NASA Astrophysics Data System (ADS)
Galynskii, M. V.; Kuraev, E. A.
2014-03-01
In the one-photon exchange approximation we discuss questions related to the interpretation of unexpected results of the JLab polarization experiments to measure the Sachs form factors ratio GE/GM in the region 1.0≤Q2≤8.5 GeV2. For this purpose, we developed an approach which essentially is a generalization of the constituent-counting rules of the perturbative QCD (pQCD) for the case of massive quarks. We assume that at the lower boundary of the considered region the hard-scattering mechanism of pQCD is realized. Within the framework of the developed approach we calculated the hard kernel of the proton current matrix elements Jp±δ ,δ for the full set of spin combinations corresponding to the number of the spin-flipped quarks, which contribute to the proton transition without spin-flip (Jpδ ,δ) and with spin-flip (Jp-δ,δ). This allows us to state that (i) around the lower boundary of the considered region, the leading scaling behavior of the Sachs form factors has the form GE,GM˜1/Q6, (ii) the dipole dependence (GE,GM˜1/Q4) is realized in the asymptotic regime of pQCD when τ ≫1 (τ =Q2/4M2) in the case when the quark transitions with spin-flip dominate, (iii) the asymptotic regime of pQCD in the JLab experiments has not yet been achieved, and (iv) the linear decrease of the ratio GE/GM at τ <1 is due to additional contributions to Jpδ ,δ by spin-flip transitions of two quarks and an additional contribution to Jp-δ,δ by spin-flip transitions of three quarks.
Diagnosis and molecular characterization of non-classic forms of Tay-Sachs disease in Brazil.
Rozenberg, R; Kok, F; Burin, M G; Sá Miranda, M C; Vasques, C; Henriques-Souza, A M M; Giugliani, R; Vainzof, Mariz; Pereira, L V
2006-06-01
Molecular analysis of five Brazilian families, including eight patients presenting with nonclassic Tay-Sachs disease, was performed to identify frequent causative mutations and their correlation with clinical course. Three patients were affected by the B1 subacute variant and were shown to carry the R178H mutation (the DN allele), which is also common among Portuguese patients. Two of them were compound heterozygotes, whereas the third presented with the mutation in both alleles. Since Brazil was a Portuguese colony for over two centuries, common ancestry might be the probable explanation. The fourth patient presented with a juvenile phenotype and carries the R499H mutation, which has been reported only once worldwide and is associated with residual enzyme activity, responsible for a slower clinical course. The fifth family, of an Ashkenazi Jewish background, showed an extensive intrafamilial clinical variability among three affected sibs presenting with muscle atrophy, ataxia, and psychiatric symptoms. They were first diagnosed as having atypical spinal muscular atrophy and, subsequently, spinocerebellar ataxia, but, recently, the diagnosis of late-onset Tay-Sachs disease was confirmed based on reduced plasma hexosaminidase A activity and the G269S/InsTATC1278 genotype. It is therefore highly recommended to test patients with a similar clinical history for Tay-Sachs disease. In the same family, one first cousin committed suicide at the age of 24 years, presenting with a clinical phenotype that suggested an undiagnosed case and highlighting the effect of the intrafamilial clinical variability in delaying a prompt diagnosis. It is now recognized that his parents are, in fact, a carrier couple. Additionally, another relative had been previously identified as a heterozygote in a Tay-Sachs disease screening program, but the information was not shared among the family. Since this information might anticipate diagnosis and genetic counseling, it is advisable that
Tanaka, A
1993-09-01
GM2-gangliosidosis is a group of neurological disorders resulting from genetically defective catabolism, and consequent abnormal accumulation, of GM2-ganglioside. Three major types are distinguished: the B variant (Tay-Sachs disease), the O variant (Sandhoff disease), and the AB variant, caused by genetic abnormalities in the genes coding for the beta-hexosaminidase alpha- or beta-subunit, or the GM2-activator protein, respectively. A number of gene abnormalities responsible for Tay-Sachs disease have already been identified and the correlation between the beta-hexosaminidase alpha gene abnormality and the clinical phenotype has been explained in many cases. In the severest phenotype of Tay-Sachs disease (infantile form), mRNA of beta-hexosaminidase alpha subunit is not produced or is unstable such as in French Canadian patients or in Jewish patients with infantile Tay-Sachs disease, or the polypeptide does not have any catalytic activities because of the alteration of glycosylation such as the mutation of Glu482-to-Lys found in a Italian patient or the altered structure of polypeptide. The mutation identified in a large majority of the Japanese infantile Tay-Sachs disease patients, which is a G-to-T substitution at 3'-end of intron 5, generates a short mRNA with complete skipping of exon 6 and a polypeptide lacking 34 amino acids is generated but catalytically inactive. On the other hand, some active alpha beta dimers must be generated in patients with milder phenotypes of Tay-Sachs disease such as Gly269-to-Ser mutation in an adult form. Some of the mutations appear in high frequency among certain ethnic groups such as Ashkenazi Jewish patients and French Canadians.(ABSTRACT TRUNCATED AT 250 WORDS)
Tay-Sachs disease is a rare, inherited disease. It is a type of lipid metabolism disorder. It causes too ... cells, causing mental and physical problems. . Infants with Tay-Sachs disease appear to develop normally for the first few ...
Electromagnetic nucleon form factors
Bender, A.; Roberts, C.D.; Frank, M.R.
1995-08-01
The Dyson-Schwinger equation framework is employed to obtain expressions for the electromagnetic nucleon form factor. In generalized impulse approximation the form factor depends on the dressed quark propagator, the dressed quark-photon vertex, which is crucial to ensuring current conservation, and the nucleon Faddeev amplitude. The approach manifestly incorporates the large space-like-q{sup 2} renormalization group properties of QCD and allows a realistic extrapolation to small space-like-q{sup 2}. This extrapolation allows one to relate experimental data to the form of the quark-quark interaction at small space-like-q{sup 2}, which is presently unknown. The approach provides a means of unifying, within a single framework, the treatment of the perturbative and nonperturbative regimes of QCD. The wealth of experimental nucleon form factor data, over a large range of q{sup 2}, ensures that this application will provide an excellent environment to test, improve and extend our approach.
Inelastic Scattering Form Factors
1992-01-01
ATHENA-IV computes form factors for inelastic scattering calculations, using single-particle wave functions that are eigenstates of motion in either a Woods-Saxon potential well or a harmonic oscillator well. Two-body forces of Gauss, Coulomb, Yukawa, and a sum of cut-off Yukawa radial dependences are available.
NASA Astrophysics Data System (ADS)
Lomon, Earle L.; Pacetti, Simone
2016-09-01
The pion electromagnetic form factor and two-pion production in electron-positron collisions are simultaneously fitted by a vector dominance model evolving to perturbative QCD at large momentum transfer. This model was previously successful in simultaneously fitting the nucleon electromagnetic form factors (spacelike region) and the electromagnetic production of nucleon-antinucleon pairs (timelike region). For this pion case dispersion relations are used to produce the analytic connection of the spacelike and timelike regions. The fit to all the data is good, especially for the newer sets of timelike data. The description of high-q2 data, in the timelike region, requires one more meson with ρ quantum numbers than listed in the 2014 Particle Data Group review.
Nucleon Electromagnetic Form Factors
Kees de Jager
2004-08-01
Although nucleons account for nearly all the visible mass in the universe, they have a complicated structure that is still incompletely understood. The first indication that nucleons have an internal structure, was the measurement of the proton magnetic moment by Frisch and Stern (1933) which revealed a large deviation from the value expected for a point-like Dirac particle. The investigation of the spatial structure of the nucleon, resulting in the first quantitative measurement of the proton charge radius, was initiated by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was obtained by scattering thermal neutrons off atomic electrons. The recent revival of its experimental study through the operational implementation of novel instrumentation has instigated a strong theoretical interest. Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum transferred to the nucleon by the virtual photon can be selected to probe different scales of the nucleon, from integral properties such as the charge radius to scaling properties of its internal constituents. Polarization instrumentation, polarized beams and targets, and the measurement of the polarization of the recoiling nucleon have been essential in the accurate separation of the charge and magnetic form factors and in studies of the elusive neutron charge form factor.
Electromagnetic pion form factor
Roberts, C.D.
1995-08-01
A phenomenological Dyson-Schwinger/Bethe-Salpeter equation approach to QCD, formalized in terms of a QCD-based model field theory, the Global Color-symmetry Model (GCM), was used to calculate the generalized impulse approximation contribution to the electromagnetic pion form factor at space-like q{sup 2} on the domain [0,10] GeV{sup 2}. In effective field theories this form factor is sometimes understood as simply being due to Vector Meson Dominance (VMD) but this does not allow for a simple connection with QCD where the VMD contribution is of higher order than that of the quark core. In the GCM the pion is treated as a composite bound state of a confined quark and antiquark interacting via the exchange of colored vector-bosons. A direct study of the quark core contribution is made, using a quark propagator that manifests the large space-like-q{sup 2} properties of QCD, parameterizes the infrared behavior and incorporates confinement. It is shown that the few parameters which characterize the infrared form of the quark propagator may be chosen so as to yield excellent agreement with the available data. In doing this one directly relates experimental observables to properties of QCD at small space-like-q{sup 2}. The incorporation of confinement eliminates endpoint and pinch singularities in the calculation of F{sub {pi}}(q{sup 2}). With asymptotic freedom manifest in the dressed quark propagator the calculation yields q{sup 4}F{sub {pi}}(q{sup 2}) = constant, up to [q{sup 2}]- corrections, for space-like-q{sup 2} {approx_gt} 35 GeV{sup 2}, which indicates that soft, nonperturbative contributions dominate the form factor at presently accessible q{sup 2}. This means that the often-used factorization Ansatz fails in this exclusive process. A paper describing this work was submitted for publication. In addition, these results formed the basis for an invited presentation at a workshop on chiral dynamics and will be published in the proceedings.
D. Day
2007-03-01
The nucleon form factors are still the subject of active investigation even after an experimental effort spanning 50 years. This is because they are of critical importance to our understanding of the electromagnetic properties of nuclei and provide a unique testing ground for QCD motivated models of nucleon structure. Progress in polarized beams, polarized targets and recoil polarimetry have allowed an important and precise set of data to be collected over the last decade. I will review the experimental status of elastic electron scattering from the nucleon along with an outlook for future progress.
Nucleon Electromagnetic Form Factors
Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi
2007-10-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.
Ryong Ji, C.; Pang, A.; Szczepaniak, A.
1994-04-01
It is pointed out that the correct criterion to define the legal PQCD contribution to the exclusive processes in the lightcone perturbative expansion should be based on the large off-shellness of the lightcone energy in the intermediate states. In the lightcone perturbative QCD calculation of the pion form factor, the authors find that the legal PQCD contribution defined by the lightcone energy cut saturates in the smaller Q{sup 2} region compared to that defined by the gluon four-momentum square cut. This is due to the contribution by the highly off-energy-shell gluons in the end point regions of the phase space, indicating that the gluon four-momentum-square cut may have cut too much to define the legal PQCD.
Tallman, J F; Johnson, W G; Brady, R O
1972-09-01
The catabolism of Tay-Sachs ganglioside, N-acetylgalactosaminyl- (N-acetylneuraminosyl) -galactosylglucosylceramide, has been studied in lysosomal preparations from normal human brain and brain obtained at biopsy from Tay-Sachs patients. Utilizing Tay-Sachs ganglioside labeled with (14)C in the N-acetylgalactosaminyl portion or (3)H in the N-acetylneuraminosyl portion, the catabolism of Tay-Sachs ganglioside may be initiated by either the removal of the molecule of N-acetylgalactosamine or N-acetylneuraminic acid. The activity of the N-acetylgalactosamine-cleaving enzyme (hexosaminidase) is drastically diminished in such preparations from Tay-Sachs brain whereas the activity of the N-acetylneuraminic acid-cleaving enzyme (neuraminidase) is at a normal level. Total hexosaminidase activity as measured with an artificial fluorogenic substrate is increased in tissues obtained from patients with the B variant form of Tay-Sachs disease and it is virtually absent in the O-variant patients. The addition of purified neuraminidase and various purified hexosaminidases exerted only a minimal synergistic effect on the hydrolysis of Tay-Sachs ganglioside in the lysosomal preparations from the control or patient with the O variant of Tay-Sachs disease.
Venus - Sag Caldera 'Sachs Patera
NASA Technical Reports Server (NTRS)
1991-01-01
This image of Sachs Patera on Venus is centered at 49 degrees north, 334 degrees east. Defined as a sag-caldera, Sachs is an elliptical depression 130 meters (81 feet) in depth, spanning 40 kilometers (25 miles) in width along its longest axis. The morphology implies that a chamber of molten material drained and collapsed, forming a depression surrounded by concentric scarps spaced 2-to-5 kilometers (1.2- to-3 miles) apart. The arc-shaped set of scarps, extending out to the north from the prominent ellipse, is evidence for a separate episode of withdrawal; the small lobe-shaped extension to the southwest may represent an additional event. Solidified lava flows 10-to-25 kilometers (6-to-16 miles) long, give the caldera its flower-like appearance. The flows are a lighter tone of gray in the radar data because the lava is blockier in texture and consequently returns more radar waves. Much of the lava, which was evacuated from the chamber, probably traveled to other locations underground, while some of it may have surfaced further south. This is unlike calderas on Earth, where a rim of lava builds up in the immediate vicinity of the caldera.
Hou, Y; Vavougios, G; Hinek, A; Wu, K K; Hechtman, P; Kaplan, F; Mahuran, D J
1996-07-01
Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site.
Hou, Y.; Vavougios, G.; Hinek, A.
1996-07-01
Substitution mutations adversely affecting the {alpha}-subunit of {beta}-hexosaminidase A ({alpha}{beta}) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-{alpha} chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an {open_quotes}active-site{close_quotes} residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all {alpha}-specific activity. This biochemical phenotype is referred to as the {open_quotes}B1-variant form{close_quotes} of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, {alpha}-Val{sup 192}Leu. Chinese hamster ovary cells were permanently cotransfected with an {alpha}-cDNA-construct encoding the substitution and a mutant {beta}-cDNA ({beta}-Arg{sup 211}Lys), encoding a {beta}-subunit that is inactive but normal in all other respects. We were surprised to find that the Val{sup 192}Leu substitution produced a pro-{alpha} chain that did not form {alpha}-{beta} dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val{sup 192}Leu substitution does not specifically affect the {alpha}-active site. 23 refs., 4 figs., 2 tabs.
Dru Renner
2012-04-01
Precision computation of hadronic physics with lattice QCD is becoming feasible. The last decade has seen precent-level calculations of many simple properties of mesons, and the last few years have seen calculations of baryon masses, including the nucleon mass, accurate to a few percent. As computational power increases and algorithms advance, the precise calculation of a variety of more demanding hadronic properties will become realistic. With this in mind, I discuss the current lattice QCD calculations of generalized parton distributions with an emphasis on the prospects for well-controlled calculations for these observables as well. I will do this by way of several examples: the pion and nucleon form factors and moments of the nucleon parton and generalized-parton distributions.
Lynaugh, J
1991-01-01
Helplessly watching a woman die from a self-induced abortion forever changed the life of Margaret Sanger, the women who brought the issue of birth control to the forefront of feminist and health issues. In 912, Sanger, wide and mother of 3, practiced nursing in New York City. One day she accompanied a physician to an emergency at the house of Jake Sachs, a 28 year-old truck driver and husband of Sadie Sachs. Sadie was very ill, the product of a self-induced abortion. Sanger nursed Sadie for several weeks until she recovered, but as Sanger prepared to make her leave, Sadie said that another pregnancy would end her life. Sanger asked the physician if there was anything that could be done, but he responded negatively. Three months later, the Sachs household had another emergency, and Sanger promptly arrived, already knowing what she would find. It was too late to save Sadie Sachs. This incident changed her life. She renounced the nursing profession for activism, but was unable to convince her feminist and socialist friends of the need for controlling family size. So she began studying all there was to know on the subject, and came to coin the term "birth control". Later she started publishing a magazine designed to educate on birth control, but the authorities put an end to it, since the law prohibited anyone from providing information to prevent conception for any reason. She fled to England, but returned to open a clinic in Brooklyn that distributed information on birth control. The clinic served hundreds of people, until it was raided by police on the 9th day of operation. Sanger went to jail. Nonetheless, her pioneering efforts did begin the acknowledgement of the need for birth control. And now, public opinion stands on the side of Margaret Sanger.
Lynaugh, J
1991-01-01
Helplessly watching a woman die from a self-induced abortion forever changed the life of Margaret Sanger, the women who brought the issue of birth control to the forefront of feminist and health issues. In 912, Sanger, wide and mother of 3, practiced nursing in New York City. One day she accompanied a physician to an emergency at the house of Jake Sachs, a 28 year-old truck driver and husband of Sadie Sachs. Sadie was very ill, the product of a self-induced abortion. Sanger nursed Sadie for several weeks until she recovered, but as Sanger prepared to make her leave, Sadie said that another pregnancy would end her life. Sanger asked the physician if there was anything that could be done, but he responded negatively. Three months later, the Sachs household had another emergency, and Sanger promptly arrived, already knowing what she would find. It was too late to save Sadie Sachs. This incident changed her life. She renounced the nursing profession for activism, but was unable to convince her feminist and socialist friends of the need for controlling family size. So she began studying all there was to know on the subject, and came to coin the term "birth control". Later she started publishing a magazine designed to educate on birth control, but the authorities put an end to it, since the law prohibited anyone from providing information to prevent conception for any reason. She fled to England, but returned to open a clinic in Brooklyn that distributed information on birth control. The clinic served hundreds of people, until it was raided by police on the 9th day of operation. Sanger went to jail. Nonetheless, her pioneering efforts did begin the acknowledgement of the need for birth control. And now, public opinion stands on the side of Margaret Sanger. PMID:2003073
The neutron electric form factor to Q² = 1.45 (GeV/c)²
Plaster, Bradley
2004-02-01
The nucleon elastic electromagnetic form factors are fundamental quantities needed for an understanding of nucleon and nuclear electromagnetic structure. The evolution of the Sachs electric and magnetic form factors with Q^{2}, the square of the four-momentum transfer, is related to the distribution of charge and magnetization within the nucleon. High precision measurements of the nucleon form factors are essential for stringent tests of our current theoretical understanding of confinement within the nucleon. Measurements of the neutron form factors, in particular, those of the neutron electric form factor, have been notoriously difficult due to the lack of a free neutron target and the vanishing integral charge of the neutron. Indeed, a precise measurement of the neutron electric form factor has eluded experimentalists for decades; however, with the advent of high duty-factor polarized electron beam facilities, experiments employing polarization degrees of freedom have finally yielded the first precise measurements of this fundamental quantity. Following a general overview of the experimental and theoretical status of the nucleon form factors, a detailed description of an experiment designed to extract the neutron electric form factor from measurements of the neutron's recoil polarization in quasielastic 2H(e, e')1H scattering is presented. The experiment described here employed the Thomas Jefferson National Accelerator Facility's longitudinally polarized electron beam, a magnetic spectrometer for detection of the scattered electron, and a neutron polarimeter designed specifically for this experiment. Measurements were conducted at three Q^{2} values of 0.45, 1.13, and 1.45 (GeV/c)^{2}, and the final results extracted from an analysis of the data acquired in this experiment are reported and compared with recent theoretical predictions for the nucleon form factors.
Corneal changes in Tay-Sachs disease.
Ghosh, M; Hunter, W S; Wedge, C
1990-06-01
Tay-Sachs disease is a well-known inherited disease leading to an accumulation of gangliosides in the brain and retina. Our report is based on a case of Tay-Sachs disease in a non-Jewish infant where pathologic changes were noted in corneal endothelium as well as in the retina.
Form factors in the radiative pion decay
NASA Astrophysics Data System (ADS)
Mateu, V.; Portolés, J.
2007-10-01
We perform an analysis of the form factors that rule the structure-dependent amplitude in radiative pion decay. The resonance contributions to π→eνeγ decays are computed through the proper construction of the vector and axial-vector form factors by setting the QCD driven asymptotic properties of the three-point Green functions
Testing Gravity Against Early Time Integrated Sachs-Wolfe Effect
Zhang, Pengjie; /Shanghai, Astron. Observ. /Fermilab
2005-11-01
A generic prediction of general relativity is that the cosmological linear density growth factor D is scale independent. But in general, modified gravities do not preserve this signature. A scale dependent D can cause time variation in gravitational potential at high redshifts and provides a new cosmological test of gravity, through early time integrated Sachs-Wolfe (ISW) effect-large scale structure (LSS) cross correlation. We demonstrate the power of this test for a class of f(R) gravity, with the form f(R) = {lambda}{sub 1}H{sub 0}{sup 2} exp(-R/{lambda}{sub 2}H{sub 0}{sup 2}). Such f(R) gravity, even with degenerate expansion history to {Lambda}CDM, can produce detectable ISW effect at z {approx}> 3 and l {approx}> 20. Null-detection of such effect would constrain {lambda}{sub 2} to be {lambda}{sub 2} > 1000 at > 95% confidence level. On the other hand, robust detection of ISW-LSS cross correlation at high z will severely challenge general relativity.
Form factor and boundary contribution of amplitude
NASA Astrophysics Data System (ADS)
Huang, Rijun; Jin, Qingjun; Feng, Bo
2016-06-01
The boundary contribution of an amplitude in the BCFW recursion relation can be considered as a form factor involving boundary operator and unshifted particles. At the tree-level, we show that by suitable construction of Lagrangian, one can relate the leading order term of boundary operators to some composite operators of mathcal{N} = 4 superYang-Mills theory, then the computation of form factors is translated to the computation of amplitudes. We compute the form factors of these composite operators through the computation of corresponding double trace amplitudes.
Proton form factor effects in hydrogenic atoms
Daza, F. Garcia; Kelkar, N. G.; Nowakowski, M.
2011-10-21
The proton structure corrections to the hyperfine splittings in electronic and muonic hydrogen are evaluated using the Breit potential with electromagnetic form factors. In contrast to other methods, the Breit equation with q{sup 2} dependent form factors is just an extension of the standard Breit equation which gives the hyperfine splitting Hamiltonian. Precise QED corrections are comparable to the structure corrections which therefore need to be evaluated ab initio.
Nucleon and Δ electromagnetic form factors
NASA Astrophysics Data System (ADS)
Bartoš, Erik; Dubnička, Stanislav; Dubničková, Anna-Zuzana
2015-11-01
The unitary and analytic model for nucleons works very well. The model for spin 1 2+ baryons can predict static parameters for Λ, Σ+, Σ0, Σ-, Ξ, Ξ-. We prepared the scheme how to construct the model also for Δ nucleon resonance. It was used to describe transition form factor GM∗ and the experimentally measured ratio RSM with the help of relations for magnetic dipole transition and charge quadrupole form factors.
Tay-Sachs disease in persons of French-Canadian heritage in northern New England.
Palomaki, G E; Williams, J; Haddow, J E; Natowicz, M R
1995-05-01
This study sought to determine whether persons of French-Canadian heritage in northern New England are at high risk for the lethal infantile form of Tay-Sachs disease. In order to accomplish this, death records and laboratory diagnostic records were surveyed to ascertain Tay-Sachs deaths in a cohort of 372,000 live births between 1977-1986. The proportion of the total population with French-Canadian or Jewish heritage was determined from census and birth records, and the ethnic background of Tay-Sachs cases was determined from the corresponding birth records. In 1,860 births, both parents were of Ashkenazi Jewish heritage. One of those children was diagnosed with Tay-Sachs disease. In 41,000 births, both parents were of French-Canadian heritage, and in an additional 93,000 births, one parent was of French-Canadian heritage. No cases of Tay-Sachs disease were identified in the offspring of those individuals. Approximately 14 cases (95% confidence interval 8-20) would be expected, if the gene frequency approximated that reported for individuals of Ashkenazi Jewish heritage. Based on the results of this study, routine testing for Tay-Sachs disease heterozygosity is not indicated for persons of French-Canadian heritage in northern New England. This conclusion may not necessarily be valid for persons of French-Canadian heritage residing in other states. Further studies of Tay-Sachs disease mutations and prevalence among persons of French-Canadian heritage will be important to determine possible regional variations in gene frequencies.
Nucleon Form Factors - A Jefferson Lab Perspective
John Arrington, Kees de Jager, Charles F. Perdrisat
2011-06-01
The charge and magnetization distributions of the proton and neutron are encoded in their elastic electromagnetic form factors, which can be measured in elastic electron--nucleon scattering. By measuring the form factors, we probe the spatial distribution of the proton charge and magnetization, providing the most direct connection to the spatial distribution of quarks inside the proton. For decades, the form factors were probed through measurements of unpolarized elastic electron scattering, but by the 1980s, progress slowed dramatically due to the intrinsic limitations of the unpolarized measurements. Early measurements at several laboratories demonstrated the feasibility and power of measurements using polarization degrees of freedom to probe the spatial structure of the nucleon. A program of polarization measurements at Jefferson Lab led to a renaissance in the field of study, and significant new insight into the structure of matter.
The Form Factors of the Nucleons
Perdrisat, Charles F.
2013-11-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double-polarization experiments, in comparison with with pre-vious unpolarized cross section data. Here we will review the experimental data base in view of the new results for the proton and the neutron, obtained at MIT-Bates, JLab and MAMI. The rapid evolution of phenomenological models triggered by these high- precision experiments will be discussed. In particular, the possibility that the proton is non-spherical in its ground state, and that the transverse charge density are model in- dependently defined in the infinite momentum frame. Likewise, flavor decomposition of the nucleon form factors into dressed u and d quark form factors, may give information about the quark-diquark structure of the nucleon. The current proton radius "crisis" will also be discussed.
The form factors of the nucleons
NASA Astrophysics Data System (ADS)
Perdrisat, C. F.
2013-11-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double-polarization experiments, in comparison with with previous unpolarized cross section data. Here we will review the experimental data base in view of the new results for the proton and the neutron, obtained at MIT-Bates, JLab and MAMI. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed. In particular, the possibility that the proton is non-spherical in its ground state, and that the transverse charge density are model independently defined in the infinite momentum frame. Likewise, flavor decomposition of the nucleon form factors into dressed u and d quark form factors, may give information about the quark-diquark structure of the nucleon. The current proton radius "crisis" will also be discussed.
Hadronic form factors in kaon photoproduction
Syukurilla, L. Mart, T.
2014-09-25
We have revisited the effect of hadronic form factors in kaon photoproduction process by utilizing an isobaric model developed for kaon photoproduction off the proton. The model is able to reproduce the available experimental data nicely as well as to reveal the origin of the second peak in the total cross section, which was the main source of confusion for decades. Different from our previous study, in the present work we explore the possibility of using different hadronic form factors in each of the KΛN vertices. The use of different hadronic form factors, e.g. dipole, Gaussian, and generalized dipole, has been found to produce a more flexible isobar model, which can provide a significant improvement in the model.
Charm form factors in hadronic interactions
Bracco, M. E.; Navarra, F. S.; Nielsen, M.; Chiapparini, M.
2010-12-28
We calculate the form factors and the coupling constants in vertices with charm mesons, such as {rho}D*D*, in the framework of QCD sum rules. We first discuss the applications of these form factors in heavy ion collisions and in B decays. We then present an introduction to the method of QCD sum rules and describe how to work with the three-point function. We give special attention to the procedure employed to extrapolate results obtained in the deep euclidean region to the poles of the particles, located in the time-like region. Finally we present a table of ready-to-use parametrizations of all the form factors, which are relevant for the processes mentioned in the introduction. We also give the coupling constants.
[Tay-Sachs disease in non-Jewish infant in Israel].
Nadim, Nasser
2012-01-01
Tay-Sachs disease, also known as GM2 gangliosidosis or Hexosaminidase A deficiency is an autosomal recessive genetic fatal disorder. The disease is known to appear in East European Ashkenazi Jews, North African Jews, and Quebec French Canadians exclusively, but, with different frequency and type of mutation. Its most common variant is the infantile type Tay-Sachs disease. Juvenile and late-onset forms of the disease are infrequent and slowly progressive. At nearly 3 to 6 months old, a baby with Tay-Sachs progressively loses his motor skills and attentiveness. Startle responses and hyperreflexia become prominent, especially on eliciting deep patellar and Achilles reflexes, as a consequence of neurodegeneration of the upper motor neuron. Other systemic damage ensues gradually; seizures, blindness, spasticity of limbs, inability to swallow and breathe, and eventually the baby dies at 1-4 years of age. All Tay-Sachs patients have a "cherry red spot", easily seen in the macula area of the retina, using an ophthalmoscope. The "cherry red spot" is the only normal part of the retina in these sick babies. The case presented here emphasizes that Tay-Sachs disease is sometimes misdiagnosed at first visits even by an experienced clinician, because of his lack of awareness that this disease is not exclusively a Jewish disease.
[Tay-Sachs disease in non-Jewish infant in Israel].
Nadim, Nasser
2012-01-01
Tay-Sachs disease, also known as GM2 gangliosidosis or Hexosaminidase A deficiency is an autosomal recessive genetic fatal disorder. The disease is known to appear in East European Ashkenazi Jews, North African Jews, and Quebec French Canadians exclusively, but, with different frequency and type of mutation. Its most common variant is the infantile type Tay-Sachs disease. Juvenile and late-onset forms of the disease are infrequent and slowly progressive. At nearly 3 to 6 months old, a baby with Tay-Sachs progressively loses his motor skills and attentiveness. Startle responses and hyperreflexia become prominent, especially on eliciting deep patellar and Achilles reflexes, as a consequence of neurodegeneration of the upper motor neuron. Other systemic damage ensues gradually; seizures, blindness, spasticity of limbs, inability to swallow and breathe, and eventually the baby dies at 1-4 years of age. All Tay-Sachs patients have a "cherry red spot", easily seen in the macula area of the retina, using an ophthalmoscope. The "cherry red spot" is the only normal part of the retina in these sick babies. The case presented here emphasizes that Tay-Sachs disease is sometimes misdiagnosed at first visits even by an experienced clinician, because of his lack of awareness that this disease is not exclusively a Jewish disease. PMID:22670494
Electromagnetic charged and neutral kaon form factors
Roberts, C.D.; Burden, C.J.; Thomson, M.J.
1995-08-01
The electromagnetic form factor of the charged and neutral kaon is calculated using the approach applied in the successful study of the pion form factor, described above. The charged kaon form factor will be measured in forthcoming experiments at CEBAF. Our calculation involves the dressed strange quark propagator, to which F{sub {pi}}(q{sup 2}) is not sensitive, and hence it provides us with constraints on the strange-quark sector of QCD. Our preliminary results are encouraging. We find that the strange and up/down quark propagators are not too different, once the change in the current-quark-mass is accounted for. However, the difference that remains is important since it allows {l_angle}{bar s}s{r_angle}<{l_angle}{bar u}u{r_angle}. This calculation is the first to yield a value of f{sub K}/f{sub {pi}} that is in good agreement with experiment and also yields r{sub K+}/r{sub {pi}} in good agreement with experiment. Our calculated charged kaon form factor provides a prediction that will be tested in the forthcoming CEBAF experiments. Our studies also show that K{sup 0} has a negative charge radius, as is to be expected. Our calculated value will be compared with that measured in K{sub s}{sup 0} regeneration from electrons.
Electromagnetic Transition form Factor of Nucleon Resonances
NASA Astrophysics Data System (ADS)
Sato, Toru
2016-10-01
A dynamical coupled channel model for electron and neutrino induced meson production reactions is developed. The model is an extension of our previous reaction model to describe reactions at finite Q^2. The electromagnetic transition form factors of the first (3/2^+,3/2) and (3/2^-,1/2) resonances extracted from partial wave amplitude are discussed.
Form Factors and Radii of Light Nuclei
Sick, Ingo
2015-09-15
We discuss the determination of electromagnetic form factors from the world data on electron–nucleus scattering for nuclei Z ≤ 3, with particular emphasis on the derivation of the moments required for comparison with measurements from electronic/muonic atoms and isotope shifts.
Meson-photon transition form factors
Balakireva, Irina; Lucha, Wolfgang; Melikhov, Dmitri
2012-10-23
We present the results of our recent analysis of the meson-photon transition form factors F{sub P{gamma}}(Q{sup 2}) for the pseudoscalar mesons P {pi}{sup 0},{eta},{eta} Prime ,{eta}{sub c}, using the local-duality version of QCD sum rules.
Nucleon and Elastic and Transition Form Factors
NASA Astrophysics Data System (ADS)
Segovia, Jorge; Cloët, Ian C.; Roberts, Craig D.; Schmidt, Sebastian M.
2014-12-01
We present a unified study of nucleon and elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector vector contact-interaction. The comparison emphasises that experiments are sensitive to the momentum dependence of the running couplings and masses in the strong interaction sector of the Standard Model and highlights that the key to describing hadron properties is a veracious expression of dynamical chiral symmetry breaking in the bound-state problem. Amongst the results we describe, the following are of particular interest: possesses a zero at Q 2 = 9.5 GeV2; any change in the interaction which shifts a zero in the proton ratio to larger Q 2 relocates a zero in to smaller Q 2; there is likely a value of momentum transfer above which ; and the presence of strong diquark correlations within the nucleon is sufficient to understand empirical extractions of the flavour-separated form factors. Regarding the -baryon, we find that, inter alia: the electric monopole form factor exhibits a zero; the electric quadrupole form factor is negative, large in magnitude, and sensitive to the nature and strength of correlations in the Faddeev amplitude; and the magnetic octupole form factor is negative so long as rest-frame P- and D-wave correlations are included. In connection with the transition, the momentum-dependence of the magnetic transition form factor, , matches that of once the momentum transfer is high enough to pierce the meson-cloud; and the electric quadrupole ratio is a keen measure of diquark and orbital angular momentum correlations, the zero in which is obscured by meson-cloud effects on the domain currently accessible to experiment. Importantly, within each framework, identical propagators and vertices are sufficient to describe all properties discussed herein. Our
Kantowski-Sachs cosmological solutions in the generalized teleparallel gravity via Noether symmetry
NASA Astrophysics Data System (ADS)
Motavalli, H.; Akbarieh, A. Rezaei; Nasiry, M.
2016-04-01
We study the f(T) theory as an extension of teleparallel gravity and consider the Noether symmetry of Kantowski-Sachs (KS) anisotropic model for this theory. We specify the explicit teleparallel form of f(T) and find the corresponding exact cosmological solutions under the assumption that the Lagrangian admits the Noether symmetry. It is found that the universe experiences a power law expansion for the scale factors in the context of f(T) theory. By deriving equation of state (EOS) parameter, we show that the universe passes through the phantom and ΛCDM theoretical scenarios. In this way, we estimate a lower limit age for the universe in excellent agreement with the value reported from recent observations. When KS model reduces to the flat Friedmann-Robertson-Walker (FRW) metric, our results are properly transformed into the corresponding values.
Nucleon and Deuteron Form Factors from BLAST
Hasell, D. K.
2009-12-17
The BLAST experiment was designed to study in a systematic manner the spin-dependent, electromagnetic interaction on hydrogen and deuterium. Measuring only asymmetries in electron scattering with respect to the beam helicity, target spin, or both; the BLAST experiment was able to extract information on nucleon and deuteron form factors independent of beam intensity or target density. By further forming 'super-ratios' of asymmetries, measurements were possible independent of beam and target polarization thus reducing uncertainties due to these quantities as well. Some of the form factor results from BLAST will be briefly presented here. Also, in response to observed discrepancies between polarization measurements and those obtained using traditional Rosenbluth separation techniques a proposed experiment, OLYMPUS, which will use the BLAST detector to measure the two photon contribution to elastic electron scattering will also be presented.
Burg-Metzner-Sachs symmetry, string theory, and soft theorems
NASA Astrophysics Data System (ADS)
Avery, Steven G.; Schwab, Burkhard U. W.
2016-01-01
We study the action of the Burg-Metzner-Sachs (BMS) group in critical, bosonic string theory living on a target space of the form Md×C . Here Md is d -dimensional (asymptotically) flat spacetime and C is an arbitrary compactification. We provide a treatment of generalized Ward-Takahashi identities and derive consistent boundary conditions for any d from string theory considerations. Finally, we derive BMS transformations in higher-dimensional spacetimes and show that the generalized Ward-Takahashi identity of BMS produces Weinberg's soft theorem in string theory.
Brown, C.A.; Mahuran, D.J. )
1993-08-01
In vitro mutagenesis and transient expression in COS cells has been used to associate a missense mutation with a clinical or biochemical phenotype. Mutations affecting the [alpha]-subunit of [beta]-hexosaminidase A ([alpha][beta]) (E.C.3.2.1.52) result in Tay-Sachs disease. Because hexosaminidase A is heterodimeric, analysis of [alpha]-chain mutations is not straightforward. The authors examine three approaches utilizing previously identified mutations affecting [alpha]-chain folding. These involve transfection of (1) the [alpha] cDNA alone; (2) a [beta] cDNA construct encoding a [beta]-subunit substituted at a position homologous to that of the [alpha]-subunit, and (3) both [alpha] and [beta] cDNAs. The latter two procedures amplified residual activity levels over that of patient samples, an effect not previously found with mutations affecting an [open quotes]active[close quotes] [alpha]Arg residue. This effect may help to discriminate between protein-folding and active-site mutations. The authors conclude that, with proper controls, the latter method of cotransfection can be used to evaluate the effects and perhaps to predict the clinical course of some [alpha]-chain mutations. Using this technique, they demonstrate that the adult-onset Tay-Sachs mutation, [alpha]Gly[yields]Ser[sup 269], does not directly affect [alpha][beta] dimerization but exerts an indirect effect on the dimer through destabilizing the folded [alpha]-subunit at physiological temperatures. Two other [alpha] mutations linked to more severe phenotypes appear to inhibit the initial folding of the subunit. 36 refs., 2 figs., 5 tabs.
Unified description of kaon electroweak form factors
A. Afanasev; W. Buck
1996-06-01
A calculation of the semileptonic decays of the kaon (K{sub l3}) is presented. The results are direct predictions of a covariant model of the pion and kaon introduced earlier by Ito, Buck, Gross. The weak form factors for K{sub l3} are predicted with absolutely no parameter adjustments of the model. The authors obtained for the form factor parameters: f{sub {minus}}(q{sup 2}=m{sub l}{sup 2})/f{sub +}(q{sup 2}=m{sub l}{sup 2})={minus}0.28 and {lambda}{sub +}= 0.028, both within experimental error bars. Connections of this approach to heavy quark symmetry will also be discussed.
Nucleon form factor studies at JLab.
Giusa, A; Bellini, V; Mammoliti, F; Russo, G; Sperduto, M L; Sutera, C M; Cisbani, E; Garibaldi, F; Urciuoli, G M; Capogni, M; Cates, G D; de Jager, K; Wojtsekhowski, B
2011-08-01
The ratio of the electromagnetic proton elastic form factors, G(p)(E)/G(p)(M), has been measured at Jefferson Lab up to Q(2) approximately 9(GeV/c)(2), by using the CEBAF 6GeV electron beam, and revealing an unexpected and challenging physical behaviour. The 2014 scheduled 12GeV upgrade will allow the measurement of G(p)(E)/G(p)(M) up to Q(2) approximately 15(GeV/c)(2), by taking advantage of the new large-acceptance forward spectrometer Super BigBite (SBS) in Hall A. Measurements of neutron form factors in the region around 10(GeV/c)(2), where quark confinement plays an important role, are expected to show the behaviour already observed in the proton case. PMID:21145242
Nucleon form factor studies at Jlab
Giusa, A; Mammoliti, F; Russo, G; Sperduto, M L; Sutera, C M; Cisbani, E; Garibaldi, F; Urciuoli, G M; Capogni, M; Cates, G D; de Jager, K; Wojtsekhowski, B
2011-08-01
The ratio of the electromagnetic proton elastic form factors, GpE/GpM, has been measured at Jefferson Lab up to View the MathML source, by using the CEBAF 6 GeV electron beam, and revealing an unexpected and challenging physical behaviour. The 2014 scheduled 12 GeV upgrade will allow the measurement of GpE/GpM up to View the MathML source, by taking advantage of the new large-acceptance forward spectrometer Super BigBite (SBS) in Hall A. Measurements of neutron form factors in the region around 10 (GeV/c)2, where quark confinement plays an important role, are expected to show the behaviour already observed in the proton case.
Form factors for Russian doll droplet models
NASA Astrophysics Data System (ADS)
Wilemski, G.; Obeidat, A.; Hrahsheh, F.
2013-05-01
Molecular dynamics (MD) simulations of nanodroplets containing water and nonane show them to be nonspherical and strongly phase separated. A simple, but realistic model for these "Russian doll" structures is a spherical nonane lens that partially wets a spherical water droplet. This document contains an analytical calculation of the particle form factor P(q) needed to analyze experimental measurements of small angle neutron and x-ray scattering from aerosols of particles with this type of structure. In addition, an exact formulation of the particle form factor is developed for cylindrically symmetric droplets with otherwise arbitrary scattering length density functions. This result will be useful to calculate P(q) directly from MD simulation results. We compare results using both formulations and find excellent agreement between them.
Use of form factors in electromagnetic interactions
Naus, H.W.L.; Koch, J.H.
1989-05-01
We comment on the description of electromagnetic reactions involving hadrons, when the internal structure of the hadrons is taken into account. General off-shell vertex operators, only constrained by Lorentz and gauge invariance, are used. The electromagnetic production of pions on a nucleon is discussed as an example. Commonly used ad hoc recipes involving phenomenological form factors are discussed in the framework of an exact formulation.
Elastic form factors at higher CEBAF energies
Petratos, G.G.
1994-04-01
The prospects for elastic scattering from few body systems with higher beam energies at CEBAF is presented. The deuteron and{sup 3}He elastic structure functions A(Q{sup 2}) can be measured at sufficiently high momentum transfers to study the transition between the conventional meson-nucleon and the constituent quark-gluon descriptions. Possible improvements in the proton magnetic form factor data are also presented.
Heavy to light baryon transition form factors
Guo, X. |; Huang, T. |; Li, Z.
1996-05-01
Recently, Stech found form factor relations for heavy to light transitions based on two simple dynamical assumptions for a spectator particle. In this paper we generalize his approach to the case of baryons and find that for {Lambda}{sub {ital Q}}{r_arrow}{Lambda} ({ital Q}={ital b} or {ital c}) only one independent form factor remains in the limit {ital m}{sub {ital Q}}{r_arrow}{infinity}. Furthermore, combining with the model of Guo and Kroll we determine both of the two form factors for {Lambda}{sub {ital Q}}{r_arrow}{Lambda} in the heavy quark limit. The results are applied to {Lambda}{sub {ital b}}{r_arrow}{Lambda}+{ital J}/{psi} which is not clarified both theoretically and experimentally. It is found that the branching ratio of {Lambda}{sub {ital b}}{r_arrow}{Lambda}+{ital J}/{psi} is of order 10{sup {minus}5}. {copyright} {ital 1996 The American Physical Society.}
Transverse form factors of [sup 117]Sn
Baghaei, H.; Dubach, J.; Frodyma, M.B.; Hicks, R.S.; Miskimen, R.A.; Peterson, G.A.; Rokni, S.H. ); Hotta, A. ); Suzuki, T. )
1993-08-01
Transverse elastic and inelastic form factors for low-lying levels in [sup 117]Sn have been measured by 180[degree] electron scattering in the momentum transfer range [ital q][sub eff]=1.1--2.4 fm[sup [minus]1]. The simple independent-particle model fails to account for these data, predicting form factors that are much too large. In better quantitative agreement with the data are the results of more detailed calculations that allow for configuration mixing of valence nucleons, as well as first-order core polarization. As in the similar case of [sup 205]Tl, these calculations successfully predict the presence of a deep diffraction minimum observed in the intermediate [ital q] region of the elastic [ital M]1 form factor. Nevertheless, the overall description of the data by the detailed calculations remains quantitatively unsatisfactory. A more complete understanding of these data may rely upon the consideration of multiparticle-multihole configurations outside the 0[h bar][omega] basis space.
Tay-Sachs disease: B1 variant.
Gordon, B A; Gordon, K E; Hinton, G G; Cadera, W; Feleki, V; Bayleran, J; Hechtman, P
1988-01-01
This first child of non-Jewish parents had nystagmus at 4 months of age, bilateral cherry-red macular spots at 7 months of age, and hyperacusis at 8 months of age; the patient has deteriorated progressively following a clinical course typical of Tay-Sachs disease B variant. Total beta-N-acetylhexosaminidase assayed with 4-methylumbelliferyl-beta-glucosamine (4 MU GlcNAc) as substrate was within the normal range in plasma and cultured dermal fibroblasts and 2/3 the normal mean in leukocytes. The hexosaminidase A activity, assayed with the same substrate in plasma and cultured fibroblasts, approximated Tay-Sachs disease heterozygote levels; however, the activity of hexosaminidase A assayed with 4 MU Glc NAc-6-sulfate in the plasma, leukocytes, and cultured fibroblasts was less than 8, 2, and 1%, respectively of the control mean. This female infant with the B1 variant of Tay-Sachs disease demonstrated an earlier onset and more rapidly progressive course than was observed in 4 of the 5 previously reported patients with this Tay-Sachs disease variant.
Survey of nucleon electromagnetic form factors
Perdrisat, Charles F.; Punjabi, Vina A.
2011-09-20
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double polarization experiments, in compar- ison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at MIT-Bates, MAMI, and JLab. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed.
Lattice Calculations of Nucleon Form Factors
Syritsyn, S. N.
2011-10-24
We present recent results of calculation of the isovector electromagnetic and axial form factors of the nucleon using lattice QCD with three different lattice actions and pion masses down to m{sub {pi}} > or approx. 300 MeV. Because of the precision of our high-statistics calculations, we can test predictions of baryon chiral perturbation theory for the charge and axial radii of the nucleon. We find that currently available baryon ChPT calculations disagree with our data, indicating that the corresponding effective theory approximations are not valid above m{sub {pi}{approx_equal}3}00 MeV.
Neutron electric form factor via recoil polarimetry
Madey, Richard; Semenov, Andrei; Taylor, Simon; Aghalaryan, Aram; Crouse, Erick; MacLachlan, Glen; Plaster, Bradley; Tajima, Shigeyuki; Tireman, William; Yan, Chenyu; Ahmidouch, Abdellah; Anderson, Brian; Asaturyan, Razmik; Baker, O; Baldwin, Alan; Breuer, Herbert; Carlini, Roger; Christy, Michael; Churchwell, Steve; Cole, Leon; Danagoulian, Samuel; Day, Donal; Elaasar, Mostafa; Ent, Rolf; Farkhondeh, Manouchehr; Fenker, Howard; Finn, John; Gan, Liping; Garrow, Kenneth; Gueye, Paul; Howell, Calvin; Hu, Bitao; Jones, Mark; Kelly, James; Keppel, Cynthia; Khandaker, Mahbubul; Kim, Wooyoung; Kowalski, Stanley; Lung, Allison; Mack, David; Manley, D; Markowitz, Pete; Mitchell, Joseph; Mkrtchyan, Hamlet; Opper, Allena; Perdrisat, Charles; Punjabi, Vina; Raue, Brian; Reichelt, Tilmann; Reinhold, Joerg; Roche, Julie; Sato, Yoshinori; Seo, Wonick; Simicevic, Neven; Smith, Gregory; Stepanyan, Samuel; Tadevosyan, Vardan; Tang, Liguang; Ulmer, Paul; Vulcan, William; Watson, John; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yan, Chen; Yang, Seunghoon; Yuan, Lulin; Zhang, Wei-Ming; Zhu, Hong Guo; Zhu, Xiaofeng
2003-05-01
The ratio of the electric to the magnetic form factor of the neutron, G_En/G_Mn, was measured via recoil polarimetry from the quasielastic d({pol-e},e'{pol-n)p reaction at three values of Q^2 [viz., 0.45, 1.15 and 1.47 (GeV/c)^2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G_En follows the Galster parameterization up to Q^2 = 1.15 (GeV/c)^2 and appears to rise above the Galster parameterization at Q^2 = 1.47 (GeV/c)^2.
Pseudoscalar transition form factors from rational approximants
NASA Astrophysics Data System (ADS)
Masjuan, Pere
2014-06-01
The π0, η, and η' transition form factors in the space-like region are analyzed at low and intermediate energies in a model-independent way through the use of rational approximants. Slope and curvature parameters as well as their values at infinity are extracted from experimental data. These results are suited for constraining hadronic models such as the ones used for the hadronic light-by-light scattering part of the anomalous magnetic moment of the muon, and for the mixing parameters of the η - η' system.
Rapid identification of HEXA mutations in Tay-Sachs patients.
Giraud, Carole; Dussau, Jeanne; Azouguene, Emilie; Feillet, François; Puech, Jean-Philippe; Caillaud, Catherine
2010-02-19
Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder due to mutations in the HEXA gene resulting in a beta-hexosaminidase A (Hex A) deficiency. The purpose of this study was to characterize the molecular abnormalities in patients with infantile or later-onset forms of the disease. The complete sequencing of the 14 exons and flanking regions of the HEXA gene was performed with a unique technical condition in 10 unrelated TSD patients. Eleven mutations were identified, including five splice mutations, one insertion, two deletions and three single-base substitutions. Four mutations were novel: two splice mutations (IVS8+5G>A, IVS2+4delAGTA), one missense mutation in exon 6 (c.621T>G (p.D207E)) and one small deletion (c.1211-1212delTG) in exon 11 resulting in a premature stop codon at residue 429. The c.621T>G missense mutation was found in a patient presenting an infantile form. Its putative role in the pathogenesis of TSD is suspected as residue 207 is highly conserved in human, mouse and rat. Moreover, structural modelling predicted changes likely to affect substrate binding and catalytic activity of the enzyme. The time-saving procedure reported here could be useful for the characterization of Tay-Sachs-causing mutations, in particular in non-Ashkenazi patients mainly exhibiting rare mutations. PMID:20100466
Helium Compton Form Factor Measurements at CLAS
Voutier, Eric J.-M.
2013-07-01
The distribution of the parton content of nuclei, as encoded via the generalized parton distributions (GPDs), can be accessed via the deeply virtual Compton scattering (DVCS) process contributing to the cross section for leptoproduction of real photons. Similarly to the scattering of light by a material, DVCS provides information about the dynamics and the spatial structure of hadrons. The sensitivity of this process to the lepton beam polarization allows to single-out the DVCS amplitude in terms of Compton form factors that contain GPDs information. The beam spin asymmetry of the $^4$He($\\vec {\\mathrm e}$,e$' \\gamma ^4$He) process was measured in the experimental Hall B of the Jefferson Laboratory to extract the real and imaginary parts of the twist-2 Compton form factor of the $^4$He nucleus. The experimental results reported here demonstrate the relevance of this method for such a goal, and suggest the dominance of the Bethe-Heitler amplitude to the unpolarized process in the kinematic range explored by the experiment.
Electromagnetic Transition Form Factors of Nucleon Resonances
Burkert, Volker D.
2008-10-13
Recent measurements of nucleon resonance transition form factors with CLAS at Jefferson Lab are discussed. The new data resolve a long-standing puzzle of the nature of the Roper resonance, and confirm the assertion of the symmetric constituent quark model of the Roper as the first radial excitation of the nucleon. The data on high Q{sup 2} n{pi}{sup +} production confirm the slow fall off of the S{sub 11}(1535) transition form factor with Q{sup 2}, and better constrain the branching ratios {beta}{sub N{pi}} = 0.50 and {beta}{sub N{eta}} = 0.45. For the first time, the longitudinal transition amplitude to the S{sub 11}(1535) was extracted from the n{pi}{sup +} data. Also, new results on the transition amplitudes for the D{sub 13}(1520) resonance are presented showing a rapid transition from helicity 3/2 dominance seen at the real photon point to helicty 1/2 dominance at higher Q{sup 2}.
Measurements of hadron form factors at BESIII
NASA Astrophysics Data System (ADS)
Morales, Cristina Morales
2016-05-01
BEPCII is a symmetric e+e--collider located in Beijing running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows the BESIII-experiment to measure hadron form factors both from direct e+e--annihilation and from initial state radiation processes. In this paper, results on e+e- → p p ¯ based on data collected by BESIII in 2011 and 2012 are presented. We also present preliminary results on e+e- → Λ Λ ¯ based on the same data samples at 4 center-of-mass energies. BESIII results obtained from e+e- → π+π- using the initial state radiation technique at the center-of-mass energy of 3.773 GeV are also summarized. Finally, expectations on the measurement of baryon electromagnetic form factors from the BESIII high luminosity energy scan in 2015 and from initial state radiation processes at different center-of-mass energies are also explained.
Elastic and Transition Form Factors in DSEs
NASA Astrophysics Data System (ADS)
Segovia, Jorge
2016-06-01
A symmetry preserving framework for the study of continuum quantum chromodynamics (QCD) is obtained from a truncated solution of the QCD equations of motion or QCD's Dyson-Schwinger equations (DSEs). A nonperturbative solution of the DSEs enables the study of, e.g., hadrons as composites of dressed-quarks and dressed-gluons, the phenomena of confinement and dynamical chiral symmetry breaking, and therefrom an articulation of any connection between them. It is within this context that we present a unified study of Nucleon, Delta and Roper elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector ⊗ vector contact-interaction.
Nucleon Transition Form Factors and New Perspectives
Gothe, R W
2007-10-01
The status of the electro-excitation program to study baryon resonances at Jefferson Lab will be exemplified by the most recent results on resonance parameters and transition form factors in single and double-pion production. These results demonstrate that the separation of resonance and background contributions and therefore the extraction of the electro-coupling amplitudes of resonances become easier and cleaner at higher four-momentum transfers (Q2). Furthermore, the double-pion in comparison to the single-pion channel shows a higher sensitivity to higher excited resonances and a distinctly different Q2 dependence of the background amplitudes. The combined analysis of the single- and double-pion data reduces model dependent uncertainties significantly, which allows us to extract the resonant electrocoupling amplitudes with an unprecedented quality.
Enzyme replacement in Tay-Sachs disease.
von Specht, B U; Geiger, B; Arnon, R; Passwell, J; Keren, G; Goldman, B; Padeh, B
1979-06-01
Enzyme replacement therapy was attempted with two Tay-Sachs-diseased individuals--a 14-month-old child and a 7-week-old infant. Treatment consisted of repeated weekly intrathecal injections of pure hexosaminidase A. Injection of this enzyme resulted in almost complete disappearance of GM2 from the serum, but did not bring about dissolution of the GM2 membranous cytoplasmic bodies in the brain, as detected by electronmicroscopy. Both patients tolerated the treatment without apparent clinical complications, but no clear-cut improvement was noted as a result of prolonged injections of hexosaminidase A. Since this treatment was initiated in both an advanced stage and a very early stage of the disease, we conclude that enzyme replacement treatment by this route is not beneficial for patients with Tay-Sachs disease. PMID:572006
Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene.
Myerowitz, R
1997-01-01
Tay-Sachs disease is an autosomal recessive disorder affecting the central nervous system. The disorder results from mutations in the gene encoding the alpha-subunit of beta-hexosaminidase A, a lysosomal enzyme composed of alpha and beta polypeptides. Seventy-eight mutations in the Hex A gene have been described and include 65 single base substitutions, one large and 10 small deletions, and two small insertions. Because these mutations cripple the catalytic activity of beta-hexosaminidase to varying degrees, Tay-Sachs disease displays clinical heterogeneity. Forty-five of the single base substitutions cause missense mutations; 39 of these are disease causing, three are benign but cause a change in phenotype, and three are neutral polymorphisms. Six nonsense mutations and 14 splice site lesions result from single base substitutions, and all but one of the splice site lesions cause a severe form of Tay-Sachs disease. Eight frameshift mutations arise from six deletion- and two insertion-type lesions. One of these insertions, consisting of four bases within exon 11, is found in 80% of the carriers of Tay-Sachs disease from the Ashkenazi Jewish population, an ethnic group that has a 10-fold higher gene frequency for a severe form of the disorder than the general population. A very large deletion, 7.5 kilobases, including all of exon 1 and portions of DNA upstream and downstream from that exon, is the major mutation found in Tay-Sachs disease carriers from the French Canadian population, a geographic isolate displaying an elevated carrier frequency. Most of the other mutations are confined to single pedigrees. Identification of these mutations has permitted more accurate carrier information, prenatal diagnosis, and disease prognosis. In conjunction with a precise tertiary structure of the enzyme, these mutations could be used to gain insight into the structure-function relationships of the lysosomal enzyme.
The Dirac form factor predicts the Pauli form factor in the Endpoint Model
NASA Astrophysics Data System (ADS)
Dagaonkar, Sumeet K.; Jain, Pankaj; Ralston, John P.
2016-07-01
We compute the momentum-transfer dependence of the proton Pauli form factor F2 in the Endpoint overlap Model. We find the model correctly reproduces the scaling of the ratio of F2 with the Dirac form factor F1 observed at the Jefferson Laboratory. The calculation uses the leading-power, leading-twist Dirac structure of the quark light-cone wave function and the same endpoint dependence previously determined from the Dirac form factor F1. There are no parameters and no adjustable functions in the Endpoint Model's prediction for the scaling behavior of F2. The model's predicted momentum dependence of the ratio F2(Q2)/F1(Q2) is quite insensitive to the endpoint wave function, which explains why the observed ratio scales like 1 / Q down to rather low momentum transfers. We also fit the magnitude of this ratio by adjusting the parameters of the wave function. The Endpoint Model appears to be the only comprehensive model consistent with all form factor information as well as reproducing fixed-angle proton-proton scattering at large momentum transfer. Any one of the processes is capable of predicting the others.
Vector and Axial Vector Pion Form Factors
NASA Astrophysics Data System (ADS)
Vitz, Michael; PEN Collaboration
2015-04-01
Radiative pion decay π+ -->e+ νγ (RPD) provides critical input to chiral perturbation theory (χPT). Aside from the uninteresting ``inner bremsstrahlung'' contribution from QED, the RPD rate contains ``structure dependent'' terms given by FV and FA, the vector and axial-vector pion form factors, respectively. The two appear in the decay rate in combinations FV -FA and FV +FA , i.e., in the so-called SD- and SD+ terms, respectively. The latter has been measured to high precision by the PIBETA collaboration. We report on the analysis of new data, measured by the PEN collaboration in runs between 2008 and 2010 at the Paul Scherrer Institute, Switzerland. We particularly focus on the possibility of improvement in the determination of the SD- term. Precise determinations of FV and FA test the validity of the CVC hypothesis, provide numerical input for the l9 +l10 terms in the χPT lagrangian, and constrain potential non-(V - A) terms, such as a possible tensor term FT. NSF grants PHY-0970013, 1307328, and others.
Gravitational form factors and nucleon spin structure
NASA Astrophysics Data System (ADS)
Teryaev, O. V.
2016-10-01
Nucleon scattering by the classical gravitational field is described by the gravitational (energy-momentum tensor) form factors (GFFs), which also control the partition of nucleon spin between the total angular momenta of quarks and gluons. The equivalence principle (EP) for spin dynamics results in the identically zero anomalous gravitomagnetic moment, which is the straightforward analog of its electromagnetic counterpart. The extended EP (ExEP) describes its (approximate) validity separately for quarks and gluons and, in turn, results in equal partition of the momentum and total angular momentum. It is violated in quantum electrodynamics and perturbative quantum chromodynamics (QCD), but may be restored in nonperturbative QCD because of confinement and spontaneous chiral symmetry breaking, which is supported by models and lattice QCD calculations. It may, in principle, be checked by extracting the generalized parton distributions from hard exclusive processes. The EP for spin-1 hadrons is also manifested in inclusive processes (deep inelastic scattering and the Drell-Yan process) in sum rules for tensor structure functions and parton distributions. The ExEP may originate in either gravity-proof confinement or in the closeness of the GFF to its asymptotic values in relation to the mediocrity principle. The GFFs in time-like regions reveal some similarity between inflation and annihilation.
Ten novel mutations in the HEXA gene in non-Jewish Tay-Sachs patients.
Akli, S; Chomel, J C; Lacorte, J M; Bachner, L; Kahn, A; Poenaru, L
1993-01-01
The heterogeneity of mutations causing Tay-Sachs disease in non-Jewish populations requires efficient techniques allowing the simultaneous screening for both known and novel mutations. beta-hexosaminidase mRNA isolated from cultured fibroblasts of 19 Tay-Sachs patients (7 with adult or late onset form of the disease and 12 with infantile Tay-Sachs disease) was amplified by cDNA-PCR in two overlapping segments spanning the entire coding sequence. We used chemical mismatch cleavage (CMC), denaturing gradient gel electrophoresis (DGGE) and direct sequencing of amplified fragments displaying a cleaved product or an altered melting behavior to screen the HEX A gene for mutations and to determine their distribution and frequency in the non-Jewish Tay-Sachs patients. These methods allowed us to identify 31 out of 38 alleles studied (82%). In addition to 9 previously described mutations (the 4 bp insertion in exon 11, G to A transitions at codons 170, 269, 482, 499 and 504, C to T transition at codon 499 and 504 and a GT to AT transition at the donor site of intron 9), we have identified 10 novel mutations. These include 1 donor splice site defect in intron 6, 8 missense mutations at non-randomly distributed conserved residues and a 2 bp deletion in exon 4. These results confirm the extreme molecular heterogeneity of mutations causing Tay-Sachs disease in non-Jewish population. The strategy used should be profitable for identifying mutations in large genes and for diagnostic purposes.
National Tay-Sachs and Allied Diseases Association, Inc.
ERIC Educational Resources Information Center
Exceptional Parent, 1977
1977-01-01
Reviewed are the history and organization, purpose and programs, and public services of the National Tay-Sachs and Allied Diseases Association, an organization geared toward eradicating Tay-Sachs disease (a hereditary disorder affecting primarily Jewish infants which generally leads to deterioration and death by the child's fifth year). (SBH)
The National Tay Sachs and Allied Diseases Association.
ERIC Educational Resources Information Center
Zeitlin, Paula
1986-01-01
The National Tay-Sachs and Allied Diseases Association is involved in education, research, and prevention of Tay-Sachs, an inherited metabolic disorder which destroys the central nervous system, and over 30 related disorders. The group features a parent peer group network and a support group for carrier couples. (CL)
Factor Structure of the Resident Evaluation Form.
ERIC Educational Resources Information Center
Forsythe, George B.; And Others
1985-01-01
The Resident Evaluation Form (REF) was developed to assess resident physicians' clinical performance. This research sought to empirically evaluate the intuitively derived REF scales representing areas of clinical performance: interpersonal ability, cognitive ability, clinical skills, and professional attributes. Analysis yielded cognitive…
31Phosphorus magnetic resonance spectroscopy in late-onset Tay-Sachs disease.
Felderhoff-Mueser, U; Sperner, J; Konstanzcak, P; Navon, R; Weschke, B
2001-05-01
The late-onset form of GM2 gangliosidosis (Tay-Sachs disease) is an autosomal-recessive disorder with progressive neurologic disease, mainly characterized by motor neuron and spinocerebellar dysfunction. The majority of patients are of Ashkenazi Jewish origin. 31Phosphorus magnetic resonance spectroscopy of the brain was performed to study the metabolic changes of a 16-year-old patient with late-onset Tay-Sachs disease who had a heterozygous Gly269-->Ser mutation in the hexosaminidase A encoding gene in compound heterozygosity with another, yet unidentified mutation. Severe changes in phosphorus metabolism with a decreased amount of phosphodiesters and membrane-bound phosphates were demonstrated, suggesting an activation of phosphodiesterases by accumulating gangliosides. The clinical findings were well related to the changes in spectroscopically determined metabolites.
Virtuality Distributions and Pion Transition Form Factor
Radyushkin, Anatoly V.
2015-03-01
Using the example of hard exclusive transition process γ*γ → π0 at the handbag level, we outline basics of a new approach to transverse momentum dependence in hard processes. In coordinate representation, matrix elements of operators (in the simplest case, bilocal O(0,z)) describing a hadron with momentum p, are functions of (pz) and z2 parametrized through virtuality distribution amplitudes (VDA) Φ(x, σ), with x being Fourier-conjugate to (pz) and σ Laplace-conjugate to z2. For intervals with z+=0, we introduce the transverse momentum distribution amplitude (TMDA) Ψ(x, k_perp), and write it in terms of VDA Φ(x,σ). We propose models for softmore » VDAs/TMDAs, and use them for comparison of handbag results with experimental (BaBar and BELLE) data. We also discuss the generation of hard tails of TMDAs from initially soft forms.« less
Virtuality Distributions and Pion Transition Form Factor
NASA Astrophysics Data System (ADS)
Radyushkin, A. V.
2015-02-01
Using the example of hard exclusive transition process γ*γ → π0 at the handbag level, we outline basics of a new approach to transverse momentum dependence in hard processes. In coordinate representation, matrix elements of operators (in the simplest case, bilocal 𝒪(0, z)) describing a hadron with momentum p, are functions of (pz) and z2 parametrized through virtuality distribution amplitudes (VDA) Φ(x, σ), with x being Fourier-conjugate to (pz) and σ Laplace-conjugate to z2. For intervals with z+ = 0, we introduce the transverse momentum distribution amplitude (TMDA) Ψ(x, k⊥), and write it in terms of VDA Φ(x, σ). We propose models for soft VDAs/TMDAs, and use them for comparison of handbag results with experimental (BaBar and BELLE) data. We also discuss the generation of hard tails of TMDAs from initially soft forms.
Julius Sachs (1832-1897) and the Unity of Life.
Kutschera, Ulrich; Baluška, František
2015-01-01
In 1865, the German botanist Julius Sachs published a seminal monograph entitled Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) and hence became the founder of a new scientific discipline that originated 150 y ago. Here, we outline the significance of the achievements of Sachs. In addition, we document, with reference to his Vorlesungen über Pflanzen-Physiologie (Lectures on the Physiology of Plants, 1882), that Sachs was one of the first experimentalists who proposed the functional unity of all organisms alive today (humans, animals, plants and other "vegetable" organisms, such as algae, cyanophyceae, fungi, myxomycetes, and bacteria). PMID:26359706
Julius Sachs (1832-1897) and the Unity of Life.
Kutschera, Ulrich; Baluška, František
2015-01-01
In 1865, the German botanist Julius Sachs published a seminal monograph entitled Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) and hence became the founder of a new scientific discipline that originated 150 y ago. Here, we outline the significance of the achievements of Sachs. In addition, we document, with reference to his Vorlesungen über Pflanzen-Physiologie (Lectures on the Physiology of Plants, 1882), that Sachs was one of the first experimentalists who proposed the functional unity of all organisms alive today (humans, animals, plants and other "vegetable" organisms, such as algae, cyanophyceae, fungi, myxomycetes, and bacteria).
Julius Sachs (1832–1897) and the Unity of Life
Kutschera, Ulrich; Baluška, František
2015-01-01
In 1865, the German botanist Julius Sachs published a seminal monograph entitled Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) and hence became the founder of a new scientific discipline that originated 150 y ago. Here, we outline the significance of the achievements of Sachs. In addition, we document, with reference to his Vorlesungen über Pflanzen-Physiologie (Lectures on the Physiology of Plants, 1882), that Sachs was one of the first experimentalists who proposed the functional unity of all organisms alive today (humans, animals, plants and other “vegetable” organisms, such as algae, cyanophyceae, fungi, myxomycetes, and bacteria). PMID:26359706
Constant mean curvature slicings of Kantowski-Sachs spacetimes
Heinzle, J. Mark
2011-04-15
We investigate existence, uniqueness, and the asymptotic properties of constant mean curvature (CMC) slicings in vacuum Kantowski-Sachs spacetimes with positive cosmological constant. Since these spacetimes violate the strong energy condition, most of the general theorems on CMC slicings do not apply. Although there are in fact Kantowski-Sachs spacetimes with a unique CMC foliation or CMC time function, we prove that there also exist Kantowski-Sachs spacetimes with an arbitrary number of (families of) CMC slicings. The properties of these slicings are analyzed in some detail.
Factor Structure of the Personality Research Form-E: A Maximum Likelihood Analysis.
ERIC Educational Resources Information Center
Fowler, Patrick C.
1985-01-01
Presents a five-factor, structural model of the Personality Research Form-E for 140 university undergraduates. All factors demonstrated an excellent level of similarity to those previously reported for other forms of the PRF, as well as to the conceptual scheme developed by Jackson (1974). (Author/JAC)
Virtuality Distributions and Pion Transition Form Factor
Radyushkin, Anatoly V.
2015-03-01
Using the example of hard exclusive transition process γ*γ → π^{0} at the handbag level, we outline basics of a new approach to transverse momentum dependence in hard processes. In coordinate representation, matrix elements of operators (in the simplest case, bilocal O(0,z)) describing a hadron with momentum p, are functions of (pz) and z^{2} parametrized through virtuality distribution amplitudes (VDA) Φ(x, σ), with x being Fourier-conjugate to (pz) and σ Laplace-conjugate to z^{2}. For intervals with z^{+}=0, we introduce the transverse momentum distribution amplitude (TMDA) Ψ(x, k_perp), and write it in terms of VDA Φ(x,σ). We propose models for soft VDAs/TMDAs, and use them for comparison of handbag results with experimental (BaBar and BELLE) data. We also discuss the generation of hard tails of TMDAs from initially soft forms.
Progress in the Calculation of Nucleon Transition form Factors
NASA Astrophysics Data System (ADS)
Eichmann, Gernot
2016-10-01
We give a brief account of the Dyson-Schwinger and Faddeev-equation approach and its application to nucleon resonances and their transition form factors. We compare the three-body with the quark-diquark approach and present a quark-diquark calculation for the low-lying nucleon resonances including scalar, axialvector, pseudoscalar and vector diquarks. We also discuss the timelike structure of transition form factors and highlight the advantages of form factors over helicity amplitudes.
Progress in the Calculation of Nucleon Transition form Factors
NASA Astrophysics Data System (ADS)
Eichmann, Gernot
2016-06-01
We give a brief account of the Dyson-Schwinger and Faddeev-equation approach and its application to nucleon resonances and their transition form factors. We compare the three-body with the quark-diquark approach and present a quark-diquark calculation for the low-lying nucleon resonances including scalar, axialvector, pseudoscalar and vector diquarks. We also discuss the timelike structure of transition form factors and highlight the advantages of form factors over helicity amplitudes.
Analytical evaluation of atomic form factors: Application to Rayleigh scattering
Safari, L.; Santos, J. P.; Amaro, P.; Jänkälä, K.; Fratini, F.
2015-05-15
Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.
Fragments of Science: Festschrift for Mendel Sachs
NASA Astrophysics Data System (ADS)
Ram, Michael
1999-11-01
The Table of Contents for the full book PDF is as follows: * Preface * Sketches at a Symposium * For Mendel Sachs * The Constancy of an Angular Point of View * Information-Theoretic Logic and Transformation-Theoretic Logic * The Invention of the Transistor and the Realization of the Hole * Mach's Principle, Newtonian Gravitation, Absolute Space, and Einstein * The Sun, Our Variable Star * The Inconstant Sun: Symbiosis of Time Variations of Sunspots, Atmospheric Radiocarbon, Aurorae, and Tree Ring Growth * Other Worlds * Super-Classical Quantum Mechanics * A Probabilistic Approach to the Phase Problem of X-Ray Crystallography * A Nonlinear Twist on Inertia Gives Unified Electroweak Gravitation * Neutrino Oscillations * On an Incompleteness in the General-Relativistic Description of Gravitation * All Truth is One * Ideas of Physics: Correspondence between Colleagues * The Influence of the Physics and Philosophy of Einstein's Relativity on My Attitudes in Science: An Autobiography
Tay Sachs and Related Storage Diseases: Family Planning
ERIC Educational Resources Information Center
Schneiderman, Gerald; And Others
1978-01-01
Based on interviews with 24 families, the article discusses family planning and the choices available to those families in which a child has previously died from Tay-Sachs or related lipid storage diseases. (IM)
Comparison of enzyme and DNA analysis in a Tay-Sachs disease carrier screening program.
Yoo, H W; Astrin, K H; Desnick, R J
1993-02-01
Tay-Sachs disease (GM2 gangliosidosis, type 1; TSD) is an autosomal recessive GM2 gangliosidosis resulting from the deficient activity of the lysosomal hydrolase beta-hexosaminidase A (Hex A). With a carrier frequency estimated at 1 in 25, it is a common lysosomal disorder in the Ashkenazi Jewish population. Tay-Sachs disease has provided the prototype for the prevention of severe recessive genetic diseases. Molecular analysis of the Hex A gene (HEXA) of Ashkenazi Jewish individuals affected with Tay-Sachs disease revealed that three common mutations cause the infantile and adult onset forms of the disease; a four base insertion in exon 11, a splice junction mutation in intron 12 and a point mutation in exon 7 (G269S). A study was undertaken to determine whether mutation analysis would be useful in TSD screening programs in identifying carriers and clarifying the status of individuals whose enzyme assays are inconclusive. Ashkenazi Jewish individuals who had been diagnosed as carriers, inconclusives by enzyme assay and non-carriers with low normal enzyme levels in the Mount Sinai Tay-Sachs Disease Prevention Program were examined for the presence of the three mutations using polymerase chain reaction (PCR) and allele specific oligonucleotide (ASO) hybridization. The insertion mutation was present in 29 of 34 carriers and 2 of 36 inconclusive individuals, the splice junction mutation was found in 4 of 34 carriers and the G269S mutation was found in 1 of 34 carriers. Of the 313 non-carrier individuals with normal enzyme activity in the lower normal range, one was positive for the splice junction mutation.(ABSTRACT TRUNCATED AT 250 WORDS)
The mutation mechanism causing juvenile-onset Tay-Sachs disease among Lebanese.
Hechtman, P; Boulay, B; Bayleran, J; Andermann, E
1989-05-01
Expression of the hexosaminidase isozymes was evaluated in fibroblast cell lines obtained from two sibs of Lebanese-Christian origin who presented with juvenile-onset Tay-Sachs disease. In the normal control fibroblasts the alpha subunit of hexosaminidase A (hex A) is synthesized as a 67 KD precursor which is cleaved in lysosomes to a mature 54 KD peptide. The patients' fibroblasts were capable of synthesizing the 67 KD precursor but failed to convert it to the mature subunit. The alpha subunit precursor synthesized by patients' cells could not be phosphorylated, nor was the patients' alpha subunit precursor secreted into the medium in response to NH4Cl, which caused accumulation of both alpha and beta subunit precursor in the medium of the normal control fibroblasts. The measurement of residual enzyme activity in the fibroblasts of patients which best correlated with the onset of the illness was the ion exchange chromatographic separation of Hex A-associated hydrolysis of the synthetic substrate 4-methylumbelliferyl N-acetyl-beta-D-glucosamine-6-sulfate (4MUGS). The patients had 0.32% and 0.36% of Hex A-associated 4MUGS cleaving activity compared to normal control fibroblasts as compared to less than 0.016% for infantile Tay-Sachs disease fibroblasts. The residual Hex A activity in patients' cells had a pH optimum identical with normal enzyme (pH 3.9-4.0), a reduced specific activity for 4MUGS (relative to hydrolysis of unsulfated synthetic substrate), and a greatly enhanced thermal stability. The occurrence of this form of Tay-Sachs disease in Lebanon, the fact that the condition has been described in three unrelated Lebanese immigrant families in Canada, together with the fact that the grandparents of the unrelated probands come from villages in both the northern and southern regions of Lebanon, leads us to speculate that a gene causing juvenile-onset Tay-Sachs disease may not be infrequent in Lebanon.
Relativistic quark model for the Omega- electromagnetic form factors
G. Ramalho, K. Tsushima, Franz Gross
2009-08-01
We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.
X-Ray Form Factor, Attenuation and Scattering Tables
National Institute of Standards and Technology Data Gateway
SRD 66 X-Ray Form Factor, Attenuation and Scattering Tables (Web, free access) This database collects tables and graphs of the form factors, the photoabsorption cross section, and the total attenuation coefficient for any element (Z <= 92).
Nucleon Form Factors experiments with 12 GeV CEBAF
Wojtsekhowski, B.
2008-10-13
A number of precision form factor experiments at high momentum transfer will be performed with the 11 GeV electron beam of CEBAF. We review the approved proposals and the conceptual schemes of several new suggestions. Form factor data will serve as a major input for the construction of a tomographic image of the nucleon.
Orthopositronium decay form factors and two-photon correlations
Adkins, Gregory S.; Droz, Daniel R.; Rastawicki, Dominik; Fell, Richard N.
2010-04-15
We give results for the orthopositronium decay form factors through one-loop order. We use the form factors to calculate momentum correlations of the final-state photons
Factor Structure of the Supervisor Emphasis Rating Form.
ERIC Educational Resources Information Center
Lanning, Wayne, L.; And Others
1994-01-01
Describes investigation examining factor structure of Supervisor Emphasis Rating Form (SERF). Factor analysis of SERF suggests presence of two underlying factors corresponding to supervisors' focus on professional behavior and process skills. Suggests revision of SERF to accommodate need for information regarding congruence between supervisor…
ERIC Educational Resources Information Center
bin Pet, Mokhtar; Sihes, Ahmad Johari Hj
2015-01-01
This study aims to examine the external factors of form six teachers who can influence thinking domain form six teachers in their teaching. This study was conducted using a quantitative approach using questionnaires. A total of 300 form six teacher schools in Johor were chosen as respondents. The findings were obtained as student background…
Light-Cone Sum Rule Approach for Baryon Form Factors
NASA Astrophysics Data System (ADS)
Offen, Nils
2016-10-01
We present the state-of-the-art of the light-cone sum rule approach to Baryon form factors. The essence of this approach is that soft Feynman contributions are calculated in terms of small transverse distance quantities using dispersion relations and duality. The form factors are thus expressed in terms of nucleon wave functions at small transverse separations, called distribution amplitudes, without any additional parameters. The distribution amplitudes, therefore, can be extracted from the comparison with the experimental data on form factors and compared to the results of lattice QCD simulations.
Roaming form factors for the tricritical to critical Ising flow
NASA Astrophysics Data System (ADS)
Horváth, D. X.; Dorey, P. E.; Takács, G.
2016-07-01
We study the massless flows described by the staircase model introduced by Al.B. Zamolodchikov through the analytic continuation of the sinh-Gordon S-matrix, focusing on the renormalisation group flow from the tricritical to the critical Ising model. We show that the properly defined roaming limits of certain sinh-Gordon form factors are identical to the form factors of the order and disorder operators for the massless flow. As a by-product, we also construct form factors for a semi-local field in the sinh-Gordon model, which can be associated with the twist field in the ultraviolet limiting free massless bosonic theory.
Light-Cone Sum Rule Approach for Baryon Form Factors
NASA Astrophysics Data System (ADS)
Offen, Nils
2016-08-01
We present the state-of-the-art of the light-cone sum rule approach to Baryon form factors. The essence of this approach is that soft Feynman contributions are calculated in terms of small transverse distance quantities using dispersion relations and duality. The form factors are thus expressed in terms of nucleon wave functions at small transverse separations, called distribution amplitudes, without any additional parameters. The distribution amplitudes, therefore, can be extracted from the comparison with the experimental data on form factors and compared to the results of lattice QCD simulations.
Flavor decomposition of the nucleon electromagnetic form factors
NASA Astrophysics Data System (ADS)
Qattan, I. A.; Arrington, J.
2012-12-01
Background: The spatial distribution of charge and magnetization in the proton and neutron are encoded in the nucleon electromagnetic form factors. The form factors are all approximated by a simple dipole function, normalized to the charge or magnetic moment of the nucleon. The differences between the proton and neutron form factors and the deviation of GEn from zero are sensitive to the difference between up- and down-quark contributions to the form factors.Purpose: Recent measurements of GEn up to 3.4 (GeV/c)2 allow for a much more detailed examination of the form factors. The flavor-separated form factors provide information on the quark flavor dependence of the nucleon structure and test theoretical models of the form factors.Methods: We combine recent measurements of the neutron form factors with updated extractions of the proton form factors, accounting for two-photon exchange corrections and including an estimate of the uncertainties for all of the form factors to obtain a complete set of measurements up to Q2≈4 (GeV/c)2. We use this to extract the up- and down-quark contributions which we compare to recent fits and calculations.Results: We find large differences between the up- and down-quark contributions to GE and GM, implying significant flavor dependence in the charge and magnetization distributions. The rapid falloff of the ratio GEp/GMp does not appear in the individual quark form factors, but arises from a cancellation between the up- and down-quark contributions. We see indications that the down-quark contributions to the Dirac and Pauli form factors deviate from the suggested 1/Q4 scaling behavior suggested by a previous analysis. While recent models provide a generally good qualitative description of the data, the down-quark contribution to GE/GM and F2/F1 are not reproduced by any of the models. Finally, we note that, while the inclusion of recent GMn data from the CLAS Collaboration modifies the high-Q2 behavior slightly, the tension between
The structure of the nucleon: Elastic electromagnetic form factors
Punjabi, V.; Perdrisat, C. F.; Jones, M. K.; Brash, E. J.; Carlson, C. E.
2015-07-10
Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon form factors are a test-bed for understanding how the nucleon's static properties and dynamical behavior emerge from QCD, the theory of the strong interactions between quarks. There has been enormous theoretical progress, since the publication of the Jefferson Lab proton form factor ratio data, aiming at reevaluating the picture of the nucleon. We will review the experimental and theoretical developments in this field and discuss the outlook for the future.
Longitudinal vector form factors in weak decays of nuclei
Šimkovic, F.; Kovalenko, S.; Krivoruchenko, M. I.
2015-10-28
The longitudinal form factors of the weak vector current of particles with spin J = 1/2 and isospin I = 1/2 are determined by the mass difference and the charge radii of members of the isotopic doublets. The most promising reactions to measure these form factors are the reactions with large momentum transfers involving the spin-1/2 isotopic doublets with a maximum mass splitting. Numerical estimates of longitudinal form factors are given for nucleons and eight nuclear spin-1/2 isotopic doublets.
Personality Research Form: Factor Structure and Response Style Involvement
ERIC Educational Resources Information Center
Stricker, Lawrence J.
1974-01-01
Explores factor structure of the Personality Research Form (PRF) and examines the inventory's relations with response styles. In general, the PRF content scales correlate moderately with each other and with measures of acquiescence, social desirability, and defensiveness response biases. (Author)
Hadronic Form Factors in Asymptotically Free Field Theories
DOE R&D Accomplishments Database
Gross, D. J.; Treiman, S. B.
1974-01-01
The breakdown of Bjorken scaling in asymptotically free gauge theories of the strong interactions is explored for its implications on the large q{sup 2} behavior of nucleon form factors. Duality arguments of Bloom and Gilman suggest a connection between the form factors and the threshold properties of the deep inelastic structure functions. The latter are addressed directly in an analysis of asymptotically free theories; and through the duality connection we are then led to statements about the form factors. For very large q{sup 2} the form factors are predicted to fall faster than any inverse power of q{sup 2}. For the more modest range of q{sup 2} reached in existing experiments the agreement with data is fairly good, though this may well be fortuitous. Extrapolations beyond this range are presented.
Exploring strange nucleon form factors on the lattice
NASA Astrophysics Data System (ADS)
Babich, Ronald; Brower, Richard C.; Clark, Michael A.; Fleming, George T.; Osborn, James C.; Rebbi, Claudio; Schaich, David
2012-03-01
We discuss techniques for evaluating sea quark contributions to hadronic form factors on the lattice and apply these to an exploratory calculation of the strange electromagnetic, axial, and scalar form factors of the nucleon. We employ the Wilson gauge and fermion actions on an anisotropic 243×64 lattice, probing a range of momentum transfer with Q2<1GeV2. The strange electric and magnetic form factors, GEs(Q2) and GMs(Q2), are found to be small and consistent with zero within the statistics of our calculation. The lattice data favor a small negative value for the strange axial form factor GAs(Q2) and exhibit a strong signal for the bare strange scalar matrix element ⟨N|s¯s|N⟩0. We discuss the unique systematic uncertainties affecting the latter quantity relative to the continuum, as well as prospects for improving future determinations with Wilson-like fermions.
Finite volume form factors in the presence of integrable defects
NASA Astrophysics Data System (ADS)
Bajnok, Z.; Buccheri, F.; Hollo, L.; Konczer, J.; Takacs, G.
2014-05-01
We developed the theory of finite volume form factors in the presence of integrable defects. These finite volume form factors are expressed in terms of the infinite volume form factors and the finite volume density of states and incorporate all polynomial corrections in the inverse of the volume. We tested our results, in the defect Lee-Yang model, against numerical data obtained by truncated conformal space approach (TCSA), which we improved by renormalization group methods adopted to the defect case. To perform these checks we determined the infinite volume defect form factors in the Lee-Yang model exactly, including their vacuum expectation values. We used these data to calculate the two point functions, which we compared, at short distance, to defect CFT. We also derived explicit expressions for the exact finite volume one point functions, which we checked numerically. In all of these comparisons excellent agreement was found.
Pion form factor in the NLC QCD SR approach
Bakulev, A. P. Pimikov, A. V.; Stefanis, N. G.
2010-06-15
We present results of a calculation of the electromagnetic pion form factor within the framework of QCD sum rules with nonlocal condensates and using a perturbative spectral density which includes O({alpha}{sub s}) contributions.
Proton Form Factors Measurements in the Time-Like Region
Anulli, F.; /Frascati
2007-10-22
I present an overview of the measurement of the proton form factors in the time-like region. BABAR has recently measured with great accuracy the e{sup +}e{sup -} {yields} p{bar p} reaction from production threshold up to an energy of {approx} 4.5 GeV, finding evidence for a ratio of the electric to magnetic form factor greater than unity, contrary to expectation. In agreement with previous measurements, BABAR confirmed the steep rise of the magnetic form factor close to the p{bar p} mass threshold, suggesting the possible presence of an under-threshold N{bar N} vector state. These and other open questions related to the nucleon form factors both in the time-like and space-like region, wait for more data with different experimental techniques to be possibly solved.
Deuteron form factor measurements at low momentum transfers
NASA Astrophysics Data System (ADS)
Schlimme, B. S.; Achenbach, P.; Beričič, J.; Böhm, R.; Bosnar, D.; Correa, L.; Distler, M. O.; Esser, A.; Fonvieille, H.; Friščić, I.; Griffioen, K. A.; Huan, Y.; Kegel, S.; Kohl, Y.; Merkel, H.; Mihovilovič, M.; Müller, J.; Müller, U.; Pochodzalla, J.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Štajner, S.; Thiel, M.; Weber, A.
2016-03-01
A precise measurement of the elastic electron-deuteron scattering cross section at four-momentum transfers of 0.24 fm-1 ≤ Q ≤ 2.7 fm-1 has been performed at the Mainz Microtron. In this paper we describe the utilized experimental setup and the necessary analysis procedure to precisely determine the deuteron charge form factor from these data. Finally, the deuteron charge radius rd can be extracted from an extrapolation of that form factor to Q2 = 0.
Charm and bottom hadronic form factors with QCD sum rules
Bracco, M. E.; Rodrigues, B. O.; Cerqueira, A. Jr.
2013-03-25
We present a brief review of some calculations of form factors and coupling constants in vertices with charm and bottom mesons in the framework of QCD sum rules. We first discuss the motivation for this work, describing possible applications of these form factors to charm and bottom decays processes. We first make a summarize of the QCD sum rules method. We give special attention to the uncertainties of the method introducing by the intrinsic variation of the parameters. Finally we conclude.
Sidashenko, O I; Voronkova, O S; Sirokvasha, O A; Vinnikov, A I
2015-01-01
A comparative study of the manifestation of pathogenicity factors: hemolytic, lipase, letsytinase activity and ability to adhere in 20 film-forming and 17 non-film-forming strains of S. epidermidis. Studying pathogenicity factors of the film-forming strains it was found that complete hemolysis and lipase activity shown was by all the film-forming strains of S. epidermidis, letsytinase activity was observed in 80%. Among the non-film-forming strains complete hemolysis and lipase activity were observed in 89% and letsytinase - 71%. Researched non-film-forming and film-forming strains of S. epidermidis showed the ability to adhere to buccal epithelial cells of humans. Found that all the film-forming strains of S. epidermidis were hight level adgesion, the highest IAM was equal to 11,84. It was found that among non-film-forming strains of S. epidermidis were low-, medium- and hight level adgesion. IAM of non-film-forming strains of S. epidermidis is 3 times lower compared to the IAM of the film-forming strains of human epithelial cells and was 3.2.
Plant sulfur nutrition: From Sachs to Big Data.
Kopriva, Stanislav
2015-01-01
Together with water and carbon dioxide plants require 14 essential mineral nutrients to finish their life cycle. The research in plant nutrition can be traced back to Julius Sachs, who was the first to experimentally prove the essentiality of mineral nutrients for plants. Among those elements Sachs showed to be essential is sulfur. Plant sulfur nutrition has been not as extensively studied as the nutrition of nitrogen and phosphate, probably because sulfur was not limiting for agriculture. However, with the reduction of atmospheric sulfur dioxide emissions sulfur deficiency has become common. The research in sulfur nutrition has changed over the years from using yeast and algae as experimental material to adopting Arabidopsis as the plant model as well as from simple biochemical measurements of individual parameters to system biology. Here the evolution of sulfur research from the times of Sachs to the current Big Data is outlined. PMID:26305261
Biochemistry and genetics of Tay-Sachs disease.
Gravel, R A; Triggs-Raine, B L; Mahuran, D J
1991-08-01
Tay-Sachs disease is one of the few neurodegenerative diseases of known causes. It results from mutations of the HEXA gene encoding the alpha subunit of beta-hexosaminidase, producing a destructive ganglioside accumulation in lysosomes, principally in neurons. With the determination of the protein sequence of the alpha and beta subunits, deduced from cDNA sequences, the complex pathway of subcellular and lysosomal processing of the enzyme has been determined. More recently, detailed knowledge of the gene structure has allowed the determination of specific mutations causing Tay-Sachs disease. The high incidence of the disease in Ashkenazi Jews is attributed predominantly to three mutations present in high frequency, while in non-Jews some two dozen mutations have been identified thus far. The cataloguing of mutations has important implications for carrier screening and prenatal diagnosis for Tay-Sachs disease.
A critique of Jeffrey D. Sachs's The end of poverty.
Henwood, Doug
2006-01-01
Jeffrey Sachs's The End of Poverty is a manifesto and how-to guide on ending extreme poverty around the world; it promotes the U.N. Millennium Development Goals. Sachs achieved fame with his policy package for the "stabilization" of Bolivia (which did nothing to relieve Bolivia's poverty), and became advisor to the Yeltsin government in Russia and to Poland, Slovenia, and Estonia as they began their transitions to capitalism (the last three mixed successes; Russia a thorough disaster). Sachs later became more prominent as a critic of development orthodoxy, and was economic advisor to the Jubilee 2000 movement. The End of Poverty is full of sharp critiques of Western imperialism, but his views on the rest of the development business are more conventional. PMID:16524171
Plant sulfur nutrition: From Sachs to Big Data
Kopriva, Stanislav
2015-01-01
Together with water and carbon dioxide plants require 14 essential mineral nutrients to finish their life cycle. The research in plant nutrition can be traced back to Julius Sachs, who was the first to experimentally prove the essentiality of mineral nutrients for plants. Among those elements Sachs showed to be essential is sulfur. Plant sulfur nutrition has been not as extensively studied as the nutrition of nitrogen and phosphate, probably because sulfur was not limiting for agriculture. However, with the reduction of atmospheric sulfur dioxide emissions sulfur deficiency has become common. The research in sulfur nutrition has changed over the years from using yeast and algae as experimental material to adopting Arabidopsis as the plant model as well as from simple biochemical measurements of individual parameters to system biology. Here the evolution of sulfur research from the times of Sachs to the current Big Data is outlined. PMID:26305261
A critique of Jeffrey D. Sachs's The end of poverty.
Henwood, Doug
2006-01-01
Jeffrey Sachs's The End of Poverty is a manifesto and how-to guide on ending extreme poverty around the world; it promotes the U.N. Millennium Development Goals. Sachs achieved fame with his policy package for the "stabilization" of Bolivia (which did nothing to relieve Bolivia's poverty), and became advisor to the Yeltsin government in Russia and to Poland, Slovenia, and Estonia as they began their transitions to capitalism (the last three mixed successes; Russia a thorough disaster). Sachs later became more prominent as a critic of development orthodoxy, and was economic advisor to the Jubilee 2000 movement. The End of Poverty is full of sharp critiques of Western imperialism, but his views on the rest of the development business are more conventional.
Tay-Sachs disease in Jacob sheep.
Torres, Paola A; Zeng, Bai Jin; Porter, Brian F; Alroy, Joseph; Horak, Fred; Horak, Joan; Kolodny, Edwin H
2010-12-01
Autopsy studies of four Jacob sheep dying within their first 6-8 months of a progressive neurodegenerative disorder suggested the presence of a neuronal storage disease. Lysosomal enzyme studies of brain and liver from an affected animal revealed diminished activity of hexosaminidase A (Hex A) measured with an artificial substrate specific for this component of β-hexosaminidase. Absence of Hex A activity was confirmed by cellulose acetate electrophoresis. Brain lipid analyses demonstrated the presence of increased concentrations of G(M2)-ganglioside and asialo-G(M2)-ganglioside. The hexa cDNA of Jacob sheep was cloned and sequenced revealing an identical number of nucleotides and exons as in human HexA and 86% homology in nucleotide sequence. A missense mutation was found in the hexa cDNA of the affected sheep caused by a single nucleotide change at the end of exon 11 resulting in skipping of exon 11. Transfection of normal sheep hexa cDNA into COS1 cells and human Hex A-deficient cells led to expression of Hex S but no increase in Hex A indicating absence of cross-species dimerization of sheep Hex α-subunit with human Hex β-subunits. Using restriction site analysis, the heterozygote frequency of this mutation in Jacob sheep was determined in three geographically separate flocks to average 14%. This large naturally occurring animal model of Tay-Sachs disease is the first to offer promise as a means for trials of gene therapy applicable to human infants.
Tay-Sachs disease in Jacob sheep.
Torres, Paola A; Zeng, Bai Jin; Porter, Brian F; Alroy, Joseph; Horak, Fred; Horak, Joan; Kolodny, Edwin H
2010-12-01
Autopsy studies of four Jacob sheep dying within their first 6-8 months of a progressive neurodegenerative disorder suggested the presence of a neuronal storage disease. Lysosomal enzyme studies of brain and liver from an affected animal revealed diminished activity of hexosaminidase A (Hex A) measured with an artificial substrate specific for this component of β-hexosaminidase. Absence of Hex A activity was confirmed by cellulose acetate electrophoresis. Brain lipid analyses demonstrated the presence of increased concentrations of G(M2)-ganglioside and asialo-G(M2)-ganglioside. The hexa cDNA of Jacob sheep was cloned and sequenced revealing an identical number of nucleotides and exons as in human HexA and 86% homology in nucleotide sequence. A missense mutation was found in the hexa cDNA of the affected sheep caused by a single nucleotide change at the end of exon 11 resulting in skipping of exon 11. Transfection of normal sheep hexa cDNA into COS1 cells and human Hex A-deficient cells led to expression of Hex S but no increase in Hex A indicating absence of cross-species dimerization of sheep Hex α-subunit with human Hex β-subunits. Using restriction site analysis, the heterozygote frequency of this mutation in Jacob sheep was determined in three geographically separate flocks to average 14%. This large naturally occurring animal model of Tay-Sachs disease is the first to offer promise as a means for trials of gene therapy applicable to human infants. PMID:20817517
Possible diquark signatures in the elastic nucleon form factors
NASA Astrophysics Data System (ADS)
Cates, Gordon
2013-10-01
There has been considerable interest in the elastic nucleon form factors ever since the discovery that the proton form-factor ratio, GEp /GMp , decreases nearly linearly above roughly Q2 = 1 GeV2 . More recent measurements of the neutron form-factor ratio, GEn /GMn , up to 3 . 4 GeV2 have made it possible to constrain calculations using both proton and neutron data in the Q2 regime where the interesting behavior of the proton was first observed. Calculations based on QCD's Dyson-Schwinger equations, as well as certain relativistic constituent quark models, suggest that the observed behavior is related to the importance of diquark degrees of freedom. To understand this connection, it is particularly useful to consider the flavor-separated form factors, which can be extracted by combining proton and neutron data, and assuming charge symmetry. Distinctly different behavior is seen for the u - and d - quarks. The behaviors of the different quark flavors and the connection to diquarks can also be understood using naive scaling arguments, although this approach has yet to be made more rigorous. This talk will discuss how measurements of the nucleon form factors at high Q2 provides a rich opportunity to better understand the structure of the nucleon.
Visualization of semileptonic form factors from lattice QCD
Bernard, C.; Laiho, J.; DeTar, C.; Levkova, L.; Oktay, M. B.; Di Pierro, M.; El-Khadra, A. X.; Evans, R. T.; Gamiz, E.; Freeland, E. D.; Gottlieb, Steven; Heller, U. M.; Hetrick, J. E.; Kronfeld, A. S.; Mackenzie, P. B.; Okamoto, M.; Simone, J. N.; Sugar, R.; Toussaint, D.; Van de Water, R. S.
2009-08-01
Comparisons of lattice-QCD calculations of semileptonic form factors with experimental measurements often display two sets of points, one each for lattice QCD and experiment. Here we propose to display the output of a lattice-QCD analysis as a curve and error band. This is justified, because lattice-QCD results rely in part on fitting, both for the chiral extrapolation and to extend lattice-QCD data over the full physically allowed kinematic domain. To display an error band, correlations in the fit parameters must be taken into account. For the statistical error, the correlation comes from the fit. To illustrate how to address correlations in the systematic errors, we use the Becirevic-Kaidalov parametrization of the D{yields}{pi}l{nu} and D{yields}Kl{nu} form factors, and an analyticity-based fit for the B{yields}{pi}l{nu} form factor f{sub +}.
Measurements of the Helium Form Factors at JLab
Khrosinkova, Elena
2007-10-26
An experiment to measure elastic electron scattering off {sup 3}He and {sup 4}He at large momentum transfers is presented. The experiment was carried out in the Hall A Facility of Jefferson Lab. Elastic electron scattering off {sup 3}He was measured at forward and backward electron scattering angles to extract the isotope's charge and magnetic form factors. The charge form factor of {sup 4}He will be extracted from forward-angle electron scattering angle measurements. The data are expected to significantly extend and improve the existing measurements of the three- and four-body form factors. The results will be crucial for the establishment of a canonical standard model for the few-body nuclear systems and for testing predictions of quark dimensional scaling and hybrid nucleon-quark models.
Flavor Decomposition of the Elastic Nucleon Electromagnetic Form Factors
NASA Astrophysics Data System (ADS)
Cates, G. D.; de Jager, C. W.; Riordan, S.; Wojtsekhowski, B.
2011-06-01
The u- and d-quark contributions to the elastic nucleon electromagnetic form factors have been determined by using experimental data on GEn, GMn, GEp, and GMp. Such a flavor separation of the form factors became possible up to negative four-momentum transfer squared Q2=3.4GeV2 with recent data on GEn from Hall A at Jefferson Lab. For Q2 above 1GeV2, for both the u and the d quark, the ratio of the Pauli and Dirac form factors, F2/F1, was found to be almost constant in sharp contrast to the behavior of F2/F1 for the proton as a whole. Also, again for Q2>1GeV2, both F2d and F1d are roughly proportional to 1/Q4, whereas the dropoff of F2u and F1u is more gradual.
The structure of the nucleon: Elastic electromagnetic form factors
Punjabi, V.; Perdrisat, C. F.; Jones, M. K.; Brash, E. J.; Carlson, C. E.
2015-07-10
Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon form factors are a test-bed for understanding how the nucleon's static properties and dynamical behavior emerge from QCD, the theory of the strong interactions between quarks. There has been enormous theoretical progress, since the publication of the Jefferson Lab proton form factor ratio data, aiming at reevaluating the picture of the nucleon. We will review the experimental and theoretical developments in this field and discussmore » the outlook for the future.« less
The Proton Form Factor Ratio Measurements at Jefferson Lab
Punjabi, Vina A.; Perdrisat, Charles F.
2014-03-01
The ratio of the proton form factors, G{sub Ep}/G{sub Mp}, has been measured from Q{sup 2} of 0.5 GeV{sup 2} to 8.5 GeV{sup 2}, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The discovery that the proton form factor ratio measured in these experiments decreases approximately linearly with four-momentum transfer, Q{sup 2}, for values above ~1 GeV{sup 2}, is one of the most significant results to come out of JLab. These results have had a large impact on progress in hadronic physics; and have required a significant rethinking of nucleon structure. The increasingly common use of the double-polarization technique to measure the nucleon form factors, in the last 15 years, has resulted in a dramatic improvement of the quality of all four nucleon electromagnetic form factors, G{sub Ep}, G{sub Mp}, G{sub En} and G{sub Mn}. There is an approved experiment at JLab, GEP(V), to continue the ratio measurements to 12 GeV{sup 2}. A dedicated experimental setup, the Super Bigbite Spectrometer (SBS), will be built for this purpose. It will be equipped with a focal plane polarimeter to measure the polarization of the recoil protons. The scattered electrons will be detected in an electromagnetic calorimeter. In this presentation, I will review the status of the proton elastic electromagnetic form factors and discuss a number of theoretical approaches to describe nucleon form factors.
Master integrals for the four-loop Sudakov form factor
NASA Astrophysics Data System (ADS)
Boels, Rutger H.; Kniehl, Bernd A.; Yang, Gang
2016-01-01
The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N = 4) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. The simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was largely obtained in integrand form in a previous work for N = 4 SYM, up to a free parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using a modified version of Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. Moreover, two of the integral topologies vanish after reduction. The appearing master integrals are cross-checked using independent algebraic-geometry techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Discrepancies between explicitly solving the IBP relations and the MINT approach are highlighted. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N = 4 SYM and beyond are identified.
Electromagnetic form factors of the Δ with D-waves
Ramalho, Gilberto T.F.; Pena, Maria Teresa; Gross, Franz L.
2010-06-01
The electromagnetic form factors of the Δ baryon are evaluated within the framework of a covariant spectator quark model, where S and D-states are included in the Δ wave function. We predict all the four Δ multipole form factors: the electric charge G_{E0}, the magnetic dipole G_{M1}, the electric quadrupole G_{E2} and the magnetic octupole G_{M3}. We compare our predictions with other theoretical calculations. Our results are compatible with the available experimental data and recent lattice QCD data.
Transversity form factors of the pion in chiral quark models
Broniowski, Wojciech; Dorokhov, Alexander E.; Arriola, Enrique Ruiz
2010-11-01
The transversity form factors of the pion, involving matrix elements of bilocal tensor currents, are evaluated in chiral quark models, both in the local Nambu-Jona-Lasinio with the Pauli-Villars regularization, as well as in nonlocal models involving momentum-dependent quark mass. After suitable QCD evolution, the agreement with recent lattice calculations is very good, in accordance to the fact that the spontaneously broken chiral symmetry governs the dynamics of the pion. Meson dominance of form factors with expected meson masses also works properly, conforming to the parton-hadron duality in the considered process.
Note on the QCD evolution of generalized form factors
Broniowski, Wojciech; Arriola, Enrique Ruiz
2009-03-01
Generalized form factors of hadrons are objects appearing in moments of the generalized parton distributions. Their leading-order DGLAP-ERBL QCD evolution is exceedingly simple and the solution is given in terms of matrix triangular structures of linear equations where the coefficients are the evolution ratios. We point out that this solution has a practical importance in analyses where the generalized form factors are basic objects, e.g., the lattice-gauge studies or models. It also displays general features of their evolution.
Pion electromagnetic form factor in the Covariant Spectator Theory
Biernat, Elmar P.; Gross, Franz L.; Pena, Teresa; Stadler, Alfred
2014-01-01
The pion electromagnetic form factor at spacelike momentum transfer is calculated in relativistic impulse approximation using the Covariant Spectator Theory. The same dressed quark mass function and the equation for the pion bound-state vertex function as discussed in the companion paper are used for the calculation, together with a dressed quark current that satisfies the Ward-Takahashi identity. The results obtained for the pion form factor are in agreement with experimental data, they exhibit the typical monopole behavior at high momentum transfer and they satisfy some remarkable scaling relations.
The B → K* form factors on the lattice
NASA Astrophysics Data System (ADS)
Agadjanov, Andria; Bernard, Véronique; Meißner, Ulf-G.; Rusetsky, Akaki
2016-09-01
The extraction of the B →K* transition form factors from lattice data is studied, applying non-relativistic effective field theory in a finite volume. The possible mixing of πK and ηK states is taken into account. The two-channel analogue of the Lellouch-Lüscher formula is reproduced. Due to the resonance nature of the K*, an equation is derived, which allows to determine the form factors at the pole position in a process-independent manner. The infinitely-narrow width approximation of the results is discussed.
Electromagnetic Form Factors of Hadrons in Quantum Field Theories
Dominguez, C. A.
2008-10-13
In this talk, recent results are presented of calculations of electromagnetic form factors of hadrons in the framework of two quantum field theories (QFT), (a) Dual-Large N{sub c} QCD (Dual-QCD{sub {infinity}}) for the pion, proton, and {delta}(1236), and (b) the Kroll-Lee-Zumino (KLZ) fully renormalizable Abelian QFT for the pion form factor. Both theories provide a QFT platform to improve on naive (tree-level) Vector Meson Dominance (VMD). Dual-QCD{sub {infinity}} provides a tree-level improvement by incorporating an infinite number of zero-width resonances, which can be subsequently shifted from the real axis to account for the time-like behaviour of the form factors. The renormalizable KLZ model provides a QFT improvement of VMD in the framework of perturbation theory. Due to the relative mildness of the {rho}{pi}{pi} coupling, and the size of loop suppression factors, the perturbative expansion is well defined in spite of this being a strong coupling theory. Both approaches lead to considerable improvements of VMD predictions for electromagnetic form factors, in excellent agreement with data.
Pion Electromagnetic Form Factor in Virtuality Distribution Formalism
Radyushkin, Anatoly V.
2016-01-01
We discuss two applications of the {\\it Virtuality Distribution Amplitudes} (VDA) formalism developed in our recent papers. We start with an overview of the main properties of the pion distribution amplitude emphasizing the quantitative measures of its width, and possibility to access them through the pion transition form factor studies. We formulate the basic concepts of the VDA approach and introduce the pion {\\it transverse momentum distribution amplitude} (TMDA) which plays, in a covariant Lagrangian formulation, a role similar to that of the pion wave function in the 3-dimensional Hamiltonian light-front approach. We propose simple factorized models for soft TMDAs, and use them to describe existing data on the pion transition form factor, thus fixing the scale determining the size of the transverse-momentum effects. Finally, we apply the VDA approach to the one-gluon exchange contribution for the pion electromagnetic form factor. We observe a very late $Q^2 \\gtrsim 20$ GeV$^2$ onset of transition to the asymptotic pQCD predictions and show that in the $Q^2 \\lesssim 10$ GeV$^2$ region there is essentially no sensitivity to the shape of the pion distribution amplitude. Furthermore, the magnitude of the one-gluon exchange contribution in this region is estimated to be an order of magnitude below the Jefferson Lab data, thus leaving the Feynman mechanism as the only one relevant to the pion electromagnetic form factor behavior for accessible $Q^2$.
The Modern description of semileptonic meson form factors
Hill, Richard J.
2006-06-01
I describe recent advances in our understanding of the hadronic form factors governing semileptonic meson transitions. The resulting framework provides a systematic approach to the experimental data, as a means of extracting precision observables, testing nonperturbative field theory methods, and probing a poorly understood limit of QCD.
Personality Research Form: Factor Structure and Response Style Involvement.
ERIC Educational Resources Information Center
Stricker, Lawrence J.
The aims of this study were (1) to explore the factor structure of the Personality Research Form (PRF) and (2) to examine the inventory's relations with response styles. In general the PRF content scales correlated moderately with each other and with measures of acquiesence, social desirability, and defensiveness response Biases. Six oblique…
Nucleon form factors program with SBS at JLAB
Wojtsekhowski, Bogdan B.
2014-12-01
The physics of the nucleon form factors is the basic part of the Jefferson Laboratory program. We review the achievements of the 6-GeV era and the program with the 12- GeV beam with the SBS spectrometer in Hall A, with a focus on the nucleon ground state properties.
Rigorous pion electromagnetic form factor behavior in the spacelike region
Belicka, M.; Dubnickova, A. Z.; Dubnicka, S.; Liptaj, A.
2011-02-15
Precise experimental information on {sigma}{sub tot}(e{sup +}e{sup -}{yields}{pi}{sup +}{pi}{sup -}) is transferred into the spacelike region by taking advantage of the analyticity. As a result, rigorous pion electromagnetic form factor behavior in spacelike region is obtained. The latter is compared with some existing model predictions.
Measurement of the pion form factor at higher energies
Mack, D.J.
1994-04-01
One of the strongest arguments for increasing the nominal CEBAF beam energy to equal or exceed 6 GeV is that one would be able to make quality high Q{sup 2} measurements of the charged pion form factor.
The Proton Form Factor Ratio Measurements at Jefferson Lab
NASA Astrophysics Data System (ADS)
Punjabi, Vina; Perdrisat, Charles F.
2014-03-01
The ratio of the proton form factors, GEp/GMp, has been measured from Q2 of 0.5 GeV2 to 8.5 GeV2, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The discovery that the proton form factor ratio measured in these experiments decreases approximately linearly with four-momentum transfer, Q2, for values above ≈ 1 GeV2, is one of the most significant results to come out of JLab. These results have had a large impact on progress in hadronic physics; and have required a significant rethinking of nucleon structure. There is an approved experiment at JLab, GEp(5), to continue the ratio measurements to 12 GeV2. A dedicated experimental setup, the Super Bigbite Spectrometer (SBS), will be built for this purpose. In this paper, the present status of the proton elastic electromagnetic form factors and a number of theoretical approaches to describe nucleon form factors will be discussed.
The Super Bigbite Project: A Study of Nucleon Form Factors
Jager, Kees de
2010-06-01
A proposed set of instrumentation, collectively referred to as the Super Bigbite project, is presented. Used in three different con figurations it will allow measurements of three nucleon electromagnetic form factors GEn, GEp, and GMn with unprecedented precision to Q2-values up to three times higher than existing data.
Spin-2 form factors at three loop in QCD
NASA Astrophysics Data System (ADS)
Ahmed, Taushif; Das, Goutam; Mathews, Prakash; Rana, Narayan; Ravindran, V.
2015-12-01
Spin-2 fields are often candidates in physics beyond the Standard Model namely the models with extra-dimensions where spin-2 Kaluza-Klein gravitons couple to the fields of the Standard Model. Also, in the context of Higgs searches, spin-2 fields have been studied as an alternative to the scalar Higgs boson. In this article, we present the complete three loop QCD radiative corrections to the spin-2 quark-antiquark and spin-2 gluon-gluon form factors in SU(N) gauge theory with n f light flavors. These form factors contribute to both quark-antiquark and gluon-gluon initiated processes involving spin-2 particle in the hadronic reactions at the LHC. We have studied the structure of infrared singularities in these form factors up to three loop level using Sudakov integro-differential equation and found that the anomalous dimensions originating from soft and collinear regions of the loop integrals coincide with those of the electroweak vector boson and Higgs form factors confirming the universality of the infrared singularities in QCD amplitudes.
Analytic two-loop form factors in {N} = 4 SYM
NASA Astrophysics Data System (ADS)
Brandhuber, Andreas; Travaglini, Gabriele; Yang, Gang
2012-05-01
We derive a compact expression for the three-point MHV form factors of half- BPS operators in {N} = 4 super Yang-Mills at two loops. The main tools of our calculation are generalised unitarity applied at the form factor level, and the compact expressions for supersymmetric tree-level form factors and amplitudes entering the cuts. We confirm that infrared divergences exponentiate as expected, and that collinear factorisation is entirely captured by an ABDK/BDS ansatz. Next, we construct the two-loop remainder function obtained by subtracting this ansatz from the full two-loop form factor and compute it numerically. Using symbology, combined with various physical constraints and symme- tries, we find a unique solution for its symbol. With this input we construct a remarkably compact analytic expression for the remainder function, which contains only classical poly- logarithms, and compare it to our numerical results. Furthermore, we make the surprising observation that our remainder is equal to the maximally transcendental piece of the two- loop Higgs plus three-gluon scattering amplitudes in QCD.
Rapid detection of fetal Mendelian disorders: Tay-Sachs disease.
Guetta, Esther; Peleg, Leah
2008-01-01
Tay-Sachs disease is an autosomal recessive storage disease caused by the impaired activity of the lysosomal enzyme hexosaminidase A. In this fatal disease, the sphingolipid GM2 ganglioside accumulates in the neurons. Due to high carrier rates and the severity of the disease, population screening and prenatal diagnosis of Tay-Sachs disease are routinely carried out in Israel. Laboratory diagnosis of Tay-Sachs is carried out with biochemical and DNA-based methods in peripheral and umbilical cord blood, amniotic fluid, and chorionic villi samples. The assay of hexosaminidase A (Hex A) activity is carried out with synthetic substrates, 4-methylumbelliferyl-6-sulfo-N-acetyl-beta-glucosaminide (4-MUGS) and 4-methylumbelliferil-N-acetyl-beta-glucosamine (4-MUG), and the DNA-based analysis involves testing for the presence of specific known mutations in the alpha-subunit gene of Hex A. Prenatal diagnosis of Tay-Sachs disease is accomplished within 24-48 h from sampling. The preferred strategy is to simultaneously carry out enzymatic analysis in the amniotic fluid supernatant or in chorionic villi and molecular DNA-based testing in an amniotic fluid cell-pellet or in chorionic villi.
Tay-Sachs disease carrier screening: a 21-year experience.
D'Souza, G; McCann, C L; Hedrick, J; Fairley, C; Nagel, H L; Kushner, J D; Kessel, R
2000-01-01
This paper presents the findings of a community-based carrier screening program for Tay-Sachs disease, initiated on the University of Wisconsin-Madison campus in 1978. The Madison Community Tay-Sachs Screening Program (MCTSSP) is a collaborative, interdisciplinary program that organizes and conducts periodic screening for Tay-Sachs disease (TSD) for the purpose of identifying Tay-Sachs carriers. We present and analyze data on carrier detection with regard to various demographics, including family history of TSD, ancestry, gender, medication exposure, and illness. Individuals participating in the MCTSSP between 1978 and 1999 were primarily of the target population, and the carrier rate was within the expected range (1/25). Despite aggressive publicity efforts and a well-established program, attendance at the screens has declined. A recent survey of Jewish undergraduate students at the University of Wisconsin-Madison showed poor recall of family screen history and carrier status and reinforced the perception that utilization of the Madison screening program has been low. Ways to increase awareness of and interest in carrier screening for TSD are explored.
Rapid detection of fetal Mendelian disorders: Tay-Sachs disease.
Guetta, Esther; Peleg, Leah
2008-01-01
Tay-Sachs disease is an autosomal recessive storage disease caused by the impaired activity of the lysosomal enzyme hexosaminidase A. In this fatal disease, the sphingolipid GM2 ganglioside accumulates in the neurons. Due to high carrier rates and the severity of the disease, population screening and prenatal diagnosis of Tay-Sachs disease are routinely carried out in Israel. Laboratory diagnosis of Tay-Sachs is carried out with biochemical and DNA-based methods in peripheral and umbilical cord blood, amniotic fluid, and chorionic villi samples. The assay of hexosaminidase A (Hex A) activity is carried out with synthetic substrates, 4-methylumbelliferyl-6-sulfo-N-acetyl-beta-glucosaminide (4-MUGS) and 4-methylumbelliferil-N-acetyl-beta-glucosamine (4-MUG), and the DNA-based analysis involves testing for the presence of specific known mutations in the alpha-subunit gene of Hex A. Prenatal diagnosis of Tay-Sachs disease is accomplished within 24-48 h from sampling. The preferred strategy is to simultaneously carry out enzymatic analysis in the amniotic fluid supernatant or in chorionic villi and molecular DNA-based testing in an amniotic fluid cell-pellet or in chorionic villi. PMID:18425478
Periodic Interference Structures in the Timelike Proton Form Factor.
Bianconi, Andrea; Tomasi-Gustafsson, Egle
2015-06-12
An intriguing and elusive feature of the timelike hadron form factor is the possible presence of an imaginary part associated to rescattering processes. We find evidence of that in the recent and precise data on the proton timelike form factor measured by the BABAR Collaboration. By plotting these data as a function of the 3-momentum of the relative motion of the final proton and antiproton, a systematic sinusoidal modulation is highlighted in the near-threshold region. Our analysis attributes this pattern to rescattering processes at a relative distance of 0.7-1.5 fm between the centers of the forming hadrons. This distance implies a large fraction of inelastic processes in pp interactions, and a large imaginary part in the related e(+)e(-)→pp reaction because of unitarity. PMID:26196793
Tropak, Michael B.; Reid, Stephen P.; Guiral, Marianne; Withers, Stephen G.; Mahuran, Don
2010-01-01
Tay-Sachs and Sandhoff diseases are lysosomal storage disorders that result from an inherited deficiency of β-hexosaminidase A (αβ). Whereas the acute forms are associated with a total absence of hexosaminidase A and early death, the chronic adult forms exist with activity and protein levels of ~5%, and unaffected individuals have been found with only 10% of normal levels. Surprisingly, almost all disease-associated missense mutations do not affect the active site of the enzyme but, rather, inhibit its ability to obtain and/or retain its native fold in the endoplasmic reticulum, resulting in its retention and accelerated degradation. By growing adult Tay-Sachs fibroblasts in culture medium containing known inhibitors of hexosaminidase we have raised the residual protein and activity levels of intralysosomal hexosaminidase A well above the critical 10% of normal levels. A similar effect was observed in fibroblasts from an adult Sandhoff patient. We propose that these hexosaminidase inhibitors function as pharmacological chaperones, enhancing the stability of the native conformation of the enzyme, increasing the amount of hexosaminidase A capable of exiting the endoplasmic reticulum for transport to the lysosome. Therefore, pharmacological chaperones could provide a novel approach to the treatment of adult Tay-Sachs and possibly Sandhoff diseases. PMID:14724290
Finite volume form factors and correlation functions at finite temperature
NASA Astrophysics Data System (ADS)
Pozsgay, Balázs
2009-07-01
In this thesis we investigate finite size effects in 1+1 dimensional integrable QFT. In particular we consider matrix elements of local operators (finite volume form factors) and vacuum expectation values and correlation functions at finite temperature. In the first part of the thesis we give a complete description of the finite volume form factors in terms of the infinite volume form factors (solutions of the bootstrap program) and the S-matrix of the theory. The calculations are correct to all orders in the inverse of the volume, only exponentially decaying (residual) finite size effects are neglected. We also consider matrix elements with disconnected pieces and determine the general rule for evaluating such contributions in a finite volume. The analytic results are tested against numerical data obtained by the truncated conformal space approach in the Lee-Yang model and the Ising model in a magnetic field. In a separate section we also evaluate the leading exponential correction (the μ-term) associated to multi-particle energies and matrix elements. In the second part of the thesis we show that finite volume factors can be used to derive a systematic low-temperature expansion for correlation functions at finite temperature. In the case of vacuum expectation values the series is worked out up to the third non-trivial order and a complete agreement with the LeClair-Mussardo formula is observed. A preliminary treatment of the two-point function is also given by considering the first nontrivial contributions.
Reanalysis of Rosenbluth measurements of the proton form factors
NASA Astrophysics Data System (ADS)
Gramolin, A. V.; Nikolenko, D. M.
2016-05-01
We present a reanalysis of the data from Stanford Linear Accelerator Center (SLAC) experiments E140 [R. C. Walker et al., Phys. Rev. D 49, 5671 (1994), 10.1103/PhysRevD.49.5671] and NE11 [L. Andivahis et al., Phys. Rev. D 50, 5491 (1994), 10.1103/PhysRevD.50.5491] on elastic electron-proton scattering. This work is motivated by recent progress in calculating the corresponding radiative corrections and by the apparent discrepancy between the Rosenbluth and polarization transfer measurements of the proton electromagnetic form factors. New, corrected values for the scattering cross sections are presented, as well as a new form factor fit in the Q2 range from 1 to 8.83 GeV2. We also provide a complete set of revised formulas to account for radiative corrections in single-arm measurements of unpolarized elastic electron-proton scattering.
Measurement of the gamma gamma* -> pi0 transition form factor
Aubert, B.
2009-06-02
We study the reaction e{sup +}e{sup -} {yields} e{sup +}e{sup -}{pi}{sup 0} in the single tag mode and measure the differential cross section d{sigma}/dQ{sup 2} and the {gamma}{gamma}* {yields} {pi}{sup 0} transition form factor in the mometum transfer range from 4 to 40 GeV{sup 2}. At Q{sup 2} > 10 GeV{sup 2} the measured form factor exceeds the asymptotic limit predicted by perturbative QCD. The analysis is based on 442 fb{sup -1} of integrated luminosity collected at PEP-II with the BABAR detector at e{sup +}e{sup -} center-of-mass energies near 10.6 GeV.
Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model
Gilberto Ramalho, Kazuo Tsushima
2011-09-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
Small form factor full parallax tiled light field display
NASA Astrophysics Data System (ADS)
Alpaslan, Zahir Y.; El-Ghoroury, Hussein S.
2015-03-01
With the recent introduction of Ostendo's Quantum Photonic Imager (QPI) display technology, a very small pixel pitch, emissive display with high brightness and low power consumption became available. We used QPI's to create a high performance light field display tiles with a very small form factor. Using 8 of these QPI light field displays tiled in a 4x2 array we created a tiled full parallax light field display. Each individual light field display tile combines custom designed micro lens array layers with monochrome green QPIs. Each of the light field display tiles can address 1000 x 800 pixels placed under an array of 20 x 16 lenslets with 500 μm diameters. The light field display tiles are placed with small gaps to create a tiled display of approximately 46 mm (W) x 17 mm (H) x 2 mm (D) in mechanical dimensions. The prototype tiled full parallax light field display demonstrates small form factor, high resolution and focus cues.
η' transition form factor from space- and timelike experimental data
NASA Astrophysics Data System (ADS)
Escribano, R.; Gonzàlez-Solís, S.; Masjuan, P.; Sanchez-Puertas, P.
2016-09-01
The η' transition form factor is reanalyzed in view of the recent first observation by BESIII of the Dalitz decay η'→γ e+e- in both space- and timelike regions at low and intermediate energies using the Padé approximants method. The present analysis provides a suitable parametrization for reproducing the measured form factor in the whole energy region and allows one to extract the corresponding low-energy parameters together with a prediction of their values at the origin, related to Γη'→γ γ , and the asymptotic limit. The η - η' mixing is reassessed within a mixing scheme compatible with the large-Nc chiral perturbation theory at next-to-leading order, with particular attention to the Okubo-Zweig-Iizuka-rule-violating parameters. The J /ψ , Z →η(')γ decays are also considered and predictions are reported.
Theoretical and Experimental Review on Proton Form Factors
NASA Astrophysics Data System (ADS)
Baldini Ferroli, Rinaldo; Pacetti, Simone
2014-12-01
During the last three lustra nucleon form factors experiments have lived a golden age, full of interesting results, that likely will continue and culminate when new data will come from BESIII, SND, CMD3 and PANDA, in the time-like region and, Jefferson Lab and A1 in the space-like region. On the other hand, from theoretical point of view, mainly concerning the possibility of descriptions in all kinematical regions, no great breakthrough has been made.
Nonlocal form factors for curved-space antisymmetric fields
NASA Astrophysics Data System (ADS)
Netto, Tibério de Paula; Shapiro, Ilya L.
2016-07-01
In a recent paper, Buchbinder, Kirillova, and Pletnev presented formal arguments concerning the quantum equivalence of free massive antisymmetric tensor fields of the second and third rank to the free Proca theory and massive scalar field with minimal coupling to gravity, respectively. We confirm this result using explicit covariant calculations of nonlocal form factors based on the heart-kernel technique and discuss the discontinuity of quantum contributions in the massless limit.
Stackable Form-Factor Peripheral Component Interconnect Device and Assembly
NASA Technical Reports Server (NTRS)
Somervill, Kevin M. (Inventor); Ng, Tak-kwong (Inventor); Torres-Pomales, Wilfredo (Inventor); Malekpour, Mahyar R. (Inventor)
2013-01-01
A stackable form-factor Peripheral Component Interconnect (PCI) device can be configured as a host controller or a master/target for use on a PCI assembly. PCI device may comprise a multiple-input switch coupled to a PCI bus, a multiplexor coupled to the switch, and a reconfigurable device coupled to one of the switch and multiplexor. The PCI device is configured to support functionality from power-up, and either control function or add-in card function.
Axial form factor of the nucleon at large momentum transfers
NASA Astrophysics Data System (ADS)
Anikin, I. V.; Braun, V. M.; Offen, N.
2016-08-01
Motivated by the emerging possibilities to study threshold pion electroproduction at large momentum transfers at Jefferson Laboratory following the 12 GeV upgrade, we provide a short theory summary and an estimate of the nucleon axial form factor for large virtualities in the Q2=1 - 10 GeV2 range using next-to-leading-order light-cone sum rules.
Pion transverse charge density from timelike form factor data
Gerald Miller, Mark Strikman, Christian Weiss
2011-01-01
The transverse charge density in the pion can be represented as a dispersion integral of the imaginary part of the pion form factor in the timelike region. This formulation incorporates information from e+e- annihilation experiments and allows one to reconstruct the transverse density much more accurately than from the spacelike pion form factor data alone. We calculate the transverse density using an empirical parametrization of the timelike pion form factor and estimate that it is determined to an accuracy of ~10% at a distance b ~ 0.1 fm, and significantly better at larger distances. The density is found to be close to that obtained from a zero-width rho meson pole over a wide range and shows a pronounced rise at small distances. The resulting two-dimensional image of the fast-moving pion can be interpreted in terms of its partonic structure in QCD. We argue that the singular behavior of the charge density at the center requires a substantial presence of pointlike configurations in the pion's partonic wave function, which can be probed in other high-momentum transfer processes.
Form factor and width of a quantum string
NASA Astrophysics Data System (ADS)
Rajantie, Arttu; Rummukainen, Kari; Weir, David J.
2012-12-01
In the Yang-Mills theory, the apparent thickness of the confining string is known to grow logarithmically when its length increases. The same logarithmic broadening also happens to strings in other quantum field theories and domain walls in statistical physics models. Even in quantum field theories, the correlators used to measure and characterize this phenomenon are analogous to those in statistical physics. In this paper we describe it using the string form factor which is a meaningful quantum observable, obtainable in principle from scattering experiments. We show how the form factor can be obtained from field correlation functions calculated in lattice Monte Carlo simulations. We apply this method to 2+1-dimensional scalar theory in the strong coupling limit, where it is equivalent to the 3D Ising model, and through duality also to 2+1-dimensional Z2 gauge theory. We measure the string form factor by simulating the Ising model, and demonstrate that it displays the same logarithmic broadening as observed by other quantities.
Helicity non-conserving form factor of the proton
Voutier, E.; Furget, C.; Knox, S.
1994-04-01
The study of the hadron structure in the high Q{sup 2} range contributes to the understanding of the mechanisms responsible for the confinement of quarks and gluons. Among the numerous experimental candidates sensitive to these mechanisms, the helicity non-conserving form factor of the proton is a privileged observable since it is controlled by non-perturbative effects. The authors investigate here the feasibility of high Q{sup 2} measurements of this form factor by means of the recoil polarization method in the context of the CEBAF 8 GeV facility. For that purpose, they discuss the development of a high energy proton polarimeter, based on the H({rvec p},pp) elastic scattering, to be placed at the focal plane of a new hadron spectrometer. It is shown that this experimental method significantly improves the knowledge of the helicity non-conserving form factor of the proton up to 10 GeV{sup 2}/c{sup 2}.
Meson Transition Form Factors in Light-Front Holographic QCD
Brodsky, Stanley J.; Cao, Fu-Guang; de Teramond, Guy F.; /Costa Rica U.
2011-06-22
We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.
Electric and magnetic form factors of the proton
NASA Astrophysics Data System (ADS)
Bernauer, J. Â. C.; Distler, M. Â. O.; Friedrich, J.; Walcher, Th.; Achenbach, P.; Ayerbe Gayoso, C.; Böhm, R.; Bosnar, D.; Debenjak, L.; Doria, L.; Esser, A.; Fonvieille, H.; Gómez Rodríguez de la Paz, M.; Friedrich, J. Â. M.; Makek, M.; Merkel, H.; Middleton, D. Â. G.; Müller, U.; Nungesser, L.; Pochodzalla, J.; Potokar, M.; Sánchez Majos, S.; Schlimme, B. Â. S.; Širca, S.; Weinriefer, M.; A1 Collaboration
2014-07-01
This paper describes a precise measurement of electron scattering off the proton at momentum transfers of 0.003≲Q2≲1 GeV2. The average point-to-point error of the cross sections in this experiment is ˜0.37%. These data are used for a coherent new analysis together with all world data of unpolarized and polarized electron scattering from the very smallest to the highest momentum transfers so far measured. The extracted electric and magnetic form factors provide new insight into their exact shape, deviating from the classical dipole form, and of structure on top of this gross shape. The data reaching very low Q2 values are used for a new determination of the electric and magnetic radii. An empirical determination of the two-photon-exchange correction is presented. The implications of this correction on the radii and the question of a directly visible signal of the pion cloud are addressed.
Scattering form factors for self-assembled network junctions
NASA Astrophysics Data System (ADS)
Foster, T.; Safran, S. A.; Sottmann, T.; Strey, R.
2007-11-01
The equilibrium microstructures in microemulsions and other self-assembled systems show complex, connected shapes such as symmetric bicontinuous spongelike structures and asymmetric bicontinuous networks formed by cylinders interconnected at junctions. In microemulsions, these cylinder network microstructures may mediate the structural transition from a spherical or globular phase to the bicontinuous microstructure. To understand the structural and statistical properties of such cylinder network microstructures as measured by scattering experiments, models are needed to extract the real-space structure from the scattering data. In this paper, we calculate the scattering functions appropriate for cylinder network microstructures. We focus on such networks that contain a high density of network junctions that connect the cylindrical elements. In this limit, the network microstructure can be regarded as an assembly of randomly oriented, closed packed network junctions (i.e., the cylinder scattering contributions are neglected). Accordingly, the scattering spectrum of the network microstructure can be calculated as the product of the junction number density, the junction form factor, which describes the scattering from the surface of a single junction, and a structure factor, which describes the local correlations of different junctions due to junction interactions (including their excluded volume). This approach is applied to analyze the scattering data from a bicontinuous microemulsion with equal volumes of water and oil. In a second approach, we included the cylinder scattering contribution in the junction form factor by calculating the scattering intensity of Y junctions to which three rods with spherical cross section are attached. The respective theoretical predictions are compared with results of neutron scattering measurements on a water-in-oil microemulsion with a connected microstructure.
Molecular epidemiology of Tay-Sachs disease in Europe.
Poenaru, L; Akli, S
1994-01-01
The abnormalities in the gene coding for the beta-hexosaminidase alpha subunit were analysed from fibroblast's RNAs of 42 Tay-Sachs patients (seven with adult or late onset of Tay-Sachs disease and 35 with infantile Tay-Sachs disease). After first strand synthesis by random priming, PCR was used to amplify in two overlapping fragments (868 and 949 bp) the entire coding region. These amplified products were first studied for changes in size by agarose gel electrophoresis to screen for splicing mutations leading to exon skipping or cryptic splice site activation. For each patient, the two overlapping cDNA fragments were subjected to chemical mismatch cleavage analysis using hydroxylamine to modify C-containing mismatches and osmium tetroxide to modify T-containing mismatches. DGGE was used to screen for mutations in the coding region spanning exon 2 to exon 6, a region putatively encompassing the active site and therefore a potential hot spot of mutations associated with Tay-Sachs disease. To increase the sensitivity of the technique, a 30 bp GC-clamp has been added at the 5' end of the sense oligonucleotide to amplify a fragment of 629 bp. The computerized analysis found that single base changes in domain spanning from nt 313 to nt 693 can be distinguished. Fragments displaying an altered melting behavior or a cleaved product were further analysed by direct sequencing of the amplified material. These methods as a whole allowed us to identify 30/38 alleles studied (79%) with 15 point mutations and one 4 bp insertion detected.(ABSTRACT TRUNCATED AT 250 WORDS)
Choroidal coloboma in a case of tay-sachs disease.
Ahmed, Nasreen Raees; Tripathy, Koushik; Kumar, Vivek; Gogia, Varun
2014-01-01
Coloboma as an ocular finding has been documented in various syndromes. Here we have a case of infantile Tay-Sachs disease associated with unilateral choroidal coloboma. To the best of our knowledge, such an association has not been documented in the literature. Whether such an association is a matter of chance or signifies the involvement of ganglioside metabolism in ocular embryogenesis remains to be elucidated.
Distribution of a pseudodeficiency allele among Tay-Sachs carriers
Tomczak, J.; Grebner, E.E. ); Boogen, C. )
1993-08-01
Recently Triggs-Raine et al. (1992) identified a new mutation in the gene coding for the [alpha]-subunit of [beta]-hexosaminidase A (hex A), the enzyme whose deficiency causes Tay-Sachs disease. This mutation, a C[sub 739]-to-T transition in exon 7, results in an altered enzyme that is active (albeit at reduced levels) in cells but that has essentially no activity in serum. This so-called pseudodeficient allele was first detected in compound heterozygotes who also carried a Tay-Sachs disease allele and therefore had no detectable hex A in their serum but who were in good health. Carriers of this apparently benign mutation are generally indistinguishable from carriers of a lethal mutation by means of routine enzyme-based screening tests, because the product of the pseudodeficient allele is not detectable in serum and has decreased activity in cells. This suggests that some individuals who have been classified as Tay-Sachs carriers are actually carriers of the pseudodeficient allele and are not at risk to have a child affected with Tay-Sachs disease. The pseudodeficient allele may also be responsible for some inconclusive diagnoses, where leukocyte values fall below the normal range but are still above the carrier range. The fact that there are now two mutant alleles (the psuedodeficient and the adult) that are indistinguishable from the lethal infantile mutations by means of enzyme assay yet that are phenotypically very different and that together may account for as much as 12% of enzyme-defined carriers on the basis of the data here suggests that DNA analysis should be part of a comprehensive screening program. It will be particularly useful to identify the mutations in couples at risk, before they undergo prenatal diagnosis. DNA analysis will also resolve some inconclusive diagnoses.
a Study of Kantowski-Sachs Model in Ashtekar Variables
NASA Astrophysics Data System (ADS)
Chakraborty, Subenoy; Chakravarty, Nabajit
In this paper we study classical and quantum cosmology in Kantowski-Sachs model using Ashtekar variables. Classical solutions are obtained for the above model with a cosmological term and Hamilton-Jacobi (HJ) equations have been studied to obtain inflationary solutions. In quantum cosmology, the wave function of the Universe is obtained using path integral formalism as well as by solving the Wheeler-DeWitt (WD) equation.
Choroidal coloboma in a case of tay-sachs disease.
Ahmed, Nasreen Raees; Tripathy, Koushik; Kumar, Vivek; Gogia, Varun
2014-01-01
Coloboma as an ocular finding has been documented in various syndromes. Here we have a case of infantile Tay-Sachs disease associated with unilateral choroidal coloboma. To the best of our knowledge, such an association has not been documented in the literature. Whether such an association is a matter of chance or signifies the involvement of ganglioside metabolism in ocular embryogenesis remains to be elucidated. PMID:25295204
Introducing soil forming factors with mini campus field trips
NASA Astrophysics Data System (ADS)
Quinton, John; Haygarth, Phil
2013-04-01
Students like field work, yet the proportion of time spent in the field during many soil science courses is small. Here we describe an introductory lecture on the soil forming factors based around a mini field trip in which we spend 45 minutes exploring these factors on the Lancaster University campus. In the 'trip' we visit some woodland to consider the effects of organic matter , vegetation and time on soil development and then take in a football pitch to examine the effects of landscape position, parent material and climate. Student responses are overwhelmingly positive and we suggest that more use can be made of our often mundane surroundings to explore soil formation. Soil functions and soil processes.
Cytokinin response factors regulate PIN-FORMED auxin transporters.
Šimášková, Mária; O'Brien, José Antonio; Khan, Mamoona; Van Noorden, Giel; Ötvös, Krisztina; Vieten, Anne; De Clercq, Inge; Van Haperen, Johanna Maria Adriana; Cuesta, Candela; Hoyerová, Klára; Vanneste, Steffen; Marhavý, Peter; Wabnik, Krzysztof; Van Breusegem, Frank; Nowack, Moritz; Murphy, Angus; Friml, Jiří; Weijers, Dolf; Beeckman, Tom; Benková, Eva
2015-11-06
Auxin and cytokinin are key endogenous regulators of plant development. Although cytokinin-mediated modulation of auxin distribution is a developmentally crucial hormonal interaction, its molecular basis is largely unknown. Here we show a direct regulatory link between cytokinin signalling and the auxin transport machinery uncovering a mechanistic framework for cytokinin-auxin cross-talk. We show that the CYTOKININ RESPONSE FACTORS (CRFs), transcription factors downstream of cytokinin perception, transcriptionally control genes encoding PIN-FORMED (PIN) auxin transporters at a specific PIN CYTOKININ RESPONSE ELEMENT (PCRE) domain. Removal of this cis-regulatory element effectively uncouples PIN transcription from the CRF-mediated cytokinin regulation and attenuates plant cytokinin sensitivity. We propose that CRFs represent a missing cross-talk component that fine-tunes auxin transport capacity downstream of cytokinin signalling to control plant development.
Baryon octet electromagnetic form factors in a confining NJL model
NASA Astrophysics Data System (ADS)
Carrillo-Serrano, Manuel E.; Bentz, Wolfgang; Cloët, Ian C.; Thomas, Anthony W.
2016-08-01
Electromagnetic form factors of the baryon octet are studied using a Nambu-Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that rEp < rEΣ+ and | rEn | < | rEΞ0 |, whereas the magnetic radii have a pattern largely consistent with a naive expectation based on the dressed quark masses.
Minimal form factor digital-image sensor for endoscopic applications
NASA Astrophysics Data System (ADS)
Wäny, Martin; Voltz, Stephan; Gaspar, Fabio; Chen, Lei
2009-02-01
This paper presents a digital image sensor SOC featuring a total chip area (including dicing tolerances) of 0.34mm2 for endoscopic applications. Due to this extremely small form factor the sensor enables integration in endoscopes, guide wires and locater devices of less than 1mm outer diameter. The sensor embeds a pixel matrix of 10'000 pixels with a pitch of 3um x 3um covered with RGB filters in Bayer pattern. The sensor operates fully autonomous, controlled by an on chip ring oscillator and readout state machine, which controls integration AD conversion and data transmission, thus the sensor only requires 4 pin's for power supply and data communication. The sensor provides a frame rate of 40Frames per second over a LVDS serial data link. The endoscopic application requires that the sensor must work without any local power decoupling capacitances at the end of up to 2m cabling and be able to sustain data communication over the same wire length without deteriorating image quality. This has been achieved by implementation of a current mode successive approximation ADC and current steering LVDS data transmission. An band gap circuit with -40dB PSRR at the data frequency was implemented as on chip reference to improve robustness against power supply ringing due to the high series inductance of the long cables. The B&W versions of the sensor provides a conversion gain of 30DN/nJ/cm2 at 550nm with a read noise in dark of 1.2DN when operated at 2m cable. Using the photon transfer method according to EMVA1288 standard the full well capacity was determined to be 18ke-. According to our knowledge the presented work is the currently world smallest fully digital image sensor. The chip was designed along with a aspheric single surface lens to assemble on the chip without increasing the form factor. The extremely small form factor of the resulting camera permit's to provide visualization with much higher than state of the art spatial resolution in sub 1mm endoscopic
Proton Form Factor Measurements Using Polarization Method: Beyond Born Approximation
Pentchev, Lubomir
2008-10-13
Significant theoretical and experimental efforts have been made over the past 7 years aiming to explain the discrepancy between the proton form factor ratio data obtained at JLab using the polarization method and the previous Rosenbluth measurements. Preliminary results from the first high precision polarization experiment dedicated to study effects beyond Born approximation will be presented. The ratio of the transferred polarization components and, separately, the longitudinal polarization in ep elastic scattering have been measured at a fixed Q{sup 2} of 2.5 GeV{sup 2} over a wide kinematic range. The two quantities impose constraints on the real part of the ep elastic amplitudes.
P and T Violating Form Factors of the Deuteron
Vries, J. de; Timmermans, R. G. E.; Mereghetti, E.; Kolck, U. van
2011-08-26
We calculate the electric-dipole and magnetic-quadrupole form factors of the deuteron that arise as a low-energy manifestation of parity and time-reversal violation in quark-gluon interactions. We consider the QCD vacuum angle and the dimension-six operators that originate from physics beyond the standard model: the quark electric and chromoelectric dipole moments and the gluon chromoelectric dipole moment. Within the framework of two-flavor chiral perturbation theory, we show that in combination with the nucleon electric dipole moment, the deuteron moments would allow an identification of the dominant source(s) of symmetry violation.
CEBAF at higher energies and the kaon electromagnetic form factor
Baker, O.K.
1994-04-01
The electromagnetic production of strangeness, the physics of exciting systems having strangeness degrees of freedom (production of hadrons with one or more strange constituent quarks) using electromagnetic probes (real or virtual photons), is one of the frontier areas of research which will be investigated at the Continuous Electron Beam Accelerator Facility (CEBAF) when it becomes operational. CEBAF is expected to have an important impact upon this field of research using its specialized set of detection instruments and high quality electron beam. This paper focusses upon one aspect of the associated production of strangeness - the determination of the kaon electromagnetic form factor at high squared momentum transfers.
Meson transition form factors in light-front holographic QCD
Brodsky, Stanley J.; Cao Fuguang; de Teramond, Guy F.
2011-10-01
We study the photon-to-meson transition form factors (TFFs) F{sub M}{gamma}(Q{sup 2}) for {gamma}{gamma}{sup *}{yields}M using light-front holographic methods. The Chern-Simons action, which is a natural form in five-dimensional anti-de Sitter (AdS) space, is required to describe the anomalous coupling of mesons to photons using holographic methods and leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the qq component of the pion wave function, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0}{yields}{gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the qq component of the pion wave function P{sub qq}=0.5 is required, thus giving indication that the contributions from higher Fock states in the pion light-front wave function need to be included in the analysis. The probability for the Fock state containing four quarks P{sub qqqq}{approx}10%, which follows from analyzing the hadron matrix elements for a dressed current model, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wave function. The results for the TFFs for the {eta} and {eta}{sup '} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{sup '} TFFs.
ρ γ*→π (ρ ) transition form factors in the perturbative QCD factorization approach
NASA Astrophysics Data System (ADS)
Zhang, Ya-Lan; Cheng, Shan; Hua, Jun; Xiao, Zhen-Jun
2015-11-01
In this paper, we studied the ρ γ*→π and ρ γ*→ρ transition processes and made the calculations for the ρ π transition form factor Q4Fρ π(Q2) and the ρ -meson electromagnetic form factors, FLL ,LT ,TT(Q2) and F1 ,2 ,3(Q2), by employing the perturbative QCD (PQCD) factorization approach. For the ρ γ*→π transition, we found that the contribution to form factor Q4Fρ π(Q2) from the term proportional to the distribution amplitude combination ϕρT(x1)ϕπP(x2) is absolutely dominant, and the PQCD predictions for both the size and the Q2-dependence of this form factor Q4Fρ π(Q2) agree well with those from the extended anti-de Sitter/QCD models or the light-cone QCD sum rule. For the ρ γ*→ρ transition and in the region of Q2≥3 GeV2 , furthermore, we found that the PQCD predictions for the magnitude and their Q2-dependence of the F1(Q2) and F2(Q2) form factors agree well with those from the QCD sum rule, while the PQCD prediction for F3(Q2) is much larger than the one from the QCD sum rule.
Myerowitz, R
1988-06-01
Tay-Sachs disease is an inherited disorder in which the alpha chain of the lysosomal enzyme beta-N-acetylhexosaminidase A bears the mutation. Ashkenazi Jews are found to be carriers for a severe type of Tay-Sachs disease, the classic form, 10 times more frequently than the general population. Ashkenazi Jewish patients with classic Tay-Sachs disease have appeared to be clinically and biochemically identical, and the usual assumption has been that they harbor the same alpha-chain mutation. In this study I have isolated the alpha-chain gene from an Ashkenazi Jewish patient, GM2968, with classic Tay-Sachs disease and compared its nucleotide sequences with that of the normal alpha-chain gene in the promoter region, exon and splice junction regions, and polyadenylylation signal area. Only one difference was observed between these sequences: at the 5' boundary of intron 12, a guanosine in the conserved splice junction dinucleotide sequence G-T had been altered to a cytidine. The alteration is presumed to be functionally significant and to result in aberrant mRNA splicing. Utilizing the polymerase chain reaction to amplify the region encompassing the mutation, I developed an assay to screen patients and heterozygote carriers for this mutation. Surprisingly, in each of two Ashkenazi patients, only one alpha-chain allele harbored the splice junction mutation. Only one parent of each of these patients was positive for the defect. Another Ashkenazi patient did not bear this mutation at all nor did either of the subject's parents. In addition, 30% of obligate heterozygotes tested carried the splice junction mutation, whereas 20 Ashkenazi Jews designated noncarriers by enzymatic assay were negative for this alteration. The data are consistent with the presence of more than one mutation underlying the classic form of Tay-Sachs disease in the Ashkenazi Jewish population.
Miklyaeva, Elena I; Dong, Weijia; Bureau, Alexandre; Fattahie, Roya; Xu, Yongqin; Su, Meng; Fick, Gordon H; Huang, Jing-Qi; Igdoura, Suleiman; Hanai, Nobuo; Gravel, Roy A
2004-03-19
Tay-Sachs disease is an autosomal recessive neurodegenerative disease resulting from a block in the hydrolysis of GM2 ganglioside, an intermediate in ganglioside catabolism. The mouse model of Tay-Sachs disease (Hexa -/-) has been described as behaviorally indistinguishable from wild type until at least 1 year of age due to a sialidase-mediated bypass of the metabolic defect that reduces the rate of GM2 ganglioside accumulation. In this study, we have followed our mouse model to over 2 years of age and have documented a significant disease phenotype that is reminiscent of the late onset, chronic form of human Tay-Sachs disease. Onset occurs at 11-12 months of age and progresses slowly, in parallel with increasing storage of GM2 ganglioside. The disease is characterized by hind limb spasticity, weight loss, tremors, abnormal posture with lordosis, possible visual impairment, and, late in the disease, muscle weakness, clasping of the limbs, and myoclonic twitches of the head. Immunodetection of GM2 ganglioside showed that storage varies widely in different regions, but is most intense in pyriform cortex, hippocampus (CA3 field, subiculum), amygdala, hypothalamus (paraventricular supraoptic, ventromedial and arcuate nuclei, and mammilary body), and the somatosensory cortex (layer V) in 1- to 2-year-old mutant mice. We suggest that the Tay-Sachs mouse model is a phenotypically valid model of disease and may provide for a reliable indicator of the impact of therapeutic strategies, in particular geared to the late onset, chronic form of human Tay-Sachs disease.
Myerowitz, R. )
1988-06-01
Tay-Sachs disease is an inherited disorder in which the {alpha} chain of the lysosomal enzyme {beta}-N-acetylhexosaminidase A bears the mutation. Ashkenazi Jews are found to be carriers for a severe type of Tay-Sachs disease, the classic form, 10 times more frequently than the general population. Ashkenazi Jewish patients with classic Tay-Sachs disease have appeared to be clinically and biochemically identical, and the usual assumption has been that they harbor the same {alpha}-chain mutation. The author has isolated the {alpha}-chain gene from an Ashkenazi Jewish patient, GM2968, with classic Tay-Sachs disease and compared its nucleotide sequences with that of the normal {alpha}-chain gene in the promoter region, exon and splice junction regions, and polyadenylylation signal area. Only one difference was observed between these sequences. The alteration is presumed to be functionally significant and to result in aberrant mRNA splicing. Utilizing the polymerase chain reaction to amplify the region encompassing the mutation, the author developed an assay to screen patients and heterozygote carriers for this mutation. Surprisingly, in each of two Ashkenazi patients, only one {alpha}-chain allele harbored the splice junction mutation. Only one parent of each of these patients was positive for the defect. Another Ashkenazi patient did not bear this mutation at all nor did either of the subject's parents. The data are consistent with the presence of more than one mutation underlying the classic form of Tay-Sachs disease in the Ashkenazi Jewish population.
Improved semileptonic form factor calculations in lattice QCD
Evans, Richard; Bali, Gunnar; Collins, Sara
2010-11-01
We investigate the computational efficiency of two stochastic based alternatives to the sequential propagator method used in lattice QCD calculations of heavy-light semileptonic form factors. In the first method, we replace the sequential propagator, which couples the calculation of two of the three propagators required for the calculation, with a stochastic propagator so that the calculations of all three propagators are independent. This method is more flexible than the sequential propagator method but introduces stochastic noise. We study the noise to determine when this method becomes competitive with the sequential propagator method, and find that for any practical calculation it is competitive with or superior to the sequential propagator method. We also examine a second stochastic method, the so-called 'one-end trick', concluding it is relatively inefficient in this context. The investigation is carried out on two gauge field ensembles, using the nonperturbatively improved Wilson-Sheikholeslami-Wohlert action with N{sub f}=2 mass-degenerate sea quarks. The two ensembles have similar lattice spacings but different sea-quark masses. We use the first stochastic method to extract O(a)-improved, matched lattice results for the semileptonic form factors on the ensemble with lighter sea quarks, extracting f{sub +}(0).
Transition Form Factors of the Proton at Higher Momentum Transfer
Paul Stoler
1998-12-01
Recently there hae been promising developments in bridging the high and low Q{sup 2} extremes with a QCD quark-parton description of exclusive reactions. In this approach the perturbative hard part of the reaction, which is calculable, is isolated from the non-perturbative soft, physics which is parameterized in terms of off-forward parton distributions (OFPD), generically illustrated in a figure. An attractive aspect of this is that the same OFPD's are common to different exclusive reactions which involve the same set of hadrons. In the limit of forward scattering it is shown that the OFPD become the usual inclusive parton distribution functions, as illustrated for the case of virtual Compton scattering in a figure. A figure illustrates how they are related specifically to baryon elastic and transition form factors, which is the subject of this article.
Deuteron Electromagnetic Form Factors in AdS/QCD
NASA Astrophysics Data System (ADS)
Lyubovitskij, Valery E.; Gutsche, Thomas; Schmidt, Ivan; Vega, Alfredo
2016-07-01
We extend a soft-wall AdS/QCD approach to a description of deuteron properties. Our framework is based an effective action formulated in terms of AdS fields, which are holographically equivalent to the deuteron and photon fields. This action produces the equation of motion for the deuteron wave function and the Q^2-dependent electromagnetic current, which are then used to calculate the deuteron electromagnetic form factors and structure functions in the Euclidean region. We show that the predicted deuteron quantities are expressed through a universal function, which is defined by a single scale parameter κ and which has the correct 1/Q^{10} power scaling at large Q^2.
Measurements of deuteron magnetic form factor high momentum transfer
Arnold, R.G.; Benton, D.; Bosted, P.; Clogher, L.; DeChambrier, G.; Katramatou, A.T.; Lambert, J.; Lung, A.; Petratos, G.G.; Rahbar, A.; and others
1987-04-27
The deuteron magnetic form factor B(Q/sup 2/) has been measured at momentum transfers Q/sup 2/ = 1.21, 1.49, 1.61, 1.74, 1.98, 2.23, 2.48, 2.53, and 2.77 (GeV/c)/sup 2/ at the Stanford Linear Accelerator Center by detection of electrons backscattered at 180/sup 0/ in coincidence with recoiling deuterons at 0/sup 0/. The data for B(Q/sup 2/) are found to decrease rapidly from Q/sup 2/ = 1.2 to 2 (GeV/c)/sup 2/, then rise to a secondary maximum around Q/sup 2/ = 2.5 (GeV/c)/sup 2/, in qualitative agreement with impulse-approximation calculations.
Thin and small form factor cells : simulated behavior.
Clews, Peggy Jane; Pluym, Tammy; Grubbs, Robert K.; Cruz-Campa, Jose Luis; Zubia, David; Young, Ralph Watson; Okandan, Murat; Gupta, Vipin P.; Nielson, Gregory N.; Resnick, Paul James
2010-07-01
Thin and small form factor cells have been researched lately by several research groups around the world due to possible lower assembly costs and reduced material consumption with higher efficiencies. Given the popularity of these devices, it is important to have detailed information about the behavior of these devices. Simulation of fabrication processes and device performance reveals some of the advantages and behavior of solar cells that are thin and small. Three main effects were studied: the effect of surface recombination on the optimum thickness, efficiency, and current density, the effect of contact distance on the efficiency for thin cells, and lastly the effect of surface recombination on the grams per Watt-peak. Results show that high efficiency can be obtained in thin devices if they are well-passivated and the distance between contacts is short. Furthermore, the ratio of grams per Watt-peak is greatly reduced as the device is thinned.
Baryon Transition Form Factors at JLab: Status and Outlook
Ralf Gothe
2009-12-01
The measurements of exclusive single-meson and double-pion electro-production cross sections off the proton to study nucleon resonances will be extended to higher momentum transfers with the CLAS12 detector and the energy upgraded CEBAF beam. Based on new theoretical developments to extract and interpret the electromagnetic transition form factors and on the experience gained from the most recent results, the newly formed collaboration of experimentalists and theorists shall enable us to provide unprecedented high-precision data, high-quality analyses, and state-of-the-art model and QCD based calculations in a Q domain up to 10 GeV{sup 2}. For the first time nucleon resonance structures will be studied at still unexplored distance scales, where the dressed quark contributions are the dominating degrees of freedom and their strong interaction is responsible for the ground and excited nucleon state formation. These studies also open up a promising opportunity to understand the origin of more than 98% of the nucleon mass that is created by strong fields predominantly at these distance scales by dressing the current quarks.
78 FR 24447 - Goldman Sachs Trust, et al.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-25
...: Applicants request an order to permit open-end management investment companies relying on rule 12d1-2 under... Variable Insurance Trust (each a ``Trust,'' together, the ``Trusts''), Goldman Sachs Asset Management, L.P (``GSAM'') and Goldman Sachs Asset Management International (``GSAMI'') (each, an ``Initial Adviser''...
The white matter of the human cerebrum: Part I The occipital lobe by Heinrich Sachs
Forkel, Stephanie J.; Mahmood, Sajedha; Vergani, Francesco; Catani, Marco
2015-01-01
This is the first complete translation of Heinrich Sachs' outstanding white matter atlas dedicated to the occipital lobe. This work is accompanied by a prologue by Prof Carl Wernicke who for many years was Sachs' mentor in Breslau and enthusiastically supported his work. PMID:25527430
The white matter of the human cerebrum: part I The occipital lobe by Heinrich Sachs.
Forkel, Stephanie J; Mahmood, Sajedha; Vergani, Francesco; Catani, Marco
2015-01-01
This is the first complete translation of Heinrich Sachs' outstanding white matter atlas dedicated to the occipital lobe. This work is accompanied by a prologue by Prof Carl Wernicke who for many years was Sachs' mentor in Breslau and enthusiastically supported his work.
Phenomenological dynamics of loop quantum cosmology in Kantowski-Sachs spacetime
Chiou, D.-W.
2008-08-15
The fundamental theory and the semiclassical description of loop quantum cosmology (LQC) have been studied in the Friedmann-Robertson-Walker and Bianchi I models. As an extension to include both anisotropy and intrinsic curvature, this paper investigates the cosmological model of Kantowski-Sachs spacetime with a free massless scalar field at the level of phenomenological dynamics with the LQC discreteness corrections. The LQC corrections are implemented in two different improved quantization schemes. In both schemes, the big bang and big crunch singularities of the classical solution are resolved and replaced by the big bounces when the area or volume scale factor approaches the critical values in the Planck regime measured by the reference of the scalar field momentum. Symmetries of scaling are also noted and suggest that the fundamental spatial scale (area gap) may give rise to a temporal scale. The bouncing scenarios are in an analogous fashion of the Bianchi I model, naturally extending the observations obtained previously.
Quaternions, Torsion and the Physical Vacuum: Theories of M. Sachs and G. Shipov Compared
NASA Astrophysics Data System (ADS)
Cyganski, David; Page, William S.
Of several developments of unified field theories in the spirit of Einstein's original objective of a fully geometric description of all classical fields as well as quantum mechanics, two are particularly noteworthy. The works of Mendel Sachs and Gennady Shipov stand apart as major life works comprising tens of papers, several monographs and decades of effort. Direct comparison of these theories is hampered however by differences in notation and conceptual view-point. Despite these differences, there are many parallels between the fundamental mathematical structures appearing in each. In this paper we discuss the main tenets of the two approaches and demonstrate that they both give rise to a factorization of the invariant interval of general relativity.
Sialidase-mediated depletion of GM2 ganglioside in Tay-Sachs neuroglia cells.
Igdoura, S A; Mertineit, C; Trasler, J M; Gravel, R A
1999-06-01
Tay-Sachs disease is a severe, inherited disease of the nervous system caused by accumulation of the brain lipid GM2 ganglioside. Mouse models of Tay-Sachs disease have revealed a metabolic bypass of the genetic defect based on the more potent activity of the enzyme sialidase towards GM2. To determine whether increasing the level of sialidase would produce a similar effect in human Tay-Sachs cells, we introduced a human sialidase cDNA into neuroglia cells derived from a Tay-Sachs fetus and demonstrated a dramatic reduction in the accumulated GM2. This outcome confirmed the reversibility of GM2 accumulation and opens the way to pharmacological induction or activation of sialidase for the treatment of human Tay-Sachs disease.
Unitary evolution for a quantum Kantowski-Sachs cosmology
NASA Astrophysics Data System (ADS)
Pal, Sridip; Banerjee, Narayan
2015-10-01
It is shown that like the Bianchi I, V and IX models, a Kantowski-Sachs cosmological model also allows unitary evolution on quantization. It has also been shown that this unitarity is not at the expense of anisotropy. Non-unitarity, if there is any, cannot escape notice here, as the evolution is studied against a properly oriented time parameter fixed by the evolution of the fluid. Furthermore, we have constructed a wave packet by superposing different energy eigenstates, thereby establishing unitarity in a non-trivial way, which is a stronger result than an energy eigenstate trivially giving a time independent probability density. For α \
Nucleon form factors and hidden symmetry in holographic QCD
Hong, Deog Ki; Rho, Mannque; Yee, Ho-Ung; Yi, Piljin
2008-01-01
The vector dominance of the electromagnetic form factors both for mesons and baryons arises naturally in holographic QCD, where both the number of colors and the 't Hooft coupling are taken to be very large, offering a bona-fide derivation of the notion of vector dominance. The crucial ingredient for this is the infinite tower of vector mesons in the approximations made which share features that are characteristic of the quenched approximation in lattice QCD. We approximate the infinite sum by contributions from the lowest four vector mesons of the tower which turn out to saturate the charge and magnetic moment sum rules within a few percent and compute them totally free of unknown parameters for momentum transfers Q{sup 2} < or approx. 1 GeV{sup 2}. We identify certain observables that can be reliably computed within the approximations and others that are not, and discuss how the improvement of the latter can enable one to bring holographic QCD closer to QCD proper.
Measurement of the magnetic form factor of the neutron
Baldwin, Alan; Ni, Benwen; Anderson, Brian; Flanders, Bruce; Chang, C.; Chang, C.C.; Hyde, Charles; Manley, D.; Tieger, Daniel; Barkhuff, David; Keane, Declan; Dodson, George; Arenhovel, Hartmuth; Kelly, James; Mougey, Jean; Cameron, John; Dow, Karen; Beard, Kevin; Weinstein, Lawrence; Farkhondeh, Manouchehr; Spraker, Mark; Finn, Michael; Rutt, Paul; Ulmer, Paul; Markowitz, Pete; Pella, Peter; Whitney, R.; Madey, Richard; Lourie, Robert; Van Verst, Scott; Kowalski, Stanley; Eden, Thomas; Payerle, Thomas; Reichelt, Tilmann; Jiang, W.; Zhang, Wei-Ming; Bertozzi, William; Turchinetz, William; Watson, William; Korsch, Wolfgang
1992-01-01
The ^{2}H(e,e
Nucleon Structure and hyperon form factors from lattice QCD
Lin, Huey-Wen
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistant with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g_SigmaSigma = 0.441(14) and g_XiXi = -0.277(11).
Nucleon Structure and Hyperon Form Factors from Lattice QCD.
Lin,H.W.
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon {Sigma} and {Xi} axial coupling constants are also performed for the first time in a lattice calculation, g{sub {Sigma}{Sigma}} = 0.441(14) and g{sub {Xi}{Xi}} = -0.277(11).
A human factors approach to waste form design
Rodriguez, M.A.
1994-04-01
The current study consist of two experiments and an example of a revised waste form to demonstrate the necessity of careful form design and provide guidance in obtaining accurate information through written solicitation of any kind. In Experiment 1, two differently designed forms were used to solicit the same list of specific information. The data suggest that the more clearly designed form significantly produced more of the specific information required than the form that just listed the questions. Experiment 2, which is to be conducted during the spring semester 1994, is designed to address three specific aspects of form design. The results of this Experiment 2 will be interpreted and presented at the 1994 International High-Level Radioactive Waste Management Conference, May 22--26. Guidelines and examples of form design are given.
Gravitational, shear and matter waves in Kantowski-Sachs cosmologies
Keresztes, Zoltán; Gergely, László Á.; Forsberg, Mats; Bradley, Michael; Dunsby, Peter K.S. E-mail: forsberg.mats.a.b@gmail.com E-mail: peter.dunsby@uct.ac.za
2015-11-01
A general treatment of vorticity-free, perfect fluid perturbations of Kantowski-Sachs models with a positive cosmological constant are considered within the framework of the 1+1+2 covariant decomposition of spacetime. The dynamics is encompassed in six evolution equations for six harmonic coefficients, describing gravito-magnetic, kinematic and matter perturbations, while a set of algebraic expressions determine the rest of the variables. The six equations further decouple into a set of four equations sourced by the perfect fluid, representing forced oscillations and two uncoupled damped oscillator equations. The two gravitational degrees of freedom are represented by pairs of gravito-magnetic perturbations. In contrast with the Friedmann case one of them is coupled to the matter density perturbations, becoming decoupled only in the geometrical optics limit. In this approximation, the even and odd tensorial perturbations of the Weyl tensor evolve as gravitational waves on the anisotropic Kantowski-Sachs background, while the modes describing the shear and the matter density gradient are out of phase dephased by π /2 and share the same speed of sound.
Next-to-leading-order correction to pion form factor in k{sub T} factorization
Li Hsiangnan; Shen Yuelong; Wang Yuming; Zou Hao
2011-03-01
We calculate the next-to-leading-order (NLO) correction to the pion electromagnetic form factor at leading twist in the k{sub T} factorization theorem. Partons off-shell by k{sub T}{sup 2} are considered in both quark diagrams and effective diagrams for the transverse-momentum-dependent pion wave function. The light-cone singularities in the transverse-momentum-dependent pion wave function are regularized by rotating the Wilson lines away from the light cone. The soft divergences from gluon exchanges among initial- and fal-state partons cancel exactly. We derive the infrared-finite k{sub T}-dependent NLO hard kernel for the pion electromagnetic form factor by taking the difference of the above two sets of diagrams. Varying the renormalization and factorization scales, we find that the NLO correction is smaller, when both the scales are set to the invariant masses of internal particles: it becomes lower than 40% of the leading-order contribution for momentum transfer squared Q{sup 2}>7 GeV{sup 2}. It is observed that the NLO leading-twist correction does not play an essential role in explaining the experimental data, but the leading-order higher-twist contribution does.
Structural consequences of amino acid substitutions causing Tay-Sachs disease.
Ohno, Kazuki; Saito, Seiji; Sugawara, Kanako; Sakuraba, Hitoshi
2008-08-01
To determine the structural changes in the alpha-subunit of beta-hexosaminidase due to amino acid substitutions causing Tay-Sachs disease, we built structural models of mutant alpha-subunits resulting from 33 missense mutations (24 infantile and 9 late-onset), and analyzed the influence of each amino acid replacement on the structure by calculating the number of atoms affected and determining the solvent-accessible surface area of the corresponding amino acid residue in the wild-type alpha-subunit. In the infantile Tay-Sachs group, the number of atoms influenced by a mutation was generally larger than that in the late-onset Tay-Sachs group in both the main chain and the side chain, and residues associated with the mutations found in the infantile Tay-Sachs group tended to be less solvent-accessible than those in the late-onset Tay-Sachs group. Furthermore, color imaging determined the distribution and degree of the structural changes caused by representative amino acid substitutions, and that there were also differences between the infantile and late-onset Tay-Sachs disease groups. Structural study is useful for elucidating the basis of Tay-Sachs disease.
Structural consequences of amino acid substitutions causing Tay-Sachs disease.
Ohno, Kazuki; Saito, Seiji; Sugawara, Kanako; Sakuraba, Hitoshi
2008-08-01
To determine the structural changes in the alpha-subunit of beta-hexosaminidase due to amino acid substitutions causing Tay-Sachs disease, we built structural models of mutant alpha-subunits resulting from 33 missense mutations (24 infantile and 9 late-onset), and analyzed the influence of each amino acid replacement on the structure by calculating the number of atoms affected and determining the solvent-accessible surface area of the corresponding amino acid residue in the wild-type alpha-subunit. In the infantile Tay-Sachs group, the number of atoms influenced by a mutation was generally larger than that in the late-onset Tay-Sachs group in both the main chain and the side chain, and residues associated with the mutations found in the infantile Tay-Sachs group tended to be less solvent-accessible than those in the late-onset Tay-Sachs group. Furthermore, color imaging determined the distribution and degree of the structural changes caused by representative amino acid substitutions, and that there were also differences between the infantile and late-onset Tay-Sachs disease groups. Structural study is useful for elucidating the basis of Tay-Sachs disease. PMID:18490185
'Cherry red spot' in a patient with Tay-Sachs disease: case report.
Aragão, Ricardo Evangelista Marrocos de; Ramos, Régia Maria Gondim; Pereira, Felipe Bezerra Alves; Bezerra, Andreya Ferreira Rodrigues; Fernandes, Daniel Nogueira
2009-01-01
Tay-Sachs disease is an autosomal recessive disorder of sphingolipid metabolism, caused by enzyme hexosaminidase A deficiency that leads to an accumulation of GM2 in neurocytes which results in progressive loss of neurological function. The accumulation of lipid in retinal ganglion cells that leads to a chalk-white appearance of the fundus called 'cherry red spot' is the hallmark of Tay-Sachs disease. It is also seen in others neurometabolic diseases as well as in central retinal artery occlusion. This case reports a child with Tay-Sachs disease in a family with four previous similar deaths without diagnostic. PMID:19820796
Iso-vector form factors of the delta and nucleon in QCD sum rules
Ozpineci, A.
2012-10-23
Form factors are important non-perturbative properties of hadrons. They give information about the internal structure of the hadrons. In this work, iso-vector axial-vector and iso-vector tensor form factors of the nucleon and the iso-vector axial-vector {Delta}{yields}N transition form factor calculations in QCD Sum Rules are presented.
Richard, M.; Triggs-Raine, B.; Natowicz, M.
1994-09-01
Tay-Sachs disease is an autosomal recessive lysosomal storage disorder resulting from mutations in the HEXA gene that cause a deficiency in the activity of that enzyme {beta}-hexosaminidase A (Hex A). This deficiency leads to the build-up of G{sub M2} ganglioside, resulting in neurodegeneration and death. Biochemical analysis of a non-Jewish patient with a late-infantile form of Tay-Sachs disease revealed a substantial level of Hex A activity (38.4%) when 4-MUG was used as the substrate. However, when a substrate (4-MUGS) specific for the {alpha}-subunit of Hex A ({alpha}{beta}) was used, almost no activity was detected in the HEXA gene of the patient using SSCP analysis followed by sequencing. The first mutation, a G533A substitution in exon 5, is previously described and associated with the B1 form of Tay-Sachs disease. The second mutation is a novel a-to-g base change at the +3 position of intron 8. This was confirmed using the AIRS method, whereby a MaeIII site was created in the presence of the mutation. Normal and patient mRNA was reverse transcribed and exons 7 to 9 were PCR-amplified from the cDNA. An abnormally sized amplification product detected only in the patient cDNA was sequenced; exon 8 had been deleted and exons 7 and 9 were spliced together. A substantial level of normally-sized PCR product was also detected in the patient`s cDNA. Experiments are in progress to determine if this is produced from the allele harboring the G533A mutation. Given that previous mutations of this type have been associated with 97-100% abnormal splicing, this mutation is likely to be the cause, together with the G533A mutation, of Tay-Sachs disease in this patient.
INTEGRATED SACHS-WOLFE IMPRINT OF SUPERSTRUCTURES ON LINEAR SCALES
Papai, Peter; Szapudi, Istvan; Granett, Benjamin R.
2011-05-01
We build a model for the density and integrated Sachs-Wolfe (ISW) profile of supervoid and supercluster structures. Our model assumes that fluctuations evolve linearly from an initial Gaussian random field. We find these assumptions capable of describing N-body simulations and simulated ISW maps remarkably well on large scales. We construct an ISW map based on locations of superstructures identified previously in the Sloan Digital Sky Survey Luminous Red Galaxy sample. A matched filter analysis of the cosmic microwave background confirms a signal at the 3.2{sigma} confidence level and estimates the radius of the underlying structures to be 55 {+-} 28 h{sup -1} Mpc. The amplitude of the signal, however, is 2{sigma} higher than {Lambda}CDM predictions.
Tay-Sachs disease: current perspectives from Australia.
Lew, Raelia M; Burnett, Leslie; Proos, Anné L; Delatycki, Martin B
2015-01-01
Tay-Sachs disease (TSD) is a fatal, recessively inherited neurodegenerative condition of infancy and early childhood. Although rare in most other populations, the carrier frequency is one in 25 in Ashkenazi Jews. Australian high-school-based TSD preconception genetic screening programs aim to screen, educate, and optimize reproductive choice for participants. These programs have demonstrated high uptake, low psychological morbidity, and have been shown to result in fewer than expected Jewish TSD-affected births over 18 years of operation. The majority of Jewish individuals of reproductive age outside of the high school screening program setting in Australia have not accessed screening. Recent recommendations advocate supplementing the community high school screening programs with general practitioner- and obstetrician-led genetic screening of Ashkenazi Jewish individuals for TSD and other severe recessive diseases for which this group is at risk. Massively parallel DNA sequencing is expected to become the testing modality of choice over the coming years.
Tay-Sachs disease: current perspectives from Australia.
Lew, Raelia M; Burnett, Leslie; Proos, Anné L; Delatycki, Martin B
2015-01-01
Tay-Sachs disease (TSD) is a fatal, recessively inherited neurodegenerative condition of infancy and early childhood. Although rare in most other populations, the carrier frequency is one in 25 in Ashkenazi Jews. Australian high-school-based TSD preconception genetic screening programs aim to screen, educate, and optimize reproductive choice for participants. These programs have demonstrated high uptake, low psychological morbidity, and have been shown to result in fewer than expected Jewish TSD-affected births over 18 years of operation. The majority of Jewish individuals of reproductive age outside of the high school screening program setting in Australia have not accessed screening. Recent recommendations advocate supplementing the community high school screening programs with general practitioner- and obstetrician-led genetic screening of Ashkenazi Jewish individuals for TSD and other severe recessive diseases for which this group is at risk. Massively parallel DNA sequencing is expected to become the testing modality of choice over the coming years. PMID:25653550
[Physician satire and patient scorn in Hans Sachs' old Nürnberg and the physicians].
Sauerbeck, K O
1993-01-01
Among the best poems of Hans Sachs quite a few describe patient-physician relationships in 16th century Nuremberg. These poems offer a vivid impression of the technical aspects as well as of the social context of medical treatment at the time. Hans Sachs ridiculed the doctors and their patients, implying that everybody attempted to cheat the other side, and he provides evidence of a great influence of charlatans on the country population. The poems of Hans Sachs are extraordinary pieces or art; their aesthetics, though, appear unusual to us today. Medical satire is part of all European cultures, and has been written throughout medical history. Most motives of later satires focussing on physicians may be traced to Hans Sachs' poetry.
Tay-Sach disease with "cherry-red spot"--first reported case in Malaysia.
Chan, L Y; Balasubramaniam, S; Sunder, R; Jamalia, R; Karunakar, T V N; Alagaratnam, J
2011-12-01
We present a rare case of Tay-Sachs disease with retinal 'cherry-red spots' in a 19-month-old Malay child. Molecular genetic studies confirmed the diagnosis. The case highlights that 'cherry-red spot' is a useful clinical clue in Tay-Sachs disease and several other lysosomal storage disorders. It serves as an ideal illustration of the eye as a window to inborn error of metabolism.
Tay-Sach disease with "cherry-red spot"--first reported case in Malaysia.
Chan, L Y; Balasubramaniam, S; Sunder, R; Jamalia, R; Karunakar, T V N; Alagaratnam, J
2011-12-01
We present a rare case of Tay-Sachs disease with retinal 'cherry-red spots' in a 19-month-old Malay child. Molecular genetic studies confirmed the diagnosis. The case highlights that 'cherry-red spot' is a useful clinical clue in Tay-Sachs disease and several other lysosomal storage disorders. It serves as an ideal illustration of the eye as a window to inborn error of metabolism. PMID:22390110
Mark, Brian L.; Mahuran, Don J.; Cherney, Maia M.; Zhao, Dalian; Knapp, Spencer; James, Michael N.G.
2010-12-01
In humans, two major {beta}-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits {alpha} and {beta} (60% identity), whereas Hex B is a homodimer of {beta}-subunits. Interest in human {beta}-hexosaminidase stems from its association with Tay-Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G{sub M2}-ganglioside (G{sub M2}). Hex A degrades G{sub M2} by removing a terminal N-acetyl-D-galactosamine ({beta}-GalNAc) residue, and this activity requires the G{sub M2}-activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4 {angstrom}) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2 {angstrom}) or NAG-thiazoline (2.5 {angstrom}). From these, and the known X-ray structure of the G{sub M2}-activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how {alpha} and {beta}-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease ({beta}-subunit mutations) and Tay-Sachs disease ({alpha}-subunit mutations).
Mark, Brian L.; Mahuran, Don J.; Cherney, Maia M.; Zhao, Dalian; Knapp, Spencer; James, Michael N. G.
2010-01-01
In humans, two major β-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits α and β (60% identity), whereas Hex B is a homodimer of β-subunits. Interest in human β-hexosaminidase stems from its association with Tay–Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of GM2-ganglioside (GM2). Hex A degrades GM2 by removing a terminal N-acetyl-D-galactosamine (β-GalNAc) residue, and this activity requires the GM2–activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4 Å) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2 Å) or NAG-thiazoline (2.5 Å). From these, and the known X-ray structure of the GM2–activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how α and β-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease (β-subunit mutations) and Tay–Sachs disease (α-subunit mutations). PMID:12662933
Chiral perturbation theory and off-shell electromagnetic form factors
Rudy, T.E.; Fearing, H.W.; Scherer, S.
1995-05-10
The off-shell electromagnetic vertex of pions and kaons is calculated to {ital O}({ital p}{sup 4}) in the momentum expansion within the framework of chiral perturbation theory to one loop. The formalism of Gasser and Leutwyler is extended to accommodate the most general form for off-shell Green`s functions in the pseudoscalar meson sector. To that end we identify the structures at {ital O}({ital p}{sup 4}) which were initially removed by using the equation of motion of the lowest-order lagrangian. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Resource Form Factor and Installation of GFA Controllers
DeSteese, John G.; Hammerstrom, Donald J.
2009-11-15
The focus of this task is to optimize the form and placement of a controller comprising the Grid Friendly™ appliance (GFA) controller, power supply and power relay (and/or a solid-state power electronic switch) that would command a domestic water heater to shed its load in response to stress on the electric power grid. The GFA controller would disconnect the water heater from its supply circuit whenever it senses a low voltage signal or other indicators of system stress communicated via the electric power distribution system. Power would be reconnected to the appliance when the GFA controller senses the absence of these signals. This project has also considered more frequent cycling of this controller’s relay switch to perform demand-side frequency regulation. The principal criteria considered in this optimization are reliability, cost and life expectancy of the GFA components. The alternative embodiments of the GFA equipment under consideration are: Option 1- installation inside the insulation space of the water heater between the tank and jacket Option 2 containment in a separate nearby electrical enclosure Option 3 - as a modification or adjunct to the distribution panel housing and/or the breaker that protects the water heater supply circuit.
Risk factors in familial forms of celiac disease.
Freeman, Hugh James
2010-04-21
Celiac disease has been reported in up to 2% of some European populations. A similar risk has been identified in the America and Australia where immigration of Europeans has occurred. Moreover, an increasing number of celiac disease patients are being identified in many Asian countries, including China and India. Finally, celiac disease has also been detected in Asian immigrants and their descendants to other countries, such as Canada. Within these so-called "general" celiac populations, however, there are specific high risk groups that have an even higher prevalence of celiac disease. Indeed, the single most important risk factor for celiac disease is having a first-degree relative with already-defined celiac disease, particularly a sibling. A rate up to 20% or more has been noted. Risk is even greater if a specific family has 2 siblings affected, particularly if a male carries the human leukocyte antigen-DQ2. Both structural changes in the small bowel architecture occur along with functional changes in permeability, even in asymptomatic first-degree relatives. Even if celiac disease is not evident, the risk of other autoimmune disorders seems significantly increased in first-degree relatives as well as intestinal lymphoma. Identification of celiac disease is important since recent long-term studies have shown that the mortality of celiac disease is increased, if it is unrecognized and untreated.
Highly Efficient Small Form Factor LED Retrofit Lamp
Steven Allen; Fred Palmer; Ming Li
2011-09-11
This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.
Form factors of the monodromy matrix entries in gl (2 | 1)-invariant integrable models
NASA Astrophysics Data System (ADS)
Hutsalyuk, A.; Liashyk, A.; Pakuliak, S. Z.; Ragoucy, E.; Slavnov, N. A.
2016-10-01
We study integrable models solvable by the nested algebraic Bethe ansatz and described by gl (2 | 1) or gl (1 | 2) superalgebras. We obtain explicit determinant representations for form factors of the monodromy matrix entries. We show that all form factors are related to each other at special limits of the Bethe parameters. Our results allow one to obtain determinant formulas for form factors of local operators in the supersymmetric t- J model.
Flavor decomposition of the nucleon electromagnetic form factors at low Q2
NASA Astrophysics Data System (ADS)
Qattan, I. A.; Arrington, J.; Alsaad, A.
2015-06-01
Background: The spatial distribution of charge and magnetization within the proton is encoded in the elastic form factors. These have been precisely measured in elastic electron scattering, and the combination of proton and neutron form factors allows for the separation of the up- and down-quark contributions. Purpose: In this work, we extract the proton and neutron form factors from worldwide data with an emphasis on precise new data covering the low-momentum region, which is sensitive to the large-scale structure of the nucleon. From these, we separate the up- and down-quark contributions to the proton form factors. Method: We combine cross section and polarization measurements of elastic electron-proton scattering to separate the proton form factors and two-photon exchange (TPE) contributions. We combine the proton form factors with parametrization of the neutron form factor data and uncertainties to separate the up- and down-quark contributions to the proton's charge and magnetic form factors. Results: The extracted TPE corrections are compared to previous phenomenological extractions, TPE calculations, and direct measurements from the comparison of electron and positron scattering. The flavor-separated form factors are extracted and compared to models of the nucleon structure. Conclusions: With the inclusion of the precise new data, the extracted TPE contributions show a clear change of sign at low Q2, which is necessary to explain the high-Q2 form factor discrepancy while being consistent with the known Q2→0 limit. We find that the new Mainz data yield a significantly different result for the proton magnetic form factor and its flavor-separated contributions. We also observe that the rms radius of both the up- and down-quark distributions are smaller than the rms charge radius of the proton.
Reconstructing the integrated Sachs-Wolfe map with galaxy surveys
NASA Astrophysics Data System (ADS)
Muir, Jessica; Huterer, Dragan
2016-08-01
The integrated Sachs-Wolfe (ISW) effect is a large-angle modulation of the cosmic microwave background (CMB), generated when CMB photons traverse evolving potential wells associated with large scale structure (LSS). Recent efforts have been made to reconstruct maps of the ISW signal using information from surveys of galaxies and other LSS tracers, but investigation into how survey systematics affect their reliability has so far been limited. Using simulated ISW and LSS maps, we study the impact of galaxy survey properties and systematic errors on the accuracy of a reconstructed ISW signal. We find that systematics that affect the observed distribution of galaxies along the line of sight, such as photo-z and bias-evolution related errors, have a relatively minor impact on reconstruction quality. In contrast, however, we find that direction-dependent calibration errors can be very harmful. Specifically, we find that, in order to avoid significant degradation of our reconstruction quality statistics, direction-dependent number density fluctuations due to systematics must be controlled so that their variance is smaller than 10-6 (which corresponds to a 0.1% calibration). Additionally, we explore the implications of our results for attempts to use reconstructed ISW maps to shed light on the origin of large-angle CMB alignments. We find that there is only a weak correlation between the true and reconstructed angular momentum dispersion, which quantifies alignment, even for reconstructed ISW maps which are fairly accurate overall.
Tay-Sachs disease and HEXA mutations among Moroccan Jews.
Kaufman, M; Grinshpun-Cohen, J; Karpati, M; Peleg, L; Goldman, B; Akstein, E; Adam, A; Navon, R
1997-01-01
Moroccan Jewry (N>750,000) is the only non-Ashkenazi Jewish community in which Tay-Sachs disease (TSD) is not extremely rare. Previous studies among Moroccan Jewish TSD families identified three HEXA mutations. In this study, extended to enzyme-defined and new obilgate TSD carriers, we found four additional mutations. One of them is a novel, IVS5-2(A-->G) substitution, resulting in exon skipping, and it was found only among enzyme-defined carriers. The seven HEXA identified mutations among Moroccan Jews are: deltaF(304/305), R170Q, IVS-2(A-->G), Y180X, E482K, 1278+TATC, and IVS12+1(G-->C). Their respective distribution among 51 unrelated enzyme-defined and obligate carriers is 22:19:6:1:1:1:1. The mutation(s) remain unknown in only three enzyme-defined carriers. Five of the seven Moroccan mutations, including the three most common ones, were not found among Ashkenazi Jews. Compared with the much larger and relatively homogeneous Ashkenazi population, the finding among Moroccan Jews probably reflects their much longer history. PMID:9338583
Lyddane-Sachs-Teller Analysis of Electronic Transitions
NASA Astrophysics Data System (ADS)
Karstens, William; Smith, David Y.
2015-03-01
We have explored the use of the Lyddane-Sachs-Teller (LST) relation for analysis of electronic optical spectra. This relation originated in the theory of IR lattice absorption and, in analogy with the high IR reflectivity of polar crystals, we demonstrate a substantial region of almost-metallic UV reflectivity above the fundamental electronic absorption in selected solids; it is especially pronounced in group IV elements. This electronic Reststrahlen is terminated by a well-defined longitudinal plasmon and may be understood within LST theory. The original LST formulation neglects dissipation; we show it reflects the geometric symmetry of a normalized dispersion curve based on relative frequencies and polarizabilities. If dissipation is included, absorption widths enter only in second order, so the original LST relation applies to optical spectra that can be approximated by the Lorentz model. The Kramers-Kronig based moments formulation of Noh and Sievers holds generally. The normalized curve is specified by a single strength parameter that may be used as an approximate index to characterize optical response. The dielectric response of covalent semiconductors will be discussed as examples of the LST relation and the dependence of energy-loss spectra on electronic properties. Supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC02-06CH11357.
Nucleon form factors from high statistics mixed-action calculations with 2+1 flavors
Schroers, Wolfram; Edwards, Robert G; Engelhardt, Michael; Fleming, George Taminga; Hagler, Philipp; Lin, Huey-Wen; Lin, Mei-Feng; Meyer, Harvey B; Musch, Bernhard; Negele, John W; Orginos, Kostas; Pochinsky, Andrew V; Procura, Massimiliano; Renner, Dru B; Richards, David G; Syritsyn, Sergey N; Walker-Loud, Andre P
2009-12-01
We present new high-statistics results for nucleon form factors at pion masses of approximately 290, 350, 500, and 600 MeV using a mixed action of domain wall valence quarks on an improved staggered sea. We perform chiral fits to both vector and axial form factors and compare our results to experiment.
Form factors and decay rate of Bc * Dsl+l- decays in the QCD sum rules
NASA Astrophysics Data System (ADS)
Zeynali, K.; Bashiry, V.; Zolfagharpour, F.
2014-08-01
Rare exclusive decays are analyzed in the framework of the three-point QCD sum rules approach. The two-gluon condensate corrections to the correlation function are included and the form factors of this transition are evaluated. Using the form factors, the decay width and integrated decay rate for these decays are also calculated.
Form factors in quantum integrable models with GL(3)-invariant R-matrix
NASA Astrophysics Data System (ADS)
Pakuliak, S.; Ragoucy, E.; Slavnov, N. A.
2014-04-01
We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3)-invariant R-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy matrix. These representations can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.
Basic versus applied research: Julius Sachs (1832–1897) and the experimental physiology of plants
Kutschera, Ulrich
2015-01-01
The German biologist Julius Sachs was the first to introduce controlled, accurate, quantitative experimentation into the botanical sciences, and is regarded as the founder of modern plant physiology. His seminal monograph Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) was published 150 y ago (1865), when Sachs was employed as a lecturer at the Agricultural Academy in Poppelsdorf/Bonn (now part of the University). This book marks the beginning of a new era of basic and applied plant science. In this contribution, I summarize the achievements of Sachs and outline his lasting legacy. In addition, I show that Sachs was one of the first biologists who integrated bacteria, which he considered to be descendants of fungi, into the botanical sciences and discussed their interaction with land plants (degradation of wood etc.). This “plant-microbe-view” of green organisms was extended and elaborated by the laboratory botanist Wilhelm Pfeffer (1845–1920), so that the term “Sachs-Pfeffer-Principle of Experimental Plant Research” appears to be appropriate to characterize this novel way of performing scientific studies on green, photoautotrophic organisms (embryophytes, algae, cyanobacteria). PMID:26146794
An inducible mouse model of late onset Tay-Sachs disease.
Jeyakumar, Mylvaganam; Smith, David; Eliott-Smith, Elena; Cortina-Borja, Mario; Reinkensmeier, Gabriele; Butters, Terry D; Lemm, Thorsten; Sandhoff, Konrad; Perry, V Hugh; Dwek, Raymond A; Platt, Frances M
2002-08-01
Mouse models of the G(M2) gangliosidoses, Tay-Sachs and Sandhoff disease, are null for the hexosaminidase alpha and beta subunits respectively. The Sandhoff (Hexb-/-) mouse has severe neurological disease and mimics the human infantile onset variant. However, the Tay-Sachs (Hexa-/-) mouse model lacks an overt phenotype as mice can partially bypass the blocked catabolic pathway and escape disease. We have investigated whether a subset of Tay-Sachs mice develop late onset disease. We have found that approximately 65% of the mice develop one or more clinical signs of the disease within their natural life span (n = 52, P < 0.0001). However, 100% of female mice with repeat breeding histories developed late onset disease at an earlier age (n = 21, P < 0.0001) and displayed all clinical features. Repeat breeding of a large cohort of female Tay-Sachs mice confirmed that pregnancy induces late onset Tay-Sachs disease. Onset of symptoms correlated with reduced up-regulation of hexosaminidase B, a component of the bypass pathway.
Effective gene therapy in an authentic model of Tay-Sachs-related diseases.
Cachón-González, M Begoña; Wang, Susan Z; Lynch, Andrew; Ziegler, Robin; Cheng, Seng H; Cox, Timothy M
2006-07-01
Tay-Sachs disease is a prototypic neurodegenerative disease. Lysosomal storage of GM2 ganglioside in Tay-Sachs and the related disorder, Sandhoff disease, is caused by deficiency of beta-hexosaminidase A, a heterodimeric protein. Tay-Sachs-related diseases (GM2 gangliosidoses) are incurable, but gene therapy has the potential for widespread correction of the underlying lysosomal defect by means of the secretion-recapture cellular pathway for enzymatic complementation. Sandhoff mice, lacking the beta-subunit of hexosaminidase, manifest many signs of classical human Tay-Sachs disease and, with an acute course, die before 20 weeks of age. We treated Sandhoff mice by stereotaxic intracranial inoculation of recombinant adeno-associated viral vectors encoding the complementing human beta-hexosaminidase alpha and beta subunit genes and elements, including an HIV tat sequence, to enhance protein expression and distribution. Animals survived for >1 year with sustained, widespread, and abundant enzyme delivery in the nervous system. Onset of the disease was delayed with preservation of motor function; inflammation and GM2 ganglioside storage in the brain and spinal cord was reduced. Gene delivery of beta-hexosaminidase A by using adeno-associated viral vectors has realistic potential for treating the human Tay-Sachs-related diseases.
Effective gene therapy in an authentic model of Tay-Sachs-related diseases
Cachón-González, M. Begoña; Wang, Susan Z.; Lynch, Andrew; Ziegler, Robin; Cheng, Seng H.; Cox, Timothy M.
2006-01-01
Tay-Sachs disease is a prototypic neurodegenerative disease. Lysosomal storage of GM2 ganglioside in Tay-Sachs and the related disorder, Sandhoff disease, is caused by deficiency of β-hexosaminidase A, a heterodimeric protein. Tay-Sachs-related diseases (GM2 gangliosidoses) are incurable, but gene therapy has the potential for widespread correction of the underlying lysosomal defect by means of the secretion-recapture cellular pathway for enzymatic complementation. Sandhoff mice, lacking the β-subunit of hexosaminidase, manifest many signs of classical human Tay-Sachs disease and, with an acute course, die before 20 weeks of age. We treated Sandhoff mice by stereotaxic intracranial inoculation of recombinant adeno-associated viral vectors encoding the complementing human β-hexosaminidase α and β subunit genes and elements, including an HIV tat sequence, to enhance protein expression and distribution. Animals survived for >1 year with sustained, widespread, and abundant enzyme delivery in the nervous system. Onset of the disease was delayed with preservation of motor function; inflammation and GM2 ganglioside storage in the brain and spinal cord was reduced. Gene delivery of β-hexosaminidase A by using adeno-associated viral vectors has realistic potential for treating the human Tay-Sachs-related diseases. PMID:16801539
Axial form factors of the octet baryons in a covariant quark model
NASA Astrophysics Data System (ADS)
Ramalho, G.; Tsushima, K.
2016-07-01
We study the weak interaction axial form factors of the octet baryons, within the covariant spectator quark model, focusing on the dependence of four-momentum transfer squared, Q2. In our model the axial form factors GA(Q2) (axial-vector form factor) and GP(Q2) (induced pseudoscalar form factor) are calculated based on the constituent quark axial form factors and the octet baryon wave functions. The quark axial current is parametrized by the two constituent quark form factors, the axial-vector form factor gAq(Q2), and the induced pseudoscalar form factor gPq(Q2). The baryon wave functions are composed of a dominant S -state and a P -state mixture for the relative angular momentum of the quarks. First, we study in detail the nucleon case. We assume that the quark axial-vector form factor gAq(Q2) has the same function form as that of the quark electromagnetic isovector form factor. The remaining parameters of the model, the P -state mixture and the Q2 dependence of gPq(Q2), are determined by a fit to the nucleon axial form factor data obtained by lattice QCD simulations with large pion masses. In this lattice QCD regime the meson cloud effects are small, and the physics associated with the valence quarks can be better calibrated. Once the valence quark model is calibrated, we extend the model to the physical regime and use the low Q2 experimental data to estimate the meson cloud contributions for GA(Q2) and GP(Q2). Using the calibrated quark axial form factors and the generalization of the nucleon wave function for the other octet baryon members, we make predictions for all the possible weak interaction axial form factors GA(Q2) and GP(Q2) of the octet baryons. The results are compared with the corresponding experimental data for GA(0 ) and with the estimates of baryon-meson models based on S U (6 ) symmetry.
Off-shell electromagnetic form factors of pions and kaons in chiral perturbation theory
Rudy, T.E.; Fearing, H.W.; Scherer, S. )
1994-07-01
The off-shell electromagnetic vertex of a (pseudo)scalar particle contains, in general, two form factors [ital F] and [ital G] which depend, in addition to the squared momentum transfer, on the invariant masses associated with the initial and final legs of the vertex. Chiral perturbation theory to one loop is used to calculate the off-shell form factors of pions and kaons. The formalism of Gasser and Leutwyler, which was previously used to calculate the on-shell limit of the form factor [ital F], is extended to accommodate the most general form for off-shell Green's functions in the pseudoscalar meson sector. We find that chiral symmetry predicts that the form factors [ital F] of the charged pions and kaons go off-shell in the same way, i.e., the off-shell slope at the real photon point is given by the same new phenomenological constant [beta][sub 1]. Furthermore, it is shown that at order [ital p][sup 4] the form factor [ital F] of the [ital K][sup 0] does not show any off-shell dependence. The form factors [ital G] are all related to the form factors [ital F] in the correct fashion as required by the Ward-Takahashi identity. Numerical results for different off-shell kinematics are presented.
Factor Structure of the Woodcock Reading Mastery Tests--Revised, Forms G and H.
ERIC Educational Resources Information Center
Williams, Thomas O., Jr.; Eaves, Ronald C.; Cox, Cynthia
2001-01-01
This study analyzed the factor structure of the Woodcock Reading Mastery Tests Revised (WRMT-R), a test battery used to measure basic reading skills. Findings indicated that both forms of the WRMT-R contain a large unrotated general factor and, when rotated obliquely, two correlated factors representing basic skills and reading comprehension.…
Lyso-GM2 ganglioside: a possible biomarker of Tay-Sachs disease and Sandhoff disease.
Kodama, Takashi; Togawa, Tadayasu; Tsukimura, Takahiro; Kawashima, Ikuo; Matsuoka, Kazuhiko; Kitakaze, Keisuke; Tsuji, Daisuke; Itoh, Kohji; Ishida, Yo-Ichi; Suzuki, Minoru; Suzuki, Toshihiro; Sakuraba, Hitoshi
2011-01-01
To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease.
Bondi-Sachs energy-momentum and the energy of gravitational radiation
NASA Astrophysics Data System (ADS)
Maluf, J. W.; da Rocha-Neto, J. F.; Ulhoa, S. C.
2015-07-01
We construct the gravitational energy-momentum of the Bondi-Sachs space-time, in the famework of the teleparallel equivalent of general relativity (TEGR). The Bondi-Sachs line element describes gravitational radiation in the asymptotic region of the space-time, and is determined by the mass aspect and by two functions, c and d, that yield the news functions, which are interpreted as the radiating degrees of freedom of the gravitational field. The standard expression for the Bondi-Sachs energy-momentum is constructed in terms of the mass aspect only. The expression that we obtain in the context of the TEGR is given by the standard expression, which represents the gravitational energy of the source, plus a new term that is determined by the two functions c and d. We interpret this new term as the energy of gravitational radiation.
Camp, Christopher L.; Dahm, Diane L.; Krych, Aaron J.
2015-01-01
Anterior shoulder instability is often accompanied by a Hill-Sachs defect on the humeral head that can contribute to recurrent instability if not addressed at the time of surgery. We describe a method of performing arthroscopic remplissage to treat engaging Hill-Sachs lesions in patients with glenohumeral instability. It has the benefits of being an efficient procedure that can be performed with minimal technical difficulty and can be used to augment other stabilization procedures such as labral repair. The indications for this technique include the presence of an engaging Hill-Sachs defect in patients will little or no glenoid bone loss. In appropriately selected patients, arthroscopic remplissage has shown reduced rates of recurrent instability. PMID:26697311
On-shell diagrams, Graßmannians and integrability for form factors
NASA Astrophysics Data System (ADS)
Frassek, Rouven; Meidinger, David; Nandan, Dhritiman; Wilhelm, Matthias
2016-01-01
We apply on-shell and integrability methods that have been developed in the context of scattering amplitudes in {N}=4 SYM theory to tree-level form factors of this theory. Focussing on the colour-ordered super form factors of the chiral part of the stress-tensor multiplet as an example, we show how to systematically construct on-shell diagrams for these form factors with the minimal form factor as further building block in addition to the three-point amplitudes. Moreover, we obtain analytic representations in terms of Graßmannian integrals in spinor helicity, twistor and momentum twistor variables. While Yangian invariance is broken by the operator insertion, we find that the form factors are eigenstates of the integrable spin-chain transfer matrix built from the monodromy matrix that yields the Yangian generators. Constructing them via the method of R operators allows to introduce deformations that preserve the integrable structure. We finally show that the integrable properties extend to minimal tree-level form factors of generic composite operators as well as certain leading singularities of their n-point loop-level form factors.
Can Nonrelativistic QCD Explain the γ γ*→ηc Transition Form Factor Data?
NASA Astrophysics Data System (ADS)
Feng, Feng; Jia, Yu; Sang, Wen-Long
2015-11-01
Unlike the bewildering situation in the γ γ*→π form factor, a widespread view is that perturbative QCD can decently account for the recent BABAR measurement of the γ γ*→ηc transition form factor. The next-to-next-to-leading-order perturbative correction to the γ γ*→ηc ,b form factor, is investigated in the nonrelativistic QCD (NRQCD) factorization framework for the first time. As a byproduct, we obtain, by far, the most precise order-αs2 NRQCD matching coefficient for the ηc ,b→γ γ process. After including the substantial negative order-αs2 correction, the good agreement between NRQCD prediction and the measured γ γ*→ηc form factor is completely ruined over a wide range of momentum transfer squared. This eminent discrepancy casts some doubts on the applicability of the NRQCD approach to hard exclusive reactions involving charmonium.
An experimental survey of the factors that affect leaching from low-level radioactive waste forms
Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.
1988-09-01
This report represents the results of an experimental survey of the factors that affect leaching from several types of solidified low-level radioactive waste forms. The goal of these investigations was to determine those factors that accelerate leaching without changing its mechanism(s). Typically, although not in every case,the accelerating factors include: increased temperature, increased waste loading (i.e., increased waste to binder ratio), and decreased size (i.e., decreased waste form volume to surface area ratio). Additional factors that were studied were: increased leachant volume to waste form surface area ratio, pH, leachant composition (groundwaters, natural and synthetic chelating agents), leachant flow rate or replacement frequency and waste form porosity and surface condition. Other potential factors, including the radiation environment and pressure, were omitted based on a survey of the literature. 82 refs., 236 figs., 13 tabs.
Detecting the integrated Sachs-Wolfe effect with stacked voids
NASA Astrophysics Data System (ADS)
Ilić, Stéphane; Langer, Mathieu; Douspis, Marian
2013-08-01
The stacking of cosmic microwave background (CMB) patches has been recently used to detect the integrated Sachs-Wolfe effect (iSW). When focusing on the locations of superstructures identified in the Sloan Digital Sky Survey (SDSS), Granett et al. (2008a, ApJ, 683, L99, Gr08) found a signal with strong significance and an amplitude reportedly higher than expected within the ΛCDM paradigm. We revisit the analysis using our own robust protocol, and extend the study to the two most recent and largest catalogues of voids publicly available. We quantify and subtract the level of foreground contamination in the stacked images and determine the contribution on the largest angular scales from the first multipoles of the CMB. We obtain the radial temperature and photometry profiles from the stacked images. Using a Monte Carlo approach, we computed the statistical significance of the profiles for each catalogue and identified the angular scale at which the signal-to-noise ratio (S/N) is maximum. We essentially confirm the signal detection reported by Gr08, but for the other two catalogues, a rescaling of the voids to the same size on the stacked image is needed to find any significant signal (with a maximum at ~2.4σ). This procedure reveals that the photometry peaks at unexpectedly large angles in the case of the Gr08 voids, in contrast to voids from other catalogues. Conversely, the photometry profiles derived from the stacked voids of these other catalogues contain small central hot spots of uncertain origin. We also stress the importance of a posteriori selection effects that might arise when intending to increase the S/N, and we discuss the possible impact of void overlap and alignment effects. We argue that the interpretation in terms of an iSW effect of any detected signal via the stacking method is far from obvious.
Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach
Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer
2010-12-01
We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.
Andrew Puckett
2009-12-01
Electromagnetic form factors are fundamental properties of the nucleon that describe the effect of its internal quark structure on the cross section and spin observables in elastic lepton-nucleon scattering. Double-polarization experiments have become the preferred technique to measure the proton and neutron electric form factors at high momentum transfers. The recently completed GEp-III experiment at the Thomas Jefferson National Accelerator Facility used the recoil polarization method to extend the knowledge of the proton electromagnetic form factor ratio GpE/GpM to Q2 = 8.5 GeV2. In this paper we present the preliminary results of the experiment.
Armstrong, David S.; McKeown, Robert
2012-11-01
Measurement of the neutral weak vector form factors of the nucleon provides unique access to the strange quark content of the nucleon. These form factors can be studied using parity-violating electron scattering. A comprehensive program of experiments has been performed at three accelerator laboratories to determine the role of strange quarks in the electromagnetic form factors of the nucleon. This article reviews the remarkable technical progress associated with this program, describes the various methods used in the different experiments, and summarizes the physics results along with recent theoretical calculations.
Pion Form Factor in Chiral Limit of Hard-Wall AdS/QCD Model
Anatoly Radyushkin; Hovhannes Grigoryan
2007-12-01
We develop a formalism to calculate form factor and charge density distribution of pion in the chiral limit using the holographic dual model of QCD with hard-wall cutoff. We introduce two conjugate pion wave functions and present analytic expressions for these functions and for the pion form factor. They allow to relate such observables as the pion decay constant and the pion charge electric radius to the values of chiral condensate and hard-wall cutoff scale. The evolution of the pion form factor to large values of the momentum transfer is discussed, and results are compared to existing experimental data.
The form factors for the photon to pseudoscalar meson transitions—an update
NASA Astrophysics Data System (ADS)
Kroll, P.
2011-04-01
The form factors for the transitions πγ, ηγ, η' γ and η c γ are analyzed within the modified perturbative approach in which quark transverse degrees of freedom are retained. The results for the form factors are compared to experiment in detail. As compared to previous calculations within the same approach only little modifications of the meson distribution amplitudes are required in general in order to achieve reasonable agreement with experiment. Only for the πγ form factor a strong contribution from the second Gegenbauer term is found. It also commented on the case of two virtual photons and on the transition form factors in the time-like region.
Nucleon form factors to next-to-leading order with light-cone sum rules
Passek-Kumericki, K.; Peters, G.
2008-08-01
We have calculated the leading-twist next-to-leading order (NLO), i.e., O({alpha}{sub s}), correction to the light-cone sum rules prediction for the electromagnetic form factors of the nucleon. We have used the Ioffe nucleon interpolation current and worked in M{sub N}=0 approximation, with M{sub N} being the mass of the nucleon. In this approximation, only the Pauli form factor F{sub 2} receives a correction and the calculated correction is quite sizable (ca. 60%). The numerical results for the proton form factors show the improved agreement with the experimental data. We also discuss the problems encountered when going away from M{sub N}=0 approximation at NLO, as well as gauge invariance of the perturbative results. This work presents the first step towards the NLO accuracy in the light-cone sum rules for baryon form factors.
Electric form factors of the octet baryons from lattice QCD and chiral extrapolation
NASA Astrophysics Data System (ADS)
Shanahan, P. E.; Horsley, R.; Nakamura, Y.; Pleiter, D.; Rakow, P. E. L.; Schierholz, G.; Stüben, H.; Thomas, A. W.; Young, R. D.; Zanotti, J. M.; Cssm; Qcdsf/Ukqcd Collaborations
2014-08-01
We apply a formalism inspired by heavy-baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q2 in the range 0.2-1.3 GeV2. The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small relative to the uncertainties of the calculation. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μpGEp/GMp. This quantity decreases with Q2 in a way qualitatively consistent with recent experimental results.
The spin-dependent neutralino-nucleus form factor for {sup 127}I
Ressell, M.T.; Dean, D.J.
1996-12-01
We present the results of detailed shell model calculations of the spin-dependent elastic form factor for the nucleus {sup 127}I. the calculations were performed in extremely large model spaces which adequately describe the configuration mixing in this nucleus. Good agreement between the calculated and experimental values of the magnetic moment are found. Other nuclear observables are also compared to experiment. The dependence of the form factor upon the model space and effective interaction is discussed.
Nucleon-to-{delta} axial transition form factors in relativistic baryon chiral perturbation theory
Geng, L. S.; Camalich, J. Martin; Alvarez-Ruso, L.; Vacas, M. J. Vicente
2008-07-01
We report a theoretical study of the axial nucleon-to-delta (1232) (N{yields}{delta}) transition form factors up to one-loop order in relativistic baryon chiral perturbation theory. We adopt a formalism in which the {delta} couplings obey the spin-3/2 gauge symmetry and, therefore, decouple the unphysical spin-1/2 fields. We compare the results with phenomenological form factors obtained from neutrino bubble-chamber data and in quark models.
Low-Q2 measurements of the proton form factor ratio μpGE/GM
NASA Astrophysics Data System (ADS)
Ron, G.; Zhan, X.; Glister, J.; Lee, B.; Allada, K.; Armstrong, W.; Arrington, J.; Beck, A.; Benmokhtar, F.; Berman, B. L.; Boeglin, W.; Brash, E.; Camsonne, A.; Calarco, J.; Chen, J. P.; Choi, Seonho; Chudakov, E.; Coman, L.; Craver, B.; Cusanno, F.; Dumas, J.; Dutta, C.; Feuerbach, R.; Freyberger, A.; Frullani, S.; Garibaldi, F.; Gilman, R.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Hyde, C. E.; Ibrahim, H.; Ilieva, Y.; de Jager, C. W.; Jiang, X.; Jones, M.; Kelleher, A.; Khrosinkova, E.; Kuchina, E.; Kumbartzki, G.; Lerose, J. J.; Lindgren, R.; Markowitz, P.; Beck, S. May-Tal; McCullough, E.; Meziane, M.; Meziani, Z.-E.; Michaels, R.; Moffit, B.; Norum, B. E.; Oh, Y.; Olson, M.; Paolone, M.; Paschke, K.; Perdrisat, C. F.; Piasetzky, E.; Potokar, M.; Pomatsalyuk, R.; Pomerantz, I.; Puckett, A. J. R.; Punjabi, V.; Qian, X.; Qiang, Y.; Ransome, R.; Reyhan, M.; Roche, J.; Rousseau, Y.; Saha, A.; Sarty, A. J.; Sawatzky, B.; Schulte, E.; Shabestari, M.; Shahinyan, A.; Shneor, R.; Širca, S.; Slifer, K.; Solvignon, P.; Song, J.; Sparks, R.; Subedi, R.; Strauch, S.; Urciuoli, G. M.; Wang, K.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Zhu, X.
2011-11-01
We present an updated extraction of the proton electromagnetic form factor ratio, μpGE/GM, at low Q2. The form factors are sensitive to the spatial distribution of the proton, and precise measurements can be used to constrain models of the proton. An improved selection of the elastic events and reduced background contributions yielded a small systematic reduction in the ratio μpGE/GM compared to the original analysis.
$$B\\to Kl^+l^-$$ decay form factors from three-flavor lattice QCD
Bailey, Jon A.
2016-01-27
We compute the form factors for the B → Kl+l- semileptonic decay process in lattice QCD using gauge-field ensembles with 2+1 flavors of sea quark, generated by the MILC Collaboration. The ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks, and the clover action with the Fermilab interpretation is used for the heavy b quark. We present results for the form factors f+(q2), f0(q2), and fT(q2), where q2 is the momentum transfer, together with a comprehensivemore » examination of systematic errors. Lattice QCD determines the form factors for a limited range of q2, and we use the model-independent z expansion to cover the whole kinematically allowed range. We present our final form-factor results as coefficients of the z expansion and the correlations between them, where the errors on the coefficients include statistical and all systematic uncertainties. Lastly, we use this complete description of the form factors to test QCD predictions of the form factors at high and low q2.« less
Proton electromagnetic form factors: present status and future perspectives at PANDA
NASA Astrophysics Data System (ADS)
Tomasi-Gustafsson, E.
2015-05-01
Data and models on electromagnetic proton form factors are reviewed, highlighting the contribution foreseen by the PANDA collaboration. Electromagnetic hadron form factors contain essential information on the internal structure of hadrons. Precise and surprising data have been obtained at electron accelerators, applying the polarization method in electron-proton elastic scattering. At electron-positron colliders, using initial state radiation, BABAR measured proton time-like form factors in a wide time-like kinematical region and the BESIII collaboration will measure very precisely proton and neutron form factors in the threshold region. In the next future an antiproton beam with momentum up to 15 GeV/c will be available at FAIR (Darmstadt). Measurements of the reaction p̅ + p → e+ + e- by the PANDA collaboration will contribute to the individual determination of electric and magnetic form factors in the time-like region of momentum transfer squared, as well as to their first determination in the unphysical region (below the kinematical threshold), through the reaction p̅ + p → e+ + e- + π0. From the discussion on feasibility studies at PANDA, we focus on the consequences of such measurements in view of an unified description of form factors in the full kinematical region. We present models which have the necessary analytical requirements and apply to the data in the whole kinematical region.
Lin, C.K.
1983-01-01
The collective model H/sub int/ + H/sub coll/ is used to study the magnetic form factors. For the intrinsic Hamiltonian, we use the Nilsson model to generate the intrinsic state. For the collective Hamiltonian, two models are considered, the rigid body model and the liquid soap model. We use the particle-rotor model to derive the collective operators and their reduced matrix elements, and then apply this model to the elastic M1 form factor of /sup 13/C. One sees clearly the interplay of the intrinsic form factor and the collective form factor. Since the form factor is essentially a Fourier transform of the current density operator, one also sees the effects of the collective current density distribution due to all the particles in addition to that of the intrinsic current due to the unpaired nucleons. The effects of core deformation are explored. This includes discussions on the difference between the variation before projection and the variation after projection. Analytic results are obtained in the case of weak deformations. The collective model focuses on the effects of the quadrupole deformation on the M1 form factor of /sup 13/C, whereas the calculation involving core polarization stresses the monopole effects. By introducing a quenching of the isovector g/sub s/, the fits by the collective models are very comparable to the fit by the core polarization, although the justification for this procedure in light nuclei is questionable.
B →K l+l- decay form factors from three-flavor lattice QCD
NASA Astrophysics Data System (ADS)
Bailey, Jon A.; Bazavov, A.; Bernard, C.; Bouchard, C. M.; DeTar, C.; Du, Daping; El-Khadra, A. X.; Foley, J.; Freeland, E. D.; Gámiz, E.; Gottlieb, Steven; Heller, U. M.; Jain, R. D.; Komijani, J.; Kronfeld, A. S.; Laiho, J.; Levkova, L.; Liu, Yuzhi; Mackenzie, P. B.; Meurice, Y.; Neil, E. T.; Qiu, Si-Wei; Simone, J. N.; Sugar, R.; Toussaint, D.; Van de Water, R. S.; Zhou, Ran; Fermilab Lattice; MILC Collaborations
2016-01-01
We compute the form factors for the B →K l+l- semileptonic decay process in lattice QCD using gauge-field ensembles with 2 +1 flavors of sea quark, generated by the MILC Collaboration. The ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks, and the clover action with the Fermilab interpretation is used for the heavy b quark. We present results for the form factors f+(q2), f0(q2), and fT(q2), where q2 is the momentum transfer, together with a comprehensive examination of systematic errors. Lattice QCD determines the form factors for a limited range of q2, and we use the model-independent z expansion to cover the whole kinematically allowed range. We present our final form-factor results as coefficients of the z expansion and the correlations between them, where the errors on the coefficients include statistical and all systematic uncertainties. We use this complete description of the form factors to test QCD predictions of the form factors at high and low q2.
Mixed-state form factors of U(1) twist fields in the Dirac theory
NASA Astrophysics Data System (ADS)
Chen, Yixiong
2016-08-01
Using the ‘Liouville space’ (the space of operators) of the massive Dirac theory, we define mixed-state form factors of U(1) twist fields. We consider mixed states with density matrices diagonal in the asymptotic particle basis. This includes the thermal Gibbs state as well as all generalized Gibbs ensembles of the Dirac theory. When the mixed state is specialized to a thermal Gibbs state, using a Riemann-Hilbert problem and low-temperature expansion, we obtain finite-temperature form factors of U(1) twist fields. We then propose the expression for form factors of U(1) twist fields in general diagonal mixed states. We verify that these form factors satisfy a system of nonlinear functional differential equations, which is derived from the trace definition of mixed-state form factors. At last, under weak analytic conditions on the eigenvalues of the density matrix, we write down the large distance form factor expansions of two-point correlation functions of these twist fields. Using the relation between the Dirac and Ising models, this provides the large-distance expansion of the Rényi entropy (for integer Rényi parameter) in the Ising model in diagonal mixed states.
Form and structure factors for impedance and reflection from periodic layers.
Pan, Janet L
2007-01-20
In an exact treatment of the Maxwell equations, we derive form and structure factors for reflection from periodic layers, and we show that these factors are significantly different from their analogs in kinematic x-ray diffraction. Quite generally, we show that reflection and impedance can be written precisely as the sum of an additive form factor and the product of a structure factor and a second form factor. This additive form factor does not have an analog in kinematic x-ray diffraction. It is demonstrated that the form factors are found by analytic continuation to an arbitrary wavelength of expressions for the impedance both at long wavelengths and at quarter wavelengths. A correction to the Bragg law relating fringe spacing to the total structure thickness is derived. We go beyond previous numerical work by deriving simple analytic exact expressions for reflection and impedance of periodic layers for all frequencies within the reflection passband, and for an arbitrary number of periods in the structure, an arbitrary index profile within each period, arbitrary layer thicknesses (not just quarter-wave layers), and for arbitrary sizes of the refractive index differences.
ERIC Educational Resources Information Center
Ferenz, Krag S.; Prasada, Sandeep
2002-01-01
Two experiments investigated the factors that govern children's use of singular and plural forms of count nouns. Experiment 1 used an elicited production task to investigate whether children use referential and/or syntactic information to determine the form of the count nouns when the two sources of information conflict (e.g. "each x, one of the…
Huber, Garth; Blok, Henk; Horn, Tanja; Beise, Elizabeth; Gaskell, David; Mack, David; Tadevosyan, Vardan; Volmer, Jochen; Abbott, David; Aniol, Konrad; Anklin, Heinz; Armstrong, Christopher; Arrington, John; Assamagan, Ketevi; Avery, Steven; Baker, O.; Barrett, Robert; Bochna, Christopher; Boeglin, Werner; Brash, Edward; Breuer, Herbert; Chang, C.; Chang, C.C.; Chant, Nicholas; Christy, Michael; Dunne, James; Eden, Thomas; Ent, Rolf; Fenker, Benjamin; Gibson, Edward; Gilman, Ronald; Gustafsson, Kenneth; Hinton, Wendy; Holt, Roy; Jackson, Harold; uk Jin, Seong; Jones, Mark; Keppel, Cynthia; Kim, pyunghun; Kim, Wooyoung; King, Paul; Klein, Andreas; Koltenuk, Douglas; Kovaltchouk, Vitali; Liang, Meihua; Liu, Jinghua; Lolos, George; Lung, Allison; Margaziotis, Demetrius; Markowitz, Pete; Matsumura, Akihiko; McKee, David; Meekins, David; Mitchell, Joseph; Miyoshi, Toshinobu; Mkrtchyan, Hamlet; Mueller, Robert; Niculescu, Gabriel; Niculescu, Maria-Ioana; Okayasu, Yuichi; Pentchev, Lubomir; Perdrisat, Charles; Pitz, David; Potterveld, David; Punjabi, Vina; Qin, Liming; Reimer, Paul; Reinhold, Joerg; Roche, Julie; Roos, Philip; Sarty, Adam; Shin, Ilkyoung; Smith, Gregory; Stepanyan, Stepan; Tang, Liguang; Tvaskis, Vladas; van der Meer, Rob; Vansyoc, Kelley; Van Westrum, Derek; Vidakovic, Sandra; Vulcan, William; Warren, Glen; Wood, Stephen; Xu, Chen; Yan, Chen; Zhao, Wenxia; Zheng, Xiaochao; Zihlmann, Benedikt
2008-10-01
DOI: http://dx.doi.org/10.1103/PhysRevC.78.045203
The charged pion form factor, Fpi(Q2), is an important quantity that can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q2=0.60-2.45 GeV2. Above Q2=1.5 GeV2, the Fpi values are systematically below the monopole parametrization that describes the low Q2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard c
ERIC Educational Resources Information Center
Cui, Lixia; Lin, Wenwen; Oei, Tian P. S.
2011-01-01
This study investigated cross-cultural differences in the factor structure and psychometric properties of the Young Schema Questionnaire (short form; YSQ-SF). The participants were 712 Chinese undergraduate students. The total sample was randomly divided into two sub-samples. Exploratory Factor Analysis (EFA) was conducted on questionnaire results…
Factor Structure and Validity of the Parenting Stress Index-Short Form
ERIC Educational Resources Information Center
Haskett, Mary E.; Ahern, Lisa S.; Ward, Caryn S.; Allaire, Jason C.
2006-01-01
The psychometric properties of the Parenting Stress Index-Short Form (PSI-SF) were examined in a sample of 185 mothers and fathers. Factor analysis revealed 2 reasonably distinct factors involving parental distress and dysfunctional parent-child interactions. Both scales were internally consistent, and these scales were correlated with measures of…
ERIC Educational Resources Information Center
Mokula, Lebeloane Lazarus Donald; Lovemore, Nyaumwe
2014-01-01
The present study narrated the forms, factors and consequences of cheating in university examinations by UNISA Open and Distance learning students from anecdotal data. The results showed that the perpetrators mostly used crib materials on paper, ruler and calculator cover. The factors that influenced examination cheating were gender, age range and…
Planck 2015 results. XXI. The integrated Sachs-Wolfe effect
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Casaponsa, B.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Fernandez-Cobos, R.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Ilić, S.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
This paper presents a study of the integrated Sachs-Wolfe (ISW) effect from the Planck 2015 temperature and polarization data release. This secondary cosmic microwave background (CMB) anisotropy caused by the large-scale time-evolving gravitational potential is probed from different perspectives. The CMB is cross-correlated with different large-scale structure (LSS) tracers: radio sources from the NVSS catalogue; galaxies from the optical SDSS and the infrared WISE surveys; and the Planck 2015 convergence lensing map. The joint cross-correlation of the CMB with the tracers yields a detection at 4σ where most of the signal-to-noise is due to the Planck lensing and the NVSS radio catalogue. In fact, the ISW effect is detected from the Planck data only at ≈3σ (through the ISW-lensing bispectrum), which is similar to the detection level achieved by combining the cross-correlation signal coming from all the galaxy catalogues mentioned above. We study the ability of the ISW effect to place constraints on the dark-energy parameters; in particular, we show that ΩΛ is detected at more than 3σ. This cross-correlation analysis is performed only with the Planck temperature data, since the polarization scales available in the 2015 release do not permit significant improvement of the CMB-LSS cross-correlation detectability. Nevertheless, the Planck polarization data are used to study the anomalously large ISW signal previously reported through the aperture photometry on stacked CMB features at the locations of known superclusters and supervoids, which is in conflict with ΛCDM expectations. We find that the current Planck polarization data do not exclude that this signal could be caused by the ISW effect. In addition, the stacking of the Planck lensing map on the locations of superstructures exhibits a positive cross-correlation with these large-scale structures. Finally, we have improved our previous reconstruction of the ISW temperature fluctuations by combining the
75 FR 44031 - Goldman, Sachs & Co., et al.; Notice of Application and Temporary Order
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... Management International (``GSAMI''), Goldman Sachs Hedge Fund Strategies LLC (``GSHFS''), Commonwealth... (``Transaction''), should have disclosed that the hedge fund assuming the short side of the Transaction had... hedge fund in the Transaction and consented to the entry of the Final Judgment, including the...
Tay-Sachs disease: high gene frequency in a non-Jewish population.
Kelly, T E; Chase, G A; Kaback, M M; Kumor, K; McKusick, V A
1975-05-01
A non-Amish "Pennsylvania Dutch" semi-isolate was found to have a high frequency of Tay-Sachs gene. This high frequency could be ascribed to founder effect and may represent, in microcosm, how this mechanism could have produced the high gene frequency among Ashkenazi Jews. PMID:803011
The molecular basis of Tay-Sachs disease: mutation identification and diagnosis.
Mahuran, D J; Triggs-Raine, B L; Feigenbaum, A J; Gravel, R A
1990-10-01
Tay-Sachs disease is the prototype of lysosomal storage disease. While it was first described over a century ago, the defective enzyme was not identified until 1969, making possible the development of enzyme-based diagnostic and carrier screening techniques. This led to the establishment of the successful international Tay-Sachs screening program, primarily for the high risk Ashkenazi Jewish population. In the past five years the development of recombinant DNA technology has allowed researchers to characterize 95-99% of the mutations causing Tay-Sachs disease in this high risk ethnic group. Knowledge of the exact mutations responsible for the disease coupled with the powerful polymerase chain reaction technique has now made DNA-based screening and diagnosis possible. While the enzyme-based test has proven to be reliable and economical, it cannot differentiate variant phenotypes and requires the presence of specialized testing centers. Although the DNA-based test is presently less economical, it can provide carrier couples with their exact genotype and thus, predict the general phenotype of an unborn child. Furthermore, as the catalogue of mutations leading to human disease increases, more economical DNA methodologies will be developed. In the future it would be expected that a laboratory using a single DNA-based technology could diagnose and screen for a myriad of human diseases including Tay-Sachs disease.
Neuropathology of mice with targeted disruption of Hexa gene, a model of Tay-Sachs disease.
Taniike, M; Yamanaka, S; Proia, R L; Langaman, C; Bone-Turrentine, T; Suzuki, K
1995-01-01
A murine model of Tay-Sachs disease, the prototype of the GM2 gangliosidoses, was produced through the targeted disruption of the Hexa gene encoding the subunit of alpha-hexosaminidase A. The mice were completely devoid of beta-hexosaminidase A activity and accumulated GM2 ganglioside in the CNS in an age-dependent manner. Neurons with membranous cytoplasmic bodies (MCBs), identical to those described in Tay-Sachs disease, were identified in the brain of these mice. The neurons with MCBs were periodic acid-Schiff-positive on frozen sections and immunostained with anti-GM2 ganglioside antibody. However, unlike Tay-Sachs disease in which neurons throughout the brain are affected, the localization of storage neurons in these mice appeared to be limited to certain regions, i.e., cerebral cortex, the hippocampus, amygdala, hypothalamus, mammillary nucleus, etc. Storage neurons were absent in the olfactory bulb, cerebellar cortex and spinal anterior horns. The difference in the distribution of storage neurons suggests a difference of ganglioside metabolism between humans and mice. This model is useful for the study of the pathogenic mechanisms of neuronal storage in Tay-Sachs disease and for the evaluation of therapeutic strategies.
Triggs-Raine, B.L.; Akerman, B.R.; Gravel, R.A. ); Mules, E.H.; Thomas, G.H.; Dowling, C.E. ); Kaback, M.M.; Lim-Steele, J.S.T. ); Natowicz, M.R. ); Grebner, E.E. ); Navon, R.R. ); Welch, J.P. ); Greenberg, C.R. )
1992-10-01
Deficiency of [beta]-hexosaminidase A (Hex A) activity typically results in Tay-Sachs disease. However, healthy subjects found to be deficient in Hex A activity (i.e., pseudodeficient) by means of in vitro biochemical tests have been described. The authors analyzed the HEXA gene of one pseudodeficient subject and identified both a C[sub 739]-to-T substitution that changes Arg[sub 247][yields]Trp on one allele and a previously identified Tay-Sachs disease mutation of the second allele. Six additional pseudodeficient subjects were found to have the C[sub 739]-to-T but for none of 36 Jewish enzyme-defined carries who did not have one of three known mutations common to this group. The C[sub 739]-to-T allele, together with a [open quotes]true[close quotes] Tay-Sachs disease allele, causes Hex A pseudodeficiency. Given both the large proportion of non-Jewish carriers with this allele and that standard biochemical screening cannot differentiate between heterozygotes for the C[sub 739]-to-T mutations and Tay-Sachs disease carriers, DNA testing for this mutation in at-risk couples is essential. This could prevent unnecessary or incorrect prenatal diagnoses. 40 refs., 3 figs., 4 tabs.
78 FR 26407 - Goldman Sachs Trust II, et al.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
... shareholder approval and would grant relief from certain disclosure requirements. APPLICANTS: Goldman Sachs... 2(a)(19) of the Act, of the Trust or the Adviser (``Independent Trustees'') and by the shareholders... approval of the relevant Board, including a majority of the Independent Trustees, and the shareholders...
One-pion exchange current effects on magnetic form factor in the relativistic formalism
NASA Astrophysics Data System (ADS)
Zhang, Cun; Liu, Jian; Ren, Zhongzhou
2016-08-01
One-pion exchange current effects on the magnetic form factors of some odd nuclei are studied in the relativistic formalism. The Dirac wave functions of nucleons are calculated from the relativistic mean-field theory. After fitting to experimental data by quenching factors, it is found that taking the one-pion exchange currents into account gives a better description of the magnetic form factor. The root-mean-square radii of the valance nucleon orbits are also calculated in RMF model, which coincide with experimental radii extracted with meson exchange current corrections.
Form factor effects in the direct detection of isospin-violating dark matter
Zheng, Hao; Zhang, Zhen; Chen, Lie-Wen E-mail: malkuth@sjtu.edu.cn
2014-08-01
Isospin-violating dark matter (IVDM) provides a possible mechanism to ameliorate the tension among recent direct detection experiments. For IVDM, we demonstrate that the results of direct detection experiments based on neutron-rich target nuclei may depend strongly on the density dependence of the symmetry energy which is presently largely unknown and controls the neutron skin thickness that reflects the relative difference of neutron and proton form factors in the neutron-rich nuclei. In particular, using the neutron and proton form factors obtained from Skyrme-Hartree-Fock calculations by varying the symmetry energy within the uncertainty region set by the latest model-independent measurement of the neutron skin thickness of {sup 208}Pb from PREX experiment at JLab, we find that, for IVDM with neutron-to-proton coupling ratio fixed to f{sub n}/f{sub p}=-0.7, the form factor effect may enhance the sensitivity of Xe-based detectors (e.g., XENON100 and LUX) to the DM-proton cross section by a factor of 3 in the DM mass region constrained by CMDS-II(Si) and even by more than an order of magnitude for heavy DM with mass larger than 80 GeV, compared with the results using the empirical Helm form factor. Our results further indicate that the form factor effect can significantly modify the recoil spectrum of Xe-based detectors for heavy IVDM with f{sub n}/f{sub p}=-0.7.
Form factor effects in the direct detection of isospin-violating dark matter
NASA Astrophysics Data System (ADS)
Zheng, Hao; Zhang, Zhen; Chen, Lie-Wen
2014-08-01
Isospin-violating dark matter (IVDM) provides a possible mechanism to ameliorate the tension among recent direct detection experiments. For IVDM, we demonstrate that the results of direct detection experiments based on neutron-rich target nuclei may depend strongly on the density dependence of the symmetry energy which is presently largely unknown and controls the neutron skin thickness that reflects the relative difference of neutron and proton form factors in the neutron-rich nuclei. In particular, using the neutron and proton form factors obtained from Skyrme-Hartree-Fock calculations by varying the symmetry energy within the uncertainty region set by the latest model-independent measurement of the neutron skin thickness of 208Pb from PREX experiment at JLab, we find that, for IVDM with neutron-to-proton coupling ratio fixed to fn/fp=-0.7, the form factor effect may enhance the sensitivity of Xe-based detectors (e.g., XENON100 and LUX) to the DM-proton cross section by a factor of 3 in the DM mass region constrained by CMDS-II(Si) and even by more than an order of magnitude for heavy DM with mass larger than 80 GeV, compared with the results using the empirical Helm form factor. Our results further indicate that the form factor effect can significantly modify the recoil spectrum of Xe-based detectors for heavy IVDM with fn/fp=-0.7.
B to tensor meson form factors in the perturbative QCD approach
Wang Wei
2011-01-01
We calculate the B{sub u,d,s}{yields}T form factors within the framework of the perturbative QCD approach, where T denotes a light tensor meson with J{sup P}=2{sup +}. Because of the similarities between the wave functions of a vector and a tensor meson, the factorization formulas of B{yields}T form factors can be obtained from the B{yields}V transition through a replacement rule. As a consequence, we find that these two sets of form factors have the same signs and correlated q{sup 2}-dependence behaviors. At q{sup 2}=0 point, the B{yields}T form factors are smaller than the B{yields}V ones, in accordance with the experimental data of radiative B decays. In addition, we use our results for the form factors to explore semilteptonic B{yields}Tl{nu}{sub l} decays and the branching fractions can reach the order 10{sup -4}.
Transient HEXA expression in a transformed human fetal Tay-Sachs disease neuroglial cell line
Fernandes, M.J.; Hechtman, P.; Kaplan, F.
1994-09-01
Tay-Sachs disease (TSD) is a severe neurodegenerative disorder characterized by the accumulation of GM{sub 2} ganglioside in the neurons of the central cortex. The recessively inherited disorder results from deficiency of hexosaminidase A (Hex A), a heterodimer of an {alpha} and {beta} subunit encoded by the HEXA and HEXB genes. Expression of HEXA mutations in COS cells has several disadvantages including high endogenous hexosaminidase activity. We report a new transient expression system with very low endogenous Hex A activity. An SV40-transformed fetal TSD neuroglial cell line was assessed for transient expression of the HEXA gene. pCMV{alpha}, a vector incorporating the cytomegalovirus promoter with the human {alpha}-subunit cDNA insert, proved to be the most efficient expression vector. Transfection of 4x10{sup 6} cells with 5-20 {mu}g of plasmid resulted in 100 to 500-fold Hex A activity (4MUGS hydrolysis) relative to mock-transfected cells. Use of pCMV{beta}-Gal as a control for transfection efficiency indicated that 10-20% of cells were transfected. Hex A specific activity increased for at least 72 h post-transfection. This new transient expression system should greatly improve the characterization of mutations in which low levels of HEXA expression result in milder clinical phenotypes and permit studies on enzymatic properties of mutant forms of Hex A. Since the cells used are of CNS origin and synthesize gangliosides, it should also be possible to study, in culture, the metabolic phenotype associated with TSD.
Wu Xinggang; Huang Tao
2011-10-01
The meson-photon transition form factors {gamma}{gamma}*{yields}P (P stands for {pi}, {eta} and {eta}') provide strong constraints on the distribution amplitudes of the pseudoscalar mesons. In this paper, these transition form factors are calculated under the light-cone perturbative QCD approach, in which both the valence and nonvalence quarks' contributions have been taken into consideration. To be consistent, a unified wave function model is adopted to analyze these form factors. It is shown that with the proper charm component f{sub {eta}}'{sup c}{approx}-30 MeV and a moderate DA with B{approx}0.30, the experimental data on Q{sup 2}F{sub {eta}{gamma}}(Q{sup 2}) and Q{sup 2}F{sub {eta}'{gamma}}(Q{sup 2}) in the whole Q{sup 2} region can be explained simultaneously. Furthermore, a detailed discussion on the form factors' uncertainties caused by the constituent quark masses m{sub q} and m{sub s}, the parameter B, the mixing angle {phi}, and f{sub {eta}'}{sup c} are presented. It is found that, by adjusting these parameters within their reasonable regions, one can improve the form factor to a certain degree but cannot solve the puzzle for Q{sup 2}F{sub {pi}{gamma}}(Q{sup 2}), especially to explain the behavior of the {pi}-{gamma} form factor within the whole Q{sup 2} region consistently. We hope further experimental data on these form factors in the large Q{sup 2} region can clarify the present situation.
Regularization of multi-soliton form factors in sine-Gordon model
NASA Astrophysics Data System (ADS)
Pálmai, T.
2012-08-01
A general and systematic regularization is developed for the exact solitonic form factors of exponential operators in the (1+1)-dimensional sine-Gordon model by analytical continuation of their integral representations. The procedure is implemented in Mathematica. Test results are shown for four- and six-soliton form factors. Catalogue identifier: AEMG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1462 No. of bytes in distributed program, including test data, etc.: 15 488 Distribution format: tar.gz Programming language: Mathematica [1] Computer: PC Operating system: Cross-platform Classification: 7.7, 11.1, 23 Nature of problem: The multi-soliton form factors of the sine-Gordon model (relevant in two-dimensional physics) were given only by highly non-trivial integral representation with a limited domain of convergence. Practical applications of the form factors, e.g. calculation of correlation functions in two-dimensional condensed matter systems, were not possible in general. Solution method: Using analytic continuation techniques an efficient algorithm is found and implemented in Mathematica, which provides a general and systematic way to calculate multi-soliton form factors in the sine-Gordon model. The package contains routines to compute the two-, four- and six-soliton form factors. Running time: Strongly dependent on the desired accuracy and the number of solitons. For physical rapidities after an initialization of about 30 s, the calculation of the two-, four- and six-soliton form factors at a single point takes approximately 0.5 s, 2.5 s and 8 s, respectively. Wolfram Research, Inc., Mathematica Edition: Version 7.0, Wolfram Research, Inc., Champaign, Illinois, 2008.
Demonstration of cross-reacting material in Tay-Sachs disease.
Srivastava, S K; Ansari, N H; Hawkins, L A; Wiktorowicz, J E
1979-06-01
Antibodies against placental hexosaminidase A and kidney alpha-subunits were raised in rabbits after cross-linking the antigens with glutaraldehyde. Anti-(alpha(n)-subunit) antiserum (anti-alpha(n)) precipitated hexosaminidase A but not hexosaminidase B, whereas anti-(hexosaminidase A) antiserum precipitated both hexosaminidases A and B. Specific anti-(hexosaminidase A) antiserum was prepared by absorbing antiserum with hexosaminidase B. Both anti-alpha(n) and anti-(hexosaminidase A) antisera precipitated the CR (cross-reacting) material from eight unrelated patients with Tay-Sachs disease. Immunotitration, immunoelectrophoresis, double-immunodiffusion and radial-immunodiffusion techniques were used to demonstrate the presence of CR material. The CR-material-antibody complex was enzymically inactive. Antiserum raised against kidney or placental hexosaminidase A, without cross-linking with glutaraldehyde, failed to precipitate the CR material, implying that treatment of the protein with glutaraldehyde exposes antigenic determinants that are hidden in the native protein. Since anti-(hexosaminidase B) antiserum did not precipitate the CR material during the immunoelectrophoresis of Tay-Sachs liver extracts, it is suggested that altered alpha-subunits do not combine with beta-subunits. By using immunotitration we have demonstrated the competition between the hexosaminidase B-free Tay-Sachs liver extract and hexosaminidase A for the common binding sites on monospecific anti-(cross-linked hexosaminidase A) antiserum. The amount of CR material in the liver samples from seven cases of Tay-Sachs desease was found to be in the same range as theoretically calculated alpha-subunits in normal liver samples. Similar results were obtained by the radial-immunodiffusion studies. The present studies therefore suggest that Tay-Sachs disease is caused by a structural-gene mutation.
Gravitational and higher-order form factors of the pion in chiral quark models
Broniowski, Wojciech; Arriola, Enrique Ruiz
2008-11-01
The gravitational form factor of the pion is evaluated in two chiral quark models and confronted with the recent full-QCD lattice data. We find good agreement for the case of the spectral quark model, which builds in the vector-meson dominance for the charge form factor. We derive a simple relation between the gravitational and electromagnetic form factors, holding in the considered quark models in the chiral limit. The relation implies that the gravitational mean squared radius is half the electromagnetic one. We also analyze higher-order quark generalized form factors of the pion, related to higher moments in the symmetric Bjorken X variable of the generalized parton distribution functions, and discuss their perturbative QCD evolution, which is needed to relate the quark-model predictions to the lattice data. The values of the higher-order quark form factors at t=0, computed on the lattice, also agree with our quark-model results within the statistical and method uncertainties.
Flavor dependence of the pion and kaon form factors and parton distribution functions
NASA Astrophysics Data System (ADS)
Hutauruk, Parada T. P.; Cloët, Ian C.; Thomas, Anthony W.
2016-09-01
The separate quark flavor contributions to the pion and kaon valence quark distribution functions are studied, along with the corresponding electromagnetic form factors in the space-like region. The calculations are made using the solution of the Bethe-Salpeter equation for the model of Nambu and Jona-Lasinio with proper-time regularization. Both the pion and kaon form factors and the valence quark distribution functions reproduce many features of the available empirical data. The larger mass of the strange quark naturally explains the empirical fact that the ratio uK+(x ) /uπ+(x ) drops below unity at large x , with a value of approximately Mu2/Ms2 as x →1 . With regard to the elastic form factors we report a large flavor dependence, with the u -quark contribution to the kaon form factor being an order of magnitude smaller than that of the s -quark at large Q2, which may be a sensitive measure of confinement effects in QCD. Surprisingly though, the total K+ and π+ form factors differ by only 10%. In general we find that flavor breaking effects are typically around 20%.
B → πℓ+ℓ- form factors reexamined in the whole kinematically accessible region
NASA Astrophysics Data System (ADS)
Li, Zuo-Hong; Si, Zong-Guo; Wang, Ying; Zhu, Nan
2015-11-01
We reexamine the B → πℓ+ℓ- (ℓ = e, μ, τ) form factors, f+B→π (q2), f0B→π (q2) and fTB→π (q2), in the entire region of the momentum transfer squared q2, by taking advantage of the complementarity between lattice QCD (LQCD) simulation and light cone sum rule approach (LCSR), and analyticity of the form factors. A LCSR calculation with a chiral current correlator, which could avoid pollution by twist-3 components, is performed at twist-2 next-to-leading order (NLO) accuracy, to determinate the form factor shapes in the small and intermediate q2 region. Further, fitting simultaneously the LCSR results for these form factors and the related LQCD ones (available or based on a SUF (3) symmetry breaking ansatz) to a Bourrely-Caprini-Lellouch (BCL) parametrization, we get a global understanding of their q2 behaviors. Our findings turn out to be consistent with the recent study by Ali, Parkhomenko and Rusov, and the resulting observation for the vector form factor provides support for the existing LQCD as well as LCSR predictions extrapolated to the entire kinematically accessible region.
The B {r{underscore}arrow} D*{ell}{nu} form factor at zero recoil
Simone, J.N.; Hashimoto, S.; El-Khadra, A.X.; Kronfeld, A.S.; Mackenzie, P.B.; Ryan, S.M.
2000-01-26
The authors describe a model independent lattice QCD method for determining the deviation from unity for h{sub A{sub 1}}, the B {r{underscore}arrow} D*{ell}{nu} form factor at zero recoil. They extend the double ratio method previously used to determine the B {r{underscore}arrow} D{ell}{nu} form factor. The bulk of statistical and systematic errors cancel in the double ratios they consider, yielding form factors which promise to reduce present theoretical uncertainties in the determination of {vert{underscore}bar}V{sub cb}{vert{underscore}bar}. They present results from a prototype calculation at a single lattice spacing corresponding to {beta} = 5.7.
Form Factors and Wave Functions of Vector Mesons in Holographic QCD
Hovhannes R. Grigoryan; Anatoly V. Radyushkin
2007-07-01
Within the framework of a holographic dual model of QCD, we develop a formalism for calculating form factors of vector mesons. We show that the holographic bound states can be described not only in terms of eigenfunctions of the equation of motion, but also in terms of conjugate wave functions that are close analogues of quantum-mechanical bound state wave functions. We derive a generalized VMD representation for form factors, and find a very specific VMD pattern, in which form factors are essentially given by contributions due to the first two bound states in the Q^2-channel. We calculate electric radius of the \\rho-meson, finding the value < r_\\rho^2>_C = 0.53 fm^2.
High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2
Xiaohui Zhan
2009-12-01
A high precision measurement of the proton elastic form factor ratio µpGEp/GMp in the range Q2 = 0.3–0.7 GeV2/c2 was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q2 range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.
High-Precision Determination of the Electric and Magnetic Form Factors of the Proton
Bernauer, J. C.; Achenbach, P.; Ayerbe Gayoso, C.; Boehm, R.; Distler, M. O.; Doria, L.; Esser, A.; Friedrich, J.; Gomez Rodriguez de la Paz, M.; Merkel, H.; Middleton, D. G.; Mueller, U.; Nungesser, L.; Pochodzalla, J.; Sanchez Majos, S.; Schlimme, B. S.; Walcher, Th.; Weinriefer, M.; Bosnar, D.; Makek, M.
2010-12-10
New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q{sup 2}=1 (GeV/c){sup 2} with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be
Master Integrals for Fermionic Contributions to Massless Three-Loop Form Factors
Heinrich, G.; Huber, T.; Maitre, D.
2007-11-28
In this letter we continue the calculation of master integrals for massless three-loop form factors by giving analytical results for those diagrams which are relevant for the fermionic contributions proportional to N{sub F}{sup 2}, N{sub F} {center_dot} N, and N{sub F}/N. Working in dimensional regularization, we express one of the diagrams in a closed form which is exact to all orders in {epsilon}, containing {Lambda}-functions and hypergeometric functions of unit argument. In all other cases we derive multiple Mellin-Barnes representations from which the coefficients of the Laurent expansion in {epsilon} are extracted in an analytical form. To obtain the finite part of the three-loop quark and gluon form factors, all coefficients through transcendentality six in the Riemann {zeta}-function have to be included.
Research on design method of the full form ship with minimum thrust deduction factor
NASA Astrophysics Data System (ADS)
Zhang, Bao-ji; Miao, Ai-qin; Zhang, Zhu-xin
2015-04-01
In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique (SUMT) interior point method of Nonlinear Programming (NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.
Calculation of neutral weak nucleon form factors with the AdS/QCD correspondence
NASA Astrophysics Data System (ADS)
Lohmann, Mark
The AdS/QCD (Anti-de Sitter/Quantum Chromodynamics) is a mathematical formalism applied to a theory based on the original AdS/CFT (Anti-de Sitter/ Conformal Field Theory) correspondence. The aim is to describe properties of the strong force in an essentially non-perturbative way. AdS/QCD theories break the conformal symmetry of the AdS metric (a sacrifice) to arrive at a boundary theory which is QCD-like (a payoff). This correspondence has been used to calculate well-known quantities in nucleon spectra and structure like Regge trajectories, form factors, and many others within an error of less than 20% from experiment. This is impressive considering that ordinary perturbation theory in QCD applied to the strongly interacting domain usually obtains an error of about 30%. In this thesis, the AdS/QCD correspondence method of light-front holography established by Brodsky and de Teramond is used in an attempt to calculate the Dirac and Pauli neutral weak form factors, FZ1 (Q2) and FZ2 (Q 2) respectively, for both the proton and the neutron. With this approach, we were able to determine the neutral weak Dirac form factor for both nucleons and the Pauli form factor for the proton, while the method did not succeed at determining the neutral weak Pauli form factor for the neutron. With these we were also able to extract the proton's strange electric and magnetic form factor, which addresses important questions in nucleon sub-structure that are currently being investigated through experiments at the Thomas Jefferson National Accelerator Facility.
Constraints on the ωπ form factor from analyticity and unitarity
NASA Astrophysics Data System (ADS)
Ananthanarayan, B.; Caprini, Irinel; Kubis, Bastian
2016-05-01
Form factors are important low-energy quantities and an accurate knowledge of these sheds light on the strong interactions. A variety of methods based on general principles have been developed to use information known in different energy regimes to constrain them in regions where experimental information needs to be tested precisely. Here we review our recent work on the electromagnetic ωπ form factor in a model-independent framework known as the method of unitarity bounds, partly motivated by the discrepancies noted recently between the theoretical calculations of the form factor based on dispersion relations and certain experimental data measured from the decay ω → π0γ∗. We have applied a modified dispersive formalism, which uses as input the discontinuity of the ωπ form factor calculated by unitarity below the ωπ threshold and an integral constraint on the square of its modulus above this threshold. The latter constraint was obtained by exploiting unitarity and the positivity of the spectral function of a QCD correlator, computed on the spacelike axis by operator product expansion and perturbative QCD. An alternative constraint is obtained by using data available at higher energies for evaluating an integral of the modulus squared with a suitable weight function. From these conditions we derived upper and lower bounds on the modulus of the ωπ form factor in the region below the ωπ threshold. The results confirm the existence of a disagreement between dispersion theory and experimental data on the ωπ form factor around 0.6 GeV, including those from NA60 published in 2016.
A form-factor method for determining the structure of distorted stars
NASA Technical Reports Server (NTRS)
Wolfe, R. H., Jr.; Kern, J. W.
1979-01-01
The equilibrium equations of a uniformly rotating and tidally distorted star are reduced to the same form as for a spherical star except for the inclusion of two form factors. One factor, expressing the buoyancy effects of centrifugal force, is determined directly from the integrated structure variables. The other factor, expressing the deviation from spherical shape, is shown to be relatively insensitive to errors in the assumed shape, so that accurate solutions are obtained in spite of the use of an a priori shape. The method is employed by adding computations for the factors to an existing spherical model program. Upper Main Sequence models determined by this method compare closely with results from the double approximation method even for critical rotation and tidal distortion.
JLab measurement of the 4He charge form factor at large momentum transfers.
Camsonne, A; Katramatou, A T; Olson, M; Sparveris, N; Acha, A; Allada, K; Anderson, B D; Arrington, J; Baldwin, A; Chen, J-P; Choi, S; Chudakov, E; Cisbani, E; Craver, B; Decowski, P; Dutta, C; Folts, E; Frullani, S; Garibaldi, F; Gilman, R; Gomez, J; Hahn, B; Hansen, J-O; Higinbotham, D W; Holmstrom, T; Huang, J; Iodice, M; Jiang, X; Kelleher, A; Khrosinkova, E; Kievsky, A; Kuchina, E; Kumbartzki, G; Lee, B; LeRose, J J; Lindgren, R A; Lott, G; Lu, H; Marcucci, L E; Margaziotis, D J; Markowitz, P; Marrone, S; Meekins, D; Meziani, Z-E; Michaels, R; Moffit, B; Norum, B; Petratos, G G; Puckett, A; Qian, X; Rondon, O; Saha, A; Sawatzky, B; Segal, J; Shabestari, M; Shahinyan, A; Solvignon, P; Subedi, R R; Suleiman, R; Sulkosky, V; Urciuoli, G M; Viviani, M; Wang, Y; Wojtsekhowski, B B; Yan, X; Yao, H; Zhang, W-M; Zheng, X; Zhu, L
2014-04-01
The charge form factor of 4He has been extracted in the range 29 fm(-2) ≤ Q2 ≤ 77 fm(-2) from elastic electron scattering, detecting 4He recoil nuclei and electrons in coincidence with the high resolution spectrometers of the Hall A Facility of Jefferson Lab. The measurements have uncovered a second diffraction minimum for the form factor, which was predicted in the Q2 range of this experiment. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the few-body problem. PMID:24745410
Hyperon elastic electromagnetic form factors in the space-like momentum region
NASA Astrophysics Data System (ADS)
Sanchis-Alepuz, Hèlios; Fischer, Christian S.
2016-02-01
We present a calculation of the electric and magnetic form factors of ground-state octet and decuplet baryons including strange quarks. We work with a combination of Dyson-Schwinger equations for the quark propagator and covariant Bethe-Salpeter equations describing baryons as bound states of three (non-perturbative) quarks. Our form factors for the octet baryons are in good agreement with corresponding lattice data at finite Q2; deviations in some isospin channels for the magnetic moments can be explained by missing meson cloud effects. At larger Q2 our quark core calculation has predictive power for both, the octet and decuplet baryons.
The η (η‧) gamma transition form factor and the gluon-gluon distribution amplitude
NASA Astrophysics Data System (ADS)
Kroll, P.; Passek-Kumerički, K.
2013-07-01
The ηγ and η‧γ transition form factors are analyzed to leading-twist accuracy and next-to-leading order of perturbative QCD. Using an η-η‧ mixing scheme and all currently available experimental data the lowest Gegenbauer coefficients of the distribution amplitudes for the valence octet and singlet q\\bar{q} and the gluon-gluon Fock components are extracted. Predictions for the g*g*η‧ vertex function are presented. We also comment on the new BELLE results for the πγ transition form factor.
Pion-photon transition form factor in light-cone sum rules
Pimikov, A. V.; Bakulev, A. P.; Mikhailov, S. V.; Stefanis, N. G.
2012-10-23
We extract constraints on the pion distribution amplitude from available data on the pionphoton transition form factor in the framework of light-cone sum rules. A pronounced discrepancy (2.7 - 3){sigma} between the Gegenbauer expansion coefficients extracted from the CELLO, CLEO, and Belle experimental data relative to those from BaBar is found. Predictions for the pion-photon transition form factor are presented by employing a pion distribution amplitude obtained long ago from QCD sum rules with nonlocal condensates. These predictions comply with the Belle data but disagree with those of BaBar beyond 9 GeV{sup 2}.
Analysis of the J /ψ →π0γ* transition form factor
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Niecknig, Franz
2015-02-01
In view of the first measurement of the branching fraction for J /ψ →π0e+e- by the BESIII collaboration, we analyze what can be learned on the corresponding transition form factor using dispersion theory. We show that light-quark degrees of freedom dominate the spectral function, in particular two-pion intermediate states. Estimating the effects of multipion states as well as charmonium, we arrive at a prediction for the complete form factor that should be scrutinized experimentally in the future.
Measurement of the γγ*→π0 transition form factor
NASA Astrophysics Data System (ADS)
Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Wilson, R. J.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.; Bernard, D.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Bard, D. J.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Schram, M.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.; Simard, M.; Taras, P.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.; Ebert, M.; Hartmann, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Esteve, L.; Hamel de Monchenault, G.; Kozanecki, W.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Soffer, A.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.
2009-09-01
We study the reaction e+e-→e+e-π0 in the single tag mode and measure the differential cross section dσ/dQ2 and the γγ*→π0 transition form factor in the momentum transfer range from 4 to 40GeV2. At Q2>10GeV2 the measured form factor exceeds the asymptotic limit predicted by perturbative QCD. The analysis is based on 442fb-1 of integrated luminosity collected at PEP-II with the BABAR detector at e+e- center-of-mass energies near 10.6 GeV.
Computation of form factors in massless QCD with finite master integrals
NASA Astrophysics Data System (ADS)
von Manteuffel, Andreas; Panzer, Erik; Schabinger, Robert M.
2016-06-01
We present the bare one-, two-, and three-loop form factors in massless quantum chromodynamics as linear combinations of finite master integrals. Using symbolic integration, we compute their ɛ expansions and thereby reproduce all known results with an independent method. Remarkably, in our finite basis, only integrals with a less-than-maximal number of propagators contribute to the cusp anomalous dimensions. We report on indications of this phenomenon at four loops, including the result for a finite, irreducible, twelve-propagator form factor integral. Together with this article, we provide our automated software setup for the computation of finite master integrals.
A framework for the calculation of the ΔNγ* transition form factors on the lattice
NASA Astrophysics Data System (ADS)
Agadjanov, Andria; Bernard, Véronique; Meißner, Ulf-G.; Rusetsky, Akaki
2014-09-01
Using the non-relativistic effective field theory framework in a finite volume, we discuss the extraction of the ΔNγ* transition form factors from lattice data. A counterpart of the Lüscher approach for the matrix elements of unstable states is formulated. In particular, we thoroughly discuss various kinematic settings, which are used in the calculation of the above matrix element on the lattice. The emerging Lüscher-Lellouch factor and the analytic continuation of the matrix elements into the complex plane are also considered in detail. A full group-theoretical analysis of the problem is made, including the partial-wave mixing and projecting out the invariant form factors from data. In Refs. [39,40], an elastic resonance form factor (an example: the electromagnetic form factor ΔΔγ*) has been considered. In this paper, we address transition form factors, in particular, ΔNγ* that is more interesting from the phenomenological point of view. It turns out that the presence of one stable particle in the out-state (here, the nucleon) leads to crucial simplifications. As we shall demonstrate, the finite fixed points do not exist in this case, so the measurement of a single energy level (albeit at several volumes) will suffice. We shall discuss in detail various lattice settings, which provide an access to the measurement of the form factor. All particles and currents, considered in Refs. [39,40], were scalar. On the other hand, the particles, whose form factors we want to calculate, have spin. In this paper, we consider the inclusion of spin into the formalism and carry out a full group-theoretical analysis of the obtained equations along the lines described in Ref. [16]. The paper is organized as follows. In Section 2, we start from defining the resonance form factor in the infinite volume and discuss the analytic continuation into the complex plane. The projection of various scalar form factors will be considered. In Section 3 we consider the kinematics, which
Clean measurements of the nucleon axial-vector and free-neutron magnetic form factors
NASA Astrophysics Data System (ADS)
Deur, A.
2013-11-01
We discuss the feasibility of a weak charged current experiment using a low energy electron beam. A first goal is to measure the Q2 dependence of the axial-vector form factor ga(Q2). It can be measured model-independently and as robustly as for electromagnetic form factors from typical electron scattering experiments, in contrast to the methods used so far to measure ga(Q2). If ga(Q2) follows a dipole form, the axial mass can be extracted with a better accuracy than the world data altogether. The most important detection equipment would be a segmented neutron detector with good momentum and angular resolution that is symmetric about the beam direction, and covers a moderate angular range. A high intensity beam (100 uA) is necessary. Beam polarization is highly desirable as it provides a clean measurement of the backgrounds. Beam energies between 70 and 110 MeV are ideal. This range would provide a Q2 mapping of ga between 0.01
Measuring the axial form factor of {sup 3}He using weak capture of polarized electrons
Dutta, D.
2013-11-07
A low energy, high intensity polarized electron beam could enable the extraction of the A=3 weak axial form factors F{sub A} using the reaction →e+{sup 3}He→{sup 3}H+ν. These form factors have never been measured before. We discuss the feasibility of such an experiment using a small toroidal magnet and a radial low energy recoil detector to tag the recoil tritons. A moderately high intensity polarized electron beam (>500 μA) with beam energies between 50 - 150 MeV is necessary for the cross section measurement and to provides a free clean measurement of the background. Moreover, in addition to the cross section, by measuring the electron spin and recoil triton correlation coefficient it may be possible to search for second class currents and to extract the ratio of the axial to the vector form factor of the nucleon. Such novel electron scattering based measurements would have a completely different set of systematic uncertainties compared to polarized neutron beta decay, neutrino scattering and muon capture experiments which are typically used to extract the weak form-factors.
New Precision Limit on the Strange Vector Form Factors of the Proton
Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Baturin, P.; Bellini, V.; Benesch, J.; Beminiwattha, R.; Benmokhtar, F.; Canan, M.; Camsonne, A.; Cates, G. D.; Chen, J. -P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; De Leo, R.; Deconinck, W.; Decowski, P.; Deng, X.; Deur, A.; Dutta, C.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hansen, O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Huang, J.; Huang, M.; Hyde, C. E.; Jen, C. M.; Jin, G.; Jones, D.; Kang, H.; King, P.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; LeRose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z. -E.; Michaels, R.; Muñoz-Camacho, C.; Mihovilovic, M.; Muangma, N.; Myers, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman, None; Oh, Y.; Pan, K.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Silwal, R.; Sirca, S.; Souder, P. A.; Sperduto, M.; Subedi, R.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wang, D.; Wexler, J.; Wilson, R.; Wojtsekhowski, B.; Zhan, X.; Yan, X.; Yao, H.; Ye, L.; Zhao, B.; Zheng, X.
2012-03-01
The parity-violating cross-section asymmetry in the elastic scattering of polarized electrons from unpolarized protons has been measured at a four-momentum transfer squared Q^{2} = 0.624 GeV^{2} and beam energy E_{b} = 3.48 GeV to be A_{PV} = -23.80 ± 0.78 (stat) ± 0.36 (syst) parts per million. This result is consistent with zero contribution of strange quarks to the combination of electric and magnetic form factors G_{E}^{s} + 0.517 G_{M}^{s} = 0.003 ± 0.010 (stat) ± 0.004 (syst) ± 0.009 (ff), where the third error is due to the limits of precision on the electromagnetic form factors and radiative corrections. With this measurement, the world data on strange contributions to nucleon form factors are seen to be consistent with zero and not more than a few percent of the proton form factors.
New Precision Limit on the Strange Vector Form Factors of the Proton
Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Baturin, P.; Bellini, V.; Benesch, J.; Beminiwattha, R.; Benmokhtar, F.; et al
2012-03-01
The parity-violating cross-section asymmetry in the elastic scattering of polarized electrons from unpolarized protons has been measured at a four-momentum transfer squared Q2 = 0.624 GeV2 and beam energy Eb = 3.48 GeV to be APV = -23.80 ± 0.78 (stat) ± 0.36 (syst) parts per million. This result is consistent with zero contribution of strange quarks to the combination of electric and magnetic form factors GEs + 0.517 GMs = 0.003 ± 0.010 (stat) ± 0.004 (syst) ± 0.009 (ff), where the third error is due to the limits of precision on the electromagnetic form factors and radiative corrections.more » With this measurement, the world data on strange contributions to nucleon form factors are seen to be consistent with zero and not more than a few percent of the proton form factors.« less
Form factor dispersion at La M5,4 edges and average density of resonant atoms.
Smadici, S; Lee, J C T; Logvenov, G; Bozovic, I; Abbamonte, P
2014-01-15
Resonant soft x-ray scattering on complex oxide superlattices shows very large variations in the superlattice reflection position and intensity near La M5,4 edges. Resonant dispersion of the La x-ray form factor describes the observations well. We determine the average density of resonant La atoms and the thickness of superlattice layers. PMID:24318961
Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun
2014-10-15
While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.
Constraints on the form factors for K ---> pi l nu and implications for |V(us)|
Hill, Richard J.; /Fermilab
2006-07-01
Rigorous bounds are established for the expansion coefficients governing the shape of semileptonic K {yields} {pi} form factors. The constraints enforced by experimental data from {tau} {yields} K{pi}{nu} eliminate uncertainties associated with model parameterizations in the determination of |V{sub us}|. The results support the validity of a powerful expansion that can be applied to other semileptonic transitions.
Structure of the neutral pion and its electromagnetic transition form factor
NASA Astrophysics Data System (ADS)
Raya, Khépani; Chang, Lei; Bashir, Adnan; Cobos-Martinez, J. Javier; Gutiérrez-Guerrero, L. Xiomara; Roberts, Craig D.; Tandy, Peter C.
2016-04-01
The γ*γ →π0 transition form factor, G (Q2), is computed on the entire domain of spacelike momenta using a continuum approach to the two valence body bound-state problem in relativistic quantum field theory: the result agrees with data obtained by the CELLO, CLEO, and Belle Collaborations. The analysis unifies this prediction with that of the pion's valence-quark parton distribution amplitude (PDA) and elastic electromagnetic form factor and demonstrates, too, that a fully self-consistent treatment can readily connect a pion PDA that is a broad, concave function at the hadronic scale with the perturbative QCD prediction for the transition form factor in the hard photon limit. The normalization of that limit is set by the scale of dynamical chiral symmetry breaking, which is a crucial feature of the Standard Model. Understanding of the latter will thus remain incomplete until definitive transition form factor data are available on Q2>10 GeV2 .
Nonperturbative study of the 't Hooft-Polyakov monopole form factors
NASA Astrophysics Data System (ADS)
Rajantie, Arttu; Weir, David J.
2012-01-01
The mass and interactions of a quantum ’t Hooft-Polyakov monopole are measured nonperturbatively using correlation functions in lattice Monte Carlo simulations. A method of measuring the form factors for interactions between the monopole and fundamental particles, such as the photon, is demonstrated. These quantities are potentially of experimental relevance in searches for magnetic monopoles.
The charge form factor of pseudoscalar mesons in a relativistic constituent quark model
Cardarelli, F.; Pace, E.; Grach, I.L.
1994-04-01
The charge form factor of pseudoscalar mesons has been investigated in the light-cone formalism, up to Q{sup 2} relevant to CEBAF energies. The consequences of adopting the meson wave functions generated through the Godfrey-Isgur q{bar q} potential, which reproduces the mass spectra, are discussed.
Measurement of real and imaginary form factors of silver atom using a high resolution HPGe detector.
Krishnananda; Niranjana, K M; Badiger, N M
2013-01-01
The real and imaginary form factors of silver atom have been determined by using EDXRF method. The K x-ray photons in the energy range from 8.62 keV to 52.18 keV are generated by sending 59.56 keV gamma photons from
Studies of Nucleon Form Factors with 12 GeV CEBAF and SuperBigBite
Hansen, Jens-Ole
2012-04-01
The elastic electromagnetic form factors are among the most fundamental quantities that describe the ground-state structure of the proton and neutron. Precision data of the form factors over a wide kinematical range provide a powerful test of current theories of hadron structure. A number of experiments aiming to measure the electric and magnetic elastic form factors of the neutron, G{sub E}{sup n} and G{sub M}{sup n}, and proton, G{sub E}{sup p}, at very high momentum transfer, up to the range of Q{sup 2} = 10-14 (GeV/c){sup 2}, are planned to be carried out with the future 11 GeV electron beam of the upgraded CEBAF at Jefferson Lab. These experiments will determine the nucleon form factors with unprecedented precision to Q{sup 2}-values up to three times higher than those of existing data. We review the approved proposals and the conceptual design of a new spectrometer, SuperBigBite, that will be used in these and other future experiments at Jefferson Lab.
QCD corrections to B → π form factors from light-cone sum rules
NASA Astrophysics Data System (ADS)
Wang, Yu-Ming; Shen, Yue-Long
2015-09-01
We compute perturbative corrections to B → π form factors from QCD light-cone sum rules with B-meson distribution amplitudes. Applying the method of regions we demonstrate factorization of the vacuum-to-B-meson correlation function defined with an interpolating current for pion, at one-loop level, explicitly in the heavy quark limit. The short-distance functions in the factorization formulae of the correlation function involves both hard and hard-collinear scales; and these functions can be further factorized into hard coefficients by integrating out the hard fluctuations and jet functions encoding the hard-collinear information. Resummation of large logarithms in the short-distance functions is then achieved via the standard renormalization-group approach. We further show that structures of the factorization formulae for fBπ+ (q2) and fBπ0 (q2) at large hadronic recoil from QCD light-cone sum rules match that derived in QCD factorization. In particular, we perform an exploratory phenomenological analysis of B → π form factors, paying attention to various sources of perturbative and systematic uncertainties, and extract |Vub | = (3.05-0.38+0.54|th. ± 0.09|exp.) ×10-3 with the inverse moment of the B-meson distribution amplitude ϕB+ (ω) determined by reproducing fBπ+ (q2 = 0) obtained from the light-cone sum rules with π distribution amplitudes. Furthermore, we present the invariant-mass distributions of the lepton pair for B → πℓνℓ (ℓ = μ, τ) in the whole kinematic region. Finally, we discuss non-valence Fock state contributions to the B → π form factors fBπ+ (q2) and fBπ0 (q2) in brief.
New physics effects and hadronic form factor uncertainties in B→K*ℓ+ℓ-
NASA Astrophysics Data System (ADS)
Das, Diganta; Sinha, Rahul
2012-09-01
It is well known that new physics can contribute to weak decays of heavy mesons via virtual processes during its decays. The discovery of new physics, using such decays is made difficult due to intractable strong interaction effects needed to describe it. Modes such as B→K*ℓ+ℓ- offer an advantage as they provide a multitude of observables via angular analysis. We show how the multitude of “related observables” obtained from B→K*ℓ+ℓ-, can provide many new “clean tests” of the standard model. The hallmark of these tests is that several of them are independent of the unknown universal form factors that describe the decay in heavy quark effective theory. We derive a relation between observables that is free of form factors and Wilson coefficients, the violation of which will be an unambiguous signal of new physics. We also derive relations between observables and form factors that are independent of Wilson coefficients and enable verification of hadronic estimates. We show how form factor ratios can be measured directly from helicity fraction with out any assumptions what so ever. We find that the allowed parameter space for observables is very tightly constrained in standard model, thereby providing clean signals of new physics. We examine in detail both the large-recoil and low-recoil regions of the K* meson and point out special features and derive relations between observables valid in the two limits. In the large-recoil regions several of the relations are unaffected by corrections to all orders in αs. We present yet another new relation involving only observables that would verify the validity of the relations between form factors assumed in the low-recoil region. The several relations and constraints derived will provide unambiguous signals of new physics if it contributes to these decays.
Platelets do not express the oxidized or reduced forms of tissue factor
Bouchard, Beth A.; Gissel, Matthew T.; Whelihan, Matthew F.; Mann, Kenneth G.; Butenas, Saulius
2014-01-01
Background Expression of tissue factor (TF) antigen and activity in platelets is controversial and dependent upon the laboratory and reagents used. Two forms of TF were described: an oxidized functional form and a reduced nonfunctional form that is converted to the active form through the formation of an allosteric disulfide. This study tests the hypothesis that the discrepancies regarding platelet TF expression are due to differential expression of the two forms. Methods Specific reagents that recognize both oxidized and reduced TF were used in flow cytometry of unactivated and activated platelets and western blotting of whole platelet lysates. TF-dependent activity measurements were used to confirm the results. Results Western blotting analyses of placental TF demonstrated that, in contrast to anti-TF#5, which is directed against the oxidized form of TF, a sheep anti-human TF polyclonal antibody recognizes both the reduced and oxidized forms. Flow cytometric analyses demonstrated that the sheep antibody did not react with the surface of unactivated platelets or platelets activated with thrombin receptor agonist peptide, PAR-1. This observation was confirmed using biotinylated active site-blocked factor (F)VIIa: no binding was observed. Likewise, neither form of TF was detected by western blotting of whole platelet lysates with sheep anti-hTF. Consistent with these observations, no FXa or FIXa generation by FVIIa was detected at the surface of these platelets. Similarly, no TF-related activity was observed in whole blood using thomboelastography. Conclusion and Significance Platelets from healthy donors do not express either oxidized (functional) or reduced (nonfunctional) forms of TF. PMID:24361609
Detection of Tay-Sachs disease carriers among individuals with thermolabile hexosaminidase B.
Peleg, L; Goldman, B
1994-02-01
The determination of hexosaminidases A and B in most programmes for Tay-Sachs disease carrier detection is based on their different heat sensitivity (hexosaminidase A is the heat labile isoenzyme). This routine cannot be employed for individuals who also possess a thermolabile hexosaminidase B. In Israel, 0.6% of the screened samples have a labile hexosaminidases B (about 110 each year) and the assessment of their hexosaminidase A activity has hitherto been based on isoenzyme separation by ion exchange chromatography. The latter requires relative large serum samples, and the individuals must usually be reappointed. In order to avoid the thermal treatment we have used the alternative technique, which employs two substrates with different specificities for the two isoenzymes: 1. The fluorogenic substance, 4-methylumbelliferyl-N-acetyl-glucopyranoside, which measures total hexosaminidase activity and 2. the derivative, 4-methylumbelliferyl-N-acetyl glucosamine-6-sulphate, which is considerably more specific toward hexosaminidase A. Hexosaminidase A activity was expressed as a ratio of total activities (the ratio of the assay with 4-methylumbelliferyl-N-acetyl glucosamine-6-sulphate to that with 4-methyllumbelliferyl-N-acetyl-glucopyranoside). Using the results from 65 obligate heterozygotes for Tay-Sachs disease, we established our reference ranges for assigning the genotypes with respect to the Tay-Sachs gene. Comparison of the results from 182 unrelated and randomly chosen sera screened by the ratio method and by heat inactivation, showed a very high correlation (r = 0.996). Sixty eight sera with thermolabile hexosaminidase B were tested by ion exchange chromatography and by the double substrate method, and they yielded identical diagnoses with regard to the Tay-Sachs locus.(ABSTRACT TRUNCATED AT 250 WORDS)
Detection of Tay-Sachs disease carriers among individuals with thermolabile hexosaminidase B.
Peleg, L; Goldman, B
1994-02-01
The determination of hexosaminidases A and B in most programmes for Tay-Sachs disease carrier detection is based on their different heat sensitivity (hexosaminidase A is the heat labile isoenzyme). This routine cannot be employed for individuals who also possess a thermolabile hexosaminidase B. In Israel, 0.6% of the screened samples have a labile hexosaminidases B (about 110 each year) and the assessment of their hexosaminidase A activity has hitherto been based on isoenzyme separation by ion exchange chromatography. The latter requires relative large serum samples, and the individuals must usually be reappointed. In order to avoid the thermal treatment we have used the alternative technique, which employs two substrates with different specificities for the two isoenzymes: 1. The fluorogenic substance, 4-methylumbelliferyl-N-acetyl-glucopyranoside, which measures total hexosaminidase activity and 2. the derivative, 4-methylumbelliferyl-N-acetyl glucosamine-6-sulphate, which is considerably more specific toward hexosaminidase A. Hexosaminidase A activity was expressed as a ratio of total activities (the ratio of the assay with 4-methylumbelliferyl-N-acetyl glucosamine-6-sulphate to that with 4-methyllumbelliferyl-N-acetyl-glucopyranoside). Using the results from 65 obligate heterozygotes for Tay-Sachs disease, we established our reference ranges for assigning the genotypes with respect to the Tay-Sachs gene. Comparison of the results from 182 unrelated and randomly chosen sera screened by the ratio method and by heat inactivation, showed a very high correlation (r = 0.996). Sixty eight sera with thermolabile hexosaminidase B were tested by ion exchange chromatography and by the double substrate method, and they yielded identical diagnoses with regard to the Tay-Sachs locus.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8003579
Form factors of descendant operators: reduction to perturbed M (2 , 2 s + 1) models
NASA Astrophysics Data System (ADS)
Lashkevich, Michael; Pugai, Yaroslav
2015-04-01
In the framework of the algebraic approach to form factors in two-dimensional integrable models of quantum field theory we consider the reduction of the sine-Gordon model to the Φ13-perturbation of minimal conformal models of the M (2 , 2 s + 1) series. We find in an algebraic form the condition of compatibility of local operators with the reduction. We propose a construction that make it possible to obtain reduction compatible local operators in terms of screening currents. As an application we obtain exact multiparticle form factors for the compatible with the reduction conserved currents T ±2 k , Θ±(2 k-2), which correspond to the spin ±(2 k - 1) integrals of motion, for any positive integer k. Furthermore, we obtain all form factors of the operators T 2 k T -2 l , which generalize the famous operator. The construction is analytic in the s parameter and, therefore, makes sense in the sine-Gordon theory.
The structure of light-front wavefunctions and constraints on hadronic form factors
S. J. Brodsky; J. R. Hiller; D. S. Hwang; V. A. Karmanov
2003-11-17
We study the analytic structure of light-front wave functions (LFWFs) and its consequences for hadron form factors using an explicitly Lorentz-invariant formulation of the front form. The normal to the light front is specified by a general null vector {omega}{sup {mu}}. The LFWFs with definite total angular momentum are eigenstates of a kinematic angular momentum operator and satisfy all Lorentz symmetries. They are analytic functions of the invariant mass squared of the constituents M{sub 0}{sup 2} = ({Sigma} k{sup {mu}}){sup 2} and the light-cone momentum fractions x{sub i} = k{sub i} {center_dot} {omega}/p {center_dot} {omega} multiplied by invariants constructed from the spin matrices, polarization vectors, and {omega}{sup {mu}}. These properties are illustrated using known nonperturbative eigensolutions of the Wick-Cutkosky model. We analyze the LFWFs introduced by Chung and Coester to describe static and low momentum properties of the nucleons. They correspond to the spin-locking of a quark with the spin of its parent nucleon, tog ether with a positive-energy projection constraint. These extra constraints lead to anomalous dependence of form factors on Q rather than Q{sup 2}. In contrast, the dependence of LFWFs on M{sub 0}{sup 2} implies that hadron form factors are analytic functions of Q{sup 2} in agreement with dispersion theory and perturbative QCD. We show that a model incorporating the leading-twist perturbative QCD prediction is consistent with recent data for the ratio of proton Pauli and Dirac form factors.
Lyso-GM2 ganglioside: a possible biomarker of Tay-Sachs disease and Sandhoff disease.
Kodama, Takashi; Togawa, Tadayasu; Tsukimura, Takahiro; Kawashima, Ikuo; Matsuoka, Kazuhiko; Kitakaze, Keisuke; Tsuji, Daisuke; Itoh, Kohji; Ishida, Yo-Ichi; Suzuki, Minoru; Suzuki, Toshihiro; Sakuraba, Hitoshi
2011-01-01
To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease. PMID:22205997
Factor structure and differential item functioning of the BASC-2 BESS Spanish Language Parent Form.
Dever, Bridget V; Raines, Tara C; Dowdy, Erin
2016-06-01
Given the steady increase of students from diverse backgrounds in the U.S. educational system, in particular immigrant and Latino students, it is important to consider how to best support all students within our schools. The present study focuses on the Behavior Assessment System for Children-Second Edition (BASC-2) Behavioral and Emotional Screening System (BESS) Parent Spanish form, which is a promising assessment tool for those who are interested in screening for behavioral and emotional risk among Spanish-speaking populations. The present study included 725 students of Latino descent in Grades K-6 in an urban school district and their parents or legal guardians, who served as the informants. All parents completed the BESS language form (English or Spanish) of their choice. A confirmatory factor analysis (CFA) supported a 4-factor structure (Externalizing, Internalizing, Inattention, and Adaptive Skills) similar to that of the BESS Parent English form: χ2(77) = 248.06, p < .001; CFI = 0.903; TLI = 0.940. However, differential item functioning (DIF) analyses revealed 5 items (16.7%) demonstrated significant levels of DIF, with 4 of the 5 being easier to endorse in English. This study provides preliminary evidence of partial invariance of the BESS Parent across language forms. Although some evidence of invariance across language forms at the structural and item levels exists, more research is necessary to determine whether the DIF found in the present study results in any perceptible test bias. (PsycINFO Database Record PMID:27243244
Rho-omega mixing and the pion form factor in the timelike region
Gardner, S.; OConnell, H.B.
1998-03-01
We determine the magnitude, phase, and s dependence of {rho}-{omega} {open_quotes}mixing{close_quotes} in the pion form factor in the timelike region through fits to e{sup +}e{sup {minus}}{r_arrow}{pi}{sup +}{pi}{sup {minus}} data. The associated systematic errors in these quantities, arising from the functional form used to fit the {rho} resonance, are small. The systematic errors in the {rho} mass and width, however, are larger than previously estimated. {copyright} {ital 1998} {ital The American Physical Society}
High-throughput spectrometer designs in a compact form-factor: principles and applications
NASA Astrophysics Data System (ADS)
Norton, S. M.
2013-05-01
Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.
Factor structure and validity of the parenting stress index-short form.
Haskett, Mary E; Ahern, Lisa S; Ward, Caryn S; Allaire, Jason C
2006-06-01
The psychometric properties of the Parenting Stress Index-Short Form (PSI-SF) were examined in a sample of 185 mothers and fathers. Factor analysis revealed 2 reasonably distinct factors involving parental distress and dysfunctional parent-child interactions. Both scales were internally consistent, and these scales were correlated with measures of parent psychopathology, parental perceptions of child adjustment, and observed parent and child behavior. PSI-SF scores were related to parent reports of child behavior 1 year later, and the Childrearing Stress subscale was a significant predictor of a parental history of abuse.
Theoretical Description and Measurement of the Pion-Photon Transition Form Factor
NASA Astrophysics Data System (ADS)
Mikhailov, S. V.; Pimikov, A. V.; Stefanis, N. G.
2014-06-01
Detailed predictions for the scaled pion-photon transition form factor are given, derived with the method of light-cone sum rules and using pion distribution amplitudes with two and three Gegenbauer coefficients obtained from QCD sum rules with nonlocal condensates. These predictions agree well with all experimental data that are compatible with QCD scaling (and collinear factorization), but disagree with the high- Q 2 data of the BaBar Collaboration that grow with the momentum. A good agreement of our predictions with results obtained from AdS/QCD models and Dyson-Schwinger computations is found.
OPE for all helicity amplitudes II. Form factors and data analysis
NASA Astrophysics Data System (ADS)
Basso, Benjamin; Caetano, João; Córdova, Lucía; Sever, Amit; Vieira, Pedro
2015-12-01
We present the general flux tube integrand for MHV and non-MHV amplitudes, in planar N=4 SYM theory, up to a group theoretical rational factor. We find that the MHV and non-MHV cases only differ by simple form factors which we derive. This information allows us to run the operator product expansion program for all sorts of non-MHV amplitudes and to test the recently proposed map with the so called charged pentagons transitions. Perfect agreement is found, on a large sample of non-MHV amplitudes, with the perturbative data available in the literature.
The electromagnetic form factors of the Λ in the timelike region
NASA Astrophysics Data System (ADS)
Haidenbauer, J.; Meißner, U.-G.
2016-10-01
The reaction e+e- → Λ bar Λ is investigated for energies close to the threshold. Specific emphasis is put on the role played by the interaction in the final Λ bar Λ system which is taken into account rigorously. For that interaction a variety of Λ bar Λ potential models is employed that have been constructed for the analysis of the reaction p bar p → Λ bar Λ in the past. The enhancement of the effective form factor for energies close to the Λ bar Λ threshold, seen in pertinent experiments, is reproduced. Predictions for the Λ electromagnetic form factors GM and GE in the timelike region and for spin-dependent observables such as spin-correlation parameters are presented.
B→πll Form Factors for New Physics Searches from Lattice QCD.
Bailey, Jon A; Bazavov, A; Bernard, C; Bouchard, C M; DeTar, C; Du, Daping; El-Khadra, A X; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Kronfeld, A S; Laiho, J; Levkova, L; Liu, Yuzhi; Lunghi, E; Mackenzie, P B; Meurice, Y; Neil, E; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran
2015-10-01
The rare decay B→πℓ^{+}ℓ^{-} arises from b→d flavor-changing neutral currents and could be sensitive to physics beyond the standard model. Here, we present the first ab initio QCD calculation of the B→π tensor form factor f_{T}. Together with the vector and scalar form factors f_{+} and f_{0} from our companion work [J. A. Bailey et al., Phys. Rev. D 92, 014024 (2015)], these parametrize the hadronic contribution to B→π semileptonic decays in any extension of the standard model. We obtain the total branching ratio BR(B^{+}→π^{+}μ^{+}μ^{-})=20.4(2.1)×10^{-9} in the standard model, which is the most precise theoretical determination to date, and agrees with the recent measurement from the LHCb experiment [R. Aaij et al., J. High Energy Phys. 12 (2012) 125].
B →π l l Form Factors for New Physics Searches from Lattice QCD
NASA Astrophysics Data System (ADS)
Bailey, Jon A.; Bazavov, A.; Bernard, C.; Bouchard, C. M.; DeTar, C.; Du, Daping; El-Khadra, A. X.; Freeland, E. D.; Gámiz, E.; Gottlieb, Steven; Heller, U. M.; Kronfeld, A. S.; Laiho, J.; Levkova, L.; Liu, Yuzhi; Lunghi, E.; Mackenzie, P. B.; Meurice, Y.; Neil, E.; Qiu, Si-Wei; Simone, J. N.; Sugar, R.; Toussaint, D.; Van de Water, R. S.; Zhou, Ran; Fermilab Lattice; MILC Collaborations
2015-10-01
The rare decay B →π ℓ+ℓ-arises from b →d flavor-changing neutral currents and could be sensitive to physics beyond the standard model. Here, we present the first ab initio QCD calculation of the B →π tensor form factor fT . Together with the vector and scalar form factors f+ and f0 from our companion work [J. A. Bailey et al., Phys. Rev. D 92, 014024 (2015)], these parametrize the hadronic contribution to B →π semileptonic decays in any extension of the standard model. We obtain the total branching ratio BR (B +→π+μ+μ-)=20.4 (2.1 )×10-9 in the standard model, which is the most precise theoretical determination to date, and agrees with the recent measurement from the LHCb experiment [R. Aaij et al., J. High Energy Phys. 12 (2012) 125].
Pion electromagnetic form factor, perturbative QCD, and large-N{sub c} Regge models
Arriola, Enrique Ruiz; Broniowski, Wojciech
2008-08-01
We present a construction of the pion electromagnetic form factor where the transition from large-N{sub c} Regge vector-meson dominance models with infinitely many resonances to perturbative QCD is built in explicitly. The construction is based on an appropriate assignment of residues to the Regge poles, which fulfills the constraints of the parton-hadron duality and perturbative QCD. The model contains a slowly falling off nonperturbative contribution, which dominates over the perturbative QCD radiative corrections for the experimentally accessible momenta. The leading order and next-to-leading order calculations show a converging pattern that describes the available data within uncertainties, while the onset of asymptotic QCD takes place at extremely high momenta Q{approx}10{sup 3}-10{sup 4} GeV. The method can be straightforwardly extended to study other form factors where the perturbative QCD result is available.
Pion transition form factor and distribution amplitudes in large-N{sub c} Regge models
Arriola, Enrique Ruiz; Broniowski, Wojciech
2006-08-01
We analyze the {pi}{gamma}*{gamma}* amplitude in the framework of radial Regge models in the large-N{sub c} limit. With the assumption of similarity of the asymptotic Regge {rho} and {omega} meson spectra we find that the pion distribution amplitude is constant in the large-N{sub c} limit at the scale Q{sub 0} where the QCD radiative corrections are absent--a result found earlier in a class of chiral quark models. We discuss the constraints on the couplings from the anomaly and from the limit of large photon virtualities, and find that the coupling of the pion to excited {rho} and {omega} mesons must be asymptotically constant. We also discuss the effects of the QCD evolution on the pion electromagnetic transition form factor. Finally, we use the Regge model to evaluate the slope of the form factor at zero momentum and compare the value to the experiment, finding very reasonable agreement.
B→πll Form Factors for New Physics Searches from Lattice QCD.
Bailey, Jon A; Bazavov, A; Bernard, C; Bouchard, C M; DeTar, C; Du, Daping; El-Khadra, A X; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Kronfeld, A S; Laiho, J; Levkova, L; Liu, Yuzhi; Lunghi, E; Mackenzie, P B; Meurice, Y; Neil, E; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran
2015-10-01
The rare decay B→πℓ^{+}ℓ^{-} arises from b→d flavor-changing neutral currents and could be sensitive to physics beyond the standard model. Here, we present the first ab initio QCD calculation of the B→π tensor form factor f_{T}. Together with the vector and scalar form factors f_{+} and f_{0} from our companion work [J. A. Bailey et al., Phys. Rev. D 92, 014024 (2015)], these parametrize the hadronic contribution to B→π semileptonic decays in any extension of the standard model. We obtain the total branching ratio BR(B^{+}→π^{+}μ^{+}μ^{-})=20.4(2.1)×10^{-9} in the standard model, which is the most precise theoretical determination to date, and agrees with the recent measurement from the LHCb experiment [R. Aaij et al., J. High Energy Phys. 12 (2012) 125]. PMID:26550717
Pion-photon transition form factor in light-cone sum rules
NASA Astrophysics Data System (ADS)
Pimikov, A. V.; Bakulev, A. P.; Mikhailov, S. V.; Stefanis, N. G.
2012-10-01
We extract constraints on the pion distribution amplitude from available data on the pionphoton transition form factor in the framework of light-cone sum rules. A pronounced discrepancy (2.7 - 3)σ between the Gegenbauer expansion coefficients extracted from the CELLO, CLEO, and Belle experimental data relative to those from BaBar is found. Predictions for the pion-photon transition form factor are presented by employing a pion distribution amplitude obtained long ago from QCD sum rules with nonlocal condensates. These predictions comply with the Belle data but disagree with those of BaBar beyond 9 GeV2. This original article was incorrectly published with a corrupt version of Fig. 1. The corrigendum (which is attached to this article) includes the correct version of the figure.
Form factors of descendant operators: resonance identities in the sinh-Gordon model
NASA Astrophysics Data System (ADS)
Lashkevich, Michael; Pugai, Yaroslav
2014-12-01
We study the space of local operators in the sinh-Gordon model in the framework of the bootstrap form factor approach. Our final goal is to identify the operators obtained by solving bootstrap equations with those defined in terms of the Lagrangian field. Here we try to identify operators at some very particular points, where the phenomenon of operator resonance takes place. The operator resonance phenomenon being perturbative, nevertheless, results in exact identities between some local operators. By applying an algebraic approach developed earlier for form factors we derive an infinite set of identities between particular descendant and exponential operators in the sinh-Gordon theory, which generalize the quantum equation of motion. We identify the corresponding descendant operators by comparing them with the result of perturbation theory.
$$B\\to\\pi\\ell\\ell$$ Form Factors for New-Physics Searches from Lattice QCD
Bailey, Jon A.
2015-10-07
The rare decay B→πℓ+ℓ- arises from b→d flavor-changing neutral currents and could be sensitive to physics beyond the standard model. Here, we present the first ab initio QCD calculation of the B→π tensor form factor fT. Together with the vector and scalar form factors f+ and f0 from our companion work [J. A. Bailey et al., Phys. Rev. D 92, 014024 (2015)], these parametrize the hadronic contribution to B→π semileptonic decays in any extension of the standard model. We obtain the total branching ratio BR(B+→π+μ+μ-)=20.4(2.1)×10-9 in the standard model, which is the most precise theoretical determination to date, and agreesmore » with the recent measurement from the LHCb experiment [R. Aaij et al., J. High Energy Phys. 12 (2012) 125].« less
CFD-based method of determining form factor k for different ship types and different drafts
NASA Astrophysics Data System (ADS)
Wang, Jinbao; Yu, Hai; Zhang, Yuefeng; Xiong, Xiaoqing
2016-07-01
The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics (CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.
The Proton Coulomb Form Factor from Polarized Inclusive e-p Scattering
Chris Harris
2001-08-01
The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia (15NH3) target at a four momentum transfer squared of Q2 = 0.5 (GeV/c)2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH3. The asymmetry, Ap, has been used to determine the proton elastic form factor GEp. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.
Pinto, Sérgio Alexandre; Stadler, Alfred; Gross, Franz
2009-05-01
We present the first calculations of the electromagnetic form factors of ^{3}He and ^{3}H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a non-relativistic framework, such as "Z-graphs," but omits other two and three-body currents. Finally, we compare our results to non-relativistic calculations augmented by relativistic corrections of O(v/c)^{2}.
Shock Response of the Clamped Disk in Small Form Factor Hard Disk Drive
NASA Astrophysics Data System (ADS)
Gu, Bin; Shu, Dongwei; Shi, Baojun; Lu, Guoxing
As small form factor (one-inch and smaller) hard disk drives are widely used in portable consumer appliances and gadgets, their mechanical robustness is of greater concern. In the previous work, it is found that when the disk is more tightly clamped, it helps to decrease the shock response of the disk and then avoid the head slap. In this paper, the real boundary condition of the disk for a small form factor hard disk drive from Seagate is investigated numerically. The disk is clamped between the clamp and the hub. The shock response of the disk under a half-sine acceleration pulse is simulated by using the finite element method. In the finite element model, both contact between disk and clamp and contact between disk and hub are considered. According to the simulation results, how to decrease the shock response of the disk is suggested.
High-precision calculation of the strange nucleon electromagnetic form factors
Green, Jeremy; Meinel, Stefan; Engelhardt, Michael G.; Krieg, Stefan; Laeuchli, Jesse; Negele, John W.; Orginos, Kostas; Pochinsky, Andrew; Syritsyn, Sergey
2015-08-26
We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors G^{s}_{E} and G^{s}_{M} in the kinematic range 0 ≤ Q^{2} ≤ 1.2GeV^{2}. For the first time, both G^{s}_{E} and G^{s}_{M} are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.
Renormalization versus strong form factors for one-boson-exchange potentials
Calle Cordon, A.; Ruiz Arriola, E.
2010-04-15
We analyze the one-boson-exchange potential from the point of view of renormalization theory. We show that the nucleon-meson Lagrangian, while predicting the NN force, does not predict the NN scattering matrix nor the deuteron properties unambiguously due to the appearance of short distance singularities. While the problem has traditionally been circumvented by introducing vertex functions via phenomenological strong form factors, we propose to impose physical renormalization conditions on the scattering amplitude at low energies. Working in the large N{sub c} approximation with pi, sigma, rho, and omega mesons we show that, once these conditions are applied, results for low-energy phases of proton-neutron scattering as well as deuteron properties become largely insensitive to the form factors and to the vector mesons yielding reasonable agreement with the data and for realistic values of the coupling constants.
Two-Photon Exchange Corrections to Precise Measurements of Proton Electroweak Form Factors
NASA Astrophysics Data System (ADS)
Afanasev, Andrei
2004-10-01
Higher-order QED effects play an important role for extracting information on proton form factors from electron scattering data. For the electric form factor of the proton, a previously neglected two-photon-exchange correction reconciles an observed discrepancy between Rosenbluth and polarization techniques [1]. We use a similar approach based on General Parton Distributions to compute additional radiative corrections to parity-violating electron scattering. [1] Y.C. Chen, A. Afanasev, S.J. Brodsky, C.E. Carlson and M. Vanderhaeghen, ``Partonic calculation of the two-photon exchange contribution to elastic electron proton scattering at large momentum transfer,`` arXiv:hep-ph/0403058, to appear in Phys.Rev.Lett.
NASA Astrophysics Data System (ADS)
Heusler, Stefan
2001-08-01
Sieber and Richter achieved a breakthrough towards a proof of the universality of spectral fluctuations of chaotic quantum systems conjectured by Bohigas, Giannoni and Schmidt by calculating semiclassically the first term beyond the diagonal approximation of the orthogonal form factor. In this letter, the semiclassical origin of the logarithmic singularity of the symplectic form factor is deduced perturbatively by combining this result with the contribution that arises due to the spin. This approach stands in contrast to the duality approach introduced by Bogomolny and Keating, which is essentially non-perturbative, and where the structure around the Heisenberg time is related to the structure for very small time which can be deduced using the diagonal approximation.
Alexandre Pinto, SÂ ergio; Stadler, Alfred; Gross, Franz
2009-01-01
We present the first calculations of the electromagnetic form factors of 3He and 3H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a non-relativistic framework, such as ?Z-graphs?, but omits other two and three-body currents. We compare our results to non-relativistic calculations augmented by relativistic corrections of O(v/c)2.
Pinto, Sergio Alexandre; Stadler, Alfred; Gross, Franz
2009-05-15
We present the first calculations of the electromagnetic form factors of {sup 3}He and {sup 3}H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a nonrelativistic framework, such as 'Z-graphs', but omits other two and three-body currents. We compare our results to nonrelativistic calculations augmented by relativistic corrections of O(v/c){sup 2}.
Form factors of the spin-1 analogue of the eight-vertex model
NASA Astrophysics Data System (ADS)
Quano, Yas-Hiro
2015-12-01
The twenty-one-vertex model, the spin-1 analogue of the eight-vertex model, is considered on the basis of free-field representations of vertex operators in the 2× 2-fold fusion solid on solid (SOS) model and vertex-face transformation. The tail operators, which translate corner transfer matrices of the twenty-one-vertex model into those of the fusion SOS model, are constructed by using free bosons and fermions for both diagonal and off-diagonal matrix elements with respect to the ground-state sectors. Form factors of any local operators are therefore obtained in terms of multiple integral formulae, in principle. As the simplest example, the two-particle form factor of the spin operator is calculated explicitly.
CFD-based method of determining form factor k for different ship types and different drafts
NASA Astrophysics Data System (ADS)
Wang, Jinbao; Yu, Hai; Zhang, Yuefeng; Xiong, Xiaoqing
2016-09-01
The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics (CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.
On the form factors of relevant operators and their cluster property
NASA Astrophysics Data System (ADS)
Acerbi, C.; Mussardo, G.; Valleriani, A.
1997-05-01
We compute the form factors of the relevant scaling operators in a class of integrable models without internal symmetries by exploiting their cluster properties. Their identification is established by computing the corresponding anomalous dimensions by means of the Delfino - Simonetti - Cardy sum rule and further confirmed it by comparing some universal ratios of the nearby non-integrable quantum field theories with their independent numerical determination.
A study of the N to Delta transition form factors in full QCD
Constantia Alexandrou; Robert Edwards; Giannis Koutsou; Theodoros Leontiou; Hartmut Neff; John W. Negele; Wolfram Schroers; Antonios Tsapalis
2005-07-01
The N to Delta transition form factors GM1, GE2 and GC2 are evaluated using dynamical MILC configurations and valence domain wall fermions at three values of quark mass corresponding to pion mass 606 MeV, 502 MeV and 364 MeV on lattices of spatial size 20{sup 3} and 28{sup 3}. The unquenched results are compared to those obtained at similar pion mass in the quenched theory.
K →π semileptonic form factors with Nf=2 +1 +1 twisted mass fermions
NASA Astrophysics Data System (ADS)
Carrasco, N.; Lami, P.; Lubicz, V.; Riggio, L.; Simula, S.; Tarantino, C.; ETM Collaboration
2016-06-01
We present a lattice QCD determination of the vector and scalar form factors of the semileptonic K →π ℓν decay which are relevant for the extraction of the Cabibbo-Kobayashi-Maskawa matrix element |Vu s| from experimental data. Our results are based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical fermions, which include in the sea, besides two light mass degenerate quarks, also the strange and the charm quarks. We use data simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV. Our final result for the vector form factor at zero momentum transfer is f+(0 )=0.9709 (46 ) , where the uncertainty is both statistical and systematic combined in quadrature. Using the latest experimental value of f+(0 )|Vu s| from Kℓ3 decays, we obtain |Vu s|=0.2230 (11 ) , which allows us to test the unitarity constraint of the Standard Model below the permille level once the determination of |Vu d| from superallowed nuclear β decays is adopted. A slight tension with unitarity at the level of ˜2 standard deviations is observed. Moreover, we present our results for the semileptonic scalar f0(q2) and vector f+(q2) form factors in the whole range of values of the squared four-momentum transfer q2 measured in Kℓ3 decays, obtaining a very good agreement with the momentum dependence of the experimental data. We provide a set of synthetic data points representing our results for the vector and scalar form factors at the physical point for several selected values of q2.
Measurement of the neutron electric form factor GEn in quasielastic scattering
Donal Day
2003-07-15
We have measured the electric form factor of the neutron, GEn, at two momentum transfers (Q2= 0.5 and Q2= 1.0 GeV/c2) through quasielastic scattering in Jefferson Lab's Hall C. Longitudinally polarized electrons scattered from polarized deuterated ammonia and GEn was extracted from the beam-target asymmetry AVed which, in quasielastic kinematics, is particularly sensitive to GEn and insensitive to MEC and FSI.
Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry
NASA Astrophysics Data System (ADS)
Aoki, S.; Cossu, G.; Feng, X.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.
2016-02-01
We study the chiral behavior of the electromagnetic (EM) form factors of pions and kaons in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between Mπ≃290 MeV and 540 MeV and with a strange quark mass ms close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on ms and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy constants and the charge radii, and find reasonable agreement with phenomenological and experimental results.
Λb→pl⁻ν¯l form factors from lattice QCD with static b quarks
Detmold, William; Lin, C.-J. David; Meinel, Stefan; Wingate, Matthew
2013-07-23
We present a lattice QCD calculation of form factors for the decay Λb→pμ⁻ν¯μ, which is a promising channel for determining the Cabibbo-Kobayashi-Maskawa matrix element |Vub| at the Large Hadron Collider. In this initial study we work in the limit of static b quarks, where the number of independent form factors reduces to two. We use dynamical domain-wall fermions for the light quarks, and perform the calculation at two different lattice spacings and at multiple values of the light-quark masses in a single large volume. Using our form factor results, we calculate the Λb→pμ⁻ν¯μ differential decay rate in the range 14more » GeV²≤q²≤q²max, and obtain the integral ∫q²max 14 GeV²[dΓ/dq²]dq²/|Vub|²=15.3±4.2 ps⁻¹. Combined with future experimental data, this will give a novel determination of |Vub| with about 15% theoretical uncertainty. The uncertainty is dominated by the use of the static approximation for the b quark, and can be reduced further by performing the lattice calculation with a more sophisticated heavy-quark action.« less
Measurement of the Hadronic Form Factors in Ds to phi e nu Decays
Serrano, J
2006-09-26
Based on the measured four-dimensional rate for D{sub s}{sup +} {yields} {phi}e{sup +}{nu}{sub e} decays, they have determined the ratios of the three hadronic form factors, {tau}{sub V} = V(0)/A{sub 1}(0) = 1.636 {+-} 0.067 {+-} 0.038 and {tau}{sub 2} = A{sub 2}(0)/A{sub 1}(0) = 0.705 {+-} 0.056 {+-} 0.029, using a simple pole ansatz for the q{sup 2} dependence, with fixed values of the pole masses for both the vector and axial form factors. By a separate fit to the same data, they have also extracted the pole mass for the axial form factors, m{sub A}: {tau}{sub V} = V(0)/A{sub 1}(0) = 1.633 {+-} 0.081 {+-} 0.068, {tau}{sub 2} = A{sub 2}(0)/A{sub 1}(0) = 0.711 {+-} 0.111 {+-} 0.096 and m{sub A} = (2.53{sub -0.35}{sup +0.54} {+-} 0.54)GeV/c{sup 2}.
Light-cone sum rules for B → π form factors revisited
NASA Astrophysics Data System (ADS)
Duplancić, G.; Khodjamirian, A.; Mannel, Th.; Melić, B.; Offen, N.
2008-04-01
We reconsider and update the QCD light-cone sum rules for B → π form factors. The gluon radiative corrections to the twist-2 and twist-3 terms in the correlation functions are calculated. The overline-MS b-quark mass is employed, instead of the one-loop pole mass used in the previous analyses. The light-cone sum rule for f+Bπ(q2) is fitted to the measured q2-distribution in B → πlνl, fixing the input parameters with the largest uncertainty: the Gegenbauer moments of the pion distribution amplitude. For the B → π vector form factor at zero momentum transfer we predict f+Bπ(0) = 0.26+0.04-0.03. Combining it with the value of the product |Vubf+Bπ(0)| extracted from experiment, we obtain |Vub| = (3.5±0.4±0.2±0.1) × 10-3. In addition, the scalar and penguin B → π form factors f0Bπ(q2) and fTBπ(q2) are calculated.
Measurement of the proton form factor by studying e+e-→p p ¯
NASA Astrophysics Data System (ADS)
Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kühn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration
2015-06-01
Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of e+e-→p p ¯ at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal (|GE|=|GM|). In addition, the ratio of electric to magnetic form factors, |GE/GM|, and |GM| are extracted by fitting the polar angle distribution of the proton for the data samples with larger statistics, namely at √{s }=2232.4 and 2400.0 MeV and a combined sample at √{s }=3050.0 , 3060.0 and 3080.0 MeV, respectively. The measured cross sections are in agreement with recent results from BABAR, improving the overall uncertainty by about 30%. The |GE/GM| ratios are close to unity and consistent with BABAR results in the same q2 region, which indicates the data are consistent with the assumption that |GE|=|GM| within uncertainties.
Testing the consistency of the ω π transition form factor with unitarity and analyticity
NASA Astrophysics Data System (ADS)
Caprini, I.
2015-07-01
We perform a dispersive analysis of the ω π electromagnetic transition form factor, using as input the discontinuity provided by unitarity below the ω π threshold and including for the first time experimental data on the modulus measured from e+e-→ω π0 at higher energies. The input leads to stringent parametrization-free constraints on the modulus of the form factor below the ω π threshold, which are in disagreement with some experimental values measured from ω →π0γ* decay. We discuss the dependence on the input parameters in the unitarity relation, using for illustration an N /D formalism for the P partial wave of the scattering process ω π →π π , improved by a simple prescription which simulates the rescattering in the crossed channels. Our results confirm the existence of a conflict between experimental data and theoretical calculations of the ω π form factor in the region around 0.6 GeV and bring further arguments in support of renewed experimental efforts to measure more precisely the ω →π0γ* decay.
New measurement of the proton form factor ratio with polarized beam and target
NASA Astrophysics Data System (ADS)
Liyanage, Anusha; SANE Collaboration
2013-10-01
The form factors are fundamental properties of the nucleon representing the effect of its structure on the response to electromagnetic probes. The ratio of the electric and magnetic form factors of the proton has been measured with doubly polarized elastic electron-proton scattering at Q2 = 2.06 and 5.66 (GeV/c)2 using the double spin asymmetry for a target spin aligned nearly perpendicular to the beam direction. This alternative measurement of GEp /GMp has verified and confirmed the dramatic discrepancy at high Q2 between the Rosenbluth separation and polarization transfer methods with a different technique and systematic uncertainties uncorrelated to those of the recoil-polarization measurements. The measurement of the form factor ratio at Q2 = 2.06 (GeV/c)2 is in agreement with an earlier measurement with the polarized target technique at similar kinematics. The four-momentum transfer squared of Q2 = 5.66 (GeV/c)2 represents the highest Q2 value reached with the double spin asymmetry to date. The results of this experiment will be presented.
Roles of Different Forms of Scale Factor in Non-linear Electrodynamics for Accelerating Universe
NASA Astrophysics Data System (ADS)
Maity, Sayani; Debnath, Ujjal
2013-07-01
In this work, we have assumed the modified Lagrangian of non-linear electrodynamics for accelerated universe. The energy density and pressure for non-linear electromagnetic theory have been considered in terms of both electric and magnetic fields. The Einstein's filed equations have been considered in FRW universe for Hořava-Lifshitz gravity. Since we are considering the non-linear form of Lagrangian for accelerating universe, so four forms of scale factors like logamediate, intermediate, emergent and power law forms are chosen in our investigation. For every expansion, the natures of electric field and magnetic field have been shown through graphical representation. The electric and magnetic fields increase for logamediate, intermediate and emergent expansion and decrease in power law expansion.
The proton form factor measurements at Jefferson Lab, past and future
Punjabi, Vina A.
2014-01-01
Use of the double-polarization technique to obtain the elastic nucleon form factors has resulted in a dramatic improvement of the quality of two of the four nucleon electromagnetic form factors, G{sub Ep} and G{sub En}. It has also changed our understanding of the proton structure, having resulted in a distinctly different Q 2-dependence for both G{sub Ep} and G{sub Mp}, contradicting the prevailing wisdom of the 1990’s based on cross section measurements, namely that G{sub Ep} and G{sub Mp} obey a “scaling” relation {mu}G{sub Ep} ~ G{sub Mp}. A related consequence of the faster decrease of G{sub Ep} revealed by the Jefferson Lab (Jlab) polarization results was the disappearance of the early scaling F{sub 2}/F{sub 1} ~ 1/Q{sup 2} predicted by perturbative QCD. In three experiments, Gep(1), Gep(2) and Gep(3), in Halls A and C at Jlab, the ratio of the proton’s electromagnetic elastic form factors, G{sub Ep} /G{sub Mp} , was measured up to four momentum transfer Q{sup 2} of 8.5 GeV{sup 2} with high precision, using the recoil polarization technique. The initial discovery that the proton form factor ratio measured in these three experiments decreases approximately linearly with four-momentum transfer, Q{sup 2}, for values above ~ 1 GeV{sup 2}, was modified by the Gep(3) results, which suggests a slowing down of this decrease. There is an approved experiment, Gep(5), to continue these measurements to 15 GeV{sup 2}. A dedicated experimental setup, the super bigbite spectrometer (SBS), will be built for this purpose. It will be equipped with a new focal plane polarimeter to measure the polarization of the recoil protons. In this presentation, I will review the status of the proton elastic electromagnetic form factors, mention succinctly a number of theoretical approaches to describe results and show some features required for the future Gep(5) experiment.
Gort, Laura; de Olano, Natalia; Macías-Vidal, Judit; Coll, M A Josep
2012-09-10
The GM2 gangliosidoses are autosomal recessive lysosomal storage diseases caused by a deficiency of the β-hexosaminidase A enzyme. This enzyme is composed of two polypeptide chains designated the α- and β- subunits and it interacts with the GM2 activator protein. The HEXA and HEXB genes encode the α-subunit and the β-subunit, respectively. Mutations in these genes are causative of Tay-Sachs disease (HEXA) and Sandhoff disease (HEXB). We analyzed the complete HEXA gene in 34 Spanish patients with Tay-Sachs disease and the HEXB gene in 14 Spanish patients with Sandhoff disease. We identified 27 different mutations, 14 of which were novel, in the HEXA gene and 14 different mutations, 8 of which unreported until now, in the HEXB gene, and we attempted to correlate these mutations with the clinical presentation of the patients. We found a high frequency of c.459+5G>A (IVS4+5G>A) mutation in HEXA affected patients, 22 of 68 alleles, which represent the 32.4%. This is the highest percentage found of this mutation in a population. All patients homozygous for mutation c.459+5G>A presented with the infantile form of the disease and, as previously reported, patients carrying mutation p.R178H in at least one of the alleles presented with a milder form. In HEXB affected patients, the novel deletion c.171delG accounts for 21.4% of the mutant alleles (6/28). All patients with this deletion showed the infantile form of the disease. The Spanish GM2 gangliosidoses affected patients show a great mutational heterogeneity as seen in other inherited lisosomal diseases in this country.
Gort, Laura; de Olano, Natalia; Macías-Vidal, Judit; Coll, M A Josep
2012-09-10
The GM2 gangliosidoses are autosomal recessive lysosomal storage diseases caused by a deficiency of the β-hexosaminidase A enzyme. This enzyme is composed of two polypeptide chains designated the α- and β- subunits and it interacts with the GM2 activator protein. The HEXA and HEXB genes encode the α-subunit and the β-subunit, respectively. Mutations in these genes are causative of Tay-Sachs disease (HEXA) and Sandhoff disease (HEXB). We analyzed the complete HEXA gene in 34 Spanish patients with Tay-Sachs disease and the HEXB gene in 14 Spanish patients with Sandhoff disease. We identified 27 different mutations, 14 of which were novel, in the HEXA gene and 14 different mutations, 8 of which unreported until now, in the HEXB gene, and we attempted to correlate these mutations with the clinical presentation of the patients. We found a high frequency of c.459+5G>A (IVS4+5G>A) mutation in HEXA affected patients, 22 of 68 alleles, which represent the 32.4%. This is the highest percentage found of this mutation in a population. All patients homozygous for mutation c.459+5G>A presented with the infantile form of the disease and, as previously reported, patients carrying mutation p.R178H in at least one of the alleles presented with a milder form. In HEXB affected patients, the novel deletion c.171delG accounts for 21.4% of the mutant alleles (6/28). All patients with this deletion showed the infantile form of the disease. The Spanish GM2 gangliosidoses affected patients show a great mutational heterogeneity as seen in other inherited lisosomal diseases in this country. PMID:22789865
Paw, B H; Neufeld, E F
1988-02-25
Tay-Sachs disease is a biochemically heterogeneous lysosomal storage disorder caused by lack of the A isoenzyme of beta-hexosaminidase; the underlying defect is a mutation in the gene encoding the alpha-chain. It has been shown that fibroblasts isolated from Tay-Sachs patients of Ashkenazi Jewish origin contain no alpha-chain mRNA detectable on Northern blots. We now have compared run-on transcription in nuclei isolated from three strains of Ashkenazi Tay-Sachs fibroblasts and from a strain of normal (IMR90) cells. Using alpha-chain and beta-chain cDNAs as probes, we found no difference in the relative amount of [32P]ribonucleotide added to nascent transcripts; the average ratio of alpha/beta hybridizable radioactivity was 1.3 and 1.4 for mutant and normal cells, respectively. The identity of the Tay-Sachs alpha-chain transcript was confirmed by competition hybridization with excess alpha-chain mRNA. The results indicate that the Ashkenazi Tay-Sachs mutation permits a normal level of transcription of the alpha-chain gene and points to a posttranscriptional defect, such as RNA processing, transport, or stability.
The multiple complexes formed by the interaction of platelet factor 4 with heparin.
Bock, P E; Luscombe, M; Marshall, S E; Pepper, D S; Holbrook, J J
1980-01-01
The anisotropy of the fluorescence of dansyl (5-dimethylaminonaphthalene-1- sulphonyl) groups covalently attached to human platelet factor 4 was used to detect the macromolecular compounds formed when the factor was mixed with heparin. At low heparin/protein ratios a very-high-molecular-weight compound (1) was formed that dissociated to give a smaller compound (2) when excess heparin was added. 2. A large complex was also detected as a precipitate that formed at high protein concentrations in chloride buffer. It contained 15.7% (w/w) polysaccharide, equivalent to four or five heparin tetrasaccharide units per protein tetramer. In this complex, more than one molecule of protein binds to each heparin molecule of molecular weight greater than about 6 X 10(3).3. The stability of these complexes varied with pH, salt concentration and the chain length of the heparin. The limit complexes found in excess of the larger heparins consisted of only one heparin molecule per protein tetramer, and the failure to observe complexes with four heparin molecules/protein tetramer is discussed. PMID:7283972
Clean measurements of the nucleon axial-vector and free-neutron magnetic form factors
Deur, Alexandre P.
2013-11-01
We discuss the feasibility of a weak charged current experiment using a low energy electron beam. A first goal is to measure the Q^2 dependence of the axial-vector form factor g_a(Q^2). It can be measured model-independently and as robustly as for electromagnetic form factors from typical electron scattering experiments, in contrast to the methods used so far to measure g_a(Q^2). If g_a(Q^2) follows a dipole form, the axial mass can be extracted with a better accuracy than the world data altogether. The most important detection equipment would be a segmented neutron detector with good momentum and angular resolution that is symmetric about the beam direction, and covers a moderate angular range. A high intensity beam (100 uA) is necessary. Beam polarization is highly desirable as it provides a clean measurement of the backgrounds. Beam energies between 70 and 110 MeV are ideal. This range would provide a Q^2 mapping of g_a between 0.01
Nematicidal spore-forming Bacilli share similar virulence factors and mechanisms.
Zheng, Ziqiang; Zheng, Jinshui; Zhang, Zhengming; Peng, Donghai; Sun, Ming
2016-01-01
In the soil environment, Bacilli can affect nematode development, fecundity and survival. However, although many Bacillus species can kill nematodes, the virulence mechanisms Bacilli utilize remain unknown. In this study, we collected 120 strains comprising 30 species across the Bacillaceae and Paenibacillaceae families of the Bacillales order and measured their nematicidal activities in vitro. Comparison of these strains' nematicidal capacities revealed that nine species, including Bacillus thuringiensis, B. cereus, B. subtilis, B. pumilus, B. firmus, B. toyonensis, Lysinibacillus sphaericus, Brevibacillus laterosporus and B. brevis, were highly nematicidal, the first of which showed the highest activity. Genome sequencing and analysis identified many potential virulence factors, which grouped into five types. At least four possible mechanisms were deduced on the basis of the combination of these factors and the bacterial nematicidal activity, including a pore-forming mechanism of crystal proteins, an inhibition-like mechanism of thuringiensin and a degradation mechanism of proteases and/or chitinases. Our results demonstrate that 120 spore-forming Bacilli across different families share virulence factors that may contribute to their nematicidal capacity. PMID:27539267
The Use of Soil Forming Factors in the Development of Soil Taxonomy
NASA Astrophysics Data System (ADS)
Bockheim, JG; Gennadiyev, AN; Hartemink, Alfred E.; Brevik, Eric C.
2014-05-01
The past and present roles of the five soil-forming factors in creating categories in USDA Soil Taxonomy have been analyzed. The factorial and genetic approach is clearly present in Soil Taxonomy, but was not so evident in the 7th Approximation of 1960. Soil climate is the most important factor in Soil Taxonomy. Climate is used at the highest level to define two of the 12 soil orders: Aridisols, the soils of the dry regions, and Gelisols, the permafrost-affected soils and is also used to differentiate suborders in eight of the remaining orders. Parent material is used to fully define two orders: Histosols and Andisols, and partially to define the suborders in the Entisol order (Fluvents, Psamments). Only one group of organisms, the worms (Verm-), is used at the great-group and subgroup levels in several orders. Relief and time are not used in defining taxa in Soil Taxonomy. Three of the eight epipedons are defined on the basis of parent material (folistic, histic, melanic), two on the basis of human activities (anthropic and plaggen), and two from the interaction of climate and vegetation (mollic and umbric). Of the 19 subsurface horizons, 11 originate from the interaction of climate and parent material. This analysis reveals there is an imbalance in the utilization of the soil-forming factors in Soil Taxonomy, with an emphasis on climate and parent material.
Nematicidal spore-forming Bacilli share similar virulence factors and mechanisms
Zheng, Ziqiang; Zheng, Jinshui; Zhang, Zhengming; Peng, Donghai; Sun, Ming
2016-01-01
In the soil environment, Bacilli can affect nematode development, fecundity and survival. However, although many Bacillus species can kill nematodes, the virulence mechanisms Bacilli utilize remain unknown. In this study, we collected 120 strains comprising 30 species across the Bacillaceae and Paenibacillaceae families of the Bacillales order and measured their nematicidal activities in vitro. Comparison of these strains’ nematicidal capacities revealed that nine species, including Bacillus thuringiensis, B. cereus, B. subtilis, B. pumilus, B. firmus, B. toyonensis, Lysinibacillus sphaericus, Brevibacillus laterosporus and B. brevis, were highly nematicidal, the first of which showed the highest activity. Genome sequencing and analysis identified many potential virulence factors, which grouped into five types. At least four possible mechanisms were deduced on the basis of the combination of these factors and the bacterial nematicidal activity, including a pore-forming mechanism of crystal proteins, an inhibition-like mechanism of thuringiensin and a degradation mechanism of proteases and/or chitinases. Our results demonstrate that 120 spore-forming Bacilli across different families share virulence factors that may contribute to their nematicidal capacity. PMID:27539267
Sachs, R; Cumberlidge, N
1991-03-01
Large populations of the dwarf river crab Liberonautes latidactylus nanoides Cumberlidge & Sachs, 1989, collected from the St. Paul river at the Haindi/Mauwa focus of paragonimiasis in Liberia were examined for parasitization by the human lung fluke, Paragonimus uterobilateralis. Four specimens out of 763 L. l. nanoides proved to be positive for P. uterobilateralis (0.52%), and each of these specimens contained only 1 metacercaria. The dwarf river crab forms the basis of a seasonal commercial fishery in Liberia, and it is sold for human consumption in rural markets. However, the low levels of parasitization of L. l. nanoides, together with its limited seasonal availability make it doubtful that L. l. nanoides constitutes a public health risk to the rural population of Liberia.
Polynesian head form: an interpretation of a factor analysis of Cartesian co-ordinate data.
Buranarugsa, M; Houghton, P
1981-01-01
The three dimensional co-ordinates of a large number of landmarks on a series of Polynesian skulls have been obtained by means of a diagraph, and from standard lateral cephalograms. The method is accurate, and a very large amount of data is stored in the concise form of the standardized co-ordinates. A factor analysis of some of these data defines a number of distinct craniofacial segments showing independent variation in positioning, and therefore presumably growth, along defined axes. The segments thus defined relate well to the conclusions of other studies of skull growth and form, and support the view that the basis of cranial variation is the same for all Homo sapiens. It is suggested that the strict independence of the isolated craniofacial segments may be a consequence of the particular method, and may not truly reflect the situation in the growing skull. PMID:7328041
Isovector and isoscalar meson cloud contributions to the nucleon electromagnetic form factors
Tegen, R. |
1998-01-01
We have calculated the nucleon form factors G{sub E,M}{sup (p,n)}(q{sup 2}) in the linear {sigma} model to one-meson-loop order plus (two-loop) {gamma}{pi}{pi}{pi} anomaly. The previously derived {gamma}{pi}{pi}{pi} anomaly generally reduces the nucleon radii and produces a shift of the magnetic moments of order 0.1 {mu}{sub N} or less. We present analytical results for G{sub E,M}{sup p,n}(0) which display explicitly their dependence on hadron masses and coupling constants. Analytical results for the radii are also given and the chiral singularities they contain (lnm{sub {pi}} and m{sub {pi}}{sup {minus}1}) are exposed. These come from the {pi}{pi} intermediate state contribution to the form factors and {ital not} from the chiral quark substructure of nucleons or mesons. The leading chiral singularity has a {ital universal} strength while the chiral log (next-to-leading singularity) picks up a model (or approximation) dependence in terms of g{sub A} and the threshold behavior of the {pi}N amplitude A{sup ({minus})}({nu},0). The chiral singularities appear only in the iso{ital vector} nucleon radii {l_angle}r{sub 1,2}{sup 2}{r_angle}{sup I=1}, the leading m{sub {pi}}{sup {minus}1} term appears only in {l_angle}r{sub 2}{sup 2}{r_angle}{sup I=1} due to a peculiar cancellation between two independent form factor combinations {Gamma}{sub 1,3}(q{sup 2}). The isoscalar anomaly {gamma}{pi}{pi}{pi} is finite for m{sub {pi}}{r_arrow}0. {copyright} {ital 1998} {ital The American Physical Society}
Measurement of the gamma gamma* --> eta and gamma gamma* --> eta' transition form factors
del Amo Sanchez et al, P.
2011-02-07
We study the reactions e{sup +}e{sup -} {yields} e{sup +}e{sup -} {eta}{sup (/)} in the single-tag mode and measure the {gamma}{gamma}* {yields} {eta}{sup (/)} transition form factors in the momentum transfer range from 4 to 40 GeV{sup 2}. The analysis is based on 469 fb{sup -1} of integrated luminosity collected at PEP-II with the BABAR detector at e{sup +}e{sup -} center-of-mass energies near 10.6 GeV.
K(13) FORM FACTOR WITH TWO FLAVORS OF DYNAMICAL DOMAIN WALL QUARKS.
SONI, A.; DAWSON, T.; IZUBUCHI, T.; KANEKO, T.; SASAKI, S.
2005-07-25
We report on our calculation of K {yields} {pi} vector form factor by numerical simulations of two-flavor QCD on a 16{sup 3} x 32 x 12 lattice at a {approx_equal} 0.12 fm using domain-wall quarks and DBW2 glue. Our preliminary result at a single sea quark mass corresponding to m{sub PS}/m{sub V} {approx_equal} 0.53 shows a good agreement with previous estimate in quenched QCD and that from a phenomenological model.
Energy-dependent dipole form factor in a QCD-inspired model
NASA Astrophysics Data System (ADS)
Bahia, C. A. S.; Broilo, M.; Luna, E. G. S.
2016-04-01
We consider the effect of an energy-dependent dipole form factor in the high-energy behavior of the forward amplitude. The connection between the semihard parton-level dynamics and the hadron-hadron scattering is established by an eikonal QCD-based model. Our results for the proton-proton (pp) and antiproton-proton (¯pp) total cross sections, σpp,\\bar{pp}tot(s), obtained using the CTEQ6L1 parton distribution function, are consistent with the recent data from the TOTEM experiment.
All tree-level MHV form factors in N = 4 SYM from twistor space
NASA Astrophysics Data System (ADS)
Koster, Laura; Mitev, Vladimir; Staudacher, Matthias; Wilhelm, Matthias
2016-06-01
We incorporate all gauge-invariant local composite operators into the twistor-space formulation of N = 4 SYM theory, detailing and expanding on ideas we presented recently in [1]. The vertices for these operators contain infinitely many terms and we show how they can be constructed by taking suitable derivatives of a light-like Wilson loop in twistor space and shrinking it down to a point. In particular, these vertices directly yield the tree-level MHV super form factors of all composite operators in N = 4 SYM theory.
Extraction of the Compton Form Factor H from DVCS measurements at Jefferson Lab
Moutarde, H
2009-05-01
In the framework of Generalised Parton Distributions, we study the helicity-dependent and independent cross sections measured in Hall A and the beam spin asymmetries measured in Hall B at Jefferson Laboratory. We perform a global fit of these data and fits on each kinematical bin. We extract the real and imaginary parts of the Compton Form Factor $\\mathcal{H}$ under the main hypothesis of dominance of the Generalised Parton Distribution $H$ and twist 2 accuracy. We discuss our results and compare to previous extractions as well as to the VGG model. We pay extra attention to the estimation of errors on the extraction of $\\mathcal{H}$.
Parity-Violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor
Ito, Takeyasu; Averett, Todd; Barkhuff, David; Batigne, Guillaume; Beck, Douglas; Beise, Elizabeth; Blake, A.; Breuer, Herbert; Carr, Robert; Clasie, Benjamin; Covrig, Silviu; Danagoulian, Areg; Dodson, George; Dow, Karen; Dutta, Dipangkar; Farkhondeh, Manouchehr; Filippone, Bradley; FRANKLIN, W.; Furget, Christophe; Gao, Haiyan; Gao, Juncai; Gustafsson, Kenneth; Hannelius, Lars; Hasty, R.; Allen, Alice; Herda, M.C.; Jones, CE; King, Paul; Korsch, Wolfgang; Kowalski, Stanley; Kox, Serge; Kramer, Kevin; Lee, P.; Liu, Jinghua; Martin, Jeffery; McKeown, Robert; Mueller, B.; Pitt, Mark; Plaster, Bradley; Quemener, Gilles; Real, Jean-Sebastien; Ritter, J.; Roche, Julie; Savu, V.; Schiavilla, Rocco; Seely, Charles; Spayde, Damon; Suleiman, Riad; Taylor, S.; Tieulent, Raphael; Tipton, Bryan; Tsentalovich, E.; Wells, Steven; Yang, Bin; Yuan, Jing; Yun, Junho; Zwart, Townsend
2004-03-01
We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2 = 0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A = z3.51Â±0.57 (stat)Â±0.58 (syst) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2 = 0.091 (GeV/c)2, which are also consistent with theoretical predictions.
Measurement of the Form-Factor Ratios for D+ --> K¯*0e+νe
NASA Astrophysics Data System (ADS)
Aitala, E. M.; Amato, S.; Anjos, J. C.; Appel, J. A.; Ashery, D.; Banerjee, S.; Bediaga, I.; Blaylock, G.; Bracker, S. B.; Burchat, P. R.; Burnstein, R. A.; Carter, T.; Carvalho, H. S.; Copty, N. K.; Cremaldi, L. M.; Darling, C.; Denisenko, K.; Fernandez, A.; Fox, G.; Gagnon, G. P.; Gounder, K.; Halling, A. M.; Herrera, G.; Hurvits, G.; James, C.; Kasper, P. A.; Kwan, S.; Langs, D. C.; Leslie, J.; Lundberg, B.; Maytal-Beck, S.; Meadows, B.; de Mello Neto, J. R.; Mihalcea, D.; Milburn, R. H.; de Miranda, J. M.; Napier, A.; Nguyen, A.; D'Oliveira, A. B.; O'Shaughnessy, K.; Peng, K. C.; Perera, L. P.; Purohit, M. V.; Quinn, B.; Radeztsky, S.; Rafatian, A.; Reay, N. W.; Reidy, J. J.; Dos Reis, A. C.; Rubin, H. A.; Sanders, D. A.; Santha, A. K.; Santoro, A. F.; Schwartz, A. J.; Sheaff, M.; Sidwell, R. A.; Slaughter, A. J.; Sokoloff, M. D.; Solano, J.; Stanton, N. R.; Stenson, K.; Summers, D. J.; Takach, S.; Thorne, K.; Tripathi, A. K.; Watanabe, S.; Weiss-Babai, R.; Wiener, J.; Witchey, N.; Wolin, E.; Yi, D.; Yoshida, S.; Zaliznyak, R.; Zhang, C.
1998-02-01
We present a measurement of the form-factor ratios rV = V\\(0\\)/A1\\(0\\) and r2 = A2\\(0\\)/A1\\(0\\) for the decay D+-->K¯ *0e+νe. The measurement is based on a signal of approximately 3000 D+-->K¯ *0e+νe, K¯ *0-->K-π+ decays reconstructed in data from charm hadroproduction experiment E791 at Fermilab. The results are rV = 1.84+/-0.11+/-0.08 and r2 = 0.71+/-0.08+/-0.09.
Measurement of the form-factor ratios for D+s-- >φl+νl
NASA Astrophysics Data System (ADS)
E791 Collaboration; Aitala, E. M.; Amato, S.; Anjos, J. C.; Appel, J. A.; Ashery, D.; Banerjee, S.; Bediaga, I.; Blaylock, G.; Bracker, S. B.; Burchat, P. R.; Burnstein, R. A.; Carter, T.; Carvalho, H. S.; Copty, N. K.; Cremaldi, L. M.; Darling, C.; Denisenko, K.; Fernandez, A.; Fox, G. F.; Gagnon, P.; Gobel, C.; Gounder, K.; Halling, A. M.; Herrera, G.; Hurvits, G.; James, C.; Kasper, P. A.; Kwan, S.; Langs, D. C.; Leslie, J.; Lundberg, B.; Maytal-Beck, S.; Meadows, B.; de Mello Neto, J. R. T.; Mihalcea, D.; Milburn, R. H.; de Miranda, J. M.; Napier, A.; Nguyen, A.; D'Oliveira, A. B.; O'Shaughnessy, K.; Peng, K. C.; Perera, L. P.; Purohit, M. V.; Quinn, B.; Radeztsky, S.; Rafatian, A.; Reay, N. W.; Reidy, J. J.; Dos Reis, A. C.; Rubin, H. A.; Sanders, D. A.; Santha, A. K. S.; Santoro, A. F. S.; Schwartz, A. J.; Sheaff, M.; Sidwell, R. A.; Slaughter, A. J.; Sokoloff, M. D.; Solano, J.; Stanton, N. R.; Stefanski, R. J.; Stenson, K.; Summers, D. J.; Takach, S.; Thorne, K.; Tripathi, A. K.; Watanabe, S.; Weiss-Babai, R.; Wiener, J.; Witchey, N.; Wolin, E.; Yang, S. M.; Yi, D.; Yoshida, S.; Zaliznyak, R.; Zhang, C.
1999-03-01
We have measured the form factor ratios rV=V(0)/A1(0) and r2=A2(0)/A1(0) for the decay Ds+-->φ l+ νl, φ-->K+ K-, using data from charm hadroproduction experiment E791 at Fermilab. Results are based on 144 signal and 22 background events in the electron channel and 127 signal and 34 background events in the muon channel. We combine the measurements from both lepton channels to obtain rV=2.27+/-0.35+/-0.22 and r2=1.57+/-0.25+/-0.19.
Measurement of the Proton`s Neutral Weak Magnetic Form Factor
Mueller, B.; Carr, R.; Filippone, B.W.; Korsch, W.; McKeown, R.D.; Pitt, M.; Beck, D.H.; Cardman, L.; Forest, T.; Gao, H.; Nilsson, D.; Simicevic, N.; Terburg, B.; Beise, E.J.; Duncan, F.; Lung, A.; Mohring, R.; Candell, E.; DiBari, R.C.; Napolitano, J.; Dodson, G.; Dow, K.; Farkhondeh, M.; Kowalski, S.; Wells, S.P.
1997-05-01
We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value {ital G}{sup Z}{sub M}=0.34{plus_minus}0.09{plus_minus}0.04{plus_minus} 0.05 n.m. at {ital Q}{sup 2}=0.1 (GeV/c){sup 2}. {copyright} {ital 1997} {ital The American Physical Society}
Trinucleon Electromagnetic Form Factors and the Light-Front Hamiltonian Dynamics
Baroncini, F.; Kievsky, A.; Pace, E.; Salme, G.
2008-10-13
This contribution briefly illustrates preliminary calculations of the electromagnetic form factors of {sup 3}He and {sup 3}H, obtained within the Light-front Relativistic Hamiltonian Dynamics, adopting i) a Poincare covariant current operator, without dynamical two-body currents, and ii) realistic nuclear bound states with S, P and D waves. The kinematical region of few (GeV/c){sup 2}, relevant for forthcoming TJLAB experiments, has been investigated, obtaining possible signatures of relativistic effects for Q{sup 2}>2.5(GeV/c){sup 2}.
Measurement of the Neutron Electric Form Factor G
NASA Astrophysics Data System (ADS)
McCormick, Kathy
2003-01-01
Experiment E02-0131 at Thomas Jefferson National Accelerator Facility (Jefferson Lab) will measure the neutron electric form factor GEn at the high four-momentum transfer values of Q2 ≈ 1.3, 2.4 and 3.4 (GeV/c)2 via a measurement of the cross section asymmetry AT in the reaction {}3vec He(vec e, e'n)pp . This measurement was approved for 32 days of running by Jefferson Lab PAC 212 in January 2002.
Valence quark contributions for the gamma N -> P11(1440) form factors
Gilberto Ramalho, Kazuo Tsushima
2010-04-01
Using a covariant spectator quark model we estimate valence quark contributions to the F_1*(Q2) and F2*(Q2) transition form factors for the gamma N -> P11(1440) reaction. The Roper resonance, P11(1440), is assumed to be the first radial excitation of the nucleon. The present model requires no extra parameters except for those already fixed by the previous studies for the nucleon. Our results are consistent with the experimental data in the high Q2 region, and those from lattice QCD. We also estimate the meson cloud contributions, focusing on the low Q2 region, where they are expected to be dominant.
Precise Determination of the Neutron Magnetic Form Factor to Higher Q{sup 2}
William K. Brooks; Jeffery D. Lachniet
2004-10-01
The neutron elastic magnetic form factor G{sub M}{sup n} has been extracted from quasielastic scattering from deuterium in the CEBAF Large Acceptance Spectrometer, CLAS. The kinematic coverage of the measurement is continuous over a broad range, extending from below 1 GeV{sup 2} to nearly 5 GeV{sup 2} in four-momentum transfer squared. High precision is achieved by employing a ratio technique in which most uncertainties cancel, and by a simultaneous in-situ calibration of the neutron detection efficiency, the largest correction to the data. Preliminary results are shown with statistical errors only.
QCD Nuclear g-factor and the Spin-Statistics Theorem
NASA Astrophysics Data System (ADS)
Ward, Thomas
2015-04-01
Consideration of the composite three-quark nucleon spin structure and its Pauli spin-statistics follows a new QCD g-factor with implications for the magnetic dipole moments of nucleons and their form factors. The reformulation of the nucleon magnetic moments using the new QCD nucleon g-factor is shown to be in striking agreement with global polarized and unpolarized e-p scattering data using the Sachs electric and magnetic form factors, thus reconciling long standing discrepancies between measurements. Additionally, the introduction of QCD isospin symmetry breaking (ISB) strange quarks terms contained within the meson-baryon exchange currents allow the partially conserved EM axial currents to be restored as well as providing a precise measure of the strange quark probabilities of the nucleons. Work performed under the auspices of US Department of Energy.
Parnes, Nata; Carey, Paul A.; Schumacher, Christopher; Price, Mark D.
2015-01-01
Hill-Sachs lesions are a common finding in patients with glenohumeral instability. There have been numerous methods described for addressing Hill-Sachs deformity. One popular method includes transferring a portion of the infraspinatus muscle into the posterior-superior defect (remplissage) to prevent the lesion from engaging and the resultant instability. We present a method of arthroscopic remplissage whereby the lesion is addressed through transtendinous insertion of arthroscopic anchors. Once 2 anchors have been inserted, 1 limb of each suture is tied to the other anchor, the so-called pulley repair technique. This can be performed either under direct visualization in the subacromial space or blindly while the surgeon is viewing from the articular side. Once both limbs have been tied, the infraspinatus tendon nicely spans the defect, and there has been minimal morbidity to the tendon itself. We have found this method to be useful for addressing a large Hill-Sachs deformity. PMID:26759767
Does Repair of a Hill-Sachs Defect Increase Stability at the Glenohumeral Joint?
Bakshi, Neil K.; Jolly, John T.; Debski, Richard E.; Sekiya, Jon K.
2016-01-01
Background: The effect of osteoallograft repair of a Hill-Sachs lesion and the effect of allograft fit on glenohumeral translations in response to applied force are poorly understood. Purpose: To compare the impact of a 25% Hill-Sachs lesion, a perfect osteoallograft repair (PAR) of a 25% Hill-Sachs lesion, and an “imperfect” osteoallograft repair (IAR) of a 25% Hill-Sachs lesion on glenohumeral translations in response to a compressive load and either an anterior or posterior load in 3 clinically relevant arm positions. Study Design: Controlled laboratory study. Methods: A robotic/universal force-moment sensor testing system was used to apply joint compression (22 N) and an anterior or posterior load (44 N) to cadaveric shoulders (n = 9) with the skin and deltoid removed (intact) at 3 glenohumeral joint positions (abduction/external rotation): 0°/0°, 30°/30°, and 60°/60°. The 25% bony defect state, PAR state, and IAR state were created and the loading protocol was performed. Translational motion was measured in each position for each shoulder state. A nonparametric repeated-measures Friedman test with a Wilcoxon signed-rank post hoc test was performed to compare the biomechanical parameters (P < .05). Results: Compared with the defect shoulder, the PAR shoulder had significantly less anterior translation with an anterior load in the 0°/0° (15.3 ± 8.2 vs 16.6 ± 9.0 mm, P = .008) and 30°/30° (13.6 ± 7.1 vs 14.2 ± 7.0 mm, P = .021) positions. Compared with IAR, the PAR shoulder had significantly less anterior translation with an anterior load in the 0°/0° (15.3 ± 8.2 vs 16.6 ± 9.0 mm, P = .008) and 30°/30° (13.6 ± 7.1 vs 14.4 ± 7.1 mm, P = .011) positions, and the defect shoulder had significantly less anterior translation with an anterior load in the 30°/30° (14.2 ± 7.0 vs 14.4 ± 7.0 mm, P = .038) position. Conclusion: PAR resulted in the least translational motion at the glenohumeral joint. The defect shoulder had significantly less
Pion transition form factor in the Regge approach and incomplete vector-meson dominance
Ruiz Arriola, Enrique; Broniowski, Wojciech
2010-05-01
The concept of incomplete vector-meson dominance and Regge models is applied to the transition form factor of the pion. First, we argue that variants of the chiral quark model fulfilling the chiral anomaly may violate the Terazawa-West unitarity bounds, as these bounds are based on unverified assumptions for the real parts of the amplitudes, precluding a possible presence of polynomial terms. A direct consequence is that the transition form factor need not necessarily vanish at large values of the photon virtuality. Moreover, in the range of the BABAR experiment, the Terazawa-West bound is an order of magnitude above the data, thus is of formal rather than practical interest. Then we demonstrate how the experimental data may be properly explained with incomplete vector-meson dominance in a simple model with one state, as well as in more sophisticated Regge models. Generalizations of the simple Regge model along the lines of Dominguez result in a proper description of the data, where one may adjust the parameters in such a way that the Terazawa-West bound is satisfied or violated. We also impose the experimental constraint from the Z{yields}{pi}{sub 0{gamma}} decay. Finally, we point out that the photon momentum asymmetry parameter may noticeably influence the precision analysis.
Felten, T.; Schlickeiser, R.; Yoon, P. H.; Lazar, M.
2013-05-15
General expressions for the electromagnetic fluctuation spectra in unmagnetized plasmas are derived using fully relativistic dispersion functions and form factors for the important class of isotropic plasma particle distribution functions including in particular relativistic Maxwellian distributions. In order to obtain fluctuation spectra valid in the entire complex frequency plane, the proper analytical continuations of the unmagnetized form factors and dispersion functions are presented. The results are illustrated for the important special case of isotropic Maxwellian particle distribution functions providing in particular the thermal fluctuations of aperiodic modes. No restriction to the plasma temperature value is made, and the electromagnetic fluctuation spectra of ultrarelativistic thermal plasmas are calculated. The fully relativistic calculations also provide more general results in the limit of nonrelativistic plasma temperatures being valid in the entire complex frequency plane. They complement our earlier results in paper I and III of this series for negative values of the imaginary part of the frequency. A new collective, transverse, damped aperiodic mode with the damping rate γ∝−k{sup −5/3} is discovered in an isotropic thermal electron-proton plasma with nonrelativistic temperatures.
Can we understand an auxetic pion-photon transition form factor within QCD?
NASA Astrophysics Data System (ADS)
Stefanis, N. G.; Bakulev, A. P.; Mikhailov, S. V.; Pimikov, A. V.
2013-05-01
A state-of-the-art analysis of the pion-photon transition form factor is presented based on an improved theoretical calculation that includes the effect of a finite virtuality of the quasireal photon in the method of light-cone sum rules. We carry out a detailed statistical analysis of the existing experimental data using this method and by employing pion distribution amplitudes with up to three Gegenbauer coefficients a2, a4, a6. Allowing for an error range in the coefficient a6≈0, the theoretical predictions for γ*γ→π0 obtained with nonlocal QCD sum rules are found to be in good agreement with all data that support a scaling behavior of the transition form factor at higher Q2, like those of the Belle Collaboration. The data on γ*γ→η/η' from CLEO and BABAR are also reproduced, while there is a strong conflict with the auxetic trend of the BABAR data above 10GeV2. The broader implications of these findings are discussed.
Proton form factors and two-photon exchange in elastic electron-proton scattering
Nikolenko, D. M.; Arrington, J.; Barkov, L. M.; Vries, H. de; Gauzshtein, V. V.; Golovin, R. A.; Gramolin, A. V.; Dmitriev, V. F.; Zhilich, V. N.; Zevakov, S. A.; Kaminsky, V. V.; Lazarenko, B. A.; Mishnev, S. I.; Muchnoi, N. Yu.; Neufeld, V. V.; Rachek, I. A.; Sadykov, R. Sh.; Stibunov, V. N.; Toporkov, D. K.; Holt, R. J.; and others
2015-05-15
Proton electromagnetic form factors are among the most important sources of information about the internal structure of the proton. Two different methods for measuring these form factors, the method proposed by Rosenbluth and the polarization-transfer method, yield contradictory results. It is assumed that this contradiction can be removed upon taking into account the hard part of the contribution of two-photon exchange to the cross section for elastic electron-proton scattering. This contribution can measured experimentally via a precision comparison of the cross sections for the elastic scattering of positrons and electrons on protons. Such a measurement, performed at the VEPP-3 storage ring in Novosibirsk at the beam energies of 1.6 and 1.0 GeV for positron (electron) scattering angles in the ranges of θ{sub e} = 15°–25° and 55°–75° in the first case and in the range of θ{sub e} = 65°–105° in the second case is described in the present article. Preliminary results of this experiment and their comparison with theoretical predictions are described.
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R.; Arrington, J.; Brooks, W.; Adhikari, K.; Afanasev, A.; et al
2015-02-10
There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentummore » transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.« less
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R.; Arrington, J.; Brooks, W.; Adhikari, K.; Afanasev, A.; Amaryan, M.; Anderson, M.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A.; Bono, J.; Boiarinov, S.; Briscoe, W.; Burkert, V.; Carman, D.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J.; Fradi, A.; Garillon, B.; Gilfoyle, G.; Giovanetti, K.; Girod, F.; Goetz, J.; Gohn, W.; Golovatch, E.; Gothe, R.; Griffioen, K.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S.; Hyde, C. E.; Ilieva, Y.; Ireland, D.; Ishkhanov, B.; Jenkins, D.; Jiang, H.; Jo, H.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F.; Koirala, S.; Kubarovsky, V.; Kuhn, S.; Livingston, K.; Lu, H.; MacGregor, I.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M.; Meyer, C.; Mirazita, M.; Mokeev, V.; Montgomery, R.; Moody, C.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A.; Park, K.; Pasyuk, E.; Pisano, S.; Pogorelko, O.; Price, J.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabati, F.; Salgado, C.; Schott, D.; Schumacher, R.; Seder, E.; Sharabian, Y.; Simonyan, A.; Skorodumina, I.; Smith, E.; Smith, G.; Sober, D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N.; Watts, D.; Wei, X.; Wood, M.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z.; Zonta, I.
2015-02-10
There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.
Measurement of the form-factor ratios for D+-->K¯*0l +νl
NASA Astrophysics Data System (ADS)
Fermilab E791 Collaboration; Aitala, E. M.; Amato, S.; Anjos, J. C.; Appel, J. A.; Ashery, D.; Banerjee, S.; Bediaga, I.; Blaylock, G.; Bracker, S. B.; Burchat, P. R.; Burnstein, R. A.; Carter, T.; Carvalho, H. S.; Copty, N. K.; Cremaldi, L. M.; Darling, C.; Denisenko, K.; Fernandez, A.; Fox, G. F.; Gagnon, P.; Gobel, C.; Gounder, K.; Halling, A. M.; Herrera, G.; Hurvits, G.; James, C.; Kasper, P. A.; Kwan, S.; Langs, D. C.; Leslie, J.; Lundberg, B.; Maytal-Beck, S.; Meadows, B.; de Mello Neto, J. R. T.; Mihalcea, D.; Milburn, R. H.; de Miranda, J. M.; Napier, A.; Nguyen, A.; D'Oliveira, A. B.; O'Shaughnessy, K.; Peng, K. C.; Perera, L. P.; Purohit, M. V.; Quinn, B.; Radeztsky, S.; Rafatian, A.; Reay, N. W.; Reidy, J. J.; Dos Reis, A. C.; Rubin, H. A.; Sanders, D. A.; Santha, A. K. S.; Santoro, A. F. S.; Schwartz, A. J.; Sheaff, M.; Sidwell, R. A.; Slaughter, A. J.; Sokoloff, M. D.; Solano, J.; Stanton, N. R.; Stefanski, R. J.; Stenson, K.; Summers, D. J.; Takach, S.; Thorne, K.; Tripathi, A. K.; Watanabe, S.; Weiss-Babai, R.; Wiener, J.; Witchey, N.; Wolin, E.; Yi, D.; Yang, S. M.; Yoshida, S.; Zaliznyak, R.; Zhang, C.
1998-11-01
The form factor ratios rV=V(0)/A1(0), r2=A2(0)/A1(0) and r3=A3(0)/A1(0) in the decay D+-->K¯*0l +νl, K¯*0-->K-π+ have been measured using data from charm hadroproduction experiment E791 at Fermilab. From 3034 (595) signal (background) events in the muon channel, we obtain rV=1.84+/-0.11+/-0.09, r2=0.75+/-0.08+/-0.09 and, as a first measurement of r3, we find 0.04+/-0.33+/-0.29. The values of the form factor ratios rV and r2 measured for the muon channel are combined with the values of rV and r2 that we have measured in the electron channel. The combined E791 results for the muon and electron channels are rV=1.87+/-0.08+/-0.07 and r2=0.73+/-0.06+/-0.08.
Towards a resolution of the proton form factor problem: new electron and positron scattering data.
Adikaram, D; Rimal, D; Weinstein, L B; Raue, B; Khetarpal, P; Bennett, R P; Arrington, J; Brooks, W K; Adhikari, K P; Afanasev, A V; Amaryan, M J; Anderson, M D; Anefalos Pereira, S; Avakian, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Bono, J; Boiarinov, S; Briscoe, W J; Burkert, V D; Carman, D S; Careccia, S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dodge, G E; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Fradi, A; Garillon, B; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hattawy, M; Hicks, K; Holtrop, M; Hughes, S M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Jenkins, D; Jiang, H; Jo, H S; Joo, K; Joosten, S; Kalantarians, N; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, V; Kuhn, S E; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mattione, P; Mayer, M; McKinnon, B; Mestayer, M D; Meyer, C A; Mirazita, M; Mokeev, V; Montgomery, R A; Moody, C I; Moutarde, H; Movsisyan, A; Camacho, C Munoz; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Peña, C; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Sharabian, Y G; Simonyan, A; Skorodumina, I; Smith, E S; Smith, G D; Sober, D I; Sokhan, D; Sparveris, N; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tian, Ye; Trivedi, A; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zhao, Z W; Zonta, I
2015-02-13
There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p) from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ϵ) and momentum transfer (Q(2)) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ϵ at Q(2)=1.45 GeV(2). This measurement is consistent with the size of the form factor discrepancy at Q(2)≈1.75 GeV(2) and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV(2).
The impact of s-bar{s} asymmetry on the strange electromagnetic form factor
NASA Astrophysics Data System (ADS)
Ghasempour Nesheli, Ali
2016-09-01
The existence of the strange quark asymmetry in the nucleon sea has been indicated by both the experimental and theoretical analyses. Although it is well known that the s-bar{{s}} asymmetry is important for some processes in high-energy hadron collisions, it has also been indicated that it can be related to the strange Dirac form factor F 1 s. In this work, we have studied the impact of s- bar{{s}} asymmetry and its uncertainty from various modern parton distribution functions (PDFs) on F 1 s and compared the obtained results with the available experimental information. As a result, we found that the uncertainty in F 1 s( t) due to the s( x) - bar{s}( x) distribution is rather large so that it dominates the model uncertainty at all values of the squared momentum transfer t. However, taking into account the uncertainties, the theoretical predictions of F 1 s( t) are fully compatible with the estimate extracted from experiment. We concluded that the future accurate experimental data of the strange Dirac form factor might be used to put direct constraints on the strange content of the proton and reduce its uncertainty that has always been a challenge.
Measurement of the Hadronic Form factor in D0 to K- e+ nu_e Decays
Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Button-Shafer, J.; Cahn, R.N.; /Energy Sci. Network /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Leipzig, Tech. Hochsch. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /Frascati /Genoa U. /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /Mississippi U. /Concordia U., Montreal /Mt. Holyoke Coll. /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /Paris U., VI-VII /Pennsylvania U. /Perugia U. /Pisa U. /Prairie View A-M /Princeton U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.
2007-04-09
The shape of the hadronic form factor f{sub +} (q{sup 2}) in the decay D{sup 0} {yields} K{sup -} e{sup +}{nu}{sub e} has been measured in a model independent analysis and compared with theoretical calculations. They use 75 fb{sup -1} of data recorded by the BABAR detector at the PEPII electron-positron collider. The corresponding decay branching fraction, relative to the decay D{sup 0} {yields} K{sup -} {pi}{sup +}, has also been measured to be R{sub D} = BR(D{sup 0} {yields} K{sup -}e{sup +}{nu}{sub e})/BR(D{sup 0} {yields} K{sup -}{pi}{sup +}) = 0.927 {+-} 0.007 {+-} 0.012. From these results, and using the present world average value for BR(D{sup 0} {yields} K{sup -}{pi}{sup +}), the normalization of the form factor at q{sup 2} = 0 is determined to be f{sub +}(0) = 0.727 {+-} 0.007 {+-} 0.005 {+-} 0.007 where the uncertainties are statistical, systematic, and from external inputs, respectively.
Proton Magnetic Form Factor from Existing Elastic e-p Cross Section Data
NASA Astrophysics Data System (ADS)
Ou, Longwu; Christy, Eric; Gilad, Shalev; Keppel, Cynthia; Schmookler, Barak; Wojtsekhowski, Bogdan
2015-04-01
The proton magnetic form factor GMp, in addition to being an important benchmark for all cross section measurements in hadron physics, provides critical information on proton structure. Extraction of GMp from e-p cross section data is complicated by two-photon exchange (TPE) effects, where available calculations still have large theoretical uncertainties. Studies of TPE contributions to e-p scattering have observed no nonlinear effects in Rosenbluth separations. Recent theoretical investigations show that the TPE correction goes to 0 when ɛ approaches 1, where ɛ is the virtual photon polarization parameter. In this talk, existing e-p elastic cross section data are reanalyzed by extrapolating the reduced cross section for ɛ approaching 1. Existing polarization transfer data, which is supposed to be relatively immune to TPE effects, are used to produce a ratio of electric and magnetic form factors. The extrapolated reduced cross section and polarization transfer ratio are then used to calculate GEp and GMp at different Q2 values.
The SU(2|3) dynamic two-loop form factors
NASA Astrophysics Data System (ADS)
Brandhuber, A.; Kostacinska, M.; Penante, B.; Travaglini, G.; Young, D.
2016-08-01
We compute two-loop form factors of operators in the SU(2|3) closed subsector of {N}=4 supersymmetric Yang-Mills. In particular, we focus on the non-protected, dimension-three operators Tr( X[ Y, Z]) and Tr( ψψ) for which we compute the four possible two-loop form factors, and corresponding remainder functions, with external states < overline{X}overline{Y}overline{Z}| and < overline{ψ}overline{ψ}| . Interestingly, the maximally transcendental part of the two-loop remainder of < overline{X}overline{Y}overline{Z}|Tr(X[Y, Z])|0rangle turns out to be identical to that of the corresponding known quantity for the half-BPS operator Tr( X 3). We also find a surprising connection between the terms subleading in transcendentality and certain a priori unrelated remainder densities introduced in the study of the spin chain Hamiltonian in the SU(2) sector. Next, we use our calculation to resolve the mixing, recovering anomalous dimensions and eigenstates of the dilatation operator in the SU(2|3) sector at two loops. We also speculate on potential connections between our calculations in {N}=4 super Yang-Mills and Higgs + multi-gluon amplitudes in QCD in an effective Lagrangian approach.
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R. P.; Arrington, J.; Brooks, W. K.; Adhikari, K. P.; Afanasev, A. V.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Hafidi, K.; Moody, C. I.
2015-02-10
There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p). from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentum transfer (Q(2)) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing epsilon at Q(2) = 1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q(2) approximate to 1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.
$B\\to\\pi\\ell\\ell$ Form Factors for New-Physics Searches from Lattice QCD
Bailey, Jon A.
2015-10-07
The rare decay B→πℓ^{+}ℓ^{-} arises from b→d flavor-changing neutral currents and could be sensitive to physics beyond the standard model. Here, we present the first ab initio QCD calculation of the B→π tensor form factor f_{T}. Together with the vector and scalar form factors f_{+} and f_{0} from our companion work [J. A. Bailey et al., Phys. Rev. D 92, 014024 (2015)], these parametrize the hadronic contribution to B→π semileptonic decays in any extension of the standard model. We obtain the total branching ratio BR(B^{+}→π^{+}μ^{+}μ^{-})=20.4(2.1)×10^{-9} in the standard model, which is the most precise theoretical determination to date, and agrees with the recent measurement from the LHCb experiment [R. Aaij et al., J. High Energy Phys. 12 (2012) 125].
N. Suzuki, T. Sato, T.-S. H. Lee
2010-10-01
We explain the application of a recently developed analytic continuation method to extract the electromagnetic transition form factors for the nucleon resonances ($N^*$) within a dynamical coupled-channel model of meson-baryon reactions.Illustrative results of the obtained $N^*\\rightarrow \\gamma N$ transition form factors, defined at the resonance pole positions on the complex energy plane, for the well isolated $P_{33}$ and $D_{13}$, and the complicated $P_{11}$ resonances are presented. A formula has been developed to give an unified representation of the effects due to the first two $P_{11}$ poles, which are near the $\\pi\\Delta$ threshold, but are on different Riemann sheets. We also find that a simple formula, with its parameters determined in the Laurent expansions of $\\pi N \\rightarrow \\pi N$ and $\\gamma N \\rightarrow\\pi N$ amplitudes, can reproduce to a very large extent the exact solutions of the considered model at energies near the real parts of the extracted resonance positions. We indicate the differences between our results and those extracted from the approaches using the Breit-Wigner parametrization of resonant amplitudes to fit the data.
Bianchi type-I, type-III and Kantowski-Sachs solutions in f( T) gravity
NASA Astrophysics Data System (ADS)
Rodrigues, M. E.; Kpadonou, A. V.; Rahaman, F.; Oliveira, P. J.; Houndjo, M. J. S.
2015-06-01
In the context of modified tele-parallel theory of gravity, we undertake cosmological anisotropic models and search for their solutions. Within a suitable choice of non-diagonal tetrads, the decoupled equations of motion are obtained for Bianchi-I, Bianchi-III and Kantowski-Sachs models, from which we obtain the correspondent solutions. By the way, energy density and pressures are also obtained, showing, as an important result, that our universe may live a quintessence like universe even while anisotropic models are considered.
Direct CP Violation, Branching Ratios and Form Factors B --> pi, B --> K in B decays
O. Leitner; X.-H. Guo; A.W. Thomas
2004-11-01
The B {yields} {pi} and B {yields} K transitions involved in hadronic B decays are investigated in a phenomenological way through the framework of QCD factorization. By comparing our results with experimental branching ratios from the BELLE, BABAR and CLEO collaborations for all the B decays including either a pion or a kaon, we propose boundaries for the transition form factors B {yields} {pi} and B {yields} K depending on the CKM matrix element parameters {rho} and {eta}. From this analysis, the form factors required to reproduce the experimental data for branching ratios are F{sup B {yields} {pi}} = 0.31 {+-} 0.12 and F{sup B {yields} K} = 0.37 {+-} 0.13. We calculate the direct CP violating asymmetry parameter, a{sub CP}, for B {yields} {pi}{sup +}{pi}{sup -}{pi} and B {yields} {pi}{sup +}{pi}{sup -} K decays, in the case where {rho} - {omega} mixing effects are taken into account. Based on these results, we find that the direct CP asymmetry for B{sup -} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup -}, {bar B}{sup 0} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0}, B{sup -} {yields} {pi}{sup +}{pi}{sup -}K{sup -}, and {bar B}{sup 0} {yields} {pi}{sup +}{pi}{sup -} {bar K}{sup 0}, reaches its maximum when the invariant mass {pi}{sup +}{pi}{sup -} is in the vicinity of the {omega} meson mass. The inclusion of {rho} - {omega} mixing provides an opportunity to erase, without ambiguity, the phase uncertainty mod{pi} in the determination of th CKM angles {alpha} in case of b {yields} u and {gamma} in case of b {yields} s.
Joint resummation for pion wave function and pion transition form factor
NASA Astrophysics Data System (ADS)
Li, Hsiang-nan; Shen, Yue-Long; Wang, Yu-Ming
2014-01-01
We construct an evolution equation for the pion wave function in the k T factorization formalism, whose solution sums the mixed logarithm ln x ln k T to all orders, with x ( k T ) being a parton momentum fraction (transverse momentum). This joint resummation induces strong suppression of the pion wave function in the small x and large b regions, b being the impact parameter conjugate to k T , and improves the applicability of perturbative QCD to hard exclusive processes. The above effect is similar to those from the conventional threshold resummation for the double logarithm ln2 x and the conventional k T resummation for ln2 k T . Combining the evolution equation for the hard kernel, we are able to organize all large logarithms in the γ * π 0 → γ scattering, and to establish a scheme-independent k T factorization formula. It will be shown that the significance of next-to-leading-order contributions and saturation behaviors of this process at high energy differ from those under the conventional resummations. It implies that QCD logarithmic corrections to a process must be handled appropriately, before its data are used to extract a hadron wave function. Our predictions for the involved pion transition form factor, derived under the joint resummation and the input of a non-asymptotic pion wave function with the second Gegenbauer moment a 2 = 0 .05, match reasonably well the CLEO, BaBar, and Belle data.
Large-N{sub c} relations for the electromagnetic nucleon-to-{delta} form factors
Pascalutsa, Vladimir; Vanderhaeghen, Marc
2007-12-01
We examine the large-N{sub c} relations which express the electromagnetic N-to-{delta} transition quantities in terms of the electromagnetic properties of the nucleon. These relations are based on the known large-N{sub c} relation between the N{yields}{delta} electric quadrupole moment and the neutron charge radius, and a newly derived large-N{sub c} relation between the electric quadrupole (E2) and Coulomb quadrupole (C2) transitions. Extending these relations to finite, but small, momentum transfer, we find that the description of the electromagnetic N{yields}{delta} ratios (R{sub EM} and R{sub SM}) in terms of the nucleon form factors predicts a structure which may be ascribed to the effect of the 'pion cloud'. These relations also provide useful constraints for the N{yields}{delta} generalized parton distributions.
Optimization of Seesaw Swing Arm Actuator Design for Small Form Factor Optical Disk Drive
NASA Astrophysics Data System (ADS)
Po-Chien Chou,; Yu-Cheng Lin,; Stone Cheng,
2010-05-01
Many small form factor (SFF) optical pickup heads based on the swing arm design utilize a piezoelectric material or the slim metal plate to perform the focusing action. The seesaw-type actuator is a new mechanism used in the focusing action for SFF optical data storage devices. The swing arm nutates along a pivot instead of a hinge in the vertical movement. In this paper, an optimized design of a biaxial voice coil motor (VCM), in which the tracking and focusing VCMs are combined in the rear of the swing arm, is proposed. Simulation and experiment results demonstrate the effectiveness of the proposed design methodology by showing that the stress magnitude distribution characteristics, mechanism stiffness, and driving stability of the optimized design are enhanced in comparison with those of the original.
JLab Measurement of the ^{4}He Charge Form Factor at Large Momentum Transfers
Camsonne, Alexandre; Katramatou, A. T.; Olson, M.; Sparveris, Nikolaos; Acha, Armando; Allada, Kalyan; Anderson, Bryon; Arrington, John; Baldwin, Alan; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cisbani, Evaristo; Craver, Brandon; Decowski, Piotr; Dutta, Chiranjib; Folts, Edward; Frullani, Salvatore; Garibaldi, Franco; Gilman, Ronald; Gomez, Javier; Hahn, Brian; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, Jian; Iodice, Mauro; Kelleher, Aidan; Khrosinkova, Elena; Kievsky, A.; Kuchina, Elena; Kumbartzki, Gerfried; Lee, Byungwuek; LeRose, John; Lindgren, Richard; Lott, Gordon; Lu, H.; Marcucci, Laura; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Meekins, David; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Norum, Blaine; Petratos, Gerassimos; Puckett, Andrew; Qian, Xin; Rondon-Aramayo, Oscar; Saha, Arunava; Sawatzky, Bradley; Segal, John; Hashemi, Mitra; Shahinyan, Albert; Solvignon-Slifer, Patricia; Subedi, Ramesh; Suleiman, Riad; Sulkosky, Vincent; Urciuoli, Guido; Viviani, Michele; Wang, Y.; Wojtsekhowski, Bogdan; Yan, X.; Yao, H.; Zhang, W. -M.; Zheng, X.; Zhu, L.
2014-04-01
The charge form factor of ^{4}He has been extracted in the range 29 fm^{-2} <= Q^{2} <= 77 fm^{-2} from elastic electron scattering, detecting ^{4}He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the Q^{2} range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting.
Fabrication and verification for the small-form-factor holographic optical pickup
NASA Astrophysics Data System (ADS)
Hou, Kuan Chou; Chou, Po Chien; Cheng, Stone; Lin, Yue Jheng; Chiu, Yi; Chiou, Jin Chern
2011-01-01
In this investigation, a small-form-factor (SFF) pickup head with a holographic optical element (HOE) is fabricated. The system employs a finite-conjugate object lens to focus a light beam. A holographic optical element is used to simplify the optical configuration. It provides a better means of alignment of fabrication and reduces the size of system relative to reflective light route. Micro prisms are fastened with HOE and a silicon substrate, laser diode and photodiode are integrated into the optical system. The pickup head system based on discrete components and a flip chip bonder with highly accurate alignment was to integrate it. The micro holographic optical pickup head is fabricated and tested. Experimental results including the spot diameter and the focusing error signal (FES), demonstrate that the optical system is a feasible.
Scattering from phase-separated vesicles. I. An analytical form factor for multiple static domains
Heberle, Frederick A.; Anghel, Vinicius N. P.; Katsaras, John
2015-08-18
This is the first in a series of studies considering elastic scattering from laterally heterogeneous lipid vesicles containing multiple domains. Unique among biophysical tools, small-angle neutron scattering can in principle give detailed information about the size, shape and spatial arrangement of domains. A general theory for scattering from laterally heterogeneous vesicles is presented, and the analytical form factor for static domains with arbitrary spatial configuration is derived, including a simplification for uniformly sized round domains. The validity of the model, including series truncation effects, is assessed by comparison with simulated data obtained from a Monte Carlo method. Several aspects of the analytical solution for scattering intensity are discussed in the context of small-angle neutron scattering data, including the effect of varying domain size and number, as well as solvent contrast. Finally, the analysis indicates that effects of domain formation are most pronounced when the vesicle's average scattering length density matches that of the surrounding solvent.
Pion mass dependence of the K l3 semileptonic scalar form factor within finite volume
NASA Astrophysics Data System (ADS)
Ghorbani, K.; Yazdanpanah, M. M.; Mirjalili, A.
2011-06-01
We calculate the scalar semileptonic kaon decay in finite volume at the momentum transfer t m =( m K - m π )2, using chiral perturbation theory. At first we obtain the hadronic matrix element to be calculated in finite volume. We then evaluate the finite size effects for two volumes with L=1.83 fm and L=2.73 fm and find that the difference between the finite volume corrections of the two volumes are larger than the difference as quoted in Boyle et al. (Phys. Rev. Lett. 100:141601, 2008). It appears then that the pion masses used for the scalar form factor in ChPT are large which result in large finite volume corrections. If appropriate values for pion mass are used, we believe that the finite size effects estimated in this paper can be useful for lattice data to extrapolate at large lattice size.
An important factor powerfully influencing the Al Ni-based alloys' glass-forming ability
NASA Astrophysics Data System (ADS)
Bo, Zhang; Xiufang, Bian; Chunxia, Fu; Na, Han; Jiankun, Zhou; Weimin, Wang
2005-12-01
In order to get better glass-forming abilities (GFAs), Ni atoms are partially replaced by Cu and Co atoms in Al84Ni12Zr4 alloys. Thermal analysis shows that the reduced crystallization temperature Trx has no direct correlation with the GFA of the alloys. However, it is notable that prepeaks have been found in the total structure factors of the amorphous Al84Ni(12-x)Zr4Cux and Al84Ni(12-x)Zr4Cox alloys. In addition, the results prove that the intensity of the prepeaks influences the GFA powerfully. The amorphous alloys with larger intensity of the prepeak show better GFA. The influence of prepeaks on the GFA can be explained by the atomic configuration difference among the liquid, crystal and glass states.
Scaling study of the pion electroproduction cross sections and the pion form factor
Tanja Horn; Xin Qian; John Arrington; Razmik Asaturyan; Fatiha Benmokthar; Werner Boeglin; Peter Bosted; Antje Bruell; Eric Christy; Eugene Chudakov; Ben Clasie; Mark Dalton; AJI Daniel; Donal Day; Dipangkar Dutta; Lamiaa El Fassi; Rolf Ent; Howard Fenker; J. Ferrer; Nadia Fomin; H. Gao; K Garrow; Dave Gaskell; C Gray; G. Huber; M. Jones; N Kalantarians; C. Keppel; K Kramer; Y Li; Y Liang; A. Lung; S Malace; P. Markowitz; A. Matsumura; D. Meekins; T Mertens; T Miyoshi; H. Mykrtchyan; R. Monson; T. Navasardyan; G. Niculescu; I. Niculescu; Y. Okayasu; A. Opper; C Perdrisat; V. Punjabi; A. Rauf; V. Rodriguez; D. Rohe; J Seely; E Segbefia; G. Smith; M. Sumihama; V. Tadevoyan; L Tang; V. Tvaskis; A. Villano; W. Vulcan; F. Wesselmann; S. Wood; L. Yuan; X. Zheng
2007-07-12
The $^{1}$H($e,e^\\prime \\pi^+$)n cross section was measured for a range of four-momentum transfer up to $Q^2$=3.91 GeV$^2$ at values of the invariant mass, $W$, above the resonance region. The $Q^2$-dependence of the longitudinal component is consistent with the $Q^2$-scaling prediction for hard exclusive processes. This suggests that perturbative QCD concepts are applicable at rather low values of $Q^2$. Pion form factor results, while consistent with the $Q^2$-scaling prediction, are inconsistent in magnitude with perturbative QCD calculations. The extraction of Generalized Parton Distributions from hard exclusive processes assumes the dominance of the longitudinal term. However, transverse contributions to the cross section are still significant at $Q^2$=3.91 GeV$^2$.
{nu} induced threshold production of two pions and N*(1440) electroweak form factors
Hernandez, E.; Nieves, J.; Valverde, M.; Singh, S. K.; Vacas, M. J. Vicente
2008-03-01
We study the threshold production of two pions induced by neutrinos in nucleon targets. The contribution of nucleon, pion, and contact terms are calculated using a chiral Lagrangian. The contribution of the Roper resonance, neglected in earlier studies, has also been taken into account. The numerical results for the cross sections are presented and compared with the available experimental data. It has been found that in the two-pion channels with {pi}{sup +}{pi}{sup -} and {pi}{sup 0}{pi}{sup 0} in the final state, the contribution of the N*(1440) is quite important and could be used to determine the N*(1440) electroweak transition form factors if experimental data with better statistics become available in the future.
NASA Astrophysics Data System (ADS)
de Téramond, Guy F.
2016-10-01
The superconformal algebraic approach to hadronic physics is used to construct a semiclassical effective theory for nucleons which incorporates essential nonperturbative dynamical features, such as the emergence of a confining scale and the Regge resonance spectrum. Relativistic bound-state equations for nucleons follow from the extension of superconformal quantum mechanics to the light front and its holographic embedding in a higher dimensional gravity theory. Superconformal algebra has been used elsewhere to describe the connections between the light mesons and baryons, but in the present context it relates the fermion positive and negative chirality states and uniquely determines the confinement potential of nucleons. The holographic mapping of multi-quark bound states also leads to a light-front cluster decomposition of form factors for an arbitrary number of constituents. The remarkable analytical structure which follows incorporates the correct scaling behavior at high photon virtualities and also vector dominance at low energies.
Niccoli, G.
2013-05-15
The antiperiodic transfer matrices associated to higher spin representations of the rational 6-vertex Yang-Baxter algebra are analyzed by generalizing the approach introduced recently in the framework of Sklyanin's quantum separation of variables (SOV) for cyclic representations, spin-1/2 highest weight representations, and also for spin-1/2 representations of the 6-vertex reflection algebra. Such SOV approach allow us to derive exactly results which represent complicate tasks for more traditional methods based on Bethe ansatz and Baxter Q-operator. In particular, we both prove the completeness of the SOV characterization of the transfer matrix spectrum and its simplicity. Then, the derived characterization of local operators by Sklyanin's quantum separate variables and the expression of the scalar products of separate states by determinant formulae allow us to compute the form factors of the local spin operators by one determinant formulae similar to those of the scalar products.
Precision determination of the pion form factor and calculation of the muon g-2
NASA Astrophysics Data System (ADS)
de Trocóniz, J. F.; Ynduráin, F. J.
2002-05-01
We perform a new calculation of the hadronic contributions, a(Hadronic), to the anomalous magnetic moment of the muon, aμ. For the low-energy contributions of order α2 we carry over an analysis of the pion form factor Fπ(t) using recent data both on e+e--->π+π- and τ+-->νbarτπ+π0. In this analysis we take into account that the phase of the form factor is equal to that of ππ scattering. This allows us to profit fully from analyticity properties so we can also use experimental information on Fπ(t) at spacelike t. At higher energy we use QCD to supplement experimental data, including the recent measurements of e+e--->hadrons both around 1 GeV and near the cbarc threshold. This yields a precise determination of the O(α2) and O(α2)+O(α3) hadronic part of the photon vacuum polarization 1011×a(2)(h.v.p.)=6909+/-64 1011×a(2+3)(h.v.p.)=7002+/-66. As by-products we also get the masses and widths of the ρ0, ρ+, and very accurate values for the charge radius and second coefficient of the pion. Adding the remaining order α3 hadronic contributions we find 1011×atheory(hadronic)=6993+/-69 (e+e-+τ+spacel). The error above includes statistical, systematic, and estimated theoretical errors. The figures given are obtained including τ decay data; if we restrict ourselves to e+e- data, slightly lower values and somewhat higher errors are found. This is to be compared with the figure obtained by subtracting pure electroweak contributions from the recent experimental value, obtained from measurements of the muon gyromagnetic ratio (g-2), which reads 1011×aexpt(hadronic)=7174+/-150.
Transition Form Factors: a Unique Opportunity to Connect Non-Perturbative Strong Interactions to QCD
NASA Astrophysics Data System (ADS)
Gothe, Ralf W.
2014-01-01
Meson-photoproduction measurements and their reaction-amplitude analyses can establish more sensitively, and in some cases in an almost model-independent way, nucleon excitations and non-resonant reaction amplitudes. However, to investigate the strong interaction from explored — where meson-cloud degrees of freedom contribute substantially to the baryon structure — to still unexplored distance scales — where quark degrees of freedom dominate and the transition from dressed to current quarks occurs — we depend on experiments that allow us to measure observables that are probing this evolving non-perturbative QCD regime over its full range. Elastic and transition form factors are uniquely suited to trace this evolution by measuring elastic electron scattering and exclusive single-meson and double-pion electroproduction cross sections off the nucleon. These exclusive measurements will be extended to higher momentum transfers with the energy-upgraded CEBAF beam at JLab to study the quark degrees of freedom, where their strong interaction is responsible for the ground and excited nucleon state formations. After establishing unprecedented high-precision data, the imminent next challenge is a high-quality analysis to extract these relevant electrocoupling parameters for various resonances that then can be compared to state-of-the-art models and QCD-based calculations. Recent results will demonstrate the status of the analysis and of their theoretical descriptions, and an experimental and theoretical outlook will highlight what shall and may be achieved in the new era of the 12-GeV upgraded transition form factor program.
Transition Form Factors: A Unique Opportunity to Connect Non-Perturbative Strong Interactions to QCD
Gothe, Ralf W.
2014-01-01
Meson-photoproduction measurements and their reaction-amplitude analyses can establish more sensitively, and in some cases in an almost model-independent way, nucleon excitations and non-resonant reaction amplitudes. However, to investigate the strong interaction from explored — where meson-cloud degrees of freedom contribute substantially to the baryon structure — to still unexplored distance scales — where quark degrees of freedom dominate and the transition from dressed to current quarks occurs — we depend on experiments that allow us to measure observables that are probing this evolving non-perturbative QCD regime over its full range. Elastic and transition form factors are uniquely suited to trace this evolution by measuring elastic electron scattering and exclusive single-meson and double-pion electroproduction cross sections off the nucleon. These exclusive measurements will be extended to higher momentum transfers with the energy-upgraded CEBAF beam at JLab to study the quark degrees of freedom, where their strong interaction is responsible for the ground and excited nucleon state formations. After establishing unprecedented high-precision data, the imminent next challenge is a high-quality analysis to extract these relevant electrocoupling parameters for various resonances that then can be compared to state-of-the-art models and QCD-based calculations. Recent results will demonstrate the status of the analysis and of their theoretical descriptions, and an experimental and theoretical outlook will highlight what shall and may be achieved in the new era of the 12-GeV upgraded transition form factor program.
Measurements of the deuteron and proton magnetic form factors at large momentum transfers
Bosted, P.E.; Katramatou, A.T.; Arnold, R.G.; Benton, D.; Clogher, L.; DeChambrier, G.; Lambert, J.; Lung, A.; Petratos, G.G.; Rahbar, A.; Rock, S.E.; Szalata, Z.M. ); Debebe, B.; Frodyma, M.; Hicks, R.S.; Hotta, A.; Peterson, G.A. ); Gearhart, R.A. ); Alster, J.; Lichtenstadt, J. ); Dietrich, F.; van Bibber, K. )
1990-07-01
Measurements of the deuteron elastic magnetic structure function {ital B}({ital Q}{sup 2}) are reported at squared four-momentum transfer values 1.20{le}{ital Q}{sup 2}{le}2.77 (GeV/{ital c}){sup 2}. Also reported are values for the proton magnetic form factor {ital G}{sub {ital M}{ital p}}({ital Q}{sup 2}) at 11 {ital Q}{sup 2} values between 0.49 and 1.75 (GeV/{ital c}){sup 2}. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180{degree} were detected in coincidence with deuterons or protons recoiling near 0{degree} in a large solid-angle double-arm spectrometer system. The data for {ital B}({ital Q}{sup 2}) are found to decrease rapidly from {ital Q}{sup 2}=1.2 to 2 (GeV/{ital c}){sup 2}, and then rise to a secondary maximum around {ital Q}{sup 2}=2.5 (GeV/{ital c}){sup 2}. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for {ital G}{sub {ital M}{ital p}}({ital Q}{sup 2}) are in good agreement with the empirical dipole fit.
Weak charge form factor and radius of 208Pb through parity violation in electron scattering
Horowitz, C. J.; Ahmed, Z.; Jen, C. -M.; Rakhman, A.; Souder, P. A.; Dalton, M. M.; Liyanage, N.; Paschke, K. D.; Saenboonruang, K.; Silwal, R.; et al
2012-03-26
We use distorted wave electron scattering calculations to extract the weak charge form factor FW(more » $$\\bar{q}$$), the weak charge radius RW, and the point neutron radius Rn, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer $$\\bar{q}$$ = 0.475 fm-1. We find FW($$\\bar{q}$$) = 0.204 ± 0.028(exp) ± 0.001(model). We use the Helm model to infer the weak radius from FW($$\\bar{q}$$). We find RW = 5.826 ± 0.181(exp) ± 0.027(model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in RW from uncertainties in the surface thickness σ of the weak charge density. The weak radius is larger than the charge radius, implying a 'weak charge skin' where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius Rn = 5.751 ± 0.175 (exp) ± 0.026(model) ± 0.005(strange) fm, from RW. Here there is only a very small error (strange) from possible strange quark contributions. We find Rn to be slightly smaller than RW because of the nucleon's size. As a result, we find a neutron skin thickness of Rn-Rp = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where Rp is the point proton radius.« less
Universal behavior of the γ⁎γ→(π0,η,η′) transition form factors
Melikhov, Dmitri; Stech, Berthold
2012-01-01
The photon transition form factors of π, η and η′ are discussed in view of recent measurements. It is shown that the exact axial anomaly sum rule allows a precise comparison of all three form factors at high-Q2 independent of the different structures and distribution amplitudes of the participating pseudoscalar mesons. We conclude: (i) The πγ form factor reported by Belle is in excellent agreement with the nonstrange I=0 component of the η and η′ form factors obtained from the BaBar measurements. (ii) Within errors, the πγ form factor from Belle is compatible with the asymptotic pQCD behavior, similar to the η and η′ form factors from BaBar. Still, the best fits to the data sets of πγ, ηγ, and η′γ form factors favor a universal small logarithmic rise Q2FPγ(Q2)∼log(Q2). PMID:23226917
Sulphur abundance determinations in star-forming regions - I. Ionization correction factor
NASA Astrophysics Data System (ADS)
Dors, O. L.; Pérez-Montero, E.; Hägele, G. F.; Cardaci, M. V.; Krabbe, A. C.
2016-03-01
In this work, we used a grid of photoionization models combined with stellar population synthesis models to derive reliable ionization correction factors (ICFs) for the sulphur in star-forming regions. These models cover a large range of nebular parameters and yielding ionic abundances in consonance with those derived through optical and infrared observational data of star-forming regions. From our theoretical ICFs, we suggested an α value of 3.27 ± 0.01 in the classical Stasińska formulae. We compared the total sulphur abundance in the gas phase of a large sample of objects by using our theoretical ICF and other approaches. In average, the differences between the determinations via the use of the different ICFs considered are similar to the uncertainties in the S/H estimations. Nevertheless, we noted that for some objects it could reach up to about 0.3 dex for the low-metallicity regime. Despite of the large scatter of the points, we found a trend of S/O ratio to decrease with the metallicity, independently of the ICF used to compute the sulphur total abundance.
Crystal Structure of a Translation Termination Complex Formed With Release Factor RF2
Korostelev, A.; Asahara, H.; Lancaster, L.; Laurberg, M.; Hirschi, A.; Zhu, J.; Trakhanov, S.; Scott, W.G.; Noller, H.F.
2009-05-20
We report the crystal structure of a translation termination complex formed by the Thermus thermophilus 70S ribosome bound with release factor RF2, in response to a UAA stop codon, solved at 3 {angstrom} resolution. The backbone of helix -5 and the side chain of serine of the conserved SPF motif of RF2 recognize U1 and A2 of the stop codon, respectively. A3 is unstacked from the first 2 bases, contacting Thr-216 and Val-203 of RF2 and stacking on G530 of 16S rRNA. The structure of the RF2 complex supports our previous proposal that conformational changes in the ribosome in response to recognition of the stop codon stabilize rearrangement of the switch loop of the release factor, resulting in docking of the universally conserved GGQ motif in the PTC of the 50S subunit. As seen for the RF1 complex, the main-chain amide nitrogen of glutamine in the GGQ motif is positioned to contribute directly to catalysis of peptidyl-tRNA hydrolysis, consistent with mutational studies, which show that most side-chain substitutions of the conserved glutamine have little effect. We show that when the H-bonding capability of the main-chain N-H of the conserved glutamine is eliminated by substitution with proline, peptidyl-tRNA esterase activity is abolished, consistent with its proposed role in catalysis.
Factors Influencing Shear Alignment of Cylinder-Forming Block Copolymer Thin Films
NASA Astrophysics Data System (ADS)
Davis, Raleigh; Register, Richard; Chaikin, Paul
2014-03-01
Application of shear stress to block copolymers is known to preferentially orient the microdomains in the direction of applied shear. While this phenomenon has been well studied for bulk block copolymer systems, the use of shear stress to align microdomains in block copolymer thin films (typically one to several microdomain layers) is still an active area of research. Numerous experimental factors influence the ease with which orientation is achieved as well as the ultimate quality of alignment observed. The present work investigates several of these factors using a series of cylinder-forming poly(styrene)-poly(hexylmethacrylate) copolymers. Parameters studied include film thickness, block copolymer molecular weight and composition, substrate wetting conditions (controlled via grafted polymer brush layers of either polystyrene or polyhexylmethacrylate), and applied shear stress. Quality of alignment is assessed via atomic force microscopy and subsequent computation of an orientational order parameter and the density of defects in the microdomain lattice. The results are compared to a melting-recrystallization model, thus providing greater insight into the fundamental mechanisms and key parameters which control how microdomains order in response to shear. In general monolayers are observed to align more poorly than thicker films, though the influence of film thickness on orientation depends strongly on polymer composition. Alignment quality is ultimately limited by inherent fluctuations in the cylinder trajectories as well as the presence of isolated dislocations.
Factors limiting the establishment of canopy-forming algae on artificial structures
NASA Astrophysics Data System (ADS)
Cacabelos, Eva; Martins, Gustavo M.; Thompson, Richard; Prestes, Afonso C. L.; Azevedo, José Manuel N.; Neto, Ana I.
2016-11-01
Macroalgal canopies are important ecosystem engineers, contributing to coastal productivity and supporting a rich assemblage of associated flora and fauna. However, they are often absent from infrastructures such as coastal defences and there has been a worldwide decline in their distribution in urbanised coastal areas. The macroalga Fucus spiralis is the only high-shore canopy forming species present in the Azores. It is widely distributed in the archipelago but is never found on coastal infrastructures. Here we evaluate factors that may potentially limit its establishment on artificial structures. A number of observational and manipulative experiments were used to test the hypotheses that: (i) limited-dispersal ability limits the colonisation of new plants onto artificial structures, (ii) vertical substratum slope negatively influences the survivorship of recruits, and (iii) vertical substratum slope also negatively influences the survivorship and fitness of adults. Results showed that the limited dispersal from adult plants may be a more important factor than slope in limiting the species ability to colonise coastal infrastructures, since the vertical substratum slope does not affect its fitness or survivorship.
A Non-parametric approach to the D+ ---> anti-K*0 mu+ nu form-factors
Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P.; /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN, Pavia /Rio de Janeiro, Pont. U. Catol. /Puerto Rico U., Mayaguez /South Carolina U. /Tennessee U. /Vanderbilt U. /Wisconsin U., Madison
2005-09-01
Using a large sample of D{sup +} {yields} K{sup -} {pi}{sup +} {mu}{sup +}{nu} decays collected by the FOCUS photo-production experiment at Fermilab, we present the first measurements of the helicity basis form factors free from the assumption of spectroscopic pole dominance. We also present the first information on the form factor that controls the s-wave interference discussed in a previous paper by the FOCUS collaboration. We find reasonable agreement with the usual assumption of spectroscopic pole dominance and measured form factor ratios.
Constantia Alexandrou; Bojan Bistrovic; Robert Edwards; P de Forcrand; George Fleming; Philipp Haegler; John Negele; Konstantinos Orginos; Andrew Pochinsky; Dru Renner; David Richards; Wolfram Schroers; Antonios Tsapalis
2005-10-01
Lattice QCD is an essential complement to the current and anticipated DOE-supported experimental program in hadronic physics. In this poster we address several key questions central to our understanding of the building blocks of nuclear matter, nucleons and pions. Firstly, we describe progress at computing the electromagnetic form factors of the nucleon, describing the distribution of charge and current, before considering the role played by the strange quarks. We then describe the study of transition form factors to the Delta resonance. Finally, we present recent work to determine the pion form factor, complementary to the current JLab experimental determination and providing insight into the approach to asymptotic freedom.
Griffith, M J; Breitkreutz, L; Trapp, H; Briet, E; Noyes, C M; Lundblad, R L; Roberts, H R
1985-01-01
Two structurally different forms of activated human Factor IX (Factor IXa alpha and IXa beta) have been previously reported to have essentially identical clotting activity in vitro. Although it has been shown that activated Factor IX Chapel Hill, an abnormal Factor IX isolated from the plasma of a patient with mild hemophilia B, and normal Factor IXa alpha are structurally very similar, the clotting activity of activated Factor IX Chapel Hill is much lower (approximately fivefold) than that of normal Factor IXa beta. In the present study we have prepared activated Factor IX by incubating human Factor IX with calcium and Russell's viper venom covalently bound to agarose. Fractionation of the activated Factor IX by high-performance liquid chromatography demonstrated the presence of both Factors IXa alpha and IXa beta. On the basis of active site concentration, determined by titration with antithrombin III, the clotting activities of activated Factor IX Chapel Hill and IXa alpha were similar, but both activities were less than 20% of the clotting activity of Factor IXa beta. Activated Factor IX activity was also measured in the absence of calcium, phospholipid, and Factor VIII, by determination of the rate of Factor X activation in the presence of polylysine. In the presence of polylysine, the rates of Factor X activation by activated Factor IX Chapel Hill, Factor IXa alpha, and Factor IXa beta were essentially identical. We conclude that the clotting activity of activated Factor IX Chapel Hill is reduced when compared with that of Factor IXa beta but essentially normal when compared with that of Factor IXa alpha. PMID:3871202
Navon, R; Proia, R L
1991-01-01
Tay-Sachs disease is an inherited lysosomal storage disorder caused by defects in the beta-hexosaminidase alpha-subunit gene. The carrier frequency for Tay-Sachs disease is significantly elevated in both the Ashkenazi Jewish and Moroccan Jewish populations but not in other Jewish groups. We have found that the mutations underlying Tay-Sachs disease in Ashkenazi and Moroccan Jews are different. Analysis of a Moroccan Jewish Tay-Sachs patient had revealed an in-frame deletion (delta F) of one of the two adjacent phenylalanine codons that are present at positions 304 and 305 in the alpha-subunit sequence. The mutation impairs the subunit assembly of beta-hexosaminidase A, resulting in an absence of enzyme activity. The Moroccan patient was found also to carry, in the other alpha-subunit allele, a different, and as yet unidentified, mutation which causes a deficit of mRNA. Analysis of obligate carriers from six unrelated Moroccan Jewish families showed that three harbor the delta F mutation, raising the possibility that this defect may be a prevalent mutation in this ethnic group. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1825014
Navon, R; Proia, R L
1991-02-01
Tay-Sachs disease is an inherited lysosomal storage disorder caused by defects in the beta-hexosaminidase alpha-subunit gene. The carrier frequency for Tay-Sachs disease is significantly elevated in both the Ashkenazi Jewish and Moroccan Jewish populations but not in other Jewish groups. We have found that the mutations underlying Tay-Sachs disease in Ashkenazi and Moroccan Jews are different. Analysis of a Moroccan Jewish Tay-Sachs patient had revealed an in-frame deletion (delta F) of one of the two adjacent phenylalanine codons that are present at positions 304 and 305 in the alpha-subunit sequence. The mutation impairs the subunit assembly of beta-hexosaminidase A, resulting in an absence of enzyme activity. The Moroccan patient was found also to carry, in the other alpha-subunit allele, a different, and as yet unidentified, mutation which causes a deficit of mRNA. Analysis of obligate carriers from six unrelated Moroccan Jewish families showed that three harbor the delta F mutation, raising the possibility that this defect may be a prevalent mutation in this ethnic group.
Bratt, Jonathan; Edwards, Robert; Engelhardt, Michael; Fleming, George; Hagler, Ph.; Lin, Meifeng; Meyer, Harvey; Musch, Bernhard; Negele, John; Orginos, Konstantinos; Pochinsky, Andrew; Procura, M.; Renner, Dru; Richards, David; Schroers, Wolfram; Syritsyn, Sergey
2008-12-01
In order to advance lattice calculations of moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon to a new level of precision, this work investigates several key aspects of precision lattice calculations. We calculate the number of configurations required for constant statistical errors as a function of pion mass, describe the coherent sink method to help achieve these statistics, examine the statistical correlations between separate measurements, study correlations in the behavior of form factors at different momentum transfer, examine volume dependence, and compare mixed action results with those using comparable dynamical domain wall configurations. We also show selected form factor results and comment on the QCD evolution of our calculations of the flavor non-singlet nucleon angular momentum.
Gao, H.; Arrington, J.; Beise, E.J.; Bray, B.; Carr, R.W.; Filippone, B.W.; Lung, A.; McKeown, R.D.; Mueller, B.; Pitt, M.L. ); Jones, C.E. ); DeSchepper, D.; Dodson, G.; Dow, K.; Ent, R.; Farkhondeh, M.; Hansen, J.; Korsch, W.; Kramer, L.H.; Lee, K.; Makins, N.; Milner, R.G.; Tieger, D.R.; Welch, T.P. ); Candell, E.; Napolitano, J.; Wojtsekhowski, B.B.; Tripp, C. ); Lorenzon, W. )
1994-08-01
We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized [sup 3]He target. The neutron magnetic form factor [ital G][sup [ital n
Dirac and Pauli form factors based on consideration of the gluon effect in light-cone wave functions
NASA Astrophysics Data System (ADS)
Shojaei, Mohammad Reza; Nikkhoo, Negin Sattary
2015-11-01
We discuss Dirac and Pauli form factors based on a generalized parton distribution framework in the range of high momentum transfers of t < 30 GeV2 and calculate the electromagnetic form factors, GE and GM, for the proton. In previous work, Gaussian parameterization has been used in wave functions for calculating electromagnetic form factors at intermediate-high momentum transfers of 1 GeV2 < t < 10 GeV2; in this paper, by considering an improved Gaussian ansatz, we not only calculate the electromagnetic form factors at moderately high momentum transfers t but also can calculate these quantities at high momentum transfers, achieving reasonable agreement with experimental data and other previous work.
NASA Astrophysics Data System (ADS)
Han, Hongliang; Duan, Dongping; Chen, Siming; Yuan, Peng
2015-10-01
In order to improve the efficiency of slag and iron separation, a new idea of "the separation of slag (solid state) and iron (molten state) in rotary hearth furnace process at lower temperature" is put forward. In this paper, the forming process of iron nuggets has been investigated. Based on those results, the forming mechanisms and influencing factors of iron nugget at low temperature are discussed experimentally using an electric resistance furnace simulating a rotary hearth furnace process. Results show that the reduction of iron ore, carburization of reduced iron, and the composition and quantity of slag are very important for producing iron nuggets at lower temperature. Reduction reaction of carbon-containing pellets is mainly at 1273 K and 1473 K (1000 °C and 1200 °C). When the temperature is above 1473 K (1200 °C), the metallization rate of carbon-containing pellets exceeds 93 pct, and the reduction reaction is substantially complete. Direct carburization is the main method for carburization of reduced iron. This reaction occurs above 1273 K (1000 °C), with carburization degree increasing greatly at 1473 K and 1573 K (1200 °C and 1300 °C) after particular holding times. Besides, to achieve the "slag (solid state) and iron (molten state) separation," the melting point of the slag phase should be increased. Slag (solid state) and iron (molten state) separation can be achieved below 1573 K (1300 °C), and when the holding time is 20 minutes, C/O is 0.7, basicity is less than 0.5 and a Na2CO3 level of 3 pct, the recovery rate of iron can reach 90 pct, with a proportion of iron nuggets more than 3.15 mm of nearly 90 pct. This study can provide theoretical and technical basis for iron nugget production.
Wolfraim, Lawrence A; Alkemade, Gonnie M; Alex, Biju; Sharpe, Shellyann; Parks, W Tony; Letterio, John J
2002-08-01
Administration of transforming growth factor-beta (TGF-beta) has been found to be of therapeutic benefit in various mouse disease models and has potential clinical usefulness. However, the ability to track the distribution of exogenously administered, recombinant forms of these proteins has been restricted by cross-reactivity with endogenous TGF-beta and related TGF-beta isoforms. We describe novel FLAG- and hemagglutinin (HA)-tagged versions of mature TGF-beta1 that retain full biological activity as demonstrated by their ability to inhibit the growth of Mv1Lu epithelial cells, and to induce phosphorylation of the TGF-beta signaling intermediate, smad 2. Intracellular FLAG- and HA-TGF-beta1 can be detected in transfected cells by confocal immunofluorescence microscopy. We also describe sandwich ELISAs designed to specifically detect epitope-tagged TGF-beta and demonstrate the utility of these tagged ligands as probes for TGF-beta receptor expression by flow cytometry. The design of these fully functional epitope-tagged TGF-beta proteins should facilitate studies such as the evaluation of in vivo peptide pharmacodynamics and trafficking of TGF-beta ligand-receptor complexes.
Strange Baryon Electromagnetic Form Factors and SU(3) Flavor Symmetry Breaking
Lin, Huey-Wen; Orginos, Konstantinos
2009-01-01
We study the nucleon, Sigma and cascade octet baryon electromagnetic form factors and the effects of SU(3) flavor symmetry breaking from 2+1-flavor lattice calculations. We find that electric and magnetic radii are similar; the maximum discrepancy is about 10\\%. In the pion-mass region we explore, both the quark-component and full-baryon moments have small SU(3) symmetry breaking. We extrapolate the charge radii and the magnetic moments using three-flavor heavy-baryon chiral perturbation theory (HBXPT). The systematic errors due to chiral and continuum extrapolations remain significant, giving rise to charge radii for $p$ and $\\Sigma^-$ that are 3--4 standard deviations away from the known experimental ones. Within these systematics the predicted $\\Sigma^+$ and $\\Xi^-$ radii are 0.67(5) and 0.306(15)~fm$^2$ respectively. When the next-to-next-to-leading order of HBXPT is included, the extrapolated magnetic moments are less than 3 standard deviations away from PDG values, and the d
Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state
NASA Astrophysics Data System (ADS)
Hamidian, M. H.; Edkins, S. D.; Kim, Chung Koo; Davis, J. C.; MacKenzie, A. P.; Eisaki, H.; Uchida, S.; Lawler, M. J.; Kim, E.-A.; Sachdev, S.; Fujita, K.
2016-02-01
Research on high-temperature superconducting cuprates is at present focused on identifying the relationship between the classic `pseudogap’ phenomenon and the more recently investigated density wave state. This state is generally characterized by a wavevector Q parallel to the planar Cu-O-Cu bonds along with a predominantly d-symmetry form factor (dFF-DW). To identify the microscopic mechanism giving rise to this state, one must identify the momentum-space states contributing to the dFF-DW spectral weight, determine their particle-hole phase relationship about the Fermi energy, establish whether they exhibit a characteristic energy gap, and understand the evolution of all these phenomena throughout the phase diagram. Here we use energy-resolved sublattice visualization of electronic structure and reveal that the characteristic energy of the dFF-DW modulations is actually the `pseudogap’ energy Δ1. Moreover, we demonstrate that the dFF-DW modulations at E = -Δ1 (filled states) occur with relative phase π compared to those at E = Δ1 (empty states). Finally, we show that the conventionally defined dFF-DW Q corresponds to scattering between the `hot frontier’ regions of momentum-space beyond which Bogoliubov quasiparticles cease to exist. These data indicate that the cuprate dFF-DW state involves particle-hole interactions focused at the pseudogap energy scale and between the four pairs of `hot frontier’ regions in momentum space where the pseudogap opens.
Scattering from phase-separated vesicles. I. An analytical form factor for multiple static domains
Heberle, Frederick A.; Anghel, Vinicius N. P.; Katsaras, John
2015-08-18
This is the first in a series of studies considering elastic scattering from laterally heterogeneous lipid vesicles containing multiple domains. Unique among biophysical tools, small-angle neutron scattering can in principle give detailed information about the size, shape and spatial arrangement of domains. A general theory for scattering from laterally heterogeneous vesicles is presented, and the analytical form factor for static domains with arbitrary spatial configuration is derived, including a simplification for uniformly sized round domains. The validity of the model, including series truncation effects, is assessed by comparison with simulated data obtained from a Monte Carlo method. Several aspects ofmore » the analytical solution for scattering intensity are discussed in the context of small-angle neutron scattering data, including the effect of varying domain size and number, as well as solvent contrast. Finally, the analysis indicates that effects of domain formation are most pronounced when the vesicle's average scattering length density matches that of the surrounding solvent.« less
ηc elastic and transition form factors: Contact interaction and algebraic model
NASA Astrophysics Data System (ADS)
Bedolla, Marco A.; Raya, Khépani; Cobos-Martínez, J. J.; Bashir, Adnan
2016-05-01
For the flavor-singlet heavy-quark system of charmonia in the pseudoscalar [ηc(1 S ) ] channel, we calculate the elastic (EFF) and transition form factors (TFFs) [ηc(1 S )→γ γ* ] for a wide range of photon momentum transfer squared (Q2). The framework for this analysis is provided by a symmetry-preserving Schwinger-Dyson equation and Bethe-Salpeter equation treatment of a vector×vector contact interaction. We also employ an algebraic model, developed earlier to describe the light-quark systems. It correctly correlates infrared and ultraviolet dynamics of quantum chromodynamics (QCD). The contact interaction results agree with the lattice data for low Q2. For Q2≥Q02 , the results start deviating from the lattice results by more than 20%. Q02≈2.5 GeV2 for the EFF, and ≈25 GeV2 for the TFF. We also present the results for the EFF, TFF, and ηc(1 S ) parton distribution amplitude for the algebraic model. Wherever the comparison is possible, these results are in excellent agreement with the lattice, perturbative QCD, results obtained through a Schwinger-Dyson equation-Bethe-Salpeter equation study, employing refined truncations, and the experimental findings of the BABAR experiment.
Small Form Factor Information Storage Devices for Mobile Applications in Korea
NASA Astrophysics Data System (ADS)
Park, Young-Pil; Park, No-Cheol; Kim, Chul-Jin
Recently, the ubiquitous environment in which anybody can reach a lot of information data without any limitations on the place and time has become an important social issue. There are two basic requirements in the field of information storage devices which have to be satisfied; the first is the demand for the improvement of memory capacity to manage the increased data capacity in personal and official purposes. The second is the demand for new development of information storage devices small enough to be applied to mobile multimedia digital electronics, including digital camera, PDA and mobile phones. To summarize, for the sake of mobile applications, it is necessary to develop information storage devices which have simultaneously a large capacity and a small size. Korea possesses the necessary infrastructure for developing such small sized information storage devices. It has a good digital market, major digital companies, and various research institutes. Nowadays, many companies and research institutes including university cooperate together in the research on small sized information storage devices. Thus, it is expected that small form factor optical disk drives will be commercialized in the very near future in Korea.
Overview of nucleon form factor experiments with 12 GeV at Jefferson Lab
NASA Astrophysics Data System (ADS)
Cisbani, Evaristo
2014-06-01
Since the R. Hofstadter pioneering experiments in the '50s, the measurements of the electromagnetic space-like nucleon form factors (FF's) have been a precious source of information for the understanding of the internal structure of the nucleons. In the last 15 years, the polarization transfer experiments at the Thomas Jefferson National Accelerator Facility (JLab) have undermined our view of the mechanism of the electron scattering and renewed critical interest in the FF measurements. In the coming years, JLab, with its upgraded 12 GeV polarized, high intensity, electron beam combined to new targets and readout equipments, will offer unprecedented opportunities to extend the current proton and neutron FF's measurements to higher momentum transfer Q2 and to improve statistical and uncertainties at lower Q2, where the nucleon size can be accurately investigated. The measurements at high Q2 will provide also new insights on the elusive quark orbital angular momenta, will contribute to constraint two of the nucleon Generalized Parton Distributions that are expected to describe more consistently the nucleon structure, and in general will test the validity of quite a few fundamental nucleon models in a region of transition between perturbative and non perturbative regimes. A selection of the relevant properties of the FF's, and the main results of JLab are shortly reviewed; the new proposed and approved experiments on FF's at JLab are presented addressing some key details, the expected experimental achievements and the new equipment designed for them.
Hadronic form factor models and spectroscopy within the gauge/gravity correspondence
de Teramond, Guy F.; Brodsky, Stanley J.; /SLAC
2012-03-20
We show that the nonperturbative light-front dynamics of relativistic hadronic bound states has a dual semiclassical gravity description on a higher dimensional warped AdS space in the limit of zero quark masses. This mapping of AdS gravity theory to the boundary quantum field theory, quantized at fixed light-front time, allows one to establish a precise relation between holographic wave functions in AdS space and the light-front wavefunctions describing the internal structure of hadrons. The resulting AdS/QCD model gives a remarkably good accounting of the spectrum, elastic and transition form factors of the light-quark hadrons in terms of one parameter, the QCD gap scale. The light-front holographic approach described here thus provides a frame-independent first approximation to the light-front Hamiltonian problem for QCD. This article is based on lectures at the Niccolo Cabeo International School of Hadronic Physics, Ferrara, Italy, May 2011.
Mirzakouchaki, Behnam; Sharghi, Reza; Shirazi, Samaneh
2016-01-01
Introduction Success of orthodontic retention with removable retainers almost entirely depends on patients’ compliance. Aim This study was carried out to investigate the relationship between adolescent orthodontic patients’ compliance and various clinical and social factors. Materials and Methods The data were collected from 77 orthodontic patients aged 7-11 years old who had finished the full fixed appliance therapy. Hawley’s retainers were used in 34 patients and 43 patients used Vacuum Formed Retainers (VFRs). The subjects completed a questionnaire including several identifiers allowing the respondents to be classified into subgroups. They were also asked to indicate how long they wore their retainers during the day, by writing the number of hours in the report-card for the next three months. Comparison of the results was performed by one-way ANOVA and independent sample-t tests. Results No significant differences were found between males and females. Type of the retainer, patients’ grade of study, mothers’ occupation, clinicians’ and parents’ attitudes and filling the report cards had significant effect on mean wear hours per day. When compliance of the patients was assessed according to treatment location, Living place, parents’ educational degrees and ethnicity, no significant differences could be found. Conclusion The adolescent patients’ compliance was greater with VFRs than with Hawley’s retainers. Parental attitude and doctor-patient relationship had a great impact on adolescent patients’ compliance. PMID:27504404
Measurement of the Proton Form Factor Ratio GE /GM from Double Spin Asymmetries
NASA Astrophysics Data System (ADS)
Liyanage, Anusha; SANE Collaboration
2011-04-01
Experiment E03-109 (SANE, Spin Asymmetries of the Nucleon Experiment) was carried out in Hall C at Jefferson Lab to study the proton spin structure functions with a dynamically polarized ammonia target and longitudinally polarized electron beam. Scattered electrons were detected by the Big Electron Telescope Array (BETA), and a set of elastic data was collected by detecting the recoiling proton in the High Momentum Spectrometer (HMS) in coincidence with the electron. The measurement of the elastic double spin asymmetry allows to extract the proton electric to magnetic form factor ratio GE /GM at high four-momentum transfers, Q2 = 5.25 (GeV/c)2 and Q2 = 6.25 (GeV/c)2. In addition to the coincidence data, inclusively scattered electrons from the polarized ammonia target were detected by HMS, which allows to extract GE /GM from the beam-target asymmetry in the elastic region at lower four-momentum transfer, Q2 = 2.2 (GeV/c)2. These alternative measurements of GE /GM will verify the dramatic discrepancy at high Q2 between the Rosenbluth and the recoil polarization transfer method. The current status of the analysis will be presented.
Proton Form Factor Ratio GE/GM from Double Spin Asymmetry with Polarized Beam and Target
NASA Astrophysics Data System (ADS)
Liyanage, Anusha
2010-11-01
Along with experiment E07-003 (SANE, Spin Asymmetries of the Nucleon Experiment), which has been performed in Hall C at Jefferson Lab with a polarized ammonia target to study the proton's spin structure, elastic scattering was carried out simultaneously, with electrons detected in the Big Electron Telescope Array (BETA) in coincidence with recoiling protons reconstructed by the High Momentum Spectrometer (HMS). The elastic double spin asymmetry allows to extract the proton electric to magnetic form factor ratio GE/GM at high momentum transfers, Q^2 = 5.25 (GeV/c)^2 and Q^2 = 6.25 (GeV/c)^2. In addition to the coincidence data, inclusively scattered electrons from polarized ammonia were detected by HMS, which allows to measure the beam-target asymmetry in the elastic region and to extract the GE/GM at Q^2 = 2.2 (GeV/c)^2. This alternative measurement of GE/GM will verify the dramatic discrepancy at high Q^2 between the Rosenbluth and the recoil polarization transfer method with a different technique. The current status of the analysis and some preliminary results will be presented.
ES1 is a mitochondrial enlarging factor contributing to form mega-mitochondria in zebrafish cones.
Masuda, Takamasa; Wada, Yasutaka; Kawamura, Satoru
2016-03-01
Total mass of mitochondria increases during cell proliferation and differentiation through mitochondrial biogenesis, which includes mitochondrial proliferation and growth. During the mitochondrial growth, individual mitochondria have been considered to be enlarged independently of mitochondrial fusion. However, molecular basis for this enlarging process has been poorly understood. Cone photoreceptor cells in the retina possess large mitochondria, so-called mega-mitochondria that have been considered to arise via the enlarging process. Here we show that ES1 is a novel mitochondria-enlarging factor contributing to form mega-mitochondria in cones. ES1 is specifically expressed in cones and localized to mitochondria including mega-mitochondria. Knockdown of ES1 markedly reduced the mitochondrial size in cones. In contrast, ectopic expression of ES1 in rods significantly increased both the size of individual mitochondria and the total mass of the mitochondrial cluster without changing the number of them. RNA-seq analysis showed that ERRα and its downstream mitochondrial genes were significantly up-regulated in the ES1-expressing rods, suggesting facilitation of mitochondrial enlargement via ERRα-dependent processes. Furthermore, higher energy state was detected in the ES1-expressing rods, indicating that the enlarged mitochondria by ES1 are capable of producing high energy. ES1 is the mitochondrial protein that is first found to promote enlargement of individual mitochondria.
Strömberg, I; Ebendal, T
1989-06-01
Adrenal medullary tissue from aged (24 months old) and young adult (2 months old) rats was grafted to the anterior chamber of the eye of previously sympathectomized animals. Nerve growth factor (NGF) was administered by weekly bilateral intraocular injections. Five weeks postgrafting, irides were prepared as whole mounts and processed for Falck-Hillarp histochemistry for visualization of catecholamines. NGF appeared to partially prevent the reduction in volume that both old and young grafts underwent. In the presence of NGF, an extensive, dense fiber network, closely resembling the normal adrenergic innervation, was formed in the host irides by grafts from aged donors. The area of outgrowth from aged transplants without NGF treatment was as large as with NGF treatment but less dense. The reinnervation of irides by NGF-treated young adult grafts occupied a similar area as that seen with aged grafts, but the pattern of innervation was irregular, particularly close to the transplants. Transplants from young adult donors without NGF treatment generated a sparse, limited network of nerves in the irides. All grafts were tyrosine hydroxylase-, adrenaline-, and dopamine-beta-hydroxylase-immunoreactive in about the same proportion of cells, but the grafts from the young donors were smaller in size. We concluded that the ability of chromaffin cells to transform toward a neuronal phenotype, produce nerve fibers, and respond to exogenous NGF is maintained in aged adrenals. PMID:2754763
Covariant Spectator Theory of np scattering: Deuteron magnetic moment and form factors
Gross, Franz L.
2014-06-01
The deuteron magnetic moment is calculated using two model wave functions obtained from 2007 high precision fits to $np$ scattering data. Included in the calculation are a new class of isoscalar $np$ interaction currents which are automatically generated by the nuclear force model used in these fits. After normalizing the wave functions, nearly identical predictions are obtained: model WJC-1, with larger relativistic P-state components, gives 0.863(2), while model WJC-2 with very small $P$-state components gives 0.864(2) These are about 1\\% larger than the measured value of the moment, 0.857 n.m., giving a new prediction for the size of the $\\rho\\pi\\gamma$ exchange, and other purely transverse interaction currents that are largely unconstrained by the nuclear dynamics. The physical significance of these results is discussed, and general formulae for the deuteron form factors, expressed in terms of deuteron wave functions and a new class of interaction current wave functions, are given.
Radyushkin, Anatoly V.
2014-07-01
We outline basics of a new approach to transverse momentum dependence in hard processes. As an illustration, we consider hard exclusive transition process gamma*gamma -> to pi^0 at the handbag level. Our starting point is coordinate representation for matrix elements of operators (in the simplest case, bilocal O(0,z)) describing a hadron with momentum p. Treated as functions of (pz) and z^2, they are parametrized through a virtuality distribution amplitude (VDA) Phi (x, sigma), with x being Fourier-conjugate to (pz) and sigma Laplace-conjugate to z^2. For intervals with z^+=0, we introduce transverse momentum distribution amplitude (TMDA) Psi (x, k_\\perp), and write it in terms of VDA Phi (x, \\sigma). The results of covariant calculations, written in terms of Phi (x sigma) are converted into expressions involving Psi (x, k_\\perp. Starting with scalar toy models, we extend the analysis onto the case of spin-1/2 quarks and QCD. We propose simple models for soft VDAs/TMDAs, and use them for comparison of handbag results with experimental (BaBar and BELLE) data on the pion transition form factor. We also discuss how one can generate high-k_\\perp tails from primordial soft distributions.
ES1 is a mitochondrial enlarging factor contributing to form mega-mitochondria in zebrafish cones
Masuda, Takamasa; Wada, Yasutaka; Kawamura, Satoru
2016-01-01
Total mass of mitochondria increases during cell proliferation and differentiation through mitochondrial biogenesis, which includes mitochondrial proliferation and growth. During the mitochondrial growth, individual mitochondria have been considered to be enlarged independently of mitochondrial fusion. However, molecular basis for this enlarging process has been poorly understood. Cone photoreceptor cells in the retina possess large mitochondria, so-called mega-mitochondria that have been considered to arise via the enlarging process. Here we show that ES1 is a novel mitochondria-enlarging factor contributing to form mega-mitochondria in cones. ES1 is specifically expressed in cones and localized to mitochondria including mega-mitochondria. Knockdown of ES1 markedly reduced the mitochondrial size in cones. In contrast, ectopic expression of ES1 in rods significantly increased both the size of individual mitochondria and the total mass of the mitochondrial cluster without changing the number of them. RNA-seq analysis showed that ERRα and its downstream mitochondrial genes were significantly up-regulated in the ES1-expressing rods, suggesting facilitation of mitochondrial enlargement via ERRα-dependent processes. Furthermore, higher energy state was detected in the ES1-expressing rods, indicating that the enlarged mitochondria by ES1 are capable of producing high energy. ES1 is the mitochondrial protein that is first found to promote enlargement of individual mitochondria. PMID:26926452
Scalar K{pi} form factor and light-quark masses
Jamin, Matthias; Oller, Jose Antonio; Pich, Antonio
2006-10-01
Recent experimental improvements on K-decay data allow for a precise extraction of the strangeness-changing scalar K{pi} form factor and the related strange scalar spectral function. On the basis of this scalar as well as the corresponding pseudoscalar spectral function, the strange quark mass is determined to be m{sub s}(2 GeV)=92{+-}9 MeV. Further taking into account chiral perturbation theory mass ratios, the light up and down quark masses turn out to be m{sub u}(2 GeV)=2.7{+-}0.4 MeV as well as m{sub d}(2 GeV)=4.8{+-}0.5 MeV. As a by-product, we also find a value for the Cabibbo angle |V{sub us}|=0.2236(29) and the ratio of meson decay constants F{sub K}/F{sub {pi}}=1.203(16). Performing a global average of the strange mass by including extractions from other channels as well as lattice QCD results yields m{sub s}(2 GeV)=94{+-}6 MeV.
Measurement of the gamma gamma* to eta_c transition form factor
Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; Hawkes, C.M.; /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison
2010-04-28
The authors study the reaction e{sup +}e{sup -} {yields} e{sup +}e{sup -} {eta}{sub c}, {eta}{sub c} {yields} K{sub S}K{sup {+-}}{pi}{sup {-+}} and obtain {eta}{sub c} mass and width values 2982.2 {+-} 0.4 {+-} 1.6 MeV/c{sup 2} and 31.7 {+-} 1.2 {+-} 0.8 MeV, respectively. They find {Lambda}({eta}{sub c} {yields} {gamma}{gamma}){Beta}({eta}{sub c} {yields} K{bar K}{pi}) = 0.374 {+-} 0.009 {+-} 0.031 keV, and measure the {gamma}{gamma}* {yields} {eta}{sub c} transition form factor in the momentum transfer range from 2 to 50 GeV{sup 2}. The analysis is based on 469 fb{sup -1} of integrated luminosity collected at PEP-II with the BABAR detector at e{sup +}e{sup -} center-of-mass energies near 10.6 GeV.
Terranova, Christopher; Narla, Sridhar T.; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K.; Tzanakakis, Emmanuel S.; Buck, Michael J.; Birkaya, Barbara; Stachowiak, Michal K.
2015-01-01
Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development. PMID:25923916
NASA Astrophysics Data System (ADS)
Obrecht, Richard; Puckett, Andrew; Super BigBite Spectrometer Collaboration
2015-04-01
Jefferson Lab's continuous electron beam, capable of luminosities approaching 1039 cm-2 s-1, has recently been upgraded to a maximum energy of 12 GeV, allowing the proton electromagnetic form factor ratio GEp /GMp to be measured at momentum transfer Q2 of up to 12 GeV2 via the polarization transfer method. The measurement will use the Super BigBite Spectrometer (SBS), a new magnetic spectrometer capable of operating at forward scattering angles under high luminosity conditions, to detect and measure the polarization of elastically scattered protons. The measurement of GEp /GMp also requires detection of the elastically scattered electron in coincidence using a lead-glass electromagnetic calorimeter (ECal). ECal, the subject of this talk, is based on the ``BigCal'' detector used in a predecessor experiment in Hall C, re-configured to match the acceptance of SBS for elastically scattered protons. This talk will present an overview of ECal, its role in the measurement of GEp at large Q2, and the technical challenges involved in its operation in the high-radiation environment of Hall A, followed by the results of of detailed GEANT4-based Monte Carlo simulations characterizing its expected performance under experimental conditions.
Feasibility studies on time-like proton electromagnetic form factors at PANDA-FAIR
NASA Astrophysics Data System (ADS)
Zimmermann, Iris; Dbeyssi, Alaa; Khaneft, Dmitry
2016-05-01
This contribution reports on the latest status of the feasibility studies for the measurement of time-like proton electromagnetic form factors (FF's) at the PANDA experiment [1] at FAIR (Germany). Electromagnetic FF's are fundamental quantities parameterizing the electric and magnetic structure of hadrons. In the time-like region proton FF's can be accessed experimentally through the annihilation processes p ¯p → l+l- (l = e, μ), assuming that the interaction takes place through the exchange of one virtual photon. Due to the low luminosity available at colliders in the past, an individual determination of the time-like electric and magnetic proton FF's was not feasible. The statistical precision, at which the proton FF's will be determined at PANDA, is estimated for both signal processes p ¯p → l+l- (l = e, μ) using the PandaRoot software, which encompasses full detector simulation and event reconstruction. The signal identification and suppression of the main background process (p ¯p → π+π-) is studied. Different methods have been used to generate and analyze the processes of interest. The results from the different analyses show that time-like electromagnetic FF's can be measured at PANDA with unprecedented statistical accuracy.
Measurement of the g{sub piNN} Form Factor
Kelley Vansyoc
2001-08-01
Cross sections were measured for the reaction 1H(e, e' {pi}+ )n at the energy W = 1.95 GeV and momentum transfer Q 2 = 0.6 (GeV/c) 2 . At this W and Q 2 , the longitudinal cross section is dominated by t-channel production, giving a unique opportunity to examine the strong coupling form factor g {pi}NN (t). The measured cross sections were separated using a method similar to a Rosenbluth separation. For the extraction of g {pi}NN (t), the Actor and Korner model [42] and a parameterization of the MAID2000 model [3] were employed to fit the longitudinal cross section. Three parameterizations g {pi}NN (t) were used in both models. These fits resulted in a strong coupling constant g {pi}NN (m 2 / {pi} ) that is consistent with theoretical predictions. However, this coupling constant leads to a cutoff parameter that is less than 1 GeV.
ERIC Educational Resources Information Center
Krumm, Gabriela; Aranguren, María; Arán Filippetti, Vanessa; Lemos, Viviana
2016-01-01
The objective of this study was to compare, through a Confirmatory Factor Analysis, two different theoretical models that explain the operationalized creativity construct with the Verbal Torrance Tests of Creative Thinking (TTCT), Form B. Model 1 is represented by six factors which correspond to each activity and its respective indicators while…
Brodsky, Stanley J.; Cao, Fu-Guang; de Teramond, Guy F.; /Costa Rica U.
2011-11-04
The QCD evolution of the pion distribution amplitude (DA) {phi}{sub {pi}} (x, Q{sup 2}) is computed for several commonly used models. Our analysis includes the nonperturbative form predicted by lightfront holographic QCD, thus combining the nonperturbative bound state dynamics of the pion with the perturbative ERBL evolution of the pion distribution amplitude. We calculate the meson-photon transition form factors for the {pi}{sup 0}, {eta} and {eta}' using the hard-scattering formalism. We point out that a widely-used approximation of replacing {phi} (x; (1 - x)Q) with {phi} (x;Q) in the calculations will unjustifiably reduce the predictions for the meson-photon transition form factors. It is found that the four models of the pion DA discussed give very different predictions for the Q{sup 2} dependence of the meson-photon transition form factors in the region of Q{sup 2} > 30 GeV{sup 2}. More accurate measurements of these transition form factors at the large Q{sup 2} region will be able to distinguish the four models of the pion DA. The rapid growth of the large Q{sup 2} data for the pion-photon transition form factor reported by the BABAR Collaboration is difficult to explain within the current framework of QCD. If the BABAR data for the meson-photon transition form factor for the {pi}{sup 0} is confirmed, it could indicate physics beyond-the-standard model, such as a weakly-coupled elementary C = + axial vector or pseudoscalar z{sup 0} in the few GeV domain, an elementary field which would provide the coupling {gamma}{sup *}{gamma} {yields} z{sup 0} {yields} {pi}{sup 0} at leading twist. Our analysis thus indicates the importance of additional measurements of the pion-photon transition form factor at large Q{sup 2}.
A MAP OF THE INTEGRATED SACHS-WOLFE SIGNAL FROM LUMINOUS RED GALAXIES
Granett, Benjamin R.; Neyrinck, Mark C.; Szapudi, Istvan
2009-08-10
We construct a map of the time derivative of the gravitational potential traced by Sloan Digital Sky Survey luminous red galaxies (LRGs). The potential decays on large scales due to cosmic acceleration, leaving an imprint on cosmic microwave background (CMB) radiation through the integrated Sachs-Wolfe (ISW) effect. With a template fit, we directly measure this signature on the CMB at a 2{sigma} confidence level. The measurement is consistent with the cross-correlation statistic, strengthening the claim that dark energy is indeed the cause of the correlation. This new approach potentially simplifies the cosmological interpretation. Our constructed linear ISW map shows no evidence for degree-scale cold and hot spots associated with supervoid and supercluster structures. This suggests that the linear ISW effect in a concordance {lambda}CDM cosmology is insufficient to explain the strong CMB imprints from these structures that we previously reported.
Anisotropic Kantowski-Sachs universe from gravitational tunneling and its observational signatures
Adamek, Julian; Campo, David; Niemeyer, Jens C.
2010-10-15
In a landscape of compactifications with different numbers of macroscopic dimensions, it is possible that our Universe has nucleated from a vacuum where some of our four large dimensions were compact while other, now compact, directions were macroscopic. From our perspective, this shapeshifting can be perceived as an anisotropic background spacetime. As an example, we present a model where our Universe emerged from a tunneling event which involves the decompactification of two dimensions compactified on the two-sphere. In this case, our Universe is of the Kantowski-Sachs type and therefore homogeneous and anisotropic. We study the deviations from statistical isotropy of the cosmic microwave background induced by the anisotropic curvature, with particular attention to the anomalies. The model predicts a quadrupolar power asymmetry with the same sign and acoustic oscillations as found by the Wilkinson Microwave Anisotropy Probe. The amplitude of the effect is however too small given the current estimated bound on anisotropic curvature derived from the quadrupole.
Hereditary heat-labile hexosaminidase B: its implication for recognizing Tay-Sachs genotypes.
Navon, R; Nutman, J; Kopel, R; Gaber, L; Gadoth, N; Goldman, B; Nitzan, M
1981-11-01
Two pairs of alleles, at the two loci of hexosaminidase (HEX), were found to segregate in an Arab inbred family: the normal and the mutant Tay-Sachs (TSD) alleles of HEX A, and the normal and a mutant allele of HEX B. Since the mutant HEX B is heat labile, no reliable identification of TSD genotypes can be obtained in its presence, as long as the proportions of HEX A and B are estimated by the routinely used heat-inactivation method. The genotypes may be correctly identified in such cases by separation of the two isoenzymes on ion-exchange chromatography, estimating their individual activities, and calculating the ratio between them. Of the nine genotype combinations possible with these two pairs of alleles, five have been identified in the reported family by this procedure. PMID:6459736
Lower frequency of Gaucher disease carriers among Tay-Sachs disease carriers.
Peleg, L; Frisch, A; Goldman, B; Karpaty, M; Narinsky, R; Bronstein, S; Frydman, M
1998-01-01
The heterozygote frequency of Gaucher disease (GD) and Tay-Sachs disease (TSD) is distinctly high among Ashkenazi Jews (1:29 for TSD and 1:16 for GD). Two main theories have been suggested to explain this high occurrence: a founder effect with subsequent genetic drift, and a selective advantage of heterozygotes. We compared the frequency of the GD most common mutation (1226A-->G) among carriers of the common TSD mutation (+1277 TATC) with the frequency of this mutation in the general Ashkenazi population. The frequency of GD carriers among 308 TSD heterozygotes was 1:28 which is about half the expected (P = 0.03). These results indicate that carriers of both diseases do not possess additional evolutionary advantage over single mutation carriers. A reasonable interpretation of these findings is that one or both mutations have arisen relatively recently in different regions of Europe and have not yet reached genetic equilibrium. PMID:9781065
Late-onset Tay-Sachs disease: the spectrum of peripheral neuropathy in 30 affected patients.
Shapiro, Barbara E; Logigian, Eric L; Kolodny, Edwin H; Pastores, Gregory M
2008-08-01
Late-onset Tay-Sachs (LOTS) disease is a chronic, progressive, lysosomal storage disorder caused by a partial deficiency of beta-hexosaminidase A (HEXA) activity. Deficient levels of HEXA result in the intracellular accumulation of GM2-ganglioside, resulting in toxicity to nerve cells. Clinical manifestations primarily involve the central nervous system (CNS) and lower motor neurons, and include ataxia, weakness, spasticity, dysarthria, dysphagia, dystonia, seizures, psychosis, mania, depression, and cognitive decline. The prevalence of peripheral nervous system (PNS) involvement in LOTS has not been well documented, but it has traditionally been thought to be very low. We examined a cohort of 30 patients with LOTS who underwent clinical and electrophysiologic examination, and found evidence of a predominantly axon loss polyneuropathy affecting distal nerve segments in the lower and upper extremities in eight patients (27%). PMID:18642377
Two-oscillator Kantowski-Sachs model of the Schwarzschild black hole interior
NASA Astrophysics Data System (ADS)
Djordjevic, Goran S.; Nesic, Ljubisa; Radovancevic, Darko
2016-08-01
In this paper the interior of the Schwarzschild black hole, which is presented as a vacuum, homogeneous and anisotropic Kantowski-Sachs minisuperspace cosmological model, is considered. Lagrangian of the model is reduced by a suitable coordinate transformation to Lagrangian of two decoupled oscillators with the same frequencies and with zero energy in total (an oscillator-ghost-oscillator system). The model is presented in a classical, a p-adic and a noncommutative case. Then, within the standard quantum approach Wheeler-DeWitt equation and its general solutions, i.e. a wave function of the model is written, and then an adelic wave function is constructed. Finally, thermodynamics of the model is studied by using the Feynman-Hibbs procedure.
Tay-Sachs disease carrier screening: a model for prevention of genetic disease.
Kaplan, F
1998-01-01
Tay-Sachs disease (TSD) is an autosomal-recessive, progressive, and ultimately fatal neurodegenerative disorder. Within the last 30 years, the discovery of the enzymatic basis of the disease, namely deficiency of the enzyme hexosaminidase A, made possible both enzymatic diagnosis of TSD and heterozygote identification. In the last decade, the cloning of the HEXA gene and the identification of more than 80 associated TSD-causing mutations has permitted molecular diagnosis in many instances. TSD was the first genetic condition for which community-based screening for carrier detection was implemented. As such, the TSD experience can be viewed as a prototypic effort for public education, carrier testing, and reproductive counseling for avoiding fatal childhood disease. More importantly, the outcome of TSD screening over the last 28 years offers convincing evidence that such an effort can dramatically reduce incidence of the disease.
Snir, Nimrod; Wolfson, Theodore S.; Hamula, Mathew J.; Gyftopoulos, Soterios; Meislin, Robert J.
2013-01-01
Anatomic reconstruction of the humeral head with osteochondral allograft has been reported as a solution for large Hill-Sachs lesions with or without glenoid bone loss. However, to date, varying techniques have been used. This technical note describes an arthroscopic reconstruction technique using fresh-frozen, side- and size-matched osteochondral humeral head allograft. Allograft plugs are press fit into the defect without internal fixation and seated flush with the surrounding articular surface. This technique restores the native articular contour of the humeral head without compromising shoulder range of motion. Potential benefits of this all-arthroscopic approach include minimal trauma to the soft tissue and articular surface without the need for hardware or staged reoperation. PMID:24266001
The types II and III transforming growth factor-beta receptors form homo-oligomers
1994-01-01
Affinity-labeling experiments have detected hetero-oligomers of the types I, II, and III transforming growth factor beta (TGF-beta) receptors which mediate intracellular signaling by TGF-beta, but the oligomeric state of the individual receptor types remains unknown. Here we use two types of experiments to show that a major portion of the receptor types II and III forms homo-oligomers both in the absence and presence of TGF-beta. Both experiments used COS-7 cells co-transfected with combinations of these receptors carrying different epitope tags at their extracellular termini. In immunoprecipitation experiments, radiolabeled TGF-beta was bound and cross-linked to cells co-expressing two differently tagged type II receptors. Sequential immunoprecipitations using anti-epitope monoclonal antibodies showed that type II TGF-beta receptors form homo-oligomers. In cells co- expressing epitope-tagged types II and III receptors, a low level of co- precipitation of the ligand-labeled receptors was observed, indicating that some hetero-oligomers of the types II and III receptors exist in the presence of ligand. Antibody-mediated cross-linking studies based on double-labeling immunofluorescence explored co-patching of the receptors at the cell surface on live cells. In cells co-expressing two differently tagged type II receptors or two differently tagged type III receptors, forcing one receptor into micropatches by IgG induced co- patching of the receptor carrying the other tag, labeled by noncross- linking monovalent Fab'. These studies showed that homo-oligomers of the types II and III receptors exist on the cell surface in the absence or presence of TGF-beta 1 or -beta 2. In cells co-expressing types II and III receptors, the amount of heterocomplexes at the cell surface was too low to be detected in the immunofluorescence co-patching experiments, confirming that hetero-oligomers of the types II and III receptors are minor and probably transient species. PMID:8027173
Oscillations of solar activity - the main climate-forming factor in millennium scale.
NASA Astrophysics Data System (ADS)
Khorozov, S. V.; Budovy, V. I.; Medvedev, V. A.
Here is advanced and substantiated the hypothesis of existence of the physical mechanism, by means of which alteration of solar activity leads to change of the "greenhouse effect". This hypothetical mechanism can be the following one. The increase of solar activity leads to considerable magnification of ultra-violet radiation in a solar spectrum and to increase of ion concentration in the upper stratums of an atmosphere (including upper troposphere). Accordingly, the rise of condensation kernels concentration (of water vapour) occurs, and, as a result, the transparency decrease of an atmosphere concerning infrared radiation of the Earth takes place. For checkout of the hypothesis the simplified physical-statistical model of energy-balance of atmosphere and hydrosphere is constructed. The modelling of the global temperatures and the temperature in the different regions of the North hemisphere was made. The effective coefficients of the model take into account, in particular, the features of ocean and atmosphere circulation. They were determined with use of step-by-step procedure of correction based on a Monte-Carlo method, under condition of achievement of the greatest correspondence between simulated and actual values of global temperature. The constructed model allows to explain (without attraction of the anthropogenous factor) modern global warming, and also known data about temperature oscillations during second millennium. The comparative analysis of model results with independently reconstructed regional temperatures, including Central England (1000-1659 years), China (1000-1990 years), Gulf of Alaska and Pacific Northwest (1752-1983 years), shows their good enough correspondence which allows to assume, that the solar activity oscillations really can be the main climate-forming factor in millennium scale. Moreover, there had been detected the close correlation between the rate of increase of CO2 concentration and the simulated temperature of the upper layer of
Phenomenology of Semileptonic B-Meson Decays with Form Factors from Lattice QCD
Du, Daping; El-Khadra, A. X.; Gottlieb, Steven; Kronfeld, A. S.; Laiho, J.; Lunghi, E.; Van de Water, R. S.; Zhou, Ran
2016-02-03
We study the exclusive semileptonic B-meson decays B→K(π)ℓ+ℓ-, B→K(π)νν¯, and B→πτν, computing observables in the Standard model using the recent lattice-QCD results for the underlying form factors from the Fermilab Lattice and MILC Collaborations. These processes provide theoretically clean windows into physics beyond the Standard Model because the hadronic uncertainties are now under good control. The resulting partially-integrated branching fractions for B→πμ+μ- and B→Kμ+μ- outside the charmonium resonance region are 1-2σ higher than the LHCb Collaboration's recent measurements, where the theoretical and experimental errors are commensurate. The combined tension is 1.7σ. Combining the Standard-Model rates with LHCb's measurements yields valuesmore » for the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements |Vtd|=7.45(69)×10-3, |Vts|=35.7(1.5)×10-3, and |Vtd/Vts|=0.201(20), which are compatible with the values obtained from neutral B(s)-meson oscillations and have competitive uncertainties. Alternatively, taking the CKM matrix elements from unitarity, we constrain new-physics contributions at the electroweak scale. Furthermore, the constraints on the Wilson coefficients Re(C9) and Re(C10) from B→πμ+μ- and B→Kμ+μ- are competitive with those from B→K*μ+μ-, and display a 2.0σ tension with the Standard Model. Our predictions for B→K(π)νν¯ and B→πτν are close to the current experimental limits.« less
Isolation and characterization of a regulated form of actin depolymerizing factor.
Morgan, T E; Lockerbie, R O; Minamide, L S; Browning, M D; Bamburg, J R
1993-08-01
Actin depolymerizing factor (ADF) is an 18.5-kD protein with pH-dependent reciprocal F-actin binding and severing/depolymerizing activities. We previously showed developing muscle down-regulates ADF (J. R. Bamburg and D. Bray. 1987. J. Cell Biol. 105: 2817-2825). To further study this process, we examined ADF expression in chick myocytes cultured in vitro. Surprisingly, ADF immunoreactivity increases during the first 7-10 d in culture. This increase is due to the presence of a new ADF species with higher relative molecular weight which reacts identically to brain ADF with antisera raised against either brain ADF or recombinant ADF. We have purified both ADF isoforms from myocytes and have shown by peptide mapping and partial sequence analysis that the new isoform is structurally related to ADF. Immunoprecipitation of both isoforms from extracts of cells prelabeled with [32P]orthophosphate showed that the new isoform is radiolabeled, predominantly on a serine residue, and hence is called pADF. pADF can be converted into a form which comigrates with ADF on 1-D and 2-D gels by treatment with alkaline phosphatase. pADF has been quantified in a number of cells and tissues where it is present from approximately 18% to 150% of the amount of unphosphorylated ADF. pADF, unlike ADF, does not bind to G-actin, or affect the rate or extent of actin assembly. Four ubiquitous protein kinases failed to phosphorylate ADF in vitro suggesting that ADF phosphorylation in vivo is catalyzed by a more specific kinase. We conclude that the ability to regulate ADF activity is important to muscle development since myocytes have both pre- and posttranslational mechanisms for regulating ADF activity. The latter mechanism is apparently a general one for cell regulation of ADF activity.
Isolation and characterization of a regulated form of actin depolymerizing factor
1993-01-01
Actin depolymerizing factor (ADF) is an 18.5-kD protein with pH- dependent reciprocal F-actin binding and severing/depolymerizing activities. We previously showed developing muscle down-regulates ADF (J. R. Bamburg and D. Bray. 1987. J. Cell Biol. 105: 2817-2825). To further study this process, we examined ADF expression in chick myocytes cultured in vitro. Surprisingly, ADF immunoreactivity increases during the first 7-10 d in culture. This increase is due to the presence of a new ADF species with higher relative molecular weight which reacts identically to brain ADF with antisera raised against either brain ADF or recombinant ADF. We have purified both ADF isoforms from myocytes and have shown by peptide mapping and partial sequence analysis that the new isoform is structurally related to ADF. Immunoprecipitation of both isoforms from extracts of cells prelabeled with [32P]orthophosphate showed that the new isoform is radiolabeled, predominantly on a serine residue, and hence is called pADF. pADF can be converted into a form which comigrates with ADF on 1-D and 2-D gels by treatment with alkaline phosphatase. pADF has been quantified in a number of cells and tissues where it is present from approximately 18% to 150% of the amount of unphosphorylated ADF. pADF, unlike ADF, does not bind to G-actin, or affect the rate or extent of actin assembly. Four ubiquitous protein kinases failed to phosphorylate ADF in vitro suggesting that ADF phosphorylation in vivo is catalyzed by a more specific kinase. We conclude that the ability to regulate ADF activity is important to muscle development since myocytes have both pre- and posttranslational mechanisms for regulating ADF activity. The latter mechanism is apparently a general one for cell regulation of ADF activity. PMID:7687605
Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state
M. H. Hamidian; Kim, Chung Koo; Edkins, S. D.; Davis, J. C.; Mackenzie, A. P.; Eisaki, H.; Uchida, S.; Lawler, M. J.; Kim, E. -A.; Sachdev, S.; Fujita, K.
2015-10-26
Research on high-temperature superconducting cuprates is at present focused on identifying the relationship between the classic ‘pseudogap’ phenomenon^{1, 2} and the more recently investigated density wave state^{3–13}. This state is generally characterized by a wavevector Q parallel to the planar Cu–O–Cu bonds ^{4–13} along with a predominantly d-symmetry form factor ^{14–17} (dFF-DW). To identify the microscopic mechanism giving rise to this state ^{18–30}, one must identify the momentum-space states contributing to the dFF-DW spectral weight, determine their particle–hole phase relationship about the Fermi energy, establish whether they exhibit a characteristic energy gap, and understand the evolution of all these phenomena throughout the phase diagram. Here we use energy-resolved sublattice visualization^{14} of electronic structure and reveal that the characteristic energy of the dFF-DW modulations is actually the ‘pseudogap’ energy Δ_{1}. Moreover, we demonstrate that the dFF-DW modulations at E = –Δ_{1} (filled states) occur with relative phase π compared to those at E = Δ_{1} (empty states). Lastly, we show that the conventionally defined dFF-DW Q corresponds to scattering between the ‘hot frontier’ regions of momentum-space beyond which Bogoliubov quasiparticles cease to exist^{30–32}. These data indicate that the cuprate dFF-DW state involves particle–hole interactions focused at the pseudogap energy scale and between the four pairs of ‘hot frontier’ regions in momentum space where the pseudogap opens.
Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state
M. H. Hamidian; Kim, Chung Koo; Edkins, S. D.; Davis, J. C.; Mackenzie, A. P.; Eisaki, H.; Uchida, S.; Lawler, M. J.; Kim, E. -A.; Sachdev, S.; et al
2015-10-26
Research on high-temperature superconducting cuprates is at present focused on identifying the relationship between the classic ‘pseudogap’ phenomenon1, 2 and the more recently investigated density wave state3–13. This state is generally characterized by a wavevector Q parallel to the planar Cu–O–Cu bonds 4–13 along with a predominantly d-symmetry form factor 14–17 (dFF-DW). To identify the microscopic mechanism giving rise to this state 18–30, one must identify the momentum-space states contributing to the dFF-DW spectral weight, determine their particle–hole phase relationship about the Fermi energy, establish whether they exhibit a characteristic energy gap, and understand the evolution of all these phenomenamore » throughout the phase diagram. Here we use energy-resolved sublattice visualization14 of electronic structure and reveal that the characteristic energy of the dFF-DW modulations is actually the ‘pseudogap’ energy Δ1. Moreover, we demonstrate that the dFF-DW modulations at E = –Δ1 (filled states) occur with relative phase π compared to those at E = Δ1 (empty states). Lastly, we show that the conventionally defined dFF-DW Q corresponds to scattering between the ‘hot frontier’ regions of momentum-space beyond which Bogoliubov quasiparticles cease to exist30–32. These data indicate that the cuprate dFF-DW state involves particle–hole interactions focused at the pseudogap energy scale and between the four pairs of ‘hot frontier’ regions in momentum space where the pseudogap opens.« less
D → a1, f1 transition form factors and semileptonic decays via 3-point QCD sum rules
NASA Astrophysics Data System (ADS)
Zuo, Yabing; Hu, Yue; He, Linlin; Yang, Wei; Chen, Yan; Hao, Yannan
2016-07-01
By using the 3-point QCD sum rules, we calculate the transition form factors of D decays into the spin triplet axial vector mesons a1(1260), f1(1285), f1(1420). In the calculations, we consider the quark contents of each meson in detail. In view of the fact that the isospin of a1(1260) is one, we calculate the D+ → a 10(1260) and D0 → a 1‑(1260) transition form factors separately. In the case of f1(1285), f1(1420), the mixing between light flavor SU(3) singlet and octet is taken into account. Based on the form factors obtained here, we give predictions for the branching ratios of relevant semileptonic decays, which can be tested in the future experiments.
Sergio Alexandre Pinto; Stadler, Alfred; Gross, Franz L.
2010-01-01
The electromagnetic form factors of the three-nucleon bound states were calculated in Complete Impulse Approximation in the framework of the Covariant Spectator Theory for the new high-precision two-nucleon interaction models WJC-1 and WJC-2. The calculations use an approximation for the three-nucleon vertex functions with two nucleons off mass shell. The form factors with WJC-2 are close to the ones obtained with the older model W16 and to nonrelativistic potential calculations with lowest-order relativistic corrections, while the form factors with the most precise two-nucleon model WJC-1 exhibit larger differences. These results can be understood when the effect of the different types of pion-nucleon coupling used in the various models is examined.
Liposomes as novel anti-infectives targeting bacterial virulence factors?
Azeredo da Silveira, Samareh; Perez, Antonio
2015-05-01
A recent report commissioned by Prime Minister David Cameron and chaired by former Goldman Sachs chief economist Jim O'Neill warns that the emergence, persistence and spread of antimicrobial resistance could lead to 10 million deaths per year and cause an economic burden as much as US$100 trillion by 2050. In the midst of this global crisis, unprecedented paths are being explored to combat bacterial infection. Virulence factors, and more particularly pore-forming toxins, play a key role in increasing morbidity and mortality caused by drug-resistant bacterial infections. Novel anti-infective liposomes specifically targeting and neutralizing these cytotoxic toxins are potential game-changers in the fight against deadly infections. PMID:25850805
Factor Structure of the BASC-2 Behavioral and Emotional Screening System Student Form
ERIC Educational Resources Information Center
Dowdy, Erin; Twyford, Jennifer M.; Chin, Jenna K.; DiStefano, Christine A.; Kamphaus, Randy W.; Mays, Kristen L.
2011-01-01
The BASC-2 Behavioral and Emotional Screening System (BESS) Student Form (Kamphaus & Reynolds, 2007) is a recently developed youth self-report rating scale designed to identify students at risk for behavioral and emotional problems. The BESS Student Form was derived from the Behavior Assessment System for Children-Second Edition Self-Report of…
Schaub, John
2010-07-01
We studied the strange contributions to the elastic vector and axial form factors of the nucleon using all available elastic electroweak scattering data. Specifically, we combine elastic nu-p and nubar-p scattering cross-section data from the Brookhaven E734 experiment with elastic ep and quasi-elastic ed and e-^{4}He scattering parity-violating asymmetry data from the SAMPLE, HAPPEx, PVA4 and G0 experiments. We not only determined these form factors at individual values of momentum-transfer (Q^{2}), as other groups have done recently, but also fit the Q^{2}-dependence of these form factors using simple functional forms. I present an overview of the G^{0} backward-angle experiment as well as the results of these fits using existing data, along with some expectations of how we can improve our knowledge of these form factors if the MicroBooNE collaboration completes their experiment.
On determinant representations of scalar products and form factors in the SoV approach: the XXX case
NASA Astrophysics Data System (ADS)
Kitanine, N.; Maillet, J. M.; Niccoli, G.; Terras, V.
2016-03-01
In the present article we study the form factors of quantum integrable lattice models solvable by the separation of variables (SoVs) method. It was recently shown that these models admit universal determinant representations for the scalar products of the so-called separate states (a class which includes in particular all the eigenstates of the transfer matrix). These results permit to obtain simple expressions for the matrix elements of local operators (form factors). However, these representations have been obtained up to now only for the completely inhomogeneous versions of the lattice models considered. In this article we give a simple algebraic procedure to rewrite the scalar products (and hence the form factors) for the SoV related models as Izergin or Slavnov type determinants. This new form leads to simple expressions for the form factors in the homogeneous and thermodynamic limits. To make the presentation of our method clear, we have chosen to explain it first for the simple case of the XXX Heisenberg chain with anti-periodic boundary conditions. We would nevertheless like to stress that the approach presented in this article applies as well to a wide range of models solved in the SoV framework.
The Proton Elastic Form Factor Ratio mu(p) G**p(E)/G**p(M) at Low Momentum Transfer
G. Ron; J. Glister; B. Lee; K. Allada; W. Armstrong; J. Arrington; A. Beck; F. Benmokhtar; B.L. Berman; W. Boeglin; E. Brash; A. Camsonne; J. Calarco; J. P. Chen; Seonho Choi; E. Chudakov; L. Coman; B. Craver; F. Cusanno; J. Dumas; C. Dutta; R. Feuerbach; A. Freyberger; S. Frullani; F. Garibaldi; R. Gilman; O. Hansen; D. W. Higinbotham; T. Holmstrom; C.E. Hyde; H. Ibrahim; Y. Ilieva; C. W. de Jager; X. Jiang; M. K. Jones; A. Kelleher; E. Khrosinkova; E. Kuchina; G. Kumbartzki; J. J. LeRose; R. Lindgren; P. Markowitz; S. May-Tal Beck; E. McCullough; D. Meekins; M. Meziane; Z.-E. Meziani; R. Michaels; B. Moffit; B.E. Norum; Y. Oh; M. Olson; M. Paolone; K. Paschke; C. F. Perdrisat; E. Piasetzky; M. Potokar; R. Pomatsalyuk; I. Pomerantz; A. Puckett; V. Punjabi; X. Qian; Y. Qiang; R. Ransome; M. Reyhan; J. Roche; Y. Rousseau; A. Saha; A.J. Sarty; B. Sawatzky; E. Schulte; M. Shabestari; A. Shahinyan; R. Shneor; S. ˇ Sirca; K. Slifer; P. Solvignon; J. Song; R. Sparks; R. Subedi; S. Strauch; G. M. Urciuoli; K. Wang; B. Wojtsekhowski; X. Yan; H. Yao; X. Zhan; X. Zhu
2007-11-01
High precision measurements of the proton elastic form factor ratio have been made at four-momentum transfers, Q^2, between 0.2 and 0.5 GeV^2. The new data, while consistent with previous results, clearly show a ratio less than unity and significant differences from the central values of several recent phenomenological fits. By combining the new form-factor ratio data with an existing cross-section measurement, one finds that in this Q^2 range the deviation from unity is primarily due to GEp being smaller than the dipole parameterization.
Gao, H.; Arrington, J.; Beise, E.J.; Bray, B.; Carr, R.W.; Filippone, B.W.; Lung, A.; McKeown, R.D.; Mueller, B.; Pitt, M.L.; Jones, C.E.; DeSchepper, D.; Dodson, G.; Dow, K.; Ent, R.; Farkhondeh, M.; Hansen, J.; Korsch, W.; Kramer, L.H.; Lee, K.; Makins, N.; Milner, R.G.; Tieger, D.R.; Welch, T.P.; Candell, E.; Napolitano, J.; Wojtsekhowski, B.B.; Tripp, C.; Lorenzon, W.
1995-07-10
We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized {sup 3}He target. The neutron magnetic form factor {ital G}{sup {ital n}}{sub {ital M}} has been extracted from the measured asymmetry based on recent PWIA calculations using spin-dependent spectral functions. This experiment represents the first measurement of the neutron magnetic form factor using spin-dependent electron scattering. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Higgs boson form factor effects in t t ¯ production by W-W+ and Z Z fusion
NASA Astrophysics Data System (ADS)
Gounaris, G. J.; Renard, F. M.
2016-09-01
We study the fusion processes W-W+→t t ¯ and Z Z →t t ¯ observable at a future e-e+ collider and we discuss their sensitivity to an H t t form factor which may be due to compositeness, in particular when the H and the top quark have common constituents. We make an amplitude analysis and illustrate which helicity amplitudes and cross sections for specific final t t ¯ polarizations are especially sensitive to this form factor.
Hayase, Tomomi; Shimizu, Jun; Goto, Tamako; Nozaki, Yasuyuki; Mori, Masato; Takahashi, Naoto; Namba, Eiji; Yamagata, Takanori; Momoi, Mariko Y
2010-03-01
We report the case of a girl with Tay-Sachs disease who had convulsions and deteriorated rapidly after an upper respiratory infection at the age of 11 months. At the age of 16 months, her seizures became intractable and magnetic resonance imaging of the brain showed high signal intensity on T2-weighted images and marked swelling in the white matter and basal nucelei of the right hemisphere. Her seizures and right hemisphere lesion improved with glycerol and dexamethasone treatment. When dexamethasone was discontinued, her symptoms worsened and lesions later appeared in the left hemisphere. Her cerebrospinal fluid showed elevated levels of the cytokines TNF-alpha and IL-5. It is considered that inflammation contributes to disease progression in Tay-Sachs disease.
Tay-Sachs disease in Brazilian patients: prevalence of the IVS7+1g>c mutation.
Rozenberg, R; Martins, A M; Micheletti, C; Mustacchi, Z; Pereira, L V
2004-01-01
Seven Brazilian Tay-Sachs disease cases were screened for the most frequent causative mutations. They all presented at least one copy of the IVS7+1g>c mutation. Three patients were homozygotes, three were compound heterozygotes, and in one case only the mother was tested and shown to carry the IVS7+1g>c mutation. In the second allele the compound heterozygotes presented: R178H (the DN allele), InsTATC1278 and an unidentified mutation. The IVS7+1g>c mutation has already been described in three Portuguese patients. In this study, all families were unaware of any Portuguese ancestry. Since Brazil was a Portuguese colony, the mutation most probably came from ancient common ancestry. The initial molecular analysis of Tay-Sachs disease patients in Brazil indicated a prevalence of the IVS7+1g>c mutation, possibly as a result of genetic drift.
Diagonal form factors and hexagon form factors
NASA Astrophysics Data System (ADS)
Jiang, Yunfeng; Petrovskii, Andrei
2016-07-01
We study the heavy-heavy-light (HHL) three-point functions in the planar {N} = 4 super-Yang-Mills theory using the recently proposed hexagon bootstrap program [1]. We prove the conjecture of Bajnok, Janik and Wereszczynski [2] on the polynomial L-dependence of HHL structure constant up to the leading finite-size corrections, where L is the length of the heavy operators. The proof is presented for a specific set-up but the method can be applied to more general situations.
Zampieri, Stefania; Montalvo, Annalisa; Blanco, Mariana; Zanin, Irene; Amartino, Hernan; Vlahovicek, Kristian; Szlago, Marina; Schenone, Andrea; Pittis, Gabriela; Bembi, Bruno; Dardis, Andrea
2012-05-15
Tay-Sachs disease (TSD) is a recessively inherited disorder caused by the deficient activity of hexosaminidase A due to mutations in the HEXA gene. Up to date there is no information regarding the molecular genetics of TSD in Argentinean patients. In the present study we have studied 17 Argentinean families affected by TSD, including 20 patients with the acute infantile form and 3 with the sub-acute form. Overall, we identified 14 different mutations accounting for 100% of the studied alleles. Eight mutations were novel: 5 were single base changes leading to drastic residue changes or truncated proteins, 2 were small deletions and one was an intronic mutation that may cause a splicing defect. Although the spectrum of mutations was highly heterogeneous, a high frequency of the c.459+5G>A mutation, previously described in different populations was found among the studied cohort. Haplotype analysis suggested that in these families the c.459+5G>A mutation might have arisen by a single mutational event.
Zampieri, Stefania; Montalvo, Annalisa; Blanco, Mariana; Zanin, Irene; Amartino, Hernan; Vlahovicek, Kristian; Szlago, Marina; Schenone, Andrea; Pittis, Gabriela; Bembi, Bruno; Dardis, Andrea
2012-05-15
Tay-Sachs disease (TSD) is a recessively inherited disorder caused by the deficient activity of hexosaminidase A due to mutations in the HEXA gene. Up to date there is no information regarding the molecular genetics of TSD in Argentinean patients. In the present study we have studied 17 Argentinean families affected by TSD, including 20 patients with the acute infantile form and 3 with the sub-acute form. Overall, we identified 14 different mutations accounting for 100% of the studied alleles. Eight mutations were novel: 5 were single base changes leading to drastic residue changes or truncated proteins, 2 were small deletions and one was an intronic mutation that may cause a splicing defect. Although the spectrum of mutations was highly heterogeneous, a high frequency of the c.459+5G>A mutation, previously described in different populations was found among the studied cohort. Haplotype analysis suggested that in these families the c.459+5G>A mutation might have arisen by a single mutational event. PMID:22441121
Expansion of X-ray form factor for close shell using uncorrelated wave function
AL-Robayi, Enas M.
2013-12-16
The atomic scattering factor has been studied for Be+ve, and B+2ve ions using the uncorrelated wave function (Hartree-Fock (HF)) for inter particle electronic shells. The physical importance of this factor appears in its relation to several important atomic properties as, the coherent scattering intensity, the total scattering intensity, the incoherent scattering function, the coherent scattering cross section, the total incoherent cross section, the nuclear magnetic shielding constant, the geometrical structure factor. Also there is one atomic properties the one particle radial density distribution function D(r)has been studied using the partitioning technique.
Yamanaka, S; Johnson, M D; Grinberg, A; Westphal, H; Crawley, J N; Taniike, M; Suzuki, K; Proia, R L
1994-10-11
Tay-Sachs disease, the prototype of the GM2 gangliosidoses, is a catastrophic neurodegenerative disorder of infancy. The disease is caused by mutations in the HEXA gene resulting in an absence of the lysosomal enzyme, beta-hexosaminidase A. As a consequence of the enzyme deficiency, GM2 ganglioside accumulates progressively, beginning early in fetal life, to excessive amounts in the central nervous system. Rapid mental and motor deterioration starting in the first year of life leads to death by 2-4 years of age. Through the targeted disruption of the mouse Hexa gene in embryonic stem cells, we have produced mice with biochemical and neuropathologic features of Tay-Sachs disease. The mutant mice displayed < 1% of normal beta-hexosaminidase A activity and accumulated GM2 ganglioside in their central nervous system in an age-dependent manner. The accumulated ganglioside was stored in neurons as membranous cytoplasmic bodies characteristically found in the neurons of Tay-Sachs disease patients. At 3-5 months of age, the mutant mice showed no apparent defects in motor or memory function. These beta-hexosaminidase A-deficient mice should be useful for devising strategies to introduce functional enzyme and genes into the central nervous system. This model may also be valuable for studying the biochemical and pathologic changes occurring during the course of the disease.
Bark, S.; Renken, F.; Schulz, A. P.; Paech, A.; Gille, J.
2015-01-01
Purpose. Impaction fractures of the anterior aspect of the humeral head, the reversed Hill-Sachs lesion, are common in posterior shoulder dislocation. We present a new technique to address these lesions arthroscopic-assisted with the use of a bone substitute. Methods. We report the case of a 45-year-old male with a reversed Hill-Sachs lesion after posterior shoulder dislocation. Initially a glenohumeral arthroscopy is performed to address concomitant intra-articular injuries. Guided by the k-wire a cannulated sizer was inserted for reduction of the fracture under arthroscopic visualization. For reduction of the impacted part of the humeral head the subcortical defect was filled with an injectable bone substitute (Cerament) to prevent secondary dislocation. Results. X-ray at follow-up 6 months after the index procedure documents the bony remodeling of the bone substitute. At that time the patient was pain-free (VAS 0) and satisfied with the outcome (Constant score: 78, Rand-36 score: 84, Rowe score: 81) with a good ROM. Conclusions. In conclusion, arthroscopic-assisted reconstruction of reversed Hill-Sachs lesions with an injectable bone substitute is feasible and may provide patients with all the benefits of an anatomic reconstruction with decreased risks related to open surgery. PMID:25688315
Proia, R.L.; Yamanaka, S.; Johnson, M.D.
1994-09-01
Tay-Sachs disease, the prototype of the G{sub M2} gangliosidoses, is a catastrophic neurodegenerative disorder of infancy. The disease is caused by mutations in the HEXA gene resulting in an absence of the lysosomal enzyme, {beta}-hexosaminidase A. As consequence of the enzyme deficiency, G{sub M2} ganglioside accumulates progressively, beginning early in fetal life, to excessive amounts in the central nervous system (CNS). Rapid mental and motor deterioration starting in the first year of life leads to death by 2 to 4 years of age. Through the targeted disruption of the Hexa gene in embryonic stem cells, we have produced mice with biochemical and neuropathologic features of Tay-Sachs disease. The mutant mice exhibited less than 1% of normal {beta}-hexosaminidase A activity and accumulated G{sub M2} ganglioside in their CNS in an age-dependent manner. The accumulated ganglioside was stored in neurons as membranous cytoplasmic bodies characteristically found in the neurons of Tay-Sachs disease patients. At three to five months of age the mutant mice showed no apparent defects in motor or memory function. These {beta}-hexosaminidase A deficient mice should be useful for devising strategies to introduce functional enzymes and genes into the CNS. This model may also be valuable for studying the biochemical and pathologic changes occurring during the course of the disease.
Díaz-Herrero, Angela; Brito de la Nuez, Alfredo G; López Pina, José Antonio; Pérez-López, Julio; Martínez-Fuentes, María Teresa
2010-11-01
The aim of this study was to analyze the psychometric properties of the Spanish version of Parenting Stress Index-Short Form. After translating the instrument from English into Spanish using the forward-backward translation method, it was administered to a sample of 129 mothers of children aged between 10 and 39 months olds. The exploratory factor analysis identified two factors: Childrearing Stress and Personal Distress, which accounted for 48.77% of the variance. The internal consistency of these factors was high (Childrearing Stress: .90 and Personal Distress: .87). Implications of these findings and suggestions for future research are discussed.
Similarity of urinary risk factors among stone-forming patients in five regions of the United States
NASA Technical Reports Server (NTRS)
Harvey, J. A.; Hill, K. D.; Pak, C. Y.
1990-01-01
Study Objective: To compare urinary biochemical risk factors among stone-forming patients in the Southeast (SE) or "stone belt" versus four other regions of the United States. Design: Prospective biochemical survey for regional comparisons. Setting: Referral-based nephrolithiasis clinics, urologists, nephrologists, and family practitioners. Patients: Consecutive sample of 3473 stone-forming patients who submitted 24-hour urine collections for biochemical analyses of stone-forming risk factors. Interventions: None. Subjects taking medication known to interfere with stone-forming risk factors were deleted from the final data compilation. Measurements and Main Results: Overall, the mean values for each urinary parameter spanned a narrow range without significant difference between the five regions. Among "metabolic" factors, 40% in the SE had hypercalciuria (> 6.25 mmol/d), compared to 35%-43% in other regions, and hyperuricosuria (> 4.2 mmol/d) was found in 16% in the SE versus 17%-19% elsewhere. Among "environmental" factors, low urine volume ( < 2 L/d) was found in 77% patients in the SE compared to 69%-78% elsewhere, and high sodium was encountered in 27% in the SE versus 24%-29% elsewhere. No differences were noted in occurrence of other abnormal risk factors: hyperoxaluria, hypocitraturia, low pH, high sulfate, high phosphorus, or low magnesium. Conclusions: Despite expected regional differences in nutritional and environmental influences, the results of this study showed a striking similarity in urinary biochemical risk factor profiles of stone-formers in all five regions of the United States.
Perturbative corrections to Λ b → Λ form factors from QCD light-cone sum rules
NASA Astrophysics Data System (ADS)
Wang, Yu-Ming; Shen, Yue-Long
2016-02-01
We compute radiative corrections to Λ b → Λ from factors, at next-to-leading logarithmic accuracy, from QCD light-cone sum rules with Λ b -baryon distribution amplitudes. Employing the diagrammatic approach factorization of the vacuum-to-Λ b -baryon correlation function is justified at leading power in Λ /m b , with the aid of the method of regions. Hard functions entering the factorization formulae are identical to the corresponding matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective theory. The universal jet function from integrating out the hard-collinear fluctuations exhibits richer structures compared with the one involved in the factorization expressions of the vacuum-to- B-meson correlation function. Based upon the QCD resummation improved sum rules we observe that the perturbative corrections at {O}({α}_s) shift the Λ b → Λ from factors at large recoil significantly and the dominant contribution originates from the next-to-leading order jet function instead of the hard coefficient functions. Having at hand the sum rule predictions for the Λ b → Λ from factors we further investigate several decay observables in the electro-weak penguin Λ b → Λ ℓ + ℓ - transitions in the factorization limit (i.e., ignoring the "non-factorizable" hadronic effects which cannot be expressed in terms of the Λ b → Λ from factors), including the invariant mass distribution of the lepton pair, the forward-backward asymmetry in the dilepton system and the longitudinal polarization fraction of the leptonic sector.
[Johann Laurentius Bausch and Philipp Jacob Sachs of Lewenhaimb. Foundation of the Academia Naturae
Müller, Uwe
2008-01-01
The biographical notes of the two municipal physicians of Schweinfurt, Leonhard Bausch (1574 to 1636) and Johann Laurentius Bausch (1605-1665) and another three physicians (Johann Michael Fehr, Georg Balthasar Wohlfarth and Georg Balthasar Metzger) who founded the Academia Naturae Curiosorum together with the younger Bausch in 1652, show that this founding was initiated by a surprisingly homogenous group, sharing the same social, educational and professional background as well as ancestral and acquired experiences. They all had been influenced by the immigration fate of their families, the rapid rise to the politically or academically educated elite in the imperial city of Schweinfurt, worn out by war and plagues. They all had studied at universities in protestant territories of the Holy Roman Empire, finishing with an educational journey (peregrinatio academica), usually to Italy. Experience of the flourishing university life beyond the frontiers of the Holy Roman Empire laid waste by the "Teutsche Krieg", the great variety of academies in Italy, the narrowness of contemporary medicine and the inability of the individual to explore the immense variety of nature: all this leads to the founding of the Academia Naturae Curiosorum and it is the point of reference of the founding documents of 1651/1652, which were first printed in 1662 (Salve Academicum). What is innovative about this is not the establishment of an academy but the desired aim and the way of achieving this. The tenor of these documents--to medically explore the variety of the divine "res naturals" in a cooperative and regulated way for the benefit of medicine and mankind and to publish the results in monographes (utilitas by curiositas)--was condensed by the later Leopoldina to the still used motto "to explore nature for the benefit of mankind". Due to Breslau's municipal physician Philipp Jacob Sachs von Lewenhaimb (1627 - 1672) the publishing activities of the academy came into being. But before the
Development of Rotary-Type Voice Coil Motor Actuator for Small-Form-Factor Optical Disk Drive
NASA Astrophysics Data System (ADS)
Lee, Dong‑Ju; Park, Se‑June; Oh, Jeseung; Park, No‑Cheol; Park, Young‑Pil; Jung, Ho‑Seop
2006-02-01
We propose the miniaturized rotary-type voice coil motor (VCM) actuator that has an effective focusing mechanism and a sufficient bandwidth for a small-form-factor (SFF) optical disk drive (ODD) based on Blu-ray disk (BD) 1× specifications.
Form factors and the s-wave component of the two-pion-exchange three-nucleon potential
Robilotta, M.R.; Isidro Filho, M.P.; Coelho, H.T.; Das, T.K.
1985-02-01
We argue that the straightforward introduction of ..pi..N form factors into the s-wave component of the two-pion-exchange three-nucleon potential based on chiral symmetry is not free of problems. These can be avoided by means of a redefinition of the potential which considers its physical content.
ERIC Educational Resources Information Center
Thombs, Brett D.; Bernstein, David P.; Lobbestael, Jill; Arntz, Arnoud
2009-01-01
Objective: The 28-item Childhood Trauma Questionnaire-Short Form (CTQ-SF) has been translated into at least 10 different languages. The validity of translated versions of the CTQ-SF, however, has generally not been examined. The objective of this study was to investigate the factor structure, internal consistency reliability, and known-groups…
Transition form factors of P wave bottomonium {chi}{sub b0} (1P) into B{sub c} meson
Suengue, J. Y.; Azizi, K.; Sundu, H.
2012-10-23
Taking into account the two-gluon condensate contributions, the transition form factors enrolled to the low energy effective Hamiltonian describing the semileptonic {chi}{sub b0}{yields}B{sub c} Script-Small-L {nu},( Script-Small-L = (e,{mu},{tau})) decay channel are calculated within three-point QCD sum rules.
Role of the pion electromagnetic form factor in the Δ (1232 )→γ*N timelike transition
NASA Astrophysics Data System (ADS)
Ramalho, G.; Peña, M. T.; Weil, J.; van Hees, H.; Mosel, U.
2016-02-01
The Δ (1232 )→γ*N magnetic dipole form factor (GM*) is described here within a new covariant model that combines the valence quark core together with the pion cloud contributions. The pion cloud term is parametrized by two terms: one connected to the pion electromagnetic form factor, the other to the photon interaction with intermediate baryon states. The model can be used in studies of pp and heavy ion collisions. In the timelike region this new model improves the results obtained with a constant form factor model fixed at its value at zero momentum transfer. At the same time, and in contrast to the Iachello model, this new model predicts a peak for the transition form factor at the expected position, i.e. at the ρ mass pole. We calculate the decay of the Δ →γ N transition, the Dalitz decay (Δ →e+e-N ), and the Δ mass distribution function. The impact of the model on dilepton spectra in pp collisions is also discussed.
Form factor of the B meson off-shell for the vertex B{sub s}*BK
Cerqueira, A. Jr.; Bracco, M. E.
2010-11-12
In this work we evaluate the coupling constant and the form factor for the vertex B{sub s}*BK using the QCD Sum Rules. In this case we consider the B meson off shell. The only theoretical evaluation for the coupling constant was made using the Heavy Hadron Chiral Perturbation Theory (HHChPT) and we made comparison with this result.
Zaidman-Zait, Anat; Mirenda, Pat; Zumbo, Bruno D; Georgiades, Stelios; Szatmari, Peter; Bryson, Susan; Fombonne, Eric; Roberts, Wendy; Smith, Isabel; Vaillancourt, Tracy; Volden, Joanne; Waddell, Charlotte; Zwaigenbaum, Lonnie; Duku, Eric; Thompson, Ann
2011-10-01
The primary purpose of this study was to examine the underlying factor structure of the Parenting Stress Index-Short Form (PSI-SF) in a large cohort of parents of young children with autism spectrum disorder (ASD). A secondary goal was to examine relationships between PSI-SF factors and autism severity, child behavior problems, and parental mental health variables that have been shown to be related to parental stress in previous research. A confirmatory factor analysis (CFA) was used to examine the three-factor structure described in the PSI-SF manual [Abidin, 1995]: parental distress, parent-child dysfunctional interaction, and difficult child. Results of the CFA indicated that the three-factor structure was unacceptable when applied to the study sample. Thus, an exploratory factor analysis was conducted and suggested a six-factor model as the best alternative for the PSI-SF index. Spearman's correlations revealed significant positive correlations with moderate to large effect sizes between the revised PSI-SF factors and autism severity, externalizing and internalizing child behaviors, and an index of parent mental health. The revised factors represent more narrowly defined aspects of the three original subscales of the PSI-SF and might prove to be advantageous in both research and clinical applications. Autism Res 2011,4:336-346. © 2011 International Society for Autism Research, Wiley Periodicals, Inc.
Mistri, Mehul; Tamhankar, Parag M; Sheth, Frenny; Sanghavi, Daksha; Kondurkar, Pratima; Patil, Swapnil; Idicula-Thomas, Susan; Gupta, Sarita; Sheth, Jayesh
2012-01-01
Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V.
Mistri, Mehul; Tamhankar, Parag M; Sheth, Frenny; Sanghavi, Daksha; Kondurkar, Pratima; Patil, Swapnil; Idicula-Thomas, Susan; Gupta, Sarita; Sheth, Jayesh
2012-01-01
Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V. PMID:22723944
Smith, Robert E.; Hernandez-Monteagudo, Carlos; Seljak, Uros
2009-09-15
We investigate the impact of nonlinear evolution of the gravitational potentials in the {lambda}CDM model on the integrated Sachs-Wolfe (ISW) contribution to the cosmic microwave background (CMB) temperature power spectrum, and on the cross-power spectrum of the CMB and a set of biased tracers of the mass. We use an ensemble of N-body simulations to directly follow the potentials and compare the results to analytic PT methods. The predictions from the PT match the results to high precision for k<0.2h Mpc{sup -1}. We compute the nonlinear corrections to the angular power spectrum and find them to be <10% of linear theory for l<100. These corrections are swamped by the cosmic variance. On scales l>100 the departures are more significant; however, the CMB signal is more than a factor 10{sup 3} larger at this scale. Nonlinear ISW effects therefore play no role in shaping the CMB power spectrum for l<1500. We analyze the CMB-density tracer cross spectrum using simulations and renormalized bias PT, and find good agreement. The usual assumption is that nonlinear evolution enhances the growth of structure and counteracts the linear ISW on small scales, leading to a change in sign of the CMB large-scale structure cross spectrum at small scales. However, PT analysis suggests that this trend reverses at late times when the logarithmic growth rate f=dlnD/dlna<0.5 or {omega}{sub m}(z)<0.3. Numerical results confirm these expectations and we find no sign change in ISW large-scale structure cross power for low redshifts. Corrections due to nonlinearity and scale dependence of the bias are found to be <10% for l<100, and are therefore below the signal to noise of the current and future measurements. Finally, we estimate the cross-correlation coefficient between the CMB and halos and show that it can be made to match that for the dark matter and CMB to within 5% for thin redshift shells, thus mitigating the need to model bias evolution.
Karpati, Mazal; Gazit, Ephraim; Goldman, Boleslaw; Frisch, Amos; Colombo, Roberto; Peleg, Leah
2004-02-01
The incidence of Tay-Sachs disease (TSD) carriers, as defined by enzyme assay, is 1:29 among Ashkenazi Jews and 1:110 among Moroccan Jews. An elevated carrier frequency of 1:140 was also observed in the Iraqi Jews (IJ), while in other Israeli populations the world's pan-ethnic frequency of approximately 1:280 has been found. Recently a novel mutation, G749T, has been reported in 38.7% of the IJ carriers (24/62). Here we report a second novel HEXA mutation specific to the IJ TDS carriers: a substitution of cytosine 1351 by guanosine (C1351G), resulting in the change of leucine to valine in position 451. This mutation was found in 33.9% (21/62) of the carriers and in none of 100 non-carrier IJ. In addition to the two specific mutations, 14.5% (9/62) of the IJ carriers bear a known "Jewish" mutation (Ashkenazi or Moroccan) and 11.3% (7/62) carry a known "non-Jewish" mutation. In 1 DNA sample no mutation has yet been detected. To investigate the genetic history of the IJ-specific mutations (C1351G and G749T), the allelic distribution of four polymorphic markers (D15S131, D15S1025, D15S981, D15S1050) was analyzed in IJ heterozygotes and ethnically matched controls. Based on linkage disequilibrium, recombination factor (theta) between the markers and mutated loci, and the population growth correction, we deduced that G749T occurred in a founder ancestor 44.8 +/- 14.2 generations (g) ago [95% confidence interval (CI) 17.0-72.6 g] and C1351G arose 80.4 +/- 35.9 g ago (95% CI 44.5-116.3 g). Thus, the estimated dates for introduction of mutations are: 626 +/- 426 A.D. (200-1052 A.D.) for G749T and 442 +/- 1077 B.C. (1519 B.C. to 635 A.D.) for C1351G. PMID:14648242
An exploratory analysis of the factor structure of the Dysfunctional Attitude Scale-Form A (DAS).
Moore, Michael T; Fresco, David M; Segal, Zindel V; Brown, Timothy A
2014-10-01
A number of studies have attempted to identify the factor structure of the Dysfunctional Attitude Scale (DAS). However, no studies have done so using a clinical sample of outpatients likely to generalize to the clinical trials in which the DAS is commonly used. The current investigation utilized exploratory structural equation modeling in an outpatient sample (N = 982) and found support for a one-factor solution (composed of 19 items). This solution was largely confirmed in a second outpatient sample (N = 301). Construct validity was demonstrated in correlations with measures of depression, social interaction anxiety, and symptoms of obsessive-compulsive disorder.
An exploratory analysis of the factor structure of the Dysfunctional Attitude Scale-Form A (DAS).
Moore, Michael T; Fresco, David M; Segal, Zindel V; Brown, Timothy A
2014-10-01
A number of studies have attempted to identify the factor structure of the Dysfunctional Attitude Scale (DAS). However, no studies have done so using a clinical sample of outpatients likely to generalize to the clinical trials in which the DAS is commonly used. The current investigation utilized exploratory structural equation modeling in an outpatient sample (N = 982) and found support for a one-factor solution (composed of 19 items). This solution was largely confirmed in a second outpatient sample (N = 301). Construct validity was demonstrated in correlations with measures of depression, social interaction anxiety, and symptoms of obsessive-compulsive disorder. PMID:24577308