otolith specific responses. This will have a

  9. Vestibulo-Ocular Responses to Vertical Translation using a Hand-Operated Chair as a Field Measure of Otolith Function

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Campbell, D. J.; Reschke, M. F.; Prather, L.; Clement, G.

    2016-01-01

    The translational Vestibulo-Ocular Reflex (tVOR) is an important otolith-mediated response to stabilize gaze during natural locomotion. One goal of this study was to develop a measure of the tVOR using a simple hand-operated chair that provided passive vertical motion. Binocular eye movements were recorded with a tight-fitting video mask in ten healthy subjects. Vertical motion was provided by a modified spring-powered chair (swopper.com) at approximately 2 Hz (+/- 2 cm displacement) to approximate the head motion during walking. Linear acceleration was measured with wireless inertial sensors (Xsens) mounted on the head and torso. Eye movements were recorded while subjects viewed near (0.5m) and far (approximately 4m) targets, and then imagined these targets in darkness. Subjects also provided perceptual estimates of target distances. Consistent with the kinematic properties shown in previous studies, the tVOR gain was greater with near targets, and greater with vision than in darkness. We conclude that this portable chair system can provide a field measure of otolith-ocular function at frequencies sufficient to elicit a robust tVOR.

  10. Experimental volcanic ash aggregation: Internal structuring of accretionary lapilli and the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Dingwell, Donald B.

    2016-01-01

    Explosive volcanic eruptions can release vast quantities of pyroclastic material into Earth's atmosphere, including volcanic ash, particles with diameters less than two millimeters. Ash particles can cluster together to form aggregates, in some cases reaching up to several centimeters in size. Aggregation alters ash transport and settling behavior compared to un-aggregated particles, influencing ash distribution and deposit stratigraphy. Accretionary lapilli, the most commonly preserved type of aggregates within the geologic record, can exhibit complex internal stratigraphy. The processes involved in the formation and preservation of these aggregates remain poorly constrained quantitatively. In this study, we simulate the variable gas-particle flow conditions which may be encountered within eruption plumes and pyroclastic density currents via laboratory experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. In this apparatus, solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (particle concentration, air flow rate, gas temperature, humidity, liquid composition). Experiments were conducted with soda-lime glass beads and natural volcanic ash particles under a range of experimental conditions. Both glass beads and volcanic ash exhibited the capacity for aggregation, but stable aggregates could only be produced when materials were coated with high but volcanically-relevant concentrations of NaCl. The growth and structure of aggregates was dependent on the initial granulometry, while the rate of aggregate formation increased exponentially with increasing relative humidity (12-45% RH), before overwetting promoted mud droplet formation. Notably, by use of a broad granulometry, we generated spherical, internally structured aggregates similar to some accretionary pellets found in volcanic deposits. Adaptation of a powder-technology model offers an explanation for the origin of natural accretionary

  11. Otolith Dysfunction in persons with both Diabetes and Benign Paroxysmal Positional Vertigo

    PubMed Central

    D'Silva, Linda J.; Staecker, Hinrich; Lin, James; Maddux, Christy; Ferraro, John; Dai, Hongying; Kluding, Patricia M.

    2016-01-01

    Objective Vestibular dysfunction is a well-recognized complication of type 2 diabetes (DM) that may contribute to increased fall risk. The prevalence of benign paroxysmal positional vertigo (BPPV) is higher in people with DM. The impact of DM on the otolith organs of the vestibular system in people with BPPV is unknown. The purpose of this study was to analyze otolith function using vestibular evoked myogenic potential (VEMP) tests in people with DM and concurrent BPPV (BPPV+DM), and to examine the relationships between VEMP variables and diabetes-related variables. Study Design Prospective, cross-sectional study. Setting Tertiary academic medical center Subjects and Methods Participants 40-65 years, were recruited in four groups: controls (n=20), people with DM (n=19), BPPV (n=18), and BPPV+DM (n=14). Saccule and utricle function were examined using cervical VEMP (cVEMP) and ocular VEMP (oVEMP), respectively. Diabetes related variables such as HbA1c, duration of diabetes and presence of sensory impairment due to diabetes were collected. Results The frequency of abnormal cVEMP responses was higher in the DM (p=0.005), BPPV (p=0.003), and BPPV+DM (p<0.001) groups compared to controls. In the participants with diabetes, higher HbA1c levels were correlated with prolonged P1 (p=0.03) and N1 latencies (p=0.03). The frequency of abnormal oVEMP responses was not different between groups (p=0.2). Conclusion Although, BPPV and DM may independently affect utricle and saccule function, they do not appear to have a distinct cumulative effect. PMID:27930443

  12. Transgenerational isotopic marking of carp Cyprinus carpio, L. using a 86Sr /84Sr double spike

    NASA Astrophysics Data System (ADS)

    Zitek, Andreas; Cervicek, Magdalena; Irrgeher, Johanna; Horsky, Monika; Kletzl, Manfred; Weismann, Thomas; Prohaska, Thomas

    2013-04-01

    Transgenerational isotopic marking has been recognized recently as an effective tool for mass marking and tracking of individual fish to their original source. Compared to other conventional marking techniques, transgenerational marking offers several advantages. Most importantly, it is possible to mark all offspring of one individual female without the necessity of handling eggs or larval fish. Furthermore it is possible to vary the concentrations of individual isotopes to obtain specific marks for individual female fish. An enriched isotopic spike solution is usually applied to gravid female spawners by injection into the body cavity for transgenerational marking. The isotope is then incorporated into the central otolith region of the offspring which is known to be built up by maternally derived material. Within this study transgenerational marking of a typical cyprinid fish species, Cyprinus carpio, L., was tested using a 86Sr /84Sr double spike. Buffered solutions with different isotopic composition and concentrations were administered to 4 female individuals by intraperitoneal injection 5 days before spawning, while one female was injected a blank solution. After spawning, otoliths (Lapilli) from juvenile fish were sampled at the age of about 5 months at fish sizes between 3 and 4 cm and analyzed for their isotopic composition by LA-ICPMS applying cross sectional line scans. Central otolith regions of the progeny showed a shift in the natural isotope ratios for the administered isotopes. Deconvolution of the blank corrected measurement data of the Sr isotopes was done to trace back the original spike ratio. The different spike ratios could be well distinguished reflecting the original composition of the spike solution. This study proved that it is possible to create batch-specific unique transgenerational marks in otolith cores by varying the concentrations of two naturally occurring Sr isotopes. This method has high potential to reduce the marking effort for

  13. The impact of individual and combined abiotic factors on daily otolith growth in a coral reef fish

    NASA Astrophysics Data System (ADS)

    Wenger, Amelia S.; Whinney, James; Taylor, Brett; Kroon, Frederieke

    2016-06-01

    Coral reefs are increasingly subjected to both local and global stressors, however, there is limited information on how reef organisms respond to their combined effects under natural conditions. This field study examined the growth response of the damselfish Neopomacentrus bankieri to the individual and combined effects of multiple abiotic factors. Turbidity, temperature, tidal movement, and wave action were recorded every 10 minutes for four months, after which the daily otolith growth of N. bankieri was aligned with corresponding abiotic conditions. Temperature was the only significant driver of daily otolith increment width, with increasing temperatures resulting in decreasing width. Although tidal movement was not a significant driver of increment width by itself, the combined effect of tidal movement and temperature had a greater negative effect on growth than temperature alone. Our results indicate that temperature can drive changes in growth even at very fine scales, and demonstrate that the cumulative impact of abiotic factors can be substantially greater than individual effects. As abiotic factors continue to change in intensity and duration, the combined impacts of them will become increasingly important drivers of physiological and ecological change.

  14. The impact of individual and combined abiotic factors on daily otolith growth in a coral reef fish.

    PubMed

    Wenger, Amelia S; Whinney, James; Taylor, Brett; Kroon, Frederieke

    2016-06-28

    Coral reefs are increasingly subjected to both local and global stressors, however, there is limited information on how reef organisms respond to their combined effects under natural conditions. This field study examined the growth response of the damselfish Neopomacentrus bankieri to the individual and combined effects of multiple abiotic factors. Turbidity, temperature, tidal movement, and wave action were recorded every 10 minutes for four months, after which the daily otolith growth of N. bankieri was aligned with corresponding abiotic conditions. Temperature was the only significant driver of daily otolith increment width, with increasing temperatures resulting in decreasing width. Although tidal movement was not a significant driver of increment width by itself, the combined effect of tidal movement and temperature had a greater negative effect on growth than temperature alone. Our results indicate that temperature can drive changes in growth even at very fine scales, and demonstrate that the cumulative impact of abiotic factors can be substantially greater than individual effects. As abiotic factors continue to change in intensity and duration, the combined impacts of them will become increasingly important drivers of physiological and ecological change.

  15. The impact of individual and combined abiotic factors on daily otolith growth in a coral reef fish

    PubMed Central

    Wenger, Amelia S.; Whinney, James; Taylor, Brett; Kroon, Frederieke

    2016-01-01

    Coral reefs are increasingly subjected to both local and global stressors, however, there is limited information on how reef organisms respond to their combined effects under natural conditions. This field study examined the growth response of the damselfish Neopomacentrus bankieri to the individual and combined effects of multiple abiotic factors. Turbidity, temperature, tidal movement, and wave action were recorded every 10 minutes for four months, after which the daily otolith growth of N. bankieri was aligned with corresponding abiotic conditions. Temperature was the only significant driver of daily otolith increment width, with increasing temperatures resulting in decreasing width. Although tidal movement was not a significant driver of increment width by itself, the combined effect of tidal movement and temperature had a greater negative effect on growth than temperature alone. Our results indicate that temperature can drive changes in growth even at very fine scales, and demonstrate that the cumulative impact of abiotic factors can be substantially greater than individual effects. As abiotic factors continue to change in intensity and duration, the combined impacts of them will become increasingly important drivers of physiological and ecological change. PMID:27350589

  16. Otoliths reveal a diverse age structure for humper lake trout in Lake Superior

    USGS Publications Warehouse

    Burnham-Curtis, Mary K.; Bronte, Charles R.

    1996-01-01

    Humpers are one of at least three morphological variants of wild lake trout Salvelinus namaycush that maintain self-sustaining populations in Lake Superior. In an early study, bumpers from Isle Royale were shown to have a sharply truncated age distribution that was attributed to high mortality after age 11, but we suspected that these fish were underaged. In August of 1989 and 1992 we collected spawning humper lake trout from the same area and estimated their ages using both scales and sagittal otoliths. Humpers in our sample ranged from 5 to 13 years, based on scale annuli, but counts of sagitta annuli revealed ages of 8 to 28 years. Individual discrepancies between ages from scales and sagittae varied from –2 to 20 years, but differences between scale and otolith ages did not increase with individual age. We applied the von Bertalanffy growth model to the humper length-at-age data to indirectly assess the accuracy of aging estimates. The model significantly overestimated mean asymptotic length when scale ages were used, but the mean asymptotic length estimate was more similar to observed lengths when sagitta ages were used. Our results corroborate evidence that bumpers in Lake Superior grow more slowly and mature at a smaller size than lean lake trout; however, the age composition of bumpers is more diverse than previously thought. This particular population experiences little or no exploitation; the presence of older fish provides one standard by which the success of lake trout rehabilitation programs can be evaluated and emphasizes the need for accurate aging techniques.

  17. Analysis and quantification of endovascular coil distribution inside saccular aneurysms using histological images.

    PubMed

    Morales, Hernán G; Larrabide, Ignacio; Geers, Arjan J; Dai, Daying; Kallmes, David F; Frangi, Alejandro F

    2013-11-01

    Endovascular coiling is often performed by first placing coils along the aneurysm wall to create a frame and then by filling up the aneurysm core. However, little attention has been paid to quantifying this filling strategy and to see how it changes for different packing densities. The purpose of this work is to analyze and quantify endovascular coil distribution inside aneurysms based on serial histological images of experimental aneurysms. Seventeen histological images from 10 elastase-induced saccular aneurysms in rabbits treated with coils were studied. In-slice coil density, defined as the area taken up by coil winds, was calculated on each histological image. Images were analyzed by partitioning the aneurysm along its longitudinal and radial axes. Coil distribution was quantified by measuring and comparing the in-slice coil density of each partition. Mean total in-slice coil density was 22.0 ± 6.2% (range 10.1-30.2%). The density was non-significantly different (p = 0.465) along the longitudinal axis. A significant difference (p < 0.001) between peripheral and core densities was found. Additionally, the peripheral-core density ratio was observed to be inversely proportional to the total in-slice coil density (R(2)=0.57, p <0.001). This ratio was near unity for high in-slice coil density (around 30%). These findings demonstrate and confirm that coils tend to be located near the aneurysm periphery when few are inserted. However, when more coils are added, the radial distribution becomes more homogeneous. Coils are homogeneously distributed along the longitudinal axis.

  18. Difference in quick phases induced by horizontal and vertical vestibular stimulations: role of the otolithic input.

    PubMed

    Pettorossi, V E; Errico, P; Ferraresi, A

    1997-01-01

    Quick phases (QPs) induced by horizontal and vertical sinusoidal vestibular stimulations were studied in rabbits, cats, and humans. In all the animals, large and frequent horizontal QPs were observed following yaw stimulation in prone position. By contrast, QPs were almost absent during roll stimulation in rabbits, and they were small and oblique during pitch stimulation in cats and humans. As a result of these differences, the range of gaze displacement induced by vestibular stimulations was greater in the horizontal plane than in the vertical one. We also found that the trajectory of the QPs in rabbits was kept horizontal even when the yaw rotation was off vertical axis of +/- 45 degrees in the sagittal plane. Moreover, in the rabbit, the rare horizontal QPs induced by roll stimulation did not change their orientation at various pitch angles of roll stimulation axis. The QPs were also analyzed following roll stimulation of the rabbit in supine position. In this condition, in which the otolithic receptors were activated in the opposite way compared to prone position, large vertical QPs were elicited. We concluded that these results provide evidence that the otolithic signal plays a role in controlling occurrence and trajectory orientation of the QPs.

  19. Vestibular short-latency evoked potential abolished by low-frequency noise exposure in rats.

    PubMed

    Stewart, Courtney E; Kanicki, Ariane C; Altschuler, Richard A; King, W M

    2018-02-01

    The vestibular system plays a critical role in detection of head movements and is essential for normal postural control. Because of their anatomical proximity to the cochlea, the otolith organs are selectively exposed to sound pressure and are at risk for noise overstimulation. Clinical reports suggest a link between noise exposure and balance problems, but the structural and physiological basis for this linkage is not well understood. The goal of this study was to determine the effects of low-frequency noise (LFN) on the otolith organs by correlating changes in vestibular short-latency evoked potentials (VsEPs) with changes in saccular afferent endings following noise exposure. LFN exposure transiently abolished the VsEP and reduced the number of stained calyces within the sacculus. Although some recovery of the VsEP waveform could be observed within 3 days after noise, at 3 wk recovery was only partial in most animals, consistent with a reduced number of afferents with calyceal endings. These data show that a single intense noise exposure is capable of causing a vestibular deficit that appears to mirror the synaptic deficit associated with hidden hearing loss after noise-induced cochlear injury. NEW & NOTEWORTHY This is the first study to explore the effects of low-frequency high-intensity noise on vestibular short-latency evoked potential (VsEP) responses, which shows a linkage between attenuated noise-induced VsEPs and pathological changes to otolith organ afferents. This finding suggests a potential limitation of the VsEP for evaluation of vestibular dysfunction, since the VsEP measurement may assess the activity of a specific class rather than all afferents.

  20. Otolith Asymmetry and kinetotic Behaviour of Fish in Parabolic Flights and under simulated Parabolic Flight "Micro"Gravity - a Drop-Tower Experiment

    NASA Astrophysics Data System (ADS)

    Knie, M.; Hilbig, R.; Anken, R.

    We have shown earlier that some fish of a given batch reveal motion sickness a kinetosis at the transition from earth gravity to diminished gravity The percentual ratios of the various types of behaviour normal swimming and kinetotic swimming kinetotic specimens revealed looping responses LR or spinning movements SM however highly differed depending on the quality of diminished gravity Anken and Hilbig Microgravity Sci Technol 15 52-57 2004 Whereas kinetoses were exhibited by some 90 of the individuals who had experienced flights at high quality microgravity HQM 10-6g ZARM drop-tower only some 15-25 depending on the batch of all animals had shown a kinetotic behaviour during parabolic aircraft flights PFs low quality microgravity LQM 0 03-0 05g Probably LQM is sufficient for most fish to be perceived - in relation to the individual shape or weight of otoliths and thus the performance of the vestibular system - and used as a cue for postural control In striking contrast to the results gained using PF specimens according to which otolith asymmetry differences in the size and calcium incorporation of the inner ear stones between the left and right side of the body was significantly higher in kinetotic specimens as compared to normally swimming fish a comparable asymmetry between the kinetotically and normally swimming drop-tower samples could statistically not be verified Anken et al Adv Space Res submitted The present study was designed to further elucidate the role of otolith asymmetry concerning an individually different

  1. Age estimations of wild pallid sturgeon (Scaphirhynchus albus, Forbes & Richardson 1905) based on pectoral fin spines, otoliths and bomb radiocarbon: inferences on recruitment in the dam-fragmented Missouri River

    USGS Publications Warehouse

    Braaten, P. J.; Campana, S. E.; Fuller, D. B.; Lott, R. D.; Bruch, R. M.; Jordan, G. R.

    2015-01-01

    An extant stock of wild pallid sturgeon Scaphirhynchus albus persists in the fragmented upper Missouri River basin of Montana and North Dakota. Although successful spawning and hatch of embryos has been verified, long-term catch records suggest that recruitment has not occurred for several decades as the extant stock lacks juvenile size classes and is comprised exclusively of large, presumably old individuals. Ages of 11 deceased (death years 1997–2007) wild S. albus (136–166 cm fork length) were estimated based on pectoral fin spines, sagittal otoliths and bomb radiocarbon (14C) assays of otoliths to test the hypothesis that members of this stock are old and to provide inferences on recruitment years that produced the extant stock. Age estimations based on counts of presumed annuli were about 2 years greater for otoliths (mean = 51 years, range = 43–57 years) than spines (mean = 49 years, range = 37–59 years). Based on 14C assays, confirmed birth years for all individuals occurred prior to 1957, thus establishing known longevity of at least 50 years. Estimated age based on presumed otolith annuli for one S. albus was validated to at least age 49. Although 14C assays confirmed pre-1957 birth years for all S. albus, only 56% of estimated ages from spines and 91% of estimated ages from otoliths depicted pre-1957 birth years. Both ageing structures were subject to under-ageing error (up to 15 years). Lack of or severe curtailment of S. albus recruitment in the upper Missouri River basin since the mid-1950s closely parallels the 1953–1957 timeframe when a mainstem reservoir was constructed and started to fill. This reservoir may function as a system-wide stressor to diminish recruitment success of S. albus in the upper Missouri River basin.

  2. Growth characteristics and otolith analysis on age-0 American shad

    USGS Publications Warehouse

    Sauter, Sally T.; Wetzel, Lisa A.

    2011-01-01

    Otolith microstructure analysis provides useful information on the growth history of fish (Campana and Jones 1992, Bang and Gronkjaer 2005). Microstructure analysis can be used to construct the size-at-age growth trajectory of fish, determine daily growth rates, and estimate hatch date and other ecologically important life history events (Campana and Jones 1992, Tonkin et al. 2008). This kind of information can be incorporated into bioenergetics modeling, providing necessary data for estimating prey consumption, and guiding the development of empirically-based modeling scenarios for hypothesis testing. For example, age-0 American shad co-occur with emigrating juvenile fall Chinook salmon originating from Hanford Reach and the Snake River in the lower Columbia River reservoirs during the summer and early fall. The diet of age-0 American shad appears to overlap with that of juvenile fall Chinook salmon (Chapter 1, this reoprt), but juvenile fall Chinook salmon are also known to feed on age-0 American shad in the reservoirs (USGS unpublished data). Abundant, energy-dense age-0 American shad may provide juvenile fall Chinook salmon opportunities for rapid growth during the time period when large number of age-0 American shad are available. Otolith analysis of hatch dates and the growth curve of age-0 American shad could be used to identify when eggs, larvae, and juveniles of specific size classes are temporally available as food for fall Chinook salmon in the lower Columbia River reservoirs. This kind of temporally and spatially explicit life history information is important to include in bioenergetics modeling scenarios. Quantitive estimates of prey consumption could be used with spatially-explicit estimates of prey abundance to construct a quantitative assessment of the age-0 American shad impact on a reservoir food web.


    Analysis of the age-0 American shad growth trajectory or individual growth records may show evidence of differential growth rates over

  3. The cortical spatiotemporal correlate of otolith stimulation: Vestibular evoked potentials by body translations.

    PubMed

    Ertl, M; Moser, M; Boegle, R; Conrad, J; Zu Eulenburg, P; Dieterich, M

    2017-07-15

    The vestibular organ senses linear and rotational acceleration of the head during active and passive motion. These signals are necessary for bipedal locomotion, navigation, the coordination of eye and head movements in 3D space. The temporal dynamics of vestibular processing in cortical structures have hardly been studied in humans, let alone with natural stimulation. The aim was to investigate the cortical vestibular network related to natural otolith stimulation using a hexapod motion platform. We conducted two experiments, 1. to estimate the sources of the vestibular evoked potentials (VestEPs) by means of distributed source localization (n=49), and 2. to reveal modulations of the VestEPs through the underlying acceleration intensity (n=24). For both experiments subjects were accelerated along the main axis (left/right, up/down, fore/aft) while the EEG was recorded. We were able to identify five VestEPs (P1, N1, P2, N2, P3) with latencies between 38 and 461 ms as well as an evoked beta-band response peaking with a latency of 68 ms in all subjects and for all acceleration directions. Source localization gave the cingulate sulcus visual (CSv) area and the opercular-insular region as the main origin of the evoked potentials. No lateralization effects due to handedness could be observed. In the second experiment, area CSv was shown to be integral in the processing of acceleration intensities as sensed by the otolith organs, hinting at its potential role in ego-motion detection. These robust VestEPs could be used to investigate the mechanisms of inter-regional interaction in the natural context of vestibular processing and multisensory integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Relationships between otolith and fish size from Mediterranean and north-eastern Atlantic species to be used in predator-prey studies.

    PubMed

    Giménez, J; Manjabacas, A; Tuset, V M; Lombarte, A

    2016-10-01

    Regressions between fish length and otolith size are provided for 40 species from the north-eastern Atlantic Ocean and 142 species from the Mediterranean Sea. Regressions were also estimated at genus level. Most of the regressions (c. 84%) explained a high percentage of the deviance (>75%). © 2016 The Fisheries Society of the British Isles.

  5. In Situ Determination of Trace Elements in Fish Otoliths by Laser Ablation Double Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry Using a Solution Standard Addition Calibration Method

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Jones, C. M.

    2002-05-01

    Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.

  6. Combining microsatellite, otolith shape and parasites community analyses as a holistic approach to assess population structure of Dentex dentex

    NASA Astrophysics Data System (ADS)

    Marengo, M.; Baudouin, M.; Viret, A.; Laporte, M.; Berrebi, P.; Vignon, M.; Marchand, B.; Durieux, E. D. H.

    2017-10-01

    The common dentex, Dentex dentex, is an iconic marine coastal fish of the Mediterranean Sea. Despite its economic and ecological importance, data on the population structure of this species are still very limited. The aim of this study was to identify the stock structure of the common dentex at relatively fine spatial scale around Corsica Island, using a combination of markers that have different spatial and temporal scales of integration: microsatellite DNA markers, otolith shape analysis and parasites communities. Microsatellite analysis indicated that there was no significant genetic differentiation in D. dentex between the four sampling sites around Corsica. Otolith shape analysis suggests one potential distinct population unit of D. dentex centered in one site (Cap Corse) varying in their degree of differentiation from those in the other zones. Multivariate analysis on parasite abundance data highlights to a lower extent two sites (Bonifacio and Galeria) with some connectivity between adjacent zones. The combination of these three markers together highlights the resulting three sites while giving complementary insights and an opportunity to compare their utility and potential to understand population interactions. A complex population structure around Corsican coasts is then proposed, providing a new perspective on common dentex fishery stock conservation and management strategies.

  7. Ocular and perceptual responses to linear acceleration in microgravity: alterations in otolith function on the COSMOS and Neurolab flights.

    PubMed

    Moore, Steven T; Clément, Gilles; Dai, Mingjai; Raphan, Theodore; Solomon, David; Cohen, Bernard

    2003-01-01

    In this paper we review space flight experiments performed by our laboratory. Rhesus monkeys were tested before and after 12 days in orbit on COSMOS flights 2044 (1989) and 2229 (1992-1993). There was a long-lasting decrease in post-flight ocular counter-rolling (70%) and vergence (50%) during off-vertical axis rotation. In one animal, the orientation of optokinetic after-nystagmus shifted by 28 degrees from the spatial vertical towards the body vertical early post-flight. Otolith-ocular and perceptual responses were also studied in four astronauts on the 17-day Neurolab shuttle mission (STS-90) in 1998. Ocular counter-rolling was unchanged in response to 1-g and 0.5-g Gy centrifugation during and after flight and to post-flight static roll tilts relative to pre-flight values. Orientation of the optokinetic nystagmus eye velocity axis to gravito-inertial acceleration (GIA) during centrifugation was also unaltered by exposure to microgravity. Perceptual orientation to the GIA was maintained in-flight, and subjects did not report sensation of translation during constant velocity centrifugation. These studies suggest that percepts and ocular responses to tilt are determined by sensing the body vertical relative to the GIA. The findings also raise the possibility that 'artificial gravity' during the Neurolab flight counteracted adaptation of these otolith-ocular responses.

  8. Environmental migratory patterns and stock identification of Mugil cephalus in the Spanish Mediterranean Sea, by means of otolith microchemistry

    NASA Astrophysics Data System (ADS)

    Callicó Fortunato, Roberta; Reguera Galán, Aida; García Alonso, Ignacio; Volpedo, Alejandra; Benedito Durà, Vicent

    2017-03-01

    The Flathead grey mullet, Mugil cephalus is the most globally-distributed Mugilidae species and its migrations and movement patterns have been studied globally but not in-depth in the Mediterranean region. Thus, the present study aimed: (1) to identify migratory patterns throughout the life-history of the Mugil cephalus in different Spanish Mediterranean wetlands, and (2) to study the presence of potential fish stocks of the species in the region, by means of otolith microchemistry. Specimens (n = 43) were obtained in three wetlands: Parque Natural Delta del Ebro (DE), a stratified estuary; Parque Natural de l'Albufera de Valencia (AV), a Mediterranean lake; and Parque Natural Salinas de Santa Pola (SP), a coastal salt marsh. Otolith microchemistry was studied using LA-ICP-MS (chronological variation of Sr:Ca and Ba:Ca ratios). The analysis of lifetime profiles revealed four behavioral patterns: Type I: most frequent use of estuarine environments (estuarine resident); Type II: freshwater behaviour during early life history, moving though estuarine to marine waters at the end of their profile (freshwater migrant); Type III: estuarine water use in early life stages moving then towards sea waters (estuarine migrant); and Type IV: sea/high salinity water habitat use during their entire lifetime (seawater resident). A Canonical Discriminant Analysis, using Sr:Ca and Ba:Ca ratios from core and edge as variables, assigned individuals to the detected patterns with high accuracy (Type I > 95%; Type II and Type III > 83%; and Type IV > 88%). Moreover, two potential fish stocks were identified by the analysis of Sr:Ca otoliths-edge ratios: one in the Valencian Gulf, DE-AV areas presented similar ratios, and the other in the southern location, SP (higher Sr:Ca values). Mugil cephalus presented diverse life patterns on the Valencian Community Mediterranean coast. Different strategies could be identified by the used methodology: some particular to an area (Type IV-SP); others

  9. Effect of analytical conditions in wavelength dispersive electron microprobe analysis on the measurement of strontium-to-calcium (Sr/Ca) ratios in otoliths of anadromous salmonids

    USGS Publications Warehouse

    Zimmerman, Christian E.; Nielsen, Roger L.

    2003-01-01

    The use of strontium-to-calcium (Sr/Ca) ratios in otoliths is becoming a standard method to describe life history type and the chronology of migrations between freshwater and seawater habitats in teleosts (e.g. Kalish, 1990; Radtke et al., 1990; Secor, 1992; Rieman et al., 1994; Radtke, 1995; Limburg, 1995; Tzeng et al. 1997; Volk et al., 2000; Zimmerman, 2000; Zimmerman and Reeves, 2000, 2002). This method provides critical information concerning the relationship and ecology of species exhibiting phenotypic variation in migratory behavior (Kalish, 1990; Secor, 1999). Methods and procedures, however, vary among laboratories because a standard method or protocol for measurement of Sr in otoliths does not exist. In this note, we examine the variations in analytical conditions in an effort to increase precision of Sr/Ca measurements. From these findings we argue that precision can be maximized with higher beam current (although there is specimen damage) than previously recommended by Gunn et al. (1992).

  10. Growth changes in plaice, cod, haddock and saithe in the North Sea: a comparison of (post-)medieval and present-day growth rates based on otolith measurements

    NASA Astrophysics Data System (ADS)

    Bolle, Loes J.; Rijnsdorp, Adriaan D.; van Neer, Wim; Millner, Richard S.; van Leeuwen, Piet I.; Ervynck, Anton; Ayers, Richard; Ongenae, Ellen

    2004-05-01

    Fishing effort has strongly increased in the North Sea since the mid-19th century, causing a substantial reduction in the population size of exploited fish stocks. As fisheries research has developed simultaneously with the industrialisation of the fisheries, our knowledge of population dynamics at low levels of exploitations is limited. Otoliths retrieved from archaeological excavations offer a unique opportunity to study growth rates in the past. This study compares historical and present-day growth rates for four commercially important demersal fish species. A total of 2532 modern otoliths (AD 1984-1999) and 1286 historical otoliths (AD 1200-1925) obtained from archaeological excavations in Belgium and Scotland were analysed. Comparison of the growth patterns between eras revealed a major increase in growth rate of haddock, whereas growth changes were not observed in saithe and only in the smaller size classes of plaice and cod. Comparison of our results with literature data indicates that the observed growth rate changes in plaice and cod occurred within the 20th century. Apparently the onset of industrialised fisheries has not greatly affected the growth of plaice, cod and saithe populations in the North Sea. This result contradicts the expectation of density-dependent limitation of growth during the era of pre-industrialised fishing, but is in agreement with the concentration hypothesis of Beverton (Neth. J. Sea Res. 34 (1995) 1) stating that species which concentrate spatially into nursery grounds during their early life-history may 'saturate' the carrying capacity of the juvenile habitat even though the adult part of the population is not limited by the adult habitat.

  11. Dynamic characteristics of otolith ocular response during counter rotation about dual yaw axes in mice

    PubMed Central

    Shimizu, Naoki; Wood, Scott; Kushiro, Keisuke; Yanai, Shuichi; Perachio, Adrian; Makishima, Tomoko

    2014-01-01

    The central vestibular system plays an important role in higher neural functions such as self-motion perception and spatial orientation. Its ability to store head angular velocity is called velocity storage mechanism (VSM), which has been thoroughly investigated across a wide range of species. However, little is known about the mouse VSM, because the mouse lacks typical ocular responses such as optokinetic after nystagmus or a dominant time constant of vestibulo-ocular reflex for which the VSM is critical. Experiments were conducted to examine the otolith-driven eye movements related to the VSM and verify its characteristics in mice. We used a novel approach to generate a similar rotating vector as a traditional off-vertical axis rotation (OVAR) but with a larger resultant gravito-inertial force (>1 g) by using counter rotation centrifugation. Similar to results previously described in other animals during OVAR, two components of eye movements were induced, i.e. a sinusoidal modulatory eye movement (modulation component) on which a unidirectional nystagmaus (bias component) was superimposed. Each response is considered to derive from different mechanisms; modulations arise predominantly through linear vestibulo-ocular reflex, whereas for the bias, the VSM is responsible. Data indicate that the mouse also has a well-developed vestibular system through otoliths inputs, showing its highly conserved nature across mammalian species. On the other hand, to reach a plateau state of bias, a higher frequency rotation or a larger gravito-inertial force was considered to be necessary than other larger animals. Compared with modulation, the bias had a more variable profile, suggesting an inherent complexity of higher-order neural processes in the brain. Our data provides the basis for further study of the central vestibular system in mice, however, the underlying individual variability should be taken into consideration. PMID:25446357

  12. In search of the dead zone: Use of otoliths for tracking fish exposure to hypoxia

    DOE PAGES

    Limburg, Karin E.; Walther, Benjamin D.; Lu, Zunli; ...

    2015-01-01

    Otolith chemistry is often useful for tracking provenance of fishes, as well as examining migration histories. Whereas elements such as strontium and barium correlate well with salinity and temperature, experiments that examine manganese uptake as a function of these parameters have found no such correlation. Instead, dissolved manganese is available as a redox product, and as such, is indicative of low-oxygen conditions. Here we present evidence for that mechanism in a range of habitats from marine to freshwater, across species, and also present ancillary proxies that support the mechanism as well. For example, iodine is redox-sensitive and varies inversely withmore » Mn; and sulfur stable isotope ratios provide evidence of anoxic sulfate reduction in some circumstances.« less

  13. The psychophysical function for perceived gravitational-inertial force does not depend on the orientation of the otolith organs

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Welch, R.; Deroshia, C.

    1992-01-01

    It has generally been believed that the perceived intensity of a gravitational-inertial force depends on both the magnitude and orientation of the force with respect to the otolith organs, as does the elevator illusion. In this study, we examine the perceived intensity of Gz force and the elevator illusion as a function of the applied force and the orientation of the subject's head. Methods: Each of 7 male subjects was seated upright in a swinging chair mounted in the Ames 20-G Human Centrifuge while he set a visual target to his apparent horizon and judged the perceived intensity of Gz forces by cross-modal matches on a hand dynamometer. Plateau Gz levels were 1.00 1.25, 1.50, 2.00, 2.25, and 2.50; a 30 second ramp to plateau was used in all cases, and the duration of exposure at each plateau was 120 seconds. All measures were obtained both with the subject's head erect and pitched forward 30 degrees. Results: Although the elevator illusion changed with head orientation (F(6,60) = 7.56; p less than 0.001) the perceived intensity of Gz was essentially the same for both orientations of the head (F (6,60) = 0.61; p greater than 50). Conclusions: The results of this experiment suggest that the perceived intensity of gravitational-inertial force does not depend on otolith mechanisms in the same way as does the elevator illusion and that somesthetic, tactile, and other proprioceptive inputs are important for the psychophysical function.

  14. Kinetotic behaviour and otolith asymmetry of fish under "low quality microgravity" - a drop-tower experiment at 0.03-0.05g

    NASA Astrophysics Data System (ADS)

    Anken, Ralf; Knie, Miriam; Hilbig, Reinhard; Anken, Ralf

    We have shown earlier that some fish of a given batch reveal motion sickness (a kinetosis) at the transition from earth gravity to diminished gravity. The percentual ratios of the various types of behaviour (normal swimming and kinetotic swimming; kinetotic specimens revealed looping responses/LR or spinning movements/SM), however, highly differed depending on the quality of diminished gravity. Whereas kinetoses were exhibited by some 90 In striking contrast to the results gained using PF specimens, according to which otolith asymmetry (differences in the size and calcium incorporation of the inner ear stones between the left and right side of the body) was significantly higher in kinetotic specimens as compared to normally swimming fish, a comparable asymmetry between kinetotically and normally swimming drop-tower samples (HQM) could statistically not be verified. The present study was designed to further elucidate the role of otolith asymmetry concerning an individually different susceptibility to kinetoses. In order to test, whether the differing results between the PF and the drop-tower experiment were based exclusively on the differing quality of diminished gravity, or, if further parameters of the PF and the drop-tower environment (e.g., vibrations and changing accelerations during PFs or the brisk compression of the drop-capsule at its release) need to be taken into consideration to explain the earlier results, drop-tower flights were performed at LQM. This simulation of PF "micro"gravity was carried out in housing larval cichlid fish (Oreochromis mossambicus) within a centrifuge at 0.03-0.05g during the drop-tower flights. The percentual ratios of the swimming behaviour at drop-tower LQM ranged between those of PF LQM and (drop-tower) HQM. This indicates that many normally swimming fish during PFs use cues other than the residual gravity (e.g., vibrations detected by the lateral line organ) for orientation. Furthermore, looping responses seem to be

  15. Wall enhancement on high-resolution magnetic resonance imaging may predict an unsteady state of an intracranial saccular aneurysm.

    PubMed

    Hu, Peng; Yang, Qi; Wang, Dan-Dan; Guan, Shao-Chen; Zhang, Hong-Qi

    2016-10-01

    The aneurysm wall has been reported to play a critical role in the formation, development, and even rupture of an aneurysm. We used high-resolution magnetic resonance imaging (HRMRI) to investigate the aneurysm wall in an effort to identify evidence of inflammation invasion and define its relationship with aneurysm behavior. Patients with intracranial aneurysms who were prospectively evaluated using HRMRI between July 2013 and June 2014 were enrolled in this study. The aneurysm's wall enhancement and evidence of inflammation invasion were determined. In addition, the relationship between aneurysm wall enhancement and aneurysm size and symptoms, including ruptured aneurysms, giant unruputred intracranial aneurysms (UIAs) presenting as mass effect, progressively growing aneurysms, and aneurysms associated with neurological symptoms, was statistically analyzed. Twenty-five patients with 30 aneurysms were available for the current study. Fourteen aneurysms showed wall enhancement, including 6 ruptured and 8 unruptured aneurysms. Evidence of inflammation was identified directly through histological studies and indirectly through intraoperative investigations and clinical courses. The statistical analysis indicated no significant correlation between aneurysm wall enhancement and aneurysm size. However, there was a strong correlation between wall enhancement and aneurysm symptoms, with a kappa value of 0.86 (95 % CI 0.68-1). Aneurysm wall enhancement on HRMRI might be a sign of inflammatory change. Symptomatic aneurysms exhibited wall enhancement on HRMRI. Wall enhancement had a high consistent correlation of symptomatic aneurysms. Therefore, wall enhancement on HRMRI might predict an unsteady state of an intracranial saccular aneurysm.

  16. Validation of daily increments and a marine-entry check in the otoliths of sockeye salmon Oncorhynchus nerka post-smolts.

    PubMed

    Freshwater, C; Trudel, M; Beacham, T D; Neville, C-E; Tucker, S; Juanes, F

    2015-07-01

    Juvenile sockeye salmon Oncorhynchus nerka that were reared and smolted in laboratory conditions were found to produce otolith daily increments, as well as a consistently visible marine-entry check formed during their transition to salt water. Field-collected O. nerka post-smolts of an equivalent age also displayed visible checks; however, microchemistry estimates of marine-entry date using Sr:Ca ratios differed from visual estimates by c. 9 days suggesting that microstructural and microchemical processes occur on different time scales. © 2015 The Fisheries Society of the British Isles.

  17. Estimating spawning times of Alligator Gar (Atractosteus spatula) in Lake Texoma, Oklahoma

    USGS Publications Warehouse

    Snow, Richard A.; Long, James M.

    2015-01-01

    In 2013, juvenile Alligator Gar were sampled in the reservoir-river interface of the Red River arm of Lake Texoma. The Red River, which flows 860 km along Oklahoma’s border with Texas, is the primary in-flow source of Lake Texoma, and is impounded by Denison Dam. Minifyke nets were deployed using an adaptive random cluster sampling design, which has been used to effectively sample rare species. Lapilli otoliths (one of the three pair of ear stones found within the inner ear of fish) were removed from juvenile Alligator Gar collected in July of 2013. Daily ages were estimated by counting the number of rings present, and spawn dates were back-calculated from date of capture and subtracting 8 days (3 days from spawn to hatch and 5 days from hatch to swimup when the first ring forms). Alligator Gar daily age estimation ranged from 50 to 63 days old since swim-up. Spawn dates corresponded to rising pool elevations of Lake Texoma and water pulses of tributaries.

  18. Otolith Asymmetry and kinetotic Behaviour of Fish at High-Quality Microgravity: A Drop-Tower Experiment

    NASA Astrophysics Data System (ADS)

    Anken, R.; Baur, U.; Forster, A.; Feucht, I.; Hilbig, R.

    It has been repeatedly shown earlier that some fish of a given batch reveal motion sickness (a kinetosis) at the transition from 1g to microgravity in the course of parabolic aircraft flight (PF) experiments. Since it is unknown, whether this behaviour is induced by microgravity alone or rather by changing accelerations as they occur during PFs, larval cichlid fish (Oreochromis mossambicus) were subjected to high-quality microgravity (ca. 4.7 sec) in the drop-tower at ZARM, Bremen (Germany). The percentual ratios of the various types of behaviour (normal swimming and kinetotic swimming; kinetotic specimens revealed looping responses/LR or spinning movements/SM) highly differed from those observed in the course of PFs. Whereas kinetoses were observed in some 90% of the individuals who had experienced drops at ZARM (SM: 22%; LR: 69%; n=156 animals), during PFs only a rather small proportion of all animals had shown a kinetotic behaviour (SM: 14%; LR: 10%; n=71 animals; PF campaign June 2003, Hilbig et al., J. vest. Res. 12: 185-189, 2003). Thus, the percentual amount of spinning animals is in a roughly comparable range both during PF and drop-tower microgravity, whereas looping responses are extremely frequently exhibited during exposure to the drop-tower environment. Since the release of the drop-capsule (total mass of the capsule used: 491kg) will inevitably lead to a brisk longitudinal compression of the entire setup, many animals will have been provoked to perform a C-start escape response, which -- during microgravity -- was not discontinued and thus resulted in loop-swimming (like the looping observed during STS-89; Anken et al., Adv. Space Res. 25: 2019-2023, 1998). Data on otolith asymmetry (differences in the size of left vs. right otoliths), which has been shown to be the cause of susceptibility to kinetosis during PFs, will be communicated at the meeting. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB

  19. Does the gravity orientation of saccular aneurysms influence hemodynamics? An experimental study with and without flow diverter stent.

    PubMed

    Chodzyński, Kamil J; Eker, Omer F; Vanrossomme, Axel E; de Sousa, Daniel Ribeiro; Coussement, Grégory; Vanhamme, Luc; Dubois, Frank; Bonafé, Alain; Chopard, Bastien; Courbebaisse, Guy; Zouaoui Boudjeltia, Karim

    2016-12-08

    Most intracranial aneurysms morphologic studies focused on characterization of size, location, aspect ratio, relationship to the surrounding vasculature and hemodynamics. However, the spatial orientation with respect to the gravity direction has not been taken into account although it could trigger various hemodynamic conditions. The present work addresses this possibility. It was divided in two parts: 1) the orientations of 18, 3D time-of-flight MRI (3D TOF MRI), scans of saccular aneurysms were analyzed. This investigation suggested that there was no privileged orientation for cerebral aneurysms. The aneurysms were oriented in the brain as follows: 9 - down, 9 - up; 11 - right, 7 - left; 6 - front, 12 - back. 2) Based on these results, subsidiary in vitro experiments were performed, analyzing the behavior of red blood cells (RBCs) within a silicone model of aneurysm before and after flow diverter stent (FDS) deployment in the parent vessel. These experiments used a test bench that reproduces physiological pulsatile flow conditions for two orientations: an aneurysm sack pointing either up (opposite to gravitational force) and down (along the gravitational force). The results showed that the orientation of an aneurysm significantly affects the intra-aneurysmal RBCs behavior after stenting, and therefore that gravity can affect the intra-aneurysm behavior of RBCs. This suggests that the patient׳s aneurysm orientation could impact the outcome of the FDS treatment. The implementation of this effect in patient-specific numerical and preoperative decision support techniques could contribute to better understand the intrasaccular biological and hemodynamic events induced by FDS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Can lagrangian models reproduce the migration time of European eel obtained from otolith analysis?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Díaz, L.; Gómez-Gesteira, M.

    2017-12-01

    European eel can be found at the Bay of Biscay after a long migration across the Atlantic. The duration of migration, which takes place at larval stage, is of primary importance to understand eel ecology and, hence, its survival. This duration is still a controversial matter since it can range from 7 months to > 4 years depending on the method to estimate duration. The minimum migration duration estimated from our lagrangian model is similar to the duration obtained from the microstructure of eel otoliths, which is typically on the order of 7-9 months. The lagrangian model showed to be sensitive to different conditions like spatial and time resolution, release depth, release area and initial distribution. In general, migration showed to be faster when decreasing the depth and increasing the resolution of the model. In average, the fastest migration was obtained when only advective horizontal movement was considered. However, faster migration was even obtained in some cases when locally oriented random migration was taken into account.

  1. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  2. Limb neurovascular control during altered otolithic input in humans

    NASA Technical Reports Server (NTRS)

    Monahan, Kevin D.; Ray, Chester A.

    2002-01-01

    Head-down rotation (HDR), which activates the vestibulosympathetic reflex, increases leg muscle sympathetic nerve activity (MSNA) and produces calf vasoconstriction with no change in either cardiac output or arterial blood pressure. Based on animal studies, it was hypothesized that differential control of arm and leg MSNA explains why HDR does not alter arterial blood pressure. Fifteen healthy subjects were studied. Heart rate, arterial blood pressure, forearm and calf blood flow, and leg MSNA responses were measured during HDR in these subjects. Simultaneous recordings of arm and leg MSNA were obtained from five of the subjects. Forearm and calf blood flow, vascular conductances, and vascular resistances were similar before HDR, as were arm and leg MSNA. HDR elicited similar significant increases in leg (Delta 6 +/- 1 bursts min(-1); 59 +/- 16 % from baseline) and arm MSNA (Delta 5 +/- 1 bursts min(-1); 80 +/- 28 % from baseline). HDR significantly decreased calf (-19 +/- 2 %) and forearm vascular conductance (-12 +/- 2 %) and significantly increased calf (25 +/- 4 %) and forearm vascular resistance (15 +/- 2 %), with 60 % greater vasoconstriction in the calf than in the forearm. Arterial blood pressure and heart rate were not altered by HDR. These results indicate that there is no differential control of MSNA in the arm and leg during altered feedback from the otolith organs in humans, but that greater vasoconstriction occurs in the calf than in the forearm. These findings indicate that vasodilatation occurs in other vascular bed(s) to account for the lack of increase in arterial blood pressure during HDR.

  3. Habitat use and migratory behaviour of pikeperch Sander lucioperca in Lithuanian and Latvian waters as inferred from otolith Sr:Ca ratios

    NASA Astrophysics Data System (ADS)

    Ložys, Linas; Shiao, Jen-Chieh; Iizuka, Yoshiyuki; Minde, Atis; Pūtys, Žilvinas; Jakubavičiūtė, Eglė; Dainys, Justas; Gorfine, Harry; Tzeng, Wann-Nian

    2017-11-01

    Determination of the geographic boundaries that define a stock is a key challenge in fisheries management. Acquiring an understanding of spatial distribution and migration patterns of pikeperch Sander lucioperca populations in the south-eastern Baltic Sea region would help to delineate the stocks and contribute towards sustainable exploitation of the population. In this study, habitat use and migratory behaviour of S. lucioperca were inferred from otolith Sr:Ca ratios obtained via an Electron Probe Micro-Analyzer. S. lucioperca collected from the inland Kaunas City water reservoir, where downstream migration is precluded by a hydro-power plant, consistently showed a freshwater signature in their otoliths throughout their life history. In contrast, those collected from the Baltic Sea and Curonian Lagoon in Lithuania, and the lower reaches of the Daugava River in Latvia had ratios indicative of movement between fresh and brackish water habitats. Although S. lucioperca can inhabit brackish water bodies, they predominantly reside and reproduce in freshwater systems. It is thought that periodic post-spawning migration to the sea during spring is related to better foraging conditions and perhaps as a strategy for shedding ectoparasites. Currently, catch quotas apply only to those S. lucioperca taken from the Curonian Lagoon and not the Baltic Sea. Frequent migration between freshwater habitats and the Baltic Sea suggest that S. lucioperca stocks from a given river/estuary system should be considered as a single management unit despite individual differences in migratory behaviour. The extent to which migration into the Baltic Sea could potentially compromise the effectiveness of catch quotas was the main issue which initiated this study.

  4. Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development

    NASA Technical Reports Server (NTRS)

    Maklad, Adel; Fritzsch, Bernd

    2003-01-01

    The projection of the posterior canal crista and saccular afferents to the cerebellum of embryonic and neonatal mice was investigated using carbocyanine dyes. Anterograde tracing from these two endorgans reveals a partial segregation of these two sets of afferents. The saccule projects predominantly to the uvula, with very minor input to the nodulus. The posterior canal projects mainly to the nodulus and, to a lesser extent, to the uvula. Retrograde tracing from the uvula and nodulus confirms this partial segregation for these two endorgans and extends it to other vestibular endorgans. Uvular injections result in many more labeled fibers in the gravistatic maculae than in the canals' cristae. In contrast, nodular injection reveals many more labeled fibers in the canal cristae than in the gravistatic maculae. This partial segregation may play a role in the information processing in these folia. Our developmental data suggest that the initial segregation at E17 coincides with the formation of the postero-lateral fissure. This embryonic segregation of the primary vestibular mossy fibers to the uvula and nodulus commences long before the maturity of their targets, the granule cells and unipolar brush cells. Thus, the segregation of the primary vestibular projection to the uvula and nodulus does not depend on cues related to the target cells. Rather, the segregation may reflect more global cerebellar patterning mechanisms involving guidance for the vestibular afferent fibers independent of the future target cells.

  5. Saccular Transcriptome Profiles of the Seasonal Breeding Plainfin Midshipman Fish (Porichthys notatus), a Teleost with Divergent Sexual Phenotypes.

    PubMed

    Faber-Hammond, Joshua; Samanta, Manoj P; Whitchurch, Elizabeth A; Manning, Dustin; Sisneros, Joseph A; Coffin, Allison B

    2015-01-01

    Acoustic communication is essential for the reproductive success of the plainfin midshipman fish (Porichthys notatus). During the breeding season, type I males use acoustic cues to advertise nest location to potential mates, creating an audible signal that attracts reproductive females. Type II (sneaker) males also likely use this social acoustic signal to find breeding pairs from which to steal fertilizations. Estrogen-induced changes in the auditory system of breeding females are thought to enhance neural encoding of the advertisement call, and recent anatomical data suggest the saccule (the main auditory end organ) as one possible target for this seasonal modulation. Here we describe saccular transcriptomes from all three sexual phenotypes (females, type I and II males) collected during the breeding season as a first step in understanding the mechanisms underlying sexual phenotype-specific and seasonal differences in auditory function. We used RNA-Seq on the Ion Torrent platform to create a combined transcriptome dataset containing over 79,000 assembled transcripts representing almost 9,000 unique annotated genes. These identified genes include several with known inner ear function and multiple steroid hormone receptors. Transcripts most closely matched to published genomes of nile tilapia and large yellow croaker, inconsistent with the phylogenetic relationship between these species but consistent with the importance of acoustic communication in their life-history strategies. We then compared the RNA-Seq results from the saccules of reproductive females with a separate transcriptome from the non-reproductive female phenotype and found over 700 differentially expressed transcripts, including members of the Wnt and Notch signaling pathways that mediate cell proliferation and hair cell addition in the inner ear. These data constitute a valuable resource for furthering our understanding of the molecular basis for peripheral auditory function as well as a range of

  6. Differences in Otolith and Abdominal Viscera Graviceptor Dynamics: Implications for Motion Sickness and Perceived Body Position

    NASA Technical Reports Server (NTRS)

    vonGierke, Henning E.; Parker, Donald E.

    1993-01-01

    Human graviceptors, located in the trunk by Mittelstaedt probably transduce acceleration by abdominal viscera motion. As demonstrated previously in biodynamic vibration and impact tolerance research the thoraco-abdominal viscera exhibit a resonance at 4 to 6 Hz. Behavioral observations and mechanical models of otolith graviceptor response indicate a phase shift increasing with frequency between 0.01 and O.5 Hz. Consequently the potential exists for intermodality sensory conflict between vestibular and visceral graviceptor signals at least at the mechanical receptor level. The frequency range of this potential conflict corresponds with the primary frequency range for motion sickness incidence in transportation, in subjects rotated about Earth-horizontal axes (barbecue spit stimulation) and in periodic parabolic flight microgravity research and also for erroneous perception of vertical oscillations in helicopters. We discuss the implications of this hypothesis for previous self motion perception research and suggestions for various future studies.

  7. What can otolith shape analysis tell us about population structure of the European sardine, Sardina pilchardus, from Atlantic and Mediterranean waters?

    NASA Astrophysics Data System (ADS)

    Jemaa, Sharif; Bacha, Mahmoud; Khalaf, Gaby; Dessailly, David; Rabhi, Khalef; Amara, Rachid

    2015-02-01

    The European sardine, Sardina pilchardus, exhibits a complex population structure, which has produced conflicting results in previous genetic studies. Despite its importance in the fisheries industry, stock delineation for management and conservation purposes is still a matter of debate throughout the distribution range of the species. This study examines whether otolith shapes are more efficient than genetic markers to detect population structure in pelagic species with large population sizes. Sardines were analyzed from 15 sampling localities in the Northeast Atlantic and Mediterranean Sea covering almost the whole distribution range of the species. A combination of otolith shape indices and elliptic Fourier descriptors was investigated by multivariate statistical procedures. Within the studied area, three distinct groups were identified with an overall correct classification of 77%. Group A: northern Mediterranean Sea and Gulf of Gabès; group B: Atlantic Morocco-south Alboran-Algero-provençal coasts; and group C: European Atlantic coast. The Almeria-Oran front and the Gibraltar strait are not an efficient barrier for sardine population separation as there seems to be exchanges between populations of the south-western Mediterranean Sea and those of the Moroccan Atlantic Ocean coast or Gulf of Cadiz. The results are discussed in relation to environmental conditions, oceanographic features, and physical barriers to dispersal in the study area, and compared with those obtained by previous genetic, morphometric, and meristic data. For pelagic species with high gene flow, present results highlighted the need to take into account the identification of phenotypic stocks to ensure sustainable fishery benefits and efficient conservation as they may have unique demographic properties and responses to exploitation.

  8. Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the Coeur d'Alene River, Idaho: the potential application of hard-part chemistry to describe movements in freshwater

    Treesearch

    Brian K. Wells; Bruce E. Rieman; James L. Clayton; Donna L. Horan; Cynthia M. Jones

    2003-01-01

    We quantified Mg:Ca, Mn:Ca, Sr:Ca, and Ba:Ca molar ratios from an area representing the summer 2000 growth season on otoliths and scales from 1-year-old westslope cutthroat trout Oncorhyncus clarki lewisi collected from three streams in the Coeur d'Alene River, Idaho, system. We also quantified Mg:Ca, Sr:Ca, and Ba:Ca molar ratios in the water...

  9. Stratigraphy and Melt Compositions of the 3.6 and 6.7 ka Plinian Eruptions of Hudson Volcano, Chile.

    NASA Astrophysics Data System (ADS)

    Carey, S.; Scasso, R.; Kratzmann, D.; Naranjo, J.; Bande, A.

    2005-12-01

    Fallout deposits from two major Holocene eruptions of Hudson Volcano in southern Chile (3.6 ka and 6.7 ka BP, Naranjo and Stern, 1998) provide new evidence for multiple phases, including subplinian to plinian discharges and episodes of phreatomagmatic activity. Four phases have been identified for the 3.6 ka eruption. The melt was trachydacitic and did not exhibit any significant variation throughout the fall sequence. Phase one (P1) produced a commonly reverse graded, lapilli fall deposit. Phase two (P2) also produced a reverse graded, coarse lapilli fall layer. Phase three (P3) deposited a massive, poorly-sorted, silty-ash layer with pumice and minor accretionary lapilli. The final phase of the eruption (P4) laid down a commonly normal graded, coarse lapilli fall deposit. Phases P1, P2 and P4 represent fallout from high altitude plumes with minor intensity fluctuations, whereas P3 resulted from magma/water interactions and a lower eruption column. Isopach maps show a shift in the main dispersal axis for the 3.6 ka phreatomagmatic ashfall (P3), relative to the lapilli deposits. Phases 1, 2 and 4 trend generally to the east, whereas the axis for the P3 fallout trends northeast. This is likely caused by dispersal of material at different altitudes during the eruption and not a general change in the predominant wind direction. Three major phases (P1 to P3) were identified for the 6.7 ka eruption. The initial phase (P1) produced a commonly reverse graded, coarse lapilli fall deposit. The second phase (P2) produced a thick, distinctive accretionary lapilli-rich, silty-ash layer with accretionary lapilli diameters up to 2.3 cm at 35 kms from the volcano. The final phase (P3) laid down an often normal graded, coarse lapilli fall unit. The melt phase was also trachydacitic in composition and relatively uniform during the eruption, but less evolved than the magma erupted during the 3.6 ka event. The accretionary lapilli layer (P2) has been correlated with a widespread

  10. Neurovestibular adaptation in the utricular otolith in fish to hypergravity exposure and re-adaptation to 1G

    NASA Astrophysics Data System (ADS)

    Boyle, R.; Popova, Ye.; Varelas, J.; Mofrad, A.

    The inner ear utricular organ senses the sum of inertial force due to head translation and head tilt relative to the gravitational vertical. A change in gravitational force has a profound effect on how an organism maintains equilibrium, and the neural response might involve the peripheral otolith receptors, the brain or both. If the influence of G leads to adaptation and subsequent re-adaptation processes in otolith function upon return to 1G, then this raises fundamental questions: does the transfer from 1G to 3G impart the opposite effects on changes of synaptic structure and gravitational sensitivity seen following G exposure? Do the effects accompanying transfer from the 3G to the 1G conditions resemble in part (as an analog) the transfer from 1G to the G? The use of well-controlled hyper-G experiments allows us to address these questions. Adult fish were placed in groups and exposed to 3G for 1, 2, 3, 4, 5, 8, 16, 24, and 32 days. Re-adaptation to 1G was studied in 3G exposure (4-and 16-day) following 1-8 day of recovery. Typically ∼60 afferents are well characterized in each fish. Directional sensitivity of each afferent defined as the vector with the magnitude measured in unit gain (imp/s/g) is determined. It allows us to consider the diagram of directional sensitivity of the whole macula. For quantitative estimates of the change of afferent sensitivity in hyper-G experiments two functions have been introduced: probability function (maximum sensitivity of each afferent is plotted as a percentage of population sensitivity whose values is less than the individual sensitivity) and the frequency function (or probability density function-PDF) of the population of afferents on the gain. These functions enable us to extract additional information about the details of evolution of gain-afferent distribution. Results to date show a biphasic pattern in reaction to 3G exposures: an initial sensitivity up-regulation (3-and 4-day) followed by a significant decrease

  11. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. III. Responses To translation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.

    1998-01-01

    The three-dimensional (3-D) properties of the translational vestibulo-ocular reflexes (translational VORs) during lateral and fore-aft oscillations in complete darkness were studied in rhesus monkeys at frequencies between 0.16 and 25 Hz. In addition, constant velocity off-vertical axis rotations extended the frequency range to 0.02 Hz. During lateral motion, horizontal responses were in phase with linear velocity in the frequency range of 2-10 Hz. At both lower and higher frequencies, phase lags were introduced. Torsional response phase changed more than 180 degrees in the tested frequency range such that torsional eye movements, which could be regarded as compensatory to "an apparent roll tilt" at the lowest frequencies, became anticompensatory at all frequencies above approximately 1 Hz. These results suggest two functionally different frequency bandwidths for the translational VORs. In the low-frequency spectrum (<<0.5 Hz), horizontal responses compensatory to translation are small and high-pass-filtered whereas torsional response sensitivity is relatively frequency independent. At higher frequencies however, both horizontal and torsional response sensitivity and phase exhibit a similar frequency dependence, suggesting a common role during head translation. During up-down motion, vertical responses were in phase with translational velocity at 3-5 Hz but phase leads progressively increased for lower frequencies (>90 degrees at frequencies <0.2 Hz). No consistent dependence on static head orientation was observed for the vertical response components during up-down motion and the horizontal and torsional response components during lateral translation. The frequency response characteristics of the translational VORs were fitted by "periphery/brain stem" functions that related the linear acceleration input, transduced by primary otolith afferents, to the velocity signals providing the input to the velocity-to-position neural integrator and the oculomotor plant. The

  12. Development of gravity-sensing organs in altered gravity

    NASA Technical Reports Server (NTRS)

    Wiederhold, M. L.; Gao, W. Y.; Harrison, J. L.; Hejl, R.

    1997-01-01

    Experiments are described in which the development of the gravity-sensing organs was studied in newt larvae reared in microgravity on the IML-2 mission and in Aplysia embryos and larvae reared on a centrifuge at 1 to 5 g. In Aplysia embryos, the statolith (single dense mass on which gravity and linear acceleration act) was reduced in size in a graded fashion at increasing g. In early post-metamorphic Aplysia or even in isolated statocysts from such animals, the number of statoconia produced is reduced at high g. Newt larvae launched before any of the otoconia were formed and reared for 15 days in microgravity had nearly adult labyrinths at the end of the IML-2 mission. The otoliths of the saccule and utricle were the same size in flight and ground-reared larvae. However, the system of aragonitic otoconia produced in the endolymphatic sac in amphibians was much larger and developed earlier in the flight-reared larvae. At later developmental stages, the aragonitic otoconia enter and fill the saccule. One flight-reared larva was maintained for nine months post-flight and the size of the saccular otolith, as well as the volume of otoconia within the endolymphatic sac, were considerably larger than in age-matched, ground-reared newts. This suggests that rearing in microgravity initiates a process that continues for several months after introduction to 1-g, which greatly increases the volume of otoconia. The flight-reared animal had abnormal posture, pointing its head upward, whereas normal ground-reared newts always keep their head horizontal. This suggests that rearing for even a short period in microgravity can have lasting functional consequences in an animal subsequently reared in 1-g conditions on Earth.

  13. Development of Gravity-Sensing Organs in Altered Gravity

    NASA Technical Reports Server (NTRS)

    Wiederhold, M. L.; Gao, W. Y.; Harrison, J. L.; Hejl, R.

    1996-01-01

    Experiments are described in which the development of the gravity-sensing organs was studied in newt larvae reared in micro-g on the IML-2 mission and in Aplysia embryos and larvae reared on a centrifuge at 1 to 5 g. In Aplysia embryos, the statolith (single dense mass on which gravity and linear acceleration act) was reduced in size in a graded fashion at increasing g. In early post-metamorphic Aplysia or even in isolated statocysts from such animals, the number of statoconia produced is reduced at high gravity Newt larvae launched before any of the otoconia were formed and reared for 15 days in micro-gravity had nearly adult labyrinths at the end of the IML-2 mission. The otoliths of the saccule and utricle were the same size in flight and ground-reared larvae. However, the system of aragonitic otoconia produced in the endolymphatic sac in amphibians was much larger and developed earlier in the flight-reared larvae. At later developmental stages, the aragonitic otoconia enter and fill the saccule. One flight-reared larva was maintained for nine months post-flight and the size of the saccular otolith, as well as the volume of otoconia within the endolymphatic sac, were considerably larger than in age-matched, ground-reared newts. This suggests that rearing in micro-gravity initiates a process that continues for several months after introduction to 1-g, which greatly increases the volume of otoconia. The flight-reared animal had abnormal posture, pointing its head upward, whereas normal ground-reared newts always keep their head horizontal. This suggests that rearing for even a short period in micro-gravity can have lasting functional consequences in an animal subsequently reared in 1-g conditions on Earth.

  14. Otolith shape analysis and mitochondrial DNA markers distinguish three sand smelt species in the Atherina boyeri species complex in western Mediterranean

    NASA Astrophysics Data System (ADS)

    Boudinar, A. S.; Chaoui, L.; Quignard, J. P.; Aurelle, D.; Kara, M. H.

    2016-12-01

    Atherina boyeri is a common euryhaline teleost fish in the Mediterranean and adjacent areas, which inhabits coastal and estuarine waters, including coastal lagoons and more rarely inland waters. Several recent studies have pointed the possible existence of three distinct groups or species, one lagoon/freshwater group and two 'punctuated and unpunctuated on the flanks' marine groups, within an A. boyeri species complex. This study is a combined approach using otolith shape and molecular markers to better define the structure of the species in the western Mediterranean. Genetic differentiation and species delimitation among nine Atherina boyeri populations from several marine and lagoon/brakish habitat sites in Algeria, Tunisia and France were investigated using three mitochondrial (control region, Cyt b and 16S) and one nuclear markers (2nd intron of S7). For further phylogenetic and phylogeographic study, we added sequences from Genbank covering more areas (Ionian Sea, Adriatic Sea, Tyrrhenian Sea, Black Sea, Atlantic). Five groups were found. Two of them perfectly corresponded to two species already recognized Atherina presbyter and Atherina hepsetus, both living in marine waters; and three additional, including Atherina boyeri (brackish and freshwater environments) and two independent groups of marine punctated and unpunctated individuals. Those findings are corroborated by the study of the otolith contour shape of 362 individuals of seven populations from different habitats using Fourier analysis. Individuals could be discriminated into five groups based on the first two functions (Wilk's lambda = 0.07, p < 0.001). Samples from Ziama inlet, marine punctuated individuals and unpunctuated marine specimens from Annaba's Gulf formed three well separated groups. Specimens from Mellah and Mauguio lagoons formed another group. The last one includes individuals from Bizerte and Thau lagoons. The divergences between them strongly support the potential species within the

  15. Otolith reading and multi-model inference for improved estimation of age and growth in the gilthead seabream Sparus aurata (L.)

    NASA Astrophysics Data System (ADS)

    Mercier, Lény; Panfili, Jacques; Paillon, Christelle; N'diaye, Awa; Mouillot, David; Darnaude, Audrey M.

    2011-05-01

    Accurate knowledge of fish age and growth is crucial for species conservation and management of exploited marine stocks. In exploited species, age estimation based on otolith reading is routinely used for building growth curves that are used to implement fishery management models. However, the universal fit of the von Bertalanffy growth function (VBGF) on data from commercial landings can lead to uncertainty in growth parameter inference, preventing accurate comparison of growth-based history traits between fish populations. In the present paper, we used a comprehensive annual sample of wild gilthead seabream ( Sparus aurata L.) in the Gulf of Lions (France, NW Mediterranean) to test a methodology improving growth modelling for exploited fish populations. After validating the timing for otolith annual increment formation for all life stages, a comprehensive set of growth models (including VBGF) were fitted to the obtained age-length data, used as a whole or sub-divided between group 0 individuals and those coming from commercial landings (ages 1-6). Comparisons in growth model accuracy based on Akaike Information Criterion allowed assessment of the best model for each dataset and, when no model correctly fitted the data, a multi-model inference (MMI) based on model averaging was carried out. The results provided evidence that growth parameters inferred with VBGF must be used with high caution. Hence, VBGF turned to be among the less accurate for growth prediction irrespective of the dataset and its fit to the whole population, the juvenile or the adult datasets provided different growth parameters. The best models for growth prediction were the Tanaka model, for group 0 juveniles, and the MMI, for the older fish, confirming that growth differs substantially between juveniles and adults. All asymptotic models failed to correctly describe the growth of adult S. aurata, probably because of the poor representation of old individuals in the dataset. Multi

  16. Morphology of the utricular otolith organ in the toadfish, Opsanus tau.

    PubMed

    Boyle, Richard; Ehsanian, Reza; Mofrad, Alireza; Popova, Yekaterina; Varelas, Joseph

    2018-06-15

    The utricle provides the vestibular reflex pathways with the sensory codes of inertial acceleration of self-motion and head orientation with respect to gravity to control balance and equilibrium. Here we present an anatomical description of this structure in the adult oyster toadfish and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning, and transmission electron microscopy techniques were applied to visualize the sensory epithelium at varying levels of detail, its neural innervation and its synaptic organization. Scanning electron microscopy was used to visualize otolith mass and morphological polarization patterns of hair cells. Afferent nerve fibers were visualized following labeling with biocytin, and light microscope images were used to make three-dimensional (3-D) reconstructions of individual labeled afferents to identify dendritic morphology with respect to epithelial location. Transmission electron micrographs were compiled to create a serial 3-D reconstruction of a labeled afferent over a segment of its dendritic field and to examine the cell-afferent synaptic contacts. Major observations are: a well-defined striola, medial and lateral extra-striolar regions with a zonal organization of hair bundles; prominent lacinia projecting laterally; dependence of hair cell density on macular location; narrow afferent dendritic fields that follow the hair bundle polarization; synaptic specializations issued by afferents are typically directed towards a limited number of 7-13 hair cells, but larger dendritic fields in the medial extra-striola can be associated with > 20 hair cells also; and hair cell synaptic bodies can be confined to only an individual afferent or can synapse upon several afferents. © 2018 Wiley Periodicals, Inc.

  17. MULTIELEMENT SOLID PHASE PRECONCENTRATION USING A CHELATING RESIN OF STYRENE DIVINYLBENZENE COPOLYMER AND APPLICATION TO ANALYSIS OF SEAWATER AND FISH OTOLITHS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (ICP�MS)

    PubMed Central

    Zereen, Fahmida; Yilmaz, Vedat; Arslan, Zikri

    2013-01-01

    A new chelating resin has been synthesized by immobilizing 4–(2–thiazolylazo) resorcinol (TAR) onto styrene divinlybenzene copolymer and examined for on-line solid phase extraction/preconcentration of Cd, Co, Cu, Ni, Pb and Zn in seawater and fish otoliths for determination by inductively plasma mass spectrometry (ICP-MS). A volume of 5.0 mL sample solution was loaded onto the mini column of TAR immobilized resin at 2.0 mL min−1 via a sequential injection system. The optimum pH for multielement preconcentration was around pH 5.5. Recoveries were better than 96% in artificial seawater. Elution was achieved with 1.0 mL of 0.75 mol L−1 HNO3. The resin possesses large sorption capacity ranging from 82.0 µmol g−1 for Pb to 319 µmol g−1 for Cu. The detection limits (3s) varied between 0.0016 µg L−1 (Cd) and to 0.015 µg L−1 (Zn) for preconcentration of 5.0 mL blank solutions (pH 5.5). Relative standard deviation (RSD)for three replicate runs was between 0.3% (Cd) and 6% (Zn) at 1.0 µg L−1 level. The procedure was validated by analysis of Nearshore Seawater certified reference material (CASS–4), and then successfully applied to the determination of the trace elements in fish otoliths (CRM 22) and in coastal seawater and estuarine water samples. PMID:24976635

  18. UREA/ammonium ion removal system for the orbiting frog otolith experiment. [ion exchange resins for water treatment during space missions

    NASA Technical Reports Server (NTRS)

    Schulz, J. R.; Anselmi, R. T.

    1976-01-01

    The feasibility of using free urease enzyme and ANGC-101 ion exchange resin to remove urea and ammonium ion for space system waste water applications was studied. Specifically examined is the prevention of urea and ammonia toxicity in a 30-day Orbiting Frog Otolith (OFO) flight experiment. It is shown that free urease enzyme used in conjunction with ANGC-101 ion-exchange resin and pH control can control urea and amonium ion concentration in unbuffered recirculating water. In addition, the resin does not adversely effect the bullfrogs by lowering the concentration of cations below critical minimum levels. Further investigations on bioburden control, frog waste excretion on an OFO diet, a trade-off analysis of methods of automating the urea/ammonium ion removal system and fabrication and test of a semiautomated breadboard were recommended as continuing efforts. Photographs of test equipment and test animals are shown.

  19. Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs

    NASA Technical Reports Server (NTRS)

    Steyger, P. S.; Burton, M.; Hawkins, J. R.; Schuff, N. R.; Baird, R. A.

    1997-01-01

    Earlier studies have demonstrated hair cell regeneration in the absence of cell proliferation, and suggested that supporting cells could phenotypically convert into hair cells following hair cell loss. Because calcium-binding proteins are involved in gene up-regulation, cell growth, and cell differentiation, we wished to determine if these proteins were up-regulated in scar formations and regenerating hair cells following gentamicin treatment. Calbindin and parvalbumin immunolabeling was examined in control or gentamicin-treated (GT) bullfrog saccular and utricular explants cultured for 3 days in amphibian culture medium or amphibian culture medium supplemented with aphidicolin, a blocker of nuclear DNA replication in eukaryotic cells. In control cultures, calbindin and parvalbumin immunolabeled the hair bundles and, less intensely, the cell bodies of mature hair cells. In GT or mitotically-blocked GT (MBGT) cultures, calbindin and parvalbumin immunolabeling was also seen in the hair bundles, cuticular plates, and cell bodies of hair cells with immature hair bundles. Thus, these antigens were useful markers for both normal and regenerating hair cells. Supporting cell immunolabeling was not seen in control cultures nor in the majority of supporting cells in GT cultures. In MBGT cultures, calbindin and parvalbumin immunolabeling was up-regulated in the cytosol of single supporting cells participating in scar formations and in supporting cells with hair cell-like characteristics. These data provide further evidence that non-mitotic hair cell regeneration in cultures can be accomplished by the conversion of supporting cells into hair cells.

  20. Otolithic and extraocular muscle proprioceptive influences on the spatial organization of the vestibulo- and cervico-ocular quick phases.

    PubMed

    Pettorossi, V E; Manni, E; Errico, P; Ferraresi, A; Bortolami, R

    1997-03-01

    The cervico-ocular reflex (COR) was studied alone or in combination with the vestibulo-ocular reflex (VOR) in the rabbit. Step stimulations of the body with respect to the fixed head induced small slow compensatory responses followed by large compensatory quick phases (QP). These responses remained aligned with the horizon at different head pitch angles. The QP reorientation in space was due to the gravity influence on the otolithic receptors. The vestibular induced QPs exhibit a similar pattern. Because of this reorientation, the reduction of the amplitude of the vestibular induced QPs, due to the addition of the COR, was maintained even at different static head positions. The electrolytic lesion of the ophthalmic branch of the trigeminal nerve deeply affected the space orientation of the COR. In particular, the cervically induced compensatory QPs of the eye ipsilateral to the lesion showed a remarkable variability of their trajectories and they lost space reorientation. These findings suggest that the coordinate system controlling the QPs is influenced by signals originating from both head position in space and eye position in the orbit.

  1. [The importance of vestibular evoked myogenic potentials for the assessment of the otolith function in the patients presenting with benign paroxysmal positional vertigo].

    PubMed

    Kunel'skaya, N L; Baybakova, E V; Guseva, A L; Chugunova, M A; Manaenkova, E A

    The objective of the present study was to evaluate the otolith function in the patients presenting with idiopathic benign paroxysmal positional vertigo (pBPPV) attributable to the occlusion of the posterior semicircular canal (PSCC) of the inner ear with the use of vestibular evoked myogenic potentials (VEMP). Cervical (cVEMP) and ocular VEMP (oVEMP) were measured in 34 patients with idiopathic pBPPV before and 7 days after the treatment by means of reposition maneuvers. The results of the repeated Dix-Hallpike test performed 7 days after the repositioning maneuver were negative in 27 patients and positive in 7 patients. There was no statistically significant difference in the amplitude of cervical VEMP between the healthy and affected ears either before or after the repositioning treatment. The measurement of oVEMP revealed a reduction of the response amplitude on the affected side. The average values of the plnl on the healthy side were 12.84±1.09 and those on the affected side 4.62±0.69 (p<0,05). The successful repositioning treatment resulted in a significant increase of the oVEMP amplitude on the affected side (p<0,05). In the patients presenting with the persistent symptoms of pBPPV, the repositioning maneuvers did not cause an appreciable increase in the amplitude of oVEMP on the affected side (p<0.05). The results of the present study give evidence that pBPPV of the posterior semicircular canal is associated with the impairment of the function of the receptor structures of the utriculus and the preserved function of the succulus as suggested by the reduction of the oVEMP amplitude and clinically significant asymmetry of ocular VEMP on the affected side with intact cervical VEMP on both sides. The successful treatment of pBPPV of PSCC with the use of the liberatory maneuver results in the increase of the oVEMP amplitude on the affected side increases while the response asymmetry between both sides significantly decreases which indicates the repair of the

  2. Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons

    NASA Technical Reports Server (NTRS)

    Jian, B. J.; Shintani, T.; Emanuel, B. A.; Yates, B. J.

    2002-01-01

    The major goal of this study was to determine the patterns of convergence of non-labyrinthine inputs from the limbs and viscera onto vestibular nucleus neurons receiving signals from vertical semicircular canals or otolith organs. A secondary aim was to ascertain whether the effects of non-labyrinthine inputs on the activity of vestibular nucleus neurons is affected by bilateral peripheral vestibular lesions. The majority (72%) of vestibular nucleus neurons in labyrinth-intact animals whose firing was modulated by vertical rotations responded to electrical stimulation of limb and/or visceral nerves. The activity of even more vestibular nucleus neurons (93%) was affected by limb or visceral nerve stimulation in chronically labyrinthectomized preparations. Some neurons received non-labyrinthine inputs from a variety of peripheral sources, including antagonist muscles acting at the same joint, whereas others received inputs from more limited sources. There was no apparent relationship between the spatial and dynamic properties of a neuron's responses to tilts in vertical planes and the non-labyrinthine inputs that it received. These data suggest that non-labyrinthine inputs elicited during movement will modulate the processing of information by the central vestibular system, and may contribute to the recovery of spontaneous activity of vestibular nucleus neurons following peripheral vestibular lesions. Furthermore, some vestibular nucleus neurons with non-labyrinthine inputs may be activated only during particular behaviors that elicit a specific combination of limb and visceral inputs.

  3. Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons.

    PubMed

    Jian, B J; Shintani, T; Emanuel, B A; Yates, B J

    2002-05-01

    The major goal of this study was to determine the patterns of convergence of non-labyrinthine inputs from the limbs and viscera onto vestibular nucleus neurons receiving signals from vertical semicircular canals or otolith organs. A secondary aim was to ascertain whether the effects of non-labyrinthine inputs on the activity of vestibular nucleus neurons is affected by bilateral peripheral vestibular lesions. The majority (72%) of vestibular nucleus neurons in labyrinth-intact animals whose firing was modulated by vertical rotations responded to electrical stimulation of limb and/or visceral nerves. The activity of even more vestibular nucleus neurons (93%) was affected by limb or visceral nerve stimulation in chronically labyrinthectomized preparations. Some neurons received non-labyrinthine inputs from a variety of peripheral sources, including antagonist muscles acting at the same joint, whereas others received inputs from more limited sources. There was no apparent relationship between the spatial and dynamic properties of a neuron's responses to tilts in vertical planes and the non-labyrinthine inputs that it received. These data suggest that non-labyrinthine inputs elicited during movement will modulate the processing of information by the central vestibular system, and may contribute to the recovery of spontaneous activity of vestibular nucleus neurons following peripheral vestibular lesions. Furthermore, some vestibular nucleus neurons with non-labyrinthine inputs may be activated only during particular behaviors that elicit a specific combination of limb and visceral inputs.

  4. Life history reconstruction of modern and fossil sockeye salmon ( Oncorhynchus nerka) by oxygen isotopic analysis of otoliths, vertebrae, and teeth: Implication for paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Zazzo, A.; Smith, G. R.; Patterson, W. P.; Dufour, E.

    2006-09-01

    We evaluate the use of oxygen isotope values of biogenic apatite for tracking freshwater to marine migration in modern and fossil Pacific sockeye salmon. Oxygen isotope analyses of otoliths, vertebrae, and teeth of three anadromous modern sockeye salmon from Alaska establish a basis for the interpretation of fossil vertebrae and tooth apatite from Pleistocene sockeye salmon of the Skokomish River Valley, Washington. High resolution δ18O profiles in salmon otoliths provide, at a monthly resolution, a detailed record of individual history including continental rearing, migration to sea, seasonal variation in sea surface temperatures during marine life, and spawning migration before capture. Pacific salmon teeth are constantly renewed with the last set of teeth forming under the influence of freshwater. Therefore, they do not allow inference concerning sea-run versus landlocked life history in fossil salmon. Salmon vertebrae are also ambiguous indicators of life history regarding fresh versus marine water because centra are minimally ossified in the freshwater stages of life and the outermost layer of vertebral bone might be resorbed to provide nutrients during the non-feeding phase of the spawning migration. Therefore, δ18O values of accretionary growth rings in sea-run salmon vertebrae are dominated by the marine signal only if they are not diagenetically altered in freshwater deposits. In Pleistocene sockeye reported here, neither the teeth nor vertebral apatite present clear marine δ18O values due to the combined effects of tooth replacement and diagenetic alteration of bone and dentine. δ18O(PO 4) values of fossil vertebrae are intermediate between δ18O(PO 4) values of enamel and basal tooth dentin. Assuming a similar rate of isotope exchange of vertebrae and dentine with freshwater during diagenesis, these results are interpreted to reflect formation of the teeth under the influence of freshwater, and formation of the vertebrae under the influence of

  5. The dynamic contributions of the otolith organs to human ocular torsion

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Teiwes, W.; Clarke, A. H.; Scherer, H.; Young, L. R.

    1996-01-01

    We measured human ocular torsion (OT) monocularly (using video) and binocularly (using search coils) while sinusoidally accelerating (0.7 g) five human subjects along an earth-horizontal axis at five frequencies (0.35, 0.4, 0.5, 0.75, and 1.0 Hz). The compensatory nature of OT was investigated by changing the relative orientation of the dynamic (linear acceleration) and static (gravitational) cues. Four subject orientations were investigated: (1) Y-upright-acceleration along the interaural (y) axis while upright; (2) Y-supine-acceleration along the y-axis while supine; (3) Z-RED-acceleration along the dorsoventral (z) axis with right ear down; (4) Z-supine-acceleration along the z-axis while supine. Linear acceleration in the Y-upright, Y-supine and Z-RED orientations elicited conjugate OT. The smaller response in the Z-supine orientation appeared disconjugate. The amplitude of the response decreased and the phase lag increased with increasing frequency for each orientation. This frequency dependence does not match the frequency response of the regular or irregular afferent otolith neurons; therefore the response dynamics cannot be explained by simple peripheral mechanisms. The Y-upright responses were larger than the Y-supine responses (P < 0.05). This difference indicates that OT must be more complicated than a simple low-pass filtered response to interaural shear force, since the dynamic shear force along the interaural axis was identical in these two orientations. The Y-supine responses were, in turn, larger than the Z-RED responses (P < 0.01). Interestingly, the vector sum of the Y-supine responses plus Z-RED responses was not significantly different (P = 0.99) from the Y-upright responses. This suggests that, in this frequency range, the conjugate OT response during Y-upright stimulation might be composed of two components: (1) a response to shear force along the y-axis (as in Y-supine stimulation), and (2) a response to roll tilt of gravitoinertial force (as

  6. Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths

    USGS Publications Warehouse

    Weber, P.K.; Bacon, C.R.; Hutcheon, I.D.; Ingram, B.L.; Wooden, J.L.

    2005-01-01

    The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ???2??? external precision (2??) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ???25 ??m laterally and 2 ??m deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations. Copyright ?? 2005 Elsevier Ltd.

  7. Origins of invasive piscivores determined from the strontium isotope ratio (87Sr/86Sr) of otoliths

    USGS Publications Warehouse

    Wolff, Brian A.; Johnson, Brett M.; Breton, Andre R.; Martinez, Patrick J.; Winkelman, Dana L.; Gillanders, Bronwyn

    2012-01-01

    We examined strontium isotope ratios (87Sr/86Sr) in fish otoliths to determine the origins of invasive piscivores in the Upper Colorado River Basin (UCRB, western USA). We examined 87Sr/86Sr from fishes in different reservoirs, as well as the temporal stability and interspecies variability of 87Sr/86Sr of fishes within reservoirs, determined if 87Sr/86Sr would be useful for "fingerprinting" reservoirs where invasive piscivores may have been escaping into riverine habitat of endangered fishes in the UCRB, and looked for evidence that such movement was occurring. Our results showed that in most cases 87Sr/86Sr was unique among reservoirs, overlapped among species in a given reservoir, and was temporally stable across years. We identified the likely reservoir of origin of river-caught fish in some cases, and we were also able to determine the year of possible escapement. The approach allowed us to precisely describe the 87Sr/86Sr fingerprint of reservoir fishes, trace likely origins of immigrant river fish, and exclude potential sources, enabling managers to focus control efforts more efficiently. Our results demonstrate the potential utility of 87Sr/86Sr as a site-specific and temporally stable marker for reservoir fish and its promise for tracking fish movements of invasive fishes in river-reservoir systems.

  8. Eastern Ionian Sea paleoceanographic conditions during the Plio - Pleistocene as revealed through the study of fish otoliths

    NASA Astrophysics Data System (ADS)

    Agiadi, K.; Triantaphyllou, M. V.; Girone, A.; Karakitsios, V.; Dermitzakis, M. D.

    2009-04-01

    Fish otoliths from the SE Zakynthos and SW Kephallonia islands (Eastern Ionian Sea) provide new evidence for the reconstruction of the paleoceanographic conditions during the Late Pliocene - Early Pleistocene interval. The forty - six fish taxa identified in the sediments of the study areas are separated in tropical, subtropical, temperate and subpolar ecological groups occupying surface, intermediate and deep water layers, based on their modern geographic and bathymetric distributions. During the Late Pliocene, the presence of Chlorophthalmus agassizi in the Eastern Ionian Sea probably denotes temperate oligotrophic conditions. At about 1.96 Ma B.P the high contribution of the bathypelagic Electrona risso, whose modern contribution is limited by the 10-15° C isotherms and productivity greater than 50gC/m2y (Whitehead et al., 1984), is combined with the increased presence of the deeper water species Maurolicus muelleri and Benthosema glaciale, which are mostly known from the high temperate - subpolar zones of today's oceans (Whitehead et al., 1984; Mytilineou et al., 2005). The nutrient-rich intermediate water layers at this time thus overlie colder deep waters, much like today (Malanotte-Rizzoli et al., 1997). In addition, the high abundance of representatives of the genus Diaphus could imply warmer surface conditions (Whitehead et al., 1984). The situation around 1.93 Ma, throughout the water column, is much more homogenous, signified by the introduction of Hygophum hygomii in the deeper water layers, as well as the decrease in relative abundance of Benthosema glaciale, perhaps due to a certain increase in deep water temperate. However, the most dominant species by far in the assemblage remains Ceratoscopelus maderensis, a purely temperate meso-bahtypelagic species (D'Onghia et al., 2004). At around 1.9Ma, there is a marked increase in the relative abundance of tropical taxa, namely Diaphus taaningi and Bregmaceros sp., which occupy the upper 500 meters of the

  9. Vestibular-evoked myogenic potential in the prediction of recovery from acute low-tone sensorineural hearing loss.

    PubMed

    Wang, Chi-Te; Fang, Kai-Min; Young, Yi-Ho; Cheng, Po-Wen

    2010-04-01

    Click and galvanic stimulations of vestibular-evoked myogenic potential (c-VEMP and g-VEMP) were applied to measure the interaural difference (IAD) of saccular responses in patients with acute low-tone sensorineural hearing loss (ALHL). This study intended to explore the relationship between saccular asymmetry and final hearing recovery. We hypothesize that greater extent of saccular dysfunction may be associated with lesser hearing recovery. Twenty-one patients with unilateral ALHL were prospectively enrolled to receive c-VEMP and g-VEMP tests in a random sequence. The IAD of the saccular responses for each patient was measured using three parameters-the raw and corrected amplitudes of c-VEMP, and corrected c-VEMP to g-VEMP amplitude ratio (C/G ratio). The IAD for each parameter was classified as depressed, normal, or augmented by calculating the difference between the affected and unaffected ears and dividing by its sum for both ears. After 3 consecutive months of oral medication and follow-up, 19 patients displayed a hearing recovery of >50%; only two had a recovery of <50%. The significant correlation between the IAD of corrected C/G ratios and hearing recovery demonstrated that subjects with depressed responses had a worse hearing outcome (percent recovery: 51% [45-80%], median [minimum-maximum]), compared with those with normal responses, who exhibited the best recovery (87% [56-100%]), whereas patients with augmented response showed an intermediate recovery (67% [54-100%]; p = 0.02, Kruskal-Wallis test). On the contrary, the raw and corrected amplitudes of c-VEMP did not reveal a significantly different hearing recovery among the three groups of saccular responses. The extent of saccular dysfunction in ALHL might be better explored by combining the results of c-VEMP and g-VEMP. Outcome analysis indicated that the corrected C/G ratio might be a promising prognostic factor for hearing recovery in ALHL.

  10. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  11. Responses to rotating linear acceleration vectors considered in relation to a model of the otolith organs. [human oculomotor response to transverse acceleration stress

    NASA Technical Reports Server (NTRS)

    Benson, A. J.; Barnes, G. R.

    1973-01-01

    Human subjects were exposed to a linear acceleration vector that rotated in the transverse plane of the skull without angular counterrotation. Lateral eye movements showed a sinusoidal change in slow phase velocity and an asymmetry or bias in the same direction as vector rotation. A model is developed that attributes the oculomotor response to otolithic mechanisms. It is suggested that the bias component is the manifestation of torsion of the statoconial plaque relative to the base of the utricular macula and that the sinusoidal component represents the translational oscillation of the statoconia. The model subsumes a hypothetical neural mechanism which allows x- and y-axis accelerations to be resolved. Derivation of equations of motion for the statoconial plaque in torsion and translation, which take into account forces acting in shear and normal to the macula, yield estimates of bias and sinusoidal components that are in qualitative agreement with the diverse experimental findings.

  12. Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity

    NASA Astrophysics Data System (ADS)

    van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.

    2013-08-01

    The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.

  13. The Increased Sensitivity of Irregular Peripheral Canal and Otolith Vestibular Afferents Optimizes their Encoding of Natural Stimuli

    PubMed Central

    Schneider, Adam D.; Jamali, Mohsen; Carriot, Jerome; Chacron, Maurice J.

    2015-01-01

    Efficient processing of incoming sensory input is essential for an organism's survival. A growing body of evidence suggests that sensory systems have developed coding strategies that are constrained by the statistics of the natural environment. Consequently, it is necessary to first characterize neural responses to natural stimuli to uncover the coding strategies used by a given sensory system. Here we report for the first time the statistics of vestibular rotational and translational stimuli experienced by rhesus monkeys during natural (e.g., walking, grooming) behaviors. We find that these stimuli can reach intensities as high as 1500 deg/s and 8 G. Recordings from afferents during naturalistic rotational and linear motion further revealed strongly nonlinear responses in the form of rectification and saturation, which could not be accurately predicted by traditional linear models of vestibular processing. Accordingly, we used linear–nonlinear cascade models and found that these could accurately predict responses to naturalistic stimuli. Finally, we tested whether the statistics of natural vestibular signals constrain the neural coding strategies used by peripheral afferents. We found that both irregular otolith and semicircular canal afferents, because of their higher sensitivities, were more optimized for processing natural vestibular stimuli as compared with their regular counterparts. Our results therefore provide the first evidence supporting the hypothesis that the neural coding strategies used by the vestibular system are matched to the statistics of natural stimuli. PMID:25855169

  14. Cerebral aneurysms following radiotherapy for medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, P.J.; Sung, J.H.

    1989-04-01

    Three patients, two males and one female aged 21, 14, and 31 years, respectively, developed cerebral saccular aneurysms several years after undergoing radiotherapy for cerebellar medulloblastoma at 2, 5, and 14 years of age, respectively. Following surgery, all three received combined cobalt-60 irradiation and intrathecal colloidal radioactive gold (/sup 198/Au) therapy, and died from rupture of the aneurysm 19, 9, and 17 years after the radiotherapy, respectively. Autopsy examination revealed no recurrence of the medulloblastoma, but widespread radiation-induced vasculopathy was found at the base of the brain and in the spinal cord, and saccular aneurysms arose from the posterior cerebralmore » arteries at the basal cistern or choroidal fissure. The aneurysms differed from the ordinary saccular aneurysms of congenital type in their location and histological features. Their locations corresponded to the areas where intrathecally administered colloidal /sup 198/Au is likely to pool, and they originated directly from a segment of the artery rather than from a branching site as in congenital saccular aneurysms. It is, therefore, concluded that the aneurysms in these three patients were most likely radiation-induced.« less

  15. AN ADENYLYL CYCLASE SIGNALING PATHWAY PREDICTS DIRECT DOPAMINERGIC INPUT TO VESTIBULAR HAIR CELLS

    PubMed Central

    DRESCHER, M. J.; CHO, W. J.; FOLBE, A. J.; SELVAKUMAR, D.; KEWSON, D. T.; ABU-HAMDAN, M. D.; OH, C. K.; RAMAKRISHNAN, N. A.; HATFIELD, J. S.; KHAN, K. M.; ANNE, S.; HARPOOL, E. C.; DRESCHER, D. G.

    2010-01-01

    5/6, will down-modulate levels of cAMP, thus fine-tuning and gradating the hair-cell response to dopamine D1A. As predicted by the trout saccular hair cell model, evidence has been obtained for the first time that hair cells of mammalian otolithic vestibular end organs (rat/mouse saccule/utricle) express dopamine D1A and D2L receptors, and each receptor co-localizes with AC5/6, with a marked presence of all three proteins in subcuticular regions of type I vestibular hair cells. A putative efferent, presynaptic source of dopamine was identified in tyrosine hydroxylase-positive nerve fibers which passed from underlying connective tissue to the sensory epithelia, ending on type I and type II vestibular hair cells and on afferent calyces. PMID:20883745

  16. Age of the Xalnene Ash, Central Mexico and Archeological Implications

    NASA Astrophysics Data System (ADS)

    Renne, P. R.; Feinberg, J. M.; Waters, M. R.; Cabrales, J. A.; Castillo, P. O.; Campa, M. P.; Knight, K. B.

    2005-12-01

    Human footprints ~40 ka old have been reported from the Toloquilla quarry near Valsequillo Reservoir, ca. 15 km south of the city of Puebla in central Mexico (http://www.mexicanfootprints.co.uk/default.htm). If correct, this would be important evidence for early peopling of the Americas. The indentations interpreted as footprints and other ichnofossils occur on the surface of an indurated basaltic lapilli tuff within a several meter thick sequence of thinly bedded (1-10 cm) tuffs of similar character, lacking paleosols, erosional features or interlayered sediments, informally known as the Xalnene ash. A sample was collected at 18°55.402` N latitude and 098°09.375` W longitude from the surface on which the purported footprints occur. Lapilli were separated and analyzed by incremental heating 40Ar/39Ar methods, yielding 9 indistinguishable plateau ages averaging 1.30 ±0.03 Ma (2σ) for single lapilli (N=6) and multiple lapilli (N=3) subsamples. Though some minor discordance (presumably due to 39Ar recoil) is manifest in 5 of the age spectra, all plateaux comprise >60% of the 39Ar released and 4 or more consecutive steps. Paleomagnetic data from azimuthally unoriented bulk samples of 11.25 cm3 reveal a reverse polarity (I = -32.1°) thermoremanent component carried by titanomagnetite and a normal polarity component carried by goethite. Measurements on individual matrix-free lapilli lack the goethite component, which is presumed to be associated with the clay-rich cement. Consistency of the reverse component implies deposition of the lapilli at supra-Curie temperatures, with no postdepositional reworking. Reverse polarity is consistent with deposition during chron C1r.2r (1.77 to 1.07 Ma) as indicated by the 40Ar/39Ar data. If the features observed on the tuff are indeed footprints, their 1.3 Ma antiquity would be truly remarkable, predating by far any other evidence for human presence in the Americas and in fact predating the evolutionary emergence of Homo sapiens

  17. Flow Instability and Wall Shear Stress Ocillation in Intracranial Aneurysms

    NASA Astrophysics Data System (ADS)

    Baek, Hyoungsu; Jayamaran, Mahesh; Richardson, Peter; Karniadakis, George

    2009-11-01

    We investigate the flow dynamics and oscillatory behavior of wall shear stress (WSS) vectors in intracranial aneurysms using high-order spectral/hp simulations. We analyze four patient- specific internal carotid arteries laden with aneurysms of different characteristics : a wide-necked saccular aneurysm, a hemisphere-shaped aneurysm, a narrower-necked saccular aneurysm, and a case with two adjacent saccular aneurysms. Simulations show that the pulsatile flow in aneurysms may be subject to a hydrodynamic instability during the decelerating systolic phase resulting in a high-frequency oscillation in the range of 30-50 Hz. When the aneurysmal flow becomes unstable, both the magnitude and the directions of WSS vectors fluctuate. In particular, the WSS vectors around the flow impingement region exhibit significant spatial and temporal changes in direction as well as in magnitude.

  18. A subaqueous eruption model for shallow-water, small volume eruptions: Evidence from two Precambrian examples

    NASA Astrophysics Data System (ADS)

    Mueller, Wulf U.

    Ancient, shallow-water, pyroclastic deposits are identified in the Paleoproterozoic Ketilidian Mobile belt, southeast Greenland at Kangerluluk and in the Neoproterozoic Gariep belt of Namibia in the Schakalsberg Mountains. The 1-30 m-thick tuff and lapilli tuff deposits are interpreted as eruption-fed density current deposits emanating from tephra jets that collapsed under subaqueous conditions due to water ingress. The presence of 1-10 mm diameter armoured lapilli, with a central vesicular lapillus or shard, suggests the existence of high velocity, gas, water vapour, and particle-rich tephra jets. A transition from a gas-steam supported tephra jet to a cold water-laden density current without an intermediate stage of storage and remobilization is inferred. Interpretation of a 5-15 m-thick lapilli tuff breccia further supports explosive subaqueous mechanisms. Pyroclasts in the lapilli tuff breccia are interpreted as bombs emplaced ballistically. Multiple bomb sags produced by the impact of rounded juvenile crystal-rich pyroclasts required a water-exclusion zone formed either by a continuous magma uprush or multiple jet activity occurring concurrently, rather than as isolated tephra jets. Intercalated density current deposits indicate uprush events of limited duration and their recurrence with rapid collapse after each pulse. A new subaqueous Surtseyan-type eruption model is proposed based on observations from these two Precambrian study areas.

  19. Evidence of bottom-up limitations in nearshore marine systems based on otolith proxies of fish growth

    USGS Publications Warehouse

    von Biela, Vanessa R.; Kruse, Gordon H.; Mueter, Franz J.; Black, Bryan A.; Douglas, David C.; Helser, Thomas E.; Zimmerman, Christian E.

    2015-01-01

    Fish otolith growth increments were used as indices of annual production at nine nearshore sites within the Alaska Coastal Current (downwelling region) and California Current (upwelling region) systems (~36–60°N). Black rockfish (Sebastes melanops) and kelp greenling (Hexagrammos decagrammus) were identified as useful indicators in pelagic and benthic nearshore food webs, respectively. To examine the support for bottom-up limitations, common oceanographic indices of production [sea surface temperature (SST), upwelling, and chlorophyll-a concentration] during summer (April–September) were compared to spatial and temporal differences in fish growth using linear mixed models. The relationship between pelagic black rockfish growth and SST was positive in the cooler Alaska Coastal Current and negative in the warmer California Current. These contrasting growth responses to SST among current systems are consistent with the optimal stability window hypothesis in which pelagic production is maximized at intermediate levels of water column stability. Increased growth rates of black rockfish were associated with higher chlorophyll concentrations in the California Current only, but black rockfish growth was unrelated to the upwelling index in either current system. Benthic kelp greenling growth rates were positively associated with warmer temperatures and relaxation of downwelling (upwelling index near zero) in the Alaska Coastal Current, while none of the oceanographic indices were related to their growth in the California Current. Overall, our results are consistent with bottom-up forcing of nearshore marine ecosystems—light and nutrients constrain primary production in pelagic food webs, and temperature constrains benthic food webs.

  20. Gravity dependence of subjective visual vertical variability.

    PubMed

    Tarnutzer, A A; Bockisch, C; Straumann, D; Olasagasti, I

    2009-09-01

    The brain integrates sensory input from the otolith organs, the semicircular canals, and the somatosensory and visual systems to determine self-orientation relative to gravity. Only the otoliths directly sense the gravito-inertial force vector and therefore provide the major input for perceiving static head-roll relative to gravity, as measured by the subjective visual vertical (SVV). Intraindividual SVV variability increases with head roll, which suggests that the effectiveness of the otolith signal is roll-angle dependent. We asked whether SVV variability reflects the spatial distribution of the otolithic sensors and the otolith-derived acceleration estimate. Subjects were placed in different roll orientations (0-360 degrees, 15 degrees steps) and asked to align an arrow with perceived vertical. Variability was minimal in upright, increased with head-roll peaking around 120-135 degrees, and decreased to intermediate values at 180 degrees. Otolith-dependent variability was modeled by taking into consideration the nonuniform distribution of the otolith afferents and their nonlinear firing rate. The otolith-derived estimate was combined with an internal bias shifting the estimated gravity-vector toward the body-longitudinal. Assuming an efficient otolith estimator at all roll angles, peak variability of the model matched our data; however, modeled variability in upside-down and upright positions was very similar, which is at odds with our findings. By decreasing the effectiveness of the otolith estimator with increasing roll, simulated variability matched our experimental findings better. We suggest that modulations of SVV precision in the roll plane are related to the properties of the otolith sensors and to central computational mechanisms that are not optimally tuned for roll-angles distant from upright.

  1. Afferent innervation patterns of the saccule in pigeons

    NASA Technical Reports Server (NTRS)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  2. Successful Coil Embolization of a Ruptured Basilar Artery Aneurysm in a Child with Leukemia: A Case Report

    PubMed Central

    HAYASHI, Shihori; MAEHARA, Taketoshi; MUKAWA, Maki; AOYAGI, Masaru; YOSHINO, Yoshikazu; NEMOTO, Shigeru; ONO, Toshiaki; OHNO, Kikuo

    2014-01-01

    Ruptured intracranial aneurysms are rare in the pediatric population compared to adults. This has incited considerable discussion on how to treat children with this condition. Here, we report a child with a ruptured saccular basilar artery aneurysm that was successfully treated with coil embolization. A 12-year-old boy with acute lymphoblastic leukemia and accompanying abdominal candidiasis after chemotherapy suddenly complained of a severe headache and suffered consciousness disturbance moments later. Computed tomography scans and cerebral angiography demonstrated acute hydrocephalus and subarachnoid hemorrhage caused by saccular basilar artery aneurysm rupture. External ventricular drainage was performed immediately. Because the patient was in severe condition and did not show remarkable signs of central nervous system infection in cerebrospinal fluid studies, we applied endovascular treatment for the ruptured saccular basilar artery aneurysm, which was successfully occluded with coils. The patient recovered without new neurological deficits after ventriculoperitoneal shunting. Recent reports indicate that both endovascular and microsurgical techniques can be used to effectively treat ruptured cerebral aneurysms in pediatric patients. A minimally invasive endovascular treatment was effective in the present case, but long-term follow-up will be necessary to confirm the efficiency of endovascular treatment for children with ruptured saccular basilar artery aneurysms. PMID:24257487

  3. Successful coil embolization of a ruptured basilar artery aneurysm in a child with leukemia: a case report.

    PubMed

    Hayashi, Shihori; Maehara, Taketoshi; Mukawa, Maki; Aoyagi, Masaru; Yoshino, Yoshikazu; Nemoto, Shigeru; Ono, Toshiaki; Ohno, Kikuo

    2014-01-01

    Ruptured intracranial aneurysms are rare in the pediatric population compared to adults. This has incited considerable discussion on how to treat children with this condition. Here, we report a child with a ruptured saccular basilar artery aneurysm that was successfully treated with coil embolization. A 12-year-old boy with acute lymphoblastic leukemia and accompanying abdominal candidiasis after chemotherapy suddenly complained of a severe headache and suffered consciousness disturbance moments later. Computed tomography scans and cerebral angiography demonstrated acute hydrocephalus and subarachnoid hemorrhage caused by saccular basilar artery aneurysm rupture. External ventricular drainage was performed immediately. Because the patient was in severe condition and did not show remarkable signs of central nervous system infection in cerebrospinal fluid studies, we applied endovascular treatment for the ruptured saccular basilar artery aneurysm, which was successfully occluded with coils. The patient recovered without new neurological deficits after ventriculoperitoneal shunting. Recent reports indicate that both endovascular and microsurgical techniques can be used to effectively treat ruptured cerebral aneurysms in pediatric patients. A minimally invasive endovascular treatment was effective in the present case, but long-term follow-up will be necessary to confirm the efficiency of endovascular treatment for children with ruptured saccular basilar artery aneurysms.

  4. Modulation of apical constriction by Wnt signaling is required for lung epithelial shape transition.

    PubMed

    Fumoto, Katsumi; Takigawa-Imamura, Hisako; Sumiyama, Kenta; Kaneiwa, Tomoyuki; Kikuchi, Akira

    2017-01-01

    In lung development, the apically constricted columnar epithelium forms numerous buds during the pseudoglandular stage. Subsequently, these epithelial cells change shape into the flat or cuboidal pneumocytes that form the air sacs during the canalicular and saccular (canalicular-saccular) stages, yet the impact of cell shape on tissue morphogenesis remains unclear. Here, we show that the expression of Wnt components is decreased in the canalicular-saccular stages, and that genetically constitutive activation of Wnt signaling impairs air sac formation by inducing apical constriction in the epithelium as seen in the pseudoglandular stage. Organ culture models also demonstrate that Wnt signaling induces apical constriction through apical actomyosin cytoskeletal organization. Mathematical modeling reveals that apical constriction induces bud formation and that loss of apical constriction is required for the formation of an air sac-like structure. We identify MAP/microtubule affinity-regulating kinase 1 (Mark1) as a downstream molecule of Wnt signaling and show that it is required for apical cytoskeletal organization and bud formation. These results suggest that Wnt signaling is required for bud formation by inducing apical constriction during the pseudoglandular stage, whereas loss of Wnt signaling is necessary for air sac formation in the canalicular-saccular stages. © 2017. Published by The Company of Biologists Ltd.

  5. Spatio-temporal variability in movement, age, and growth of mountain whitefish (Prosopium williamsoni) in a river network based upon PIT tagging and otolith chemistry

    USGS Publications Warehouse

    Benjamin, Joseph R.; Wetzel, Lisa A.; Martens, Kyle D.; Larsen, Kimberly; Connolly, Patrick J.

    2013-01-01

    Connectivity of river networks and the movements among habitats can be critical for the life history of many fish species, and understanding of the patterns of movement is central to managing populations, communities, and the landscapes they use. We combined passive integrated transponder tagging over 4 years and strontium isotopes in otoliths to demonstrate that 25% of the mountain whitefish (Prosopium williamsoni) sampled moved between the Methow and Columbia rivers, Washington, USA. Seasonal migrations downstream from the Methow River to the Columbia River to overwinter occurred in autumn and upstream movements in the spring. We observed migration was common during the first year of life, with migrants being larger than nonmigrants. However, growth between migrants and nonmigrants was similar. Water temperature was positively related to the proportion of migrants and negatively related to the timing of migration, but neither was related to discharge. The broad spatio-temporal movements we observed suggest mountain whitefish, and likely other nonanadromous fish, require distant habitats and also suggests that management and conservation strategies to keep connectivity of large river networks are imperative.

  6. The Influence of Gravito-Inertial Force on Sensorimotor Integration and Reflexive Responses

    NASA Technical Reports Server (NTRS)

    Curthoys, Ian S.; Guedry, Fred E.; Merfeld, Daniel M.; Watt, Doug G. D.; Tomko, David L.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Sensorimotor responses (e.g.. eye movements, spinal reflexes, etc depend upon the interpretation of the neural signals from the sensory systems. Since neural signals from the otoliths may represent either tilt (gravity) or translation (linear inertial force), sensory signals from the otolith organs are necessarily somewhat ambiguous. Therefore. the neural responses to changing otolith signals depend upon the context of the stimulation (e.g- active vs. passive, relative orientation of gravity, etc.) as well as upon other sensory signals (e.g., vision. canals, etc.). This session will focus upon the -role -played by the sensory signals from the otolith organs in producing efficient sensorimotor and behavioral responses. Curthoys will show the influence of the peripheral anatomy and physiology. Tomko will discuss the influence of tilt and translational otolith signals on eye movements. Merfeld will demonstrate the rate otolith organs play during the interaction of sensory signals from the canals and otoliths. Watt will show the influence of the otoliths on spinal/postural responses. Guedry will discuss the contribution of vestibular information to "path of movement"' perception and to the development of a stable vertical reference. Sensorimotor responses to the ambiguous inertial force stimulation provide an important tool to investigate how the nervous system processes patterns of sensory information and yields functional sensorimotor responses.

  7. Reconstructing the Lethal Part of the 1790 Eruption at Kilauea

    NASA Astrophysics Data System (ADS)

    Swanson, D.; Weaver, S. J.; Houghton, B. F.

    2011-12-01

    The most lethal known eruption from a volcano in the United States took place in November 1790 at Kilauea, killing perhaps 400-800 people (estimates range widely) who were crossing the summit on their way to a distant battle site. The eruption culminated ca. 300 years of sporadic explosive activity after the formation of Kilauea Caldera in about 1500. No contemporary account exists of the 1790 activity, but an eruption plume was observed from Kawaihae, 100 km NW of Kilauea, that probably was 10 km or higher. We are attempting to piece together the lethal event from a study of the 1790 and enclosing deposits and by using published accounts, written several decades later, based on interviews with survivors or others with knowledge of the tragedy. Determining what deposits actually formed in November 1790 is crucial. The best tie to that date is a deposit of phreatomagmatic lithic lapilli and ash that occurs SE of the caldera and must have been advected by high-level (>~10 km) westerly winds rather than low-level NE trade winds. It is the only contender for deposits from the high column observed in 1790. Small lapilli from the high column fell onto, and sank deeply into, a 3-5-cm-thick accretionary lapilli layer that was wet and likely no more than a few hours old. The wet ash occurs south of the caldera, where the lithic lapilli fell into it, and is also found west of the caldera in the saddle between Kilauea and Mauna Loa, where the victims were probably walking along a main foot trail still visible today. A lithic pyroclastic surge swept across the saddle, locally scouring away the wet accretionary lapilli layer but generally leaving a deposit <1 to 15 cm thick on the ash and embedding 1-cm lithic lapilli deeply within it. This indicates that the surge also erupted in November 1790, while the underlying ash was still wet. Though scattered ballistic blocks later fell in the area, the surge left the youngest continuous deposit on the west flank of Kilauea. An account

  8. Early life history of three pelagic-spawning minnows Macrhybopsis spp. in the lower Missouri River

    USGS Publications Warehouse

    Long, James M.; Starks, Trevor A.; Miller, M.L.

    2016-01-01

    Life-history characteristics of age-0 sturgeon chub Macrhybopsis gelida, shoal chub Macrhybopsis hyostoma and sicklefin chub Macrhybopsis meeki were compared using several methods. AllMacrhybopsis species consumed mostly midge pupae, but M. meeki had the most general diet (Levins' index, B = 0·22) compared with M. hyostoma (B = 0·02) and M. gelida (B = 0·09). Morisita's diet overlap index among species pairs ranged from 0·62 to 0·97 and was highest between M. hyostoma and M. gelida. Daily ages estimated from lapilli otoliths for each species ranged from 15 to 43 days for M. gelida, 19 to 44 for M. hyostoma and from 16 to 64 days for M. meeki. Mean growth rates ranged from 0·79 mm day−1 for M. meeki to 1·39 mm day−1 for M. gelida. Mortality estimates indicated high daily survivorship rates for M. meeki (0·985), but could not be estimated for the other two species. Hatch date histograms were congruent with the belief that M. hyostoma and M. gelida spawn periodically from June to September. Macrhybopsis meeki, however, appeared to respond to a specific spawning cue as hatch dates were unimodal with a peak in July. These results fill a gap in current knowledge of these imperilled species that can be used to guide management decisions.

  9. An adenylyl cyclase signaling pathway predicts direct dopaminergic input to vestibular hair cells.

    PubMed

    Drescher, M J; Cho, W J; Folbe, A J; Selvakumar, D; Kewson, D T; Abu-Hamdan, M D; Oh, C K; Ramakrishnan, N A; Hatfield, J S; Khan, K M; Anne, S; Harpool, E C; Drescher, D G

    2010-12-29

    itself couples to Gαi3 and AC5/6, will down-modulate levels of cAMP, thus fine-tuning and gradating the hair-cell response to dopamine D1A. As predicted by the trout saccular hair cell model, evidence has been obtained for the first time that hair cells of mammalian otolithic vestibular end organs (rat/mouse saccule/utricle) express dopamine D1A and D2L receptors, and each receptor co-localizes with AC5/6, with a marked presence of all three proteins in subcuticular regions of type I vestibular hair cells. A putative efferent, presynaptic source of dopamine was identified in tyrosine hydroxylase-positive nerve fibers which passed from underlying connective tissue to the sensory epithelia, ending on type I and type II vestibular hair cells and on afferent calyces. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Intranasal scopolamine affects the semicircular canals centrally and peripherally.

    PubMed

    Weerts, Aurélie P; Putcha, Lakshmi; Hoag, Stephen W; Hallgren, Emma; Van Ombergen, Angelique; Van de Heyning, Paul H; Wuyts, Floris L

    2015-08-01

    Space motion sickness (SMS), a condition caused by an intravestibular conflict, remains an important obstacle that astronauts encounter during the first days in space. Promethazine is currently the standard treatment of SMS, but scopolamine is used by some astronauts to prevent SMS. However, the oral and transdermal routes of administration of scopolamine are known to have substantial drawbacks. Intranasal administration of scopolamine ensures a fast absorption and rapid onset of therapeutic effect, which might prove to be suitable for use during spaceflights. The aim of this study was to evaluate the effects of intranasally administered scopolamine (0.4 mg) on the semicircular canals (SCCs) and the otoliths. This double-blind, placebo-controlled study was performed on 19 healthy male subjects. The function of the horizontal SCC and the vestibulo-ocular reflex, as well as the saccular function and utricular function, were evaluated. Scopolamine turned out to affect mainly the SCCs centrally and peripherally but also the utricles to a lesser extent. Centrally, the most probable site of action is the medial vestibular nucleus, where the highest density of muscarinic receptors has been demonstrated and afferent fibers from the SCCs and utricles synapse. Furthermore, our results suggest the presence of muscarinic receptors in the peripheral vestibular system on which scopolamine has a suppressive effect. Given the depressant actions on the SCCs, it is suggested that the pharmacodynamic effect of scopolamine may be attributed to the obliteration of intravestibular conflict that arises during (S)MS. Copyright © 2015 the American Physiological Society.

  11. Lake Erie Yellow perch age estimation based on three structures: Precision, processing times, and management implications

    USGS Publications Warehouse

    Vandergoot, C.S.; Bur, M.T.; Powell, K.A.

    2008-01-01

    Yellow perch Perca flavescens support economically important recreational and commercial fisheries in Lake Erie and are intensively managed. Age estimation represents an integral component in the management of Lake Erie yellow perch stocks, as age-structured population models are used to set safe harvest levels on an annual basis. We compared the precision associated with yellow perch (N = 251) age estimates from scales, sagittal otoliths, and anal spine sections and evaluated the time required to process and estimate age from each structure. Three readers of varying experience estimated ages. The precision (mean coefficient of variation) of estimates among readers was 1% for sagittal otoliths, 5-6% for anal spines, and 11-13% for scales. Agreement rates among readers were 94-95% for otoliths, 71-76% for anal spines, and 45-50% for scales. Systematic age estimation differences were evident among scale and anal spine readers; less-experienced readers tended to underestimate ages of yellow perch older than age 4 relative to estimates made by an experienced reader. Mean scale age tended to underestimate ages of age-6 and older fish relative to otolith ages estimated by an experienced reader. Total annual mortality estimates based on scale ages were 20% higher than those based on otolith ages; mortality estimates based on anal spine ages were 4% higher than those based on otolith ages. Otoliths required more removal and preparation time than scales and anal spines, but age estimation time was substantially lower for otoliths than for the other two structures. We suggest the use of otoliths or anal spines for age estimation in yellow perch (regardless of length) from Lake Erie and other systems where precise age estimates are necessary, because age estimation errors resulting from the use of scales could generate incorrect management decisions. ?? Copyright by the American Fisheries Society 2008.

  12. 'Snake River (SR)-type' volcanism at the Yellowstone hotspot track: Distinctive products from unusual, high-temperature silicic super-eruptions

    USGS Publications Warehouse

    Branney, M.J.; Bonnichsen, B.; Andrews, G.D.M.; Ellis, B.; Barry, T.L.; McCurry, M.

    2008-01-01

    A new category of large-scale volcanism, here termed Snake River (SR)-type volcanism, is defined with reference to a distinctive volcanic facies association displayed by Miocene rocks in the central Snake River Plain area of southern Idaho and northern Nevada, USA. The facies association contrasts with those typical of silicic volcanism elsewhere and records unusual, voluminous and particularly environmentally devastating styles of eruption that remain poorly understood. It includes: (1) large-volume, lithic-poor rhyolitic ignimbrites with scarce pumice lapilli; (2) extensive, parallel-laminated, medium to coarse-grained ashfall deposits with large cuspate shards, crystals and a paucity of pumice lapilli; many are fused to black vitrophyre; (3) unusually extensive, large-volume rhyolite lavas; (4) unusually intense welding, rheomorphism, and widespread development of lava-like facies in the ignimbrites; (5) extensive, fines-rich ash deposits with abundant ash aggregates (pellets and accretionary lapilli); (6) the ashfall layers and ignimbrites contain abundant clasts of dense obsidian and vitrophyre; (7) a bimodal association between the rhyolitic rocks and numerous, coalescing low-profile basalt lava shields; and (8) widespread evidence of emplacement in lacustrine-alluvial environments, as revealed by intercalated lake sediments, ignimbrite peperites, rhyolitic and basaltic hyaloclastites, basalt pillow-lava deltas, rhyolitic and basaltic phreatomagmatic tuffs, alluvial sands and palaeosols. Many rhyolitic eruptions were high mass-flux, large volume and explosive (VEI 6-8), and involved H2O-poor, low-??18O, metaluminous rhyolite magmas with unusually low viscosities, partly due to high magmatic temperatures (900-1,050??C). SR-type volcanism contrasts with silicic volcanism at many other volcanic fields, where the fall deposits are typically Plinian with pumice lapilli, the ignimbrites are low to medium grade (non-welded to eutaxitic) with abundant pumice lapilli

  13. Otoconia biogenesis, phylogeny, composition and functional attributes

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Lychakov, D.; Campos, A.; Hara, H.; Sondag, E.; Jones, T.; Jones, S.; Taylor, M.; Meza-Ruiz, G.; Martin, D. S.

    1998-01-01

    This work consolidates data about these interesting organic crystals of vertebrate inner ears. It addresses 5 aspects of inner ear otoliths not completely understood to date: 1) embryological data that explains the formation of the crystals, 2) the significance of the organic and the inorganic phase of the otolith and the changing patterns of otoconia formation along the evolutionary tree, 3) otoliths contribution for detecting linear acceleration, 4) the effect that altered gravity and aminoglycosides have on the development and adult shape of the crystals, and the evolutionary significance of a changing shape of the crystals from primitive forms (lamprey) to high vertebrate birds and mammals is discussed, 5) functional attributes of the otolithic organs and morphological modifications of the otoliths by physical and chemical insults are presented with an extensive discussion of the most relevant literature published and available to us.

  14. Reconstructing fish movements between coastal wetland and ...

    EPA Pesticide Factsheets

    The use of resources from multiple habitats has been shown to be important to the production of aquatic consumers. To quantify the support of Great Lakes coastal wetland (WL) and nearshore (NS) habitats to yellow perch, we used otolith microchemistry to trace movements between the habitats. WL and NS water and fish samples were collected from lakes Huron and Michigan for water and otolith trace element analysis. Recently deposited otolith-edge Sr:Ca and Ba:Ca from otoliths were strongly correlated with the chemistry of the water in which fish were caught. In general, Sr:Ca and Ba:Ca in otoliths were significantly greater for individuals collected from WL areas. Because of these observed chemical differences between WL and NS habitats, quadratic discriminant function analysis (QDFA) was used to classify individuals with high accuracy to the habitat from which they were collected. We then combined the predictive abilities of QDFA with the otolith chemistry transect data that represents an individuals’ entire life, to classify habitat use through each fish’s life. Our results suggest larval use of WL habitats as well as three life histories for adult yellow perch. These strategies include (1) fish utilizing WL once annually (2) WL residents (3) WL residence as juveniles followed by movement to nearshore as adults. This application represents a novel use of transect otolith microchemistry to reconstruct fish movements between freshwater environments acro

  15. Incomplete segregation of endorgan-specific vestibular ganglion cells in mice and rats

    NASA Technical Reports Server (NTRS)

    Maklad, A.; Fritzsch, B.

    1999-01-01

    The endorgan-specific distribution of vestibular ganglion cells was studied in neonatal and postnatal rats and mice using indocarbocyanine dye (DiI) and dextran amines for retrograde and anterograde labeling. Retrograde DiI tracing from the anterior vertical canal labeled neurons scattered throughout the whole superior vestibular ganglion, with denser labeling at the dorsal and central regions. Horizontal canal neurons were scattered along the dorsoventral axis with more clustering toward the dorsal and ventral poles of this axis. Utricular ganglion cells occupied predominantly the central region of the superior vestibular ganglion. This utricular population overlapped with both the anterior vertical and horizontal canals' ganglion cells. Posterior vertical canal neurons were clustered in the posterior part of the inferior vestibular ganglion. The saccular neurons were distributed in the two parts of the vestibular ganglion, the superior and inferior ganglia. Within the inferior ganglion, the saccular neurons were clustered in the anterior part. In the superior ganglion, the saccular neurons were widely scattered throughout the whole ganglion with more numerous neurons at the posterior half. Small and large neurons were labeled from all endorgans. Examination of the fiber trajectory within the superior division of the vestibular nerve showed no clear lamination of the fibers innervating the different endorgans. These results demonstrate an overlapping pattern between the different populations within the superior ganglion, while in the inferior ganglion, the posterior canal and saccular neurons show tighter clustering but incomplete segregation. This distribution implies that the ganglion cells are assigned for their target during development in a stochastic rather than topographical fashion.

  16. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (otolith neurons peaked in phase with linear velocity, in contrast to primary afferents that peaked in phase with linear acceleration. At least three different groups of central response dynamics were described according to the properties observed for motion along the maximum sensitivity direction. "High-pass" neurons exhibited increasing gains and phase values as a function of frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements

  17. Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator

    NASA Technical Reports Server (NTRS)

    Green, Andrea M.; Angelaki, Dora E.

    2003-01-01

    The ability to simultaneously move in the world and maintain stable visual perception depends critically on the contribution of vestibulo-ocular reflexes (VORs) to gaze stabilization. It is traditionally believed that semicircular canal signals drive compensatory responses to rotational head disturbances (rotational VOR), whereas otolith signals compensate for translational movements [translational VOR (TVOR)]. However, a sensory ambiguity exists because otolith afferents are activated similarly during head translations and reorientations relative to gravity (i.e., tilts). Extra-otolith cues are, therefore, necessary to ensure that dynamic head tilts do not elicit a TVOR. To investigate how extra-otolith signals contribute, we characterized the temporal and viewing distance-dependent properties of a TVOR elicited in the absence of a lateral acceleration stimulus to the otoliths during combined translational/rotational motion. We show that, in addition to otolith signals, angular head position signals derived by integrating sensory canal information drive the TVOR. A physiological basis for these results is proposed in a model with two distinct integration steps. Upstream of the well known oculomotor velocity-to-position neural integrator, the model incorporates a separate integration element that could represent the "velocity storage integrator," whose functional role in the oculomotor system has so far remained controversial. We propose that a key functional purpose of the velocity storage network is to temporally integrate semicircular canal signals, so that they may be used to extract translation information from ambiguous otolith afferent signals in the natural and functionally relevant bandwidth of head movements.

  18. Vestibular convergence patterns in vestibular nuclei neurons of alert primates

    NASA Technical Reports Server (NTRS)

    Dickman, J. David; Angelaki, Dora E.

    2002-01-01

    Sensory signal convergence is a fundamental and important aspect of brain function. Such convergence may often involve complex multidimensional interactions as those proposed for the processing of otolith and semicircular canal (SCC) information for the detection of translational head movements and the effective discrimination from physically congruent gravity signals. In the present study, we have examined the responses of primate rostral vestibular nuclei (VN) neurons that do not exhibit any eye movement-related activity using 0.5-Hz translational and three-dimensional (3D) rotational motion. Three distinct neural populations were identified. Approximately one-fourth of the cells exclusively encoded rotational movements (canal-only neurons) and were unresponsive to translation. The canal-only central neurons encoded head rotation in SCC coordinates, exhibited little orthogonal canal convergence, and were characterized with significantly higher sensitivities to rotation as compared to primary SCC afferents. Another fourth of the neurons modulated their firing rates during translation (otolith-only cells). During rotations, these neurons only responded when the axis of rotation was earth-horizontal and the head was changing orientation relative to gravity. The remaining one-half of VN neurons were sensitive to both rotations and translations (otolith + canal neurons). Unlike primary otolith afferents, however, central neurons often exhibited significant spatiotemporal (noncosine) tuning properties and a wide variety of response dynamics to translation. To characterize the pattern of SCC inputs to otolith + canal neurons, their rotational maximum sensitivity vectors were computed using exclusively responses during earth-vertical axis rotations (EVA). Maximum sensitivity vectors were distributed throughout the 3D space, suggesting strong convergence from multiple SCCs. These neurons were also tested with earth-horizontal axis rotations (EHA), which would activate

  19. Vestibular afferent responses to linear accelerations in the alert squirrel monkey

    NASA Technical Reports Server (NTRS)

    Somps, Christopher J.; Schor, Robert H.; Tomko, David L.

    1994-01-01

    The spontaneous activity of 40 otolith afferents and 44 canal afferents was recorded in 4 alert, intact squirrel monkeys. Polarization vectors and response properties of otolith afferents were determined during static re-orientations relative to gravity and during Earth-horizontal, sinusoidal, linear oscillations. Canal afferents were tested for sensitivity to linear accelerations. For regular otolith afferents, a significant correlation between upright discharge rate and sensitivity to dynamic acceleration in the horizontal plane was observed. This correlation was not present in irregular units. The sensitivity of otolith afferents to both static tilts and dynamic linear acceleration was much greater in irregularly discharging units than in regularly discharging units. The spontaneous activity and static and dynamic response properties of regularly discharging otolith afferents were similar to those reported in barbiturate-anesthetized squirrel monkeys. Irregular afferents also had similar dynamic response properties when compared to anesthetized monkeys. However, this sample of irregular afferents in alert animals had higher resting discharge rates and greater sensitivity to static tilts. The majority of otolith polarization vectors were oriented near the horizontal in the plane of the utricular maculae; however, directions of maximum sensitivity were different during dynamic and static testing. Canal afferents were not sensitive to static tilts or linear oscillations of the head.

  20. Gene expression underlying enhanced, steroid-dependent auditory sensitivity of hair cell epithelium in a vocal fish.

    PubMed

    Fergus, Daniel J; Feng, Ni Y; Bass, Andrew H

    2015-10-14

    Successful animal communication depends on a receiver's ability to detect a sender's signal. Exemplars of adaptive sender-receiver coupling include acoustic communication, often important in the context of seasonal reproduction. During the reproductive summer season, both male and female midshipman fish (Porichthys notatus) exhibit similar increases in the steroid-dependent frequency sensitivity of the saccule, the main auditory division of the inner ear. This form of auditory plasticity enhances detection of the higher frequency components of the multi-harmonic, long-duration advertisement calls produced repetitively by males during summer nights of peak vocal and spawning activity. The molecular basis of this seasonal auditory plasticity has not been fully resolved. Here, we utilize an unbiased transcriptomic RNA sequencing approach to identify differentially expressed transcripts within the saccule's hair cell epithelium of reproductive summer and non-reproductive winter fish. We assembled 74,027 unique transcripts from our saccular epithelial sequence reads. Of these, 6.4 % and 3.0 % were upregulated in the reproductive and non-reproductive saccular epithelium, respectively. Gene ontology (GO) term enrichment analyses of the differentially expressed transcripts showed that the reproductive saccular epithelium was transcriptionally, translationally, and metabolically more active than the non-reproductive epithelium. Furthermore, the expression of a specific suite of candidate genes, including ion channels and components of steroid-signaling pathways, was upregulated in the reproductive compared to the non-reproductive saccular epithelium. We found reported auditory functions for 14 candidate genes upregulated in the reproductive midshipman saccular epithelium, 8 of which are enriched in mouse hair cells, validating their hair cell-specific functions across vertebrates. We identified a suite of differentially expressed genes belonging to neurotransmission and

  1. Head-body righting reflex from the supine position and preparatory eye movements.

    PubMed

    Troiani, Diana; Ferraresi, Aldo; Manni, Ermanno

    2005-05-01

    Saccular and utricular maculae can provide information on the supine static position, considering that both have pronounced curved structures with hair cells having a variety of polarization vectors that enable them to sense an inverted position and thus direct the righting reflex. The vestibular system is essential for the structuring of motor behaviour, senses linear and angular acceleration and has a strong influence on posture and balance at rest, during locomotion and in head body righting reflexes. Using guinea pigs in the supine position with a symmetrical head and trunk position, the ocular position was analysed to ascertain whether any ocular movement that occurred would adopt a spatial deviation indicative of the subsequent head and body righting. The characteristics of the righting reflex (direction, latency, duration and velocity) were analysed in guinea pigs from position signals obtained from search coils implanted in the eye, head and pelvis. The animals were kept in a supine position for a few seconds or even minutes with the eyes in a stable primary position and the head and body symmetrical and immobile. The righting reflex took place either immediately or after a slow deviation of the eyes. In both cases the righting sequence (eyes, head, body) was stereotyped and consistent. The direction of head and body righting was along the longitudinal axis of the animal and was either clockwise or anticlockwise and the direction of righting was related to the direction of the eye deviation. The ocular deviation and the direction of deviation that initiated and determined the direction of the righting reflex could be explained by possible otolithic activation.

  2. Active Coupled Oscillators in the Inner Ear

    NASA Astrophysics Data System (ADS)

    Strimbu, Clark Elliott

    Auditory and vestibular systems are endowed with an active process that enables them to detect signals as small as a few Angstroms; they also exhibit frequency selectivity; show strong nonlinearities; and can exhibit as spontaneous activity. Much of this active process comes from the sensory hair cells at the periphery of the auditory and vestibular systems. Each hair cell is capped by an eponymous hair bundle, a specialized structure that transduces mechanical forces into electrical signals. Experiments on mechanically decoupled cells from the frog sacculus have shown that individual hair bundles behave in an active manner analogous to an intact organ suggesting a common cellular basis for the active processes seen in many species. In particular, mechanically decoupled hair bundles show rapid active movements in response to transient stimuli and exhibit spontaneous oscillations. However, a single mechanosensitive hair cell is unable to match the performance of an entire organ. In vivo, hair bundles are often coupled to overlying membranes, gelatinous extracellular matrices. We used an in vitro preparation of the frog sacculus in which the otolithic membrane has been left intact. Under natural coupling conditions, there is a strong degree of correlation across the saccular epithelium, suggesting that the collective response of many cells contributes to the extreme sensitivity of this organ. When the membrane is left intact, the hair bundles do not oscillate spontaneously, showing that the natural coupling and loading tunes them into a quiescent regime. However, when stimulated by a pulse, the bundles show a rapid biphasic response that is abolished when the transduction channels are blocked. The active forces generated by the bundles are sufficient to move the overlying membrane.

  3. Effects of altered gravity on the expression of Calcium -binding and matrix proteins in the inner ear of developing fish following ∆g-expositions.

    NASA Astrophysics Data System (ADS)

    Hilbig, Reinhard; Hendrik Anken, Ralf; Weigele, Jochen

    The results of the Foton-M3 mission (OmegaHab) give evidence that the otoliths of the fish form OmegaHab were larger as compared to the ground control. Additionally the shape (raphe) and morphology especially the mode of crystallization of the otoliths were affected during growth in weightlessness. The reason for these changes is assumed to originate from changes in the composition of the otolith matrix and Ca-binding proteins (OMP). The OMPs play an important role in controlling the crystallization process and additionally the morphology of crystals, determining the crystallpolymorph and the strength of the crystals. The matrix of otoliths is a complex functional structure containing several calcium-binding proteins, structural proteins and protease inhibitors. Furthermore it is composed of otolith matrix protein-1, Otolin, Otoconin, SPARC and Neuroserpin, which is a specific expression in the otolth matrix for chichlid fish. During embryonic development of the fish inner ear, these proteins show a spacial and temporal expression pattern. The formation of the inner ear -including otoliths and sensory cells -starting from the otocyst-anlage -can be subdivided in several major developmental stages e.g. the forming of the otic cavity (stage 7/8), the tetha cell or seeding stage (stage 8, 9), the development of the semicircular channels (stage 12), the transition to further daily growth (post stage15) and the development of the third otolith, asteriscus (stage 23). These developmental phases contain different constitutions or involvements of matrix proteins. We investigated the matrixprotein composition of the chichlid fish Oreochromis mossambicus and found that the otolith matrix differentiate between other fishes. In this case some matrix proteins seem to be uniform in fishes, other known matrix proteins are lacking and we have also references to new candidates for matrix proteins chichlids. In this case we investigated the expression of the matrix proteins otolith

  4. Evaluation of three aging techniques and back-calculated growth for introduced Blue Catfish from Lake Oconee, Georgia

    USGS Publications Warehouse

    Homer, Michael D.; Peterson, James T.; Jennings, Cecil A.

    2015-01-01

    Back-calculation of length-at-age from otoliths and spines is a common technique employed in fisheries biology, but few studies have compared the precision of data collected with this method for catfish populations. We compared precision of back-calculated lengths-at-age for an introducedIctalurus furcatus (Blue Catfish) population among 3 commonly used cross-sectioning techniques. We used gillnets to collect Blue Catfish (n = 153) from Lake Oconee, GA. We estimated ages from a basal recess, articulating process, and otolith cross-section from each fish. We employed the Frasier-Lee method to back-calculate length-at-age for each fish, and compared the precision of back-calculated lengths among techniques using hierarchical linear models. Precision in age assignments was highest for otoliths (83.5%) and lowest for basal recesses (71.4%). Back-calculated lengths were variable among fish ages 1–3 for the techniques compared; otoliths and basal recesses yielded variable lengths at age 8. We concluded that otoliths and articulating processes are adequate for age estimation of Blue Catfish.

  5. Dispersal without errors: symmetrical ears tune into the right frequency for survival.

    PubMed

    Gagliano, Monica; Depczynski, Martial; Simpson, Stephen D; Moore, James A Y

    2008-03-07

    Vertebrate animals localize sounds by comparing differences in the acoustic signal between the two ears and, accordingly, ear structures such as the otoliths of fishes are expected to develop symmetrically. Sound recently emerged as a leading candidate cue for reef fish larvae navigating from open waters back to the reef. Clearly, the integrity of the auditory organ has a direct bearing on what and how fish larvae hear. Yet, the link between otolith symmetry and effective navigation has never been investigated in fishes. We tested whether otolith asymmetry influenced the ability of returning larvae to detect and successfully recruit to favourable reef habitats. Our results suggest that larvae with asymmetrical otoliths not only encountered greater difficulties in detecting suitable settlement habitats, but may also suffer significantly higher rates of mortality. Further, we found that otolith asymmetries arising early in the embryonic stage were not corrected by any compensational growth mechanism during the larval stage. Because these errors persist and phenotypic selection penalizes asymmetrical individuals, asymmetry is likely to play an important role in shaping wild fish populations.

  6. Consequences and assessment of human vestibular failure: implications for postural control.

    PubMed

    Colebatch, James G

    2002-01-01

    Labyrinthine afferents respond to both angular velocity (semicircular canals) and linear acceleration (otoliths), including gravity. Given their response to gravity, the otoliths are likely to have an important role in the postural functions of the vestibular apparatus. Unilateral vestibular ablation has dramatic effects on posture in many animals, but less so in primates. Nevertheless, bilateral vestibular lesions lead to disabling symptoms in man related to disturbed ocular and postural control and impaired perception of slopes and accelerations. While seimicircular canal function can be assessed through its effects on vestibular ocular reflexes, assessment of otolith function in man has traditionally been much more difficult. Recent definition of a short latency vestibulocollic reflex, activated by sound and appearing to arise from the saccule, shows promise as a new method of non-invasive assessment of otolith function.

  7. Otolith asymmetry and kinetotic behaviour of fish at high-quality microgravity: A drop-tower experiment

    NASA Astrophysics Data System (ADS)

    Anken, R.; Forster, A.; Baur, U.; Feucht, I.; Hilbig, R.

    2006-01-01

    contrast to the results gained using PF specimens, according to which otolith asymmetry (differences in the size of the inner ear stones between the left and right side of the body) was significantly higher in kinetotic specimens as compared to normally swimming fish, asymmetry did not differ between the SM, LR and normally swimming drop-tower samples. This finding is discussed on the basis of the especially low gravity environment in the drop-tower experiment.

  8. Preserved vestibular evoked myogenic potentials (VEMP) in some patients with walking-induced oscillopsia due to bilateral vestibulopathy.

    PubMed

    Brantberg, Krister; Löfqvist, Lennart

    2007-01-01

    Bilateral vestibulopathy, i.e. decreased peripheral vestibular function affecting both ears, is characterized by unsteadiness of gait, particularly in darkness and by motion-induced oscillopsia. We have recently seen a few patients with severely impaired semicircular canal function albeit with rather normal vestibular evoked myogenic potentials (VEMP) suggesting normal saccular function. The five young patients, mean age 27 years (range 15-45), 4 males and 1 female, had severely impaired balance in darkness and they all reported walking-induced vertical oscillopsia. Hence, these patients with incomplete vestibular lesions had symptoms that were indistinguishable from the typical patient with bilateral vestibulopathy. Further, the findings in these patients suggest that saccular function probably contributes little to prevent walking-induced vertical oscillopsia.

  9. Who's your momma? Recognizing maternal origin of juvenile steelhead using injections of strontium chloride to create transgenerational marks

    USGS Publications Warehouse

    Shippentower, Gene E.; Schreck, Carl B.; Heppell, Scott A.

    2011-01-01

    We sought to determine whether a strontium chloride injection could be used to create a transgenerational otolith mark in steelhead Oncorhynchus mykiss. Two strontium injection trials and a survey of strontium: calcium (Sr:Ca) ratios in juvenile steelhead from various steelhead hatcheries were conducted to test the feasibility of the technique. In both trials, progeny of fish injected with strontium had significantly higher Sr:Ca ratios in the primordial region of their otoliths, as measured by an electron wavelength dispersive microprobe. In trial 1, the 5,000-mg/L treatment level showed that 56.8% of the otoliths were correctly classified, 12.2% being misclassified as belonging to the 0-mg/L treatment. In trial 2, the 20,000-mg/L treatment level showed that 30.8% of the otoliths were correctly classified, 13.5% being misclassified as belonging to the 0-mg/L treatment. There were no differences in the fertilization rates of eggs or survival rates of fry between the treatment and control groups. The Sr:Ca ratios in otoliths collected from various hatchery populations of steelhead varied and were greater than those found in otoliths from control fish in both of our injection trials. This study suggests that the marking technique led to recognizable increases in Sr:Ca ratios in some otoliths collected from fry produced by injected females. Not all progeny showed such increases, however, suggesting that the method holds promise but requires further refinement to reduce variation. Overall, there was a correct classification of about 40% across all treatments and trials; the variation in Sr:Ca ratios found among experimental trials and hatcheries indicates that care must be taken if the technique is employed where fish from more than one hatchery could be involved.

  10. Estimating westslope cutthroat trout (Oncorhynchus clarkii lewisi) movements in a river network using strontium isoscapes

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Simon R. Thorrold,; Thomas E. McMahon,; Marotz, Brian

    2012-01-01

    We used natural variation in the strontium concentration (Sr:Ca) and isotope composition (87Sr:86Sr) of stream waters and corresponding values recorded in otoliths of westslope cutthroat trout (Oncorhynchus clarkii lewisi) to examine movements during their life history in a large river network. We found significant spatial differences in Sr:Ca and 87Sr:86Sr values (strontium isoscapes) within and among numerous spawning and rearing streams that remained relatively constant seasonally. Both Sr:Ca and 87Sr:86Sr values in the otoliths of juveniles collected from nine natal streams were highly correlated with those values in the ambient water. Strontium isoscapes measured along the axis of otolith growth revealed that almost half of the juveniles had moved at least some distance from their natal streams. Finally, otolith Sr profiles from three spawning adults confirmed homing to natal streams and use of nonoverlapping habitats over their migratory lifetimes. Our study demonstrates that otolith geochemistry records movements of cutthroat trout through Sr isoscapes and therefore provides a method that complements and extends the utility of conventional tagging techniques in understanding life history strategies and conservation needs of freshwater fishes in river networks.

  11. Detection of Helicobacter and Campylobacter spp. from the aquatic environment of marine mammals.

    PubMed

    Goldman, C G; Matteo, M J; Loureiro, J D; Degrossi, J; Teves, S; Heredia, S Rodriguez; Alvarez, K; González, A Beltrán; Catalano, M; Boccio, J; Cremaschi, G; Solnick, J V; Zubillaga, M B

    2009-01-13

    The mechanism by which Helicobacter species are transmitted remains unclear. To examine the possible role of environmental transmission in marine mammals, we sought the presence of Helicobacter spp. and non-Helicobacter bacteria within the order Campylobacterales in water from the aquatic environment of marine mammals, and in fish otoliths regurgitated by dolphins. Water was collected from six pools, two inhabited by dolphins and four inhabited by seals. Regurgitated otoliths were collected from the bottom of dolphins' pools. Samples were evaluated by culture, PCR and DNA sequence analysis. Sequences from dolphins' water and from regurgitated otoliths clustered with 99.8-100% homology with sequences from gastric fluids, dental plaque and saliva from dolphins living in those pools, and with 99.5% homology with H. cetorum. Sequences from seals' water clustered with 99.5% homology with a sequence amplified from a Northern sea lion (AY203900). Control PCR on source water for the pools and from otoliths dissected from feeder fish were negative. The findings of Helicobacter spp. DNA in the aquatic environment suggests that contaminated water from regurgitated fish otoliths and perhaps other tissues may play a role in Helicobacter transmission among marine mammals.

  12. Age, growth, and size of Lake Superior Pygmy Whitefish (Prosopium coulterii)

    USGS Publications Warehouse

    Stewart, Taylor; Derek Ogle,; Gorman, Owen T.; Vinson, Mark

    2016-01-01

    Pygmy Whitefish (Prosopium coulterii) are a small, glacial relict species with a disjunct distribution in North America and Siberia. In 2013 we collected Pygmy Whitefish at 28 stations from throughout Lake Superior. Total length was recorded for all fish and weight and sex were recorded and scales and otoliths were collected from a subsample. We compared the precision of estimated ages between readers and between scales and otoliths, estimated von Bertalanffy growth parameters for male and female Pygmy Whitefish, and reported the first weight-length relationship for Pygmy Whitefish. Age estimates between scales and otoliths differed significantly with otolith ages significantly greater for most ages after age-3. Maximum otolith age was nine for females and seven for males, which is older than previously reported for Pygmy Whitefish from Lake Superior. Growth was initially fast but slowed considerably after age-3 for males and age-4 for females, falling to 3–4 mm per year at maximum estimated ages. Females were longer than males after age-3. Our results suggest the size, age, and growth of Pygmy Whitefish in Lake Superior have not changed appreciably since 1953.

  13. Age and growth of the brick soldierfish, Myripristis amaena

    NASA Astrophysics Data System (ADS)

    Dee, Anderson J.; Radtke, Richard L.

    1989-09-01

    Otoliths (sagittae) of the coral reef fish, Myripristis amaena, the brick solderfish were examined internally by Scanning Electron Microscope methods to observe microincrements. The daily nature of increment deposition was validated through tetracycline and acetazolamide marking experiments. Utilization of multivariant mathematical models relating age to otolith size and fish size demonstrated that age could be reliably determined from body measurements and otolith weight measurements. Consequently, M. amaena grows slowly, maturing at about 6 years of age, lives at least 14 years and reaches at least 215 mm SL.

  14. Proliferation, apoptosis and expression of matrix metalloproteinase-9 in human fetal lung.

    PubMed

    Kraljevic, Daniela; Vukojevic, Katarina; Karan, Dragana; Rajic, Borko; Todorovic, Jelena; Miskovic, Josip; Tomic, Vajdana; Kordic, Mario; Soljic, Violeta

    2015-01-01

    Expression pattern of the Ki-67, caspase-3 and matrix metalloproteinases-9 (MMP-9) factors were immunohistochemically analyzed in 48 human fetal lungs from 12 to 40 weeks of gestation. The number of Ki-67 positive cells in the epithelium of canaliculare (88cells/mm(2)) and sacculare stage (93cells/mm(2)) were significantly higher than in the epithelium of pseudoglandular stage (12cells/mm(2)) (p=0.0008 vs. p=0.003). The number of Ki-67 positive cells in the mesenchyme of canaliculare stage (132cells/mm(2)) was significantly higher than in the mesenchyme of pseudoglandular stage (37cells/mm(2)) (p=0.001). The proliferation of mesenchymal cells was higher than the epithelial cells in all developmental stages, especially in the canaliculare stage (p=0.007). Similarly, the number of caspase-3 positive cells in the epithelium of canalicular stage (13cells/mm(2)) was significantly higher than in the epithelium of pseudoglandular stage (6cells/mm(2)) (p=0.002) with peaks in the conductive epithelium of canalicular stage. The number of caspase-3 positive cells in the mesenchyme of canaliculare stage (3cells/mm(2)) was significantly higher than in the mesenchyme of saccular stage (0cells/mm(2)) (p=0.05). There were no caspase-3 positive cells in the mesenchyme of pseudoglandular stage. However, unlike the Ki-67 expression, mesenchymal cells in comparison to epithelial cells express substantially less caspase-3 in all developmental stages. Up to the saccular stage, the expression of MMP-9 in mesenchymal cells showed a linear increase with most pronounced expression in that stage. The number of MMP-9 positive cells in the mesenchyme of canaliculare (20cells/mm(2)) and sacculare (39cells/mm(2)) stage were significantly higher than in the mesenchyme of pseudoglandular stage (12cells/mm(2)) (p=0.04 vs. p=0.004). The first epithelial cells that express MMP-9 were present only at the alveolar stage. Increased proliferation and apoptosis of the mesenchymal cells of canalicular

  15. Human Footprints in Relation to the 1790 Eruption of Kilauea

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.; Rausch, J.

    2008-12-01

    In 1790, a party of warriors and their families was decimated by an explosive eruption of Kilauea; fatality estimates range from about 80 to 5,405. In 1920, thousands of footprints made by barefoot walkers in wet accretionary lapilli ash were found within a few kilometers southwest of Kilauea's summit. In 1921, Jaggar related the footprints to survivors or rescuers of the 1790 eruption, mainly because he assumed that few people visited the supposedly forbidden area except in 1790. Archaeologists from Hawai'i Volcanoes National Park recently questioned whether the footprints were made at that time and by warriors, citing a wide range of directions that people were walking and evidence of extensive human use of the area. Forensic and anthropologic studies indicate that a human foot is about 15 percent of an individual's height. A man's foot may be slightly more that 15 percent, a women's slightly less, but nonetheless the height can be estimated to within a few centimeters. We measured the heel-big toe length of more than 400 footprints and calculated an average height of 1.5 m, including some children only a little more than 1 m tall. Few calculated heights are 1.75 m or more. Early Europeans described Hawaiian warriors as tall, one missionary estimating an average height of 1.78 m. A footprint may be larger than a foot, particularly in slippery, wet ash, so our estimates of heights are probably somewhat too large. The data indicate that most of the footprints were made by women and children, not by men, much less warriors. We traced the footprint-bearing ash into the tephra section on the southwest side of Kilauea's caldera. It occurs high in the section, resting on older explosive deposits. Its surface is indented by small lithic lapilli, which fell into the ash while it was still wet; a few even landed in footprints. The lithic lapilli are at the edge of a thick block and lapilli deposit that fell from a high eruption column; the column reached well into the jet

  16. Mechanism of vestibular adaptation of fish under microgravity.

    PubMed

    Takabayashi, A; Ohara, K; Ohmura, T; Watanabe, S; Mori, S; Tanaka, M; Sakuragi, S

    1997-12-01

    In a space experiment, the adaptation of goldfish behavior during flight and readaptation after landing were investigated. Six goldfish (1 normal, 1 with otoliths removed on both sides, 4 with otoliths removed on one side) were flown in a fish package (F/P) of Aquatic Animal Experiment Unit (AAEU). The dorsal light responses (DLRs) of fish with otoliths removed were recorded after operation until launch and after landing. The behaviors of the fish were recorded with a video camera on Mission Elapsed Time (MET) Day-00, 02, 05, 08, 12. On MET Day-00, two fish with otoliths removed on one side showed flexion of body toward the operated side. These fish also showed rolling behavior toward the operated side. However, the body flexion disappeared on MET Day-05 or MET Day-08. No rolling behaviors were observed after that time. Five fish showed backward looping behaviors during the mission. Although the frequency of looping episodes decreased after MET Day-08, five fish still showed looping behavior on MET Day-12, that was the last day of video recording on orbit. In microgravity, visual system of fish did not seem to provide sufficient cues to prevent them from looping or rolling. After landing, no looping and rolling behavior was observed. However, the tilt angle of the DLR increased in the fish with otolith removed 5 month before launch but not in normal fish and those with otoliths removed 2 weeks before launch. These results suggest that the behavioral dysfunction and the adaptational process in space are dependent on vestibular inputs.

  17. New Genus and species of Heteroxyidae from Brazil (Axinellida: Demospongiae: Porifera), with a revised identification key for the family.

    PubMed

    Santos, George Garcia; Pinheiro, Ulisses; Hajdu, Eduardo; Soest, Rob Van

    2016-08-26

    Alveospongia sinuosclera gen. nov. sp. nov. is described from shallow-waters off Canavieiras (Bahia, Brazil). The species bears an unusual morphology, combining saccular or alveolar, evenly perforated habit, and sinuous spiny microrhabdose microscleres. This sponge is tentatively classified within the Heteroxyidae Dendy (1905), on the basis of its confused choanosomal architecture of styles, and possession of spiny microrhabdose microscleres. Assays to generate DNA sequences from this material were unsuccessful. We emended the diagnosis of the family to include species bearing saccular/alveolar shape, microrhabdose acanthomicrostrongyles and styles/strongyles with modifications at the ends. The proposed new genus is compared to the remaining heteroxyid genera, as well as Crella (Crellidae), Batzella (Chondropsidae), Goreauiella (Astroscleridae) and Sceptrintus (Podospongiidae). A revised key for identification of Heteroxyidae genera is provided.

  18. Differential central projections of vestibular afferents in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  19. Effects of high intensity noise on the vestibular system in rats

    PubMed Central

    Stewart, Courtney; Yu, Yue; Huang, Jun; Maklad, Adel; Tang, Xuehui; Allison, Jerome; Mustain, William; Zhou, Wu; Zhu, Hong

    2016-01-01

    Some individuals with noise-induced hearing loss (NIHL) also report balance problems. These accompanying vestibular complaints are not well understood. The present study used a rat model to examine the effects of noise exposure on the vestibular system. Rats were exposed to continuous broadband white noise (0–24kHz) at an intensity of 116dB sound pressure level (SPL) via insert ear phones in one ear for three hours under isoflurane anesthesia. Seven days after the exposure, a significant increase in ABR threshold (43.3±1.9dB) was observed in the noise-exposed ears, indicating hearing loss. Effects of noise exposure on vestibular function were assessed by three approaches. First, fluorescein-conjugated phalloidin staining was used to assess vestibular stereocilia following noise exposure. This analysis revealed substantial sensory stereocilia bundle loss in the saccular and utricular maculae as well as in the anterior and horizontal semicircular canal cristae, but not in the posterior semicircular canal cristae. Second, single unit recording of vestibular afferent activity was performed under pentobarbital anesthesia. A total of 548 afferents were recorded from 10 noise-treated rats and 12 control rats. Noise exposure produced a moderate reduction in baseline firing rates of regular otolith afferents and anterior semicircular canal afferents. Also a moderate change was noted in the gain and phase of the horizontal and anterior semicircular canal afferent’s response to sinusoidal head rotation (1 and 2Hz, 45 degrees/s peak velocity). Third, noise exposure did not result in significant changes in gain or phase of the horizontal rotational and translational vestibular-ocular reflex (VOR). These results suggest that noise exposure not only causes hearing loss, but also causes substantial damage in the peripheral vestibular system in the absence of immediate clinically measurable vestibular signs. These peripheral deficits, however, may lead to vestibular disorders

  20. Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space

    PubMed Central

    Hallgren, Emma; Migeotte, Pierre-François; Kornilova, Ludmila; Delière, Quentin; Fransen, Erik; Glukhikh, Dmitrii; Moore, Steven T.; Clément, Gilles; Diedrich, André; MacDougall, Hamish; Wuyts, Floris L.

    2015-01-01

    It is a challenge for the human body to maintain stable blood pressure while standing. The body’s failure to do so can lead to dizziness or even fainting. For decades it has been postulated that the vestibular organ can prevent a drop in pressure during a position change – supposedly mediated by reflexes to the cardiovascular system. We show – for the first time – a significant correlation between decreased functionality of the vestibular otolith system and a decrease in the mean arterial pressure when a person stands up. Until now, no experiments on Earth could selectively suppress both otolith systems; astronauts returning from space are a unique group of subjects in this regard. Their otolith systems are being temporarily disturbed and at the same time they often suffer from blood pressure instability. In our study, we observed the functioning of both the otolith and the cardiovascular system of the astronauts before and after spaceflight. Our finding indicates that an intact otolith system plays an important role in preventing blood pressure instability during orthostatic challenges. Our finding not only has important implications for human space exploration; they may also improve the treatment of unstable blood pressure here on Earth. PMID:26671177

  1. Empirically testing vaterite structural models using neutron diffraction and thermal analysis

    DOE PAGES

    Chakoumakos, Bryan C.; Pracheil, Brenda M.; Koenigs, Ryan; ...

    2016-11-18

    Otoliths, calcium carbonate (CaCO 3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite a metastable polymorph of CaCO 3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while sturgeon otoliths are primarily composed ofmore » vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 522 model, a = 7.1443(4)Å , c = 25.350(4)Å , V = 1121.5(2)Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.« less

  2. Empirically testing vaterite structural models using neutron diffraction and thermal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakoumakos, Bryan C.; Pracheil, Brenda M.; Koenigs, Ryan

    Otoliths, calcium carbonate (CaCO 3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite a metastable polymorph of CaCO 3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while sturgeon otoliths are primarily composed ofmore » vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 522 model, a = 7.1443(4)Å , c = 25.350(4)Å , V = 1121.5(2)Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.« less

  3. Spatial and Temporal Trends in Stable Carbon and Oxygen Isotope Ratios of Juvenile Winter Flounder

    EPA Science Inventory

    Isotopic ratios of fish otoliths have been used in numerous studies as natural tags or markers to aid the study of connectivity among fish populations. We investigated the use of spatial and temporal changes in the stable carbon and oxygen isotope ratios of otoliths to different...

  4. Saccule contribution to immediate early gene induction in the gerbil brainstem with posterior canal galvanic or hypergravity stimulation

    NASA Technical Reports Server (NTRS)

    Marshburn, T. H.; Kaufman, G. D.; Purcell, I. M.; Perachio, A. A.

    1997-01-01

    Immunolabeling patterns of the immediate early gene-related protein Fos in the gerbil brainstem were studied following stimulation of the sacculus by both hypergravity and galvanic stimulation. Head-restrained, alert animals were exposed to a prolonged (1 h) inertial vector of 2 G (19.6 m/s2) head acceleration directed in a dorso-ventral head axis to maximally stimulate the sacculus. Fos-defined immunoreactivity was quantified, and the results compared to a control group. The hypergravity stimulus produced Fos immunolabeling in the dorsomedial cell column (dmcc) of the inferior olive independently of other subnuclei. Similar dmcc labeling was induced by a 30 min galvanic stimulus of up to -100 microA applied through a stimulating electrode placed unilaterally on the bony labyrinth overlying the posterior canal (PC). The pattern of vestibular afferent firing activity induced by this galvanic stimulus was quantified in anesthetized gerbils by simultaneously recording from Scarpa's ganglion. Only saccular and PC afferent neurons exhibited increases in average firing rates of 200-300%, suggesting a pattern of current spread involving only PC and saccular afferent neurons at this level of stimulation. These results suggest that alteration in saccular afferent firing rates are sufficient to induce Fos-defined genomic activation of the dmcc, and lend further evidence to the existence of a functional vestibulo-olivary-cerebellar pathway of adaptation to novel gravito-inertial environments.

  5. Ontogenetic development of the inner ear saccule and utricle in the Lusitanian toadfish: Potential implications for auditory sensitivity.

    PubMed

    Chaves, Patrícia P; Valdoria, Ciara M C; Amorim, M Clara P; Vasconcelos, Raquel O

    2017-09-01

    Studies addressing structure-function relationships of the fish auditory system during development are sparse compared to other taxa. The Batrachoididae has become an important group to investigate mechanisms of auditory plasticity and evolution of auditory-vocal systems. A recent study reported ontogenetic improvements in the inner ear saccule sensitivity of the Lusitanian toadfish, Halobatrachus didactylus, but whether this results from changes in the sensory morphology remains unknown. We investigated how the macula and organization of auditory receptors in the saccule and utricle change during growth in this species. Inner ear sensory epithelia were removed from the end organs of previously PFA-fixed specimens, from non-vocal posthatch fry (<1.4 cm, standard length) to adults (>23 cm). Epithelia were phalloidin-stained and analysed for area, shape, number and orientation patterns of hair cells (HC), and number and size of saccular supporting cells (SC). Saccular macula area expanded 41x in total, and significantly more (relative to body length) among vocal juveniles (2.3-2.9 cm). Saccular HC number increased 25x but HC density decreased, suggesting that HC addition is slower relative to epithelial growth. While SC density decreased, SC apical area increased, contributing to the epithelial expansion. The utricule revealed increased HC density (striolar region) and less epithelial expansion (5x) with growth, contrasting with the saccule that may have a different developmental pattern due to its larger size and main auditory functions. Both macula shape and HC orientation patterns were already established in the posthatch fry and retained throughout growth in both end organs. We suggest that previously reported ontogenetic improvements in saccular sensitivity might be associated with changes in HC number (not density), size and/or molecular mechanisms controlling HC sensitivity. This is one of the first studies investigating the ontogenetic development of the

  6. Structural and Functional Organization of the Vestibular Apparatus in Rats Subjected to Weightlessness for 19.5 Days Aboard the Kosmos-782 Satellite

    NASA Technical Reports Server (NTRS)

    Vinnikov, Y. A.; Gazenko, O. G.; Titova, L. K.; Bronshteyn, A. A.; Govardovskiy, V. I.; Pevzner, R. A.; Gribakin, G. G.; Aronova, M. Z.; Kharkeyevich, T. A.; Tsirulis, T. P.

    1978-01-01

    The vestibular apparatus was investigated in rats subjected to weightlessness for 19.5 days. The vestibular apparatus was removed and its sections were fixed in a glutaraldehyde solution for investigation by light and electron microscopes. Structural and functional charges were noted in the otolith portions of the ear, with the otolith particles clinging to the utricular receptor surface and with the peripheral arrangement of the nucleolus in the nuclei of the receptor cells. It is possible that increased edema of the vestibular tissue resulted in the destruction of some receptor cells and in changes in the form and structure of the otolith. In the horizontal crista, the capula was separated.

  7. Otoconial complexes as ion reservoirs in endolymph

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Williams, T. J.

    1982-01-01

    Scintillation spectrometry was employed to examine the Ca-45(2+) uptake and exchange by otoconial complexes in the sensory region endolymph medium, and a comparison was made with bone mineral deposition. CaCl was injected intraperitoneally into 222 rats and blood samples were collected at set intervals during the subsequent 15 min-l mo life durations of the animals. The animals were eventually sacrificed and saccular and utricular otoconial complexes were microdissected while bone chips from the otic bone and femur were gathered by scraping. Ca-45 was present in the saccular otoconial complexes within 15 min of injection, an uptake similar to the bone deposition, while slower rates were observed with the utricular complexes. Utricular uptake, however, accelerated 5-6 hr postinjection, and total otoconial content was always lower than proportional bone absorption.

  8. Stent-Assisted Coil Embolization of a Symptomatic Renal Artery Aneurysm at a Bifurcation Point.

    PubMed

    Nassiri, Naiem; Huntress, Lauren A

    2017-07-01

    Symptomatic renal artery aneurysms at bifurcation points present challenging clinical scenarios rarely amenable to endovascular repair due to concerns regarding parenchymal loss following intervention. Herein, we add to the scant body of literature describing successful endovascular repair of a saccular, symptomatic renal artery aneurysm situated at a bifurcation point. A 52-year-old woman with a 2.5-cm extraparenchymal, saccular, symptomatic left renal artery aneurysm underwent self-expanding stent-assisted detachable platinum microcoil embolization. Complete aneurysm exclusion was achieved with minimal parenchymal loss. There were no perioperative complications, and no evidence of acute kidney injury perioperatively or at 3-month follow-up. Sustained symptomatic relief was achieved. Endovascular therapy can provide safe and effective aneurysm treatment within challenging bifurcated renal artery anatomy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Identification of mineral composition and weathering product of tuff using reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hyun, C.; Park, H.

    2009-12-01

    Tuff is intricately composed of various types of rock blocks and ash matrixes during volcanic formation processes. Qualitative identification and quantitative assessment of mineral composition of tuff usually have been done using manual inspection with naked-eyes and various chemical analyses. Those conventional methods are destructive to objects, time consuming and sometimes carry out biased results from subjective decision making. To overcome limits from conventional methods, assessment technique using reflectance spectroscopy was applied to tuff specimens. Reflectance spectroscopy measures electromagnetic reflectance on rock surface and can extract diagnostic absorption features originated from chemical composition and crystal structure of constituents in the reflectance curve so mineral species can be discriminated qualitatively. The intrinsic absorption feature from particular mineral can be converted to absorption depth representing relative coverage of the mineral in the measurement area by removing delineated convex hull from raw reflectance curve. The spectral measurements were performed with field spectrometer FieldSpec®3 of ASD Inc. and the wavelength range of measurement was form 350nm to 2500nm. Three types of tuff blocks, ash tuff, green lapilli tuff and red lapilli tuff, were sampled from Hwasun County in Korea and the types of tuffs. The differences between green tuff and red tuff are from the color of their matrixes. Ash tuff consists of feldspars and quartz and small amount of chalcedony, calcite, dolomite, epidote and basalt fragments. Green lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, sericite, chlorite, quartzite and basalt fragments. Red lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, limonite, zircon, chlorite, quartzite and basalt fragments. The tuff rocks were coarsely crushed and blocks and matrixes were separated to measure standard

  10. Erratum to ``Eruption style and petrology of a new carbonatitic suite from the Mt. Vulture (Southern Italy): The Monticchio Lakes Formation'' [Journal of Volcanology and Geothermal Research 78 (1997) 251 265

    NASA Astrophysics Data System (ADS)

    Stoppa, Francesco; Principe, Claudia

    1998-01-01

    The Monticchio Lakes Formation (MLF) is a newly identified carbonatite-melilitite tuff sequence which is exposed in the southwestern sector of the Vulture volcano. It is the youngest example (ca. 0.13 m.y.) of this type of volcanism in Italy, although other carbonatites of smaller volume, but with similar characteristics, have been discovered recently. This volcanic event occurred in isolation after a 0.35 m.y. period of inactivity at Vulture. The eruption produced two maar-type vents and formed tuff aprons mainly composed of dune beds of lapilli. Depositional features suggest that a dry surge mechanism, possibly triggered by CO 2 expansion, was dominant during tuff emplacement. The MLF event involved a mixture of carbonatite and melilitite liquids which were physically separated before the eruption. Abundant mantle xenoliths are direct evidence of the deep-seated origin of the parental magma and its high velocity of propagation towards the surface. Often, these nodules form the core of lapilli composed of concentric shells of melilitite and/or porphyritic carbonatite. Coarse-ash beds alternate with lapilli beds and consist of abundant lumps and spherulae of very fine-grained calcite immersed in a welded, highly compacted carbonatite matrix. Porphyritic carbonatite shells of the lapilli and fine-grained spherulae of calcite in the tuff matrix suggest incipient crystallisation of a carbonatite liquid in subvolcanic conditions and eruption of carbonatite-spray droplets. Dark coloured juvenile fragments mainly consist of melilite, phlogopite, calcite, apatite, perovskite, and häuyne crystals in a carbonatite or melilitite matrix. The rocks have an extremely primitive, ultramafic composition with very high Mg# (> 85) and Cr and Ni content (1500 ppm). The calcite contains high SrO, BaO and REE of up to 1.5 wt.%. Similar compositions are typical of primary, magmatic carbonates which are found in both intrusive and extrusive carbonatites. The high modal Sr

  11. Microgravity vestibular investigations: perception of self-orientation and self-motion

    NASA Technical Reports Server (NTRS)

    Benson, A. J.; Guedry, F. E.; Parker, D. E.; Reschke, M. F.

    1997-01-01

    Four astronauts experienced passive whole-body rotation in a number of test sessions during a 7-day orbital mission. Pitch (Y-axis) and roll (X-axis) rotation required subject orientations on the rotator in which the otolith system was at radius of 0.5 m. Thus subjects experienced a constant -0.22 Gz stimulus to the otoliths during the 60 s constant-velocity segments of "pitch" and "roll" ramp profiles. The Gz stimulus, a radius-dependent vector ranging from -0.22 Gz at the otoliths to +0.36 Gz at the feet, generated sensory information that was not interpreted as inversion in any of the 16 tests carried out in flight (12 in pitch and 4 in roll orientation). None of the subjects was rotated with head off-center during the first 33 h of the mission. In the state of orbital adaptation of these subjects, a -0.22 Gz otolith stimulus did not provide a vertical reference in the presence of a gradient of +Gz stimuli to the trunk and legs.

  12. Galvanic vestibular stimulation combines with Earth-horizontal rotation in roll to induce the illusion of translation.

    PubMed

    Schneider, Erich; Bartl, Klaus; Glasauer, Stefan

    2009-05-01

    Human head rotation in roll around an earth-horizontal axis constitutes a vestibular stimulus that, by its rotational component, acts on the semicircular canals (SCC) and that, by its tilt of the gravity vector, also acts on the otoliths. Galvanic vestibular stimulation (GVS) is thought to resemble mainly a rotation in roll. A superposition of sinusoidal GVS with a natural earth-horizontal roll movement was therefore applied in order to cancel the rotation effects and to isolate the otolith activation. By self-adjusting the amplitude and phase of GVS, subjects were able to minimize their sensation of rotation and to generate the perception of a linear translation. The final adjustments are in the range of a model that predicts SCC activation during natural rotations and GVS. This indicates that the tilt-translation ambiguity of the otoliths is resolved by SCC-otolith interaction. It is concluded that GVS might be able to cancel rotations in roll and that the residual tilt of the gravitoinertial force is possibly interpreted as a linear translation.

  13. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Ivany, Linda C.; Patterson, William P.; Lohmann, Kyger C.

    2000-10-01

    The Eocene/Oligocene boundary, at about 33.7Myr ago, marks one of the largest extinctions of marine invertebrates in the Cenozoic period. For example, turnover of mollusc species in the US Gulf coastal plain was over 90% at this time. A temperature change across this boundary-from warm Eocene climates to cooler conditions in the Oligocene-has been suggested as a cause of this extinction event, but climate reconstructions have not provided support for this hypothesis. Here we report stable oxygen isotope measurements of aragonite in fish otoliths-ear stones-collected across the Eocene/Oligocene boundary. Palaeotemperatures reconstructed from mean otolith oxygen isotope values show little change through this interval, in agreement with previous studies. From incremental microsampling of otoliths, however, we can resolve the seasonal variation in temperature, recorded as the otoliths continue to accrete new material over the life of the fish. These seasonal data suggest that winters became about 4°C colder across the Eocene/Oligocene boundary. We suggest that temperature variability, rather than change in mean annual temperature, helped to cause faunal turnover during this transition.

  14. Formation of a spatter-rich pyroclastic density current deposit in a Neogene sequence of trachytic-mafic igneous rocks at Mason Spur, Erebus volcanic province, Antarctica

    NASA Astrophysics Data System (ADS)

    Martin, A. P.; Smellie, J. L.; Cooper, A. F.; Townsend, D. B.

    2018-01-01

    Erosion has revealed a remarkable section through the heart of a volcanic island, Mason Spur, in the southwestern Ross Sea, Antarctica, including an unusually well-exposed section of caldera fill. The near-continuous exposure, 10 km laterally and > 1 km vertically, cuts through Cenozoic alkalic volcanic rocks of the Erebus volcanic province (McMurdo Volcanic Group) and permits the study of an ancient volcanic succession that is rarely available due to subsequent burial or erosion. The caldera filling sequence includes an unusual trachytic spatter-rich lapilli tuff (ignimbrite) facies that is particularly striking because of the presence of abundant black fluidal, dense juvenile spatter clasts of trachytic obsidian up to 2 m long supported in a pale cream-coloured pumiceous lapilli tuff matrix. Field mapping indicates that the deposit is an ignimbrite and, together with petrological considerations, it is suggested that mixing of dense spatter and pumiceous lapilli tuff in the investigated deposit occurred during emplacement, not necessarily in the same vent, with the mixed fragmental material emplaced as a pyroclastic density current. Liquid water was not initially present but a steam phase was probably generated during transport and may represent water ingested during passage of the current as it passed over either wet ground, stream, shallow lake or (possibly) snow. Well-exposed caldera interiors are uncommon and that at Mason Spur is helping understand eruption dynamics associated with a complex large island volcano. The results of our study should help to elucidate interpretations of other, less well exposed, pyroclastic density current deposits elsewhere in Antarctica and globally.

  15. Character, mass, distribution, and origin of tephra-fall deposits from the 2009 eruption of Redoubt Volcano, Alaska: highlighting the significance of particle aggregation

    USGS Publications Warehouse

    Wallace, Kristi; Coombs, Michelle L; Schaefer, Janet R.

    2013-01-01

    Particle size data showing a preponderance of fine ash, even in the most proximal locations, along with the abundance of aggregate lapilli documented in most samples, confirms that particle aggregation played a significant role in the 2009 eruption and induced premature fallout of fine ash.

  16. Precision of hard structures used to estimate age of mountain Whitefish (Prosopium williamsoni)

    USGS Publications Warehouse

    Watkins, Carson J.; Ross, Tyler J.; Hardy, Ryan S.; Quist, Michael C.

    2015-01-01

    The mountain whitefish (Prosopium williamsoni) is a widely distributed salmonid in western North America that has decreased in abundance over portions of its distribution due to anthropogenic disturbances. In this investigation, we examined precision of age estimates derived from scales, pectoral fin rays, and sagittal otoliths from 167 mountain whitefish. Otoliths and pectoral fin rays were mounted in epoxy and cross-sectioned before examination. Scales were pressed onto acetate slides and resulting impressions were examined. Between-reader precision (i.e., between 2 readers), between-reader variability, and reader confidence ratings were compared among hard structures. Coefficient of variation (CV) in age estimates was lowest and percentage of exact agreement (PA-0) was highest for scales (CV = 5.9; PA-0 = 70%) compared to pectoral fin rays (CV =11.0; PA-0 = 58%) and otoliths (CV = 12.3; PA-0 = 55%). Median confidence ratings were significantly different (P ≤ 0.05) among all structures, with scales having the highest median confidence. Reader confidence decreased with fish age for scales and pectoral fin rays, but reader confidence increased with fish age for otoliths. In general, age estimates were more precise and reader confidence was higher for scales compared to pectoral fin rays and otoliths. This research will help fisheries biologists in selecting the most appropriate hard structure to use for future age and growth studies on mountain whitefish. In turn, selection of the most precise hard structure will lead to better estimates of dynamic rate functions.

  17. Influence of vestibular activation on respiration in humans

    NASA Technical Reports Server (NTRS)

    Monahan, Kevin D.; Sharpe, Melissa K.; Drury, Daniel; Ertl, Andrew C.; Ray, Chester A.

    2002-01-01

    The purpose of this study was to determine the effects of the semicircular canals and otolith organs on respiration in humans. On the basis of animal studies, we hypothesized that vestibular activation would elicit a vestibulorespiratory reflex. To test this hypothesis, respiratory measures, arterial blood pressure, and heart rate were measured during engagement of semicircular canals and/or otolith organs. Dynamic upright pitch and roll (15 cycles/min), which activate the otolith organs and semicircular canals, increased respiratory rate (Delta2 +/- 1 and Delta3 +/- 1 breaths/min, respectively; P < 0.05). Dynamic yaw and lateral pitch (15 cycles/min), which activate the semicircular canals, increased respiration similarly (Delta3 +/- 1 and Delta2 +/- 1, respectively; P < 0.05). Dynamic chair rotation (15 cycles/min), which mimics dynamic yaw but eliminates neck muscle afferent, increased respiration (Delta3 +/- 1; P < 0.05) comparable to dynamic yaw (15 cycles/min). Increases in respiratory rate were graded as greater responses occurred during upright (Delta5 +/- 2 breaths/min) and lateral pitch (Delta4 +/- 1) and roll (Delta5 +/- 1) performed at 30 cycles/min. Increases in breathing frequency resulted in increases in minute ventilation during most interventions. Static head-down rotation, which activates otolith organs, did not alter respiratory rate (Delta1 +/- 1 breaths/min). Collectively, these data indicate that semicircular canals, but not otolith organs or neck muscle afferents, mediate increased ventilation in humans and support the concept that vestibular activation alters respiration in humans.

  18. Magnetic Bead Actuation of Saccular Hair Cells

    NASA Astrophysics Data System (ADS)

    Rowland, David; Ramunno-Johnson, Damien; Lee, Jae-Hyun; Cheon, Jinwoo; Bozovic, Dolores

    2011-11-01

    When decoupled from the overlying membrane, hair bundles of the amphibian sacculus exhibit spontaneous oscillation. To explore the dynamics of this innate motility without an imposed external load, we recorded their oscillations with a high-speed CMOS camera, and applied mechanical manipulation that minimally alters the geometry of an individual hair bundle. We present a technique that utilizes micron-sized magnetic particles to actuate the stereociliary bundle with a magnetized probe. Quasi-steady-state displacements were imposed on freely oscillating bundles. Our data indicate that deflection of the bundle affects both the frequency and the amplitude of the oscillations, with a crossing of the bifurcation that is dependent on the direction and speed of the applied offset.

  19. Mechanical properties of simulated Mars materials: gypsum-rich sandstones and lapilli tuff

    USGS Publications Warehouse

    Morrow, Carolyn; Lockner, David; Okubo, Chris

    2013-01-01

    Observations by the Mars Exploration Rover (MER) Opportunity, and other recent studies on diagenesis in the extensive equatorial layered deposits on Mars, suggest that the likely lithologies of these deposits are gypsum-rich sandstones and tuffaceous sediments (for example, Murchie and others, 2009; Squyres and others, 2012; Zimbelman and Scheidt, 2012). Of particular interest is how the diagenesis history of these sediments (degree of cementation and composition) influences the strength and brittle behavior of the material. For instance, fractures are more common in lower porosity materials under strain, whereas deformation bands, characterized by distributed strain throughout a broader discontinuity in a material, are common in higher porosity sedimentary materials. Such discontinuities can either enhance or restrict fluid flow; hence, failure mode plays an important role in determining the mechanics of fluid migration through sediments (Antonellini and Aydin, 1994; 1995; Taylor and Pollard, 2000; Ogilvie and Glover, 2001). As part of a larger study to characterize processes of fault-controlled fluid flow in volcaniclastic and gypsum-rich sediments on Mars, we have completed a series of laboratory experiments to focus on how gypsum clast content and degree of authigenic cementation affects the strength behavior of simulated Mars rocks. Both axial deformation and hydrostatic pressure tests were done at room temperature under dry conditions.

  20. Age, year‐class strength variability, and partial age validation of Kiyis from Lake Superior

    USGS Publications Warehouse

    Lepak, Taylor A.; Ogle, Derek H.; Vinson, Mark

    2017-01-01

    ge estimates of Lake Superior Kiyis Coregonus kiyi from scales and otoliths were compared and 12 years (2003–2014) of length frequency data were examined to assess year‐class strength and validate age estimates. Ages estimated from otoliths were precise and were consistently older than ages estimated from scales. Maximum otolith‐derived ages were 20 years for females and 12 years for males. Age estimates showed high numbers of fish of ages 5, 6, and 11 in 2014, corresponding to the 2009, 2008, and 2003 year‐classes, respectively. Strong 2003 and 2009 year‐classes, along with the 2005 year‐class, were also evident based on distinct modes of age‐1 fish (<110 mm) in the length frequency distributions from 2004, 2010, and 2006, respectively. Modes from these year‐classes were present as progressively larger fish in subsequent years. Few to no age‐1 fish (<110 mm) were present in all other years. Ages estimated from otoliths were generally within 1 year of the ages corresponding to strong year‐classes, at least for age‐5 and older fish, suggesting that Kiyi age may be reliably estimated to within 1 year by careful examination of thin‐sectioned otoliths.

  1. Multimodal Integration of Self-Motion Cues in the Vestibular System: Active versus Passive Translations

    PubMed Central

    Carriot, Jerome; Brooks, Jessica X.

    2013-01-01

    The ability to keep track of where we are going as we navigate through our environment requires knowledge of our ongoing location and orientation. In response to passively applied motion, the otolith organs of the vestibular system encode changes in the velocity and direction of linear self-motion (i.e., heading). When self-motion is voluntarily generated, proprioceptive and motor efference copy information is also available to contribute to the brain's internal representation of current heading direction and speed. However to date, how the brain integrates these extra-vestibular cues with otolith signals during active linear self-motion remains unknown. Here, to address this question, we compared the responses of macaque vestibular neurons during active and passive translations. Single-unit recordings were made from a subgroup of neurons at the first central stage of sensory processing in the vestibular pathways involved in postural control and the computation of self-motion perception. Neurons responded far less robustly to otolith stimulation during self-generated than passive head translations. Yet, the mechanism underlying the marked cancellation of otolith signals did not affect other characteristics of neuronal responses (i.e., baseline firing rate, tuning ratio, orientation of maximal sensitivity vector). Transiently applied perturbations during active motion further established that an otolith cancellation signal was only gated in conditions where proprioceptive sensory feedback matched the motor-based expectation. Together our results have important implications for understanding the brain's ability to ensure accurate postural and motor control, as well as perceptual stability, during active self-motion. PMID:24336720

  2. Tilt perception during dynamic linear acceleration.

    PubMed

    Seidman, S H; Telford, L; Paige, G D

    1998-04-01

    Head tilt is a rotation of the head relative to gravity, as exemplified by head roll or pitch from the natural upright orientation. Tilt stimulates both the otolith organs, owing to shifts in gravitational orientation, and the semicircular canals in response to head rotation, which in turn drive a variety of behavioral and perceptual responses. Studies of tilt perception typically have not adequately isolated otolith and canal inputs or their dynamic contributions. True tilt cannot readily dissociate otolith from canal influences. Alternatively, centrifugation generates centripetal accelerations that simulate tilt, but still entails a rotatory (canal) stimulus during important periods of the stimulus profiles. We reevaluated the perception of head tilt in humans, but limited the stimulus to linear forces alone, thus isolating the influence of otolith inputs. This was accomplished by employing a centrifugation technique with a variable-radius spinning sled. This allowed us to accelerate the sled to a constant angular velocity (128 degrees/s), with the subject centered, and then apply dynamic centripetal accelerations after all rotatory perceptions were extinguished. These stimuli were presented in the subjects' naso-occipital axis by translating the subjects 50 cm eccentrically either forward or backward. Centripetal accelerations were thus induced (0.25 g), which combined with gravity to yield a dynamically shifting gravitoinertial force simulating pitch-tilt, but without actually rotating the head. A magnitude-estimation task was employed to characterize the dynamic perception of pitch-tilt. Tilt perception responded sluggishly to linear acceleration, typically reaching a peak after 10-30 s. Tilt perception also displayed an adaptation phenomenon. Adaptation was manifested as a per-stimulus decline in perceived tilt during prolonged stimulation and a reversal aftereffect upon return to zero acceleration (i.e., recentering the subject). We conclude that otolith

  3. New Location of Chicxulub's Impact Ejecta in Central Belize.

    NASA Astrophysics Data System (ADS)

    Ocampo, A.; Ames, D.; Pope, K.; Smit, J.

    2003-04-01

    Chicxulub ejecta composed of altered glass, accretionary lapilli, and pebble to cobble sized carbonate clasts are found in the Cayo District of central Belize, about 500 km southeast of the Chicxulub impact crater centre. The ejecta layer, found near the town of Armenia, in central Belize, is about 4 m thick, and rests unconformably on a deeply weathered Cretaceous land surface, of the Barton Creek Formation dolomite. There are similarities between these ejecta and the basal bed (spheroid bed) of the continuous ejecta blanket deposits (Albion Formation) found in northern Belize and southern Quintana Roo, Mexico, 340-360 km from Chicxulub. Although, the spheroid bed in the Armenia location exhibits an exceptional state of impact glass preservation, than that found in Northern Belize. Overlying the bed with glass and lapilli is a 5-m-thick layer of limestone pebbles and cobbles, which contain altered glass and shocked quartz in the matrix. The well-rounded limestone pebbles and cobbles show striated and amygdaloidal textures. We interpret the central Belize spheroid bed deposit with accretionary lapilli as ejecta deposited by the rapidly expanding vapour plume, and may contain carbonate condensates. The altered glass component consists of an inter-stratified illite-smectite mixed layer clay dominated by illite. The overlying pebble and cobble bed may be a later deposit containing re-worked ejecta, or a lateral extension of the coarse ejecta beds found in northern Belize. This new impact ejecta deposit, found in central Belize ~500 km from Chicxulub, emphasizes the importance of volatile-rich target rock and the dispersal of ejecta by the expanding vapour plume.

  4. Response of pontomedullary reticulospinal neurons to vestibular stimuli in vertical planes. Role in vertical vestibulospinal reflexes of the decerebrate cat

    NASA Technical Reports Server (NTRS)

    Bolton, P. S.; Goto, T.; Schor, R. H.; Wilson, V. J.; Yamagata, Y.; Yates, B. J.

    1992-01-01

    1. To investigate the neural substrate of vestibulospinal reflexes in decerebrate cats, we studied the responses of pontomedullary reticulospinal neurons to natural stimulation of the labyrinth in vertical planes. Our principal aim was to determine whether reticulospinal neurons that terminate in, or are likely to give off collaterals to, the upper cervical segments had properties similar to those of the vestibulocollic reflex (VCR). 2. Antidromic stimulation was used to determine whether the neurons projected to the neck, lower cervical, thoracic, or lumbar levels. Dynamics of the responses of spontaneously firing neurons were studied with sinusoidal stimuli delivered at 0.05-1 Hz and aligned to the plane of body rotation, that produced maximal modulation of the neuron (response vector orientation). Each neuron was assigned a vestibular input classification of otolith, vertical canal, otolith + canal, or spatial-temporal convergence (STC). 3. We found, in agreement with previous studies, that the largest fraction of pontomedullary reticulospinal neurons projected to the lumbar cord, and that only a small number ended in the neck segments. Neurons projecting to all levels of the spinal cord had similar responses to labyrinth stimulation. 4. Reticulospinal neurons that received only vertical canal inputs were rare (1 of 67 units). Most reticulospinal neurons (48%) received predominant otolith inputs, 18% received otolith + canal input, and only 9% had STC behavior. These data are in sharp contrast to the results of our previous studies of vestibulospinal neurons. A considerable portion of vestibulospinal neurons receives vertical canal input (38%), fewer receive predominantly otolith input (22%), whereas the proportion that have otolith + canal input or STC behavior is similar to our present reticulospinal data. 5. The response vector orientations of our reticulospinal neurons, particularly those with canal inputs (canal, otolith + canal, STC) were predominantly in

  5. Decreased susceptibility to motion sickness during exposure to visual inversion in microgravity

    NASA Technical Reports Server (NTRS)

    Lackner, James R.; Dizio, Paul

    1991-01-01

    Head and body movements made in microgravity tend to bring on symptoms of motion sickness. Such head movements, relative to comparable ones made on earth, are accompanied by unusual combinations of semicircular canal and otolith activity owing to the unloading of the otoliths in 0G. Head movements also bring on symptoms of motion sickness during exposure to visual inversion (or reversal) on earth because the vestibulo-ocular reflex is rendered anti-compensatory. Here, evidence is presented that susceptibility to motion sickness during exposure to visual inversion is decreased in a 0G relative to 1G force background. This difference in susceptibility appears related to the alteration in otolith function in 0G. Some implications of this finding for the etiology of space motion sickness are described.

  6. Morphological and topographical appearance of microaneurysms on optical coherence tomography angiography.

    PubMed

    Schreur, Vivian; Domanian, Artin; Liefers, Bart; Venhuizen, Freerk G; Klevering, B Jeroen; Hoyng, Carel B; de Jong, Eiko K; Theelen, Thomas

    2018-06-20

    To investigate retinal microaneurysms in patients with diabetic macular oedema (DME) by optical coherence tomography angiography (OCTA) according to their location and morphology in relationship to their clinical properties, leakage on fundus fluorescein angiography (FFA) and retinal thickening on structural OCT. OCTA and FFA images of 31 eyes of 24 subjects were graded for the presence of microaneurysms. The topographical and morphological appearance of microaneurysms on OCTA was evaluated and classified. For each microaneurysm, the presence of focal leakage on FFA and associated retinal thickening on OCT was determined. Of all microaneurysms flagged on FFA, 295 out of 513 (58%) were also visible on OCTA. Microaneurysms with focal leakage and located in a thickened retinal area were more likely to be detected on OCTA than not leaking microaneurysms in non-thickened retinal areas (p=0.001). Most microaneurysms on OCTA were seen in the intermediate (23%) and deep capillary plexus (22%). Of all microaneurysms visualised on OCTA, saccular microaneurysms were detected most often (31%), as opposed to pedunculated microaneurysms (9%). Irregular, fusiform and mixed fusiform/saccular-shaped microaneurysms had the highest likeliness to leak and to be located in thickened retinal areas (p<0.001, p<0.001 and p=0.001). Retinal microaneurysms in DME could be classified topographically and morphologically by OCTA. OCTA detected less microaneurysms than FFA, and this appeared to be dependent on leakage activity and retinal thickening. Morphological appearance of microaneurysms (irregular, fusiform and mixed saccular/fusiform) was associated with increased leakage activity and retinal thickening.

  7. Eliciting Cervical Vestibular-Evoked Myogenic Potentials by Bone-Conducted Vibration via Various Tapping Sites.

    PubMed

    Tseng, Chia-Chen; Young, Yi-Ho

    2016-01-01

    This study compared bone-conducted vibration (BCV) cervical vestibular-evoked myogenic potentials (cVEMPs) via tapping at various skull sites in healthy subjects and patients with vestibular migraine (VM) to optimize stimulation conditions. Twenty healthy subjects underwent a series of cVEMP tests by BCV tapping via a minishaker at the Fz (forehead), Cz (vertex), and inion (occiput) sites in a randomized order of tapping sites. Another 20 VM patients were also enrolled in this study for comparison. All 20 healthy subjects had clear BCV cVEMPs when tapping at the inion (100%) or Cz (100%), but not at the Fz (75%). Mean p13 and n23 latencies from the Cz tapping were significantly longer than those from the Fz tapping, but not longer than those from the inion tapping. Unlike healthy subjects, tapping at the Cz (95%) elicited a significantly higher response rate of present cVEMPs than tapping at the inion (78%) in 20 VM patients (40 ears), because seven of nine VM ears with absent cVEMPs by inion tapping turned out to be present cVEMPs by Cz tapping. While both inion and Cz tapping elicited 100% response rate of cVEMPs for healthy individuals, Cz tapping had a higher response rate of cVEMPs than inion tapping for the VM group. In cases of total loss of saccular function, cVEMPs could not be activated by either inion or Cz tapping. However, if residual saccular function remains, Cz tapping may activate saccular afferents more efficiently than inion tapping.

  8. Two examples of subaqueously welded ash-flow tuffs: the Visean of southern Vosges (France) and the Upper Cretaceous of northern Anatolia (Turkey)

    NASA Astrophysics Data System (ADS)

    Schneider, Jean-Luc; Fourquin, Claude; Paicheler, Jean-Claude

    1992-02-01

    Pyroclastic deposits interpreted as subaqueous ash-flow tuff have been recognized within Archean to Recent marine and lacustrine sequences. Several authors proposed a high-temperature emplacement for some of these tuffs. However, the subaqueous welding of pyroclastic deposits remains controversial. The Visean marine volcaniclastic formations of southern Vosges (France) contain several layers of rhyolitic and rhyodacitic ash-flow tuff. These deposits include, from proximal to distal settings, breccia, lapilli and fine-ash tuff. The breccia and lapilli tuff are partly welded, as indicated by the presence of fiamme, fluidal and axiolitic structures. The lapilli tuff form idealized sections with a lower, coarse and welded unit and an upper, bedded and unwelded fine-ash tuff. Sedimentary structures suggest that the fine-ash tuff units were deposited by turbidity currents. Welded breccias, interbedded in a thick submarine volcanic complex, indicate the close proximity of the volcanic source. The lapilli and fine-ash tuff are interbedded in a thick marine sequence composed of alternating sandstones and shales. Presence of a marine stenohaline fauna and sedimentary structures attest to a marine depositional environment below storm-wave base. In northern Anatolia, thick massive sequences of rhyodacitic crystal tuff are interbedded with the Upper Cretaceous marine turbidites of the Mudurnu basin. Some of these tuffs are welded. As in southern Vosges, partial welding is attested by the presence of fiamme and fluidal structures. The latter are frequent in the fresh vitric matrix. These tuff units contain a high proportion of vitroclasis, and were emplaced by ash flows. Welded tuff units are associated with non-welded crystal tuff, and contain abundant bioclasts which indicate mixing with water during flowage. At the base, basaltic breccia beds are associated with micritic beds containing a marine fauna. The welded and non-welded tuff sequences are interbedded in an alternation

  9. Onset of a basaltic explosive eruption from Kīlauea’s summit in 2008: Chapter 19

    USGS Publications Warehouse

    Carey, Rebecca J.; Swavely, Lauren; Swanson, Don; Houghton, Bruce F.; Orr, Tim R.; Elias, Tamar; Sutton, Andrew; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    The onset of a basaltic eruption at the summit of Kīlauea volcano in 2008 is recorded in the products generated during the first three weeks of the eruption and suggests an evolution of both the physical properties of the magma and also lava lake levels and vent wall stability. Ash componentry and the microtextures of the early erupted lapilli products reveal that the magma was largely outgassed, perhaps in the preceding weeks to months. An increase in the juvenile:lithic ratio and size of ash collected from March 23 to April 3 records an increasing level of the magma within the conduit. After April 3 until the explosive eruption of April 9, a trend of decreasing juvenile:lithic ratio suggests that vent wall collapses were more frequent, possibly because lava level increased and destabilized the overhanging wall [Orr et al. 2013]. Despite increasing lake height, the microtextural characteristics of the lapilli suggest that the outgassed end-member was still being tapped between March 26 and April 8. The April 9 rockfall triggered an explosive eruption that produced a new component in the eruption deposits not seen in the preceding weeks; microvesicular juvenile lapilli, the first evidence of an actively vesiculating magma. Two additional dense end-member pyroclast types were also erupted during the April 9 explosion, likely related to outgassed magma with longer residence times than the microvesicular magma. We link these pyroclasts to a stagnant viscous crust at the top of the magma column or to convecting, downwelling magma. Our study of ash componentry and the textures of juvenile lapilli suggests that the April 9 explosive event effectively cleared the conduit of largely outgassed magma. The degassing processes during this eruption are complex and varied: in the period of persistent degassing during March 26-April 8 small resident bubbles at shallow levels in the lava lake were coupled to the magma whereas large bubbles ascended, expanded and fragmented

  10. Tephra Blanket Record of a Violent Strombolian Eruption, Sunset Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Wagner, K. D.; Ort, M. H.

    2015-12-01

    New fieldwork provides a detailed description of the widespread tephra of the ~1085 CE Sunset Crater eruption in the San Francisco Volcanic Field, Arizona, and refines interpretation of the eruptive sequence. The basal fine-lapilli tephra-fall-units I-IV are considered in detail. Units I and II are massive, with Unit I composed of angular to spiny clasts and II composed of more equant, oxidized clasts. Units III and IV have inversely graded bases and massive tops and are composed of angular to spiny iridescent and mixed iridescent and oxidized angular clasts, respectively. Xenoliths are rare in all units (<0.1%): sedimentary xenoliths are consistent with the known shallow country rock (Moenkopi and Kaibab Fms); magmatic xenoliths are pumiceous rhyolite mingled with basalt. Unit II is less sideromelane rich (20%) than Units I, III, and IV (60-80%). Above these units are at least two more coarse tephra-fall units. Variably preserved ash and fine-lapilli laminae cap the tephra blanket. This deposit is highly susceptible to reworking, and likely experienced both syn- and post-eruptive aeolian redistribution. It appears as either well sorted, alternating planar-parallel beds of ash and fine lapilli with rare wavy beds, or as cross- or planar-bedded ash. The tephra blanket as a whole is stratigraphically underlain by a fissure-fed lava flow and lapilli-fall units are intercalated with two larger flows. Mean grain size is coarsest in Unit I but coarsens in Units II-IV. Units I, III, and IV are moderately to poorly sorted with no skew. Unit II is better sorted and more coarse-skewed. Units I and III are slightly more platykurtic than II and IV. Without considering possible spatial effects introduced by dispersion patterns, bootstrap ANOVA confidence intervals suggest at least Unit II sorting and skewness are from distinct populations. Isopachs indicate Units I and II were associated with a 10-km-long fissure source. After or during Unit II's deposition, activity localized

  11. Dichelyne (Dichelyne) spinigerus sp. nov. (Nematoda: Cucullanidae) from the marine fish Otolithes ruber (Sciaenidae) off Iran and first description of the male of Philometra otolithi Moravec et Manoharan, 2013 (Nematoda: Philometridae).

    PubMed

    Moravec, František; Khosheghbal, Maryam; Pazooki, Jamileh

    2014-06-01

    Recent parasitological examinations of the marine perciform fish (tigerteeth croaker) Otolithes ruber (Bloch et Schneider) (Sciaenidae) from off Iran yielded one new and one previously known nematode species: Dichelyne (Dichelyne) spinigerus sp. nov. (Cucullanidae) from the host's intestine in the Persian Gulf and Philometra otolithi Moravec et Manoharan, 2013 (Philometridae) from the ovary in the Persian Gulf and the Sea of Oman. The new species D. spinigerus is mainly characterized by the tail tip of both sexes terminating in two shaply pointed spikes (one dorsal and one ventral) and bearing a pair of minute lateral cuticular spines at its base, situation of both deirids and the excretory pore well posterior to the level of the posterior end of oesophagus, absence of a precloacal sucker and the presence of one or two intestinal caeca. The male and small mature females of the gonad-infecting species P. otolithi are described for the first time, based on light and scanning electron microscopical studies. The male of P. otolithi is most similar to that of P. johnii Moravec et Ali, 2013, but differs from it by the structure of the cephalic end and the number of caudal papillae; both species also differ from each other by the presence of transverse lamellae in the buccal cavity of gravid and subgravid females of P. otolithi, which are missing in those of P. johnii.

  12. Modeling gravity-dependent plasticity of the angular vestibuloocular reflex with a physiologically based neural network.

    PubMed

    Xiang, Yongqing; Yakushin, Sergei B; Cohen, Bernard; Raphan, Theodore

    2006-12-01

    A neural network model was developed to explain the gravity-dependent properties of gain adaptation of the angular vestibuloocular reflex (aVOR). Gain changes are maximal at the head orientation where the gain is adapted and decrease as the head is tilted away from that position and can be described by the sum of gravity-independent and gravity-dependent components. The adaptation process was modeled by modifying the weights and bias values of a three-dimensional physiologically based neural network of canal-otolith-convergent neurons that drive the aVOR. Model parameters were trained using experimental vertical aVOR gain values. The learning rule aimed to reduce the error between eye velocities obtained from experimental gain values and model output in the position of adaptation. Although the model was trained only at specific head positions, the model predicted the experimental data at all head positions in three dimensions. Altering the relative learning rates of the weights and bias improved the model-data fits. Model predictions in three dimensions compared favorably with those of a double-sinusoid function, which is a fit that minimized the mean square error at every head position and served as the standard by which we compared the model predictions. The model supports the hypothesis that gravity-dependent adaptation of the aVOR is realized in three dimensions by a direct otolith input to canal-otolith neurons, whose canal sensitivities are adapted by the visual-vestibular mismatch. The adaptation is tuned by how the weights from otolith input to the canal-otolith-convergent neurons are adapted for a given head orientation.

  13. Ontogeny of mouse vestibulo-ocular reflex following genetic or environmental alteration of gravity sensing.

    PubMed

    Beraneck, Mathieu; Bojados, Mickael; Le Séac'h, Anne; Jamon, Marc; Vidal, Pierre-Paul

    2012-01-01

    The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.

  14. Ontogeny of Mouse Vestibulo-Ocular Reflex Following Genetic or Environmental Alteration of Gravity Sensing

    PubMed Central

    Beraneck, Mathieu; Bojados, Mickael; Le Séac’h, Anne; Jamon, Marc; Vidal, Pierre-Paul

    2012-01-01

    The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period. PMID:22808156

  15. Effect of Hypergravity on Carbonanhydrase Reactivity in inner Ear Ioncytes of developing Cichlid Fish

    NASA Astrophysics Data System (ADS)

    Beier, M.; Anken, R.; Rahmann, H.

    It has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish. Otolith growth in terms of mineralisation mainly depends on the enzyme carboanhydrase (CAH), which is responsible for the provision of the pH- value necessary for calcium carbonate deposition and thus also is presumed to play a prominent role in Ménière's disease (a sensory - motor disorder inducing vertigo and kinetosis). Larval siblings of cichlid fish (Oreochromis mossambicus) were subjected to hypergravity (3g; 6 hours) during development and separated into normally and kinetotically swimming individuals following the transfer to 1g (i.e., stopping the centrifuge; kinetotically behaving fish performed spinning movements). Subsequently, CAH was histochemically demonstrated in inner ear ionocytes (cells involved in the endolymphatic ion exchange) and enzyme reactivity was determined densitometrically. The results showed that CAH-reactivity was significantly increased in normally behaving hyper-g specimens as compared to controls kept at 1g, whereas no difference in enzyme reactivity was evident between the controls and kinetotically behaving fish. On the background of earlier studies, according to which (1) hypergravity induces a decrease of otolith growth and (2) the otolithic calcium incorporation (visualized using the calcium -tracer alizarin complexone) of kinetotically swimming hyper - g fish was lower as compared to normally behaving hyper - g animals, the present study strongly supports the concept that an increase in CAH-reactivity may result in a decrease of otolithic calcium deposition. The mechanism regulating CAH-activity hitherto remains to be determined. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 9997).

  16. Losing Track of Time: Is Hypoxia In Part To Blame For Baltic Cod Aging Problems?

    NASA Astrophysics Data System (ADS)

    Limburg, K. E.; Hussy, K.

    2016-02-01

    Cod, a primary fishery species in the Baltic Sea since prehistoric times, has recently experienced marked declines in size and condition. This is due to a combination of worsening water quality conditions from hypoxia intensification, reduction in prey availability even as cod densities have risen, and increased occurrence of parasites and disease. One of the net results of this has been a decrease in formation of clear annual growth rings in otoliths of Eastern Baltic Cod. Otoliths (ear-stones) are part of the hearing and balance system in fishes, and grow incrementally as a fish grows. In seasonal environments, growth bands are laid down, much like tree rings. But in Eastern Baltic cod it has become increasingly difficult to "read" otoliths and determine ages. This is a serious problem, because age is a key variable used in stock assessment for the management of exploited populations, including quota-setting. In 2014 the situation became so dire that the stock assessment was not approved for this stock. Solutions are clearly needed. We are developing new methods to assist in solving the "aging problem" using a combination of otolith microchemistry, optical imagery and direct increment counts, and dynamic models. Developing novel ratios of trace elements and isotopes that enhance seasonal signatures appears promising. We are also tracking the intensity of hypoxia with a proxy (Mn:Ca ratios) as described in Limburg et al. 2015 (J. Mar. Sys. 141: 167-178). This study explicitly links hypoxia with a metric (otolith Mn:Ca ratios) that also has a physiological basis; preliminary results suggest our approach to deal with aging fishes badly impacted by hypoxia is broadly applicable across marine to freshwater ecosystems.

  17. The first description of oarfish Regalecus glesne (Regalecus russellii Cuvier 1816) ageing structures

    USGS Publications Warehouse

    Midway, S.R.; Wagner, Tyler

    2016-01-01

    Despite being a large, conspicuous teleost with a worldwide tropical and temperate distribution, the giant oarfish Regalecus spp. remain very rare fish species in terms of scientific sampling. Subsequently, very little biological information is known about Regalecus spp. and almost nothing has been concluded in the field of age and growth (Roberts, 2012). No studies of otoliths or temporal (annual) markings on any hard structures have been reported, and to our knowledge otoliths have never been recovered from any specimens (Tyson Roberts, personal communication),although a few texts do provide illustrations of Regalecus sp. otoliths (Lin and Chang, 2012; Nolf, 2013). Further inferential difficulty comes from the fact that age and growth studies of any Lampridiforme species are rare. Lampris guttatus is perhaps the only Lampridiforme species for which any biological information has been reported(Francis et al., 2004), which stems from the species commercial value. In order to begin understanding any species (for later purposes of management, conservation, etc.), basic biological information is needed. In the present study, we examine not only the first Regalecus russellii otolith, but provide suggestions toward future work that should direct data collection that can be used to generate basic biological information for this species.

  18. Vestibular-Evoked Myogenic Potentials in Bilateral Vestibulopathy

    PubMed Central

    Rosengren, Sally M.; Welgampola, Miriam S.; Taylor, Rachael L.

    2018-01-01

    Bilateral vestibulopathy (BVP) is a chronic condition in which patients have a reduction or absence of vestibular function in both ears. BVP is characterized by bilateral reduction of horizontal canal responses; however, there is increasing evidence that otolith function can also be affected. Cervical and ocular vestibular-evoked myogenic potentials (cVEMPs/oVEMPs) are relatively new tests of otolith function that can be used to test the saccule and utricle of both ears independently. Studies to date show that cVEMPs and oVEMPs are often small or absent in BVP but are in the normal range in a significant proportion of patients. The variability in otolith function is partly due to the heterogeneous nature of BVP but is also due to false negative and positive responses that occur because of the large range of normal VEMP amplitudes. Due to their variability, VEMPs are not part of the diagnosis of BVP; however, they are helpful complementary tests that can provide information about the extent of disease within the labyrinth. This article is a review of the use of VEMPs in BVP, summarizing the available data on VEMP abnormalities in patients and discussing the limitations of VEMPs in diagnosing bilateral loss of otolith function. PMID:29719527

  19. Unexpected link between polyketide synthase and calcium carbonate biomineralization.

    PubMed

    Hojo, Motoki; Omi, Ai; Hamanaka, Gen; Shindo, Kazutoshi; Shimada, Atsuko; Kondo, Mariko; Narita, Takanori; Kiyomoto, Masato; Katsuyama, Yohei; Ohnishi, Yasuo; Irie, Naoki; Takeda, Hiroyuki

    2015-01-01

    Calcium carbonate biominerals participate in diverse physiological functions. Despite intensive studies, little is known about how mineralization is initiated in organisms. We analyzed the medaka spontaneous mutant, ha, defective in otolith (calcareous ear stone) formation. ha lacks a trigger for otolith mineralization, and the causative gene was found to encode polyketide synthase (pks), a multifunctional enzyme mainly found in bacteria, fungi, and plant. Subsequent experiments demonstrate that the products of medaka PKS, most likely polyketides or their derivatives, act as nucleation facilitators in otolith mineralization. The generality of this novel PKS function is supported by the essential role of echinoderm PKS in calcareous skeleton formation together with the presence of PKSs in a much wider range of animals from coral to vertebrates. The present study first links PKS to biomineralization and provides a genetic cue for biogeochemistry of carbon and calcium cycles.

  20. Arrested diatreme development: Standing Rocks East, Hopi Buttes, Navajo Nation, USA

    NASA Astrophysics Data System (ADS)

    Lefebvre, Nathalie S.; White, James D. L.; Kjarsgaard, Bruce A.

    2016-01-01

    Maar-diatreme volcanoes, defined by their relatively large pyroclastic debris-filled subsurface structures and craters that cut into the pre-eruptive land surface, are typically found in small-volume mafic to ultramafic monogenetic volcanic fields. Diatremes are associated with strong explosions throughout most of their development, focused along feeder dikes and generally attributed to magma-water interaction, or high magmatic volatiles. Detailed mapping of the magnificently exposed Standing Rocks East (SRE) diatreme shows evidence of additional eruptive complexity, and offers new insights into how the plumbing and vent structures of small-volume volcanoes evolve during an eruption. SRE is part of a larger, basanitic volcanic complex that includes several diatremes formed along a series of irregular, offset NW-SE trending dikes exposed 300 m below the pre-eruptive land surface. Its similarly oriented elliptical-shaped diatreme structure comprises predominantly country rock lithic-rich breccia of coarse inhomogeneously mixed wall-rock blocks sourced from above and below the current surface, plus sparse juvenile material. Domains of pyroclastic deposits crosscut the country rock breccia deposits, and the best exposed is the NW massif rising 35 m above the current erosional surface. It represents a cross-section of an evolving crater floor, and comprises matrix-rich lapilli tuff and spatter deposits cut by irregularly distributed dikes, some with very complex textures. The most significant deposit, in terms of volume, is an unbedded lapilli tuff that is poorly sorted and has a well-mixed population of wall-rock and juvenile clast varieties, thus resembling deposits typical of diatremes. It is overlain by and locally intercalated with spatter deposits, and this irregular contact demarcates the base of what was during eruption an uneven, evolving crater floor. The generally massive, variably welded spatter deposits constitute mostly lapilli-sized juvenile clasts with

  1. Unraveling the volcanic and post-volcanic history at Upsal Hogback, Fallon, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Anderson, E.; Cousens, B.

    2013-12-01

    Upsal Hogback is a < 25 ka phreatomagmatic volcanic center situated near Fallon, Nevada. The volcano neighbors two other young volcanic complexes: the Holocene Soda Lakes maars and Rattlesnake Hill, a ~ 1 Ma volcanic neck (Shevenell et al., 2005). These volcanoes lie on the transition between the Sierra Nevada and the Basin and Range province, as well as on the edge of the Walker Lane. Upsal Hogback includes two to four vents, fewer than mapped by Morrison (1964), and can be divided into north (one vent) and south (three potential vents) complexes. The vents all produced phreatomagmatic eruptions resulting in tuff rings composed primarily of coarse, indurated lapilli tuffs with abundant volcanic bombs. Ash tuffs are infrequent, as are structures such as crossbedding. The bombs and lapilli include olivine and plagioclase phenocrysts. The basalts are alkaline and have intraplate-type normalized incompatible element patterns. Both complexes are enriched in LREE compared to HREE, though the north complex overall has lower concentrations of the REE. The flat HREE pattern is indicative of spinel peridotite mantle source. Epsilon Nd values for the north complex are +2.50+/-0.02 and for the south complex are +2.83+/-0.02. The magmas appear to have an enriched asthenospheric mantle source. Bomb samples show that eruptions from the two complexes are geochemically distinguishable both in major and trace elements, suggesting that the two complexes tapped different magma types during eruptions that likely occurred at slightly different times. The proximity of Upsal Hogback to Fallon makes constraining its age important to characterize the hazard to the city. It lies above the Wono ash bed, dated at 25,000 years (Fultz et al., 1983), and tufa deposited over the edifice is dated at 11,100 +/- 100 and 8,600 +/- 200 years (Benson et al., 1992; Broecker and Kaufman, 1965). 40Ar/39Ar total gas age by Shevenell et al. (2005) dated the volcano at 0.60 +/- 0.09 Ma, but with no plateau

  2. Unconventional maar diatreme and associated intrusions in the soft sediment-hosted Mardoux structure (Gergovie, France)

    NASA Astrophysics Data System (ADS)

    Valentine, Greg A.; van Wyk de Vries, Benjamin

    2014-03-01

    A Miocene age volcanic-hypabyssal structure comprising volcaniclastic deposits and mafic intrusions is exposed with vertical relief of ˜110 m on the side of Gergovie Plateau (Auvergne, France). Three main volcaniclastic facies are: (1) Fluidal tuff breccia composed of juvenile basalt and sediment clasts with dominantly fluidal shapes, with several combinations of basalt and sediment within individual clasts. (2) Thickly bedded lapilli tuff composed of varying proportions of fine-grained sediment derived from Oligocene-Miocene lacustrine marls and mudstones and basaltic lapilli, blocks, and bombs. (3) Planar-bedded tuff forming thin beds of fine to coarse ash-size sedimentary material and basalt clasts. Intrusive bodies in the thickly bedded lapilli tuff range from irregularly shaped and anastomosing dikes and sills of meters to tens of meters in length, to a main feeder dike that is up to ˜20 m wide, and that flares into a spoon-shaped sill at ˜100 m in diameter and 10-20 m thick in the eastern part of the structure. Volcaniclastic deposits and structural features suggest that ascending magma entrained soft, saturated sediment host material into the feeder dike and erupted fluidal magma and wet sediment via weak, Strombolian-like explosions. Host sediment and erupted material subsided to replace the extracted sediments, producing the growth subsidence structure that is similar to upper diatreme facies in typical maar diatremes but lacks evidence for explosive disruption of diatreme fill. Irregularly shaped small intrusions extended from the main feeder dike into the diatreme, and many were disaggregated due to shifting and subsidence of diatreme fill and recycled via eruption. The Mardoux structure is an "unconventional" maar diatreme in that it was produced mainly by weak explosive activity rather than by violent phreatomagmatic explosions and is an example of complex coupling between soft sediment and ascending magma.

  3. Wastewater Phosphorus Removal by Two Different Types of Andesitic Volcanic Tephra

    ERIC Educational Resources Information Center

    Liesch, Amanda M.

    2010-01-01

    Phosphorus (P) is the limiting nutrient controlling productivity in most inland freshwater systems. Several materials have been proposed for use to remove excess P from wastewater treatment, including volcanic lapilli and ash (tephra). There is limited data in using tephra as a P filter. There were two objectives of this study: (1) to determine…

  4. The use of archived tags in retrospective genetic analysis of fish.

    PubMed

    Bonanomi, Sara; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Hemmer-Hansen, Jakob; Nielsen, Einar E

    2014-05-01

    Collections of historical tissue samples from fish (e.g. scales and otoliths) stored in museums and fisheries institutions are precious sources of DNA for conducting retrospective genetic analysis. However, in some cases, only external tags used for documentation of spatial dynamics of fish populations have been preserved. Here, we test the usefulness of fish tags as a source of DNA for genetic analysis. We extract DNA from historical tags from cod collected in Greenlandic waters between 1950 and 1968. We show that the quantity and quality of DNA recovered from tags is comparable to DNA from archived otoliths from the same individuals. Surprisingly, levels of cross-contamination do not seem to be significantly higher in DNA from external (tag) than internal (otolith) sources. Our study therefore demonstrates that historical tags can be a highly valuable source of DNA for retrospective genetic analysis of fish. © 2013 John Wiley & Sons Ltd.

  5. Comparative NEXAFS study of the selected icefish hard tissues and hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Petrova, O. V.; Nekipelov, S. V.; Sivkov, D. V.; Mingaleva, A. E.; Nikolaev, A.; Frank-Kamenetskaya, O. V.; Bazhenov, V. V.; Vyalikh, D. V.; Molodtsov, S. L.; Sivkov, V. N.; Ehrlich, H.

    2017-11-01

    The structure of native Champsocephalus gunnari icefish otoliths, scales, teeth, bones and pristine hydroxyapatite (HA) were examined using Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. NEXAFS Cls-absorption spectra of the selected icefish hard tissues indicate that otoliths contain anion [CO3]2-. NEXAFS P2p-spectra clearly indicate the absence of phosphorus atoms only within otoliths and scales samples. However, the icefish teeth and bones P2p-spectra demonstrate identical spectral feature typical for the HA. NEXAFS Ca2p-spectra of the icefish hard tissues studied also shows features, which are in good correspondence with HA spectra. Interestingly, there is a red shift ≈ 0.1 eV of the 2p1/2,3/2 → 3d transition energies in NEXAFS Ca2p-spectra of teethes and bones of the C. gunnari in comparison to HA.

  6. Effects of a growth check on daily age estimates of age-0 alligator gar

    USGS Publications Warehouse

    Snow, Richard A.; Long, James M.

    2016-01-01

    Accurate age and growth information is essential for a complete knowledge of life history, growth rates, age at sexual maturity, and average life span in fishes. Alligator gar are becoming increasingly managed throughout their range and because this species spawns in backwater flooded areas, their offspring are prone to stranding in areas with limited prey, potentially affecting their growth. Because fish growth is tightly linked with otolith growth and annulus formation, the ability to discern marks not indicative of annuli (age checks) in alligator gar would give managers some insight when estimating ages. Previous studies have suggested that checks are often present prior to the first annulus in otoliths of alligator gar, affecting age estimates. We investigated check formation in otoliths of alligator gar in relation to growth and food availability. Sixteen age-0 alligator gar were marked with oxytetracycline (OTC) to give a reference point and divided equitably into two groups: a control group with abundant prey and an experimental group with limited prey. The experimental group was given 2 g of food per week for 20 days and then given the same prey availability as the control group for the next 20 days. After 40 days, the gar were measured, sacrificed, and their sagittae removed to determine if checks were present. Checks were visible on 14 of the 16 otoliths in the experimental group, associated with low growth during the first 20 days when prey was limited and accelerated growth after prey availability was increased. No checks were observed on otoliths of the control group, where growth and prey availability were consistent. Age estimates of fish in the control group were more accurate than those in the experimental group, showing that fish growth as a function of prey availability likely induced the checks by compressing daily ring formation.

  7. Intrinsically disordered and pliable Starmaker-like protein from medaka (Oryzias latipes) controls the formation of calcium carbonate crystals.

    PubMed

    Różycka, Mirosława; Wojtas, Magdalena; Jakób, Michał; Stigloher, Christian; Grzeszkowiak, Mikołaj; Mazur, Maciej; Ożyhar, Andrzej

    2014-01-01

    Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed.

  8. Intrinsically Disordered and Pliable Starmaker-Like Protein from Medaka (Oryzias latipes) Controls the Formation of Calcium Carbonate Crystals

    PubMed Central

    Różycka, Mirosława; Wojtas, Magdalena; Jakób, Michał; Stigloher, Christian; Grzeszkowiak, Mikołaj; Mazur, Maciej; Ożyhar, Andrzej

    2014-01-01

    Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed. PMID:25490041

  9. Growth and mortality of larval sunfish in backwaters of the upper Mississippi River

    USGS Publications Warehouse

    Zigler, S.J.; Jennings, C.A.

    1993-01-01

    The authors estimated the growth and mortality of larval sunfish Lepomis spp. in backwater habitats of the upper Mississippi River with an otolith-based method and a length-based method. Fish were sampled with plankton nets at one station in Navigation Pools 8 and 14 in 1989 and at two stations in Pool 8 in 1990. For both methods, growth was modeled with an exponential equation, and instantaneous mortality was estimated by regressing the natural logarithm of fish catch for each 1-mm size-group against the estimated age of the group, which was derived from the growth equations. At two of the stations, the otolith-based method provided more precise estimates of sunfish growth than the length-based method. We were able to compare length-based and otolith-based estimates of sunfish mortality only at the two stations where we caught the largest numbers of sunfish. Estimates of mortality were similar for both methods in Pool 14, where catches were higher, but the length-based method gave significantly higher estimates in Pool 8, where the catches were lower. The otolith- based method required more laboratory analysis, but provided better estimates of the growth and mortality than the length-based method when catches were low. However, the length-based method was more cost- effective for estimating growth and mortality when catches were large.

  10. Reactivity of Acetylcholine Esterase in inner Ear Maculae of Fish after Development at Hypergravity

    NASA Astrophysics Data System (ADS)

    Feucht, I.; Hilbig, R.; Anken, R.

    It has been shown earlier that the growth of inner ear otoliths of larval fish is (among other environmental factors) guided by the gravity vector. This guidance most probably is effected by the efferent vestibular system in the brainstem, because a transection of the nervus vestibularis has been shown to effect a cessation of the supply of calcium to the otoliths. The efferent innervation of fish inner ear maculae uses the synaptic transmitter acetylcholine (ACh). Therefore, we were - in order to further assess the role of the efferent system for otolith growth - prompted to determine ACh esterase-reactivity in the sensory epithelium of the utricle and the saccule (as well as in a non-gravity relevant brain region for control) in larval cichlid fish (Oreochromis mossambicus), which had been maintained at hypergravity during their development. The respective data will be communicated at the meeting. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 9997).

  11. CNGA3 is expressed in inner ear hair cells and binds to an intracellular C-terminus domain of EMILIN1.

    PubMed

    Selvakumar, Dakshnamurthy; Drescher, Marian J; Dowdall, Jayme R; Khan, Khalid M; Hatfield, James S; Ramakrishnan, Neeliyath A; Drescher, Dennis G

    2012-04-15

    The molecular characteristics of CNG (cyclic nucleotide-gated) channels in auditory/vestibular hair cells are largely unknown, unlike those of CNG mediating sensory transduction in vision and olfaction. In the present study we report the full-length sequence for three CNGA3 variants in a hair cell preparation from the trout saccule with high identity to CNGA3 in olfactory receptor neurons/cone photoreceptors. A custom antibody targeting the N-terminal sequence immunolocalized CNGA3 to the stereocilia and subcuticular plate region of saccular hair cells. The cytoplasmic C-terminus of CNGA3 was found by yeast two-hybrid analysis to bind the C-terminus of EMILIN1 (elastin microfibril interface-located protein 1) in both the vestibular hair cell model and rat organ of Corti. Specific binding between CNGA3 and EMILIN1 was confirmed with surface plasmon resonance analysis, predicting dependence on Ca2+ with Kd=1.6×10-6 M for trout hair cell proteins and Kd=2.7×10-7 M for organ of Corti proteins at 68 μM Ca2+. Pull-down assays indicated that the binding to organ of Corti CNGA3 was attributable to the EMILIN1 intracellular sequence that follows a predicted transmembrane domain in the C-terminus. Saccular hair cells also express the transcript for PDE6C (phosphodiesterase 6C), which in cone photoreceptors regulates the degradation of cGMP used to gate CNGA3 in phototransduction. Taken together, the evidence supports the existence in saccular hair cells of a molecular pathway linking CNGA3, its binding partner EMILIN1 (and β1 integrin) and cGMP-specific PDE6C, which is potentially replicated in cochlear outer hair cells, given stereociliary immunolocalizations of CNGA3, EMILIN1 and PDE6C.

  12. Evolution and development of gas exchange structures in Mammalia: the placenta and the lung.

    PubMed

    Mess, Andrea M; Ferner, Kirsten J

    2010-08-31

    Appropriate oxygen supply is crucial for organisms. Here we examine the evolution of structures associated with the delivery of oxygen in the pre- and postnatal phases in mammals. There is an enormous structural and functional variability in the placenta that has facilitated the evolution of specialized reproductive strategies, such as precociality. In particular the cell layers separating fetal and maternal blood differ markedly: a non-invasive epitheliochorial placenta, which increases the diffusion distance, represents a derived state in ungulates. Rodents and their relatives have an invasive haemochorial placental type as optimum for the diffusion distance. In contrast, lung development is highly conserved and differences in the lungs of neonates can be explained by different developmental rates. Monotremes and marsupials have altricial stages with lungs at the early saccular phase, whereas newborn eutherians have lungs at the late saccular or alveolar phase. In conclusion, the evolution of exchange structures in the pre- and postnatal periods does not follow similar principles. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Peripheral vestibular pathology in Mondini dysplasia.

    PubMed

    Kaya, Serdar; Hızlı, Ömer; Kaya, Fatıma Kübra; Monsanto, Rafael DaCosta; Paparella, Michael M; Cureoglu, Sebahattin

    2017-01-01

    In this study, our objective was to histopathologically analyze the peripheral vestibular system in patients with Mondini dysplasia. Comparative human temporal bone study. We assessed the sensory epithelium of the human vestibular system with a focus on the number of type I and type II hair cells, as well as the total number of hair cells. We compared those numbers in our Mondini dysplasia group versus our control group. The loss of type I and type II hair cells in the cristae of the superior, lateral, and posterior semicircular canals, as well as in the saccular and utricular macula, was significantly higher in our Mondini dysplasia group than in our control group. The total number of hair cells significantly decreased in the cristae of the superior, lateral, and posterior semicircular canals, as well as in the saccular and utricular macula, in our Mondini dysplasia group. Loss of vestibular hair cells can lead to vestibular dysfunction in patients with Mondini dysplasia. NA Laryngoscope, 127:206-209, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Seasonal plasticity of auditory hair cell frequency sensitivity correlates with plasma steroid levels in vocal fish

    PubMed Central

    Rohmann, Kevin N.; Bass, Andrew H.

    2011-01-01

    SUMMARY Vertebrates displaying seasonal shifts in reproductive behavior provide the opportunity to investigate bidirectional plasticity in sensory function. The midshipman teleost fish exhibits steroid-dependent plasticity in frequency encoding by eighth nerve auditory afferents. In this study, evoked potentials were recorded in vivo from the saccule, the main auditory division of the inner ear of most teleosts, to test the hypothesis that males and females exhibit seasonal changes in hair cell physiology in relation to seasonal changes in plasma levels of steroids. Thresholds across the predominant frequency range of natural vocalizations were significantly less in both sexes in reproductive compared with non-reproductive conditions, with differences greatest at frequencies corresponding to call upper harmonics. A subset of non-reproductive males exhibiting an intermediate saccular phenotype had elevated testosterone levels, supporting the hypothesis that rising steroid levels induce non-reproductive to reproductive transitions in saccular physiology. We propose that elevated levels of steroids act via long-term (days to weeks) signaling pathways to upregulate ion channel expression generating higher resonant frequencies characteristic of non-mammalian auditory hair cells, thereby lowering acoustic thresholds. PMID:21562181

  15. Early Development of Gravity-Sensing Organs in Microgravity

    NASA Technical Reports Server (NTRS)

    Wiederhold, Michael L.; Gao, Wenyuan; Harrison, Jeffrey L.; Parker, Kevin A.

    2003-01-01

    Most animals have organs that sense gravity. These organs use dense stones (called otoliths or statoconia), which rest on the sensitive hairs of specialized gravity- and motion-sensing cells. The weight of the stones bends the hairs in the direction of gravitational pull. The cells in turn send a coded representation of the gravity or motion stimulus to the central nervous system. Previous experiments, in which the eggs or larvae of a marine mollusk (Aplysia californica, the sea hare) were raised on a centrifuge, demonstrated that the size of the stones (or test mass) was reduced in a graded manner as the gravity field was increased. This suggests that some control mechanism was acting to normalize the weight of the stones. The experiments described here were designed to test the hypothesis that, during their initial development, the mass of the stones is regulated to achieve a desired weight. If this is the case, we would expect a larger-than-normal otolith would develop in animals reared in the weightlessness of space. To test this, freshwater snails and swordtail fish were studied after spaceflight. The snails mated in space, and the stones (statoconia) in their statocysts developed in microgravity. Pre-mated adult female swordtail fish were flown on the Space Shuttle, and the developing larvae were collected after landing. Juvenile fish, where the larval development had taken place on the ground, were also flown. In snails that developed in space, the total volume of statoconia forming the test mass was 50% greater than in size-matched snails reared in functionally identical equipment on the ground. In the swordtail fish, the size of otoliths was compared between ground- and flight-reared larvae of the same size. For later-stage larvae, the growth of the otolith was significantly greater in the flight-reared fish. However, juvenile fish showed no significant difference in otolith size between flight- and ground-reared fish. Thus, it appears that fish and snails

  16. Survey of the vestibulum, and behavior of Xenopus laevis larvae developed during a 7-days space flight.

    PubMed

    Briegleb, W; Neubert, J; Schatz, A; Klein, T; Kruse, B

    1986-01-01

    Aquatic animals have almost no body weight related proprioception for spatial orientation. Xenopus larvae, like fish, maintain their attitude in water by continuous correction with their fin(s). For these reasons a special performance of the equilibrium system compared to terrestrial animals is necessary. Evidently fish therefore have more compact (dense) otoliths; Xenopus larvae have less dense otolith (membranes) similar to land vertebrates; but their sacculus-otoliths are vertically positioned, which also may lead to a higher g-sensitivity. For plausibility reasons gravity should influence the embryonic development of gravity receptors. Yet, evaluations of photographs taken from the surface of cut deep-frozen objects by incident light show no aberration of the shape of the whole vestibulum and of the shape, density, size and position of the otolith membrane in larvae developed under near-zero g (NEXPA-BW-STATEX in D-1-Mission). The further evaluation of the "weightless-larvae" revealed a probably not yet described statolith-like formation in the dorsal wall of the vestibulum. In the weightless larvae this formation outnumbers, also qualitatively, strongly the l-g controls. An extra result is the lack of striking effects of cosmic radiation on the embryonic development of the flown Xenopus eggs. The swimming behavior of the larvae which was observed about one hour after landing of the Space Shuttle showed a typical anomaly (loop swimming), which is known from larvae developed on the clinostat or from fish flown aboard Apollo capsules.

  17. Survey of the vestibulum, and behavior of xenopus laevis larvae developed during a 7-days space flight

    NASA Astrophysics Data System (ADS)

    Briegleb, W.; Neubert, J.; Schatz, A.; Klein, T.; Kruse, B.

    Aquatic animals have almost no body weight related proprioception for spatial orientation. Xenopus larvae, like fish, maintain their attitude in water by continuous correction with their fin(s). For these reasons a special performance of the equilibrium system compared to terrestrial animals is necessary. Evidently fish therefore have more compact (dense) otoliths; Xenopus larvae have less dense otolith (membranes) similar to land vertebrates; but their sacculus-otoliths are vertically positioned, which also may lead to a higher g-sensitivity. For plausibility reasons gravity should influence the embryonic development of gravity receptors. Yet, evaluations of photographs taken from the surface of cut deep-frozen objects by incident light show no aberration of the shape of the whole vestibulum and of the shape, density, size and position of the otolith membrane in larvae developed under near-zero g (NEXPA-BW-STATEX in D1-Mission). The further evaluation of the ``weightless-larvae'' revealed a probably not yet described statolith-like formation in the dorsal wall of the vestibulum. In the weightless larvae this formation outnumbers, also qualitatively, strongly the 1-g controls. An extra result is the lack of striking effects of cosmic radiation on the embryonic development of the flown Xenopus eggs. The swimming behavior of the larvae which was observed about one hour after landing of the Space Shuttle showed a typical anomaly (loop swimming), which is known from larvae developed on the clinostat or from fish flown aboard Apollo capsules.

  18. The new vestibular stimuli: sound and vibration-anatomical, physiological and clinical evidence.

    PubMed

    Curthoys, Ian S

    2017-04-01

    The classical view of the otoliths-as flat plates of fairly uniform receptors activated by linear acceleration dragging on otoconia and so deflecting the receptor hair bundles-has been replaced by new anatomical and physiological evidence which shows that the maculae are much more complex. There is anatomical spatial differentiation across the macula in terms of receptor types, hair bundle heights, stiffness and attachment to the overlying otolithic membrane. This anatomical spatial differentiation corresponds to the neural spatial differentiation of response dynamics from the receptors and afferents from different regions of the otolithic maculae. Specifically, receptors in a specialized band of cells, the striola, are predominantly type I receptors, with short, stiff hair bundles and looser attachment to the overlying otoconial membrane than extrastriolar receptors. At the striola the hair bundles project into holes in the otolithic membrane, allowing for fluid displacement to deflect the hair bundles and activate the cell. This review shows the anatomical and physiological evidence supporting the hypothesis that fluid displacement, generated by sound or vibration, deflects the short stiff hair bundles of type I receptors at the striola, resulting in neural activation of the irregular afferents innervating them. So these afferents are activated by sound or vibration and show phase-locking to individual cycles of the sound or vibration stimulus up to frequencies above 2000 Hz, underpinning the use of sound and vibration for clinical tests of vestibular function.

  19. Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.

    1995-01-01

    The objective is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness.

  20. Vesiculation Processes During Transient and Sustained Explosive Activity at Halema'uma'u Crater, Kīlauea in 2008-2013.

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Orr, T. R.; Taddeucci, J.; Carey, R.; Del Bello, E.; Scarlato, P.; Patrick, M. R.

    2015-12-01

    The 2008-2015 summit eruption within Halema'uma'u crater, Kilauea has been characterized by alternations of passive degassing with two styles of explosive activity, both frequently triggered by rock falls that perturb the free surface of magma in the vent. In the first, larger rock falls trigger second vesiculation of magma at depths up to 100 m below the free surface ejecting juvenile bomb and lapilli populations of very variable vesicularity. The second, the topic of this presentation, consists of intervals of minutes to tens-of-minutes duration of low fountaining activity often from multiple locations. Vents may migrate with time, first across the free surface to its margins, and then around the margins, in response to convection processes in the underlying melt. Analysis of short sequences of high-speed, high-resolution video footage shows that the sustained fountaining is maintained by not by a continuous discharge but rather by closely spaced bursting of two-to-five meter-wide bubbles. Bubbles accelerate through the free surface at velocities of 10 to 40 m/s disrupting the viscoelastic crust and forming large fall-back, lacework pyroclasts and smaller highly vesicular bombs and lapilli.

  1. How systematic age underestimation can impede understanding of fish population dynamics: Lessons learned from a Lake Superior cisco stock

    USGS Publications Warehouse

    Yule, D.L.; Stockwell, J.D.; Black, J.A.; Cullis, K.I.; Cholwek, G.A.; Myers, J.T.

    2008-01-01

    Systematic underestimation of fish age can impede understanding of recruitment variability and adaptive strategies (like longevity) and can bias estimates of survivorship. We suspected that previous estimates of annual survival (S; range = 0.20-0.44) for Lake Superior ciscoes Coregonus artedi developed from scale ages were biased low. To test this hypothesis, we estimated the total instantaneous mortality rate of adult ciscoes from the Thunder Bay, Ontario, stock by use of cohort-based catch curves developed from commercial gill-net catches and otolith-aged fish. Mean S based on otolith ages was greater for adult females (0.80) than for adult males (0.75), but these differences were not significant. Applying the results of a study of agreement between scale and otolith ages, we modeled a scale age for each otolith-aged fish to reconstruct catch curves. Using modeled scale ages, estimates of S (0.42 for females, 0.36 for males) were comparable with those reported in past studies. We conducted a November 2005 acoustic and midwater trawl survey to estimate the abundance of ciscoes when the fish were being harvested for roe. Estimated exploitation rates were 0.085 for females and 0.025 for males, and the instantaneous rates of fishing mortality were 0.089 for females and 0.025 for males. The instantaneous rates of natural mortality were 0.131 and 0.265 for females and males, respectively. Using otolith ages, we found that strong year-classes at large during November 2005 were caught in high numbers as age-1 fish in previous annual bottom trawl surveys, whereas weak or absent year-classes were not. For decades, large-scale fisheries on the Great Lakes were allowed to operate because ciscoes were assumed to be short lived and to have regular recruitment. We postulate that the collapse of these fisheries was linked in part to a misunderstanding of cisco biology driven by scale-ageing error. ?? Copyright by the American Fisheries Society 2008.

  2. Post-spaceflight orthostatic intolerance: possible relationship to microgravity-induced plasticity in the vestibular system

    NASA Technical Reports Server (NTRS)

    Yates, B. J.; Kerman, I. A.

    1998-01-01

    Even after short spaceflights, most astronauts experience at least some postflight reduction of orthostatic tolerance; this problem is severe in some subjects. The mechanisms leading to postflight orthostatic intolerance are not well-established, but have traditionally been thought to include the following: changes in leg hemodynamics, alterations in baroreceptor reflex gain, decreases in exercise tolerance and aerobic fitness, hypovolemia, and altered sensitivity of beta-adrenergic receptors in the periphery. Recent studies have demonstrated that signals from vestibular otolith organs play an important role in regulating blood pressure during changes in posture in a 1-g environment. Because spaceflight results in plastic changes in the vestibular otolith organs and in the processing of inputs from otolith receptors, it is possible that another contributing factor to postflight orthostatic hypotension is alterations in the gain of vestibular influences on cardiovascular control. Preliminary data support this hypothesis, although controlled studies will be required to determine the relationship between changes in the vestibular system and orthostatic hypotension following exposure to microgravity. Copyright 1998 Elsevier Science B.V.

  3. Migration of Sakhalin taimen (Parahucho perryi): Evidence of freshwater resident life history types

    USGS Publications Warehouse

    Zimmerman, C.E.; Rand, P.S.; Fukushima, M.; Zolotukhin, S.F.

    2012-01-01

    Sakhalin taimen (Parahucho perryi) range from the Russian Far East mainland along the Sea of Japan coast, and Sakhalin, Kuril, and Hokkaido Islands and are considered to primarily be an anadromous species. We used otolith strontium-to-calcium ratios (Sr/Ca) to determine the chronology of migration between freshwater and saltwater and identify migratory contingents of taimen collected from the Koppi River, Russia. In addition, we examined taimen from the Sarufutsu River, Japan and Tumnin River, Russia that were captured in marine waters. Transects of otolith Sr/Ca for the Sarufutsu River fish were consistent with patterns observed in anadromous salmonids. Two fish from the Tumnin River appeared to be recent migrants to saltwater and one fish was characterized by an otolith Sr/Ca transect consistent with marine migration. Using these transects as benchmarks, all Koppi River taimen were classified as freshwater residents. These findings suggest more work is needed to assess life history variability among locations and the role of freshwater productivity in controlling migratory behavior in taimen. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  4. Reconstruction of a kimberlite eruption, using an integrated volcanological, geochemical and numerical approach: A case study of the Fox Kimberlite, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Cas, R. A. F.

    2009-01-01

    An integrated approach involving volcanology, geochemistry and numerical modelling has enabled the reconstruction of the volcanic history of the Fox kimberlite pipe. The observed deposits within the vent include a basal massive, poorly sorted, matrix supported, lithic fragment rich, eruption column collapse lapilli tuff. Extensive vent widening during the climactic magmatic phase of the eruption led to overloading of the eruption column with cold dense country rock lithic fragments, dense juvenile pyroclasts and olivine crystals, triggering column collapse. > 40% dilution of the kimberlite by granodiorite country rock lithic fragments is observed both in the physical componentry of the rocks and in the geochemical signature, where enrichment in Al 2O 3 and Na 2O compared to average values for coherent kimberlite is seen. The wide, deep, open vent provided a trap for a significant proportion of the collapsing column material, preventing large scale run-away in the form of pyroclastic flow onto the ground surface, although minor flows probably also occurred. A massive to diffusely bedded, poorly sorted, matrix supported, accretionary-lapilli bearing, lithic fragment rich, lapilli tuff overlies the column collapse deposit providing evidence for a late phreatomagmatic eruption stage, caused by the explosive interaction of external water with residual magma. Correlation of pipe morphology and internal stratigraphy indicate that widening of the pipe occurred during this latter stage and a thick granodiorite cobble-boulder breccia was deposited. Ash- and accretionary lapilli-rich tephra, deposited on the crater rim during the late phreatomagmatic stage, was subsequently resedimented into the vent. Incompatible elements such as Nb are used as indicators of the proportion of the melt fraction, or kimberlite ash, retained or removed by eruptive processes. When compared to average coherent kimberlite the ash-rich deposits exhibit ~ 30% loss of fines whereas the column

  5. Impact of the AD 79 explosive eruption on Pompeii, II. Causes of death of the inhabitants inferred by stratigraphic analysis and areal distribution of the human casualties

    NASA Astrophysics Data System (ADS)

    Luongo, Giuseppe; Perrotta, Annamaria; Scarpati, Claudio; De Carolis, Ernesto; Patricelli, Giovanni; Ciarallo, Annamaria

    2003-08-01

    Detailed descriptions of the effects of explosive eruptions on urban settlements available to volcanologists are relatively rare. Apart from disease and starvation, the largest number of human deaths caused by explosive eruptions in the twentieth century are due to pyroclastic flows. The relationship between the number of victims related to a specific hazard and the presence of urban settlements in the area covered by the eruption has been shown. However, pyroclastic falls are also extremely dangerous under certain conditions. These conclusions are based on archaeological and volcanological studies carried out on the victims of the well-known AD 79 eruption of Vesuvius that destroyed and buried the Roman city of Pompeii. The stratigraphic level in the pyroclastic deposit and the location of all the casualties found are described and discussed. The total number of victims recovered during the archaeological excavations amounts to 1150. Of these, 1044 well recognisable bodies plus an additional group of 100 individuals were identified based on the analysis of several groups of scattered bones. Of the former, 394 were found in the lower pumice lapilli fall deposit and 650 in the upper stratified ash and pumice lapilli pyroclastic density currents (PDCs) deposits. In addition, a tentative evaluation suggests that 464 corpses may still be buried in the unexcavated part of the city. According to the reconstruction presented in this paper, during the first phase of the eruption (August 24, AD 79) a huge quantity of pumice lapilli fell on Pompeii burying the city under 3 m of pyroclastic material. During this eruptive phase, most of the inhabitants managed to leave the city. However, 38% of the known victims were killed during this phase mainly as a consequence of roofs and walls collapsing under the increasing weight of the pumice lapilli deposit. During the second phase of the eruption (August 25, AD 79) 49% of the total victims were on the roadways and 51% inside

  6. Binocular Coordination of the Human Vestibulo-Ocular Reflex during Off-axis Pitch Rotation

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Reschke, M. F.; Kaufman, G. D.; Black, F. O.; Paloski, W. H.

    2006-01-01

    Head movements in the sagittal pitch plane typically involve off-axis rotation requiring both vertical and horizontal vergence ocular reflexes to compensate for angular and translational motion relative to visual targets of interest. The purpose of this study was to compare passive pitch VOR responses during rotation about an Earth-vertical axis (canal only cues) with off-axis rotation (canal and otolith cues). Methods. Eleven human subjects were oscillated sinusoidally at 0.13, 0.3 and 0.56 Hz while lying left-side down with the interaural axis either aligned with the axis of rotation or offset by 50 cm. In a second set of measurements, twelve subjects were also tested during sinusoidally varying centrifugation over the same frequency range. The modulation of vertical and horizontal vergence ocular responses was measured with a binocular videography system. Results. Off-axis pitch rotation enhanced the vertical VOR at lower frequencies and enhanced the vergence VOR at higher frequencies. During sinusoidally varying centrifugation, the opposite trend was observed for vergence, with both vertical and vergence vestibulo-ocular reflexes being suppressed at the highest frequency. Discussion. These differential effects of off-axis rotation over the 0.13 to 0.56 Hz range are consistent with the hypothesis that otolith-ocular reflexes are segregated in part on the basis of stimulus frequency. At the lower frequencies, tilt otolith-ocular responses compensate for declining canal input. At higher frequencies, translational otolith-ocular reflexes compensate for declining visual contributions to the kinematic demands required for fixating near targets.

  7. [Structural and functional organization of the vestibular apparatus in rats maintained under weightless conditions for 19.5 days aboard the satellite "Cosmos-782"].

    PubMed

    Vinnikov, Ia A; Gazenko, O G; Titova, L K; Bronshteĭn, A A; Govardovskiĭ, V I

    1978-01-01

    Vestibular apparatus was investigated in rats subjected to weightlessness for 19.5 days in the satelite "Cosmos-782" and experienced acceleration on launching and landing. Some structural and functional changes were noted. They were seen in otolith clinging to the utricular receptor surface and in the peripheral arrangement of the nucleolus in the nuclei of the receptor cells. It is also possible that increased edema of the vestibular tissue resulted in destruction of some receptor cells, and within the otolith--changes in the form and structure of otoconia. In the horizontal crista the cupula was separated.

  8. Estimation of aneurysm wall stresses created by treatment with a shape memory polymer foam device

    PubMed Central

    Hwang, Wonjun; Volk, Brent L.; Akberali, Farida; Singhal, Pooja; Criscione, John C.

    2012-01-01

    In this study, compliant latex thin-walled aneurysm models are fabricated to investigate the effects of expansion of shape memory polymer foam. A simplified cylindrical model is selected for the in-vitro aneurysm, which is a simplification of a real, saccular aneurysm. The studies are performed by crimping shape memory polymer foams, originally 6 and 8 mm in diameter, and monitoring the resulting deformation when deployed into 4-mm-diameter thin-walled latex tubes. The deformations of the latex tubes are used as inputs to physical, analytical, and computational models to estimate the circumferential stresses. Using the results of the stress analysis in the latex aneurysm model, a computational model of the human aneurysm is developed by changing the geometry and material properties. The model is then used to predict the stresses that would develop in a human aneurysm. The experimental, simulation, and analytical results suggest that shape memory polymer foams have potential of being a safe treatment for intracranial saccular aneurysms. In particular, this work suggests oversized shape memory foams may be used to better fill the entire aneurysm cavity while generating stresses below the aneurysm wall breaking stresses. PMID:21901546

  9. Reconstructing the deadly eruptive events of 1790 CE at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Swanson, Don; Weaver, Samantha J; Houghton, Bruce F.

    2014-01-01

    A large number of people died during an explosive eruption of Kīlauea Volcano in 1790 CE. Detailed study of the upper part of the Keanakāko‘i Tephra has identified the deposits that may have been responsible for the deaths. Three successive units record shifts in eruption style that agree well with accounts of the eruption based on survivor interviews 46 yr later. First, a wet fall of very fine, accretionary-lapilli–bearing ash created a “cloud of darkness.” People walked across the soft deposit, leaving footprints as evidence. While the ash was still unconsolidated, lithic lapilli fell into it from a high eruption column that was seen from 90 km away. Either just after this tephra fall or during its latest stage, pulsing dilute pyroclastic density currents, probably products of a phreatic eruption, swept across the western flank of Kīlauea, embedding lapilli in the muddy ash and crossing the trail along which the footprints occur. The pyroclastic density currents were most likely responsible for the fatalities, as judged from the reported condition and probable location of the bodies. This reconstruction is relevant today, as similar eruptions will probably occur in the future at Kīlauea and represent its most dangerous and least predictable hazard.

  10. Modeling volcanic ash dispersal

    ScienceCinema

    Macedonio, Giovanni

    2018-05-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.A. Valentine; C.D. Harrington

    Formation of desert pavement and accretionary soils are intimately linked in arid environments such as the Mojave Desert. Well-sorted fallout scoria lapilli at Lathrop Wells (75-80 ky) and Red Cone ({approx}1 Ma) volcanoes (southern Nevada) formed an excellent starting material for pavement, allowing infiltration of eolian silt and fine sand that first clogs the pore space of underlying tephra and then aggrades and develops vesicular A (Av) horizons. Variations in original pyroclast sizes provide insight into minimum and maximum clast sizes that promote pavement and soil formation: pavement becomes ineffective when clasts can saltate under the strongest winds, while clastsmore » larger than coarse lapilli are unable to form an interlocking pavement that promotes silt accumulation (necessary for Av development). Contrary to predictions that all pavements above altitudes of {approx}400 m would have been ''reset'' in their development after late Pleistocene vegetation advances (about 15 ka), the soils and pavements show clear differences in maturity between the two volcanoes. This indicates that either the pavement soils develop slowly over many 10,000's of years and then are very stable, or that, if they are disrupted by vegetation advances, subsequent pavements are reestablished with successively more mature characteristics.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.A. Valentine; C.D. Harrington

    Formation of desert pavement and accretionary soils are intimately linked in arid environments such as the Mojave Desert. Well-sorted fallout scoria lapilli at Lathrop Wells (75-80 ky) and Red Cone ({approx}1 Ma) volcanoes (southern Nevada) formed an excellent starting material for pavement, allowing infiltration of eolian silt and fine sand that first clogs the pore space of underlying tephra and then aggrades and develops vesicular A (Av) horizons. Variations in original pyroclast sizes provide insight into minimum and maximum clast sizes that promote pavement and soil formation: pavement becomes ineffective when clasts can saltate under the strongest winds, while clastsmore » larger than coarse lapilli are unable to form an interlocking pavement that promotes silt accumulation (necessary for Av development). Contrary to predictions that all pavements above altitudes of {approx}400 m would have been ''reset'' in their development after late Pleistocene vegetation advances (about 15 ka), the soils and pavements show clear differences in maturity between the two volcanoes. This indicates that either the pavements/soils develop slowly over many 10,000's of years and then are very stable, or that, if they are disrupted by vegetation advances, subsequent pavements are reestablished with successively more mature characteristics.« less

  13. Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Bush, G. A.; Perachio, A. A.

    1993-01-01

    Response properties of vertical (VC) and horizontal (HC) canal/otolith-convergent vestibular nuclei neurons were studied in decerebrate rats during stimulation with sinusoidal linear accelerations (0.2-1.4 Hz) along different directions in the head horizontal plane. A novel characteristic of the majority of tested neurons was the nonzero response often elicited during stimulation along the "null" direction (i.e., the direction perpendicular to the maximum sensitivity vector, Smax). The tuning ratio (Smin gain/Smax gain), a measure of the two-dimensional spatial sensitivity, depended on stimulus frequency. For most vestibular nuclei neurons, the tuning ratio was small at the lowest stimulus frequencies and progressively increased with frequency. Specifically, HC neurons were characterized by a flat Smax gain and an approximately 10-fold increase of Smin gain per frequency decade. Thus, these neurons encode linear acceleration when stimulated along their maximum sensitivity direction, and the rate of change of linear acceleration (jerk) when stimulated along their minimum sensitivity direction. While the Smax vectors were distributed throughout the horizontal plane, the Smin vectors were concentrated mainly ipsilaterally with respect to head acceleration and clustered around the naso-occipital head axis. The properties of VC neurons were distinctly different from those of HC cells. The majority of VC cells showed decreasing Smax gains and small, relatively flat, Smin gains as a function of frequency. The Smax vectors were distributed ipsilaterally relative to the induced (apparent) head tilt. In type I anterior or posterior VC neurons, Smax vectors were clustered around the projection of the respective ipsilateral canal plane onto the horizontal head plane. These distinct spatial and temporal properties of HC and VC neurons during linear acceleration are compatible with the spatiotemporal organization of the horizontal and the vertical/torsional ocular responses

  14. [BEHAVIORAL AND FUNCTIONAL VESTIBULAR DISTURBANCES AFTER SPACE FLIGHT. 2. FISHES, AMPHIBIANS AND BIRDS].

    PubMed

    Lychakov, D V

    2016-01-01

    The review contains data on functional shifts in fishes, amphibians and birds caused by changes in the otolith system operation after stay under weightlessness conditions. These data are of theoretical and practical significance and are important to resolve some fundamental problems of vestibulogy. The analysis of the results of space experiments has shown that weightlessness conditions do not exert a substantial impact on formation and functional state of the otolith system in embryonic fishes, amphibians and birds developed during space flight. Weightlessness conditions do pot inhibit embryonic development of lower vertebrates but even have rather beneficial effect on it. This is consistent with conclusions concerning development of mammalian fetuses. The experimental results show that weightlessness can cause similar functional and behavioral vestibular shifts both in lower vertebrates and in mammals. For example, immediately after an orbital flight the vestibuloocular reflex in fish larvae and tadpoles (without lordosis) was stronger than in control individuals. A similar shift of the otolith reflex was observed in the majority of cosmonauts after short-term orbital flights. Immediately after landing adult terrestrial vertebrates, as well as human beings, exhibit lower activity levels, worse equilibrium and coordination of movements. Another interesting finding observed after landing of the cosmic apparatus was an unusual looping character of tadpole swimming. It is supposed that the unusual motor activity of animals as well as appearance of illusions in cosmonauts and astronauts after switching from 1 to 0 g have the same nature and are related to the change in character of otolith organs stimulation. Considering this similarity of vestibular reactions, using animals seems rather perspective. Besides it allows applying in experiments various invasive techniques.

  15. Partial migration: growth varies between resident and migratory fish.

    PubMed

    Gillanders, Bronwyn M; Izzo, Christopher; Doubleday, Zoë A; Ye, Qifeng

    2015-03-01

    Partial migration occurs in many taxa and ecosystems and may confer survival benefits. Here, we use otolith chemistry data to determine whether fish from a large estuarine system were resident or migratory, and then examine whether contingents display differences in modelled growth based on changes in width of otolith growth increments. Sixty-three per cent of fish were resident based on Ba : Ca of otoliths, with the remainder categorized as migratory, with both contingents distributed across most age/size classes and both sexes, suggesting population-level bet hedging. Migrant fish were in slightly better condition than resident fish based on Fulton's K condition index. Migration type (resident versus migratory) was 56 times more likely to explain variation in growth than a model just incorporating year- and age-related growth trends. While average growth only varied slightly between resident and migratory fish, year-to-year variation was significant. Such dynamism in growth rates likely drives persistence of both life-history types. The complex relationships in growth between contingents suggest that management of species exhibiting partial migration is challenging, especially in a world subject to a changing climate. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Role of Vestibular Evoked Myogenic Potentials as an Indicator of Recovery in Patients with Benign Paroxysmal Positional Vertigo.

    PubMed

    Mendeš, Tihana; Maslovara, Siniša; Včeva, Andrijana; Butković Soldo, Silva

    2017-12-01

    Ocular vestibular evoked myogenic potentials (oVEMP) and cervical VEMP (cVEMP) are newer diagnostic methods, which allow an insight into the otolith senses. Our aim was to determine changes in certain parameters of the VEMP wave complex after successfully performed repositioning procedure, as an indicator of the state of recovery in patients with benign paroxysmal positional vertigo (BPPV). This may confirm the theory of otolith returning into the area of otolithic senses. The study included 48 patients with unilateral posterior semicircular canal BPPV. On their first arrival, otoneurological examinations, oVEMP and cVEMP tests were performed. The same were included in follow up check-ups scheduled at seven days and six months after successful implementation of Epley maneuvers. The initial measurement revealed a significantly reduced amplitude of oVEMP on the affected side. On the 7-day measurement, the amplitude increase was observed on the affected side, with significant reduction in the amplitude ratio (p=0.693), which reached statistical significance on the last measurement at 6 months (p=0.006). These findings confirmed the hypothesis of the return of otoconia into the utricular area.

  17. Silversides (Odontesthes bonariensis) reside within freshwater and estuarine habitats, not marine environments

    NASA Astrophysics Data System (ADS)

    Avigliano, Esteban; Miller, Nathan; Volpedo, Alejandra Vanina

    2018-05-01

    Otolith core-to-edge Sr:Ca ratio was determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to analyze the salinity-habitat migration history of the silverside, Odontesthes bonariensis, within the Uruguay River (freshwater) and Río de la Plata Estuary (estuarine water) (Plata Basin, South America). Regular core-to-edge oscillations in Sr:Ca suggest that the silverside makes annual migrations between freshwater (<1 PSU) and brackish (>1 PSU) habitats, with no evidence of marine incursion or non-migratory individuals. Empirical equations that represent the relationship between conductivity/salinity and otolith Sr:Ca ratio were used to identify where in an otolith an individual transitioned between freshwater and brackish habitats. In most specimens, the first migration between habitats likely occurred within the first year of life. Average numbers of changes between stable Sr:Ca signatures (sites with different salinities) determined by Change-Point analysis were similar from Uruguay River (8.9 ± 3.7) and Río de la Plata Estuary (7.5 ± 2.5) for comparable age fish (p < 0.05), suggesting that habitat use is similar in both collection sites.

  18. The morphogenic features of otoconia during larval development of Cynops pyrrhogaster, the Japanese red-bellied newt

    NASA Technical Reports Server (NTRS)

    Steyger, P. S.; Wiederhold, M. L.; Batten, J.

    1995-01-01

    Otoconia are calcified protein matrices within the gravity-sensing organs of the vertebrate vestibular system. Mammalian otoconia are barrel-shaped with triplanar facets at each end. Reptilian otoconia are commonly prismatic or fusiform in shape. Amphibians have all three otoconial morphologies, barrel-shaped otoconia within the utricle, with prismatic and fusiform otoconia in the saccule. Scanning electron microscopy revealed a sequential appearance of all three otoconial morphologies during larval development of the newt, Cynops pyrrhogaster. The first otoconia appear within a single, developing otolith, and some resemble adult barrel-shaped otoconia. As the larvae hatch, around stages 39-42, the single otolith divides into two anatomically separate regions, the utricle and saccule, and both contain otoconia similar to those seen in the single otolith. Throughout development, these otoconia may have variable morphologies, with serrated surfaces, or circumferential striations with either separated facets or adjacent facets in the triplanar end-regions. Small fusiform otoconia occur later, at stage 51, and only in the saccule. Prismatic otoconia appear later still, at stage 55, and again only in the saccule. Thus, although prismatic otoconia are the most numerous in adult newts, it is the last vestibular otoconial morphology to be expressed.

  19. Hard parts chemical composition as a potentially valuable tool for kutum, Rutilus kutum stock discrimination: A case study of the Southern Caspian Sea

    NASA Astrophysics Data System (ADS)

    Pourang, N.; Haghighi, F. Parafkandeh; Moazami, H. R.

    2018-07-01

    The potential use of elemental fingerprinting of five hard parts (otolith, scale, dorsal spine, eye lens and vertebral bone) for stock discrimination of Rutilus kutum from the Caspian Sea was investigated, for the first time. The specimens were sampled from three sampling sites in the Southern Caspian Sea in March 2016. Twenty specimens (total length: 32.6-37.9 mm; age: 3-4 yrs) were collected from each site. Concentrations of elements (Br, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, S, Sr and Zn) in the samples were determined by proton induced X-ray emission (PIXE). The pattern of elements occurrence in the eye lens was considerably different compared to the other hard parts. No significant differences were found in the Sr level in otolith between the sampling sites 2 and 3 (adjacent to the estuaries of Tajan and Gorganrud rivers, respectively) indicating that the specimens collected from the two sites are probably from the same population. Similar results were also obtained based on the results concerning K accumulation in scales. Generally, it can be concluded that scales may provide an alternative structure to otolith for stock discrimination of R. kutum in the southern Caspian Sea.

  20. Mobility of pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Giordano, G.; Porreca, M.; Lesti, C.; Cas, R. A. F.

    2012-04-01

    Mobility of pyroclastic density currents is a hot topic largely still poorly understood. Here we review three case studies of low aspect ratio (10-4) ignimbrites that encompass the spectrum from small to large volume, from basic to felsic in composition and from hot magmatic to cold phreatomagmatic endmembers. The 0.87 km3, phreatomagmatic, K-foiditic, Peperino Albano ignimbrite (Colli Albani, Italy), was erupted from the Albano maar at < 23 ka. The ignimbrite displays both thick valley pond and veneer facies. The juvenile component is 30-40% of the total volume and is highly fragmented to ash, with only a very minor proportion of small, vesicular lapilli. The unit reaches 10 km from vent, where it is confined in major valleys. Emplacement temperatures retrieved from paleomagnetic data and field data are at 350°-100°C. The 69 km3, tephritic, Pozzolane Rosse ignimbrite was erupted from the caldera of Colli Albani at 460 ka. The succession starts with subplinian fallout of poorly vesicular scoria lapilli. The overlying ignimbrite cover more than 2000 km2 and relate to pyroclastic flows with significant mobility, able to surmount hills at more than 20 km from vent. The facies is almost ubiquitously massive and chaotic. Juvenile pyroclasts are made of variably porphyritic, poorly to moderately vesicular scoria and spatter lapilli, and coarse ash. The texture of juvenile clasts indicates that the presence of little fine ash is not due to elutriation but to weak fragmentation of poorly vesicular and poorly viscous magma. The > 500 km3, rhyodacitic Galan ignimbrite (Altiplano Puna, Argentina) was erupted at 2.1 Ma. There is no basal fallout deposit. The ignimbrite is lithic poor, very crystal rich, massive and chaotic throughout, emplaced above Curie temperature, and develops valley confined facies, but no veneer facies, from proximal to distal (> 80 km) locations. The three cases show that: - the mobility of pyroclastic flows does not necessarily relate to the

  1. Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea volcano, Hawaii, 1790 a.d.: Keanakakoi Ash Member

    USGS Publications Warehouse

    McPhie, J.; Walker, G.P.L.; Christiansen, R.L.

    1990-01-01

    In or around 1790 a.d. an explosive eruption took place in the summit caldera of Kilauea shield volcano. A group of Hawaiian warriors close to the caldera at the time were killed by the effects of the explosions. The stratigraphy of pyroclastic deposits surrounding Kilauea (i.e., the Keanakakoi Ash Member) suggests that the explosions referred to in the historic record were the culmination of a prolonged hydrovolcanic eruption consisting of three main phases. The first phase was phreatomagmatic and generated well-bedded, fine fallout ash rich in glassy, variably vesiculated, juvenile magmatic and dense, lithic pyroclasts. The ash was mainly dispersed to the southwest of the caldera by the northeasterly trade winds. The second phase produced a Strombolian-style scoria fall deposit followed by phreatomagmatic ash similar to that of the first phase, though richer in accretionary lapilli and lithics. The third and culminating phase was phreatic and deposited lithic-rich lapilli and block fall layers, interbedded with cross-bedded surge deposits, and accretionary lapilli-rich, fine ash beds. These final explosions may have been responsible for the deaths of the warriors. The three phases were separated by quiescent spells during which the primary deposits were eroded and transported downwind in dunes migrating southwestward and locally excavated by fluvial runoff close to the rim. The entire hydrovolcanic eruption may have lasted for weeks or perhaps months. At around the same time, lava erupted from Kilauea's East Rift Zone and probably drained magma from the summit storage. The earliest descriptions of Kilauea (30 years after the Keanakakoi eruption) emphasize the great depth of the floor (300-500 m below the rim) and the presence of stepped ledges. It is therefore likely that the Keanakakoi explosions were deepseated within Kilauea, and that the vent rim was substantially lower than the caldera rim. The change from phreatomagmatic to phreatic phases may reflect the

  2. Eruptive style and construction of shallow marine mafic tuff cones in the Narakay Volcanic Complex (Proterozoic, Hornby Bay Group, Northwest Territories, Canada)

    NASA Astrophysics Data System (ADS)

    Ross, Gerald M.

    1986-03-01

    The Early Proterozoic (1663 Ma) Narakay Volcanic Complex, exposed in Great Bear Lake (Northwest Territories, Canada), is a bimodal suite of basalt and rhyolite erupted in a continental setting and consisting largely of pyroclastic rocks interlayered with shallow marine sedimentary rocks of the Hornby Bay Group. Mafic pyroclastic rocks consist of lapilli tuff, tuff, tuff breccia and agglomerate that represent the remnants of small subaerial tuff cones (0.5 to 2 km in diameter) that in most cases have subsided into the volcanic conduit. Stratification styles, sedimentary structures and grain morphologies in pyroclastic rocks reflect variations in the water:magma ratio during eruptions and have been used to help elucidate eruptive mechanisms and reconstruct volcanic edifices. Basaltic pyroclasts are commonly bounded by fracture surfaces and are morphologically similar to modern pyroclasts produced by thermal quench fragmentation or steam-blast disruption of magma. Most fragments have low vesicularity and scoria is only locally abundant which indicates that eruptive energy was supplied mostly by water—melt interaction rather than exsolution of magmatic gases. Cored bombs and lapilli, fusiform bombs, and pyroclasts similar in texture to those of Strombolian cinder and agglutinate spatter, are uncommon but are stratigraphically widespread and imply the occurrence of Strombolian eruptions, presumably when water access to the vent was impeded. Massive bedding is typical of the tuffs and, in addition to the poorly sorted ash-rich nature of the tuffs, implies deposition from water- and/or steam-rich hydrovolcanic eruption clouds and cypressoid jets by airfall and dense pyroclastic flows. Uncommon well-stratified and sorted ash and lapilli tuff record airfall and pyroclastic flow(?) deposition from eruption clouds rich in magmatic gases. Base surge deposits are uncommon and occur only in the subaerial portion of a sequence of tuffs inferred to record the progradation of a

  3. Detailed analysis of particle launch velocities, size distributions and gas densities during normal explosions at Stromboli

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.; Ripepe, Maurizio; Hughes, Elizabeth A.

    2012-06-01

    Using high frame rate (33 Hz) thermal video data we describe and parameterize the emission and ascent dynamics of a mixed plume of gas and particles emitted during a normal explosion at Stromboli (Aeolian Islands, Italy). Analysis of 34 events showed that 31 of them were characterized by a first phase characterized by an initial diffuse spray of relatively small (lapilli-sized) particles moving at high velocities (up to 213 m s- 1; average 66-82 m s- 1). This was followed, typically within 0.1 s, by a burst comprising a mixture of ash and lapilli, but dominated by larger bomb-sized particles, moving at lower exit velocities of up to 129 m s- 1, but typically 46 m s- 1. We interpret these results as revealing initial emission of a previously unrecorded high velocity gas-jet phase, to which the lapilli are coupled. This is followed by emission of slower moving larger particles that are decoupled from the faster moving gas-phase. Diameters for particles carried by the gas phase are typically around 4 cm, but can be up to 9 cm, with the diameter of the particles carried by the gas jet (D) decreasing with increased density and velocity of the erupted gas cloud (ρgas and Ugas). Data for 101 particles identified as moving with the gas jet during 32 eruptions allow us to define a new relation, whereby Ugas = Uparticle + a [ρgas√{D}]b. Here, Uparticle is the velocity of bombs whose motion is decoupled from that of the gas cloud, and a and b are two empirically-derived coefficients. This replaces the old relation, whereby Ugas = Uparticle + k √{D}; a relation that requires a constant gas density for each eruption. This is an assumption that we show to be invalid, with gas density potentially varying between 0.04 kg m- 3 and 9 kg m- 3 for the 32 cases considered, so that k varies between 54 m1/2 s- 1 and 828 m1/2 s- 1, compared with the traditionally used constant of 150 m1/2 s- 1.

  4. Geology and Volcanology of Kima'Kho Mountain, Northern British Columbia: A Pleistocene Glaciovolcanic Edifice

    NASA Astrophysics Data System (ADS)

    Turnbull, M.; Porritt, L. A.; Edwards, B. R.; Russell, K.

    2014-12-01

    Kima'Kho Mountain is a 1.8 Ma (40Ar/39Ar of 1.82 +/- 40 ka) Pleistocene an alkali-olivine basaltic tuya situated in northern British Columbia. The volcanic edifice rises 460 m from its base and comprises a central vent, dominated by lapilli-tuff and minor pillow lava and dykes; and a surrounding plateau underlain by a sequence of dipping beds of basaltic tuff-breccia and capped by a series of flat-lying, subaerial lava flows. We present a 1:10,000 geological map for Kima'Kho Mountain building on the preliminary work of Ryane et al. (2010). We use the volcanic stratigraphy to explore the implications of three unique features. (1) The central cone comprises massive to crudely-bedded lapilli tuffs containing abundant armoured lapilli - cores of highly-vesicular pyroclasts coated with blocky to cuspate vitric ash. These units suggest an explosive origin from within an ice-enclosed lake, and deposited by wet, dilute pyroclastic surge events. (2) The entire stratigraphic sequence hosts at least two "passage zones" (cf. Jones, 1969); the presence and geometry of these passage zones constrain ice thicknersses at the time of eruption and inform on the englacial lake dynamics. (3) Lastly, our field-based stratigraphic relationships are at odds with the classic tuya model (i.e. an effusive onset to the eruption, forming pillow basalts, followed by explosive activity). Our field mapping suggests an alternative model of tuya architecture, involving a highly-energetic, sustained explosive onset creating a tephra cone that become emergent followed by effusive eruption to create lavas and a subaqueous lava-fed delta. Jones, J. G. Intraglacial volcanoes of the Laugarvatn region, south-west Iceland-I. Geological Society of London Quarterly Journal 124, 197-211 (1969). Ryane, C., Edwards, B. R. & Russell, J. K. The volcanic stratigraphy of Kima'Kho Mountain: A Pleistocene tuya, northwestern British Columbia. Geological Survey of Canada, Current Research 2011-104, 12p, doi:10

  5. Histochemical localisation of carbonic anhydrase in the inner ear of developing cichlid fish, Oreochromis mossambicus

    NASA Astrophysics Data System (ADS)

    Beier, M.; Hilbig, R.; Anken, R.

    2008-12-01

    Inner ear otolith growth in terms of mineralisation mainly depends on the enzyme carbonic anhydrase (CAH). CAH is located in specialised, mitochondria-rich macular cells (ionocytes), which are involved in the endolymphatic ion exchange, and the enzyme is responsible for the provision of the pH-value necessary for otolithic calcium carbonate deposition. In the present study, for the first time the localisation of histochemically demonstrated CAH was analysed during the early larval development of a teleost, the cichlid fish Oreochromis mossambicus. CAH-reactivity was observed already in stage 7 animals (onset of otocyst development; staging follows Anken et al. [Anken, R., Kappel, T., Slenzka, K., Rahmann, H. The early morphogenetic development of the cichlid fish, Oreochromis mossambicus (Perciformes, Teleostei). Zool. Anz. 231, 1-10, 1993]). Neuroblasts (from which sensory and supporting cells are derived) proved to be CAH-positive. Already at stage 12 (hatch), CAH-positive regions could be attributed to ionocyte containing regions both in the so-called meshwork and patches area of the macula (i.e., clearly before ionocytes can be identified on ultrastructural level or by employing immunocytochemistry). In contrast to the circumstances observed in mammalian species, sensory hair cells stained negative for CAH in the cichlid. With the onset of stage 16 (finray primordia in dorsal fin, yolk-sac being increasingly absorbed), CAH-reactivity was observed in the vestibular nerve. This indicates the onset of myelinisation and thus commencement of operation. The localisation of CAH in the inner ear of fish (especially the differences in comparison to mammals) is discussed on the basis of its role in otolith calcification. Since the vestibular system is a detector of acceleration and thus gravity, also aspects regarding effects of altered gravity on CAH and hence on the mineralisation of otoliths in an adaptive process are addressed.

  6. Growth dynamics of saffron cod (Eleginus gracilis) and Arctic cod (Boreogadus saida) in the Northern Bering and Chukchi Seas

    NASA Astrophysics Data System (ADS)

    Helser, Thomas E.; Colman, Jamie R.; Anderl, Delsa M.; Kastelle, Craig R.

    2017-01-01

    Saffron cod (Eleginus gracilis) and Arctic cod (Boreogadus saida) are two circumpolar gadids that serve as critically important species responsible for energy transfer in Arctic food webs of the northern Bering and Chukchi Seas. To understand the potential effects of sea ice loss and warming temperatures on these species' basic life history, information such as growth is needed. Yet to date, limited effort has been dedicated to the study of their growth dynamics. Based on a large sample of otoliths collected in the first comprehensive ecosystem integrated survey in the northern Bering and Chukchi Seas, procedures were developed to reliably estimate age from otolith growth zones and were used to study the growth dynamics of saffron and Arctic cod. Annual growth zone assignment was validated using oxygen isotope signatures in otoliths and otolith morphology analyzed and compared between species. Saffron cod attained larger asymptotic sizes (L∞=363 mm) and achieved their maximum size at a faster rate (K=0.378) than Arctic cod (L∞=209 mm; K=0.312). For both species, regional differences in growth were found (p<0.01). Saffron cod grew to a significantly larger size at age in the northern Bering Sea when compared to the Chukchi Sea, particularly at younger ages. Arctic cod grew to smaller asymptotic size but at faster rates in the more northerly central (L∞=197 mm;K=0.324) and southern Chukchi Sea (L∞=221 mm;K=0.297) when compared to the northern Bering Sea (L∞=266 mm;K=0.171), suggesting a possible cline in growth rates with more northerly latitudes. Comparison of growth to two periods separated by 30 years indicate that both species exhibited a decline in maximum size accompanied by higher instantaneous growth rates in more recent years.

  7. Verification of a ‘freshwater-type’ life history variant of juvenile American shad in the Columbia River

    USGS Publications Warehouse

    Wetzel, Lisa A.; Larsen, Kimberly A.; Parsley, Michael J.; Zimmerman, Christian E.

    2011-01-01

    American shad are native to the Atlantic coast of North America and were successfully introduced to the Pacific coast in the 1870s. They are now more abundant in the Columbia River than are its native salmon. As in their native range, Columbia River American shad are anadromous and have been assumed to solely exhibit an ‘ocean-type’ life history, characterized by a short period of juvenile rearing in freshwater, followed by seaward migration and saltwater entry before age-1, with sexually mature individuals returning to freshwater to spawn beginning at age-3. During October 2007, emigrating juvenile American shad were captured in the juvenile fish monitoring facility at Bonneville Dam (river kilometer 235) on the Columbia River. Their length frequencies revealed the presence of two modes; the lower mode averaged 77 mm fork length (FL) and the upper mode averaged 184 mm FL. A subsample of fish from each mode was aged using otoliths. Otoliths from the lower mode (n=10) had no annuli, indicating that they were all age-0, while otoliths from the upper mode (n=25) had one or two annuli, indicating that they were either age-1 or age-2, respectively. Spawning adults collected in June 2007 averaged 393 mm FL (range 305-460 mm; n=21) and were estimated to range in age from 3-6. Elemental analyses of juvenile and adult otoliths provide evidence for deviations from the typical migration pattern expected for this species, including extensive freshwater rearing of up to two years. This evidence shows that a ‘freshwater-type’ of juvenile American shad exists as year-round or transient residents in the Columbia River basin. The ecological role of this life history variant within the fish community is unknown.

  8. Accounting for Age Uncertainty in Growth Modeling, the Case Study of Yellowfin Tuna (Thunnus albacares) of the Indian Ocean

    PubMed Central

    Dortel, Emmanuelle; Massiot-Granier, Félix; Rivot, Etienne; Million, Julien; Hallier, Jean-Pierre; Morize, Eric; Munaron, Jean-Marie; Bousquet, Nicolas; Chassot, Emmanuel

    2013-01-01

    Age estimates, typically determined by counting periodic growth increments in calcified structures of vertebrates, are the basis of population dynamics models used for managing exploited or threatened species. In fisheries research, the use of otolith growth rings as an indicator of fish age has increased considerably in recent decades. However, otolith readings include various sources of uncertainty. Current ageing methods, which converts an average count of rings into age, only provide periodic age estimates in which the range of uncertainty is fully ignored. In this study, we describe a hierarchical model for estimating individual ages from repeated otolith readings. The model was developed within a Bayesian framework to explicitly represent the sources of uncertainty associated with age estimation, to allow for individual variations and to include knowledge on parameters from expertise. The performance of the proposed model was examined through simulations, and then it was coupled to a two-stanza somatic growth model to evaluate the impact of the age estimation method on the age composition of commercial fisheries catches. We illustrate our approach using the saggital otoliths of yellowfin tuna of the Indian Ocean collected through large-scale mark-recapture experiments. The simulation performance suggested that the ageing error model was able to estimate the ageing biases and provide accurate age estimates, regardless of the age of the fish. Coupled with the growth model, this approach appeared suitable for modeling the growth of Indian Ocean yellowfin and is consistent with findings of previous studies. The simulations showed that the choice of the ageing method can strongly affect growth estimates with subsequent implications for age-structured data used as inputs for population models. Finally, our modeling approach revealed particularly useful to reflect uncertainty around age estimates into the process of growth estimation and it can be applied to any

  9. Patterns of larval source distribution and mixing in early life stages of Pacific cod (Gadus macrocephalus) in the southeastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Miller, Jessica A.; DiMaria, Ruth A.; Hurst, Thomas P.

    2016-12-01

    Effective and sustainable management depends on knowledge of spawning locations and their relative contributions to marine fish populations. Pacific cod (Gadus macrocephalus) in the southeastern Bering Sea aggregate at discrete spawning locations but there is little information on patterns of larval dispersal and the relative contribution of specific spawning areas to nursery habitats. Age-0 Pacific cod from two cohorts (2006 and 2008) were examined to address the following questions: (1) does size, age, and otolith chemistry vary among known capture locations; (2) can variation in elemental composition of the otolith cores (early larval signatures) be used to infer the number of chemically distinct sources contributing to juvenile recruits in the Bering Sea; and (3) to what extent are juvenile collection locations represented by groups of fish with similar chemical histories throughout their early life history? Hierarchical cluster (HCA) and discriminant function analyses (DFA) were used to examine variation in otolith chemistry at discrete periods throughout the early life history. HCA identified five chemically distinct groups of larvae in the 2006 cohort and three groups in 2008; however, three sources accounted for 80-100% of the juveniles in each year. DFA of early larval signatures indicated that there were non-random spatial distributions of early larvae in both years, which may reflect interannual variation in regional oceanography. There was also a detectable and substantial level of coherence in chemical signatures within groups of fish throughout the early life history. The variation in elemental signatures throughout the early life history (hatch to capture) indicates that otolith chemical analysis could be an effective tool to further clarify larval sources and dispersal, identify juvenile nursery habitats, and estimate the contributions of juvenile nursery habitats to the adult population within the southeastern Bering Sea.

  10. Tephra from the 1979 soufriere explosive eruption.

    PubMed

    Sigurdsson, H

    1982-06-04

    The explosive phase of the 1979 Soufriere eruption produced 37.5 x 10(6) cubic meters (dense-rock equivalent) of tephra, consisting of about 40 percent juvenile basaltic andesite and 60 percent of a nonjuvenile component derived from the fragmentation of the 1971-1972 lava island during phreatomagmatic explosions. The unusually fine grain size, poor sorting, and bimodality of the land deposit are attributed to particle aggregation and the formation of accretionary lapilli in a wet eruption column.

  11. Neural readaptation to Earth's gravity following return from space.

    PubMed

    Boyle, R; Mensinger, A F; Yoshida, K; Usui, S; Intravaia, A; Tricas, T; Highstein, S M

    2001-10-01

    The consequence of exposure to microgravity on the otolith organs was studied by recording the responses of vestibular nerve afferents supplying the utricular otolith organ to inertial accelerations in four toadfish, Opsanus tau, sequentially for 5 days following two National Aeronautics and Space Administration shuttle orbital flights. Within the first day postflight, the magnitude of response to an applied translation was on average three times greater than for controls. The reduced gravitational acceleration in orbit apparently resulted in an upregulation of the sensitivity of utricular afferents. By 30 h postflight, responses were statistically similar to control. The time course of return to normal afferent sensitivity parallels the reported decrease in vestibular disorientation in astronauts following return from space.

  12. Neural readaptation to Earth's gravity following return from space

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Mensinger, A. F.; Yoshida, K.; Usui, S.; Intravaia, A.; Tricas, T.; Highstein, S. M.

    2001-01-01

    The consequence of exposure to microgravity on the otolith organs was studied by recording the responses of vestibular nerve afferents supplying the utricular otolith organ to inertial accelerations in four toadfish, Opsanus tau, sequentially for 5 days following two National Aeronautics and Space Administration shuttle orbital flights. Within the first day postflight, the magnitude of response to an applied translation was on average three times greater than for controls. The reduced gravitational acceleration in orbit apparently resulted in an upregulation of the sensitivity of utricular afferents. By 30 h postflight, responses were statistically similar to control. The time course of return to normal afferent sensitivity parallels the reported decrease in vestibular disorientation in astronauts following return from space.

  13. Sensory Cells of the Fish Ear: A Hairy Enigma

    NASA Technical Reports Server (NTRS)

    Popper, A. N.; Saidel, W. M.

    1995-01-01

    Analysis of the structure of the ears in teleost fishes has led to the tentative suggestion that otolithic endorgans may function differently, in different species. Recently, evidence has demonstrated different 'types' of sensory hair cells can be found in the ears of teleost fishes, and individual hair cell types are found in discrete regions of individual sensory, epithelia. The presence of multiple hair cell types in fishes provides strong support to the hypothesis of regional differences in the responses of individual otolithic sensory epithelia. The finding of hair cell types in fishes that closely resemble those found in amniote vestibular endorgans also suggests that hair cell heterogeneity arose earlier in the evolution of the vertebrate ear than previously thought.

  14. Dynamic visual acuity using "far" and "near" targets

    NASA Technical Reports Server (NTRS)

    Peters, Brian T.; Bloomberg, Jacob J.

    2005-01-01

    CONCLUSIONS: DVA may be useful for assessing the functional consequences of an impaired gaze stabilization mechanism or for testing the effectiveness of a rehabilitation paradigm. Because target distance influences the relative contributions of canal and otolith inputs, the ability to measure DVA at near and far viewing distances may also lead to tests that will independently assess canal and otolith function. OBJECTIVE: To present and test a methodology that uses dynamic visual acuity (DVA) to assess the efficacy of compensatory gaze mechanisms during a functionally relevant activity that differentially measures canal and otolith function. MATERIAL AND METHODS: The effect of treadmill walking at a velocity of 1.79 m/s on subjects' visual acuity was assessed at each of two viewing distances. A custom-written threshold determination program was used to display Landolt C optotypes on a laptop computer screen during a "far" (4 m) target condition and on a micro-display for a "near" (50 cm) target condition. The walking acuity scores for each target distance were normalized by subtracting a corresponding acuity measure obtained while standing still on the treadmill belt. RESULTS: As predicted by subjective reports of relative target motion, the decrease in visual acuity was significantly greater (p < 0.00001) for the near compared to the far condition.

  15. Resolving Sensory Conflict: the Effect of Muscle Vibration on Postural Stability

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.

    1991-01-01

    The otolith-tilt reinterpretation hypothesis (OTTR) proposes that the central nervous system adapts to weightlessness by reinterpreting all otolith input as linear motion. While interpreting otolith input exclusively as linear motion is functionally useful in space, it is maladaptive upon return to Earth. Astronauts have reported experiencing illusory sensations during head movement which contributes to postural instability. The effect is assessed of muscle vibration in combination with a variety of sensory conflicts on postural equilibrium. The equilibrium of six healthy subjects was tested using the EquiTest sensory test protocol, with and without the confounding influence of triceps surea vibration. The data were analyzed with repeated measures with vibration, vision status, and platform status as independent variables. All main effects and an interaction between the presence of vision and platform sway referencing were found to be significant. Overall, a 4.5 pct. decrease in postural stability was observed with vibration. The trend of the difference scores between conditions with and without vibration suggests that vibration is most destabilizing when the triceps surea is able to change length during postural sway (i.e., conditions with a fixed support surface). The impact of sway referencing vision was virtually identical to that of eye closure, providing compelling evidence that sway referencing 'nulls out' useful cues about subject sway.

  16. Differences in Lateral Line Morphology between Hatchery- and Wild-Origin Steelhead

    PubMed Central

    Brown, Andrew D.; Sisneros, Joseph A.; Jurasin, Tyler; Nguyen, Chau; Coffin, Allison B.

    2013-01-01

    Despite identification of multiple factors mediating salmon survival, significant disparities in survival-to-adulthood among hatchery- versus wild-origin juveniles persist. In the present report, we explore the hypothesis that hatchery-reared juveniles might exhibit morphological defects in vulnerable mechanosensory systems prior to release from the hatchery, potentiating reduced survival after release. Juvenile steelhead (Oncorhynchus mykiss) from two different hatcheries were compared to wild-origin juveniles on several morphological traits including lateral line structure, otolith composition (a proxy for auditory function), and brain weight. Wild juveniles were found to possess significantly more superficial lateral line neuromasts than hatchery-reared juveniles, although the number of hair cells within individual neuromasts was not significantly different across groups. Wild juveniles were also found to possess primarily normal, aragonite-containing otoliths, while hatchery-reared juveniles possessed a high proportion of crystallized (vaterite) otoliths. Finally, wild juveniles were found to have significantly larger brains than hatchery-reared juveniles. These differences together predict reduced sensitivity to biologically important hydrodynamic and acoustic signals from natural biotic (predator, prey, conspecific) and abiotic (turbulent flow, current) sources among hatchery-reared steelhead, in turn predicting reduced survival fitness after release. Physiological and behavioral studies are required to establish the functional significance of these morphological differences. PMID:23554988

  17. Clinical classification and neuro-vestibular evaluation in chronic dizziness.

    PubMed

    Oh, Sun-Young; Kim, Do-Hyung; Yang, Tae-Ho; Shin, Byoung-Soo; Jeong, Seul-Ki

    2015-01-01

    This study attempts to clarify the clinical characteristics of chronic dizziness and its relationships with specific vestibular, oculomotor, autonomic and psychiatric dysfunctions. 73 Patients with idiopathic chronic dizziness were recruited and classified based on history taking and clinical examination into the following four clinical subgroups; vestibular migraine (VM), dysautonomia, psychogenic, and unspecified groups. They were also evaluated using oculomotor, otolithic and autonomic function tests, and psychologic investigation. Patients in the VM group showed a high proportion of abnormality on smooth pursuit and otolithic function testing compared to the other groups. The dysautonomia group revealed significant abnormalities in sympathetic and cardiovagal autonomic function, while the psychogenic group had a high frequency of abnormality in sympathetic autonomic testing and in Beck's anxiety inventory scale. The unspecified group showed abnormalities on saccade, smooth pursuit and autonomic function testing. Clinical classification of patients with chronic dizziness was relevant and they showed a correlation with disease-specific abnormal results in oculomotor, otolithic, autonomic function and psychology testing. Appropriate diagnostic investigation based on precise clinical diagnosis of chronic dizziness reduces the need for extensive laboratory testing, neuroimaging, and other low-yield tests. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. The 1909 Chinyero eruption on Tenerife (Canary Islands): insights from historical accounts, and tephrostratigraphic and geochemical data

    NASA Astrophysics Data System (ADS)

    Di Roberto, A.; Bertagnini, A.; Del Carlo, P.; Meletlidis, S.; Pompilio, M.

    2016-12-01

    The last eruption on Tenerife (Canary Islands, Spain) started on 18 November 1909 from the El Chinyero vent on the northwestern Santiago rift. This fissural eruption was well documented by scientists and eyewitnesses, but there is a lack of data on the high-energy phase that produced the most significant emissions of ash and lapilli at the onset of the eruption. Here, we review historical documents (e.g. newspapers, dispatches, telegrams); eyewitness accounts and scientific reports were reviewed from a volcanological perspective and integrated with data from the analysis of deposit features, allowing an accurate reconstruction of the eruption and its dynamics. The 1909 eruption of Chinyero was fed by a compositionally discrete magma batch that ascended rapidly within the crust, producing rather violent pulsating Strombolian explosive activity in the early phases of the eruption. This activity produced a ca. 80 m high scoria cone and heavy fallout of lapilli and ash over the entire northern sector of the island of Tenerife. The energy of explosive activity waned after 3 days, giving way to the weak Strombolian explosive activity that contributed to a lesser extent to the buildup of the pyroclastic pile. Eruptions such as those from the Chinyero vent in 1909 are representative of rift activity on Tenerife and constitute a volcanic hazard for present-day inhabitants.

  19. Modeling volcanic ash dispersal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macedonio, Giovanni

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around themore » volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.« less

  20. Post-eruptive sediment transport and surface processes on unvegetated volcanic hillslopes - A case study of Black Tank scoria cone, Cima Volcanic Field, California

    NASA Astrophysics Data System (ADS)

    Kereszturi, Gábor; Németh, Károly

    2016-08-01

    Conical volcanic edifices that are made up from lapilli to block/bomb pyroclastic successions, such as scoria cones, are widespread in terrestrial and extraterrestrial settings. Eruptive processes responsible for establishing the final facies architecture of a scoria cone are not well linked to numerical simulations of their post-eruptive sediment transport. Using sedimentological, geomorphic and 2D fragment morphology data from a 15-ky-old scoria cone from the Cima Volcanic Field, California, this study provides field evidence of the various post-eruptive sediment transport and degradation processes of scoria cones located in arid to semi-arid environments. This study has revealed that pyroclast morphologies vary downslope due to syn-eruptive granular flows, along with post-eruptive modification by rolling, bouncing and sliding of individual particles down a slope, and overland flow processes. The variability of sediment transport rates on hillslopes are not directly controlled by local slope angle variability and the flank length but rather by grain size, and morphological characteristics of particles, such as shape irregularity of pyroclast fragments and block/lapilli ratio. Due to the abundance of hillslopes degrading in unvegetated regions, such as those found in the Southwestern USA, granulometric influences should be accounted for in the formulation of sediment transport laws for geomorphic modification of volcanic terrains over long geologic time.