Sample records for saclay serpukhov slac

  1. Current Experiments in Particle Physics. 1996 Edition.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galic, Hrvoje

    2003-06-27

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  2. Current experiments in elementary particle physics. Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galic, H.; Armstrong, F.E.; von Przewoski, B.

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  3. Current experiments in elementary particle physics. Revised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galic, H.; Wohl, C.G.; Armstrong, B.

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  4. Current experiments in elementary particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  5. Current experiments in elementary particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  6. SLAC Occupational Health Center

    Science.gov Websites

    Images ESH Home > SLAC Occupational Health Center SLAC Occupational Health Center Medical Emergency After Hours Care Services at SLAC Wellness Programs SLAC Occupational Health Center Monday - Friday 8:00 nearest emergency department to SLAC is the Stanford Health Care Emergency Department, open 24/7, located

  7. SLAC Site Security

    Science.gov Websites

    Information Badging Information Foreign National Requirements SLAC Internal Gate Information Site Entry Form this is a SLAC-Internal page for videos on how to use the automated gates. Security Assistance The Main and holidays. See Gate Information this is a SLAC-Internal page for more information about the

  8. SLAC All Access: FACET

    ScienceCinema

    Hogan, Mark

    2018-02-13

    SLAC's Facility for Advanced Accelerator Experimental Tests, or FACET, is a test-bed where researchers are developing the technologies required for particle accelerators of the future. Scientists from all over the world come to explore ways of improving the power and efficiency of the particle accelerators used in basic research, medicine, industry and other areas important to society. In this video, Mark Hogan, head of SLAC's Advanced Accelerator Research Department, offers a glimpse into FACET, which uses part of SLAC's historic two-mile-long linear accelerator.

  9. SLAC All Access: Laser Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minitti, Mike; Woods, Mike

    2013-03-01

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broadenmore » our understanding of cosmic rays and even unlock the mysteries of photosynthesis.« less

  10. SLAC All Access: Laser Labs

    ScienceCinema

    Minitti, Mike; Woods, Mike

    2018-05-23

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  11. SLAC-standard CAMAC branch terminator (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-04-04

    The drawings listed on the drawing list provide the data and specifications for constructing a Branch Terminator for the SLAC standard CAMAC units. This is a device for matching the cables and other branch lines in the system. This unit is designed for a certain group of SLAC CAMAC units which are referred to as SLAC-Standard CAMAC Units.

  12. Welcome to the Saclay Propeller Testing Center

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The history, organization, purpose, and activities of the Saclay Propeller Testing Center is described. A list is provided of all facilities, current and planned, and the types of tests done in each facility are summarized.

  13. Future Proof for Physics: Preserving the Record of SLAC

    ERIC Educational Resources Information Center

    Deken, Jean Marie

    2005-01-01

    This article provides a brief introduction to the Stanford Linear Accelerator Center (SLAC), discusses the origins of the SLAC Archives and History Office, its present-day operations, and the present and future challenges it faces in attempting to preserve an accurate historical record of SLAC's activities. (Contains 21 notes.)

  14. Search the SLAC Web

    Science.gov Websites

    for results of SLAC Intranet searches. Search Tips Technique Example Finds Results That: word want exact matches on words, for example, names of people, places, or organizations. words help desk

  15. Recent GPS Results at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrend, Dirk; Imfeld, Hans L.; /SLAC

    2005-08-17

    The Alignment Engineering Group (AEG) makes use of GPS technology for fulfilling part of its above ground surveying tasks at SLAC since early 2002. A base station (SLAC M40) has been set up at a central location of the SLAC campus serving both as master station for real-time kinematic (RTK) operations and as datum point for local GPS campaigns. The Leica RS500 system is running continuously and the GPS data are collected both externally (logging PC) and internally (receiver flashcard). The external logging is facilitated by a serial to Ethernet converter and an Ethernet connection at the station. Internal loggingmore » (ring buffer) is done for data security purposes. The weatherproof boxes for the instrumentation are excellent shelters against rain and wind, but do heat up considerably in sun light. Whereas the GPS receiver showed no problems, the Pacific Crest PDL 35 radio shut down several times due to overheating disrupting the RTK operations. In order to prevent heat-induced shutdowns, a protection against direct sun exposure (shading) and a constant air circulation system (ventilation) were installed. As no further shutdowns have occurred so far, it appears that the two measures successfully mended the heat problem.« less

  16. Sleepless at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dement, William

    2006-01-23

    Feeling tired? More than 30 million Americans suffer from sleep disorders. Nevertheless, as a society we remain largely ignorant of the significance of sleep in determining the quality of our waking lives. Dr. William Dement, Stanford Professor and one of the world's foremost experts on sleep and sleep deprivation, joins SLAC's Colloquium Series to present exciting new findings in the field of sleep research. You'll never sleep the same again!

  17. Sleepless at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dement, William

    Feeling tired? More than 30 million Americans suffer from sleep disorders. Nevertheless, as a society we remain largely ignorant of the significance of sleep in determining the quality of our waking lives. Dr. William Dement, Stanford Professor and one of the world's foremost experts on sleep and sleep deprivation, joins SLAC's Colloquium Series to present exciting new findings in the field of sleep research. You'll never sleep the same again!

  18. Transport of LCLS-II 1.3 Ghz cryomodule to SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, M. W.; Arkan, T.; Peterson, T.

    2016-06-30

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These include a prototype built and delivered by each Lab. Another two 3.9 GHz cryomodules will be built, tested and transported by Fermilab to SLAC. Each assembly will be transported over-the-road from Fermilab or Jefferson Lab using specific routes to SLAC. The transport system consists of a base frame, isolation fixture and upper protective truss. The strongback cryomodule lifting fixture is described along with other supportingmore » equipment used for both over-the-road transport and local (on-site) transport at Fermilab. Initially, analysis of fragile components and stability studies will be performed in order to assess the risk associated with over-the-road transport of a fully assembled cryomodule.« less

  19. Saclay Compact Accelerator-driven Neutron Sources (SCANS)

    NASA Astrophysics Data System (ADS)

    Marchix, A.; Letourneau, A.; Tran, HN; Chauvin, N.; Menelle, A.; Ott, F.; Schwindling, J.

    2018-06-01

    For next decade, the European neutron scattering community will face of important changes, as many facilities will close, strictly fission-based sources. This statement mainly concerns France with the planned closure of Orphee and ILL. At CEA-Saclay, the project SONATE has been launched in order to provide a high intensity neutron source in Saclay site, this project is based on Compact Accelerator-driven Neutron Sources technology coupled to high-intensity beams. The goal of SONATE is to develop a 50 kW target, aiming to produce at least a neutron yield of 1013 s-1 in pulse mode with a peak current of 100 mA. We have investigated in this document the best combinations of beam/target which would lead to this substantial neutron yields. Further investigations and tests have to be carry out, especially due to sparse data on thick target and such low-energy beams considered in this document. An intermediate step to the SONATE project is under test and development, called IPHI-NEUTRON, which would lead to provide a small-size neutron facility mainly devoted to neutron imagery for industry. This step is based on the existing 3 MeV proton beam, named IPHI. Best target candidates are Lithium and Beryllium, leading respectively to a neutron yield of about 2.1013 s-1 and 4.1012 s-1.

  20. Compilation of current high energy physics experiments - Sept. 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addis, L.; Odian, A.; Row, G. M.

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary ofmore » the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche. (RWR)« less

  1. Compliance of SLAC_s Laser Safety Program with OSHA Requirements for the Control of Hazardous Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Michael; /SLAC

    SLAC's COHE program requires compliance with OSHA Regulation 29CFR1910.147, 'The control of hazardous energy (lockout/tagout)'. This regulation specifies lockout/tagout requirements during service and maintenance of equipment in which the unexpected energization or start up of the equipment, or release of stored energy, could cause injury to workers. Class 3B and Class 4 laser radiation must be considered as hazardous energy (as well as electrical energy in associated equipment, and other non-beam energy hazards) in laser facilities, and therefore requires careful COHE consideration. This paper describes how COHE is achieved at SLAC to protect workers against unexpected Class 3B or Classmore » 4 laser radiation, independent of whether the mode of operation is normal, service, or maintenance.« less

  2. Liquid Hydrogen Target Experience at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisend, J.G.; Boyce, R.; Candia, A.

    2005-08-29

    Liquid hydrogen targets have played a vital role in the physics program at SLAC for the past 40 years. These targets have ranged from small ''beer can'' targets to the 1.5 m long E158 target that was capable of absorbing up to 800 W without any significant density changes. Successful use of these targets has required the development of thin wall designs, liquid hydrogen pumps, remote positioning and alignment systems, safety systems, control and data acquisition systems, cryogenic cooling circuits and heat exchangers. Detailed operating procedures have been created to ensure safety and operational reliability. This paper surveys the evolutionmore » of liquid hydrogen targets at SLAC and discusses advances in several of the enabling technologies that made these targets possible.« less

  3. Development of the Virtual Visitor Center at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDunn, Ruth

    1999-11-17

    The Virtual Visitor Center (VVC) web site (www2.slac.stanford.edu/vvc) is a ''virtual'' version of the Visitor Center, a mini science museum that opened at SLAC in 1996. The VVC was made public in December 1998. Both centers contribute to SLAC mission regarding education of the next generation and increasing scientific awareness of the public. The site is designed to mimic the real visitor center and allow a larger audience to the information. The intent was to reach the 8th-12th grade audience. Considerable effort was made to organize the content, including color-coding graphical elements for each main topic area. Tables of contents,more » a search tool, several photo tours, as well as graphical and non-graphical menu bars allow users many methods of navigating the site. The site was developed over almost two years using an estimated .95 FTE, split between a program manager, graphic designer, content provider (theoretical physicist), and a summer intern (high school teacher). As of November 1999, the site consists of 1,147 files, 935 images, 3,080 internal hyperlinks, and 190 external hyperlinks. The site has had over 1 million hits between January and mid-October 1999 and averages about 600 page views each day. Future plans include bringing the web site into compliance with the W3Cs Web Content Accessibility guidelines, thoroughly integrating the glossary terms, continued incorporation of current research at SLAC, and adding more interactivity.« less

  4. Loss‐of‐function mutation of rice SLAC7 decreases chloroplast stability and induces a photoprotection mechanism in rice

    PubMed Central

    Fan, Xiaolei; Wu, Jiemin; Chen, Taiyu; Tie, Weiwei; Chen, Hao; Zhou, Fei

    2015-01-01

    Abstract Plants absorb sunlight to power the photochemical reactions of photosynthesis, which can potentially damage the photosynthetic machinery. However, the mechanism that protects chloroplasts from the damage remains unclear. In this work, we demonstrated that rice (Oryza sativa L.) SLAC7 is a generally expressed membrane protein. Loss‐of‐function of SLAC7 caused continuous damage to the chloroplasts of mutant leaves under normal light conditions. Ion leakage indicators related to leaf damage such as H2O2 and abscisic acid levels were significantly higher in slac7‐1 than in the wild type. Consistently, the photosynthesis efficiency and Fv/Fm ratio of slac7‐1 were significantly decreased (similar to photoinhibition). In response to chloroplast damage, slac7‐1 altered its leaf morphology (curled or fused leaf) by the synergy between plant hormones and transcriptional factors to decrease the absorption of light, suggesting that a photoprotection mechanism for chloroplast damage was activated in slac7‐1. When grown in dark conditions, slac7‐1 displayed a normal phenotype. SLAC7 under the control of the AtSLAC1 promoter could partially complement the phenotypes of Arabidopsis slac1 mutants, indicating a partial conservation of SLAC protein functions. These results suggest that SLAC7 is essential for maintaining the chloroplast stability in rice. PMID:25739330

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    The author described the polarized-proton and polarized-antiproton beams up to 200 GeV/c at Fermilab. The beam line, called MP, consists of the 400-m long primary and 350-m long secondary beam line followed by 60-m long experimental hall. We discuss the characteristics of the polarized beams. The Fermilab polarization projects are designated at E-581/704 initiated and carried out by an international collaboration, Argonne (US), Fermilab (US), Kyoto-Kyushu-Hiroshima-KEK (Japan), LAPP (France), Northwestern University (US), Los Alamos Laboratory (US), Rice (US), Saclay (France), Serpukhov (USSR), INFN Trieste (Italy), and University of Texas (US).

  6. SLAC All Access: X-ray Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Johanna; Liu, Yijin

    2012-08-14

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  7. SLAC All Access: X-ray Microscope

    ScienceCinema

    Nelson, Johanna; Liu, Yijin

    2018-01-16

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  8. Environment, Safety & Health at SLAC

    Science.gov Websites

    and safety of our staff, the community, and the environment as we carry out our scientific mission. We believe that safety, science, productivity, and quality are mutually supportive, and that safety is to protect our resources and biota. See the SLAC Environment, Safety and Health Policy for more

  9. SLAC All Access: Vacuum Microwave Device Department

    ScienceCinema

    Haase, Andy

    2018-05-11

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  10. SLAC All Access: Vacuum Microwave Device Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, Andy

    2012-10-09

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  11. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, James; /UCLA; Travish, Gil

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal ofmore » demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are planning measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for efficient operation with pulse trains.« less

  12. Documenting the Physical Universe:Preserving the Record of SLAC from 1962 to 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deken, Jean Marie; /SLAC

    2006-03-10

    Since 1905, Albert Einstein's ''miraculous year'', modern physics has advanced explosively. In 2005, the World Year of Physics, a session at the SAA Annual meeting discusses three institutional initiatives--Einstein's collected papers, an international geophysical program, and a research laboratory--to examine how physics and physicists are documented and how that documentation is being collected, preserved, and used. This paper provides a brief introduction to the research laboratory (SLAC), discusses the origins of the SLAC Archives and History Office, its present-day operations, and the present and future challenges it faces in attempting to preserve an accurate historical record of SLAC's activities.

  13. Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Chen; L Hu; M Punta

    2011-12-31

    The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated bymore » an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.« less

  14. Prototype Solid State Induction Modulator for SLAC NLC

    NASA Astrophysics Data System (ADS)

    Cassel, R. L.; DeLamare, J. E.; Nguyen, M. N.; Pappas, G. C.; Cook, E.

    2002-08-01

    The Next Linear Collider accelerator proposal at SLAC requires a high efficiency, highly reliable, and low cost pulsed power modulator to drive the X band klystrons. The present NLC envisions a solid-state induction modulator design to drive up to 8 klystrons to 500kV for 3muS at 120 PPS with one modulator (>1,000 megawatt pulse, 500kW average). A prototype modulator is presently under construction, which well power 4 each 5045 SLAC klystron to greater than 380 kV for 3muS (>600 megawatt pulse, >300 kW Ave.). The modulator will be capable of driving the 8 each X band klystrons when they become available. The paper covers the design, construction, fabrication and preliminary testing of the prototype modulator.

  15. SLAC Linac Preparations for FACET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, R.; Bentson, L.; Kharakh, D.

    The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.

  16. Initial Testing of the Mark-0 X-Band RF Gun at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlieks, Arnold; Adolphsen, C.; Dolgashev, V.

    A new X-band RF gun (Mark-0) has been assembled, tuned and was tested in the ASTA facility at SLAC. This gun has been improved from an earlier gun used in Compton-scattering experiments at SLAC by the introduction of a racetrack dual-input coupler to reduce quadrupole fields. Waveguide-to-coupler irises were also redesigned to reduce surface magnetic fields and therefore peak pulse surface heating. Tests of this photocathode gun will allow us to gain early operational experience for beam tests of a new gun with further improvements (Mark-1) being prepared for SLAC's X-Band Test Area (XTA) program and the LLNL MEGa-ray program.more » Results of current testing up to {approx} 200 MV/m peak surface Electric fields are presented.« less

  17. Using The SLAC Two-Mile Accelerator for Powering an FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletta, W.A.; /LLNL, Livermore; Sessler, A.M.

    2012-06-29

    A parameter survey is made, employing the recently developed 2D formalism for an FEL, of the characteristics of an FEL using the SLAC accelerator. Attention is focused upon a wavelength of 40 {angstrom} (the water window) and 1 {angstrom} case is also presented. They consider employing the SLAC linac with its present operating parameters and with improved parameters such as would be supplied by a new photo-cathode injector. They find that improved parameters are necessary, but that the parameters presently achieved with present-day photo-cathode guns are adequate to reach the water window.

  18. Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs)

    PubMed Central

    Dreyer, Ingo; Gomez-Porras, Judith Lucia; Riaño-Pachón, Diego Mauricio; Hedrich, Rainer; Geiger, Dietmar

    2012-01-01

    Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant) SLAC-like and 422 (402 non-redundant) ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general. PMID:23226151

  19. Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs).

    PubMed

    Dreyer, Ingo; Gomez-Porras, Judith Lucia; Riaño-Pachón, Diego Mauricio; Hedrich, Rainer; Geiger, Dietmar

    2012-01-01

    Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant) SLAC-like and 422 (402 non-redundant) ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general.

  20. Wakefields in SLAC linac collimators

    DOE PAGES

    Novokhatski, A.; Decker, F. -J.; Smith, H.; ...

    2014-12-02

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible formore » the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.« less

  1. A Look Inside SLAC's Battery Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Seh, Zhi

    2014-07-17

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  2. A Look Inside SLAC's Battery Lab

    ScienceCinema

    Wei Seh, Zhi

    2018-01-26

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  3. Identification and biochemical analysis of Slac2-c/MyRIP as a Rab27A-, myosin Va/VIIa-, and actin-binding protein.

    PubMed

    Kuroda, Taruho S; Fukuda, Mitsunori

    2005-01-01

    Slac2-c/MyRIP is a specific Rab27A-binding protein that contains an N-terminal synaptotagmin-like protein (Slp) homology domain (SHD, a newly identified GTP-Rab27A-binding motif), but in contrast to the Slp family proteins, it lacks C-terminal tandem C2 domains. In vitro Slac2-c simultaneously directly interacts with both Rab27A and an actin-based motor protein, myosin Va, via its N-terminal SHD and middle region, respectively, consistent with the fact that the overall structure of Slac2-c is similar to that of Slac2-a/melanophilin, a linker protein between Rab27A and myosin Va in the melanosome transport in melanocytes. Unlike Slac2-a, however, the middle region of Slac2-c interacts with two types of myosins, myosin Va and myosin VIIa. In addition, the most C-terminal part of both Slac2-a and Slac2-c functions as an actin-binding domain: it directly interacts with globular and fibrous actin in vitro, and the actin-binding domain of Slac2-a and Slac2-c colocalizes with actin filaments when it is expressed in living cells (i.e., PC12 cells and mouse melanocytes). In this chapter we describe the methods that have been used to analyze the protein-protein interactions of Slac2-c, specifically with Rab27A, myosin Va/VIIa, and actin.

  4. An X-Band Gun Test Area at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limborg-Deprey, C.; Adolphsen, C.; Chu, T.S.

    The X-Band Test Area (XTA) is being assembled in the NLCTA tunnel at SLAC to serve as a test facility for new RF guns. The first gun to be tested will be an upgraded version of the 5.6 cell, 200 MV/m peak field X-band gun designed at SLAC in 2003 for the Compton Scattering experiment run in ASTA. This new version includes some features implemented in 2006 on the LCLS gun such as racetrack couplers, increased mode separation and elliptical irises. These upgrades were developed in collaboration with LLNL since the same gun will be used in an injector formore » a LLNL Gamma-ray Source. Our beamline includes an X-band acceleration section which takes the electron beam up to 100 MeV and an electron beam measurement station. Other X-Band guns such as the UCLA Hybrid gun will be characterized at our facility.« less

  5. SLAC pulsed X-ray facility

    NASA Astrophysics Data System (ADS)

    Ipe, N. E.; McCall, R. C.; Baker, E. D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the RF power for the accelerator. Hence, a pulsed X-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The X-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminum 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ms. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the X-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility.

  6. The Transmembrane Region of Guard Cell SLAC1 Channels Perceives CO2 Signals via an ABA-Independent Pathway in Arabidopsis

    PubMed Central

    Yamamoto, Yoshiko; Negi, Juntaro; Isogai, Yasuhiro; Schroeder, Julian I.; Iba, Koh

    2016-01-01

    The guard cell S-type anion channel, SLOW ANION CHANNEL1 (SLAC1), a key component in the control of stomatal movements, is activated in response to CO2 and abscisic acid (ABA). Several amino acids existing in the N-terminal region of SLAC1 are involved in regulating its activity via phosphorylation in the ABA response. However, little is known about sites involved in CO2 signal perception. To dissect sites that are necessary for the stomatal CO2 response, we performed slac1 complementation experiments using transgenic plants expressing truncated SLAC1 proteins. Measurements of gas exchange and stomatal apertures in the truncated transgenic lines in response to CO2 and ABA revealed that sites involved in the stomatal CO2 response exist in the transmembrane region and do not require the SLAC1 N and C termini. CO2 and ABA regulation of S-type anion channel activity in guard cells of the transgenic lines confirmed these results. In vivo site-directed mutagenesis experiments targeted to amino acids within the transmembrane region of SLAC1 raise the possibility that two tyrosine residues exposed on the membrane are involved in the stomatal CO2 response. PMID:26764376

  7. The Transmembrane Region of Guard Cell SLAC1 Channels Perceives CO2 Signals via an ABA-Independent Pathway in Arabidopsis.

    PubMed

    Yamamoto, Yoshiko; Negi, Juntaro; Wang, Cun; Isogai, Yasuhiro; Schroeder, Julian I; Iba, Koh

    2016-02-01

    The guard cell S-type anion channel, SLOW ANION CHANNEL1 (SLAC1), a key component in the control of stomatal movements, is activated in response to CO2 and abscisic acid (ABA). Several amino acids existing in the N-terminal region of SLAC1 are involved in regulating its activity via phosphorylation in the ABA response. However, little is known about sites involved in CO2 signal perception. To dissect sites that are necessary for the stomatal CO2 response, we performed slac1 complementation experiments using transgenic plants expressing truncated SLAC1 proteins. Measurements of gas exchange and stomatal apertures in the truncated transgenic lines in response to CO2 and ABA revealed that sites involved in the stomatal CO2 response exist in the transmembrane region and do not require the SLAC1 N and C termini. CO2 and ABA regulation of S-type anion channel activity in guard cells of the transgenic lines confirmed these results. In vivo site-directed mutagenesis experiments targeted to amino acids within the transmembrane region of SLAC1 raise the possibility that two tyrosine residues exposed on the membrane are involved in the stomatal CO2 response. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.

    PubMed

    Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  9. The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel.

    PubMed

    Müller, Heike M; Schäfer, Nadine; Bauer, Hubert; Geiger, Dietmar; Lautner, Silke; Fromm, Jörg; Riederer, Markus; Bueno, Amauri; Nussbaumer, Thomas; Mayer, Klaus; Alquraishi, Saleh A; Alfarhan, Ahmed H; Neher, Erwin; Al-Rasheid, Khaled A S; Ache, Peter; Hedrich, Rainer

    2017-10-01

    Date palm Phoenix dactylifera is a desert crop well adapted to survive and produce fruits under extreme drought and heat. How are palms under such harsh environmental conditions able to limit transpirational water loss? Here, we analysed the cuticular waxes, stomata structure and function, and molecular biology of guard cells from P. dactylifera. To understand the stomatal response to the water stress phytohormone of the desert plant, we cloned the major elements necessary for guard cell fast abscisic acid (ABA) signalling and reconstituted this ABA signalosome in Xenopus oocytes. The PhoenixSLAC1-type anion channel is regulated by ABA kinase PdOST1. Energy-dispersive X-ray analysis (EDXA) demonstrated that date palm guard cells release chloride during stomatal closure. However, in Cl - medium, PdOST1 did not activate the desert plant anion channel PdSLAC1 per se. Only when nitrate was present at the extracellular face of the anion channel did the OST1-gated PdSLAC1 open, thus enabling chloride release. In the presence of nitrate, ABA enhanced and accelerated stomatal closure. Our findings indicate that, in date palm, the guard cell osmotic motor driving stomatal closure uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and the release of anions together with potassium. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. SLAC Detailed Page: For staff, users, and collaborators - Page no longer

    Science.gov Websites

    information about this change.) This page will automatically redirect to the For Staff page. You may also want to visit the new Detailed Index web page. Please change your bookmarks accordingly. SLAC Stanford

  11. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weathersby, S. P.; Brown, G.; Chase, T. F.

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition ratemore » with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.« less

  12. Searching for light dark matter with the SLAC millicharge experiment.

    PubMed

    Diamond, M; Schuster, P

    2013-11-27

    New sub-GeV gauge forces ("dark photons") that kinetically mix with the photon provide a promising scenario for MeV-GeV dark matter and are the subject of a program of searches at fixed-target and collider facilities around the world. In such models, dark photons produced in collisions may decay invisibly into dark-matter states, thereby evading current searches. We reexamine results of the SLAC mQ electron beam dump experiment designed to search for millicharged particles and find that it was strongly sensitive to any secondary beam of dark matter produced by electron-nucleus collisions in the target. The constraints are competitive for dark photon masses in the ~1-30 MeV range, covering part of the parameter space that can reconcile the apparent (g-2)(μ) anomaly. Simple adjustments to the original SLAC search for millicharges may extend sensitivity to cover a sizable portion of the remaining (g-2)(μ) anomaly-motivated region. The mQ sensitivity is therefore complementary to ongoing searches for visible decays of dark photons. Compared to existing direct-detection searches, mQ sensitivity to electron-dark-matter scattering cross sections is more than an order of magnitude better for a significant range of masses and couplings in simple models.

  13. Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor

    PubMed Central

    Zeise, Brian; Xu, Danyun; Rappel, Wouter-Jan; Boron, Walter F.; Schroeder, Julian I.

    2016-01-01

    Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3− enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels. PMID:26764375

  14. An S-Type Anion Channel SLAC1 Is Involved in Cryptogein-Induced Ion Fluxes and Modulates Hypersensitive Responses in Tobacco BY-2 Cells

    PubMed Central

    Horikoshi, Sonoko; Hanamata, Shigeru; Negi, Juntaro; Yagi, Chikako; Kitahata, Nobutaka; Iba, Koh; Kuchitsu, Kazuyuki

    2013-01-01

    Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl− and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl− efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl− efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network. PMID:23950973

  15. An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 cells.

    PubMed

    Kurusu, Takamitsu; Saito, Katsunori; Horikoshi, Sonoko; Hanamata, Shigeru; Negi, Juntaro; Yagi, Chikako; Kitahata, Nobutaka; Iba, Koh; Kuchitsu, Kazuyuki

    2013-01-01

    Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl(-) and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl(-) efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl(-) efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.

  16. Frequentist Analysis of SLAC Rosenbluth Data

    NASA Astrophysics Data System (ADS)

    Higinbotham, Douglas; McClellan, Evan; Shamaiengar, Stephen

    2017-01-01

    Analysis of the SLAC NE-11 elastic electron-proton scattering data typically assumes that the 1.6 GeV spectrometer has a systematic normalization offset as compared to the well-known 8 GeV spectrometer, yet such an offset should have been observed globally. A review of doctoral theses from the period finds that analysis with high statistics, inelastic data saw no significant normalization difference. Moreover, the unique kinematics utilized to match the two spectrometers for normalization required the 8 GeV to be rotated beyond it's well-understood angular range. We try to quantify the confidence level of rejecting the null hypothesis, i.e. that the 1.6 GeV spectrometer normalization is correct, and will show the result of simply analyzing the cross section data as obtained. This is a critical study, as the 1.6 GeV spectrometer data drives the epsilon lever arm in Rosenbluth extractions, and therefore can have a significant impact on form factor extractions at high momentum transfer.

  17. Development for a supercompact X -band pulse compression system and its application at SLAC

    DOE PAGES

    Wang, Juwen W.; Tantawi, Sami G.; Xu, Chen; ...

    2017-11-09

    Here, we have successfully designed, fabricated, installed, and tested a super compact X -band SLAC Energy Doubler system at SLAC. It is composed of an elegant 3 dB coupler–mode converter–polarizer coupled to a single spherical energy storage cavity with high Q 0 of 94000 and a diameter less than 12 cm. The available rf peak power of 50 MW can be compressed to a peak average power of more than 200 MW in order to double the kick for the electron bunches in a rf transverse deflector system and greatly improve the measurement resolution of both the electron bunches andmore » the x-ray free-electron laser pulses. The design physics and fabrication as well as the measurement results will be presented in detail. High-power operation has demonstrated the excellent performance of this rf compression system without rf breakdown, sign of pulse heating, and rf radiation.« less

  18. Development for a supercompact X -band pulse compression system and its application at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juwen W.; Tantawi, Sami G.; Xu, Chen

    Here, we have successfully designed, fabricated, installed, and tested a super compact X -band SLAC Energy Doubler system at SLAC. It is composed of an elegant 3 dB coupler–mode converter–polarizer coupled to a single spherical energy storage cavity with high Q 0 of 94000 and a diameter less than 12 cm. The available rf peak power of 50 MW can be compressed to a peak average power of more than 200 MW in order to double the kick for the electron bunches in a rf transverse deflector system and greatly improve the measurement resolution of both the electron bunches andmore » the x-ray free-electron laser pulses. The design physics and fabrication as well as the measurement results will be presented in detail. High-power operation has demonstrated the excellent performance of this rf compression system without rf breakdown, sign of pulse heating, and rf radiation.« less

  19. 100 GeV SLAC Linac

    NASA Astrophysics Data System (ADS)

    Farkas, Z. D.

    2002-03-01

    The SLAC beam energy can be increased from the current 50 GeV to 100 GeV, if we change the operating frequency from the present 2856 MHz to 11424 MHz, using technology developed for the NLC. We replace the power distribution system with a proposed NLC distribution system as shown in Fig. 1. The four 3 meter s-band 820 nS .ll time accelerator sections are replaced by six 2 meter x-band 120 nS .ll time sections. Thus the accelerator length per klystron retains the same length, 12 meters. The 4050 65MW- 3.5microS klystrons are replaced by 75MW-1.5microS permanent magnet klystrons developed here and in Japan. The present input to the klystrons would be multiplied by a factor of 4 and possibly ampli.ed. The SLED cavities have to be replaced. The increase in beam voltage is due to the higher elastance to group velocity ratio, higher compression ratio and higher unloaded to external Q ratio of the new SLED cavities. The average power input is reduced because of the narrower klystron pulse width and because the klystron electro-magnets are replaced by permanent magnets.

  20. Assessment of soil quality in different ecosystems (with soils of Podolsk and Serpukhov districts of Moscow oblast as examples)

    NASA Astrophysics Data System (ADS)

    Gavrilenko, E. G.; Ananyeva, N. D.; Makarov, O. A.

    2013-12-01

    The values of the soil-ecological index and microbiological parameters (the carbon of microbial biomass Cmic, its ratio to the total organic carbon Cmic/Corg, and basal respiration) were determined for the soddy-podzolic, soddy-gley, bog-podzolic, meadow alluvial, and gray forest soils under different land uses (forest, fallow, cropland, and urban areas) in the Podolsk and Serpukhov districts of Moscow oblast (237 and 45 sampling points, respectively). The soil sampling from the upper 10 cm (without the litter horizon) was performed in September and October. To calculate the soil-ecological index, both soil (physicochemical and agrochemical) and climatic characteristics were taken into account. Its values for fallow, cropland, and urban ecosystems averaged 70.2, 72.8, and 64.2 points ( n = 90, 17, and 24, respectively). For the soils of forest ecosystems, the average value of the soil-ecological index was lower (54.4; n = 151). At the same time, the micro-biological characteristics of the studied forest soils were generally higher than those in the soils of fallow, cropland, and urban ecosystems. In this context, to estimate the soil quality in different ecosystems on the basis of the soil-ecological index, the use of a correction coefficient for the biological properties of the soils (the Cmic content) was suggested. The ecological substantiation of this approach for assessing the quality of soils in different ecosystems is presented in the paper.

  1. SLAC All Access: Atomic, Molecular and Optical Science Instrument

    ScienceCinema

    Bozek, John

    2018-02-13

    John Bozek, a staff scientist at SLAC's Linac Coherent Light Source (LCLS) X-ray laser who manages the LCLS Soft X-ray Department, takes us behind the scenes at the Atomic, Molecular and Optical Science (AMO) instrument, the first of six experimental stations now operating at LCLS. Samples used in AMO experiments include atoms, molecules, clusters, and nanoscale objects such as protein crystals or viruses. Science performed at AMO includes fundamental studies of light-matter interactions in the extreme X-ray intensity of the LCLS pules, time-resolved studies of increasingly charged states of atoms and molecules, X-ray diffraction imaging of nanocrystals, and single-shot imaging of a variety of objects.

  2. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobin, R., E-mail: rjgobin@cea.fr; Bogard, D.; Chauvin, N.

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid lowmore » energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.« less

  3. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    ScienceCinema

    Drell, Persis [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2018-06-15

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  4. Setup and Calibration of SLAC's Peripheral Monitoring Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, C.

    2004-09-03

    The goals of this project were to troubleshoot, repair, calibrate, and establish documentation regarding SLAC's (Stanford Linear Accelerator Center's) PMS (Peripheral Monitoring Station) system. The PMS system consists of seven PMSs that continuously monitor skyshine (neutron and photon) radiation levels in SLAC's environment. Each PMS consists of a boron trifluoride (BF{sub 3}) neutron detector (model RS-P1-0802-104 or NW-G-20-12) and a Geiger Moeller (GM) gamma ray detector (model TGM N107 or LND 719) together with their respective electronics. Electronics for each detector are housed in Nuclear Instrument Modules (NIMs) and are plugged into a NIM bin in the station. All communicationmore » lines from the stations to the Main Control Center (MCC) were tested prior to troubleshooting. To test communication with MCC, a pulse generator (Systron Donner model 100C) was connected to each channel in the PMS and data at MCC was checked for consistency. If MCC displayed no data, the communication cables to MCC or the CAMAC (Computer Automated Measurement and Control) crates were in need of repair. If MCC did display data, then it was known that the communication lines were intact. All electronics from each station were brought into the lab for troubleshooting. Troubleshooting usually consisted of connecting an oscilloscope or scaler (Ortec model 871 or 775) at different points in the circuit of each detector to record simulated pulses produced by a pulse generator; the input and output pulses were compared to establish the location of any problems in the circuit. Once any problems were isolated, repairs were done accordingly. The detectors and electronics were then calibrated in the field using radioactive sources. Calibration is a process that determines the response of the detector. Detector response is defined as the ratio of the number of counts per minute interpreted by the detector to the amount of dose equivalent rate (in mrem per hour, either calculated or

  5. Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC. FACET used part of SLAC’s two-mile-long linearmore » accelerator to generate high-density beams of electrons and their antimatter counterparts, positrons. Research into plasma wakefield acceleration was the primary motivation for constructing FACET. In April 2016, FACET operations came to an end to make way for the second phase of SLAC’s x-ray laser, the LCLS-II, which will use part of the tunnel occupied by FACET. FACET-II is a new test facility to provide the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II represents a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique.« less

  6. The SLAC linac as used in the SLC collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.; Abrams, G.; Adolphsen, C.

    The linac of the SLAC Linear Collider (SLC) must accelerate three high intensity bunches on each linac pulse from 1.2 GeV to 50 GeV with minimal increase of the small transverse emittance. The procedures and adjustments used to obtain this goal are outlined. Some of the accelerator parameters and components which interact are the beam energy, transverse position, component alignment, RF manipulation, feedback systems, quadrupole lattice, BNS damping, energy spectra, phase space matching, collimation, instrumentation and modelling. The method to bring these interdependent parameters collectively into specification has evolved over several years. This review is ordered in the sequence whichmore » is used to turn on the linac from a cold start and produce acceptable beams for the final focus and collisions. Approximate time estimates for the various activities are given. 21 refs.« less

  7. TOSCA calculations and measurements for the SLAC SLC damping ring dipole magnet

    NASA Astrophysics Data System (ADS)

    Early, R. A.; Cobb, J. K.

    1985-04-01

    The SLAC damping ring dipole magnet was originally designed with removable nose pieces at the ends. Recently, a set of magnetic measurements was taken of the vertical component of induction along the center of the magnet for four different pole-end configurations and several current settings. The three dimensional computer code TOSCA, which is currently installed on the National Magnetic Fusion Energy Computer Center's Cray X-MP, was used to compute field values for the four configurations at current settings near saturation. Comparisons were made for magnetic induction as well as effective magnetic lengths for the different configurations.

  8. Measurements of the neutron polarized structure function at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, C.C.; E-142 Collaboration

    1995-08-01

    Detailed measurements of unpolarized or spin-averaged nucleon structure functions over the past two decades have led to detailed knowledge of the nucleon`s internal momentum distribution. Polarized nucleon structure function measurements, which probe the nucleon`s internal spin distribution, started at SLAC in 1976. E-142 has recently measured the neutron polarized structure function g{sub 1}{sup n}(x) over the range 0.03 {le} {times} {le} 0.6 at an average Q{sup 2} of 2 GeV{sup 2} and found the integral I{sup n} = {integral}{sub 0}{sup 1}g{sub 1}{sup n}(x)dx={minus}0.022{plus_minus}0.011. E-143, which took data recently, has measured g{sub 1}{sup p} and g{sub 1}{sup 4}. Two more experimentsmore » (E-154 and E-155) will extend these measurements to lower x and higher Q{sup 2}.« less

  9. Some Solved Problems with the SLAC PEP-II B-Factory Beam-Position Monitor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Ronald G.

    2000-05-05

    The Beam-Position Monitor (BPM) system for the SLAC PEP-II B-Factory has been in operation for over two years. Although the BPM system has met all of its specifications, several problems with the system have been identified and solved. The problems include errors and limitations in both the hardware and software. Solutions of such problems have led to improved performance and reliability. In this paper the authors report on this experience. The process of identifying problems is not at an end and they expect continued improvement of the BPM system.

  10. Intense terahertz pulses from SLAC electron beams using coherent transition radiation.

    PubMed

    Wu, Ziran; Fisher, Alan S; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Hogan, Mark; Loos, Henrik; Lindenberg, Aaron

    2013-02-01

    SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/Å) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.

  11. A First Assessment of Two-Beam Linear Colliders and Longer-Term Two-Beam R& D Issues at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loew, Greg

    2001-06-05

    The purpose of this document is to summarize the work that has been done at SLAC in the last three or four months to assess the possibilities of two-beam linear colliders proposed by Ron Ruth, and to compare these colliders to the current NLC designs and their costs. The work is based on general discussions with C. Adolphsen, D. Burke, J. Irwin, J. Paterson, R. Ruth, T. Lavine and T. Raubenheimer, with considerable work done by the latter two. Given the complexities of these machines, the fact that the designs are far from complete and that all cost estimates aremore » still in a state of flux, it is clear that the conclusions drawn in this report cannot be cast in concrete. On the other hand, it does not seem too early to present the results that have been gathered so far, even if the facts contain significant uncertainties and the costs have large error bars. Now that R. Ruth has returned to SLAC, he will be able to add his point of view to the discussion. At this time, the conclusions presented here are the sole responsibility of the author.« less

  12. Present status of the low energy linac-based slow positron beam and positronium spectrometer in Saclay

    NASA Astrophysics Data System (ADS)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Reymond, J.-M.; Ruiz, N.; Sacquin, Y.; Vallage, B.

    2014-04-01

    A new slow positron beamline featuring a large acceptance positronium lifetime spectrometer has been constructed and tested at the linac-based slow positron source at IRFU CEA Saclay, France. The new instrument will be used in the development of a dense positronium target cloud for the GBAR experiment. The GBAR project aims at precise measurement of the gravitational acceleration of antihydrogen in the gravitational field of the Earth. Beyond application in fundamental science, the positron spectrometer will be used in materials research, for testing thin porous films and layers by means of positronium annihilation. The slow positron beamline is being used as a test bench to develop further instrumentation for positron annihilation spectroscopy (Ps time-of-flight, pulsed positron beam). The positron source is built on a low energy linear electron accelerator (linac). The 4.3 MeV electron energy used is well below the photoneutron threshold, making the source a genuine on-off device, without remaining radioactivity. The spectrometer features large BGO (Bismuth Germanate) scintillator detectors, with sufficiently large acceptance to detect all ortho-positronium annihilation lifetime components (annihilation in vacuum and in nanopores).

  13. Strong constraints on sub-GeV dark sectors from SLAC beam dump E137.

    PubMed

    Batell, Brian; Essig, Rouven; Surujon, Ze'ev

    2014-10-24

    We present new constraints on sub-GeV dark matter and dark photons from the electron beam-dump experiment E137 conducted at SLAC in 1980-1982. Dark matter interacting with electrons (e.g., via a dark photon) could have been produced in the electron-target collisions and scattered off electrons in the E137 detector, producing the striking, zero-background signature of a high-energy electromagnetic shower that points back to the beam dump. E137 probes new and significant ranges of parameter space and constrains the well-motivated possibility that dark photons that decay to light dark-sector particles can explain the ∼3.6σ discrepancy between the measured and standard model value of the muon anomalous magnetic moment. It also restricts the parameter space in which the relic density of dark matter in these models is obtained from thermal freeze-out. E137 also convincingly demonstrates that (cosmic) backgrounds can be controlled and thus serves as a powerful proof of principle for future beam-dump searches for sub-GeV dark-sector particles scattering off electrons in the detector.

  14. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    PubMed

    Khatri, Indu; Sharma, Shailza; Ramya, T N C; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  15. Research and development toward a 4.5-1.5 Å linac coherent light source (LCLS) at SLAC

    NASA Astrophysics Data System (ADS)

    Tatchyn, R.; Arthur, J.; Baltay, M.; Bane, K.; Boyce, R.; Cornacchia, M.; Cremer, T.; Fisher, A.; Hahn, S.-J.; Hernandez, M.; Loew, G.; Miller, R.; Nelson, W. R.; Nuhn, H.-D.; Palmer, D.; Paterson, J.; Raubenheimer, T.; Weaver, J.; Wiedemann, H.; Winick, H.; Pellegrini, C.; Travish, G.; Scharlemann, E. T.; Caspi, S.; Fawley, W.; Halbach, K.; Kim, K.-J.; Schlueter, R.; Xie, M.; Meyerhofer, D.; Bonifacio, R.; De Salvo, L.

    1996-02-01

    In recent years significant studies have been initiated on the feasibility of utilizing a portion of the 3 km S-band accelerator at SLAC to drive a short wavelength (4.5-1.5 Å) Linac Coherent Light Source (LCLS), a Free-Electron Laser (FEL) operating in the Self-Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation in a minimal time include: 1) a peak current in the 7 kA range, 2) a relative energy spread of <0.05%, and 3) a transverse emittance, ɛ [rad-m], approximating the diffraction-limit condition ɛ = {λ}/{4π}, where λ[m] is the output wavelength. Requirements on the insertion device include field error levels of 0.02% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 8 m/rad for inhibiting the dilution of its transverse density. Although much progress has been made in developing individual components and beam-processing techniques necessary for LCLS operation down to ˜20 Å, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 Å LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas. These include the construction and operation of a linac test stand for developing laser-driven photocathode rf guns with normalized emittances approaching 1 mm-mrad; development of advanced beam compression, stability, and emittance control techniques at multi-GeV energies; the construction and operation of a FEL Amplifier Test Experiment (FATE) for theoretical and experimental studies of SASE at IR wavelengths; an undulator development program to investigate superconducting, hybrid/permanent magnet (hybrid/PM), and pulsed-Cu technologies; theoretical and computational studies of high-gain FEL physics and LCLS component designs; development of X-ray optics and

  16. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics

    PubMed Central

    Ramya, T. N. C.; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions. PMID:27258038

  17. Design of the SLAC RCE Platform: A General Purpose ATCA Based Data Acquisition System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbst, R.; Claus, R.; Freytag, M.

    2015-01-23

    The SLAC RCE platform is a general purpose clustered data acquisition system implemented on a custom ATCA compliant blade, called the Cluster On Board (COB). The core of the system is the Reconfigurable Cluster Element (RCE), which is a system-on-chip design based upon the Xilinx Zynq family of FPGAs, mounted on custom COB daughter-boards. The Zynq architecture couples a dual core ARM Cortex A9 based processor with a high performance 28nm FPGA. The RCE has 12 external general purpose bi-directional high speed links, each supporting serial rates of up to 12Gbps. 8 RCE nodes are included on a COB, eachmore » with a 10Gbps connection to an on-board 24-port Ethernet switch integrated circuit. The COB is designed to be used with a standard full-mesh ATCA backplane allowing multiple RCE nodes to be tightly interconnected with minimal interconnect latency. Multiple shelves can be clustered using the front panel 10-gbps connections. The COB also supports local and inter-blade timing and trigger distribution. An experiment specific Rear Transition Module adapts the 96 high speed serial links to specific experiments and allows an experiment-specific timing and busy feedback connection. This coupling of processors with a high performance FPGA fabric in a low latency, multiple node cluster allows high speed data processing that can be easily adapted to any physics experiment. RTEMS and Linux are both ported to the module. The RCE has been used or is the baseline for several current and proposed experiments (LCLS, HPS, LSST, ATLAS-CSC, LBNE, DarkSide, ILC-SiD, etc).« less

  18. Annual Site Environmental Report: 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuckolls, H.; /SLAC

    2008-02-22

    This report provides information about environmental programs during the calendar year (CY) of 2006 at the Stanford Linear Accelerator Center (SLAC), Menlo Park, California. Activities that span the calendar year; i.e., stormwater monitoring covering the winter season of 2006/2007 (October 2006 through May 2007), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. SLAC continued to follow the path tomore » self-declare an environmental management system under DOE Order 450.1, 'Environmental Protection Program' and effectively applied environmental management in meeting the site's integrated safety and environmental management system goals. For normal daily activities, all SLAC managers and supervisors are responsible for ensuring that proper procedures are followed so that Worker safety and health are protected; The environment is protected; and Compliance is ensured. Throughout 2006, SLAC focused on these activities through the SLAC management systems. These systems were also the way SLAC approached implementing 'greening of the government' initiatives such as Executive Order 13148. The management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. The SLAC Office of Assurance was created during 2006 in response to DOE Order 226.1. During 2006, there were no reportable releases to the environment from SLAC operations, and there were no Notice of Violations issued to SLAC from any of the regulatory agencies that oversee SLAC. In addition, many improvements in waste minimization, recycling, stormwater drain system, groundwater restoration, and SLAC's chemical management system (CMS) were continued during 2006 to better manage

  19. Proceedings of the XXVI SLAC Summer Institute on Particle Physics: Gravity from the Hubble Length to the Planck Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deporcel, Lilian

    2001-04-02

    The XXVI SLAC Summer Institute on Particle Physics was held from August 3 to August 14, 1998. The topic, ''Gravity--from the Hubble Length to the Planck Length,'' brought together 179 physicists from 13 countries. The lectures in this volume cover the seven-day school portion of the Institute, which took us from the largest scales of the cosmos, to the Planck length at which gravity might be unified with the other forces of nature. Lectures by Robert Wagoner, Clifford Will, and Lynn Cominsky explored the embedding of gravity into general relativity and the confrontation of this idea with experiments in themore » laboratory and astrophysical settings. Avishai Deckel discussed observations and implications of the large-scale structure of the universe, and Tony Tyson presented the gravitational lensing effect and its use in the ongoing search for signatures of the unseen matter of the cosmos. The hunt for the wave nature of gravity was presented by Sam Finn and Peter Saulson, and Joe Polchinski showed us what gravity might look like in the quantum limit at the Planck scale. The lectures were followed by afternoon discussion sessions, where students could further pursue questions and topics with the day's lecturers. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment from around the world of elementary particle physics and cosmology; its proceedings are also presented in this volume.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabba, Dellilah

    This report, prepared by the SLAC National Accelerator Laboratory (SLAC) for the U.S. Department of Energy (DOE), SLAC Site Office (SSO), provides a comprehensive summary of the environmental program activities at SLAC for calendar year 2015. Annual Site Environmental Reports (ASERs) are prepared for all DOE sites with significant environmental activities, and distributed to relevant external regulatory agencies and other interested organizations or individuals. To the best of my knowledge, this report accurately summarizes the results of the 2015 environmental monitoring, compliance, and restoration programs at SLAC. This assurance can be made based on SSO and SLAC review of themore » ASER, and quality assurance protocols applied to monitoring and data analyses at SLAC.« less

  1. Development of molecularly imprinted polymer-based field effect transistor for sugar chain sensing

    NASA Astrophysics Data System (ADS)

    Nishitani, Shoichi; Kajisa, Taira; Sakata, Toshiya

    2017-04-01

    In this study, we developed a molecularly imprinted polymer-based field-effect transistor (MIP-gate FET) for selectively detecting sugar chains in aqueous media, focusing on 3‧-sialyllactose (3SLac) and 6‧-sialyllactose (6SLac). The FET biosensor enables the detection of small molecules as long as they have intrinsic charges. Additionally, the MIP gels include the template for the target molecule, which is selectively trapped without requiring enzyme-target molecule reaction. The MIP gels were synthesized on the gate surface of the FET device, including phenylboronic acid (PBA), which enables binding to sugar chains. Firstly, the 3SLac-MIP-gate FET quantitatively detected 3SLac at µM levels. This is because the FET device recognized the change in molecular charges on the basis of PBA-3SLac binding in the MIP gel. Moreover, 3SLac was selectively detected using the 3SLac- and 6SLac-MIP-gate FETs to some extent, where the detecting signal from the competent was suppressed by 40% at maximum. Therefore, a platform based on the MIP-coupled FET biosensor is suitable for a selective biosensing system in an enzyme-free manner, which can be applied widely in medical fields. However, we need to further improve the selectivity of MIP-gate FETs to discriminate more clearly between similar structures of sugar chains such as 3SLac and 6SLac.

  2. Whey protein isolate with improved film properties through cross-linking catalyzed by small laccase from Streptomyces coelicolor.

    PubMed

    Quan, Wei; Zhang, Chong; Zheng, Meixia; Lu, Zhaoxin; Lu, Fengxia

    2018-08-01

    The effects of small laccase (SLAC) from Streptomyces coelicolor on the properties of whey protein isolate (WPI) films were studied. WPI was catalyze by SLAC without phenolic acid assistance. Particle size distribution results showed that some complexes with higher relative molecular weight formed in WPI samples treated with SLAC. The content of α-helixes decreased while those of β-sheets and random coils increased following SLAC treatment according to circular dichroism results. Fourier transform infrared spectral analysis suggested that some conformational changes occurred in WPI following SLAC treatment. Analysis of WPI films prepared by casting after SLAC treatment indicated that their film properties were all improved, including mechanical properties, solubility, water vapor, oxygen and carbon dioxide barrier properties, film color, light transmission, transparency and thermal properties. Compared with that of the control film, some obvious differences in the morphology of the WPI films were observed following SLAC treatment. This report demonstrates that laccase can directly catalyze protein cross-linking, which may be useful to improve the performance of protein films. In this study, SLAC was applied to WPI edible film during the film-making process. The results showed that SLAC can catalyze WPI cross-linking without phenolic acid assistance, and WPI film properties were improved after SLAC treatment. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Annual Site Environmental Report: 2008 (ASER)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabba, D.

    2009-11-09

    This report provides information about environmental programs during the calendar year of 2008 at the SLAC National Accelerator Laboratory (SLAC), Menlo Park, California. Activities that span the calendar year, i.e., stormwater monitoring covering the winter season of 2008/2009 (October 2008 through May 2009), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423, Strengthening Federal Environmental,more » Energy, and Transportation Management, and DOE Order 450.1A, Environmental Protection Program, SLAC effectively implements and integrates the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2008, SLAC continued to improve its management systems. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13423 and DOE Orders 450.1A and 430.2B. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. SLAC continues to demonstrate significant progress in implementing and integrating EMS into day-to-day operations and construction activities at SLAC. The annual management review and ranking of environmental aspects were completed this year by SLAC's EMS Steering Committee, the Environmental Safety Committee (ESC), and twelve objectives and targets were

  4. The Next Linear Collider Program

    Science.gov Websites

    Navbar Other Address Books: Laboratory Phone/Email Web Directory SLAC SLAC Phonebook Entire SLAC Web FNAL Telephone Directory Fermilab Search LLNL Phone Book LLNL Web Servers LBNL Directory Services Web Search: A-Z Index KEK E-mail Database Research Projects NLC Website Search: Entire SLAC Web | Help

  5. The Role of Research Universities in Helping Solve our Energy Challenges: A Case Study at Stanford and SLAC (2011 EFRC Summit)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennessey, John

    2011-05-25

    The first speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was John Hennessey, President of Stanford University. He discussed the important role that the academic world plays as a partner in innovative energy research by presenting a case study involving Stanford and SLAC. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended tomore » accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.« less

  6. The Role of Research Universities in Helping Solve our Energy Challenges: A Case Study at Stanford and SLAC (2011 EFRC Summit)

    ScienceCinema

    Hennessey, John

    2018-02-12

    The first speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was John Hennessey, President of Stanford University. He discussed the important role that the academic world plays as a partner in innovative energy research by presenting a case study involving Stanford and SLAC. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  7. The Next Linear Collider Program

    Science.gov Websites

    posted to the new SLAC ILC web site http://www-project.slac.stanford.edu/ilc/. Also, see the new site for . The NLC web site will remain accessible as an archive of important work done on the many systems to be complete by the end of the calendar year. NLC Website Search: Entire SLAC Web | Help Phonebook

  8. The Next Linear Collider Program

    Science.gov Websites

    /graphics.htm Snowmass 2001 http://snowmass2001.org/ Electrical Systems Modulators http://www -project.slac.stanford.edu/lc/local/electrical/e_home.htm DC Magnet Power http://www-project.slac.stanford.edu/lc/local /electrical/e_home.htm Global Systems http://www-project.slac.stanford.edu/lc/local/electrical/e_home.htm

  9. A valiant little terminal: A VLT user`s manual. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, A.

    1992-08-01

    VLT came to be used at SLAC (Stanford Linear Accelerator Center), because SLAC wanted to assess the Amiga`s usefulness as a color graphics terminal and T{sub E}X workstation. Before the project could really begin, the people at SLAC needed a terminal emulator which could successfully talk to the IBM 3081 (now the IBM ES9000-580) and all the VAXes on the site. Moreover, it had to compete in quality with the Ann Arbor Ambassador GXL terminals which were already in use at the laboratory. Unfortunately, at the time there was no commercial program which fit the bill. Luckily, Willy Langeveld hadmore » been independently hacking up a public domain VT100 emulator written by Dave Wecker et al. and the result, VLT, suited SLAC`s purpose. Over the years, as the program was debugged and rewritten, the original code disappeared, so that now, in the present version of VLT, none of the original VT100 code remains.« less

  10. Five meter magnetic spectrometer based on a streamer chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohm, G.; Vertogradov, L.S.; Grishkevich, Ya.V.

    1972-01-01

    In streamer chamber technology. Development of a five-meter magnetic spectrometer, based on a streamer chamber with a liquid hydrogen target is outlined. The spectrometer is called RISK (Relativistic Ionization Streamer Chamber (Kamera)) because it is proposed to measure the velocity of relativistic particles by means of their ionization energy loss as an aid in their identification. The spectrometer will be used for the study of high-energy hadron interactions at the Serpukhov Synchrotron. The status of the project is summarized. (WHK)

  11. Bibliography of Soviet Laser Developments Number 54, July-August 1981.

    DTIC Science & Technology

    1982-12-01

    441. Kotyuk, A.F., A.P. Romashkov, and N.Sh. Khaykin (0). Production of a metrologic control system for measuring pulse power. IT, no. 8, 1981, 30-31...Possibility of recording the bas!ic characteristics of a wave process by a laser strain gauge . Sb 17, 30-34. 474. Dubovoy, A.P., and V.M. Sinel’nikov (0...Yu.S. Nechayev (560). Metrological features of a laser device with a single-mirror deflecting unit. Institut fiziki vysokoy energiy. Serpukhov

  12. Accelerator on a Chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  13. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2018-01-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  14. Enhanced delignification of steam-pretreated poplar by a bacterial laccase

    DOE PAGES

    Singh, Rahul; Hu, Jinguang; Regner, Matthew R.; ...

    2017-02-07

    The recalcitrance of woody biomass, particularly its lignin component, hinders its sustainable transformation to fuels and biomaterials. Although the recent discovery of several bacterial ligninases promises the development of novel biocatalysts, these enzymes have largely been characterized using model substrates: direct evidence for their action on biomass is lacking. Herein, we report the delignification of woody biomass by a small laccase (sLac) from Amycolatopsis sp. 75iv3. Incubation of steam-pretreated poplar (SPP) with sLac enhanced the release of acid-precipitable polymeric lignin (APPL) by ~6-fold, and reduced the amount of acid-soluble lignin by ~15%. NMR spectrometry revealed that the APPL was significantlymore » syringyl-enriched relative to the original material (~16:1 vs. ~3:1), and that sLac preferentially oxidized syringyl units and altered interunit linkage distributions. sLac’s substrate preference among monoaryls was also consistent with this observation. In addition, sLac treatment reduced the molar mass of the APPL by over 50%, as determined by gel-permeation chromatography coupled with multi-angle light scattering. Finally, sLac acted synergistically with a commercial cellulase cocktail to increase glucose production from SPP ~8%. Altogether, this study establishes the lignolytic activity of sLac on woody biomass and highlights the biocatalytic potential of bacterial enzymes.« less

  15. Enhanced delignification of steam-pretreated poplar by a bacterial laccase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rahul; Hu, Jinguang; Regner, Matthew R.

    The recalcitrance of woody biomass, particularly its lignin component, hinders its sustainable transformation to fuels and biomaterials. Although the recent discovery of several bacterial ligninases promises the development of novel biocatalysts, these enzymes have largely been characterized using model substrates: direct evidence for their action on biomass is lacking. Herein, we report the delignification of woody biomass by a small laccase (sLac) from Amycolatopsis sp. 75iv3. Incubation of steam-pretreated poplar (SPP) with sLac enhanced the release of acid-precipitable polymeric lignin (APPL) by ~6-fold, and reduced the amount of acid-soluble lignin by ~15%. NMR spectrometry revealed that the APPL was significantlymore » syringyl-enriched relative to the original material (~16:1 vs. ~3:1), and that sLac preferentially oxidized syringyl units and altered interunit linkage distributions. sLac’s substrate preference among monoaryls was also consistent with this observation. In addition, sLac treatment reduced the molar mass of the APPL by over 50%, as determined by gel-permeation chromatography coupled with multi-angle light scattering. Finally, sLac acted synergistically with a commercial cellulase cocktail to increase glucose production from SPP ~8%. Altogether, this study establishes the lignolytic activity of sLac on woody biomass and highlights the biocatalytic potential of bacterial enzymes.« less

  16. Book Review - Panofsky on Physics, Politics, and Peace: Pief Remembers

    NASA Astrophysics Data System (ADS)

    Loew, Gregory

    The following sections are included: * Introduction: Genesis of the Book * Nature and Nurture: Pief's Early Life * This Review * High School in Hamburg; University at Princeton and Caltech * Pief and the Bomb * Accelerators and Physics at UCRL * Events Leading up to the Loyalty Oath * Stanford, the Microwave Lab and HEPL * The Rise of SLAC * Building SLAC * Physics Research at SLAC in the First Ten Years * Other Accelerator Activities under Pief * Science Advising and International Science * Arms Control (1981-2007): The Unfinished Business

  17. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SLAC,

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  19. The Fermi Large Area Telescope on Orbit: Event Classification, Instrument Response Functions, and Calibration

    DTIC Science & Technology

    2012-11-01

    Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology , Department of Physics and SLAC National Accelerator...Laboratory, Stanford University, Stanford, CA 94305, USA; echarles@slac.stanford.edu 3 Department of Physics, Center for Cosmology and Astro-Particle Physics

  20. X-ray Laser Animated Fly-Through

    ScienceCinema

    None

    2018-01-16

    Take a tour with an electron's-eye-view through SLAC's revolutionary new X-ray laser facility with this 5 1/2 minute animation. See how the X-ray pulses are generated using the world's longest linear accelerator along with unique arrays of machinery specially designed for this one-of-a-kind tool. For more than 40 years, SLAC's two-mile-long linear accelerator (or linac) linac has produced high-energy electrons for cutting-edge physics experiments. Now, SLAC's linac has entered a new phase of its career with the creation of the Linac Coherent Light Source (LCLS).

  1. The Large Synoptic Survey Telescope (LSST) Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Ranked as the top ground-based national priority for the field for the current decade, LSST is currently under construction in Chile. The U.S. Department of Energy’s SLAC National Accelerator Laboratory is leading the construction of the LSST camera – the largest digital camera ever built for astronomy. SLAC Professor Steven M. Kahn is the overall Director of the LSST project, and SLAC personnel are also participating in the data management. The National Science Foundation is the lead agency for construction of the LSST. Additional financial support comes from the Department of Energy and private funding raised by the LSST Corporation.

  2. Minister unveils new nanotech centres

    NASA Astrophysics Data System (ADS)

    Dumé, Belle

    2009-06-01

    Three new nanotechnology research centres are to be set up in France as part of a €70m government plan to help French companies in the sector. Researchers at the new centres, which will be located in Grenoble, Saclay (near Paris) and Toulouse, will be encouraged to collaborate with industry to develop new nanotech-based products. Dubbed NANO-INNOV, the new plan includes €46m for two new buildings at Saclay, with the rest being used to buy new equipment at the three centres and to fund grant proposals from staff to the French National Research Agency (ANR).

  3. A valiant little terminal: A VLT user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, A.

    1992-08-01

    VLT came to be used at SLAC (Stanford Linear Accelerator Center), because SLAC wanted to assess the Amiga's usefulness as a color graphics terminal and T{sub E}X workstation. Before the project could really begin, the people at SLAC needed a terminal emulator which could successfully talk to the IBM 3081 (now the IBM ES9000-580) and all the VAXes on the site. Moreover, it had to compete in quality with the Ann Arbor Ambassador GXL terminals which were already in use at the laboratory. Unfortunately, at the time there was no commercial program which fit the bill. Luckily, Willy Langeveld hadmore » been independently hacking up a public domain VT100 emulator written by Dave Wecker et al. and the result, VLT, suited SLAC's purpose. Over the years, as the program was debugged and rewritten, the original code disappeared, so that now, in the present version of VLT, none of the original VT100 code remains.« less

  4. Sentence level auditory comprehension treatment program for aphasic adults.

    PubMed

    Naeser, M A; Haas, G; Mazurski, P; Laughlin, S

    1986-06-01

    The purpose of this study was to investigate whether a newly developed sentence level auditory comprehension (SLAC) treatment program could be used to improve language comprehension test scores in adults with chronic aphasia. Results indicate that the SLAC treatment program can be used with chronic patients; performance on a standardized test (the Token Test) was improved after treatment; and improved performance could not be predicted from either anatomic CT scan lesion sites or pretreatment test scores. One advantage to the SLAC treatment program is that the patient can practice listening independently with a tape recorder device (Language Master) and earphones either in the hospital or at home.

  5. The Large Synoptic Survey Telescope (LSST) Camera

    ScienceCinema

    None

    2018-06-13

    Ranked as the top ground-based national priority for the field for the current decade, LSST is currently under construction in Chile. The U.S. Department of Energy’s SLAC National Accelerator Laboratory is leading the construction of the LSST camera – the largest digital camera ever built for astronomy. SLAC Professor Steven M. Kahn is the overall Director of the LSST project, and SLAC personnel are also participating in the data management. The National Science Foundation is the lead agency for construction of the LSST. Additional financial support comes from the Department of Energy and private funding raised by the LSST Corporation.

  6. Annual Site Environmental Report: 2016 (ASER)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabba, Dellilah; Atapattu, Rohendra; DeCamara, Micki

    This report provides information about environmental programs during calendar year (CY) 2016 at the SLAC National Accelerator Laboratory (SLAC).in San Mateo County, California. Activities that overlap the calendar year - e.g., stormwater monitoring covering the winter season of 2015/2016 (October 1, 2015 through May 31, 2016) are also included.

  7. Burton Richter, Storage Rings, and the J/psi Particle

    Science.gov Websites

    [SLAC's] Technical Director, [Richter] became Director ... from 1984 through 1999. During his tenure, SLAC Limits of Quantum Electro-dynamics, DOE Technical Report, June 1959 Design Considerations for High Energy Electron -- Positron Storage Rings, DOE Technical Report, November 1966 Inclusive Yields of pi+, pi-, K

  8. The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies

    NASA Technical Reports Server (NTRS)

    Bolton, Adam S.; Burles, Scott; Koopmans, Leon V. E.; Treu, Tommaso; Moustakas, Leonidas A.

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple nebular emission lines at a redshift significantly higher than that of the SDSS target galaxy. The SLACS survey is optimized to detect bright early-type lens galaxies with faint lensed sources in order to increase the sample of known gravitational lenses suitable for detailed lensing, photometric, and dynamical modeling. In this paper, the first in a series on the current results of our HST Cycle 13 imaging survey, we present a catalog of 19 newly discovered gravitational lenses, along with nine other observed candidate systems that are either possible lenses, nonlenses, or nondetections. The survey efficiency is thus >=68%. We also present Gemini 8 m and Magellan 6.5 m integral-field spectroscopic data for nine of the SLACS targets, which further support the lensing interpretation. A new method for the effective subtraction of foreground galaxy images to reveal faint background features is presented. We show that the SLACS lens galaxies have colors and ellipticities typical of the spectroscopic parent sample from which they are drawn (SDSS luminous red galaxies and quiescent MAIN sample galaxies), but are somewhat brighter and more centrally concentrated. Several explanations for the latter bias are suggested. The SLACS survey provides the first statistically significant and homogeneously selected sample of bright early-type lens galaxies, furnishing a powerful probe of the structure of early-type galaxies within the half-light radius. The high confirmation rate of lenses in the SLACS survey suggests consideration of spectroscopic lens discovery as an explicit science goal of future spectroscopic galaxy surveys.

  9. The Next Linear Collider Program

    Science.gov Websites

    text only International Study Group (ISG) Meetings NLC Home Page NLC Technical SLAC Eleventh Linear Collider International Study Group at KEK, December 16 - 19, 2003 Tenth (X) Linear Collider International Study Group at SLAC, June, 2003 Nineth Linear Collider ,International Study Group at KEK, December 10-13

  10. Technical specification for vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaw, J.

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing andmore » designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)« less

  11. ZAP! The X-Ray Laser is Born

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratner, Daniel

    2009-11-17

    SLAC has converted its giant particle accelerator into the world's first X-ray laser. By a billion fold the world's brightest X-ray source, the laser packs a trillion photons into pulses as short as a millionth of a billionth of a second. The ultra-bright, ultra-short X-ray pulses will drive a wide range of new experiments, as scientists strip electrons from atoms, photograph single molecules and make movies of chemical reactions. How has SLAC accomplished such feats of X-ray wizardry? Attend this public lecture to learn about the basics of an X-ray laser, the technologies at SLAC that make it possible, andmore » the exciting new experiments now underway.« less

  12. X-ray detectors at the Linac Coherent Light Source.

    PubMed

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-05-01

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  13. X-ray detectors at the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less

  14. X-ray detectors at the Linac Coherent Light Source

    DOE PAGES

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; ...

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less

  15. X-ray detectors at the Linac Coherent Light Source

    PubMed Central

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-01-01

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced. PMID:25931071

  16. The Next Linear Collider Program

    Science.gov Websites

    posted to the new SLAC ILC web site http://www-project.slac.stanford.edu/ilc/. Also, see the new site for . The NLC web site will remain accessible as an archive of important work done on the many systems | Navbar || || Documentation | NLC Playpen | Web Comments & Suggestions | Desktop Trouble Call | LC

  17. The Next Linear Collider Program

    Science.gov Websites

    . Records including program management records, financial records, technical and R&D data needed to international collaboration including BINP (Protvino), DESY, FNAL, KEK, LAL d'Orsay, MPI (Munich) and SLAC. SLAC scientific records for proper NLC documentation. Both paper and electronic files are archived in conjunction

  18. Writing World-Wide Web CGI scripts in the REXX language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, R.L.A.

    This talk is aimed at people who have experience with REXX and are interested in using it to write WWW CGI scripts. As part of this, the author describes several functions that are available in a library of REXX functions that simplify writing WWW CGI scripts. This library is freely available at //www.slac.standard.edu/slac/www/tool/cgi-rexx/.

  19. Claudio Pellegrini and the World’s First Hard X-ray Free-Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrini, Claudio

    2015-10-20

    President Obama welcomed SLAC's Claudio Pellegrini inside the Oval Office on Tuesday morning as a recipient of the Enrico Fermi Award, one of the highest honors the U.S. government can give to a scientist. Pellegrini, a visiting scientist and consulting professor at SLAC and distinguished professor emeritus at the University of California, Los Angeles, received the award for research that aided in the development of X-ray free-electron lasers (XFELs) including SLAC's Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility that started up in 2009. Here, Pellegrini describes his efforts that contributed to the realization of SLAC’smore » Linac Coherent Light Source, the world’s first hard X-ray free-electron laser.« less

  20. Claudio Pellegrini and the World’s First Hard X-ray Free-Electron Laser

    ScienceCinema

    Pellegrini, Claudio

    2018-01-16

    President Obama welcomed SLAC's Claudio Pellegrini inside the Oval Office on Tuesday morning as a recipient of the Enrico Fermi Award, one of the highest honors the U.S. government can give to a scientist. Pellegrini, a visiting scientist and consulting professor at SLAC and distinguished professor emeritus at the University of California, Los Angeles, received the award for research that aided in the development of X-ray free-electron lasers (XFELs) including SLAC's Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility that started up in 2009. Here, Pellegrini describes his efforts that contributed to the realization of SLAC’s Linac Coherent Light Source, the world’s first hard X-ray free-electron laser.

  1. Temporal and spatial variation of polychlorinated biphenyls (PCBs) contamination in environmental compartments of highly polluted area in Central Russia.

    PubMed

    Malina, Natalia; Mazlova, Elena A

    2017-10-01

    This study highlights the fact that serious contamination from polychlorinated biphenyls (PCBs) still exists in Serpukhov City (Russia). The research help to determine the temporal (16- and 24-year periods) and spatial PCBs distribution in the environmental compartments of the studied region. Samples of soil, sediments, water and plants were analysed in order to establish their contamination levels. The most recent data on the Serpukhov City's soil contamination showed that the PCBs concentrations varies from 0.0009 to 1169 mg/kg depending on the sampling point and the distance from the pollution source. The temporal trends of the contamination distribution with the soil depth showed contamination migration in the upper soil layers of the highly polluted site. The high level of water pollution (11.5 μg/L) in the proximity to the contamination source and the sediments contamination (0.098-119 mg/kg) were determined, as well as the water migration pathways of the PCBs that were prevalent in the studied region. The PCB congener group (by the level of chlorination) analysis showed that heptachlorinated biphenyls were only found in the soils in close proximity to the contamination place, while biphenyls with Cl ≤ 6 were found in the soil samples downstream of the condenser plant and with Cl ≤ 5 in the soil samples upstream of the plant. The plant uptake of PCBs, even on the extremely contaminated site, was shown. In turn, this research present new knowledge necessary for the development of a contaminated territory remediation strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Focusing Electron Beams at SLAC.

    ERIC Educational Resources Information Center

    Taylor, Richard L.

    1993-01-01

    Describes the development of a set of magnets that focus high-energy electron and positron beams causing them to collide, annihilate each other, and generate new particles. Explains how dipoles bend the beam, how quadrupoles focus the beam, how the focal length is calculated, and the superconducting final focus. (MDH)

  3. SLAC Phone Directory: Search Form

    Science.gov Websites

    Facilities LCLS Hard X-Ray LCLS IT & Networking LCLS IT Photon Systems LCLS Instrumentation Dev LCLS Delivery Dept LCLS Science Research & DevDiv LCLS Soft X-Ray LCLS Technical Support LCLS User Beam Line Ops Sup SSRL MSD Hard X-rays SSRL MSD Soft X-rays SSRL MSDBeam Line Elec SSRL MSDBeam Line

  4. Discovery of the fourth quark in the Standard Model

    Science.gov Websites

    , using the MARK I detector, (above left) and on the East Coast, at DOE’s Brookhaven Laboratory Burton Richter at DOE’s SLAC Sam Ting and team at DOE's Brookhaven 1974 The discovery of charm , the fourth quark in the Standard Model, occurred simultaneously on the West Coast, at DOE’s SLAC

  5. Press Release | News

    Science.gov Websites

    Chicagoland area. Fermilab delivers first cryomodule for ultrapowerful X-ray laser at SLAC January 19, 2018 The first cryomodule for SLAC's LCLS-II X-ray laser departed Fermilab on Jan. 16. Photo: Reidar Hahn A , which will be the nation's only X-ray free-electron laser facility. 1 2 3 ... 40 » Go Fermilab news

  6. Earth's Magnetic Field Measurements for the LCLS Undulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacker, Kirsten

    2010-12-13

    Measurements of the earth's magnetic field at several locations at SLAC were conducted to determine the possible field error contribution from tuning the undulators in a location with a different magnetic field than that which will be found in the undulator hall. An average difference of 0.08 {+-} 0.04 Gauss has been measured between the downward earth's field components in the test facility and SLAC tunnel locations.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auger, M. W.; Treu, T.; Marshall, P. J.

    We present the current photometric data set for the Sloan Lens ACS (SLACS) Survey, including Hubble Space Telescope (HST) photometry from Advanced Camera for Surveys, WFPC2, and NICMOS. These data have enabled the confirmation of an additional 15 grade 'A' (certain) lens systems, bringing the number of SLACS grade 'A' lenses to 85; including 13 grade 'B' (likely) systems, SLACS has identified nearly 100 lenses and lens candidates. Approximately 80% of the grade 'A' systems have elliptical morphologies while approx10% show spiral structure; the remaining lenses have lenticular morphologies. Spectroscopic redshifts for the lens and source are available for everymore » system, making SLACS the largest homogeneous data set of galaxy-scale lenses to date. We have created lens models using singular isothermal ellipsoid mass distributions for the 11 new systems that are dominated by a single mass component and where the multiple images are detected with sufficient signal to noise; these models give a high precision measurement of the mass within the Einstein radius of each lens. We have developed a novel Bayesian stellar population analysis code to determine robust stellar masses with accurate error estimates. We apply this code to deep, high-resolution HST imaging and determine stellar masses with typical statistical errors of 0.1 dex; we find that these stellar masses are unbiased compared to estimates obtained using SDSS photometry, provided that informative priors are used. The stellar masses range from 10{sup 10.5} to 10{sup 11.8} M{sub sun} and the typical stellar mass fraction within the Einstein radius is 0.4, assuming a Chabrier initial mass function. The ensemble properties of the SLACS lens galaxies, e.g., stellar masses and projected ellipticities, appear to be indistinguishable from other SDSS galaxies with similar stellar velocity dispersions. This further supports that SLACS lenses are representative of the overall population of massive early

  8. Sudden death in spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type.

    PubMed

    Dias, Cristina; Cairns, Robyn; Patel, Millan S

    2009-01-01

    The spondylo-meta-epiphyseal dysplasias are an expanding group of skeletal dysplasias with specific features differentiating each subtype. We review the precocious carpal mineralization, unique metacarpal shape, triangular distal phalanges and mushroom cloud-shaped proximal phalanges present at an early age in spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type (SMED SL-AC) and report two patients with clinical and radiographic features consistent with SMED SL-AC, who died suddenly because of spinal cord compression. The patients presented are female siblings, providing further evidence for autosomal recessive inheritance. Cervical cord compression is found in half of reported patients and is the major cause of mortality. SMED SL-AC should be added to the list of genetic causes of sudden death. Radiological features in the hand may be used in the first few years of life to support an early diagnosis and thus allow for prevention of premature demise.

  9. High power s-band vacuum load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, Michael; Dudas, Alan; Krasnykh, Anatoly

    Through a combination of experimentation and calculation the components of a novel room temperature dry load were successfully fabricated. These components included lossy ceramic cylinders of various lengths, thicknesses, and percent of silicon carbide (SiC). The cylinders were then assembled into stainless steel compression rings by differential heating of the parts and a special fixture. Post machining of this assembly provided a means for a final weld. The ring assemblies were then measured for S-parameters, individually and in pairs using a low-cost TE10 rectangular to TE01 circular waveguide adapter specially designed to be part of the final load assembly. Matchedmore » pairs of rings were measured for assembly into the final load, and a sliding short designed and fabricated to assist in determining the desired short location in the final assembly. The plan for the project was for Muons, Inc. to produce prototype loads for long-term testing at SLAC. The STTR funds for SLAC were to upgrade and operate their test station to ensure that the loads would satisfy their requirements. Phase III was to be the sale to SLAC of loads that Muons, Inc. would manufacture. However, an alternate solution that involved a rebuild of the old loads, reduced SLAC budget projections, and a relaxed time for the replacement of all loads meant that in-house labor will be used to do the upgrade without the need for the loads developed in this project. Consequently, the project was terminated before the long term testing was initiated. However, SLAC can use the upgraded test stand to compare the long-term performance of the ones produced in this project with their rebuilt loads when they are available.« less

  10. [Midcarpal arthrodesis with cortical bolting chip for treatment of grade II/III scaphoid non-union and scapholunate advanced collapse].

    PubMed

    Zeplin, P H; Kuhfuss, I

    2009-06-01

    These case reports describe a mediocarpal arthrodesis with excision of the scaphoid using a cortical bolting chip and screw fixation instead of the use of Kirschner wires or Spider plates. Four patients with a symptomatic SLAC/SLAC-wrist >or= grade II were treated. The evaluation occurred six months later. For the evaluation the Cooney and Bussey as well as DASH scores were used (pain, strength, range of motion, functional status, possible limitations of quality of life, subjective perception of the patient). The radiological evaluation was performed by conventional wrist X-ray in two projections. All patients were pain-free after the operation. From the radiological point of view a complete osseous consolidation has set in. The mean strength six months after surgical intervention was 53 % (preoperative 52 %) and the total range of motion 47 % (preoperative 59 %) compared to the opposite side. The Cooney and Bussey scores were at 69 (+ 25 %) and the DASH score at 44 (- 28 %) points. In case of an SNAC/SLAC-wrist a motion-preserving operation should always be given preference to a wrist stiffening procedure. The modified mid-carpal partial arthrodesis is an alternative operating procedure for the treatment of SNAC/SLAC-wrists in stage II/III. However, a higher number of cases and comparative studies are needed to confirm this concept.

  11. High Reliability Prototype Quadrupole for the Next Linear Collider

    NASA Astrophysics Data System (ADS)

    Spencer, C. M.

    2001-01-01

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85/ overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20/ and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20/ adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.

  12. Monolithic Active Pixel Sensors

    NASA Astrophysics Data System (ADS)

    Lutz, P.

    In close collaboration with the group from Strasbourg, Saclay has been developing fast monolithic active pixel sensors for future vertex detectors. This presentation gives some recent results from the MIMOSA serie, emphazising the participation of the group.

  13. X-Band RF Gun Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlieks, Arnold; Dolgashev, Valery; Tantawi, Sami

    In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into themore » structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.« less

  14. Performance of GAASP/GAAS Superlattice Photocathodes in High Energy Experiments using Polarized Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brachmann, A.; Clendenin, J.E.; Maruyama, T.

    2006-02-27

    The GaAsP/GaAs strained superlattice photocathode structure has proven to be a significant advance for polarized electron sources operating with high peak currents per microbunch and relatively low duty factor. This is the characteristic type of operation for SLAC and is also planned for the ILC. This superlattice structure was studied at SLAC [1], and an optimum variation was chosen for the final stage of E-158, a high-energy parity violating experiment at SLAC. Following E-158, the polarized source was maintained on standby with the cathode being re-cesiated about once a week while a thermionic gun, which is installed in parallel withmore » the polarized gun, supplied the linac electron beams. However, in the summer of 2005, while the thermionic gun was disabled, the polarized electron source was again used to provide electron beams for the linac. The performance of the photocathode 24 months after its only activation is described and factors making this possible are discussed.« less

  15. ABA signaling in guard cells entails a dynamic protein-protein interaction relay from the PYL-RCAR family receptors to ion channels.

    PubMed

    Lee, Sung Chul; Lim, Chae Woo; Lan, Wenzhi; He, Kai; Luan, Sheng

    2013-03-01

    Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trigger stomatal closure by regulating specific ion channels in guard cells. We previously reported that SLAC1, an outward anion channel required for stomatal closure, was regulated via reversible protein phosphorylation events involving ABA signaling components, including protein phosphatase 2C members and a SnRK2-type kinase (OST1). In this study, we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR-type receptors, to the PP2C-SnRK2 phosphatase-kinase pairs, to the ion channel SLAC1. The ABA receptors interacted with and inhibited PP2C phosphatase activity against the SnRK2-type kinase, releasing active SnRK2 kinase to phosphorylate, and activate the SLAC1 channel, leading to reduced guard cell turgor and stomatal closure. Both yeast two-hybrid and bimolecular fluorescence complementation assays were used to verify the interactions among the components in the pathway. These biochemical assays demonstrated activity modifications of phosphatases and kinases by their interaction partners. The SLAC1 channel activity was used as an endpoint readout for the strength of the signaling pathway, depending on the presence of different combinations of signaling components. Further study using transgenic plants overexpressing one of the ABA receptors demonstrated that changing the relative level of interacting partners would change ABA sensitivity.

  16. Distributed Offline Data Reconstruction in BaBar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulliam, Teela M

    The BaBar experiment at SLAC is in its fourth year of running. The data processing system has been continuously evolving to meet the challenges of higher luminosity running and the increasing bulk of data to re-process each year. To meet these goals a two-pass processing architecture has been adopted, where 'rolling calibrations' are quickly calculated on a small fraction of the events in the first pass and the bulk data reconstruction done in the second. This allows for quick detector feedback in the first pass and allows for the parallelization of the second pass over two or more separate farms.more » This two-pass system allows also for distribution of processing farms off-site. The first such site has been setup at INFN Padova. The challenges met here were many. The software was ported to a full Linux-based, commodity hardware system. The raw dataset, 90 TB, was imported from SLAC utilizing a 155 Mbps network link. A system for quality control and export of the processed data back to SLAC was developed. Between SLAC and Padova we are currently running three pass-one farms, with 32 CPUs each, and nine pass-two farms with 64 to 80 CPUs each. The pass-two farms can process between 2 and 4 million events per day. Details about the implementation and performance of the system will be presented.« less

  17. SLAC Library - Online Particle Physics Information

    Science.gov Websites

    Background Knowledge Particle Physics Lessons and Activities Astronomy and Astrophysics Lessons and Online Particle Physics Information Compiled by Revised: April, 201 7 This annotated list provides a highly selective set of online resources that are useful to the particle physics community. It

  18. Network Upgrade for the SLC: Control System Modifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, M.; Mackenzie, R.; Sass, R.

    2011-09-09

    Current communications between the SLAC Linear Collider control system central host and the SLCmicros is built upon the SLAC developed SLCNET communication hardware and protocols. We will describe how the Internet Suite of protocols (TCP/IP) are used to replace the SLCNET protocol interface. The major communication pathways and their individual requirements are described. A proxy server is used to reduce the number of total system TCP/IP connections. The SLCmicros were upgraded to use Ethernet and TCP/IP as well as SLCNET. Design choices and implementation experiences are addressed.

  19. Science@SLAC—Discovering New Drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drell, Persis; Smith, Clyde; Bushnell, Dave

    2011-10-18

    SLAC scientists and private-sector drug makers describe how a public--private partnership combined with the specialized X-rays from the Stanford Synchrotron Radiation Lightsource (SSRL) enable smart drug design that eliminates the costly trial-and-error approach used by traditional drug companies. SSRL is a synchrotron lightsource laboratory used by scientists from a range of disciplines to study matter on the scale of atoms and molecules. Featured in this video are SLAC Laboratory Director Persis Drell, SSRL staff scientist Clyde Smith, and Dave Bushnell, a scientist from startup drug maker Cocrystal Discovery Inc.

  20. Science@SLAC—Discovering New Drugs

    ScienceCinema

    Drell, Persis; Smith, Clyde; Bushnell, Dave

    2018-01-16

    SLAC scientists and private-sector drug makers describe how a public--private partnership combined with the specialized X-rays from the Stanford Synchrotron Radiation Lightsource (SSRL) enable smart drug design that eliminates the costly trial-and-error approach used by traditional drug companies. SSRL is a synchrotron lightsource laboratory used by scientists from a range of disciplines to study matter on the scale of atoms and molecules. Featured in this video are SLAC Laboratory Director Persis Drell, SSRL staff scientist Clyde Smith, and Dave Bushnell, a scientist from startup drug maker Cocrystal Discovery Inc.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    SLAC is helping to build and test the LUX-ZEPLIN or LZ detector, one of the biggest and most sensitive detectors ever designed to catch hypothetical dark matter particles known as WIMPs. Researchers at the Department of Energy’s SLAC National Accelerator Laboratory are on a quest to solve one of physics’ biggest mysteries: What exactly is dark matter – the invisible substance that accounts for 85 percent of all the matter in the universe but can’t be seen even with our most advanced scientific instruments? Most scientists believe it’s made of ghostly particles that rarely bump into their surroundings; that’s whymore » billions of dark matter particles might zip right through our bodies every second without us even noticing. Leading candidates for dark matter particles are WIMPs, or weakly interacting massive particles. Now SLAC is helping to build and test one of the biggest and most sensitive detectors ever designed to catch a WIMP – the LUX-ZEPLIN or LZ detector.« less

  2. Analysis of High Power IGBT Short Circuit Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, G.

    2005-02-11

    The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current pathsmore » as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.« less

  3. 2016 FACET-II Science Workshop Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Mark J.

    The second in a series of FACET-II Science Workshops was held at SLAC National Accelerator Laboratory on October 17-19, 2016 [1]. The workshop drew thirty-five participants from eighteen different institutions including CERN, DESY, Ecole Polytechnique, FNAL, JAI, LBNL, LLNL, Radiabeam, Radiasoft, SLAC, Stony Brook, Strathclyde, Tech-X, Tsinghua, UC Boulder, UCLA and UT Austin. The 2015 workshop [2, 3] helped prioritize research directions for FACET-II. The 2016 workshop was focused on understanding what improvements are needed at the facility to support the next generation of experiments. All presentations are linked to the workshop website as a permanent record.

  4. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site

    NASA Astrophysics Data System (ADS)

    Gobin, Raphael; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu; Cara, Philippe; Duglué, Daniel; Gex, Dominique; Okumura, Yoshikazu; Marcos Ayala, Juan; Knaster, Juan; Marqueta, Alvaro; Kasugai, Atsushi; O'Hira, Shigeru; Shinto, Katsuhiro; Takahashi, Hiroki

    2016-02-01

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H+ and D+ 100 keV beams) are reported in a second article.

  5. Atmospheric trace element concentrations in total suspended particles near Paris, France

    NASA Astrophysics Data System (ADS)

    Ayrault, Sophie; Senhou, Abderrahmane; Moskura, Mélanie; Gaudry, André

    2010-09-01

    To evaluate today's trace element atmospheric concentrations in large urban areas, an atmospheric survey was carried out for 18 months, from March 2002 to September 2003, in Saclay, nearby Paris. The total suspended particulate matter (TSP) was collected continuously on quartz fibre filters. The TSP contents were determined for 36 elements (including Ag, Bi, Mo and Sb) using two analytical methods: Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The measured concentrations were in agreement within the uncertainties with the certified values for the polycarbonate reference material filter SRM-2783 (National Institute for Standard Technology NIST, USA). The measured concentrations were significantly lower than the recommended atmospheric concentrations. In 2003, the Pb atmospheric level at Saclay was 15 ng/m 3, compared to the 500 ng/m 3 guideline level and to the 200 ng/m 3 observed value in 1994. The typical urban background TSP values of 1-2, 0.2-1, 4-6, 10-30 and 3-5 ng/m 3 for As, Co, Cr, Cu and Sb, respectively, were inferred from this study and were compared with the literature data. The typical urban background TSP concentrations could not be realised for Cd, Pb and Zn, since these air concentrations are highly influenced by local features. The Zn concentrations and Zn/Pb ratio observed in Saclay represented a characteristic fingerprint of the exceptionally large extent of zinc-made roofs in Paris and its suburbs. The traffic-related origin of Ba, Cr, Cu, Pb and Sb was demonstrated, while the atmospheric source(s) of Ag was not identified.

  6. Polarized electron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prepost, R.

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized sourcemore » are presented.« less

  7. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannotmore » be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally

  8. Monitoring SLAC High Performance UNIX Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettsome, Annette K.; /Bethune-Cookman Coll. /SLAC

    2005-12-15

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia.more » Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface.« less

  9. SLAC modulator system improvements and reliability results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaldson, A.R.

    1998-06-01

    In 1995, an improvement project was completed on the 244 klystron modulators in the linear accelerator. The modulator system has been previously described. This article offers project details and their resulting effect on modulator and component reliability. Prior to the project, the authors had collected four operating cycles (1991 through 1995) of MTTF data. In this discussion, the '91 data will be excluded since the modulators operated at 60 Hz. The five periods following the '91 run were reviewed due to the common repetition rate at 120 Hz.

  10. Environmental Impact From Accelerator Operation at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, James C

    1999-03-22

    Environmental impacts from electron accelerator operations at the Stanford Linear Accelerator Center, which is located near populated areas, are illustrated by using examples of three different accelerator facilities: the low power (a few watts) SSRL, the high power (a few kilowatts) PEP-II, and the 50-kW SLC. Three types of major impacts are discussed: (1) off-site doses from skyshine radiation, mainly neutrons, (2) off-site doses from radioactive air emission, mainly {sup 13}N, and (3) radioactivities, mainly {sup 3}H, produced in the groundwater. It was found that, from SSRL operation, the skyshine radiation result in a MEI (Maximum Exposed Individual) of 0.3more » {mu}Sv/y while a conservative calculation using CAP88 showed a MEI of 0.36 {mu}Sv/y from radioactive air releases. The calculated MEI doses due to future PEP-II operation are 30 {mu}Sv/y from skyshine radiation and 2 {mu}Sv/y from air releases. The population doses due to radioactive air emission are 0.5 person-mSv from SSRL and 12 person-mSv from PEP-II. Because of the stronger decrease of skyshine dose as the distance increases, the population dose from skyshine radiation are smaller than that from air release. The third environmental impact, tritium activity produced in the groundwater, was also demonstrated to be acceptable from both the well water measurements and the FLUKA calculations for the worst case of the SLC high-power dump.« less

  11. Electronic Promoters and Semiconductor Oxidation: Alkali Metals on Si(111) Surfaces.

    DTIC Science & Technology

    1986-04-25

    SPAS, Caiimissariate a’ l’Energie Atctmique, CEN Saclay, France. 1. T. Narusawa, S. Komiya, and A. Hiraki , Appi. Phys. Lett. 20, 272 (1972). 2. J...Raisanen, and N. Troullier, Phys. Rev. B (in press). 10. K. Okuno, T. Ito, M. Iwami, and A. Hiraki , Sol. State Commun. 34, 493 (1980) and references

  12. Network Upgrade for the SLC: PEP II Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, M.; Call, M.; Clark, S.

    2011-09-09

    The PEP-II control system required a new network to support the system functions. This network, called CTLnet, is an FDDI/Ethernet based network using only TCP/IP protocols. An upgrade of the SLC Control System micro communications to use TCP/IP and SLCNET would allow all PEP-II control system nodes to use TCP/IP. CTLnet is private and separate from the SLAC public network. Access to nodes and control system functions is provided by multi-homed application servers with connections to both the private CTLnet and the SLAC public network. Monitoring and diagnostics are provided using a dedicated system. Future plans and current status informationmore » is included.« less

  13. Update on the Code Intercomparison and Benchmark for Muon Fluence and Absorbed Dose Induced by an 18 GeV Electron Beam After Massive Iron Shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasso, A.; Ferrari, A.; Ferrari, A.

    In 1974, Nelson, Kase and Svensson published an experimental investigation on muon shielding around SLAC high-energy electron accelerators [1]. They measured muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting a copper/water beamdump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical models available at that time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results are then compared between the codes, andmore » with the SLAC data.« less

  14. Soil microbial respiration (CO2) of natural and anthropogenically-transformed ecosystems in Moscow region, Russia

    NASA Astrophysics Data System (ADS)

    Ivashchenko, Kristina; Ananyeva, Nadezhda; Rogovaya, Sofia; Vasenev, Viacheslav

    2016-04-01

    The CO2 concentration in modern atmosphere is increasing and one of the most reasons of it is land use changing. It is related not only with soil plowing, but also with growing urbanization and, thereby, forming the urban ecosystems. Such conversion of soil cover might be affected by efflux CO2 from soil into atmosphere. The soil CO2 efflux mainly supplies by soil microorganisms respiration (contribution around 70-90%) and plant roots respiration. Soil microbial respiration (MR) is determined in the field (in situ) and laboratory (in vitro) conditions. The measurement of soil MR in situ is labour-consuming, and for district, region and country areas it is difficult carried. We suggest to define the MR of the upper highest active 10 cm mineral soil layer (in vitro) followed by the accounting of area for different ecosystems in large region of Russia. Soils were sampled (autumn, 2011) in natural (forest, meadow) and anthropogenically-transformed (arable, urban) ecosystems of Sergiev-Posad, Taldom, Voskresenk, Shatura, Serpukhov and Serbryanye Prudy districts in Moscow region. In soil samples (total 156) the soil MR (24 h, 22°C, 60% WHC) were measured after preincubation procedure (7 d., 22°C, 55% WHC). The soil MR ranged from 0.13 (urban) to 5.41 μg CO2-C g-1 h-1 (meadow), the difference between these values was 42 times. Then, the soil MR values (per unit soil weight) were calculated per unit soil area (1 m2), the layer thickness of which was 0.1 m (soil volume weight was equaled 1 g cm-3). The high MR values were noted for forests soil (832-1410 g CO2-C m-2 yr-1) of studied districts, and the low MR values were for arable and urban soils (by 1.6-3.2 and 1.3-2.7 times less compared to forests, respectively). The MR rate of urban soil in Voskresenk district was comparable to that of corresponding meadows and it was even higher (in average by 2.3 times) in Serpukhov district. The soil MR rate of studied cities was higher by 20%, than in corresponding arable soils

  15. Harvesting Electricity From Wasted Heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwede, Jared

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  16. Harvesting Electricity From Wasted Heat

    ScienceCinema

    Schwede, Jared

    2018-01-16

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  17. A Tony Thomas-Inspired Guide to INSPIRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connell, Heath B.; /Fermilab

    2010-04-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution frommore » the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.« less

  18. The LCLS Project

    NASA Astrophysics Data System (ADS)

    Paterson, James M.

    2000-04-01

    The Linac Coherent Light Source (LCLS) is a linac driven FEL which uses a 1km electron linac (the last third of the SLAC linac) and a 100m long undulator to produce 1.5 angstrom X-rays of extremely high peak brightness. This radiation is fully tranversely coherent and is in sub-picosecond long pulses. The LCLS Project is a four year R&D program to solidify the design, to develop required technologies, to optimize the cost and performance and to study the potential experimental programs using these unique beam characteristics. The program is conducted by a multi-institutional collaboration consisting of SLAC as the lead laboratory, along with ANL, BNL, LLNL, LANL and UCLA.The LCLS design and the R&D programs are described.

  19. Experiences from First Top-Off Injection at the Stanford Synchrotron Radiation Lightsource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, J.M.; Liu, J.C.; Prinz, A.

    2009-12-11

    As the Stanford Synchrotron Radiation Lightsource (SSRL) of the SLAC National Accelerator Laboratory (SLAC) is moving toward Top-Off injection mode, SLAC's Radiation Protection Department is working with SSRL on minimizing the radiological hazards of this mode. One such hazard is radiation that is created inside the accelerator concrete enclosure by injected beam. Since during Top-Off injection the stoppers that would otherwise isolate the storage ring from the experimental area stay open, the stoppers no longer prevent such radiation from reaching the experimental area. The level of this stray radiation was measured in April 2008 during the first Top-Off injection tests.more » They revealed radiation dose rates of up to 18 microSv/h (1.8 millirem/h) outside the experimental hutches, significantly higher than our goal of 1 microSv/h (0.1 millirem/h). Non-optimal injection increased the measured dose rates by a factor two. Further tests in 2008 indicated that subsequent improvements by SSRL to the injection system have reduced the dose rates to acceptable levels. This presentation describes the studies performed before the Top-Off tests, the tests themselves and their major results (both under initial conditions and after improvements were implemented), and presents the controls being implemented for full and routine Top-Off injection.« less

  20. Monitoring Temperature and Fan Speed Using Ganglia and Winbond Chips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Cattie; /SLAC

    2006-09-27

    Effective monitoring is essential to keep a large group of machines, like the ones at Stanford Linear Accelerator Center (SLAC), up and running. SLAC currently uses Ganglia Monitoring System to observe about 2000 machines, analyzing metrics like CPU usage and I/O rate. However, metrics essential to machine hardware health, such as temperature and fan speed, are not being monitored. Many machines have a Winbond w83782d chip which monitors three temperatures, two of which come from dual CPUs, and returns the information when the sensor command is invoked. Ganglia also provides a feature, gmetric, that allows the users to monitor theirmore » own metrics and incorporate them into the monitoring system. The programming language Perl is chosen to implement a script that invokes the sensors command, extracts the temperature and fan speed information, and calls gmetric with the appropriate arguments. Two machines were used to test the script; the two CPUs on each machine run at about 65 Celsius, which is well within the operating temperature range (The maximum safe temperature range is 77-82 Celsius for the Pentium III processors being used). Installing the script on all machines with a Winbond w83782d chip allows the SLAC Scientific Computing and Computing Services group (SCCS) to better evaluate current cooling methods.« less

  1. Ultrafast Electron Diffraction: How It Works

    ScienceCinema

    None

    2018-01-16

    A new technology at SLAC uses high-energy electrons to unravel motions in materials that are faster than a tenth of a trillionth of a second, opening up new research opportunities in ultrafast science.

  2. Ultrafast Electron Diffraction: How It Works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-08-05

    A new technology at SLAC uses high-energy electrons to unravel motions in materials that are faster than a tenth of a trillionth of a second, opening up new research opportunities in ultrafast science.

  3. Wake measurements of a dechirper jaw with nonzero tilt angle

    NASA Astrophysics Data System (ADS)

    Bane, Karl; Guetg, Marc; Lutman, Alberto

    2018-05-01

    The RadiaBeam/SLAC dechirper at the Linac Coherent Light Source (LCLS) is being used as a fast kicker, by inducing transverse wakefields, to, e.g., facilitate Fresh-slice, two-color laser operation. The dechirper jaws are independently adjustable at both ends, and it is difficult to avoid leaving residual (longitudinal) tilt in them during setup. In this report we develop a model independent method of removing unknown tilt in a jaw. In addition, for a short uniform bunch passing by a single dechirper plate, we derive an explicit analytical formula for the transverse wake kick as function of average plate offset and tilt angle. We perform wake kick measurements for the different dechirper jaws of the RadiaBeam/SLAC dechirper, and find that the agreement between measurement and theory is excellent.

  4. Integration and verification testing of the Large Synoptic Survey Telescope camera

    NASA Astrophysics Data System (ADS)

    Lange, Travis; Bond, Tim; Chiang, James; Gilmore, Kirk; Digel, Seth; Dubois, Richard; Glanzman, Tom; Johnson, Tony; Lopez, Margaux; Newbry, Scott P.; Nordby, Martin E.; Rasmussen, Andrew P.; Reil, Kevin A.; Roodman, Aaron J.

    2016-08-01

    We present an overview of the Integration and Verification Testing activities of the Large Synoptic Survey Telescope (LSST) Camera at the SLAC National Accelerator Lab (SLAC). The LSST Camera, the sole instrument for LSST and under construction now, is comprised of a 3.2 Giga-pixel imager and a three element corrector with a 3.5 degree diameter field of view. LSST Camera Integration and Test will be taking place over the next four years, with final delivery to the LSST observatory anticipated in early 2020. We outline the planning for Integration and Test, describe some of the key verification hardware systems being developed, and identify some of the more complicated assembly/integration activities. Specific details of integration and verification hardware systems will be discussed, highlighting some of the technical challenges anticipated.

  5. SLAC All Access: Fermi Gamma-ray Space Telescope

    ScienceCinema

    Romani, Roger

    2018-04-16

    Three hundred and fifty miles overhead, the Fermi Gamma-ray Space Telescope silently glides through space. From this serene vantage point, the satellite's instruments watch the fiercest processes in the universe unfold. Pulsars spin up to 700 times a second, sweeping powerful beams of gamma-ray light through the cosmos. The hyperactive cores of distant galaxies spew bright jets of plasma. Far beyond, something mysterious explodes with unfathomable power, sending energy waves crashing through the universe. Stanford professor and KIPAC member Roger W. Romani talks about this orbiting telescope, the most advanced ever to view the sky in gamma rays, a form of light at the highest end of the energy spectrum that's created in the hottest regions of the universe.

  6. Essay: In Memory of Robert Siemann

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alexander W.; /SLAC

    Bob Siemann came to SLAC from Cornell in 1991. With the support from Burton Richter, then Director of SLAC, he took on a leadership role to formulate an academic program in accelerator physics at SLAC and the development of its accelerator faculty. Throughout his career he championed accelerator physics as an independent academic discipline, a vision that he fought so hard for and never retreated from. He convinced Stanford University and SLAC to create a line of tenured accelerator physics faculty and over the years he also regularly taught classes at Stanford and the U.S. Particle Accelerator School. After themore » shutdown of the SSC Laboratory, I returned to SLAC in 1993 to join the accelerator faculty he was forming. He had always visualized a need to have a professional academic journal for the accelerator field, and played a pivotal role in creating the journal Physical Review Special Topics - Accelerators and Beams, now the community standard for accelerator physics after nine years of his editorship. Today, Bob's legacy of accelerator physics as an independent academic discipline continues at SLAC as well as in the community, from which we all benefit. Bob was a great experimentalist. He specialized in experimental techniques and instrumentation, but what he wanted to learn is physics. If he had to learn theory - heaven forbid - to reach that goal, he would not hesitate one second to do so. In fact, he had written several theoretical papers as results of these efforts. Now this is what I call a true experimentalist! Ultimately, however, I think it was experimental instruments that he loved most. His eyes widened when he talked about his instruments. Prompted by a question, he would proceed to a nearby blackboard, with a satisfying grin, and draw his experimental device in a careful thinking manner, then describe his experiment and educate the questioner with some insightful physics. These moments were most enjoyable, to him and the questioner alike

  7. Accelerating Particles with Plasma

    ScienceCinema

    Litos, Michael; Hogan, Mark

    2018-05-18

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  8. Tunnel vision for US X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2017-03-01

    Construction can begin on a major upgrade to the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in the US after the tunnel that will house the facility was cleared of equipment.

  9. The Next Linear Collider Program

    Science.gov Websites

    The Next Linear Collider at SLAC Navbar NLC Playpen Warning: This page is provided as a place for Comments & Suggestions | Desktop Trouble Call | Linear Collider Group at FNAL || This page was updated

  10. USLCSG Task Force

    Science.gov Websites

    Unites States Linear Collider Steering Group dot dot dot dot What's New! June 2003 Meeting Welcome to the USLCSG Task Force at the Stanford Linear Accelerator Center [Enter] dot dot SLAC Page Owners

  11. SDSS-IV MaNGA: the spectroscopic discovery of strongly lensed galaxies

    NASA Astrophysics Data System (ADS)

    Talbot, Michael S.; Brownstein, Joel R.; Bolton, Adam S.; Bundy, Kevin; Andrews, Brett H.; Cherinka, Brian; Collett, Thomas E.; More, Anupreeta; More, Surhud; Sonnenfeld, Alessandro; Vegetti, Simona; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.

    2018-06-01

    We present a catalogue of 38 spectroscopically detected strong galaxy-galaxy gravitational lens candidates identified in the Sloan Digital Sky Survey IV (SDSS-IV). We were able to simulate narrow-band images for eight of them demonstrating evidence of multiple images. Two of our systems are compound lens candidates, each with two background source-planes. One of these compound systems shows clear lensing features in the narrow-band image. Our sample is based on 2812 galaxies observed by the Mapping Nearby Galaxies at APO (MaNGA) integral field unit (IFU). This Spectroscopic Identification of Lensing Objects (SILO) survey extends the methodology of the Sloan Lens ACS Survey (SLACS) and BOSS Emission-Line Survey (BELLS) to lower redshift and multiple IFU spectra. We searched ˜1.5 million spectra, of which 3065 contained multiple high signal-to-noise ratio background emission-lines or a resolved [O II] doublet, that are included in this catalogue. Upon manual inspection, we discovered regions with multiple spectra containing background emission-lines at the same redshift, providing evidence of a common source-plane geometry which was not possible in previous SLACS and BELLS discovery programs. We estimate more than half of our candidates have an Einstein radius ≳ 1.7 arcsec, which is significantly greater than seen in SLACS and BELLS. These larger Einstein radii produce more extended images of the background galaxy increasing the probability that a background emission-line will enter one of the IFU spectroscopic fibres, making detection more likely.

  12. Corrections to the one-photon approximation in the 0+-->2+ transition of 12C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul Gueye; Madeleine Bernheim; J. F. Danel

    2001-04-18

    Contribution of higher order effects to the one-photon exchange approximation were studied in the first excited state of 12C by comparing inclusive inelastic scattering cross sections of electrons and positrons obtained at the Saclay Linear Accelerator. The data were compared to a distorted wave Born approximation (DWBA)calculation. The results indicate an effect less than 2% within 2sigma, compatible with what was observed in recent elastic scattering measurements.

  13. Fourth User Workshop on High-Power Lasers at the Linac Coherent Light Source

    DOE PAGES

    Bolme, Cindy Anne; Mackinnon, Andy; Glenzer, Siegfried

    2017-05-30

    The fourth international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA, on October 3–4, 2016. The workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory (SLAC), and garnered the attendance of more than 110 scientists. Participants discussed the warm dense matter and high-pressure science that is being conducted using high-power lasers at the LCLS Matter in Extreme Conditions (MEC) endstation. During the past year, there have been seven journal articles published from research at the MEC instrument. Here, the specific topics discussed at thismore » workshop were experimental highlights from the past year, current status and future commissioning of MEC capabilities, and future facility upgrades that will enable the expanded science reach of the facility.« less

  14. Fourth User Workshop on High-Power Lasers at the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolme, Cindy Anne; Mackinnon, Andy; Glenzer, Siegfried

    The fourth international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA, on October 3–4, 2016. The workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory (SLAC), and garnered the attendance of more than 110 scientists. Participants discussed the warm dense matter and high-pressure science that is being conducted using high-power lasers at the LCLS Matter in Extreme Conditions (MEC) endstation. During the past year, there have been seven journal articles published from research at the MEC instrument. Here, the specific topics discussed at thismore » workshop were experimental highlights from the past year, current status and future commissioning of MEC capabilities, and future facility upgrades that will enable the expanded science reach of the facility.« less

  15. Novel DDR2 mutation identified by whole exome sequencing in a Moroccan patient with spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type.

    PubMed

    Mansouri, Maria; Kayserili, Hülya; Elalaoui, Siham Chafai; Nishimura, Gen; Iida, Aritoshi; Lyahyai, Jaber; Miyake, Noriko; Matsumoto, Naomichi; Sefiani, Abdelaziz; Ikegawa, Shiro

    2016-02-01

    Spondylo-meta-epiphyseal dysplasia (SMED), short limb-abnormal calcification type (SMED, SL-AC), is a very rare autosomal recessive disorder with various skeletal changes characterized by premature calcification leading to severe disproportionate short stature. Twenty-two patients have been reported until now, but only five mutations (four missense and one splice-site) in the conserved sequence encoding the tyrosine kinase domain of the DDR2 gene has been identified. We report here a novel DDR2 missense mutation, c.370C > T (p.Arg124Trp) in a Moroccan girl with SMED, SL-AC, identified by whole exome sequencing. Our study has expanded the mutational spectrum of this rare disease and it has shown that exome sequencing is a powerful and cost-effective tool for the diagnosis of clinically heterogeneous disorders such as SMED. © 2015 Wiley Periodicals, Inc.

  16. Coherence and linewidth studies of a 4-nm high power FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.; Sessler, A.M.; Scharlemann, E.T.

    Recently the SSRL/SLAC and its collaborators elsewhere have considered the merits of a 2 to 4-nm high power FEL utilizing the SLAC linac electron beam. The FEL would be a single pass amplifier excited by spontaneous emission rather than an oscillator, in order to eliminate the need for a soft X-ray resonant cavity. We have used GINGER, a multifrequency 2D FEL simulation code, to study the expected linewidth and coherence properties of the FEL, in both the exponential and saturated gain regimes. We present results concerning the effective shot noise input power and mode shape, the expected subpercent output linemore » widths, photon flux, and the field temporal and spatial correlation functions. We also discuss the effects of tapering the wiggler upon the output power and line width.« less

  17. Scientists Take First X-Ray Portraits of Living Cyanobacteria at the LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-02-11

    Researchers from Uppsala University working at the Department of Energy's SLAC National Accelerator Laboratory have captured the first X-ray portraits of living bacteria, detecting signals from features as small as 4 nanometers, or 4 billionths of a meter.

  18. Scientists Take First X-Ray Portraits of Living Cyanobacteria at the LCLS

    ScienceCinema

    None

    2018-01-26

    Researchers from Uppsala University working at the Department of Energy's SLAC National Accelerator Laboratory have captured the first X-ray portraits of living bacteria, detecting signals from features as small as 4 nanometers, or 4 billionths of a meter.

  19. Linear Collider project database

    Science.gov Websites

    &D projects circa 2005 List of who is thinking of working on what. At present this includes non SLAC, FNAL, and Cornell meetings. Ordered list of who is thinking of working on what. At present this

  20. Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

    ScienceCinema

    None

    2018-05-24

    In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as it transitions into a superhot, highly compressed concoction known as “warm dense matter.”

  1. Radiological Environmental Protection for PEP-II Ring High Luminosity Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, James C.; Nakao, Noriaki; /SLAC

    2006-08-16

    Stanford Linear Accelerator Center (SLAC) is located in northern California, USA. Radiological environmental protection is one of the main elements of the radiation protection program. One of SLAC's accelerator facilities is B-Factory, whose PEP-II accelerator ring has been operating since 1997 and is being upgraded to higher luminosity operation. Four radiological issues associated with high luminosity operation up to CY2008 are re-evaluated: (1) annual doses in IR halls, (2) annual skyshine doses at site boundaries, (3) potential radioactive air releases, and (4) potential groundwater activation. This paper presents the skyshine doses and air emission doses to the Maximally Exposed Individualmore » (MEI) at SLAC site boundaries. The normal beam loss scenarios around PEP-II ring are presented first. In CY2008, the luminosity is 2 x 10{sup 34} cm{sup -2} s{sup -1}, and the stored current is 4.0-A for low-energy ring (LER ) and 2.2-A for high-energy ring (HER). The beam losses around PEP-II ring include those near injection region in IR10 and IR8 and those at collimators (e.g., HER collimators in IR12, LER collimators in IR4 and IR6). The beam losses in IR8 and IR10 (where injection into ring occurs) are further divided into septum, BAD (beam abort dump) and TD (tune-up dump), as well as apertures. The skyshine prompt dose rate distributions as a function of distance from an IR hall at four directions were calculated using the MARS15 Monte Carlo code. For skyshine dose to the MEI, the annual dose (7200 h/y occupancy) is calculated to be 2.9 mrem/y at Sand Hill Road (from e{sup -} losses in IR12 HER collimators) and 1.2 mrem/y at Horse Track Offices near IR6 (from e{sup +} losses in IR8, IR6 and IR4). These are lower than the SLAC skyshine limit of 5 mrem/y for any single facility within SLAC. Radionuclide productions in the air at the PEP-II IR10 were calculated using MARS15. Beam losses of 9-GeV electrons were assumed in three target cases: the copper TD, septum

  2. Scientists Get First Glimpse of a Chemical Bond Being Born

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, Anders

    Scientists have used an X-ray laser at the Department of Energy’s SLAC National Accelerator Laboratory to get the first glimpse of the transition state where two atoms begin to form a weak bond on the way to becoming a molecule.

  3. Scientists Get First Glimpse of a Chemical Bond Being Born

    ScienceCinema

    Nilsson, Anders

    2018-05-11

    Scientists have used an X-ray laser at the Department of Energy’s SLAC National Accelerator Laboratory to get the first glimpse of the transition state where two atoms begin to form a weak bond on the way to becoming a molecule.

  4. Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Johannes M.; Liu, James C.; Prinz, Alyssa A.

    2011-04-05

    The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reachmore » its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.« less

  5. Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, Mike; Chandrasekaran, Saravan Kumar; Crawford, Anthony

    2016-06-01

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and tomore » keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.« less

  6. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.

    PubMed

    Ache, Peter; Bauer, Hubert; Kollist, Hannes; Al-Rasheid, Khaled A S; Lautner, Silke; Hartung, Wolfram; Hedrich, Rainer

    2010-06-01

    Uptake of CO(2) by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard-cell anion release channel SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard-cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non-invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long-term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild-type plants responded to CO(2), light, humidity, ozone and abscisic acid (ABA) in a guard cell-specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild-type plants, leaves from well-watered ost1 plants exposed to a dry atmosphere wilted after light-induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root-shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.

  7. Effective shielding to measure beam current from an ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayle, H., E-mail: bayle@bergoz.com; Delferrière, O.; Gobin, R.

    To avoid saturation, beam current transformers must be shielded from solenoid, quad, and RFQ high stray fields. Good understanding of field distribution, shielding materials, and techniques is required. Space availability imposes compact shields along the beam pipe. This paper describes compact effective concatenated magnetic shields for IFMIF-EVEDA LIPAc LEBT and MEBT and for FAIR Proton Linac injector. They protect the ACCT Current Transformers beyond 37 mT radial external fields. Measurements made at Saclay on the SILHI source are presented.

  8. Drive Beam Shaping and Witness Bunch Generation for the Plasma Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, R. J.; Frederico, J.; Hogan, M. J.

    2010-11-04

    High transformer ratio operation of the plasma wake field accelerator requires a tailored drive beam current profile followed by a short witness bunch. We discuss techniques for generating the requisite dual bunches and for obtaining the desired drive beam profile, with emphasis on the FACET experiment at SLAC National Accelerator Laboratory.

  9. NLC Injector Systems

    Science.gov Websites

    text only NLC Home Page NLC Technical SLAC Sources Damping Rings S & L Band Linacs Engineering ; Presentations Injector System Documentation Talks and Presentations The NLC ZDR ISG Reports Sources Lasers Photocathodes Electron Source Laser Maintenance Facility Positron Source Sources Technical Notes Sources Meeting

  10. Rare B Decays with the BaBar Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spanier, Stefane

    2001-09-07

    The BABAR detector at SLAC's PEP-II storage ring collected a luminosity equivalent data of about 22 fb{sup -1} at the {Upsilon}(4S) resonance during 1999 and 2000. Results on branching fractions of rare and charmless B$-meson decays and first fits for direct CP violation are presented.

  11. GEANT4 and Secondary Particle Production

    NASA Technical Reports Server (NTRS)

    Patterson, Jeff

    2004-01-01

    GEANT 4 is a Monte Carlo tool set developed by the High Energy Physics Community (CERN, SLAC, etc) to perform simulations of complex particle detectors. GEANT4 is the ideal tool to study radiation transport and should be applied to space environments and the complex geometries of modern day spacecraft.

  12. Microwave and Electron Beam Computer Programs

    DTIC Science & Technology

    1988-06-01

    Research (ONR). SCRIBE was adapted by MRC from the Stanford Linear Accelerator Center Beam Trajectory Program, EGUN . oTIC NSECE Acc !,,o For IDL1C I...achieved with SCRIBE. It is a ver- sion of the Stanford Linear Accelerator (SLAC) code EGUN (Ref. 8), extensively modified by MRC for research on

  13. NLC Past Workshops & Conferences

    Science.gov Websites

    NLC Technical SLAC Meeting Schedule Web Comments 2004 Calendar Year 2003 Calendar Year 2003 Chronological listing 2002 Calendar Year 2002 Chronological listing 2001 Calendar Year 2001 Chronological listing 2000 Calendar Year 2000 Chronological listing 1999 Calendar Year 1999 Chronological listing This

  14. Announcing Workshop on High Gradient RF

    Science.gov Websites

    Cavities at Argonne National Laboratory Workshop on High Gradient RF October 7-9, 2003 Agenda Accommodation Argonne Guest House SLAC Workshop August 2000 Attendees ANL Map High energy physics and other the gradient limits of these devices. Although the limits on high fields in rf cavities have been

  15. Experimental Results from a Resonant Dielectric Laser Accelerator

    NASA Astrophysics Data System (ADS)

    Yoder, Rodney; McNeur, Joshua; Sozer, Esin; Travish, Gil; Hazra, Kiran Shankar; Matthews, Brian; England, Joel; Peralta, Edgar; Wu, Ziran

    2015-04-01

    Laser-powered accelerators have the potential to operate with very large accelerating gradients (~ GV/m) and represent a path toward extremely compact colliders and accelerator technology. Optical-scale laser-powered devices based on field-shaping structures (known as dielectric laser accelerators, or DLAs) have been described and demonstrated recently. Here we report on the first experimental results from the Micro-Accelerator Platform (MAP), a DLA based on a slab-symmetric resonant optical-scale structure. As a resonant (rather than near-field) device, the MAP is distinct from other DLAs. Its cavity resonance enhances its accelerating field relative to the incoming laser fields, which are coupled efficiently through a diffractive optic on the upper face of the device. The MAP demonstrated modest accelerating gradients in recent experiments, in which it was powered by a Ti:Sapphire laser well below its breakdown limit. More detailed results and some implications for future developments will be discussed. Supported in part by the U.S. Defense Threat Reduction Agency (UCLA); U.S. Dept of Energy (SLAC); and DARPA (SLAC).

  16. Feasibility of Close-Range Photogrammetric Models for Geographic Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Luke; /Rice U.

    2011-06-22

    The objective of this project was to determine the feasibility of using close-range architectural photogrammetry as an alternative three dimensional modeling technique in order to place the digital models in a geographic information system (GIS) at SLAC. With the available equipment and Australis photogrammetry software, the creation of full and accurate models of an example building, Building 281 on SLAC campus, was attempted. After conducting several equipment tests to determine the precision achievable, a complete photogrammetric survey was attempted. The dimensions of the resulting models were then compared against the true dimensions of the building. A complete building model wasmore » not evidenced to be obtainable using the current equipment and software. This failure was likely attributable to the limits of the software rather than the precision of the physical equipment. However, partial models of the building were shown to be accurate and determined to still be usable in a GIS. With further development of the photogrammetric software and survey procedure, the desired generation of a complete three dimensional model is likely still feasible.« less

  17. Practical application of cross correlation technique to measure jitter of master-oscillator-power-amplifier laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Młyńczak, J.; Sawicz-Kryniger, K.; Fry, A. R.

    2014-01-01

    The Linac coherent light source (LCLS) at the SLAC National Accelerator Laboratory (SLAC) is the world’s first hard X-ray free electron laser (XFEL) and is capable of producing high-energy, femtosecond duration X-ray pulses. A common technique to study fast timescale physical phenomena, various “pump/probe” techniques are used. In these techniques there are two lasers, one optical and one X-ray, that work as a pump and as a probe to study dynamic processes in atoms and molecules. In order to resolve phenomena that occur on femtosecond timescales, it is imperative to have very precise timing between the optical lasers and X-raysmore » (on the order of ~ 20 fs or better). The lasers are synchronized to the same RF source that drives the accelerator and produces the X-ray laser. However, elements in the lasers cause some drift and time jitter, thereby de-synchronizing the system. This paper considers cross-correlation technique as a way to quantify the drift and jitter caused by the regenerative amplifier of the ultrafast optical laser.« less

  18. Long-Sought Discovery Fills in Missing Details of Cell ‘Switchboard’

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A biomedical breakthrough, published today in the journal Nature, reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses. The work is based on an X-ray laser experiment at the Department of Energy’s SLAC National Accelerator Laboratory. The much-anticipated discovery, a decade in the making, could have broad impacts on development of more highly targeted and effective drugs with fewer side effects to treat conditions including high blood pressure, diabetes, depression and even some types of cancer. The ultrabright X-rays of SLAC's Linac Coherent Light Source (LCLS) enabled the research team to complete the firstmore » 3-D atomic-scale map of a key signaling protein called arrestin while it was docked with a cell receptor involved in vision. The receptor is a well-studied example from a family of hundreds of G protein-coupled receptors, or GPCRs, which are targeted by about 40 percent of drugs on the market. Its structure while coupled with arrestin provides new insight into the on/off signaling pathways of GPCRs.« less

  19. Summary of SLAC's SEY Measurement On Flat Accelerator Wall Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Pimpec, F.; /PSI, Villigen /SLAC

    The electron cloud effect (ECE) causes beam instabilities in accelerator structures with intense positively charged bunched beams. Reduction of the secondary electron yield (SEY) of the beam pipe inner wall is effective in controlling cloud formation. We summarize SEY results obtained from flat TiN, TiZrV and Al surfaces carried out in a laboratory environment. SEY was measured after thermal conditioning, as well as after low energy, less than 300 eV, particle exposure.

  20. The BABAR detector: Upgrades, operation and performance

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; del Amo Sanchez, P.; Gaillard, J.-M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Grauges, E.; Garra Tico, J.; Lopez, L.; Martinelli, M.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Clark, A. R.; Day, C. T.; Furman, M.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Kukartsev, G.; LeClerc, C.; Levi, M. E.; Lynch, G.; Merchant, A. M.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Osipenkov, I. L.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Suzuki, A.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Zisman, M.; Barrett, M.; Bright-Thomas, P. G.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; O'Neale, S. W.; Penny, R. C.; Smith, D.; Soni, N.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Kunze, M.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Schroeder, T.; Steinke, M.; Fella, A.; Antonioli, E.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Foster, B.; Mackay, C.; Walker, D.; Abe, K.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Khan, A.; Kyberd, P.; McKemey, A. K.; Randle-Conde, A.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Telnov, V. I.; Todyshev, K. Yu.; Yushkov, A. N.; Best, D. S.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; McMahon, S.; Mommsen, R. K.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Hartfiel, B. L.; Weinstein, A. J. R.; Atmacan, H.; Foulkes, S. D.; Gary, J. W.; Layter, J.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Wang, K.; Yasin, Z.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Schwanke, U.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Kuznetsova, N.; Levy, S. L.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Flacco, C. J.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Nesom, G.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E.; Spradlin, P.; Turri, M.; Walkowiak, W.; Wang, L.; Wilder, M.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Doll, D. A.; Dorsten, M. P.; Dvoretskii, A.; Echenard, B.; Erwin, R. J.; Fang, F.; Flood, K.; Hitlin, D. G.; Metzler, S.; Narsky, I.; Oyang, J.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Zhu, R. Y.; Andreassen, R.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Abe, T.; Antillon, E. A.; Barillari, T.; Becker, J.; Blanc, F.; Bloom, P. C.; Chen, S.; Clifton, Z. C.; Derrington, I. M.; Destree, J.; Dima, M. O.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hachtel, J.; Hirschauer, J. F.; Johnson, D. R.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; van Hoek, W. C.; Wagner, S. R.; West, C. G.; Zhang, J.; Ayad, R.; Blouw, J.; Chen, A.; Eckhart, E. A.; Harton, J. L.; Hu, T.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q. L.; Altenburg, D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Brandt, T.; Brose, J.; Colberg, T.; Dahlinger, G.; Dickopp, M.; Eckstein, P.; Futterschneider, H.; Kaiser, S.; Kobel, M. J.; Krause, R.; Müller-Pfefferkorn, R.; Mader, W. F.; Maly, E.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Wilden, L.; Bernard, D.; Brochard, F.; Cohen-Tanugi, J.; Dohou, F.; Ferrag, S.; Latour, E.; Mathieu, A.; Renard, C.; Schrenk, S.; T'Jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Clark, P. J.; Lavin, D. R.; Muheim, F.; Playfer, S.; Robertson, A. I.; Swain, J. E.; Watson, J. E.; Xie, Y.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Carassiti, V.; Cecchi, A.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Fioravanti, E.; Franchini, P.; Garzia, I.; Landi, L.; Luppi, E.; Malaguti, R.; Negrini, M.; Padoan, C.; Petrella, A.; Piemontese, L.; Santoro, V.; Sarti, A.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; de Sangro, R.; Santoni, M.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M. M.; Minutoli, S.; Monge, M. R.; Musico, P.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Robutti, E.; Santroni, A.; Tosi, S.; Bhuyan, B.; Prasad, V.; Bailey, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Lee, C. L.; Morii, M.; Won, E.; Wu, J.; Adametz, A.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Aspinwall, M. L.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Gaillard, J. R.; Gunawardane, N. J. W.; Morton, G. W.; Nash, J. A.; Nikolich, M. B.; Panduro Vazquez, W.; Sanders, P.; Smith, D.; Taylor, G. P.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Grenier, G. J.; Hamilton, R.; Lee, S.-J.; Mallik, U.; Meyer, N. T.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Fischer, P.-A.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Schott, G.; Albert, J. N.; Arnaud, N.; Beigbeder, C.; Breton, D.; Davier, M.; Derkach, D.; Dû, S.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Nief, J. Y.; Petersen, T. C.; Plaszczynski, S.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Tocut, V.; Trincaz-Duvoid, S.; Wang, L. L.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Hutchcroft, D. E.; Kay, M.; Parry, R. J.; Payne, D. J.; Schofield, K. C.; Sloane, R. J.; Touramanis, C.; Azzopardi, D. E.; Bellodi, G.; Bevan, A. J.; Clarke, C. K.; Cormack, C. M.; Di Lodovico, F.; Dixon, P.; George, K. A.; Menges, W.; Potter, R. J. L.; Sacco, R.; Shorthouse, H. W.; Sigamani, M.; Strother, P.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Hopkins, D. A.; Jackson, P. S.; Kurup, A.; Marker, C. E.; McGrath, P.; McMahon, T. R.; Paramesvaran, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Allison, J.; Alwyn, K. E.; Bailey, D. S.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Forti, A. C.; Fullwood, J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Jackson, G.; Kelly, M. P.; Kolya, S. D.; Lafferty, G. D.; Lyon, A. J.; Naisbit, M. T.; Savvas, N.; Weatherall, J. H.; West, T. J.; Williams, J. C.; Yi, J. I.; Anderson, J.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Lillard, V.; Roberts, D. A.; Schieck, J. R.; Simi, G.; Tuggle, J. M.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Staengle, H.; Willocq, S. Y.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Koeneke, K.; Lang, M. I.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Yi, M.; Zhao, M.; Zheng, Y.; Klemetti, M.; Lindemann, D.; Mangeol, D. J. J.; Mclachlin, S. E.; Milek, M.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Cerizza, G.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Pellegrini, R.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Godang, R.; Brunet, S.; Cote, D.; Nguyen, X.; Simard, M.; Taras, P.; Viaud, B.; Nicholson, H.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Onorato, G.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Allmendinger, T.; Benelli, G.; Brau, B.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Smith, D. S.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Iwasaki, M.; Kolb, J. A.; Lu, M.; Potter, C. T.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Borsato, E.; Castelli, G.; Colecchia, F.; Crescente, A.; Dal Corso, F.; Dorigo, A.; Fanin, C.; Furano, F.; Gagliardi, N.; Galeazzi, F.; Margoni, M.; Marzolla, M.; Michelon, G.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Solagna, P.; Stevanato, E.; Stroili, R.; Tiozzo, G.; Voci, C.; Akar, S.; Bailly, P.; Ben-Haim, E.; Bonneaud, G.; Briand, H.; Chauveau, J.; Hamon, O.; John, M. J. J.; Lebbolo, H.; Leruste, Ph.; Malclès, J.; Marchiori, G.; Martin, L.; Ocariz, J.; Perez, A.; Pivk, M.; Prendki, J.; Roos, L.; Sitt, S.; Stark, J.; Thérin, G.; Vallereau, A.; Biasini, M.; Covarelli, R.; Manoni, E.; Pennazzi, S.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Morsani, F.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J. J.; Haire, M.; Judd, D.; Biesiada, J.; Danielson, N.; Elmer, P.; Fernholz, R. E.; Lau, Y. P.; Lu, C.; Miftakov, V.; Olsen, J.; Lopes Pegna, D.; Sands, W. R.; Smith, A. J. S.; Telnov, A. V.; Tumanov, A.; Varnes, E. W.; Baracchini, E.; Bellini, F.; Bulfon, C.; Buccheri, E.; Cavoto, G.; D'Orazio, A.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Lamanna, E.; Leonardi, E.; Li Gioi, L.; Lunadei, R.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; del Re, D.; Renga, F.; Safai Tehrani, F.; Serra, M.; Voena, C.; Bünger, C.; Christ, S.; Hartmann, T.; Leddig, T.; Schröder, H.; Wagner, G.; Waldi, R.; Adye, T.; Bly, M.; Brew, C.; Condurache, C.; De Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.; Xella, S. M.; Aleksan, R.; Bourgeois, P.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; Giraud, P.-F.; Georgette, Z.; Graziani, G.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Micout, P.; Serfass, B.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Akre, R.; Aston, D.; Azemoon, T.; Bard, D. J.; Bartelt, J.; Bartoldus, R.; Bechtle, P.; Becla, J.; Benitez, J. F.; Berger, N.; Bertsche, K.; Boeheim, C. T.; Bouldin, K.; Boyarski, A. M.; Boyce, R. F.; Browne, M.; Buchmueller, O. L.; Burgess, W.; Cai, Y.; Cartaro, C.; Ceseracciu, A.; Claus, R.; Convery, M. R.; Coupal, D. P.; Craddock, W. W.; Crane, G.; Cristinziani, M.; DeBarger, S.; Decker, F. J.; Dingfelder, J. C.; Donald, M.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Ecklund, S.; Erickson, R.; Fan, S.; Field, R. C.; Fisher, A.; Fox, J.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Gaponenko, I.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hadig, T.; Halyo, V.; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.; Hast, C.; Hee, C.; Himel, T.; Hryn'ova, T.; Huffer, M. E.; Hung, T.; Innes, W. R.; Iverson, R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kharakh, D.; Kocian, M. L.; Krasnykh, A.; Krebs, J.; Kroeger, W.; Kulikov, A.; Kurita, N.; Langenegger, U.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Libby, J.; Lindquist, B.; Luitz, S.; Lüth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; McCulloch, M.; McDonald, J.; Melen, R.; Menke, S.; Metcalfe, S.; Messner, R.; Moss, L. J.; Mount, R.; Muller, D. R.; Neal, H.; Nelson, D.; Nelson, S.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; O'Grady, C. P.; O'Neill, F. G.; Ofte, I.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Piemontese, M.; Pierson, S.; Pulliam, T.; Ratcliff, B. N.; Ratkovsky, S.; Reif, R.; Rivetta, C.; Rodriguez, R.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwarz, H.; Schwiening, J.; Seeman, J.; Smith, D.; Snyder, A.; Soha, A.; Stanek, M.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Tanaka, H. A.; Teytelman, D.; Thompson, J. M.; Tinslay, J. S.; Trunov, A.; Turner, J.; van Bakel, N.; van Winkle, D.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Weinstein, A. J. R.; Weber, T.; West, C. A.; Wienands, U.; Wisniewski, W. J.; Wittgen, M.; Wittmer, W.; Wright, D. H.; Wulsin, H. W.; Yan, Y.; Yarritu, A. K.; Yi, K.; Yocky, G.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Singh, H.; Weidemann, A. W.; White, R. M.; Wilson, J. R.; Yumiceva, F. X.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Meyer, T. I.; Miyashita, T. S.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Liu, J.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Gorodeisky, R.; Guttman, N.; Peimer, D.; Soffer, A.; De Silva, A.; Lund, P.; Krishnamurthy, M.; Ragghianti, G.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Borean, C.; Bosisio, L.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Rashevskaya, I.; Vitale, L.; Vuagnin, G.; Manfredi, P. F.; Re, V.; Speziali, V.; Frank, E. D.; Gladney, L.; Guo, Q. H.; Panetta, J.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Agarwal, A.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Brown, C. M.; Choi, H. H. F.; Fortin, D.; Fransham, K. B.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hollar, J. J.; Hu, H.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Mellado, B.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Pierini, M.; Prepost, R.; Scott, I. J.; Tan, P.; Vuosalo, C. O.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Yu, Z.; Greene, M. G.; Kordich, T. M. B.

    2013-11-01

    The BABAR detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

  1. The Linac Coherent Light Source

    DOE PAGES

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  2. Dark Sectors 2016 Workshop: Community Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Jim; et al.

    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years.

  3. The BaBar detector: Upgrades, operation and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B.; Barate, R.; Boutigny, D.

    2013-11-01

    The BaBar detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

  4. Archimedes' Oldest Writings Under X-ray vision (BNL Women in Science Lecture Series)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Uwe

    2009-05-20

    Large parts of Archimedes’ writings were recently deciphered at the Stanford Synchrotron Radiation Lightsource at SLAC. A special x-ray technique showed maps of iron in faint traces of partially erased ink. The x-ray images revealed Archimedes’ writings from some of his most important works that were hidden by twelfth-century biblical texts, mold and forged gold paintings.

  5. Next Linear Collider Home Page

    Science.gov Websites

    Welcome to the Next Linear Collider NLC Home Page If you would like to learn about linear colliders in general and about this next-generation linear collider project's mission, design ideas, and Linear Collider. line | NLC Home | NLC Technical | SLAC | mcdunn Tuesday, February 14, 2006 01:32:11 PM

  6. The preliminary study of the quench protection of an MgB2

    NASA Astrophysics Data System (ADS)

    Juster, F. P.; Berriaud, C.; Bonelli, A.; Pasquet, R.; Przybilski, H.; Schild, T.; Scola, L.

    2014-01-01

    In the framework of general studies currently carried out at CEA/Saclay in collaboration with Sigmaphi Company on dry MgB2 magnet operating at 10 K and medium range field, 1 T up to 4 T., we plan to build a prototype-coil with a commercial MgB2 wire. This coil, the nominal axial magnetic field of which is 1 tesla, will be placed in a 3 teslas background field generated by a classical NbTi coil. This paper deals with the preliminary quench protection studies including stability and quench propagation modeling.

  7. Cellules solaires photovoltaïques plastiques enjeux et perspectives

    NASA Astrophysics Data System (ADS)

    Sicot, L.; Dumarcher, V.; Raimond, P.; Rosilio, C.; Sentein, C.; Fiorini, C.

    2002-04-01

    Après avoir détaillé le fonctionnement d'une cellule photovoltaïque plastique et les paramètres photovoltaïques permettant de caractéiser son efficacité, un état de l'art des technologies de fabrication des cellules est présenté. Des moyens d'amélioration des performances des cellules photovoltaïques organiques sont ensuite illustrés par l'étude de dispositifs développés au Laboratoire Composants Organiques (LCO) du CEA Saclay.

  8. Committees and supporting organizations

    NASA Astrophysics Data System (ADS)

    2011-09-01

    Advisory Committee:Organizing Committee: Marcello Baldo (Catania)Takaharu Otsuka (Tokyo), co-chair George Bertsch (Seattle)Michael Urban (Orsay), co-chair Jean-Paul Blaizot (Saclay)Taiichi Yamada (Yokohama) Michel Girod (Bruyères-le-Châtel)Nguyen van Giai (Orsay) Hisashi Horiuchi (Osaka)Shinichiro Fujii (Tokyo) Umberto Lombardo (Catania)Jérôme Margueron (Orsay) Gerd Röpke (Rostock)Kouichi Hagino (Sendai) Hiroyuki Sagawa (Aizu)Yoshiko Kanada-En'yo (Kyoto) Piet Van Isacker (Caen) Enrico Vigezzi (Milano) IPN logo    EFES logo    CNRS logo    ihp logo

  9. Dynamic Laser-Light Scattering Study on Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Miike, Hidetoshi; Hideshima, Masao; Hashimoto, Hajime; Ebina, Yoshio

    1984-08-01

    The motility changes in growing bacteria in a culture medium were observed with a dynamic light-scattering technique used to analyse the frequency spectrum of the scattered light intensity. Two typical enterobacteriaceae, E. coil and P. morganii, were examined, and the change in the velocity distribution of the bacteria with time was analysed using the observed spectrum. The distribution pattern was found to change from a Gaussian-type to a Saclay-type with time, and the mean speed of the bacteria had a maximum value at around the turning point of the growth curve.

  10. Hadron-collider limits on new electroweak interactions from the heterotic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Aguila, F.; Moreno, J.M.; Quiros, M.

    1990-01-01

    We evaluate the {ital Z}{prime}{r arrow}{ital l}{sup +}l{sup {minus}} cross section at present and future hadron colliders, for the minimal (E{sub 6}) extended electroweak models inspired by superstrings (including renormalization effects on new gauge couplings and new mixing angles). Popular models are discussed for comparison. Analytical expressions for the bounds on the mass of a new gauge boson, {ital M}{sub {ital Z}{prime}}, as a function of the bound on the ratio {ital R}{equivalent to}{sigma}({ital Z}{prime}){ital B}(Z{prime}{r arrow}l{sup +}{ital l}{sup {minus}})/{sigma}({ital Z}){ital B} ({ital Z}{r arrow}{ital l}{sup +}{ital l}{sup {minus}}), are given for the CERN S{ital p {bar p}}S, Fermilab Teva-more » tron, Serpukhov UNK, CERN Large Hadron Collider, and Superconducting Super Collider for the different models. In particular, the {ital M}{sub {ital Z}{prime}} bounds from the present {ital R} limit at CERN, as well as from the eventually available {ital R} limits at Fermilab and at the future hadron colliders (after three months of running at the expected luminosity), are given explicitly.« less

  11. Taylor Elected to Royal Society of London

    Science.gov Websites

    SLAC, 28 May 1997 Taylor Elected to Royal Society of London Richard Taylor, physics professor at statements must be verified by facts. Taylor will travel to London in the near future for his induction, part Isaac Newton and Michael Faraday. Taylor, a Canadian citizen, received his Ph.D. at Stanford in 1962 and

  12. Vector meson photoproduction with a linearly polarized beam

    NASA Astrophysics Data System (ADS)

    Mathieu, V.; Nys, J.; Fernández-Ramírez, C.; Jackura, A.; Pilloni, A.; Sherrill, N.; Szczepaniak, A. P.; Fox, G.; Joint Physics Analysis Center

    2018-05-01

    We propose a model based on Regge theory to describe photoproduction of light vector mesons. We fit the SLAC data and make predictions for the energy and momentum-transfer dependence of the spin-density matrix elements in photoproduction of ω , ρ0 and ϕ mesons at Eγ˜8.5 GeV , which are soon to be measured at Jefferson Lab.

  13. Simulation of HEAO 3 Background

    DTIC Science & Technology

    2007-01-01

    i i o iipp i i o iinn VdE A NaEEf VdE A NaEEfprod ji ji j R where i is a stable isotope in volume V, ai is its fractional abundance, i the...National Nuclear Data Center (NNDC), Brookhaven National Laboratory, Brookhaven, NY. [10] W. Nelson et al., ”The EGS4 code system ”, SLAC-Report-265

  14. Turning on LAMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostedt, Christoph

    2014-06-30

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  15. The Next Linear Collider Program-News

    Science.gov Websites

    The Next Linear Collider at SLAC Navbar The Next Linear Collider In The Press The Secretary of Linear Collider is a high-priority goal of this plan. http://www.sc.doe.gov/Sub/Facilities_for_future/20 -term projects in conceputal stages (the Linear Collider is the highest priority project in this

  16. Turning on LAMP

    ScienceCinema

    Bostedt, Christoph

    2018-01-16

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  17. Anisotropies in the Diffuse Gamma-Ray Background Measured by the Fermi LAT

    DTIC Science & Technology

    2012-05-02

    D-15738 Zeuthen, Germany 2W.W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology , Department of Physics...and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94305, USA 3Department of Physics, Center for Cosmology and Astro...Greenbelt, Maryland 20771, USA 57Consorzio Interuniversitario per la Fisica Spaziale (CIFS), I-10133 Torino, Italy E. Komatsu{ Texas Cosmology Center

  18. LCLS-II Cryomodules Production at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arkan, Tug; Grimm, Chuck; Kaluzny, Joshua

    2017-05-01

    LCLS-II is an upgrade project for the linear coherent light source (LCLS) at SLAC. The LCLS-II linac will consist of thirty-five 1.3 GHz and two 3.9 GHz superconducting RF continuous wave (CW) cryomodules that Fermilab and Jefferson Lab (JLab) will assemble in collaboration with SLAC. The LCLS-II 1.3 GHz cryomodule design is based on the European XFEL pulsed-mode cryomodule design with modifications needed for CW operation. Fermilab and JLab will each assemble and test a prototype 1.3 GHz cryomodule to assess the results of the CW modifications, in advance of 16 and 17 production 1.3 GHz cryomodules, respectively. Fermilab ismore » solely responsible for the 3.9 GHz cryomodules. After the prototype cryomodule tests are complete and lessons learned incorporated, both laboratories will increase their cryomodule production rates to meet the challenging LCLS-II project requirement of approximately one cryomodule per month per laboratory. This paper presents the Fermilab Cryomodule Assembly Facility (CAF) infrastructure for LCLS-II cryomodule production, the Fermilab prototype 1.3 GHz CW cryomodule (pCM) assembly and readiness for production assembly.« less

  19. LCLS-II CRYOMODULE TRANSPORT SYSTEM TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huque, Naeem; Daly, Edward F.; McGee, Michael W.

    The Cryomodules (CM) for the Linear Coherent Light Source II (LCLS-II) will be shipped to SLAC (Menlo Park, California) from JLab (Newport News, Virginia) and FNAL (Batavia, Illinois). A transportation system has been designed and built to safely transport the CMs over the road. It uses an array of helical isolator springs to attenuate shocks on the CM to below 1.5g in all directions. The system rides on trailers equipped with Air-Ride suspension, which attenuates vibration loads. The prototype LCLS-II CM (pCM) was driven 750 miles to test the transport system; shock loggers recorded the shock attenuation on the pCMmore » and vacuum gauges were used to detect any compromises in beamline vacuum. Alignment measurements were taken before and after the trip to check whether cavity positions had shifted beyond the ± 0.2mm spec. Passband frequencies and cavity gradients were measured at 2K at the Cryomodule Test Facility (CMTF) at JLab to identify any degradation of CM performance after transportation. The transport system was found to have safely carried the CM and is cleared to begin shipments from JLab and FNAL to SLAC.« less

  20. Long-Sought Discovery Fills in Missing Details of Cell ‘Switchboard’

    ScienceCinema

    None

    2018-01-16

    A biomedical breakthrough, published today in the journal Nature, reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses. The work is based on an X-ray laser experiment at the Department of Energy’s SLAC National Accelerator Laboratory. The much-anticipated discovery, a decade in the making, could have broad impacts on development of more highly targeted and effective drugs with fewer side effects to treat conditions including high blood pressure, diabetes, depression and even some types of cancer. The ultrabright X-rays of SLAC's Linac Coherent Light Source (LCLS) enabled the research team to complete the first 3-D atomic-scale map of a key signaling protein called arrestin while it was docked with a cell receptor involved in vision. The receptor is a well-studied example from a family of hundreds of G protein-coupled receptors, or GPCRs, which are targeted by about 40 percent of drugs on the market. Its structure while coupled with arrestin provides new insight into the on/off signaling pathways of GPCRs.

  1. Hardware Testing and System Evaluation: Procedures to Evaluate Commodity Hardware for Production Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goebel, J

    2004-02-27

    Without stable hardware any program will fail. The frustration and expense of supporting bad hardware can drain an organization, delay progress, and frustrate everyone involved. At Stanford Linear Accelerator Center (SLAC), we have created a testing method that helps our group, SLAC Computer Services (SCS), weed out potentially bad hardware and purchase the best hardware at the best possible cost. Commodity hardware changes often, so new evaluations happen periodically each time we purchase systems and minor re-evaluations happen for revised systems for our clusters, about twice a year. This general framework helps SCS perform correct, efficient evaluations. This article outlinesmore » SCS's computer testing methods and our system acceptance criteria. We expanded the basic ideas to other evaluations such as storage, and we think the methods outlined in this article has helped us choose hardware that is much more stable and supportable than our previous purchases. We have found that commodity hardware ranges in quality, so systematic method and tools for hardware evaluation were necessary. This article is based on one instance of a hardware purchase, but the guidelines apply to the general problem of purchasing commodity computer systems for production computational work.« less

  2. Technological Challenges to X-Ray FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I atmore » 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.« less

  3. Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier

    NASA Astrophysics Data System (ADS)

    Gold, S. H.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Fliflet, A. W.; Lewis, D.

    2006-01-01

    The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to ˜8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.

  4. Parallel Higher-order Finite Element Method for Accurate Field Computations in Wakefield and PIC Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A.; Kabel, A.; Lee, L.

    Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell)more » approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.« less

  5. The Discovery of the Tau Lepton: Part 1, The Early History Through 1975; Part 2, Confirmation of the Discovery and Measurement of Major Properties, 1976--1982

    DOE R&D Accomplishments Database

    Perl, M. L.

    1994-08-01

    Several previous papers have given the history of the discovery of the {tau} lepton at the Stanford Linear Accelerator Center (SLAC). These papers emphasized (a) the experiments which led to our 1975 publication of the first evidence for the existence of the {tau}, (b) the subsequent experiments which confirmed the existence of the r, and (c) the experiments which elucidated the major properties of the {tau}. That history will be summarized in Part 2 of this talk. In this Part 1, I describe the earlier thoughts and work of myself and my colleagues at SLAC in the 1960's and early 1970's which led to the discovery. I also describe the theoretical and experimental events in particle physics in the 1960's in which our work was immersed. I will also try to describe for the younger generations of particle physicists, the atmosphere in the 1960's. That was before the elucidation of the quark model of hadrons, before the development of the concept of particle generations The experimental paths to program we hot as clear as they are today and we had to cast a wide experimental net.

  6. Dispersive effects from a comparison of electron and positron scattering from

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul Gueye; M. Bernheim; J. F. Danel

    1998-05-01

    Dispersive effects have been investigated by comparing elastic scattering of electrons and positrons from {sup 12}C at the Saclay Linear Accelerator. The results demonstrate that dispersive effects at energies of 262 MeV and 450 MeV are less than 2% below the first diffraction minimum [0.95 < q{sub eff} (fm{sup -1}) < 1.66] in agreement with the prediction of Friar and Rosen. At the position of this minimum (q{sub eff} = 1.84 fm{sup -1}), the deviation between the positron scattering cross section and the cross section derived from the electron results is -44% {+-} 30%.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevan, A. J.; Golob, B.; Mannel, Th.

    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C.

  8. The Physics of the B Factories

    DOE PAGES

    Bevan, A. J.; Golob, B.; Mannel, Th.; ...

    2014-11-19

    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C.

  9. Measurements of Branching Ratios And Search for CP Violation in the Modes B0 to Rho Pi, Rho K (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laplace, Sandrine; /Paris U., VI-VII

    2006-09-18

    The BABAR experiment, at the PEP-II collider at SLAC, has been studying since 1999 CP violation in the B meson system. After the precise measurement of sin2{beta}, one is now concentrating on measuring the angles {alpha} and {gamma} of the unitarity triangle. The work presented in this thesis concerns the measurement of the angle {alpha} in the B{sup 0} {yields} {rho}{pi} mode.

  10. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers at DOE's SLAC National Accelerator Laboratory used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice. This technique uses ultrafast lasers to drive the accelerator. (This achievement was reported in Nature, 27 Sept 2013)

  12. U.C. Davis high energy particle physics research: Technical progress report -- 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Summaries of progress made for this period is given for each of the following areas: (1) Task A--Experiment, H1 detector at DESY; (2) Task C--Experiment, AMY detector at KEK; (3) Task D--Experiment, fixed target detectors at Fermilab; (4) Task F--Experiment, PEP detector at SLAC and pixel detector; (5) Task B--Theory, particle physics; and (6) Task E--Theory, particle physics.

  13. SIMES

    Science.gov Websites

    image nivo slider image nivo slider image nivo slider image nivo slider image nivo slider image Quick Energy@Stanford&SLAC LINAC Coherent Light Source (LCLS) Stanford Synchrotron Radiation Lightsource 29 30 31 1 2 3 Events (List View) No events See all events ©2012- Stanford University. All rights

  14. The stellar initial mass function of early-type galaxies from low to high stellar velocity dispersion: homogeneous analysis of ATLAS3D and Sloan Lens ACS galaxies

    NASA Astrophysics Data System (ADS)

    Posacki, Silvia; Cappellari, Michele; Treu, Tommaso; Pellegrini, Silvia; Ciotti, Luca

    2015-01-01

    We present an investigation about the shape of the initial mass function (IMF) of early-type galaxies (ETGs), based on a joint lensing and dynamical analysis, and on stellar population synthesis models, for a sample of 55 lens ETGs identified by the Sloan Lens Advanced Camera for Surveys (SLACS). We construct axisymmetric dynamical models based on the Jeans equations which allow for orbital anisotropy and include a dark matter halo. The models reproduce in detail the observed Hubble Space Telescope photometry and are constrained by the total projected mass within the Einstein radius and the stellar velocity dispersion (σ) within the Sloan Digital Sky Survey fibres. Comparing the dynamically-derived stellar mass-to-light ratios (M*/L)dyn, obtained for an assumed halo slope ρh ∝ r-1, to the stellar population ones (M*/L)Salp, derived from full-spectrum fitting and assuming a Salpeter IMF, we infer the mass normalization of the IMF. Our results confirm the previous analysis by the SLACS team that the mass normalization of the IMF of high-σ galaxies is consistent on average with a Salpeter slope. Our study allows for a fully consistent study of the trend between IMF and σ for both the SLACS and atlas3D samples, which explore quite different σ ranges. The two samples are highly complementary, the first being essentially σ selected, and the latter volume-limited and nearly mass selected. We find that the two samples merge smoothly into a single trend of the form log α = (0.38 ± 0.04) × log (σe/200 km s-1) + ( - 0.06 ± 0.01), where α = (M*/L)dyn/(M*/L)Salp and σe is the luminosity averaged σ within one effective radius Re. This is consistent with a systematic variation of the IMF normalization from Kroupa to Salpeter in the interval σe ≈ 90-270 km s-1.

  15. The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses

    NASA Astrophysics Data System (ADS)

    Shu, Yiping; Brownstein, Joel R.; Bolton, Adam S.; Koopmans, Léon V. E.; Treu, Tommaso; Montero-Dorta, Antonio D.; Auger, Matthew W.; Czoske, Oliver; Gavazzi, Raphaël; Marshall, Philip J.; Moustakas, Leonidas A.

    2017-12-01

    We present the full sample of 118 galaxy-scale strong-lens candidates in the Sloan Lens ACS (SLACS) Survey for the Masses (S4TM) Survey, which are spectroscopically selected from the final data release of the Sloan Digital Sky Survey. Follow-up Hubble Space Telescope (HST) imaging observations confirm that 40 candidates are definite strong lenses with multiple lensed images. The foreground-lens galaxies are found to be early-type galaxies (ETGs) at redshifts 0.06–0.44, and background sources are emission-line galaxies at redshifts 0.22–1.29. As an extension of the SLACS Survey, the S4TM Survey is the first attempt to preferentially search for strong-lens systems with relatively lower lens masses than those in the pre-existing strong-lens samples. By fitting HST data with a singular isothermal ellipsoid model, we find that the total projected mass within the Einstein radius of the S4TM strong-lens sample ranges from 3 × 1010 M ⊙ to 2 × 1011 M ⊙. In Shu et al., we have derived the total stellar mass of the S4TM lenses to be 5 × 1010 M ⊙ to 1 × 1012 M ⊙. Both the total enclosed mass and stellar mass of the S4TM lenses are on average almost a factor of 2 smaller than those of the SLACS lenses, which also represent the typical mass scales of the current strong-lens samples. The extended mass coverage provided by the S4TM sample can enable a direct test, with the aid of strong lensing, for transitions in scaling relations, kinematic properties, mass structure, and dark-matter content trends of ETGs at intermediate-mass scales as noted in previous studies. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with HST program #12210.

  16. A unique power supply for the PEP II klystron at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassel, R.; Nguyen, M.N.

    1997-07-01

    Each of the eight 1.2 MW RF klystrons for the PEP-II storage rings require a 2.5 MVA DC power supply of 83 Kv at 23 amps. The design for the supply was base on three factors, low cost, small size to fit existing substation pads, and good protection against damage to the klystron including klystron gun arcs. The supply uses a 12 pulse 12.5 KV primary thyristor star point controller with primary filter inductor to provide rapid voltage control, good voltage regulation, and fast turn off during klystron tube faults. The supply also uses a unique secondary rectifier, filter capacitormore » configuration to minimize the energy available under a klystron fault. The voltage control is from 0--90 KV with a regulation of < 0.1% and voltage ripple of < 1% P-P, (< 0.2% RMS) above 60 KV. The supply utilizes a thyristor crowbar, which under a klystron tube arc limits the energy in the klystron arc to < 5 joules. If the thyristor crowbar is disabled the energy supplied is < 40 joules into the arc. The size of the supply was reduced small enough to fit the existing PEP transformer yard pads. The cost of the power supply was < $140 per KVA.« less

  17. Vector meson photoproduction with a linearly polarized beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathieu, V.; Nys, J.; Fernendez-Ramirez, C.

    Here, we propose a model based on Regge theory to describe photoproduction of light vector mesons. We fit the SLAC data and make predictions for the energy and momentum transfer dependence of the spin-density matrix elements in photoproduction of ω,more » $$\\rho^0$$ and $$\\sigma$$ mesons at Ε γ ~ 8.5 GeV, which are soon to be measured at Jefferson Lab.« less

  18. Evaluating the Response of Polyvinyl Toluene Scintillators used in Portal Detectors

    DTIC Science & Technology

    2008-03-01

    For the example shell script , the working directory is located at d:\\g4work. The Java development kit (jdk) is located at c:/ Java /jdk1.7.0. “JAIDA...Interval . . . . . . . . . . . . . . . . . . . . . . 64 SLAC Stanford Linear Accelerator . . . . . . . . . . . . . . . . . 84 jdk Java development...Em0, Em13, Em14 Stopping power, particle range ... Em0, Em1, Em5, Em11, Em12 Final state : energy spectra, angular distributions Em14 Energy loss

  19. Study of ultra-low emittance design for SPEAR3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M. -H.; Huang, X.; Safranek, J.

    2015-09-17

    Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now, to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.

  20. Study of ultra-low emittance design for Spear3 using longitudinal gradient dipole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M. -H.; Huang, X.; Safranek, J.

    2015-09-24

    Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.

  1. Vector meson photoproduction with a linearly polarized beam

    DOE PAGES

    Mathieu, V.; Nys, J.; Fernendez-Ramirez, C.; ...

    2018-05-09

    Here, we propose a model based on Regge theory to describe photoproduction of light vector mesons. We fit the SLAC data and make predictions for the energy and momentum transfer dependence of the spin-density matrix elements in photoproduction of ω,more » $$\\rho^0$$ and $$\\sigma$$ mesons at Ε γ ~ 8.5 GeV, which are soon to be measured at Jefferson Lab.« less

  2. Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A.; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).

  3. Study of selective heating at ion cyclotron resonance for the plasma separation process

    NASA Astrophysics Data System (ADS)

    Compant La Fontaine, A.; Pashkovsky, V. G.

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucléaires de Saclay and Cité Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number kz is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the kz spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge-Kutta method. The influence of ion-ion collisions, inhomogeneity of the static magnetic field B0, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44Ca heating measurements, made with an energy analyzer.

  4. Comparing Hp(3) evaluated from the conversion coefficients from air kerma to personal dose equivalent for eye lens dosimetry calibrated on a new cylindrical PMMA phantom

    NASA Astrophysics Data System (ADS)

    Esor, J.; Sudchai, W.; Monthonwattana, S.; Pungkun, V.; Intang, A.

    2017-06-01

    Based on a new occupational dose limit recommended by ICRP (2011), the annual dose limit for the lens of the eye for workers should be reduced from 150 mSv/y to 20 mSv/y averaged over 5 consecutive years in which no single year exceeding 50 mSv. This new dose limit directly affects radiologists and cardiologists whose work involves high radiation exposure over 20 mSv/y. Eye lens dosimetry (Hp(3)) has become increasingly important and should be evaluated directly based on dosimeters that are worn closely to the eye. Normally, Hp(3) dose algorithm was carried out by the combination of Hp(0.07) and Hp(10) values while dosimeters were calibrated on slab PMMA phantom. Recently, there were three reports from European Union that have shown the conversion coefficients from air kerma to Hp(3). These conversion coefficients carried out by ORAMED, PTB and CEA Saclay projects were performed by using a new cylindrical head phantom. In this study, various delivered doses were calculated using those three conversion coefficients while nanoDot, small OSL dosimeters, were used for Hp(3) measurement. These calibrations were performed with a standard X-ray generator at Secondary Standard Dosimetry Laboratory (SSDL). Delivered doses (Hp(3)) using those three conversion coefficients were compared with Hp(3) from nanoDot measurements. The results showed that percentage differences between delivered doses evaluated from the conversion coefficient of each project and Hp(3) doses evaluated from the nanoDots were found to be not exceeding -11.48 %, -8.85 % and -8.85 % for ORAMED, PTB and CEA Saclay project, respectively.

  5. Radiological Environmental Protection for LCLS-II High Power Operation

    NASA Astrophysics Data System (ADS)

    Liu, James; Blaha, Jan; Cimeno, Maranda; Mao, Stan; Nicolas, Ludovic; Rokni, Sayed; Santana, Mario; Tran, Henry

    2017-09-01

    The LCLS-II superconducting electron accelerator at SLAC plans to operate at up to 4 GeV and 240 kW average power, which would create higher radiological impacts particularly near the beam loss points such as beam dumps and halo collimators. The main hazards to the public and environment include direct or skyshine radiation, effluent of radioactive air such as 13N, 15O and 41Ar, and activation of groundwater creating tritium. These hazards were evaluated using analytic methods and FLUKA Monte Carlo code. The controls (mainly extensive bulk shielding and local shielding around high loss points) and monitoring (neutron/photon detectors with detection capabilities below natural background at site boundary, site-wide radioactive air monitors, and groundwater wells) were designed to meet the U.S. DOE and EPA, as well as SLAC requirements. The radiological design and controls for the LCW systems [including concrete housing shielding for 15O and 11C circulating in LCW, 7Be and erosion/corrosion products (22Na, 54Mn, 60Co, 65Zn, etc.) captured in resin and filters, leak detection and containment of LCW with 3H and its waste water discharge; explosion from H2 build-up in surge tank and release of radionuclides] associated with the high power beam dumps are also presented.

  6. Performance of a Combined System Using an X-Ray FEL Oscillator and a High-Gain FEL Amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, L.; Lindberg, R.; Kim, K. -J.

    The LCLS-II at SLAC will feature a 4 GeV CW superconducting (SC) RF linac [1] that can potentially drive a 5th harmonic X-Ray FEL Oscillator (XFELO) to produce fully coherent, 1 MW photon pulses with a 5 meV bandwidth at 14.4 keV [2]. The XFELO output can serve as the input seed signal for a high-gain FEL amplifier employing fs electron beams from the normal conducting SLAC linac, thereby generating coherent, fs x-ray pulses with TW peak powers using a tapered undulator after saturation [3]. Coherent, intense output at several tens of keV will also be feasible if one considersmore » a harmonic generation scheme. Thus, one can potentially reach the 42 keV photon energy required for the MaRIE project [4] by beginning with an XFELO operating at the 3rd harmonic to produce 14.0 keV photons using a 12 GeV SCRF linac, and then subsequently using the high-gain harmonic generation scheme to generate and amplify the 3th harmonic at 42 keV [5]. We report extensive GINGER simulations that determine an optimized parameter set for the combined system.« less

  7. Design and Calibration of an RF Actuator for Low-Level RF Systems

    NASA Astrophysics Data System (ADS)

    Geng, Zheqiao; Hong, Bo

    2016-02-01

    X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.

  8. Quarks, gluons, and color are sufficient, but are they necessary II

    NASA Astrophysics Data System (ADS)

    Bartlett, David

    2017-01-01

    The 25th anniversary of the death of John Stewart Bell, was marked by lively discussion in Physics Today. This activity spurred me to consider the quark as one of Bell's ugly ``hidden variables'' which can be discarded. Here I extend comments on topics that are usually thought to be settled. These include CP-violation in KLong decay and ``quantum spookiness'' in B-decays. Apparently, the simple reaction e+ e- goes to ``anything + anything bar'' misses essential hadronic physics. The psi was indeed discovered by observing a sharp peak in the total cross section for e+e- at SLAC, but the J was found in the fragments from pp collisions at Brookhaven. Similarly, the parity of the D-meson was determined in a particle reconstruction by an LBL-SLAC group. They analyzed the Dalitz plot of the K pi pi in fragments at SPEAR and found ``Evidence for Parity Nonconservation in the Decays of the Narrow states near 1.87 GeV/c2. The authors did not mention quarks at all. Finally, the parity of the B-meson may be relevant to the exotic ``charmonium'' states observed in fragments at the B-factories. Unfortunately, the parity of the B cannot currently be determined independently of the quark model[PDG-2014, B+/-,top page 51].

  9. OBITUARY: Maurice Jacob (1933 2007)

    NASA Astrophysics Data System (ADS)

    Quercigh, Emanuele; Šándor, Ladislav

    2008-04-01

    Maurice Jacob passed away on 2 May 2007. With his death, we have lost one of the founding fathers of the ultra-relativistic heavy ion programme. His interest in high-energy nuclear physics started in 1981 when alpha alpha collisions could first be studied in the CERN ISR. An enthusiastic supporter of ion beam experiments at CERN, Maurice was at the origin of the 1982 Quark Matter meeting in Bielefeld [1] which brought together more than 100 participants from both sides of the Atlantic, showing a good enthusiastic constituency for such research. There were twice as many the following year at Brookhaven. Finally in the mid-eighties, a heavy ion programme was approved both at CERN and at Brookhaven involving as many nuclear as particle physicists. It was the start of a fruitful interdisciplinary collaboration which is nowadays continuing both at RHIC and at LHC. Maurice followed actively the development of this field, reporting at a number of conferences and meetings (Les Arcs, Bielefeld, Beijing, Brookhaven, Lenox, Singapore, Taormina,...). This activity culminated in 2000, when Maurice, together with Ulrich Heinz, summarized the main results of the CERN SPS heavy-ion experiments and the evidence was obtained for a new state of matter [2]. Maurice was a brilliant theoretical physicist. His many contributions have been summarized in a recent article in the CERN Courier by two leading CERN theorists, John Ellis and Andre Martin [3]. The following is an excerpt from their article: `He began his research career at Saclay and, while still a PhD student, he continued brilliantly during a stay at Brookhaven. It was there in 1959 that Maurice, together with Giancarlo Wick, developed the helicity amplitude formalism that is the basis of many modern theoretical calculations. Maurice obtained his PhD in 1961 and, after a stay at Caltech, returned to Saclay. A second American foray was to SLAC, where he and Sam Berman made the crucial observation that the point-like structures

  10. Lattice gauge theory for QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGrand, T.

    1997-06-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.

  11. Development of a Very Dense Liquid Cooled Compute Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Phillip N.; Lipp, Robert J.

    2013-12-10

    The objective of this project was to design and develop a prototype very energy efficient high density compute platform with 100% pumped refrigerant liquid cooling using commodity components and high volume manufacturing techniques. Testing at SLAC has indicated that we achieved a DCIE of 0.93 against our original goal of 0.85. This number includes both cooling and power supply and was achieved employing some of the highest wattage processors available.

  12. Internet end-to-end performance monitoring for the High Energy Nuclear and Particle Physics community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, W.

    2000-02-22

    Modern High Energy Nuclear and Particle Physics (HENP) experiments at Laboratories around the world present a significant challenge to wide area networks. Petabytes (1015) or exabytes (1018) of data will be generated during the lifetime of the experiment. Much of this data will be distributed via the Internet to the experiment's collaborators at Universities and Institutes throughout the world for analysis. In order to assess the feasibility of the computing goals of these and future experiments, the HENP networking community is actively monitoring performance across a large part of the Internet used by its collaborators. Since 1995, the pingER projectmore » has been collecting data on ping packet loss and round trip times. In January 2000, there are 28 monitoring sites in 15 countries gathering data on over 2,000 end-to-end pairs. HENP labs such as SLAC, Fermi Lab and CERN are using Advanced Network's Surveyor project and monitoring performance from one-way delay of UDP packets. More recently several HENP sites have become involved with NLANR's active measurement program (AMP). In addition SLAC and CERN are part of the RIPE test-traffic project and SLAC is home for a NIMI machine. The large End-to-end performance monitoring infrastructure allows the HENP networking community to chart long term trends and closely examine short term glitches across a wide range of networks and connections. The different methodologies provide opportunities to compare results based on different protocols and statistical samples. Understanding agreement and discrepancies between results provides particular insight into the nature of the network. This paper will highlight the practical side of monitoring by reviewing the special needs of High Energy Nuclear and Particle Physics experiments and provide an overview of the experience of measuring performance across a large number of interconnected networks throughout the world with various methodologies. In particular, results from each

  13. ICFA Instrumentation Bulletin, Volume 21, Fall 2000 Issue (SLAC-J-ICFA-021)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Va'Vra, J.

    2003-10-22

    Cosmic ray experiments outside the Earth's atmosphere are subject to severe restrictions on the mass of the instruments. Therefore, it is important that the experimental information that can be obtained per unit detector mass is maximized. In this paper, tests are described of a thin (1.4 {lambda}{sub int}deep) hadron calorimeter that was designed with this goal in mind. This detector was equipped with two independent active media, which provided complementary information on the showering hadrons. It is shown that by combining the information from these media it was possible to reduce the effects of the dominant leakage fluctuations on themore » calorimeter performance.« less

  14. ICFA Instrumentation Bulletin, Volume 20, Spring 2000 Issue (SLAC-J-ICFA-020)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Va'Vra, J.

    2003-10-20

    Recent years have seen much dedicated work on front end electronics for hadron colliders, with a strong emphasis on radiation hardness and low cost. This has been challenging for a number of reasons, some of which are discussed further. The developments also suggest opportunities and constraints for the development of such electronics in the future.

  15. The Abort Kicker System for the PEP-II Storage Rings at SLAC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delamare, Jeffrey E

    2003-06-20

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 {micro}S (the beam transit time aroundmore » the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the design of the system interlocks, diagnostics, and modulator with the modifications necessary to accommodate an ion clearing gap of 185nS.« less

  16. Study of the emission performance of high-power klystrons: SLAC XK-5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Y.

    1981-07-01

    There are hundreds of high power klystrons operated in the Linac gallery and about fifty to sixty tubes fail every year. The lifetime ranges from a few thousand up to seventy thousand hours except those which fail during an early period. The overall percentage of failures due to emission problems is approximately 25%. It is also noted that a 10% increase in mean lifetime of klystrons will reduce the overall cost per hour as much as a 10% increase in efficiency. Therefore, it is useful to find some method to predict the expected life of an individual tube. The finalmore » goal has not been attained yet, but some useful information was obtained. It is thought that this information might be helpful for those people who will study this subject further.« less

  17. Nature's Greatest Puzzles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigg, Chris; /Fermilab

    2005-02-01

    It is a pleasure to be part of the SLAC Summer Institute again, not simply because it is one of the great traditions in our field, but because this is a moment of great promise for particle physics. I look forward to exploring many opportunities with you over the course of our two weeks together. My first task in talking about Nature's Greatest Puzzles, the title of this year's Summer Institute, is to deconstruct the premise a little bit.

  18. Survey of beam instrumentation used in SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecklund, S.D.

    A survey of beam instruments used at SLAC in the SLC machine is presented. The basic utility and operation of each device is briefly described. The various beam instruments used at the Stanford Linear Collider (SLC), can be classified by the function they perform. Beam intensity, position and size are typical of the parameters of beam which are measured. Each type of parameter is important for adjusting or tuning the machine in order to achieve optimum performance. 39 refs.

  19. Applying object-oriented software engineering at the BaBar collaboration

    NASA Astrophysics Data System (ADS)

    Jacobsen, Bob; BaBar Collaboration Reconstruction Software Group

    1997-02-01

    The BaBar experiment at SLAC will start taking data in 1999. We are attempting to build its reconstruction software using good software engineering practices, including the use of object-oriented technology. We summarize our experience to date with analysis and design activities, training, CASE and documentation tools, C++ programming practice and similar topics. The emphasis is on the practical issues of simultaneously introducing new techniques to a large collaboration while under a deadline for system delivery.

  20. The Luminosity Function of Fermi-Detected Flat-Spectrum Radio Quasars

    DTIC Science & Technology

    2012-05-11

    Laboratory, Kavli Institute for Particle Astrophysics and Cosmology , Department of Physics and SLAC National Accelerator Laboratory, Stanford University...and that they represent only ∼0.1% of the parent population. Key words: cosmology : observations – diffuse radiation – galaxies: active – galaxies: jets...is determined and discussed in Section 6. Throughout this paper, we assume a standard concordance cosmology (H0 = 71 km s−1 Mpc−1 and ΩM = 1−ΩΛ = 0.27

  1. The trigger system for K0→2 π0 decays of the NA48 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Mikulec, I.

    1998-02-01

    A fully pipelined 40 MHz "dead-time-free" trigger system for neutral K0 decays for the NA48 experiment at CERN is described. The NA48 experiment studies CP-violation using the high intensity beam of the CERN SPS accelerator. The trigger system sums, digitises, filters and processes signals from 13 340 channels of the liquid krypton electro-magnetic calorimeter. In 1996 the calorimeter and part of the trigger electronics were installed and tested. In 1997 the system was completed and prepared to be used in the first NA48 physics data taking period. Cagliari, Cambridge, CERN, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Orsay, Perugia, Pisa, Saclay, Siegen, Torino, Warszawa, Wien Collaboration.

  2. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    NASA Astrophysics Data System (ADS)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  3. Thermal conductivity measurements of epoxy systems at low temperature

    NASA Astrophysics Data System (ADS)

    Rondeaux, F.; Bredy, Ph.; Rey, J. M.

    2002-05-01

    We have developed a specific thermal conductivity measurement facility for solid materials at low temperature (LHe and LN2). At present, the Measurement of Thermal Conductivity of Insulators (MECTI) facility performs measurements on epoxy resin, as well as on bulk materials such as aluminum alloy and on insulators developed at Saclay. Thermal conductivity measurements on pre-impregnated fiber-glass epoxy composite are presented in the temperature range of 4.2 K to 14 K for different thicknesses in order to extract the thermal boundary resistance. We also present results obtained on four different bonding glues (Stycast 2850 FT, Poxycomet F, DP190, Eccobond 285) in the temperature range of 4.2 K to 10 K.

  4. NARMER-1: a photon point-kernel code with build-up factors

    NASA Astrophysics Data System (ADS)

    Visonneau, Thierry; Pangault, Laurence; Malouch, Fadhel; Malvagi, Fausto; Dolci, Florence

    2017-09-01

    This paper presents an overview of NARMER-1, the new generation of photon point-kernel code developed by the Reactor Studies and Applied Mathematics Unit (SERMA) at CEA Saclay Center. After a short introduction giving some history points and the current context of development of the code, the paper exposes the principles implemented in the calculation, the physical quantities computed and surveys the generic features: programming language, computer platforms, geometry package, sources description, etc. Moreover, specific and recent features are also detailed: exclusion sphere, tetrahedral meshes, parallel operations. Then some points about verification and validation are presented. Finally we present some tools that can help the user for operations like visualization and pre-treatment.

  5. PyOperators: Operators and solvers for high-performance computing

    NASA Astrophysics Data System (ADS)

    Chanial, P.; Barbey, N.

    2012-12-01

    PyOperators is a publicly available library that provides basic operators and solvers for small-to-very large inverse problems ({http://pchanial.github.com/pyoperators}). It forms the backbone of the package PySimulators, which implements specific operators to construct an instrument model and means to conveniently represent a map, a timeline or a time-dependent observation ({http://pchanial.github.com/pysimulators}). Both are part of the Tamasis (Tools for Advanced Map-making, Analysis and SImulations of Submillimeter surveys) toolbox, aiming at providing versatile, reliable, easy-to-use, and optimal map-making tools for Herschel and future generation of sub-mm instruments. The project is a collaboration between 4 institutes (ESO Garching, IAS Orsay, CEA Saclay, Univ. Leiden).

  6. Study of Background Rejection Systems for the IXO Mission.

    NASA Astrophysics Data System (ADS)

    Laurent, Philippe; Limousin, O.; Tatischeff, V.

    2009-01-01

    The scientific performances of the IXO mission will necessitate a very low detector background level. This will imply thorough background simulations, and efficient background rejection systems. It necessitates also a very good knowledge of the detectors to be shielded. In APC, Paris, and CEA, Saclay, we got experience on these activities by conceiving and optimising in parallel the high energy detector and the active and passive background rejection system of the Simbol-X mission. Considering that this work may be naturally extended to other X-ray missions, we have initiated with CNES a R&D project on the study of background rejection systems mainly in view the IXO project. We will detail this activity in the poster.

  7. Ultrafast X-Ray Coherent Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di racting properties of a x-ray di racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray freemore » electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the eld, and have laid the foundation for many experiments being performed on the LCLS, the world's rst hard x-ray free electron laser.« less

  8. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, M. J.

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  9. X-ray Synchrotron Radiation in a Plasma Wiggler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is importantmore » for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.« less

  10. Mass density slope of elliptical galaxies from strong lensing and resolved stellar kinematics

    NASA Astrophysics Data System (ADS)

    Lyskova, N.; Churazov, E.; Naab, T.

    2018-04-01

    We discuss constraints on the mass density distribution (parametrized as ρ ∝ r-γ) in early-type galaxies provided by strong lensing and stellar kinematics data. The constraints come from mass measurements at two `pinch' radii. One `pinch' radius r1 = 2.2REinst is defined such that the Einstein (i.e. aperture) mass can be converted into the spherical mass almost independently of the mass-model. Another `pinch' radius r2 = Ropt is chosen so that the dynamical mass, derived from the line-of-sight velocity dispersion, is least sensitive to the anisotropy of stellar orbits. We verified the performance of this approach on a sample of simulated elliptical galaxies and on a sample of 15 SLACS lens galaxies at 0.01 ≤ z ≤ 0.35, which have already been analysed in Barnabè et al. by the self-consistent joint lensing and kinematic code. For massive simulated galaxies, the density slope γ is recovered with an accuracy of ˜13 per cent, unless r1 and r2 happen to be close to each other. For SLACS galaxies, we found good overall agreement with the results of Barnabè et al. with a sample-averaged slope γ = 2.1 ± 0.05. Although the two-pinch-radii approach has larger statistical uncertainties, it is much simpler and uses only few arithmetic operations with directly observable quantities.

  11. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE PAGES

    Tannenbaum, M. J.

    2018-01-30

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  12. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    NASA Astrophysics Data System (ADS)

    Gold, Steven H.; Kinkead, Allen K.; Gai, Wei; Power, John G.; Konecny, Richard; Jing, Chunguang; Long, Jidong; Tantawi, Sami G.; Nantista, Christopher D.; Bruce, Ralph W.; Fliflet, Arne W.; Lombardi, Marcie; Lewis, David

    2006-11-01

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a ˜250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to ˜8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  13. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  14. Measurement of the branching fraction and polarization for the decay B--->D*0K*-.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kral, J F; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Barlow, N R; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Shen, B C; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Biasini, M; Calcaterra, A; De Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Pioppi, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gaillard, J R; Morton, G W; Nash, J A; Sanders, P; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Strother, P; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, R J; Forti, A C; Hart, P A; Hodgkinson, M C; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Hast, C; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Wong, Q K; Brau, J; Frey, R; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Tanaka, H A; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Grauges-Pous, E; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Robertson, S H; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-04-09

    We present a study of the decay B--->D(*0)K(*-) based on a sample of 86 x 10(6) Upsilon(4S)-->BBmacr; decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We measure the branching fraction B(B--->D(*0)K(*-))=(8.3+/-1.1(stat)+/-1.0(syst)) x 10(-4), and the fraction of longitudinal polarization in this decay to be Gamma(L)/Gamma=0.86+/-0.06(stat)+/-0.03(syst).

  15. Unlocking the Secrets of Brain Signals (4K)

    ScienceCinema

    None

    2018-06-21

    Scientists have for the first time determined, at atomic-scale resolution, the 3-D structure of a protein complex that provides the ultrafast trigger for chemicals messages sent between nerve cells in our brains. The discovery, which provides a new understanding of the molecular machinery driving brain function, builds on decades of research at Stanford University, the Stanford School of Medicine and SLAC National Accelerator Laboratory was made possible by SLAC’s Linac Coherent Light Source, an ultrabright X-ray laser.

  16. SPORT-SPEAR Mark III Electronics (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Drawing List DL 135-678-00-RO and the drawings listed thereon provide the specifications for construction of the SPORT-SPEAR Mark III Electronics. SPORT stands for Smark Port. This device is an adapter for the SLAC BADC (Brilliant Analog to Digital Converter) providing up to 5 ports whereas the BADC and SPORT takes signals from experimental equipment and directs them to other equipment and micro computers for processing and storing. These units are housed in standard Camac crates.

  17. Unlocking the Secrets of Brain Signals (4K)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-08-17

    Scientists have for the first time determined, at atomic-scale resolution, the 3-D structure of a protein complex that provides the ultrafast trigger for chemicals messages sent between nerve cells in our brains. The discovery, which provides a new understanding of the molecular machinery driving brain function, builds on decades of research at Stanford University, the Stanford School of Medicine and SLAC National Accelerator Laboratory was made possible by SLAC’s Linac Coherent Light Source, an ultrabright X-ray laser.

  18. Ultimate Atomic Bling: Nanotechnology of Diamonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, Jeremy

    2010-05-25

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  19. Metals, Molecules, Life and Death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Graham

    2004-08-31

    In our normal everyday lives we are exposed to an incredibly complex chemical soup consisting of an enormous variety of different chemical compounds. Many of these compounds contain metal atoms which, once inside us, can either fulfill roles that are essential to health, or act as poisons. Studies at SLAC's Stanford Synchrotron Radiation Laboratory (SSRL) reveal the molecular details of metals in living systems; how they interact with one another, how they confer beneficial properties, and how they act as poisons.

  20. Symposium on electron linear accelerators in honor of Richard B. Neal's 80th birthday: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemann, R.H.

    The papers presented at the conference are: (1) the construction of SLAC and the role of R.B. Neal; (2) symposium speech; (3) lessons learned from the SLC; (4) alternate approaches to future electron-positron linear colliders; (5) the NLC technical program; (6) advanced electron linacs; (7) medical uses of linear accelerators; (8) linac-based, intense, coherent X-ray source using self-amplified spontaneous emission. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  1. Study of the Power Supply Ripple Effect on teh Dynamics at SPEAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terebilo, A.; Pellegrini, C.; /UCLA

    For long term stability analysis time variation of tunes is important. We have proposed and tested a technique for measuring the magnitude of this variation. This was made possible by using tune extraction algorithms that require small number of turns thus giving an instantaneous tune of the machine. In this paper we demonstrate the measured effect of the tune modulation with 60 Hz power supplies ripple, power line interference from SLAC linac operating at 30 Hz repetition rate, and nonperiodic variation.

  2. Proceedings of the 1993 Particle Accelerator Conference Held in Washington, DC on May 17-20, 1993. Volume 1

    DTIC Science & Technology

    1993-05-20

    1624 (1991); J. Liu, et al., Ph.D. Thesis , Univ. of Wisconsin, (1993) unpublished. 3 CONCLUSION [4] S.Y. Lee, et al., Phys. Rev. Lett. 67, 2767 (1991...34 Ph.D. Thesis , Stanford University, SLAC-387 (1991). ik L ~LL I~*~ 1, [5) H.Hne TasotadAclrto of Low Emit- 󈧎’ ... . .. •.. tance Electron Beams...the particles to fill the gap created by the [13] F. Zimmermann, Dipl. Thesis , DESY-HER, -[14] J.Irwin, Y. Yan, IEEE PAC 89, p. 1340 (1989

  3. High resolution upgrade of the ATF damping ring BPM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terunuma, N.; Urakawa, J.; /KEK, Tsukuba

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  4. Dalitz plot analyses of J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → K s 0 K ± π ∓ produced via e + e - annihilation with initial-state radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    We study the processes e + e - → γ ISR J / ψ , where J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → Kmore » $$0\\atop{S}$$ K ± π ∓ using a data sample of 519 fb - 1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e + e - collider at center-of-mass energies at and near the Υ ( n S ) ( n = 2 , 3 , 4 ) resonances.« less

  5. The Diogene 4 pi detector at Saturne

    NASA Technical Reports Server (NTRS)

    Alard, J. P.; Arnold, J.; Augerat, J.; Babinet, R.; Bastid, N.; Brochard, F.; Costilhes, J. P.; Crouau, M.; De Marco, N.; Drouet, M.; hide

    1987-01-01

    Diogene, an electronic 4 pi detector, has been built and installed at the Saturne synchrotron in Saclay. The forward angular range (0 degree-6 degrees) is covered by 48 time-of-flight scintillator telescopes that provide charge identification. The trajectories of fragments emitted at larger angles are recorded in a cylindrical 0.4-m3 Pictorial Drift Chamber (PDC) surrounding the target. The PDC is inside a 1-T magnetic field; the axis of the PDC cylinder and the magnetic field are parallel to the beam. Good identification has been obtained for both positive and negative pi mesons and for hydrogen and helium isotopes. Multiplicities in relativistic nucleus-nucleus reactions up to 40 have been detected, limited mainly by the present electronics.

  6. Advances in Monte-Carlo code TRIPOLI-4®'s treatment of the electromagnetic cascade

    NASA Astrophysics Data System (ADS)

    Mancusi, Davide; Bonin, Alice; Hugot, François-Xavier; Malouch, Fadhel

    2018-01-01

    TRIPOLI-4® is a Monte-Carlo particle-transport code developed at CEA-Saclay (France) that is employed in the domains of nuclear-reactor physics, criticality-safety, shielding/radiation protection and nuclear instrumentation. The goal of this paper is to report on current developments, validation and verification made in TRIPOLI-4 in the electron/positron/photon sector. The new capabilities and improvements concern refinements to the electron transport algorithm, the introduction of a charge-deposition score, the new thick-target bremsstrahlung option, the upgrade of the bremsstrahlung model and the improvement of electron angular straggling at low energy. The importance of each of the developments above is illustrated by comparisons with calculations performed with other codes and with experimental data.

  7. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins.

    PubMed

    Couvin, David; Bernheim, Aude; Toffano-Nioche, Claire; Touchon, Marie; Michalik, Juraj; Néron, Bertrand; C Rocha, Eduardo P; Vergnaud, Gilles; Gautheret, Daniel; Pourcel, Christine

    2018-05-22

    CRISPR (clustered regularly interspaced short palindromic repeats) arrays and their associated (Cas) proteins confer bacteria and archaea adaptive immunity against exogenous mobile genetic elements, such as phages or plasmids. CRISPRCasFinder allows the identification of both CRISPR arrays and Cas proteins. The program includes: (i) an improved CRISPR array detection tool facilitating expert validation based on a rating system, (ii) prediction of CRISPR orientation and (iii) a Cas protein detection and typing tool updated to match the latest classification scheme of these systems. CRISPRCasFinder can either be used online or as a standalone tool compatible with Linux operating system. All third-party software packages employed by the program are freely available. CRISPRCasFinder is available at https://crisprcas.i2bc.paris-saclay.fr.

  8. XXII SLAC summer institute on particle physics: Proceedings. Particle physics, astrophysics and cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, J; DePorcel, L

    1996-02-01

    The seven-day school portion of the Institute revolved around the question of dark matter: where is it and what is it? Reviews were given of microlensing searches for baryonic dark matter, of dark matter candidates in the form of neutrinos and exotic particles, and of low-noise detection techniques used to search for the latter. The history of the universe, from the Big Bang to the role of dark matter in the formation of large-scale structure, was also covered. Other lecture series described the astrophysics that might be done with x-ray timing experiments and through the detection of gravitational radiation. Asmore » in past years, the lectures each morning were followed by stimulating afternoon discussion sessions, in which students could pursue with the lecturers the topics that most interested them. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment. Highlights from the astrophysical and cosmological arenas included observations of anisotropy in the cosmic microwave background, and of the mysterious gamma-ray bursters. From terrestrial accelerators came tantalizing hints of the top quark and marked improvements in precision electroweak measurements, among many other results. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  9. UTDallas Offline Computing System for B Physics with the Babar Experiment at SLAC

    NASA Astrophysics Data System (ADS)

    Benninger, Tracy L.

    1998-10-01

    The University of Texas at Dallas High Energy Physics group is building a high performance, large storage computing system for B physics research with the BaBar experiment (``factory'') at the Stanford Linear Accelerator Center. The goal of this system is to analyze one terabyte of complex Event Store data from BaBar in one to two days. The foundation of the computing system is a Sun E6000 Enterprise multiprocessor system, with additions of a Sun StorEdge L1800 Tape Library, a Sun Workstation for processing batch jobs, staging disks and interface cards. The design considerations, current status, projects underway, and possible upgrade paths will be discussed.

  10. Explained in 60 Seconds: A collaboration with Symmetry Magazine, a Fermilab/SLAC publication

    NASA Astrophysics Data System (ADS)

    Trodden, M.

    2011-07-01

    The Big Bang refers to the start of the rapid expansion of our Universe. Edwin Hubble discovered this expansion in the 1920s through observations of faraway galaxies, showing that the distances between them are growing as time passes. This stunning discovery is beautifully explained by general relativity — Einstein's theory of gravity — augmented by two new concepts, dark matter and dark energy.

  11. Search for charmless hadronic decays of B mesons with the SLAC SLD detector

    NASA Astrophysics Data System (ADS)

    Abe, Kenji; Abe, Koya; Abe, T.; Adam, I.; Akagi, T.; Akimoto, H.; Allen, N. J.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Bardon, O.; Barklow, T. L.; Bashindzhagyan, G. L.; Bauer, J. M.; Bellodi, G.; Benvenuti, A. C.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Byrne, R. M.; Calcaterra, A.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Chou, A.; Church, E.; Cohn, H. O.; Coller, J. A.; Convery, M. R.; Cook, V.; Cowan, R. F.; Coyne, D. G.; Crawford, G.; Damerell, C. J.; Danielson, M. N.; Daoudi, M.; de Groot, N.; dell'orso, R.; Dervan, P. J.; de Sangro, R.; Dima, M.; Dong, D. N.; Doser, M.; Dubois, R.; Eisenstein, B. I.; Erofeeva, I.; Eschenburg, V.; Etzion, E.; Fahey, S.; Falciai, D.; Fan, C.; Fernandez, J. P.; Fero, M. J.; Flood, K.; Frey, R.; Gifford, J.; Gillman, T.; Gladding, G.; Gonzalez, S.; Goodman, E. R.; Hart, E. L.; Harton, J. L.; Hasuko, K.; Hedges, S. J.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Huynh, X.; Hwang, H.; Iwasaki, M.; Jackson, D. J.; Jacques, P.; Jaros, J. A.; Jiang, Z. Y.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kamyshkov, Y.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kim, Y. D.; King, M. E.; King, R.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Langston, M.; Lath, A.; Leith, D. W.; Lia, V.; Lin, C.; Liu, M. X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mahjouri, M.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Menegatti, G.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Moore, T. B.; Morii, M.; Muller, D.; Murzin, V.; Nagamine, T.; Narita, S.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Oishi, N.; Onoprienko, D.; Osborne, L. S.; Panvini, R. S.; Park, C. H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Reinertsen, P. L.; Rensing, P. E.; Rochester, L. S.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schalk, T.; Schindler, R. H.; Schumm, B. A.; Schwiening, J.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Smy, M. B.; Snyder, J. A.; Staengle, H.; Stahl, A.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Thom, J.; Torrence, E.; Toumbas, N. K.; Usher, T.; Vannini, C.; Va'vra, J.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, D. L.; Wagner, S. R.; Waite, A. P.; Walston, S.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, B.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Wittlin, J. L.; Woods, M.; Word, G. B.; Wright, T. R.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yashima, J.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zhou, J.

    2000-10-01

    Based on a sample of approximately 500 000 hadronic Z0 decays accumulated between 1993 and 1998, the SLD experiment has set limits on 24 fully charged two-body and quasi-two-body exclusive charmless hadronic decays of B+, B0, and B0s mesons. The precise tracking capabilities of the SLD detector provided for the efficient reduction of combinatoric backgrounds, yielding the most precise available limits for ten of these modes.

  12. Continuation of support for the Intercampus Institute for Research at Particle Accelerators. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, D.; Eisner, A.

    1997-10-01

    During the budget period beginning May 16, 1995, the UCSD group of the U.C. Intercampus Institute for Research at Particle Accelerators devoted approximately 75% of its effort to the PEP-II B Factory and the associated BABAR detector at SLAC, and 25% of its effort to the LSND collaboration at LAMPF. Michael Sullivan spent all of his time on PEP-II, while Alan Eisner split his time between BABAR and LSND. Sullivan remained a critical member of the group designing the PEP-II interaction region and the machine-detector interface; and, in fact, toward the end of the period he left IIRPA to becomemore » a SLAC employee, in order to ensure his continued participation in those efforts. That work has focused on developing an interaction region in which the accelerator can achieve the required high specific luminosity while, at the same time, maintaining low enough beam background to allow a detector to operate. Both requirements are essential to achieving the primary physics goal of not only detecting but doing detailed measurements of CP violation. Eisner`s work on the BABAR detector concentrated on the electromagnetic (CsI crystal) calorimeter. With the calorimeter geometry largely established, he turned his attention more fully to the areas of calorimeter data acquisition and calibration. The data acquisition focus, was on understaning the performance of the proposed system via calculations and simulations, a joint project with Yao-xin Wang of the UCSB IIRPA group.« less

  13. Design parameters for tuning the type 1 Cu multicopper oxidase redox potential: insight from a combination of first principles and empirical molecular dynamics simulations.

    PubMed

    Hong, Gongyi; Ivnitski, Dmitri M; Johnson, Glenn R; Atanassov, Plamen; Pachter, Ruth

    2011-04-06

    The redox potentials and reorganization energies of the type 1 (T1) Cu site in four multicopper oxidases were calculated by combining first principles density functional theory (QM) and QM/MM molecular dynamics (MD) simulations. The model enzymes selected included the laccase from Trametes versicolor, the laccase-like enzyme isolated from Bacillus subtilis, CueO required for copper homeostasis in Escherichia coli, and the small laccase (SLAC) from Streptomyces coelicolor. The results demonstrated good agreement with experimental data and provided insight into the parameters that influence the T1 redox potential. Effects of the immediate T1 Cu site environment, including the His(N(δ))-Cys(S)-His(N(δ)) and the axial coordinating amino acid, as well as the proximate H(N)(backbone)-S(Cys) hydrogen bond, were discerned. Furthermore, effects of the protein backbone and side-chains, as well as of the aqueous solvent, were studied by QM/MM molecular dynamics (MD) simulations, providing an understanding of influences beyond the T1 Cu coordination sphere. Suggestions were made regarding an increase of the T1 redox potential in SLAC, i.e., of Met198 and Thr232 in addition to the axial amino acid Met298. Finally, the results of this work presented a framework for understanding parameters that influence the Type 1 Cu MCO redox potential, useful for an ever-growing range of laccase-based applications. © 2011 American Chemical Society

  14. Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.

    2013-06-27

    The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions,more » lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.« less

  15. Generation of high quality electron beams via ionization injection in a plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Vafaei-Najafabadi, Navid; Joshi, Chan; E217 SLAC Collaboration

    2016-10-01

    Ionization injection in a beam driven plasma wakefield accelerator has been used to generate electron beams with over 30 GeV of energy in a 130 cm of lithium plasma. The experiments were performed using the 3 nC, 20.35 GeV electron beam at the FACET facility of the SLAC National Accelerator Laboratory as the driver of the wakefield. The ionization of helium atoms in the up ramp of a lithium plasma were injected into the wake and over the length of acceleration maintained an emittance on the order of 30 mm-mrad, which was an order of magnitude smaller than the drive beam, albeit with an energy spread of 10-20%. The process of ionization injection occurs due to an increase in the electric field of the drive beam as it pinches through its betatron oscillations. Thus, this energy spread is attributed to the injection region encompassing multiple betatron oscillations. In this poster, we will present evidence through OSIRIS simulations of producing an injected beam with percent level energy spread and low emittance by designing the plasma parameters appropriately, such that the ionization injection occurs over a very limited distance of one betatron cycle. Work at UCLA was supported by the NSF Grant Number PHY-1415386 and DOE Grant Number DE-SC0010064. Work at SLAC was supported by DOE contract number DE-AC02-76SF00515. Simulations used the Hoffman cluster at UCLA.

  16. Search for lepton-flavor violation in the decay tau- --> l- l+ l-.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Watson, N K; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; Van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Khan, A; Lavin, D; Muheim, F; Playfer, S; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Cristinziani, M; De Nardo, G; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-03-26

    A search for the lepton-flavor-violating decay of the tau into three charged leptons has been performed using 91.5 fb(-1) of data collected at an e(+)e(-)center-of-mass energy around 10.58 GeV with the BABAR detector at the SLAC storage ring PEP-II. In all six decay modes considered, the numbers of events found in data are compatible with the background expectations. Upper limits on the branching fractions are set in the range (1-3)x10(-7) at 90% confidence level.

  17. The design of electron and ion guns, beams, and collectors

    NASA Astrophysics Data System (ADS)

    Becker, Reinard; Herrmannsfeldt, William B.

    2004-01-01

    The well known `SLAC Electron Trajectory Program' (EGUN) has been ported to PCs and has been developed into a family of programs for the design and the optimization of particle optics devices including electron and ion guns, beam transport sections and collectors. We will discuss the application of these tools for the design and the optimization of the essential parts of EBIS/T devices. The discussion will include conditions in which restrictions in the reliability of simulations may occur due to the mathematical modeling and how to overcome them.

  18. Experimental Verification of Predicted Oscillations near a Spin Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolanoski, Hermann; /Humboldt U., Berlin

    2011-12-05

    The E166 experiment at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme for the production of polarized positrons which is suitable for implementation in a future Linear Collider. A multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with GEANT4 simulations that include the dominant polarization-dependent interactions of electrons, positrons and photons in matter.

  19. ION EFFECTS IN THE APS PARTICLE ACCUMULATOR RING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvey, J.; Harkay, K.; Yao, CY.

    2017-06-25

    Trapped ions in the APS Particle Accumulator Ring (PAR) lead to a positive coherent tune shift in both planes, which increases along the PAR cycle as more ions accumulate. This effect has been studied using an ion simulation code developed at SLAC. After modifying the code to include a realistic vacuum profile, multiple ionization, and the effect of shaking the beam to measure the tune, the simulation agrees well with our measurements. This code has also been used to evaluate the possibility of ion instabilities at the high bunch charge needed for the APS-Upgrade.

  20. Lessons learned from the SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phinney, N.

    The SLAC Linear Collider (SLC) is the first example of an entirely new type of lepton collider. Many years of effort were required to develop the understanding and techniques needed to approach design luminosity. This paper discusses some of the key issues and problems encountered in producing a working linear collider. These include the polarized source, techniques for emittance preservation, extensive feedback systems, and refinements in beam optimization in the final focus. The SLC experience has been invaluable for testing concepts and developing designs for a future linear collider.

  1. New central drift chamber for the MARK II at SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartelt, J.E.

    A new central drift chamber has been constructed for the Mark II detector for use at the new SLAC Linear Collider (SLC). The design of the chamber is based on a multi-sense-wire cell of the jet chamber type. In addition to drift-time measurements, pulse-height measurements from the sense wires provide electron-hadron separation by dE/dx. The chamber has been tested in operation at PEP before its move to the SLC. The design and construction are described, and measurements from the new chamber are presented.

  2. Laboratory Astrophysics Using High Intensity Particle and Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin

    History has shown that the symbiosis between direct observations and laboratory studies is instrumental in the progress of astrophysics. Recent years have seen growing interests in the laboratory investigation of astrophysical phenomena that can be addressed by high densities and advancement of technologies in lasers as well as high-energy particle beams. We will give examples on how frontier phenomena such as black holes, supernovae, gamma ray bursts, ultra high-energy cosmic rays, etc., can be investigated in the laboratory setting. Finally, we describe a possible laboratory astrophysics facility to be developed at SLAC.

  3. A study of energy-energy correlations and measurement of [alpha][sub s] at the Z[sup 0] resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    We present the energy-energy correlation (EEC) distribution and its asymmetry (AEEC) in hadronic decays of [Zeta][sup 0] bosons measured by the SLD at SLAC. The data are found to be in good agreement with the predictions of perturbative QCD and fragmentation Monte Carlo models of hadron production. After correction for hadronization effects the data are compared with [Omicron]([alpha][sub s][sup 2]) perturbative QCD calculations from various authors. Fits to the central region of the EEC yield substantially different values of the QCD scale [lambda][sub [ovr MS

  4. Vibrational and relaxational contributions in disaccharide/H2O glass formers

    NASA Astrophysics Data System (ADS)

    Branca, C.; Magazù, S.; Maisano, G.; Migliardo, F.

    2001-12-01

    Among oligosaccharides, trehalose seems to be unique in nature as a bioprotector in drying and freezing processes. To understand the molecular mechanisms underlying the unusual bioprotective properties of trehalose in comparison with other disaccharides, the low-frequency dynamics of aqueous (H2O and D2O) mixtures of homologous disaccharides, trehalose, and sucrose has been studied by neutron scattering measurements carried out using the Mibemol spectrometer at the Laboratoire Leon Brillouin (LLB, Saclay). The principal aim of this work is to compare the relaxational versus low-energy vibrational contributions of sucrose/H2O and trehalose/H2O mixtures across the glass transition, in order to characterize, following a procedure first proposed by Sokolov and co-workers, the different ``fragile'' character of both the disaccharide/H2O mixtures.

  5. 3He(γ,pd) cross sections with tagged photons below the Δ resonance

    NASA Astrophysics Data System (ADS)

    Kolb, N. R.; Cairns, E. B.; Hackett, E. D.; Korkmaz, E.; Nakano, T.; Opper, A. K.; Quraan, M. A.; Rodning, N. L.; Rozon, F. M.; Asai, J.; Feldman, G.; Hallin, E.; O'rielly, G. V.; Pywell, R. E.; Skopik, D. M.

    1994-05-01

    The reaction cross section for 3He(γ,pd) has been measured using the Saskatchewan-Alberta Large Acceptance Detector (SALAD) with tagged photons in the energy range from 166 to 213 MeV. The energy and angle of the proton and the deuteron were measured with SALAD while the tagger determined the photon energy. Differential cross sections have been determined for 40°<θ*p<150°. The results are in agreement with the Bonn and Saclay photodisintegration measurements. The most recent photodisintegration measurement performed at Bates is higher by a factor of 1.3, which is just within the combined errors of the experiments. The proton capture results differ by a factor of 1.7 from the present experiment. Comparisons are made with microscopic calculations of the cross sections.

  6. LONG TERM STABILITY STUDY AT FNAL AND SLAC USING BINP DEVELOPED HYDROSTATIC LEVEL SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seryi, Andrei

    2003-05-28

    Long term ground stability is essential for achieving the performance goals of the Next Linear Collider. To characterize ground motion on relevant time scales, measurements have been performed at three geologically different locations using a hydrostatic level system developed specifically for these studies. Comparative results from the different sites are presented in this paper.

  7. Online Particle Physics Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreitz, Patricia A

    2003-04-24

    This list describes a broad set of online resources that are of value to the particle physics community. It is prescreened and highly selective. It describes the scope, size, and organization of the resources so that efficient choices can be made amongst many sites which may appear similar. A resource is excluded if it provides information primarily of interest to only one institution. Because this list must be fixed in print, it is important to consult the updated version of this compilation which includes newly added resources and hypertext links to more complete information at: http://www.slac.stanford.edu/library/pdg/.

  8. Contributions to the mini-workshop on beam-beam compensation in the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, V.

    1998-02-01

    The purpose of the Workshop was to assay the current understanding of compensation of the beam-beam effects in the Tevatron with use of low-energy high-current electron beam, relevant accelerator technology, along with other novel techniques of the compensation and previous attempts. About 30 scientists representing seven institutions from four countries--FNAL, SLAC, BNL, Novosibirsk, CERN, and Dubna were in attendance. Twenty one talks were presented. The event gave firm ground for wider collaboration on experimental test of the compensation at the Tevatron collider. This report consists of vugraphs of talks given at the meeting.

  9. Taking Down a Giant: 699 Tons of SLAC’s Accelerator Removed for Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-01-31

    For the first time in more than 50 years, a door opened at the western end of the historic linear accelerator at the Department of Energy’s SLAC National Accelerator Laboratory casts light on four empty walls stretching as far as the eye can see. This end of the linac – a full kilometer of it – has been stripped of all its equipment both above and below ground. Over the next two years it will be re-equipped with new technology to power another wonder of modern science: an X-ray laser that will fire a million pulses per second.

  10. Collins fragmentation function measurements at BABAR

    NASA Astrophysics Data System (ADS)

    Brown, David Norvil

    2016-05-01

    We present the results of the measurement of Collins asymmetries in electron-positron annihilation events with the BABAR detector in the process e+e- → h1h2X, for charged hadrons where h1h2 = KK, Kπ, or ππ. Using 468 fb-1 of data collected by BABAR at the SLAC PEP-II B factory, we observe distinct azimuthal asymmetries for hadrons in opposite thrust hemispheres of events, with the asymmetries increasing in proportion to the hadron energies. We find Kπ asymmetries similar to those for ππ pairs, with the high-energy KK asymmetries generally larger.

  11. Observation of Quasichanneling Oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wistisen, T. N.; Mikkelsen, R. E.; Uggerhoj, U. I.

    2017-07-13

    Here, we report on the first experimental observations of quasichanneling oscillations, recently seen in simulations and described theoretically. Although above-barrier particles penetrating a single crystal are generally seen as behaving almost as in an amorphous substance, distinct oscillation peaks nevertheless appear for particles in that category. The quasichanneling oscillations were observed at SLAC National Accelerator Laboratory by aiming 20.35 GeV positrons and electrons at a thin silicon crystal bent to a radius of R = 0.15 m, exploiting the quasimosaic effect. For electrons, two relatively faint quasichanneling peaks were observed, while for positrons, seven quasichanneling peaks were clearly identified.

  12. Review of Recent BABAR Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lista, L.

    2004-12-02

    We present a review of recent results from BaBar experiment. BaBar detector has collected about 256 millions of B{bar B} events at PEP-II, the asymmetric e{sup +}e{sup -} collider located at SLAC running at the {Upsilon}(4S) resonance. We have studied CP violation in B mesons, observing the first evidence of direct CP violation in B meson decays and measured CP asymmetries relevant for the determination of the angles of the CKM Unitarity Triangle. BaBar physics program covers many other topics, including measurements of CKM matrix elements, charm physics, and search for new physics processes.

  13. Observations of radiation damage and recovery in ammonia targets

    NASA Astrophysics Data System (ADS)

    McKee, P. M.

    2004-06-01

    The Polarized Target Group at the University of Virginia has conducted experiments at both the Stanford Linear Accelerator Center (SLAC) and the Thomas Jefferson National Accelerator Facility (JLab) in which a high-intensity (100 nA) electron beam was focused on a polarized target of solid ammonia and/ or solid, deuterated ammonia. Analysis of the target polarization data have revealed several unique characteristics of ammonia. Topics discussed include the rate of polarization decay with accumulated charge, methods of recovering polarization through target annealing and damage-induced shifts in the optimum microwave frequency used to drive the polarization.

  14. Progress on the Multiphysics Capabilities of the Parallel Electromagnetic ACE3P Simulation Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kononenko, Oleksiy

    2015-03-26

    ACE3P is a 3D parallel simulation suite that is being developed at SLAC National Accelerator Laboratory. Effectively utilizing supercomputer resources, ACE3P has become a key tool for the coupled electromagnetic, thermal and mechanical research and design of particle accelerators. Based on the existing finite-element infrastructure, a massively parallel eigensolver is developed for modal analysis of mechanical structures. It complements a set of the multiphysics tools in ACE3P and, in particular, can be used for the comprehensive study of microphonics in accelerating cavities ensuring the operational reliability of a particle accelerator.

  15. Measurement of the absolute branching fraction of D0-->K-pi+.

    PubMed

    Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Eigen, G; Ofte, I; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Tackmann, K; Wenzel, W A; Del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schroeder, T; Steinke, M; Cottingham, W N; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Williams, D C; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Fisher, P H; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Roethel, W; Wilson, F F; Aleksan, R; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2008-02-08

    We measure the absolute branching fraction for D(0)-->K(-)pi(+) using partial reconstruction of B(0)-->D(*+)Xl(-)nu(l) decays, in which only the charged lepton and the pion from the decay D(*+)-->D(0)pi(+) are used. Based on a data sample of 230 x 10(6) BB pairs collected at the Upsilon(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, we obtain B(D(0)-->K(-)pi(+)) = (4.007+/-0.037+/-0.072)%, where the first uncertainty is statistical and the second is systematic.

  16. Joint Center for Artificial Photosynthesis

    ScienceCinema

    Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Na

    2018-05-30

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  17. Reaction. pi. /sup -/p. --> pi. /sup -/. pi. /sup +/. pi. /sup -/p at 8 GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagaki, T.; Tanaka, S.; Yuta, H.

    1982-10-01

    Results from a high-statistics experiment involving an exposure of the SLAC 82-in. hydrogen bubble chamber to a beam of 8-GeV/c ..pi../sup -/ yielding a final state of ..pi../sup -/..pi../sup +/..pi../sup -/p are presented. Copious production of rho, ..delta../sup + +/, and f is found. Considerable quasi-two-body production in which one particle decays to one of the above resonances is also observed. Some double-resonance production involving baryon and meson resonances is also seen. The production properties of rho, ..delta../sup + +/, and f mesons are well described by a double-Regge model.

  18. Proceedings of the 1995 Particle Accelerator Conference and international Conference on High-Energy Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1996-01-01

    Papers from the sixteenth biennial Particle Accelerator Conference, an international forum on accelerator science and technology held May 1–5, 1995, in Dallas, Texas, organized by Los Alamos National Laboratory (LANL) and Stanford Linear Accelerator Center (SLAC), jointly sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Plasma Sciences Society (NPSS), the American Physical Society (APS) Division of Particles and Beams (DPB), and the International Union of Pure and Applied Physics (IUPAP), and conducted with support from the US Department of Energy, the National Science Foundation, and the Office of Naval Research.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, D.; Dubrovin, M.; Gaponenko, I.

    Psana(Photon Science Analysis) is a software package that is used to analyze data produced by the Linac Coherent Light Source X-ray free-electron laser at the SLAC National Accelerator Laboratory. The project began in 2011, is written primarily in C++ with some Python, and provides user interfaces in both C++ and Python. Most users use the Python interface. The same code can be run in real time while data are being taken as well as offline, executing on many nodes/cores using MPI for parallelization. It is publicly available and installable on the RHEL5/6/7 operating systems.

  20. Joint Center for Artificial Photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koval, Carl; Lee, Kenny; Houle, Frances

    2013-12-10

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  1. X-Ray Laser Gets First Real-Time Snapshots of a Chemical Flipping a Biological Switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-11-14

    Scientists have used the powerful X-ray laser at the Department of Energy’s SLAC National Accelerator Laboratory to make the first snapshots of a chemical interaction between two biomolecules – one that flips an RNA “switch” that regulates production of proteins, the workhorse molecules of life. The results, published in Nature, show the game-changing potential of X-ray free-electron lasers, or XFELs, for studying RNA, which guides protein manufacturing in the cell, serves as the primary genetic material in retroviruses such as HIV and also plays a role in most forms of cancer.

  2. PWA prospects for K+Lambda and K+Sigma^0 photoproduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biplab Dey, Michael E. McCracken, Curtis A. Meyer

    2012-04-01

    We present a status update on the CMU group PWA efforts in the strangeness (K{sup +}{Lambda}/K{sup +}{Sigma}{sup 0}) sector. The bulk of the currently available data comes from recently published CLAS g11a results, with extensive polarization data expected soon from the CLAS g8 and g9 set of experiments. We give a brief description of issues pertaining to different sign conventions for the polarization observables in the literature, and normalization discrepancies between the CLAS-g11a results and older high energy data from SLAC/CEA/DESY that used an untagged photon beam.

  3. Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.

  4. Observation of Quasichanneling Oscillations

    NASA Astrophysics Data System (ADS)

    Wistisen, T. N.; Mikkelsen, R. E.; Uggerhøj, U. I.; Wienands, U.; Markiewicz, T. W.; Gessner, S.; Hogan, M. J.; Noble, R. J.; Holtzapple, R.; Tucker, S.; Guidi, V.; Mazzolari, A.; Bagli, E.; Bandiera, L.; Sytov, A.; SLAC E-212 Collaboration

    2017-07-01

    We report on the first experimental observations of quasichanneling oscillations, recently seen in simulations and described theoretically. Although above-barrier particles penetrating a single crystal are generally seen as behaving almost as in an amorphous substance, distinct oscillation peaks nevertheless appear for particles in that category. The quasichanneling oscillations were observed at SLAC National Accelerator Laboratory by aiming 20.35 GeV positrons and electrons at a thin silicon crystal bent to a radius of R =0.15 m , exploiting the quasimosaic effect. For electrons, two relatively faint quasichanneling peaks were observed, while for positrons, seven quasichanneling peaks were clearly identified.

  5. Observation of excess flux for negative cosmic ray penetrating particles in bubble chamber "SKAT" for momentum range (30GeV/c

    NASA Astrophysics Data System (ADS)

    Bazhutov, Yu. N.; Baranov, D. S.

    2001-08-01

    There are presented the first results of the new heavy stable cosmic ray particles search in the bubble chamber "SKAT" (450 x 160 x 90 cm3 ), which was exposed in the neutrino beam of Serpukhov Accelerator during 1976 - 1992 years and was viewed along the horizontal direction so as the magnet field direction (MDM > 150 GeV/c). From looking over 1,270 stills (1 roll for April 23, 1979) it was selected 757 tracks of cosmic ray particles with zenith angle θ < 45°, track length - L > 50 cm and momentum P>2.0GeV/c. From this events there were constructed momentum spectrums for both negative and positive vertical cosmic ray penetrating particles in the (2.0 - 126) GeV/c range and calculated their charge ratio. For positive particles the momentum spectrum has normal shape in all studied range the same as for negative particles but only for momentum range (2.0 - 32) GeV/c and charge ratio for this range is normal and the same as for cosmic muons. But for momentum P>32GeV/c it was observed negative particles excess flux (~10-5 cm-2 s-1 sr-1 ) with changed charge ratio - R = 0.62 +/0.18 (˜>3.5σ) for momentum range (32GeV/c3σ) and for momentum range (3.6GeV/c107 cm2 ṡsṡsr); 2) the installation place

  6. Calculation to experiment comparison of SPND signals in various nuclear reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbot, Loic; Radulovic, Vladimir; Fourmentel, Damien

    2015-07-01

    In the perspective of irradiation experiments in the future Jules Horowitz Reactor (JHR), the Instrumentation Sensors and Dosimetry Laboratory of CEA Cadarache (France) is developing a numerical tool for SPND design, simulation and operation. In the frame of the SPND numerical tool qualification, dedicated experiments have been performed both in the Slovenian TRIGA Mark II reactor (JSI) and very recently in the French CEA Saclay OSIRIS reactor, as well as a test of two detectors in the core of the Polish MARIA reactor (NCBJ). A full description of experimental set-ups and neutron-gamma calculations schemes are provided in the first partmore » of the paper. Calculation to experiment comparison of the various SPNDs in the different reactors is thoroughly described and discussed in the second part. Presented comparisons show promising final results. (authors)« less

  7. Flexible attosecond beamline for high harmonic spectroscopy and XUV/near-IR pump probe experiments requiring long acquisition times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, S. J., E-mail: sebastien.weber@cea.fr; Manschwetus, B.; Billon, M.

    2015-03-15

    We describe the versatile features of the attosecond beamline recently installed at CEA-Saclay on the PLFA kHz laser. It combines a fine and very complete set of diagnostics enabling high harmonic spectroscopy (HHS) through the advanced characterization of the amplitude, phase, and polarization of the harmonic emission. It also allows a variety of photo-ionization experiments using magnetic bottle and COLTRIMS (COLd Target Recoil Ion Momentum Microscopy) electron spectrometers that may be used simultaneously, thanks to a two-foci configuration. Using both passive and active stabilization, special care was paid to the long term stability of the system to allow, using bothmore » experimental approaches, time resolved studies with attosecond precision, typically over several hours of acquisition times. As an illustration, applications to multi-orbital HHS and electron-ion coincidence time resolved spectroscopy are presented.« less

  8. Channeling, Volume Reection and Gamma Emission Using 14GeV Electrons in Bent Silicon Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Brandon

    2015-08-14

    High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact whenmore » compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.« less

  9. Tomato–Pseudomonas syringae interactions under elevated CO2 concentration: the role of stomata

    PubMed Central

    Li, Xin; Sun, Zenghui; Shao, Shujun; Zhang, Shuai; Ahammed, Golam Jalal; Zhang, Guanqun; Jiang, Yuping; Zhou, Jie; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Shi, Kai

    2015-01-01

    Increasing atmospheric CO2 concentrations ([CO2]) in agricultural and natural ecosystems is known to reduce plant stomatal opening, but it is unclear whether these CO2-induced stomatal alterations are associated with foliar pathogen infections. In this study, tomato plants were grown under ambient and elevated [CO2] and inoculated with Pseudomonas syringae pv. tomato strain DC3000, a strain that is virulent on tomato plants. We found that elevated [CO2] enhanced tomato defence against P. syringae. Scanning electron microscopy analysis revealed that stomatal aperture of elevated [CO2] plants was considerably smaller than their ambient counterparts, which affected the behaviour of P. syringae bacteria on the upper surface of epidermal peels. Pharmacological experiments revealed that nitric oxide (NO) played a role in elevated [CO2]-induced stomatal closure. Silencing key genes involved in NO generation and stomatal closing, nitrate reductase (NR) and guard cell slow-type anion channel 1 (SLAC1), blocked elevated [CO2]-induced stomatal closure and resulted in significant increases in P. syringae infection. However, the SLAC1-silenced plants, but not the NR-silenced plants, still had significantly higher defence under elevated [CO2] compared with plants treated with ambient [CO2]. Similar results were obtained when the stomata-limiting factor for P. syringae entry was excluded by syringe infiltration inoculation. These results indicate that elevated [CO2] induces defence against P. syringae in tomato plants, not only by reducing the stomata-mediated entry of P. syringae but also by invoking a stomata-independent pathway to counteract P. syringae. This information is valuable for designing proper strategies against bacterial pathogens under changing agricultural and natural ecosystems. PMID:25336683

  10. Distributing File-Based Data to Remote Sites Within the BABAR Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowdy, Stephen J.

    BABAR [1] uses two formats for its data: Objectivity database and root [2] files. This poster concerns the distribution of the latter--for Objectivity data see [3]. The BABAR analysis data is stored in root files--one per physics run and analysis selection channel--maintained in a large directory tree. Currently BABAR has more than 4.5 TBytes in 200,000 root files. This data is (mostly) produced at SLAC, but is required for analysis at universities and research centers throughout the us and Europe. Two basic problems confront us when we seek to import bulk data from slac to an institute's local storage viamore » the network. We must determine which files must be imported (depending on the local site requirements and which files have already been imported), and we must make the optimum use of the network when transferring the data. Basic ftp-like tools (ftp, scp, etc) do not attempt to solve the first problem. More sophisticated tools like rsync [4], the widely-used mirror/synchronization program, compare local and remote file systems, checking for changes (based on file date, size and, if desired, an elaborate checksum) in order to only copy new or modified files. However rsync allows for only limited file selection. Also when, as in BABAR, an extremely large directory structure must be scanned, rsync can take several hours just to determine which files need to be copied. Although rsync (and scp) provides on-the-fly compression, it does not allow us to optimize the network transfer by using multiple streams, adjusting the tcp window size, or separating encrypted authentication from unencrypted data channels.« less

  11. Passive and Active Monitoring on a High Performance Research Network.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Warren

    2001-05-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge hasmore » arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.« less

  12. A Window into Longer Lasting Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-11-29

    There’s a new tool in the push to engineer rechargeable batteries that last longer and charge more quickly. An X-ray microscopy technique recently developed at Berkeley Lab has given scientists the ability to image nanoscale changes inside lithium-ion battery particles as they charge and discharge. The real-time images provide a new way to learn how batteries work, and how to improve them. The method was developed at Berkeley Lab’s Advanced Light Source, a DOE Office of Science User Facility, by a team of researchers from the Department of Energy’s SLAC National Accelerator Laboratory, Berkeley Lab, Stanford University, and other institutions.

  13. Electron wind in strong wave guide fields

    NASA Astrophysics Data System (ADS)

    Krienen, F.

    1985-03-01

    The X-ray activity observed near highly powered waveguide structures is usually caused by local electric discharges originating from discontinuities such as couplers, tuners or bends. In traveling waves electrons move in the direction of the power flow. Seed electrons can multipactor in a traveling wave, the moving charge pattern is different from the multipactor in a resonant structure and is self-extinguishing. The charge density in the wave guide will modify impedance and propagation constant of the wave guide. The radiation level inside the output wave guide of the SLAC, 50 MW, S-band, klystron is estimated. Possible contributions of radiation to window failure are discussed.

  14. Precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, R.E.

    1994-12-01

    A precise measurement of the left-right cross section asymmetry (A{sub LR}) for Z boson production by e{sup +}e{sup {minus}} collisions has been attained at the SLAC Linear Collider with the SLD detector. The author describes this measurement for the 1993 data run, emphasizing the significant improvements in polarized beam operation which took place for this run, where the luminosity-weighted electron beam polarization averaged 62.6 {+-} 1.2%. Preliminary 1993 results for A{sub LR} are presented. When combined with the (less precise) 1992 result, the preliminary result for the effective weak mixing angle is sin{sup 2}{theta}{sub W}{sup eff} = 0.2290 {+-} 0.0010.

  15. Angels and Demons: The Science Behind the Scenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Norman

    Does antimatter really exist? How and why do scientists produce and use it? Does CERN exist and is there an underground complex deep beneath the Swiss/French border? Is truth stranger than fiction? Find out at the coming public lecture. On Tuesday, May 12, SLAC physicist Norman Graf will discuss the real science behind Angels & Demons, Dan Brown's blockbuster novel and the basis of an upcoming Tom Hanks movie. Graf's' talk is one in a series of public lectures across the U.S., Canada and Puerto Rico to share the science of antimatter and the Large Hadron Collider, and the excitementmore » of particle physics research.« less

  16. Discovery of Charm

    DOE R&D Accomplishments Database

    Goldhaber, G.

    1984-11-01

    In my talk I will cover the period 1973 to 1976 which saw the discoveries of the J/psi and psi' resonances and most of the Psion spectroscopy, the tau lepton and the D0030099,D0015599 charmed meson doublet. Occasionally I will refer briefly to more recent results. Since this conference is on the history of the weak-interactions I will deal primarily with the properties of naked charm and in particular the weakly decaying doublet of charmed mesons. Most of the discoveries I will mention were made with the SLAC-LBL Magnetic Detector or MARK I which we operated at SPEAR from 1973 to 1976.

  17. X-Ray Laser Gets First Real-Time Snapshots of a Chemical Flipping a Biological Switch

    ScienceCinema

    None

    2018-06-13

    Scientists have used the powerful X-ray laser at the Department of Energy’s SLAC National Accelerator Laboratory to make the first snapshots of a chemical interaction between two biomolecules – one that flips an RNA “switch” that regulates production of proteins, the workhorse molecules of life. The results, published in Nature, show the game-changing potential of X-ray free-electron lasers, or XFELs, for studying RNA, which guides protein manufacturing in the cell, serves as the primary genetic material in retroviruses such as HIV and also plays a role in most forms of cancer.

  18. SuperB Progress Report for Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biagini, M.E.; Boni, R.; Boscolo, M.

    2012-02-14

    This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around themore » world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and

  19. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Seryi, Andrei

    2017-12-22

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluquet, Alain

    Cette théetudie les techniques d'identication de l'electron dans l'experience D0 au laboratoire Fermi pres de Chicago Le premier chapitre rappelle quelques unes des motivations physiques de l'experience physique des jets physique electrofaible physique du quark top Le detecteur D0 est decrit en details dans le second chapitre Le troisieme cha pitre etudie les algorithmes didentication de lelectron trigger reconstruction ltres et leurs performances Le quatrieme chapitre est consacre au detecteur a radiation de transition TRD construit par le Departement dAstrophysique Physique des Particules Physique Nucleaire et dInstrumentation Associee de Saclay il presente son principe sa calibration et ses performances Ennmore » le dernier chapitre decrit la methode mise au point pour lanalyse des donnees avec le TRD et illustre son emploi sur quelques exemples jets simulant des electrons recherche du quark top« less

  1. Experimental and evaluated photoneutron cross sections for 197Au

    NASA Astrophysics Data System (ADS)

    Varlamov, V.; Ishkhanov, B.; Orlin, V.

    2017-10-01

    There is a serious well-known problem of noticeable disagreements between the partial photoneutron cross sections obtained in various experiments. Such data were mainly determined using quasimonoenergetic annihilation photon beams and the method of neutron multiplicity sorting at Lawrence Livermore National Laboratory (USA) and Centre d'Etudes Nucleaires of Saclay (France). The analysis of experimental cross sections employing new objective physical data reliability criteria has shown that many of those are not reliable. The IAEA Coordinated Research Project (CRP) on photonuclear data evaluation was approved. The experimental and previously evaluated cross sections of the partial photoneutron reactions (γ ,1 n ) and (γ ,2 n ) on 197Au were analyzed using the new data reliability criteria. The data evaluated using the new experimental-theoretical method noticeably differ from both experimental data and data previously evaluated using nuclear modeling codes gnash, gunf, alice-f, and others. These discrepancies needed to be resolved.

  2. Sedimentation and gravitational instability of Escherichia coli Suspension

    NASA Astrophysics Data System (ADS)

    Salin, Dominique; Douarche, Carine

    2017-11-01

    The successive runs and tumbles of Escherichia coli bacteria provide an active matter suspension of rod-like particles with a large swimming, Brownian like, diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering of the particles and hence instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analysing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume. Comparing these quantities to the ones of equivalent passive particles (ellipsoid, rod) we tentatively infer the effective shape and size of the bacteria involved in its buoyancy induced advection and diffusion. Laboratoire FAST University Paris Saclay France.

  3. Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector.

    PubMed

    Okumura, Y; Gobin, R; Knaster, J; Heidinger, R; Ayala, J-M; Bolzon, B; Cara, P; Chauvin, N; Chel, S; Gex, D; Harrault, F; Ichimiya, R; Ihara, A; Ikeda, Y; Kasugai, A; Kikuchi, T; Kitano, T; Komata, M; Kondo, K; Maebara, S; Marqueta, A; O'Hira, S; Perez, M; Phillips, G; Pruneri, G; Sakamoto, K; Scantamburlo, F; Senée, F; Shinto, K; Sugimoto, M; Takahashi, H; Usami, H; Valette, M

    2016-02-01

    The objective of linear IFMIF prototype accelerator is to demonstrate 125 mA/CW deuterium ion beam acceleration up to 9 MeV. The injector has been developed in CEA Saclay and already demonstrated 140 mA/100 keV deuterium beam [R. Gobin et al., Rev. Sci. Instrum. 85, 02A918 (2014)]. The injector was disassembled and delivered to the International Fusion Energy Research Center in Rokkasho, Japan. After reassembling the injector, commissioning has started in 2014. Up to now, 100 keV/120 mA/CW hydrogen and 100 keV/90 mA/CW deuterium ion beams have been produced stably from a 10 mm diameter extraction aperture with a low beam emittance of 0.21 π mm mrad (rms, normalized). Neutron production by D-D reaction up to 2.4 × 10(9) n/s has been observed in the deuterium operation.

  4. Model of thermal fatigue of a copper surface under the action of high-power microwaves

    NASA Astrophysics Data System (ADS)

    Kuzikov, S. V.; Plotkin, M. E.

    2007-10-01

    The accelerating structures of modern supercolliders, as well as the components of high-power microwave electron devices operated in strong cyclic electromagnetic fields should have long lifetimes. Along with the electric breakdown, the surfaces of these microwave components deteriorate and their lifetimes decrease due to thermal strains and subsequent mechanical loads on the surface metal layer. The elementary theory of thermal fatigue was developed in the 1970s. In particular, a model of metal as a continuous medium was considered. Within the framework of this model, thermal fatigue is caused by the strains arising between the hot surface layer and the cold internal layer of the metal. However, this theory does not describe all the currently available experimental data. In particular, the notion of “safe temperature” of the heating, i.e., temperature at which the surface is not destroyed during an arbitrarily long series of pulses, which was proposed in the theoretical model, is in poor agreement with the experiment performed in the Stanford Linear Accelerator Center (SLAC, USA). In this work, the thermal-fatigue theory is developed on the basis of consideration of the copper polycrystalline structure. The necessity to take it into account was demonstrated by the results of the SLAC experiment, in which a change in the mutual orientation of copper grains and the formation of cracks at their boundaries was recorded for the first time. The developed theory makes it possible to use the experimental data to refine the coefficients in the obtained formulas for the lifetime of the metal surface and to predict the number of microwave pulses before its destruction as a function of the radiation power, the surface-temperature increase at the pulse peak, and the pulse duration.

  5. Measurements of {Gamma}(Z{sup O} {yields} b{bar b})/{Gamma}(Z{sup O} {yields} hadrons) using the SLD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, H.A. Jr. II

    1995-07-01

    The quantity R{sub b} = {Gamma}(Z{sup o} {yields}b{bar b})/{Gamma}(Z{sup o} {yields} hadrons) is a sensitive measure of corrections to the Zbb vertex. The precision necessary to observe the top quark mass dependent corrections is close to being achieved. LEP is already observing a 1.8{sigma} deviation from the Standard Model prediction. Knowledge of the top quark mass combined with the observation of deviations from the Standard Model prediction would indicate new physics. Models which include charged Higgs or light SUSY particles yield predictions for R{sub b} appreciably different from the Standard Model. In this thesis two independent methods are used tomore » measure R{sub b}. One uses a general event tag which determines R{sub b} from the rate at which events are tagged as Z{sup o} {yields} b{bar b} in data and the estimated rates at which various flavors of events are tagged from the Monte Carlo. The second method reduces the reliance on the Monte Carlo by separately tagging each hemisphere as containing a b-decay. The rates of single hemisphere tagged events and both hemisphere tagged events are used to determine the tagging efficiency for b-quarks directly from the data thus eliminating the main sources of systematic error present in the event tag. Both measurements take advantage of the unique environment provided by the SLAC Linear Collider (SLC) and the SLAC Large Detector (SLD). From the event tag a result of R{sub b} = 0.230{plus_minus}0.004{sub statistical}{plus_minus}0.013{sub systematic} is obtained. The higher precision hemisphere tag result obtained is R{sub b} = 0.218{plus_minus}0.004{sub statistical}{plus_minus}0.004{sub systematic}{plus_minus}0.003{sub Rc}.« less

  6. Exploring forward physics with the PHENIX MPC-EX upgrade

    NASA Astrophysics Data System (ADS)

    Novitzky, Norbert; Phenix Collaboration

    2014-09-01

    The MPC-EX detector is a Si-W preshower extension to the existing Muon Piston Calorimeter (MPC) at PHENIX. Located at forward rapidity, 3 . 1 < | η | < 3 . 8 , the MPC-EX consists of eight layers of alternating W absorber and Si minipad sensors. Covering a large range at forward rapidity makes the MPC-EX and MPC ideal to access low-x partons in the A nucleus of p + A collisions. The neutral pion and direct photon are excellent probes to separate between the initial and final state effects of the pA collisions. Isolating the direct photon signal requires the MPC-EX to be able to distinguish single showers from double showers. The single versus double shower separation was tested with an electron beam at the SLAC test beam facility. Results from the test beam data will be presented in this talk. The MPC-EX detector is a Si-W preshower extension to the existing Muon Piston Calorimeter (MPC) at PHENIX. Located at forward rapidity, 3 . 1 < | η | < 3 . 8 , the MPC-EX consists of eight layers of alternating W absorber and Si minipad sensors. Covering a large range at forward rapidity makes the MPC-EX and MPC ideal to access low-x partons in the A nucleus of p + A collisions. The neutral pion and direct photon are excellent probes to separate between the initial and final state effects of the pA collisions. Isolating the direct photon signal requires the MPC-EX to be able to distinguish single showers from double showers. The single versus double shower separation was tested with an electron beam at the SLAC test beam facility. Results from the test beam data will be presented in this talk. Norbert Novitzky for PHENIX collaboration.

  7. High Resolution BPM Upgrade for the ATF Damping Ring at KEK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy, N.; Briegel, C.; Fellenz, B.

    2011-08-17

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital down-conversion techniques, digital signal processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented. The next generation of linear colliders require ultra-low vertical emittance of <2 pm-rad. The damping ring at the KEK Accelerator Test Facilitymore » (ATF) is designed to demonstrate this mission critical goal. A high resolution beam position monitor (BPM) system for the damping ring is one of the key tools for realizing this goal. The BPM system needs to provide two distnict measurements. First, a very high resolution ({approx}100-200nm) closed-orbit measurement which is averaged over many turns and realized with narrowband filter techniques - 'narrowband mode'. This is needed to monitor and steer the beam along an optimum orbit and to facilitate beam-based alignment to minimize non-linear field effects. Second, is the ability to make turn by turn (TBT) measurements to support optics studies and corrections necessary to achieve the design performance. As the TBT measurement necessitates a wider bandwidth, it is often referred to as 'wideband mode'. The BPM upgrade was initiated as a KEK/SLAC/FNAL collaboration in the frame of the Global Design Initiative of the International Linear Collider. The project was realized and completed using Japan-US funds with Fermilab as the core partner.« less

  8. Ion channels in plants.

    PubMed

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  9. Transcriptome analysis of resistant soybean roots infected by Meloidogyne javanica

    PubMed Central

    de Sá, Maria Eugênia Lisei; Conceição Lopes, Marcus José; de Araújo Campos, Magnólia; Paiva, Luciano Vilela; dos Santos, Regina Maria Amorim; Beneventi, Magda Aparecida; Firmino, Alexandre Augusto Pereira; de Sá, Maria Fátima Grossi

    2012-01-01

    Soybean is an important crop for Brazilian agribusiness. However, many factors can limit its production, especially root-knot nematode infection. Studies on the mechanisms employed by the resistant soybean genotypes to prevent infection by these nematodes are of great interest for breeders. For these reasons, the aim of this work is to characterize the transcriptome of soybean line PI 595099-Meloidogyne javanica interaction through expression analysis. Two cDNA libraries were obtained using a pool of RNA from PI 595099 uninfected and M. javanica (J2) infected roots, collected at 6, 12, 24, 48, 96, 144 and 192 h after inoculation. Around 800 ESTs (Expressed Sequence Tags) were sequenced and clustered into 195 clusters. In silico subtraction analysis identified eleven differentially expressed genes encoding putative proteins sharing amino acid sequence similarities by using BlastX: metallothionein, SLAH4 (SLAC1 Homologue 4), SLAH1 (SLAC1 Homologue 1), zinc-finger proteins, AN1-type proteins, auxin-repressed proteins, thioredoxin and nuclear transport factor 2 (NTF-2). Other genes were also found exclusively in nematode stressed soybean roots, such as NAC domain-containing proteins, MADS-box proteins, SOC1 (suppressor of overexpression of constans 1) proteins, thioredoxin-like protein 4-Coumarate-CoA ligase and the transcription factor (TF) MYBZ2. Among the genes identified in non-stressed roots only were Ser/Thr protein kinases, wound-induced basic protein, ethylene-responsive family protein, metallothionein-like protein cysteine proteinase inhibitor (cystatin) and Putative Kunitz trypsin protease inhibitor. An understanding of the roles of these differentially expressed genes will provide insights into the resistance mechanisms and candidate genes involved in soybean-M. javanica interaction and contribute to more effective control of this pathogen. PMID:22802712

  10. Optical Properties of the DIRC Fused Silica Radiator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Convery, Mark R

    2003-04-15

    The DIRC detector is successfully operating as the hadronic particle identification system for the BaBar experiment at SLAC. The production of its Cherenkov radiator required much effort in practice, both in manufacture and conception, which in turn required a large number of R&D measurements. One of the major outcomes of this R&D work was an understanding of methods to select radiation hard and optically uniform fused silica material. Others included measurement of the wavelength dependency of the internal reflection coefficient, and its sensitivity to the surface pollution, selection of the radiator support, selection of good optical glue, etc. This notemore » summarizes the optical R&D test results.« less

  11. Study of B+/ --> J/psi pi+/- and B+/ -->J/psi K+/- decays: measurement of the ratio of branching fractions and search for direct CP violation.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Watson, N K; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Khan, A; Lavin, D; Muheim, F; Playfer, S; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de laVassière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Cristinziani, M; De Nardo, G; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-06-18

    We study B+/ --> J/psi pi(+/-) and B+/ --> J/psi K+/- decays in a sample of about 89 x 10(6) BB pairs collected with the BABAR detector at the PEP-II asymmetric B factory at SLAC. We observe a signal of 244+/-20 B+/ --> J/psi pi(+/-) events and determine the ratio B(B+/ --> J/psi pi(+/-))/B(B+/ --> J/psi K+/-) to be [5.37+/-0.45(stat)+/-0.11(syst)]%. The charge asymmetries for the B+/ --> J/psi pi(+/-) and B+/ --> J/psi K+/- decays are determined to be A(pi)=0.123+/-0.085(stat)+/-0.004(syst) and A(K)=0.030+/-0.015(stat)+/-0.006(syst), respectively.

  12. Further expansion of the mutational spectrum of spondylo-meta-epiphyseal dysplasia with abnormal calcification.

    PubMed

    Ürel-Demir, Gizem; Simsek-Kiper, Pelin Ozlem; Akgün-Doğan, Özlem; Göçmen, Rahşan; Wang, Zheng; Matsumoto, Naomichi; Miyake, Noriko; Utine, Gülen Eda; Nishimura, Gen; Ikegawa, Shiro; Boduroglu, Koray

    2018-06-08

    Spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type, is a rare autosomal recessive disorder of the skeleton characterized by disproportionate short stature with narrow chest and dysmorphic facial features. The skeletal manifestations include platyspondyly, short flared ribs, short tubular bones with abnormal metaphyses and epiphyses, severe brachydactyly, and premature stippled calcifications in the cartilage. The abnormal calcifications are so distinctive as to point to the definitive diagnosis. However, they may be too subtle to attract diagnostic attention in infancy. Homozygous variants in DDR2 cause this disorder. We report on a 5-year-old girl with the classic phenotype of SMED, SL-AC in whom a novel homozygous nonsense mutation in DDR2 was detected using exome sequencing.

  13. ‘Schroedinger’s Cat’ Molecules Give Rise to Exquisitely Detailed Movies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    One of the most famous mind-twisters of the quantum world is the thought experiment known as “Schroedinger’s Cat,” in which a cat placed in a box and potentially exposed to poison is simultaneously dead and alive until someone opens the box and peeks inside. Scientists have known for a long time that an atom or molecule can also be in two different states at once. Now researchers at the Stanford PULSE Institute and the Department of Energy’s SLAC National Accelerator Laboratory have exploited this Schroedinger’s Cat behavior to create X-ray movies of atomic motion with much more detail than evermore » before.« less

  14. A Test of the Flavor Independence of Strong Interactions in e+e- Annihilation at the Z0 Pole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, David

    1999-09-03

    This thesis presents a comparison of the strong coupling of the gluons to light (q l = u + d + s), c, and b quarks, determined from multijet rates in flavor-tagged samples of approximately 150,000 hadronic Z 0 decays recorded with the SLC Large Detector at the SLAC Linear Collider between 1993 and 1995. Flavor separation among primary q l {anti q l} , c{anti c} and b {anti b} final states was made on the basis of the reconstructed mass of long-lived heavy-hadron decay vertices, yielding tags with high purity and low bias against {>=} 3-jet final states.more » The data obtained imply no flavor dependence within our sensitivity.« less

  15. Cryogenic System for the Cryomodule Test Stand at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Michael J.; Hansen, Benjamin; Klebaner, Arkadiy

    This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description ofmore » the heat load measurement plan.« less

  16. Performance Characterization of LCLS-II Superconducting Radiofrequency Cryomodules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, RuthAnn

    This paper will describe the LCLS (Linac Coherent Light Source)-II, Fermilab’s role in the development of LCLS-II, and my contributions as a Lee Teng intern. LCLS-II is a second generation x-ray free electron laser being constructed at SLAC National Accelerator Laboratory. Fermilab is responsible for the design, construction, and testing of several 1.3 GHz cryomodules to be used in LCLS-II. These cryomodules are currently being tested at Fermilab. Some software was written to analyze the data from the cryomodule tests. This software assesses the performance of the cryomodules by looking at data on the cavity voltage, cavity gradient, dark current,more » and radiation.« less

  17. Feasibility Study for an Asymmetric B Factory Based on PEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattapadhyay, A.; Hitlin, D.; Porter, F.

    This report addresses the feasibility of designing and constructing an asymmetric B-factory based on the PEP storage ring at SLAC that can ultimately reach a luminosity of 1 X 10{sup 34} cm{sup -2}s{sup -1}. Such a facility, operating at the {gamma}(4S) resonance, could be used to study mixing, rate decays, and CP violation in the B{bar B} system, and could also study tau and charm physics. The essential accelerator physics, engineering, and technology issues that must be addressed to successfully build this exciting and challenging facility are identified, and possible solutions, or R and D that will reasonable lead tomore » such solutions, are described.« less

  18. New results on low energy exclusive hadronic final states from BABAR

    NASA Astrophysics Data System (ADS)

    Gary, J. William

    2018-01-01

    The 3.6 standard deviation discrepancy between the standard model (SM) prediction for the muon anomalous magnetic moment gμ - 2 and the corresponding experimental measurement is one of the most persistent and intriguing potential signals in particle physics for physics beyond the SM. The largest uncertainty in the SM prediction for gμ - 2 arises from the uncertainty in the measured low energy inclusive e+e- → hadrons cross section. New results from the BABAR experiment at SLAC for the e+e- → π+ π- π0 π0 and e+e- → KK ππ cross sections are presented that significantly reduce this uncertainty. New BABAR results for other low energy exclusive hadronic processes are also discussed.

  19. The spectrum of galactic electrons with energies between 10 and 900 GeV

    NASA Technical Reports Server (NTRS)

    Mueller, D.; Meyer, P.

    1973-01-01

    A cosmic-ray electron detector has been exposed during 1970 in three high-altitude balloon flights from Palestine, Texas. The data analysis is based on results from accelerator calibrations with electrons and pions at SLAC. Discrimination against a contamination of the electron data due to interacting protons has been achieved by statistical methods. The resulting differential energy spectrum of cosmic-ray electrons can be well described by a single power law with spectral index 2.66 plus or minus 0.1 up to energies around 250 GeV. Within the experimental uncertainty, no change in this spectral slope up to almost 1000 GeV can be detected. Some implications of these results are discussed.

  20. Power pulsing of the CMOS sensor Mimosa 26

    NASA Astrophysics Data System (ADS)

    Kuprash, Oleg

    2013-12-01

    Mimosa 26 is a monolithic active pixel sensor developed by IPHC (Strasbourg) & IRFU (Saclay) as a prototype for the ILC vertex detector studies. The resolution requirements for the ILC tracking detector are very extreme, demanding very low material in the detector, thus only air cooling can be considered. Power consumption has to be reduced as far as possible. The beam structure of the ILC allows the possibility of power pulsing: only for about the 1 ms long bunch train full power is required, and during the 199 ms long pauses between the bunch trains the power can be reduced to a minimum. Not being adapted for the power pulsing, the sensor shows in laboratory tests a good performance under power pulsing. The power pulsing allows to significantly reduce the heating of the chip and divides power consumption approximately by a factor of 6. In this report a summary of power pulsing studies using the digital readout of Mimosa 26 is given.

  1. Running and testing GRID services with Puppet at GRIF- IRFU

    NASA Astrophysics Data System (ADS)

    Ferry, S.; Schaer, F.; Meyer, JP

    2015-12-01

    GRIF is a distributed Tiers 2 centre, made of 6 different centres in the Paris region, and serving many VOs. The sub-sites are connected with 10 Gbps private network and share tools for central management. One of the sub-sites, GRIF-IRFU held and maintained in the CEA- Saclay centre, moved a year ago, to a configuration management using Puppet. Thanks to the versatility of Puppet/Foreman automation, the GRIF-IRFU site maintains usual grid services, with, among them: a CREAM-CE with a TORQUE+Maui (running a batch with more than 5000 jobs slots), a DPM storage of more than 2 PB, a Nagios monitoring essentially based on check_mk, as well as centralized services for the French NGI, like the accounting, or the argus central suspension system. We report on the actual functionalities of Puppet and present the last tests and evolutions including a monitoring with Graphite, a HT-condor multicore batch accessed with an ARC-CE and a CEPH storage file system.

  2. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    NASA Astrophysics Data System (ADS)

    Fiori, F.; Marcantoni, M.

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (tensile-strength tests) of the welded interface.

  3. Simulation of irradiation creep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiley, T.C.; Jung, P.

    1977-01-01

    The results to date in the area of radiation enhanced deformation using beams of light ions to simulate fast neutron displacement damage are reviewed. A comparison is made between these results and those of in-reactor experiments. Particular attention is given to the displacement rate calculations for light ions and the electronic energy losses and their effect on the displacement cross section. Differences in the displacement processes for light ions and neutrons which may effect the irradiation creep process are discussed. The experimental constraints and potential problem areas associated with these experiments are compared to the advantages of simulation. Support experimentsmore » on the effect of thickness on thermal creep are presented. A brief description of the experiments in progress is presented for the following laboratories: HEDL, NRL, ORNL, PNL, U. of Lowell/MIT in the United States, AERE Harwell in the United Kingdom, CEN Saclay in France, GRK Karlsruhe and KFA Julich in West Germany.« less

  4. The Early Developments of the Theory of the Mössbauer Effect

    NASA Astrophysics Data System (ADS)

    Lipkin, Harry J.

    I was at the University of Illinois at Urbana in the academic year 1958-1959 when I first heard about the Mössbauer effect. My contacts with Bardeen and his theory group taught me everything I needed to know about solid state physics to understand the Mössbauer effect. I also learned at Urbana from Fred Seitz that my old friend Kundan Singwi had done pioneering work in neutron scattering which was very relevant to the Mössbauer effect. I had met Kundan and his wife Helga in 1953 when we were both postdocs learning about nuclear energy at Saclay, lived in the same pension operated by the French Atomic Energy Commission, and had dinner together every evening. It was a pleasure to renew our contacts after their arrival at Argonne in 1959 when we were both involved in the Mössbauer effect, and during an extended period while he was at Argonne and we visited every summer. I shall miss both John and Kundan.

  5. Featured Image: The Cosmic Velocity Web

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-09-01

    You may have heard of the cosmic web, a network of filaments, clusters and voids that describes the three-dimensional distribution of matter in our universe. But have you ever considered the idea of a cosmic velocity web? In a new study led by Daniel Pomarde (IRFU CEA-Saclay, France), a team of scientists has built a detailed 3D view of the flows in our universe, showing in particular motions along filaments and in collapsing knots. In the image above (click for the full view), surfaces of knots (red) are embedded within surfaces of filaments (grey). The rainbow lines show the flow motion, revealing acceleration (redder tones) toward knots and retardation (bluer tones) beyond them. You can learn more about Pomarde and collaborators work and see their unusual and intriguing visualizationsin the video they produced, below. Check out the original paper for more information.CitationDaniel Pomarde et al 2017 ApJ 845 55. doi:10.3847/1538-4357/aa7f78

  6. The bound-state properties summary and recommendations of working group 1

    NASA Astrophysics Data System (ADS)

    Friar, J. L.; Frois, B.

    A dozen years ago virtually nothing was known about three-nucleon forces. In the intervening years we have learned to solve routinely the trinucleon bound-state Faddeev equations for what amounts to the complete (model) nucleon-nucleon potential, and to include complicated three-nucleon forces as well. The art of constructing those forces has dramatically improved, and modern versions of these forces contain components derived from the exchange of heavy mesons, in addition to pion exchange. Experimental sophistication in probing the trinucleon ground states has made similar improvements. The recent Saclay and MIT tritium form factor experiments have finally unravelled the isospin structure of the trinucleon charge densities, and have generated new challenges for theorists. Although there are few definite conclusions yet and much remains to be done, the progress has been exceptional. Perhaps it is not too pretentious to quote the final frame of the movie 41 Destination Moon: "This is the end of the beginning."

  7. Engineering at SLAC: Designing and constructing experimental devices for the Stanford Synchrotron Radiation Lightsource - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djang, Austin

    2015-08-22

    Thanks to the versatility of the beam lines at SSRL, research there is varied and benefits multiple fields. Each experiment requires a particular set of experiment equipment, which in turns requires its own particular assembly. As such, new engineering challenges arise from each new experiment. My role as an engineering intern has been to help solve these challenges, by designing and assembling experimental devices. My first project was to design a heated sample holder, which will be used to investigate the effect of temperature on a sample's x-ray diffraction pattern. My second project was to help set up an imagingmore » test, which involved designing a cooled grating holder and assembling multiple positioning stages. My third project was designing a 3D-printed pencil holder for the SSRL workstations.« less

  8. Bermuda Triangle: a subsystem of the 168/E interfacing scheme used by Group B at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxoby, G.J.; Levinson, L.J.; Trang, Q.H.

    1979-12-01

    The Bermuda Triangle system is a method of interfacing several 168/E microprocessors to a central system for control of the processors and overlaying their memories. The system is a three-way interface with I/O ports to a large buffer memory, a PDP11 Unibus and a bus to the 168/E processors. Data may be transferred bidirectionally between any two ports. Two Bermuda Triangles are used, one for the program memory and one for the data memory. The program buffer memory stores the overlay programs for the 168/E, and the data buffer memory, the incoming raw data, the data portion of the overlays,more » and the outgoing processed events. This buffering is necessary since the memories of 168/E microprocessors are small compared to the main program and the amount of data being processed. The link to the computer facility is via a Unibus to IBM channel interface. A PDP11/04 controls the data flow. 7 figures, 4 tables. (RWR)« less

  9. Third user workshop on high-power lasers at the Linac Coherent Light Source

    DOE PAGES

    Bolme, Cynthia Anne; Glenzer, Sigfried; Fry, Alan

    2016-03-24

    On October 5–6, 2015, the third international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA [1 R. Falcone, S. Glenzer, and S. Hau-Riege, Synchrotron Radiation News 27(2), 56–58 (2014)., 2 P. Heimann and S. Glenzer, Synchrotron Radiation News 28(3), 54–56 (2015).]. Here, the workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory. More than 110 scientists attended from North America, Europe, and Asia to discuss high-energy-density (HED) science that is enabled by the unique combination of high-power lasers with the LCLS X-rays at themore » LCLS-Matter in Extreme Conditions (MEC) endstation.« less

  10. Finite element analyses of a linear-accelerator electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049; Wasy, A.

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gunmore » is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.« less

  11. Finite element analyses of a linear-accelerator electron gun

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  12. Finite element analyses of a linear-accelerator electron gun.

    PubMed

    Iqbal, M; Wasy, A; Islam, G U; Zhou, Z

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  13. Theoretical Advanced Study Institute: 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGrand, Thomas

    The Theoretical Advanced Study Institute (TASI) was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty-one students. Nineteen lecturers gave sixty seventy-five minute lectures. A Proceedings was published. This TASI was unique for its large emphasis on methods for calculating amplitudes. This was embedded in a program describing recent theoretical and phenomenological developments in particle physics. Topics included introductions to the Standard Model, to QCD (both in a collider context andmore » on the lattice), effective field theories, Higgs physics, neutrino interactions, an introduction to experimental techniques, and cosmology.« less

  14. The Physics of the B Factories

    NASA Astrophysics Data System (ADS)

    Bevan, A. J.; Golob, B.; Mannel, Th.; Prell, S.; Yabsley, B. D.; Aihara, H.; Anulli, F.; Arnaud, N.; Aushev, T.; Beneke, M.; Beringer, J.; Bianchi, F.; Bigi, I. I.; Bona, M.; Brambilla, N.; Brodzicka, J.; Chang, P.; Charles, M. J.; Cheng, C. H.; Cheng, H.-Y.; Chistov, R.; Colangelo, P.; Coleman, J. P.; Drutskoy, A.; Druzhinin, V. P.; Eidelman, S.; Eigen, G.; Eisner, A. M.; Faccini, R.; Flood, K. T.; Gambino, P.; Gaz, A.; Gradl, W.; Hayashii, H.; Higuchi, T.; Hulsbergen, W. D.; Hurth, T.; Iijima, T.; Itoh, R.; Jackson, P. D.; Kass, R.; Kolomensky, Yu. G.; Kou, E.; Križan, P.; Kronfeld, A.; Kumano, S.; Kwon, Y. J.; Latham, T. E.; Leith, D. W. G. S.; Lüth, V.; Martinez-Vidal, F.; Meadows, B. T.; Mussa, R.; Nakao, M.; Nishida, S.; Ocariz, J.; Olsen, S. L.; Pakhlov, P.; Pakhlova, G.; Palano, A.; Pich, A.; Playfer, S.; Poluektov, A.; Porter, F. C.; Robertson, S. H.; Roney, J. M.; Roodman, A.; Sakai, Y.; Schwanda, C.; Schwartz, A. J.; Seidl, R.; Sekula, S. J.; Steinhauser, M.; Sumisawa, K.; Swanson, E. S.; Tackmann, F.; Trabelsi, K.; Uehara, S.; Uno, S.; van de Water, R.; Vasseur, G.; Verkerke, W.; Waldi, R.; Wang, M. Z.; Wilson, F. F.; Zupan, J.; Zupanc, A.; Adachi, I.; Albert, J.; Banerjee, Sw.; Bellis, M.; Ben-Haim, E.; Biassoni, P.; Cahn, R. N.; Cartaro, C.; Chauveau, J.; Chen, C.; Chiang, C. C.; Cowan, R.; Dalseno, J.; Davier, M.; Davies, C.; Dingfelder, J. C.; Echenard, B.; Epifanov, D.; Fulsom, B. G.; Gabareen, A. M.; Gary, J. W.; Godang, R.; Graham, M. T.; Hafner, A.; Hamilton, B.; Hartmann, T.; Hayasaka, K.; Hearty, C.; Iwasaki, Y.; Khodjamirian, A.; Kusaka, A.; Kuzmin, A.; Lafferty, G. D.; Lazzaro, A.; Li, J.; Lindemann, D.; Long, O.; Lusiani, A.; Marchiori, G.; Martinelli, M.; Miyabayashi, K.; Mizuk, R.; Mohanty, G. B.; Muller, D. R.; Nakazawa, H.; Ongmongkolkul, P.; Pacetti, S.; Palombo, F.; Pedlar, T. K.; Piilonen, L. E.; Pilloni, A.; Poireau, V.; Prothmann, K.; Pulliam, T.; Rama, M.; Ratcliff, B. N.; Roudeau, P.; Schrenk, S.; Schroeder, T.; Schubert, K. R.; Shen, C. P.; Shwartz, B.; Soffer, A.; Solodov, E. P.; Somov, A.; Starič, M.; Stracka, S.; Telnov, A. V.; Todyshev, K. Yu.; Tsuboyama, T.; Uglov, T.; Vinokurova, A.; Walsh, J. J.; Watanabe, Y.; Won, E.; Wormser, G.; Wright, D. H.; Ye, S.; Zhang, C. C.; Abachi, S.; Abashian, A.; Abe, K.; Abe, N.; Abe, R.; Abe, T.; Abrams, G. S.; Adam, I.; Adamczyk, K.; Adametz, A.; Adye, T.; Agarwal, A.; Ahmed, H.; Ahmed, M.; Ahmed, S.; Ahn, B. S.; Ahn, H. S.; Aitchison, I. J. R.; Akai, K.; Akar, S.; Akatsu, M.; Akemoto, M.; Akhmetshin, R.; Akre, R.; Alam, M. S.; Albert, J. N.; Aleksan, R.; Alexander, J. P.; Alimonti, G.; Allen, M. T.; Allison, J.; Allmendinger, T.; Alsmiller, J. R. G.; Altenburg, D.; Alwyn, K. E.; An, Q.; Anderson, J.; Andreassen, R.; Andreotti, D.; Andreotti, M.; Andress, J. C.; Angelini, C.; Anipko, D.; Anjomshoaa, A.; Anthony, P. L.; Antillon, E. A.; Antonioli, E.; Aoki, K.; Arguin, J. F.; Arinstein, K.; Arisaka, K.; Asai, K.; Asai, M.; Asano, Y.; Asgeirsson, D. J.; Asner, D. M.; Aso, T.; Aspinwall, M. L.; Aston, D.; Atmacan, H.; Aubert, B.; Aulchenko, V.; Ayad, R.; Azemoon, T.; Aziz, T.; Azzolini, V.; Azzopardi, D. E.; Baak, M. A.; Back, J. J.; Bagnasco, S.; Bahinipati, S.; Bailey, D. S.; Bailey, S.; Bailly, P.; van Bakel, N.; Bakich, A. M.; Bala, A.; Balagura, V.; Baldini-Ferroli, R.; Ban, Y.; Banas, E.; Band, H. R.; Banerjee, S.; Baracchini, E.; Barate, R.; Barberio, E.; Barbero, M.; Bard, D. J.; Barillari, T.; Barlow, N. R.; Barlow, R. J.; Barrett, M.; Bartel, W.; Bartelt, J.; Bartoldus, R.; Batignani, G.; Battaglia, M.; Bauer, J. M.; Bay, A.; Beaulieu, M.; Bechtle, P.; Beck, T. W.; Becker, J.; Becla, J.; Bedny, I.; Behari, S.; Behera, P. K.; Behn, E.; Behr, L.; Beigbeder, C.; Beiline, D.; Bell, R.; Bellini, F.; Bellodi, G.; Belous, K.; Benayoun, M.; Benelli, G.; Benitez, J. F.; Benkebil, M.; Berger, N.; Bernabeu, J.; Bernard, D.; Bernet, R.; Bernlochner, F. U.; Berryhill, J. W.; Bertsche, K.; Besson, P.; Best, D. S.; Bettarini, S.; Bettoni, D.; Bhardwaj, V.; Bhimji, W.; Bhuyan, B.; Biagini, M. E.; Biasini, M.; van Bibber, K.; Biesiada, J.; Bingham, I.; Bionta, R. M.; Bischofberger, M.; Bitenc, U.; Bizjak, I.; Blanc, F.; Blaylock, G.; Blinov, V. E.; Bloom, E.; Bloom, P. C.; Blount, N. L.; Blouw, J.; Bly, M.; Blyth, S.; Boeheim, C. T.; Bomben, M.; Bondar, A.; Bondioli, M.; Bonneaud, G. R.; Bonvicini, G.; Booke, M.; Booth, J.; Borean, C.; Borgland, A. W.; Borsato, E.; Bosi, F.; Bosisio, L.; Botov, A. A.; Bougher, J.; Bouldin, K.; Bourgeois, P.; Boutigny, D.; Bowerman, D. A.; Boyarski, A. M.; Boyce, R. F.; Boyd, J. T.; Bozek, A.; Bozzi, C.; Bračko, M.; Brandenburg, G.; Brandt, T.; Brau, B.; Brau, J.; Breon, A. B.; Breton, D.; Brew, C.; Briand, H.; Bright-Thomas, P. G.; Brigljević, V.; Britton, D. I.; Brochard, F.; Broomer, B.; Brose, J.; Browder, T. E.; Brown, C. L.; Brown, C. M.; Brown, D. N.; Browne, M.; Bruinsma, M.; Brunet, S.; Bucci, F.; Buchanan, C.; Buchmueller, O. L.; Bünger, C.; Bugg, W.; Bukin, A. D.; Bula, R.; Bulten, H.; Burchat, P. R.; Burgess, W.; Burke, J. P.; Button-Shafer, J.; Buzykaev, A. R.; Buzzo, A.; Cai, Y.; Calabrese, R.; Calcaterra, A.; Calderini, G.; Camanzi, B.; Campagna, E.; Campagnari, C.; Capra, R.; Carassiti, V.; Carpinelli, M.; Carroll, M.; Casarosa, G.; Casey, B. C. K.; Cason, N. M.; Castelli, G.; Cavallo, N.; Cavoto, G.; Cecchi, A.; Cenci, R.; Cerizza, G.; Cervelli, A.; Ceseracciu, A.; Chai, X.; Chaisanguanthum, K. S.; Chang, M. C.; Chang, Y. H.; Chang, Y. W.; Chao, D. S.; Chao, M.; Chao, Y.; Charles, E.; Chavez, C. A.; Cheaib, R.; Chekelian, V.; Chen, A.; Chen, E.; Chen, G. P.; Chen, H. F.; Chen, J.-H.; Chen, J. C.; Chen, K. F.; Chen, P.; Chen, S.; Chen, W. T.; Chen, X.; Chen, X. R.; Chen, Y. Q.; Cheng, B.; Cheon, B. G.; Chevalier, N.; Chia, Y. M.; Chidzik, S.; Chilikin, K.; Chistiakova, M. V.; Cizeron, R.; Cho, I. S.; Cho, K.; Chobanova, V.; Choi, H. H. F.; Choi, K. S.; Choi, S. K.; Choi, Y.; Choi, Y. K.; Christ, S.; Chu, P. H.; Chun, S.; Chuvikov, A.; Cibinetto, G.; Cinabro, D.; Clark, A. R.; Clark, P. J.; Clarke, C. K.; Claus, R.; Claxton, B.; Clifton, Z. C.; Cochran, J.; Cohen-Tanugi, J.; Cohn, H.; Colberg, T.; Cole, S.; Colecchia, F.; Condurache, C.; Contri, R.; Convert, P.; Convery, M. R.; Cooke, P.; Copty, N.; Cormack, C. M.; Dal Corso, F.; Corwin, L. A.; Cossutti, F.; Cote, D.; Cotta Ramusino, A.; Cottingham, W. N.; Couderc, F.; Coupal, D. P.; Covarelli, R.; Cowan, G.; Craddock, W. W.; Crane, G.; Crawley, H. B.; Cremaldi, L.; Crescente, A.; Cristinziani, M.; Crnkovic, J.; Crosetti, G.; Cuhadar-Donszelmann, T.; Cunha, A.; Curry, S.; D'Orazio, A.; Dû, S.; Dahlinger, G.; Dahmes, B.; Dallapiccola, C.; Danielson, N.; Danilov, M.; Das, A.; Dash, M.; Dasu, S.; Datta, M.; Daudo, F.; Dauncey, P. D.; David, P.; Davis, C. L.; Day, C. T.; De Mori, F.; De Domenico, G.; De Groot, N.; De la Vaissière, C.; de la Vaissière, Ch.; de Lesquen, A.; De Nardo, G.; de Sangro, R.; De Silva, A.; DeBarger, S.; Decker, F. J.; del Amo Sanchez, P.; Del Buono, L.; Del Gamba, V.; del Re, D.; Della Ricca, G.; Denig, A. G.; Derkach, D.; Derrington, I. M.; DeStaebler, H.; Destree, J.; Devmal, S.; Dey, B.; Di Girolamo, B.; Marco, E. Di; Dickopp, M.; Dima, M. O.; Dittrich, S.; Dittongo, S.; Dixon, P.; Dneprovsky, L.; Dohou, F.; Doi, Y.; Doležal, Z.; Doll, D. A.; Donald, M.; Dong, L.; Dong, L. Y.; Dorfan, J.; Dorigo, A.; Dorsten, M. P.; Dowd, R.; Dowdell, J.; Drásal, Z.; Dragic, J.; Drummond, B. W.; Dubitzky, R. S.; Dubois-Felsmann, G. P.; Dubrovin, M. S.; Duh, Y. C.; Duh, Y. T.; Dujmic, D.; Dungel, W.; Dunwoodie, W.; Dutta, D.; Dvoretskii, A.; Dyce, N.; Ebert, M.; Eckhart, E. A.; Ecklund, S.; Eckmann, R.; Eckstein, P.; Edgar, C. L.; Edwards, A. J.; Egede, U.; Eichenbaum, A. M.; Elmer, P.; Emery, S.; Enari, Y.; Enomoto, R.; Erdos, E.; Erickson, R.; Ernst, J. A.; Erwin, R. J.; Escalier, M.; Eschenburg, V.; Eschrich, I.; Esen, S.; Esteve, L.; Evangelisti, F.; Everton, C. W.; Eyges, V.; Fabby, C.; Fabozzi, F.; Fahey, S.; Falbo, M.; Fan, S.; Fang, F.; Fanin, C.; Farbin, A.; Farhat, H.; Fast, J. E.; Feindt, M.; Fella, A.; Feltresi, E.; Ferber, T.; Fernholz, R. E.; Ferrag, S.; Ferrarotto, F.; Ferroni, F.; Field, R. C.; Filippi, A.; Finocchiaro, G.; Fioravanti, E.; Firmino da Costa, J.; Fischer, P.-A.; Fisher, A. S.; Fisher, P. H.; Flacco, C. J.; Flack, R. L.; Flaecher, H. U.; Flanagan, J.; Flanigan, J. M.; Ford, K. E.; Ford, W. T.; Forster, I. J.; Forti, A. C.; Forti, F.; Fortin, D.; Foster, B.; Foulkes, S. D.; Fouque, G.; Fox, J.; Franchini, P.; Franco Sevilla, M.; Franek, B.; Frank, E. D.; Fransham, K. B.; Fratina, S.; Fratini, K.; Frey, A.; Frey, R.; Friedl, M.; Fritsch, M.; Fry, J. R.; Fujii, H.; Fujikawa, M.; Fujita, Y.; Fujiyama, Y.; Fukunaga, C.; Fukushima, M.; Fullwood, J.; Funahashi, Y.; Funakoshi, Y.; Furano, F.; Furman, M.; Furukawa, K.; Futterschneider, H.; Gabathuler, E.; Gabriel, T. A.; Gabyshev, N.; Gaede, F.; Gagliardi, N.; Gaidot, A.; Gaillard, J.-M.; Gaillard, J. R.; Galagedera, S.; Galeazzi, F.; Gallo, F.; Gamba, D.; Gamet, R.; Gan, K. K.; Gandini, P.; Ganguly, S.; Ganzhur, S. F.; Gao, Y. Y.; Gaponenko, I.; Garmash, A.; Garra Tico, J.; Garzia, I.; Gaspero, M.; Gastaldi, F.; Gatto, C.; Gaur, V.; Geddes, N. I.; Geld, T. L.; Genat, J.-F.; George, K. A.; George, M.; George, S.; Georgette, Z.; Gershon, T. J.; Gill, M. S.; Gillard, R.; Gilman, J. D.; Giordano, F.; Giorgi, M. A.; Giraud, P.-F.; Gladney, L.; Glanzman, T.; Glattauer, R.; Go, A.; Goetzen, K.; Goh, Y. M.; Gokhroo, G.; Goldenzweig, P.; Golubev, V. B.; Gopal, G. P.; Gordon, A.; Gorišek, A.; Goriletsky, V. I.; Gorodeisky, R.; Gosset, L.; Gotow, K.; Gowdy, S. J.; Graffin, P.; Grancagnolo, S.; Grauges, E.; Graziani, G.; Green, M. G.; Greene, M. G.; Grenier, G. J.; Grenier, P.; Griessinger, K.; Grillo, A. A.; Grinyov, B. V.; Gritsan, A. V.; Grosdidier, G.; Grosse Perdekamp, M.; Grosso, P.; Grothe, M.; Groysman, Y.; Grünberg, O.; Guido, E.; Guler, H.; Gunawardane, N. J. W.; Guo, Q. H.; Guo, R. S.; Guo, Z. J.; Guttman, N.; Ha, H.; Ha, H. C.; Haas, T.; Haba, J.; Hachtel, J.; Hadavand, H. K.; Hadig, T.; Hagner, C.; Haire, M.; Haitani, F.; Haji, T.; Haller, G.; Halyo, V.; Hamano, K.; Hamasaki, H.; Hamel de Monchenault, G.; Hamilton, J.; Hamilton, R.; Hamon, O.; Han, B. Y.; Han, Y. L.; Hanada, H.; Hanagaki, K.; Handa, F.; Hanson, J. E.; Hanushevsky, A.; Hara, K.; Hara, T.; Harada, Y.; Harrison, P. F.; Harrison, T. J.; Harrop, B.; Hart, A. J.; Hart, P. A.; Hartfiel, B. L.; Harton, J. L.; Haruyama, T.; Hasan, A.; Hasegawa, Y.; Hast, C.; Hastings, N. C.; Hasuko, K.; Hauke, A.; Hawkes, C. M.; Hayashi, K.; Hazumi, M.; Hee, C.; Heenan, E. M.; Heffernan, D.; Held, T.; Henderson, R.; Henderson, S. W.; Hertzbach, S. S.; Hervé, S.; Heß, M.; Heusch, C. A.; Hicheur, A.; Higashi, Y.; Higasino, Y.; Higuchi, I.; Hikita, S.; Hill, E. J.; Himel, T.; Hinz, L.; Hirai, T.; Hirano, H.; Hirschauer, J. F.; Hitlin, D. G.; Hitomi, N.; Hodgkinson, M. C.; Höcker, A.; Hoi, C. T.; Hojo, T.; Hokuue, T.; Hollar, J. J.; Hong, T. M.; Honscheid, K.; Hooberman, B.; Hopkins, D. A.; Horii, Y.; Hoshi, Y.; Hoshina, K.; Hou, S.; Hou, W. S.; Hryn'ova, T.; Hsiung, Y. B.; Hsu, C. L.; Hsu, S. C.; Hu, H.; Hu, T.; Huang, H. C.; Huang, T. J.; Huang, Y. C.; Huard, Z.; Huffer, M. E.; Hufnagel, D.; Hung, T.; Hutchcroft, D. E.; Hyun, H. J.; Ichizawa, S.; Igaki, T.; Igarashi, A.; Igarashi, S.; Igarashi, Y.; Igonkina, O.; Ikado, K.; Ikeda, H.; Ikeda, H.; Ikeda, K.; Ilic, J.; Inami, K.; Innes, W. R.; Inoue, Y.; Ishikawa, A.; Ishino, H.; Itagaki, K.; Itami, S.; Itoh, K.; Ivanchenko, V. N.; Iverson, R.; Iwabuchi, M.; Iwai, G.; Iwai, M.; Iwaida, S.; Iwamoto, M.; Iwasaki, H.; Iwasaki, M.; Iwashita, T.; Izen, J. M.; Jackson, D. J.; Jackson, F.; Jackson, G.; Jackson, P. S.; Jacobsen, R. G.; Jacoby, C.; Jaegle, I.; Jain, V.; Jalocha, P.; Jang, H. K.; Jasper, H.; Jawahery, A.; Jayatilleke, S.; Jen, C. M.; Jensen, F.; Jessop, C. P.; Ji, X. B.; John, M. J. J.; Johnson, D. R.; Johnson, J. R.; Jolly, S.; Jones, M.; Joo, K. K.; Joshi, N.; Joshi, N. J.; Judd, D.; Julius, T.; Kadel, R. W.; Kadyk, J. A.; Kagan, H.; Kagan, R.; Kah, D. H.; Kaiser, S.; Kaji, H.; Kajiwara, S.; Kakuno, H.; Kameshima, T.; Kaminski, J.; Kamitani, T.; Kaneko, J.; Kang, J. H.; Kang, J. S.; Kani, T.; Kapusta, P.; Karbach, T. M.; Karolak, M.; Karyotakis, Y.; Kasami, K.; Katano, G.; Kataoka, S. U.; Katayama, N.; Kato, E.; Kato, Y.; Kawai, H.; Kawai, M.; Kawamura, N.; Kawasaki, T.; Kay, J.; Kay, M.; Kelly, M. P.; Kelsey, M. H.; Kent, N.; Kerth, L. T.; Khan, A.; Khan, H. R.; Kharakh, D.; Kibayashi, A.; Kichimi, H.; Kiesling, C.; Kikuchi, M.; Kikutani, E.; Kim, B. H.; Kim, C. H.; Kim, D. W.; Kim, H.; Kim, H. J.; Kim, H. O.; Kim, H. W.; Kim, J. B.; Kim, J. H.; Kim, K. T.; Kim, M. J.; Kim, P.; Kim, S. K.; Kim, S. M.; Kim, T. H.; Kim, Y. I.; Kim, Y. J.; King, G. J.; Kinoshita, K.; Kirk, A.; Kirkby, D.; Kitayama, I.; Klemetti, M.; Klose, V.; Klucar, J.; Knecht, N. S.; Knoepfel, K. J.; Knowles, D. J.; Ko, B. R.; Kobayashi, N.; Kobayashi, S.; Kobayashi, T.; Kobel, M. J.; Koblitz, S.; Koch, H.; Kocian, M. L.; Kodyš, P.; Koeneke, K.; Kofler, R.; Koike, S.; Koishi, S.; Koiso, H.; Kolb, J. A.; Kolya, S. D.; Kondo, Y.; Konishi, H.; Koppenburg, P.; Koptchev, V. B.; Kordich, T. M. B.; Korol, A. A.; Korotushenko, K.; Korpar, S.; Kouzes, R. T.; Kovalskyi, D.; Kowalewski, R.; Kozakai, Y.; Kozanecki, W.; Kral, J. F.; Krasnykh, A.; Krause, R.; Kravchenko, E. A.; Krebs, J.; Kreisel, A.; Kreps, M.; Krishnamurthy, M.; Kroeger, R.; Kroeger, W.; Krokovny, P.; Kronenbitter, B.; Kroseberg, J.; Kubo, T.; Kuhr, T.; Kukartsev, G.; Kulasiri, R.; Kulikov, A.; Kumar, R.; Kumar, S.; Kumita, T.; Kuniya, T.; Kunze, M.; Kuo, C. C.; Kuo, T.-L.; Kurashiro, H.; Kurihara, E.; Kurita, N.; Kuroki, Y.; Kurup, A.; Kutter, P. E.; Kuznetsova, N.; Kvasnička, P.; Kyberd, P.; Kyeong, S. H.; Lacker, H. M.; Lae, C. K.; Lamanna, E.; Lamsa, J.; Lanceri, L.; Landi, L.; Lang, M. I.; Lange, D. J.; Lange, J. S.; Langenegger, U.; Langer, M.; Lankford, A. J.; Lanni, F.; Laplace, S.; Latour, E.; Lau, Y. P.; Lavin, D. R.; Layter, J.; Lebbolo, H.; LeClerc, C.; Leddig, T.; Leder, G.; Le Diberder, F.; Lee, C. L.; Lee, J.; Lee, J. S.; Lee, M. C.; Lee, M. H.; Lee, M. J.; Lee, S.-J.; Lee, S. E.; Lee, S. H.; Lee, Y. J.; Lees, J. P.; Legendre, M.; Leitgab, M.; Leitner, R.; Leonardi, E.; Leonidopoulos, C.; Lepeltier, V.; Leruste, Ph.; Lesiak, T.; Levi, M. E.; Levy, S. L.; Lewandowski, B.; Lewczuk, M. J.; Lewis, P.; Li, H.; Li, H. B.; Li, S.; Li, X.; Li, Y.; Gioi, L. Li; Libby, J.; Lidbury, J.; Lillard, V.; Lim, C. L.; Limosani, A.; Lin, C. S.; Lin, J. Y.; Lin, S. W.; Lin, Y. S.; Lindquist, B.; Lindsay, C.; Lista, L.; Liu, C.; Liu, F.; Liu, H.; Liu, H. M.; Liu, J.; Liu, R.; Liu, T.; Liu, Y.; Liu, Z. Q.; Liventsev, D.; Lo Vetere, M.; Locke, C. B.; Lockman, W. S.; Di Lodovico, F.; Lombardo, V.; London, G. W.; Lopes Pegna, D.; Lopez, L.; Lopez-March, N.; Lory, J.; LoSecco, J. M.; Lou, X. C.; Louvot, R.; Lu, A.; Lu, C.; Lu, M.; Lu, R. S.; Lueck, T.; Luitz, S.; Lukin, P.; Lund, P.; Luppi, E.; Lutz, A. M.; Lutz, O.; Lynch, G.; Lynch, H. L.; Lyon, A. J.; Lyubinsky, V. R.; MacFarlane, D. B.; Mackay, C.; MacNaughton, J.; Macri, M. M.; Madani, S.; Mader, W. F.; Majewski, S. A.; Majumder, G.; Makida, Y.; Malaescu, B.; Malaguti, R.; Malclés, J.; Mallik, U.; Maly, E.; Mamada, H.; Manabe, A.; Mancinelli, G.; Mandelkern, M.; Mandl, F.; Manfredi, P. F.; Mangeol, D. J. J.; Manoni, E.; Mao, Z. P.; Margoni, M.; Marker, C. E.; Markey, G.; Marks, J.; Marlow, D.; Marques, V.; Marsiske, H.; Martellotti, S.; Martin, E. C.; Martin, J. P.; Martin, L.; Martinez, A. J.; Marzolla, M.; Mass, A.; Masuzawa, M.; Mathieu, A.; Matricon, P.; Matsubara, T.; Matsuda, T.; Matsuda, T.; Matsumoto, H.; Matsumoto, S.; Matsumoto, T.; Matsuo, H.; Mattison, T. S.; Matvienko, D.; Matyja, A.; Mayer, B.; Mazur, M. A.; Mazzoni, M. A.; McCulloch, M.; McDonald, J.; McFall, J. D.; McGrath, P.; McKemey, A. K.; McKenna, J. A.; Mclachlin, S. E.; McMahon, S.; McMahon, T. R.; McOnie, S.; Medvedeva, T.; Melen, R.; Mellado, B.; Menges, W.; Menke, S.; Merchant, A. M.; Merkel, J.; Messner, R.; Metcalfe, S.; Metzler, S.; Meyer, N. T.; Meyer, T. I.; Meyer, W. T.; Michael, A. K.; Michelon, G.; Michizono, S.; Micout, P.; Miftakov, V.; Mihalyi, A.; Mikami, Y.; Milanes, D. A.; Milek, M.; Mimashi, T.; Minamora, J. S.; Mindas, C.; Minutoli, S.; Mir, L. M.; Mishra, K.; Mitaroff, W.; Miyake, H.; Miyashita, T. S.; Miyata, H.; Miyazaki, Y.; Moffitt, L. C.; Mohanty, G. B.; Mohapatra, A.; Mohapatra, A. K.; Mohapatra, D.; Moll, A.; Moloney, G. R.; Mols, J. P.; Mommsen, R. K.; Monge, M. R.; Monorchio, D.; Moore, T. B.; Moorhead, G. F.; Mora de Freitas, P.; Morandin, M.; Morgan, N.; Morgan, S. E.; Morganti, M.; Morganti, S.; Mori, S.; Mori, T.; Morii, M.; Morris, J. P.; Morsani, F.; Morton, G. W.; Moss, L. J.; Mouly, J. P.; Mount, R.; Mueller, J.; Müller-Pfefferkorn, R.; Mugge, M.; Muheim, F.; Muir, A.; Mullin, E.; Munerato, M.; Murakami, A.; Murakami, T.; Muramatsu, N.; Musico, P.; Nagai, I.; Nagamine, T.; Nagasaka, Y.; Nagashima, Y.; Nagayama, S.; Nagel, M.; Naisbit, M. T.; Nakadaira, T.; Nakahama, Y.; Nakajima, M.; Nakajima, T.; Nakamura, I.; Nakamura, T.; Nakamura, T. T.; Nakano, E.; Nakayama, H.; Nam, J. W.; Narita, S.; Narsky, I.; Nash, J. A.; Natkaniec, Z.; Nauenberg, U.; Nayak, M.; Neal, H.; Nedelkovska, E.; Negrini, M.; Neichi, K.; Nelson, D.; Nelson, S.; Neri, N.; Nesom, G.; Neubauer, S.; Newman-Coburn, D.; Ng, C.; Nguyen, X.; Nicholson, H.; Niebuhr, C.; Nief, J. Y.; Niiyama, M.; Nikolich, M. B.; Nisar, N. K.; Nishimura, K.; Nishio, Y.; Nitoh, O.; Nogowski, R.; Noguchi, S.; Nomura, T.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; Nozaki, S.; Nozaki, T.; Nugent, I. M.; O'Grady, C. P.; O'Neale, S. W.; O'Neill, F. G.; Oberhof, B.; Oddone, P. J.; Ofte, I.; Ogawa, A.; Ogawa, K.; Ogawa, S.; Ogawa, Y.; Ohkubo, R.; Ohmi, K.; Ohnishi, Y.; Ohno, F.; Ohshima, T.; Ohshima, Y.; Ohuchi, N.; Oide, K.; Oishi, N.; Okabe, T.; Okazaki, N.; Okazaki, T.; Okuno, S.; Olaiya, E. O.; Olivas, A.; Olley, P.; Olsen, J.; Ono, S.; Onorato, G.; Onuchin, A. P.; Onuki, Y.; Ooba, T.; Orimoto, T. J.; Oshima, T.; Osipenkov, I. L.; Ostrowicz, W.; Oswald, C.; Otto, S.; Oyang, J.; Oyanguren, A.; Ozaki, H.; Ozcan, V. E.; Paar, H. P.; Padoan, C.; Paick, K.; Palka, H.; Pan, B.; Pan, Y.; Panduro Vazquez, W.; Panetta, J.; Panova, A. I.; Panvini, R. S.; Panzenböck, E.; Paoloni, E.; Paolucci, P.; Pappagallo, M.; Paramesvaran, S.; Park, C. S.; Park, C. W.; Park, H.; Park, H. K.; Park, K. S.; Park, W.; Parry, R. J.; Parslow, N.; Passaggio, S.; Pastore, F. C.; Patel, P. M.; Patrignani, C.; Patteri, P.; Pavel, T.; Pavlovich, J.; Payne, D. J.; Peak, L. S.; Peimer, D. R.; Pelizaeus, M.; Pellegrini, R.; Pelliccioni, M.; Peng, C. C.; Peng, J. C.; Peng, K. C.; Peng, T.; Penichot, Y.; Pennazzi, S.; Pennington, M. R.; Penny, R. C.; Penzkofer, A.; Perazzo, A.; Perez, A.; Perl, M.; Pernicka, M.; Perroud, J.-P.; Peruzzi, I. M.; Pestotnik, R.; Peters, K.; Peters, M.; Petersen, B. A.; Petersen, T. C.; Petigura, E.; Petrak, S.; Petrella, A.; Petrič, M.; Petzold, A.; Pia, M. G.; Piatenko, T.; Piccolo, D.; Piccolo, M.; Piemontese, L.; Piemontese, M.; Pierini, M.; Pierson, S.; Pioppi, M.; Piredda, G.; Pivk, M.; Plaszczynski, S.; Polci, F.; Pompili, A.; Poropat, P.; Posocco, M.; Potter, C. T.; Potter, R. J. L.; Prasad, V.; Prebys, E.; Prencipe, E.; Prendki, J.; Prepost, R.; Prest, M.; Prim, M.; Pripstein, M.; Prudent, X.; Pruvot, S.; Puccio, E. M. T.; Purohit, M. V.; Qi, N. D.; Quinn, H.; Raaf, J.; Rabberman, R.; Raffaelli, F.; Ragghianti, G.; Rahatlou, S.; Rahimi, A. M.; Rahmat, R.; Rakitin, A. Y.; Randle-Conde, A.; Rankin, P.; Rashevskaya, I.; Ratkovsky, S.; Raven, G.; Re, V.; Reep, M.; Regensburger, J. J.; Reidy, J.; Reif, R.; Reisert, B.; Renard, C.; Renga, F.; Ricciardi, S.; Richman, J. D.; Ritchie, J. L.; Ritter, M.; Rivetta, C.; Rizzo, G.; Roat, C.; Robbe, P.; Roberts, D. A.; Robertson, A. I.; Robutti, E.; Rodier, S.; Rodriguez, D. M.; Rodriguez, J. L.; Rodriguez, R.; Roe, N. A.; Röhrken, M.; Roethel, W.; Rolquin, J.; Romanov, L.; Romosan, A.; Ronan, M. T.; Rong, G.; Ronga, F. J.; Roos, L.; Root, N.; Rosen, M.; Rosenberg, E. I.; Rossi, A.; Rostomyan, A.; Rotondo, M.; Roussot, E.; Roy, J.; Rozanska, M.; Rozen, Y.; Rozen, Y.; Rubin, A. E.; Ruddick, W. O.; Ruland, A. M.; Rybicki, K.; Ryd, A.; Ryu, S.; Ryuko, J.; Sabik, S.; Sacco, R.; Saeed, M. A.; Safai Tehrani, F.; Sagawa, H.; Sahoo, H.; Sahu, S.; Saigo, M.; Saito, T.; Saitoh, S.; Sakai, K.; Sakamoto, H.; Sakaue, H.; Saleem, M.; Salnikov, A. A.; Salvati, E.; Salvatore, F.; Samuel, A.; Sanders, D. A.; Sanders, P.; Sandilya, S.; Sandrelli, F.; Sands, W.; Sands, W. R.; Sanpei, M.; Santel, D.; Santelj, L.; Santoro, V.; Santroni, A.; Sanuki, T.; Sarangi, T. R.; Saremi, S.; Sarti, A.; Sasaki, T.; Sasao, N.; Satapathy, M.; Sato, Nobuhiko; Sato, Noriaki; Sato, Y.; Satoyama, N.; Satpathy, A.; Savinov, V.; Savvas, N.; Saxton, O. H.; Sayeed, K.; Schaffner, S. F.; Schalk, T.; Schenk, S.; Schieck, J. R.; Schietinger, T.; Schilling, C. J.; Schindler, R. H.; Schmid, S.; Schmitz, R. E.; Schmuecker, H.; Schneider, O.; Schnell, G.; Schönmeier, P.; Schofield, K. C.; Schott, G.; Schröder, H.; Schram, M.; Schubert, J.; Schümann, J.; Schultz, J.; Schumm, B. A.; Schune, M. H.; Schwanke, U.; Schwarz, H.; Schwiening, J.; Schwierz, R.; Schwitters, R. F.; Sciacca, C.; Sciolla, G.; Scott, I. J.; Seeman, J.; Seiden, A.; Seitz, R.; Seki, T.; Sekiya, A. I.; Semenov, S.; Semmler, D.; Sen, S.; Senyo, K.; Seon, O.; Serbo, V. V.; Serednyakov, S. I.; Serfass, B.; Serra, M.; Serrano, J.; Settai, Y.; Seuster, R.; Sevior, M. E.; Shakhova, K. V.; Shang, L.; Shapkin, M.; Sharma, V.; Shebalin, V.; Shelkov, V. G.; Shen, B. C.; Shen, D. Z.; Shen, Y. T.; Sherwood, D. J.; Shibata, T.; Shibata, T. A.; Shibuya, H.; Shidara, T.; Shimada, K.; Shimoyama, M.; Shinomiya, S.; Shiu, J. G.; Shorthouse, H. W.; Shpilinskaya, L. I.; Sibidanov, A.; Sicard, E.; Sidorov, A.; Sidorov, V.; Siegle, V.; Sigamani, M.; Simani, M. C.; Simard, M.; Simi, G.; Simon, F.; Simonetto, F.; Sinev, N. B.; Singh, H.; Singh, J. B.; Sinha, R.; Sitt, S.; Skovpen, Yu. I.; Sloane, R. J.; Smerkol, P.; Smith, A. J. S.; Smith, D.; Smith, D. S.; Smith, J. G.; Smol, A.; Snoek, H. L.; Snyder, A.; So, R. Y.; Sobie, R. J.; Soderstrom, E.; Soha, A.; Sohn, Y. S.; Sokoloff, M. D.; Sokolov, A.; Solagna, P.; Solovieva, E.; Soni, N.; Sonnek, P.; Sordini, V.; Spaan, B.; Spanier, S. M.; Spencer, E.; Speziali, V.; Spitznagel, M.; Spradlin, P.; Staengle, H.; Stamen, R.; Stanek, M.; Stanič, S.; Stark, J.; Steder, M.; Steininger, H.; Steinke, M.; Stelzer, J.; Stevanato, E.; Stocchi, A.; Stock, R.; Stoeck, H.; Stoker, D. P.; Stroili, R.; Strom, D.; Strother, P.; Strube, J.; Stugu, B.; Stypula, J.; Su, D.; Suda, R.; Sugahara, R.; Sugi, A.; Sugimura, T.; Sugiyama, A.; Suitoh, S.; Sullivan, M. K.; Sumihama, M.; Sumiyoshi, T.; Summers, D. J.; Sun, L.; Sun, S.; Sundermann, J. E.; Sung, H. F.; Susaki, Y.; Sutcliffe, P.; Suzuki, A.; Suzuki, J.; Suzuki, J. I.; Suzuki, K.; Suzuki, S.; Suzuki, S. Y.; Swain, J. E.; Swain, S. K.; T'Jampens, S.; Tabata, M.; Tackmann, K.; Tajima, H.; Tajima, O.; Takahashi, K.; Takahashi, S.; Takahashi, T.; Takasaki, F.; Takayama, T.; Takita, M.; Tamai, K.; Tamponi, U.; Tamura, N.; Tan, N.; Tan, P.; Tanabe, K.; Tanabe, T.; Tanaka, H. A.; Tanaka, J.; Tanaka, M.; Tanaka, S.; Tanaka, Y.; Tanida, K.; Taniguchi, N.; Taras, P.; Tasneem, N.; Tatishvili, G.; Tatomi, T.; Tawada, M.; Taylor, F.; Taylor, G. N.; Taylor, G. P.; Telnov, V. I.; Teodorescu, L.; Ter-Antonyan, R.; Teramoto, Y.; Teytelman, D.; Thérin, G.; Thiebaux, Ch.; Thiessen, D.; Thomas, E. W.; Thompson, J. M.; Thorne, F.; Tian, X. C.; Tibbetts, M.; Tikhomirov, I.; Tinslay, J. S.; Tiozzo, G.; Tisserand, V.; Tocut, V.; Toki, W. H.; Tomassini, E. W.; Tomoto, M.; Tomura, T.; Torassa, E.; Torrence, E.; Tosi, S.; Touramanis, C.; Toussaint, J. C.; Tovey, S. N.; Trapani, P. P.; Treadwell, E.; Triggiani, G.; Trincaz-Duvoid, S.; Trischuk, W.; Troost, D.; Trunov, A.; Tsai, K. L.; Tsai, Y. T.; Tsujita, Y.; Tsukada, K.; Tsukamoto, T.; Tuggle, J. M.; Tumanov, A.; Tung, Y. W.; Turnbull, L.; Turner, J.; Turri, M.; Uchida, K.; Uchida, M.; Uchida, Y.; Ueki, M.; Ueno, K.; Ujiie, N.; Ulmer, K. A.; Unno, Y.; Urquijo, P.; Ushiroda, Y.; Usov, Y.; Usseglio, M.; Usuki, Y.; Uwer, U.; Va'vra, J.; Vahsen, S. E.; Vaitsas, G.; Valassi, A.; Vallazza, E.; Vallereau, A.; Vanhoefer, P.; van Hoek, W. C.; Van Hulse, C.; van Winkle, D.; Varner, G.; Varnes, E. W.; Varvell, K. E.; Vasileiadis, G.; Velikzhanin, Y. S.; Verderi, M.; Versillé, S.; Vervink, K.; Viaud, B.; Vidal, P. B.; Villa, S.; Villanueva-Perez, P.; Vinograd, E. L.; Vitale, L.; Vitug, G. M.; Voß, C.; Voci, C.; Voena, C.; Volk, A.; von Wimmersperg-Toeller, J. H.; Vorobyev, V.; Vossen, A.; Vuagnin, G.; Vuosalo, C. O.; Wacker, K.; Wagner, A. P.; Wagner, D. L.; Wagner, G.; Wagner, M. N.; Wagner, S. R.; Wagoner, D. E.; Walker, D.; Walkowiak, W.; Wallom, D.; Wang, C. C.; Wang, C. H.; Wang, J.; Wang, J. G.; Wang, K.; Wang, L.; Wang, L. L.; Wang, P.; Wang, T. J.; Wang, W. F.; Wang, X. L.; Wang, Y. F.; Wappler, F. R.; Watanabe, M.; Watson, A. T.; Watson, J. E.; Watson, N. K.; Watt, M.; Weatherall, J. H.; Weaver, M.; Weber, T.; Wedd, R.; Wei, J. T.; Weidemann, A. W.; Weinstein, A. J. R.; Wenzel, W. A.; West, C. A.; West, C. G.; West, T. J.; White, E.; White, R. M.; Wicht, J.; Widhalm, L.; Wiechczynski, J.; Wienands, U.; Wilden, L.; Wilder, M.; Williams, D. C.; Williams, G.; Williams, J. C.; Williams, K. M.; Williams, M. I.; Willocq, S. Y.; Wilson, J. R.; Wilson, M. G.; Wilson, R. J.; Winklmeier, F.; Winstrom, L. O.; Winter, M. A.; Wisniewski, W. J.; Wittgen, M.; Wittlin, J.; Wittmer, W.; Wixted, R.; Woch, A.; Wogsland, B. J.; Won, E.; Wong, Q. K.; Wray, B. C.; Wren, A. C.; Wright, D. M.; Wu, C. H.; Wu, J.; Wu, S. L.; Wulsin, H. W.; Xella, S. M.; Xie, Q. L.; Xie, Y.; Xu, Z. Z.; Yéche, Ch.; Yamada, Y.; Yamaga, M.; Yamaguchi, A.; Yamaguchi, H.; Yamaki, T.; Yamamoto, H.; Yamamoto, N.; Yamamoto, R. K.; Yamamoto, S.; Yamanaka, T.; Yamaoka, H.; Yamaoka, J.; Yamaoka, Y.; Yamashita, Y.; Yamauchi, M.; Yan, D. S.; Yan, Y.; Yanai, H.; Yanaka, S.; Yang, H.; Yang, R.; Yang, S.; Yarritu, A. K.; Yashchenko, S.; Yashima, J.; Yasin, Z.; Yasu, Y.; Ye, S. W.; Yeh, P.; Yi, J. I.; Yi, K.; Yi, M.; Yin, Z. W.; Ying, J.; Yocky, G.; Yokoyama, K.; Yokoyama, M.; Yokoyama, T.; Yoshida, K.; Yoshida, M.; Yoshimura, Y.; Young, C. C.; Yu, C. X.; Yu, Z.; Yuan, C. Z.; Yuan, Y.; Yumiceva, F. X.; Yusa, Y.; Yushkov, A. N.; Yuta, H.; Zacek, V.; Zain, S. B.; Zallo, A.; Zambito, S.; Zander, D.; Zang, S. L.; Zanin, D.; Zaslavsky, B. G.; Zeng, Q. L.; Zghiche, A.; Zhang, B.; Zhang, J.; Zhang, J.; Zhang, L.; Zhang, L. M.; Zhang, S. Q.; Zhang, Z. P.; Zhao, H. W.; Zhao, M.; Zhao, Z. G.; Zheng, Y.; Zheng, Y. H.; Zheng, Z. P.; Zhilich, V.; Zhou, P.; Zhu, R. Y.; Zhu, Y. S.; Zhu, Z. M.; Zhulanov, V.; Ziegler, T.; Ziegler, V.; Zioulas, G.; Zisman, M.; Zito, M.; Zürcher, D.; Zwahlen, N.; Zyukova, O.; Živko, T.; Žontar, D.

    2014-11-01

    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C. Please note that version 3 on the archive is the auxiliary version of the Physics of the B Factories book. This uses the notation alpha, beta, gamma for the angles of the Unitarity Triangle. The nominal version uses the notation phi_1, phi_2 and phi_3. Please cite this work as Eur. Phys. J. C74 (2014) 3026.

  15. Improved Measurement of the Cabibbo-Kobayashi-Maskawa Angle {alpha} Using B{sup 0}(B){yields}{rho}{sup +}{rho}{sup -} Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B.; Barate, R.; Boutigny, D.

    2005-07-22

    We present results from an analysis of B{sup 0}(B{sup 0}){yields}{rho}{sup +}{rho}{sup -} using 232x10{sup 6} {upsilon}(4S){yields}BB decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. We measure the longitudinal polarization fraction f{sub L}=0.978{+-}0.014(stat)(+0.021/-0.029)(syst) and the CP-violating parameters S{sub L}=-0.33{+-}0.24(stat)(+0.08/-0.14)(syst) and C{sub L}=-0.03{+-}0.18(stat){+-}0.09(syst). Using an isospin analysis of B{yields}{rho}{rho} decays, we determine the unitarity triangle parameter {alpha}. The solution compatible with the standard model is {alpha}=(100{+-}13) deg.

  16. RF design for the TOPGUN photogun: A cryogenic normal conducting copper electron gun

    DOE PAGES

    Cahill, A. D.; Fukasawa, A.; Pakter, R.; ...

    2016-08-31

    Some recent studies of rf breakdown physics in cryogenic copper X-band accelerating structures have shown a dramatic increase in the operating gradient while maintaining low breakdown rates. The TOPGUN project, a collaboration between UCLA, SLAC, and INFN, will use this improvement in gradient to create an ultra-high brightness cryogenic normal conducting photoinjector [16]. The brightness is expected to be higher by a factor of 25 relative to the LCLS photogun [9]. This improvement in the brightness will lead to increased performance of X-Ray free electron lasers (FELs) and ultrafast electron diffraction devices [16]. Here, we present the rf design formore » this S-band photogun, which will be a drop-in replacement for the current LCLS photogun.« less

  17. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffney, Kelly

    Movies have transformed our perception of the world. With slow motion photography, we can see a hummingbird flap its wings, and a bullet pierce an apple. The remarkably small and extremely fast molecular world that determines how your body functions cannot be captured with even the most sophisticated movie camera today. To see chemistry in real time requires a camera capable of seeing molecules that are one ten billionth of a foot with a frame rate of 10 trillion frames per second! SLAC has embarked on the construction of just such a camera. Please join me as I discuss howmore » this molecular movie camera will work and how it will change our perception of the molecular world.« less

  19. Comparative genomic analysis of three Leishmania species that cause diverse human disease

    PubMed Central

    Peacock, Christopher S; Seeger, Kathy; Harris, David; Murphy, Lee; Ruiz, Jeronimo C; Quail, Michael A; Peters, Nick; Adlem, Ellen; Tivey, Adrian; Aslett, Martin; Kerhornou, Arnaud; Ivens, Alasdair; Fraser, Audrey; Rajandream, Marie-Adele; Carver, Tim; Norbertczak, Halina; Chillingworth, Tracey; Hance, Zahra; Jagels, Kay; Moule, Sharon; Ormond, Doug; Rutter, Simon; Squares, Rob; Whitehead, Sally; Rabbinowitsch, Ester; Arrowsmith, Claire; White, Brian; Thurston, Scott; Bringaud, Frédéric; Baldauf, Sandra L; Faulconbridge, Adam; Jeffares, Daniel; Depledge, Daniel P; Oyola, Samuel O; Hilley, James D; Brito, Loislene O; Tosi, Luiz R O; Barrell, Barclay; Cruz, Angela K; Mottram, Jeremy C; Smith, Deborah F; Berriman, Matthew

    2008-01-01

    Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only ∼200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader–associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage. PMID:17572675

  20. Study of radiative bottomonium transitions using converted photons

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2011-10-01

    We use (111±1) million Υ(3S) and (89±1) million Υ(2S) events recorded by the BABAR detector at the PEP-II B-factory at SLAC to perform a study of radiative transitions between bottomonium states using photons that have been converted to e+e- pairs by the detector material. We observe Υ(3S)→γχb0,2(1P) decay, make precise measurements of the branching fractions for χb1,2(1P,2P)→γΥ(1S) and χb1,2(2P)→γΥ(2S) decays, and search for radiative decay to the ηb(1S) and ηb(2S) states.

  1. Breakthrough: X-ray Laser Captures Atoms and Molecules in Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Uwe

    2012-04-26

    The Linac Coherent Light Source at SLAC is the world's most powerful X-ray laser. Just two years after turning on in 2009, breakthrough science is emerging from the LCLS at a rapid pace. A recent experiment used the X-rays to create and probe a 2-million-degree piece of matter in a controlled way for the first time-a significant leap toward understanding the extreme conditions found in the hearts of stars and giant planets, and a finding which could further guide research into nuclear fusion, the mechanism that powers the sun. Upcoming experiments will investigate the fundamental, atomic-scale processes behind such phenomenamore » as superconductivity and magnetism, as well as peering into the molecular workings of photosynthesis in plants.« less

  2. Measurement of the e + e - → K s 0 K ± π ∓ π 0 and K s 0 K ± π ∓ η cross sections using initial-state radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    The processes e + e - → Kmore » $$0\\atop{S}$$ K ±π ∓π 0 and e + e - → K$$0\\atop{S}$$ K ±π ∓η are studied over a continuum of energies from threshold to 4 GeV with the initial-state photon radiation method. Using 454 fb -1 of data collected with the BABAR detector at the SLAC PEP-II storage ring, the first measurements of the cross sections for these processes are obtained. The intermediate resonance structures from K* 0(Kπ) 0, K *(892) ± (Kπ) ∓ , and K$$0\\atop{S}$$K ±ρ ∓ are studied. Lastly, the J / ψ is observed in all of these channels, and corresponding branching fractions are measured.« less

  3. The Fermi LAT Very Important Project (VIP) List of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Thompson, David J.; Fermi Large Area Telescope Collaboration

    2018-01-01

    Using nine years of Fermi Gamma-ray Space Telescope Large Area Telescope (LAT) observations, we have identified 30 projects for Active Galactic Nuclei (AGN) that appear to provide strong prospects for significant scientific advances. This Very Important Project (VIP) AGN list includes AGNs that have good multiwavelength coverage, are regularly detected by the Fermi LAT, and offer scientifically interesting timing or spectral properties. Each project has one or more LAT scientists identified who are actively monitoring the source. They will be regularly updating the LAT results for these VIP AGNs, working together with multiwavelength observers and theorists to maximize the scientific return during the coming years of the Fermi mission. See https://confluence.slac.stanford.edu/display/GLAMCOG/VIP+List+of+AGNs+for+Continued+Study

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolme, Cynthia Anne; Glenzer, Sigfried; Fry, Alan

    On October 5–6, 2015, the third international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA [1 R. Falcone, S. Glenzer, and S. Hau-Riege, Synchrotron Radiation News 27(2), 56–58 (2014)., 2 P. Heimann and S. Glenzer, Synchrotron Radiation News 28(3), 54–56 (2015).]. Here, the workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory. More than 110 scientists attended from North America, Europe, and Asia to discuss high-energy-density (HED) science that is enabled by the unique combination of high-power lasers with the LCLS X-rays at themore » LCLS-Matter in Extreme Conditions (MEC) endstation.« less

  5. Electron-Beam Switches For A High Peak Power Sled-II Pulse Compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshfield, Jay, L.

    2015-12-02

    Omega-P demonstrated triggered electron-beam switches on the L=2 m dual-delay-line X-band pulse compressor at Naval Research Laboratory (NRL). In those experiments, with input pulses of up to 9 MW from the Omega-P/NRL X-band magnicon, output pulses having peak powers of 140-165 MW and durations of 16-20 ns were produced, with record peak power gains M of 18-20. Switch designs are described based on the successful results that should be suitable for use with the existing SLAC SLED-II delay line system, to demonstrate C=9, M=7, and n>>78%, yielding 173ns compressed pulses with peak powers up to 350MW with input of amore » single 50-MW.« less

  6. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juwen; /SLAC; Lewandowski, James

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control,more » tuning and RF characterization will be discussed.« less

  7. Molecules in the Spotlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cryan, James

    2010-01-26

    SLAC has just unveiled the world's first X-ray laser, the LCLS. This machine produces pulses of X-rays that are ten billion times brighter than those from conventional sources. One of the goals of this machine is to make movies of chemical reactions, including reactions necessary for life and reactions that might power new energy technologies. This public lecture will show the first results from the LCLS. As a first target, we have chosen nitrogen gas, the main component of the air we breathe. Using the unprecedented power of the LCLS X-rays as a blasting torch, we have created new formsmore » of this molecule and with unique electronic arrangements. Please share with us the first insights from this new technology.« less

  8. Measurement of CP-violating asymmetries in B0 decays to CP eigenstates.

    PubMed

    Aubert, B; Boutigny, D; De Bonis, I; Gaillard, J M; Jeremie, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Dardin, S; Day, C; Dow, S F; Elioff, T; Fan, Q; Gaponenko, I; Gill, M S; Goozen, F R; Gowdy, S J; Gritsan, A; Groysman, Y; Jacobsen, R G; Jared, R C; Kadel, R W; Kadyk, J; Karcher, A; Kerth, L T; Kipnis, I; Kluth, S; Kolomensky, Y G; Kral, J F; Lafever, R; LeClerc, C; Levi, M E; Lewis, S A; Lionberger, C; Liu, T; Long, M; Lynch, G; Marino, M; Marks, K; Meyer, A B; Mokhtarani, A; Momayezi, M; Nyman, M; Oddone, P J; Ohnemus, J; Oshatz, D; Patton, S; Perazzo, A; Peters, C; Pope, W; Pripstein, M; Quarrie, D R; Rasson, J E; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Stone, R; Telnov, A V; von der Lippe, H; Weber, T; Wenzel, W A; Zisman, M S; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Kirk, A; Knowles, D J; O'Neale, S W; Watson, A T; Watson, N K; Deppermann, T; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; Mass, A; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Camanzi, B; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Dubrovin, M S; Golubev, V B; Ivanchenko, V N; Kolachev, G M; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Buchanan, C; Chun, S; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Burke, S; Campagnari, C; Dahmes, B; Hale, D; Hart, P A; Kuznetsova, N; Kyre, S; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spencer, E N; Turri, M; Walkowiak, W; Williams, D C; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hanson, J E; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Bloom, P; Fahey, S; Ford, W T; Gaede, F; van Hoek, W C; Johnson, D R; Michael, A K; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Warner, D W; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Eckstein, P; Futterschneider, H; Krause, R; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Fouque, G; Gastaldi, F; Matricon, P; Mora de Freitas, P; Renard, C; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Di Lodovico, F; Khan, A; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Pallavicini, M; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; McKay, R; Meyer, W T; Rosenberg, E I; Albert, J N; Beigbeder, C; Benkebil, M; Breton, D; Cizeron, R; Du, S; Grosdidier, G; Hast, C; Höcker, A; LePeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Truong, K; Valassi, A; Wormser, G; Bionta, R M; Brigljević, V; Brooks, A; Fackler, O; Fujino, D; Lange, D J; Mugge, M; O'Connor, T G; Pedrotti, B; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Yamamoto, B; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Martin, R; Nash, J A; Price, D R; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Newman-Coburn, D; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Ford, K; Li, Y; Pavlovich, J; Allison, J; Barlow, R J; Boyd, J T; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Thompson, R J; Weatherall, J H; Bard, R; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Lin, C S; Staengle, H; Willocq, S; Wittlin, J; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Britton, D I; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenberg, V; Kroeger, R; Reep, M; Reidy, J; Sanders, D A; Summers, D J; Beaulieu, M; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cavallo, N; Cartaro, C; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Heck, J; Brau, J E; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Borsato, E; Colecchia, F; Dal Corso, F; Galeazzi, F; Margoni, M; Marzolla, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Bailly, P; Benayoun, M; Briand, H; Chauveau, J; David, P; De La Vaissière, C; Del Buono, L; Genat, J F; Hamon, O; Le Diberder, F; Lebbolo, H; Leruste, P; Lory, J; Martin, L; Roos, L; Stark, J; Versillé, S; Zhang, B; Manfredi, P F; Ratti, L; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bosi, F; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Hairre, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Fernholz, R; Lu, C; McDonald, K T; Miftakov, V; Sands, B; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Bronzini, F; Buccheri, A; Bulfon, C; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Waldi, R; Jacques, P F; Kalelkar, M; Plano, R J; Adye, T; Claxton, B; Franek, B; Galagedera, S; Geddes, N I; Gopal, G P; Lidbury, J; Xella, S M; Aleksan, R; Besson, P; Bourgeois, P; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Gosset, L; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yeche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Bartelt, J; Becla, J; Bell, R; Bloom, E; Boeheim, C T; Boyarski, A M; Boyce, R F; Bulos, F; Burgess, W; Byers, B; Calderini, G; Claus, R; Convery, M R; Coombes, R; Cottrell, L; Coupal, D P; Coward, D H; Craddock, W W; DeStaebler, H; Dorfan, J; Doser, M; Dunwoodie, W; Ecklund, S; Fieguth, T H; Field, R C; Freytag, D R; Glanzman, T; Godfrey, G L; Grosso, P; Haller, G; Hanushevsky, A; Harris, J; Hasan, A; Hewett, J L; Himel, T; Huffer, M E; Innes, W R; Jessop, C P; Kawahara, H; Keller, L; Kelsey, M H; Kim, P; Klaisner, L A; Kocian, M L; Krebs, H J; Kunz, P F; Langenegger, U; Langeveld, W; Leith, D W; Louie, S K; Luitz, S; Luth, V; Lynch, H L; MacDonald, J; Manzin, G; Mariske, H; McCulloch, M; McShurley, D; Menke, S; Messner, R; Metcalfe, S; Moffeit, K C; Mount, R; Muller, D R; Nelson, D; Nordby, M; O'Grady, C P; O'Neill, F G; Oxoby, G; Pavel, T; Perl, J; Petrak, S; Putallaz, G; Quinn, H; Raines, P E; Ratcliff, B N; Reif, R; Robertson, S H; Rochester, L S; Roodman, A; Russell, J J; Sapozhnikov, L; Saxton, O H; Schietinger, T; Schindler, R H; Schwiening, J; Seeman, J T; Serbo, V V; Skarpass, K; Snyder, A; Soha, A; Spanier, S M; Stahl, A; Stelzer, J; Su, D; Sullivan, M K; Talby, M; Tanaka, H A; Va'vra, J; Wagner, S R; Weinstein, A J; White, J L; Wienands, U; Wisniewski, W J; Young, C C; Zioulas, G; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; De Silva, A; Henderson, R; Berridge, S; Bugg, W; Cohn, H; Hart, E; Weidemann, A W; Benninger, T; Izen, J M; Kitayama, I; Lou, X C; Turcotte, M; Bianchi, F; Bona, M; Di Girolamo, B; Gamba, D; Smol, A; Zanin, D; Bosisio, L; Della Ricca, G; Lanceri, L; Pompili, A; Poropat, P; Vuagnin, G; Panvini, R S; Brown, C M; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Elmer, P; Hu, H; Johnson, J R; Nielsen, J; Orejudos, W; Pan, Y; Prepost, R; Scott, I J; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Zobernig, H; Kordich, T M; Moore, T B; Neal, H

    2001-03-19

    We present measurements of time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurement uses a data sample of 23x10(6) Upsilon(4S)-->BbarB decays collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we find events in which one neutral B meson is fully reconstructed in a CP eigenstate containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the standard model is proportional to sin2beta, is derived from the decay time distributions in such events. The result is sin2beta = 0.34+/-0.20 (stat)+/-0.05 (syst).

  9. Polarized targets in high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cates, G.D. Jr.

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, anmore » experiment to measure the spin structure function of the neutron, and is described in detail.« less

  10. RF Conditioning of the Photo-Cathode RF Gun at the Advanced Photon Source - NWA RF Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, T. L.; DiMonte, N.; Nassiri, A.

    A new S-band Photo-cathode (PC) gun was recently installed and RF conditioned at the Advanced Photon Source (APS) Injector Test-stand (ITS) at Argonne National Lab (ANL). The APS PC gun is a LCLS type gun fabricated at SLAC [1]. The PC gun was delivered to the APS in October 2013 and installed in the APS ITS in December 2013. At ANL, we developed a new method of fast detection and mitigation of the guns internal arcs during the RF conditioning process to protect the gun from arc damage and to RF condition more efficiently. Here, we report the results ofmore » RF measurements for the PC gun and an Auto-Restart method for high power RF conditioning.« less

  11. Diffraction data of core-shell nanoparticles from an X-ray free electron laser

    DOE PAGES

    Li, Xuanxuan; Chiu, Chun -Ya; Wang, Hsiang -Ju; ...

    2017-04-11

    X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Furthermore, scattering patterns resulting from single particles were selected and compiledmore » into a dataset which can be valuable for algorithm developments in single particle scattering research.« less

  12. Numerical Calculations of Short-Range Wakefields of Collimators

    NASA Astrophysics Data System (ADS)

    Ng, C. K.

    2001-12-01

    The performance of future linear colliders are limited by the effect of short-range collimator wakefields on the beam. The beam quality is sensitive to the positioning of collimators at the end of the linac. The determination of collimator wakefields has been difficult, largely because of the scarcity of measurement data, and of the limitation of applicability of analytical results to realistic structures. In this paper, numerical methods using codes such as MAFIA are used to determine a series of tapered collimators with rectangular apertures that have been built for studies at SLAC (Stanford Linear Accelerator Center). We will study the dependences of the wakefield on the collimator taper angle, the collimator gap as well as the bunch length. Calculations are also compared with measurements.

  13. Measurement of the e + e - → K s 0 K ± π ∓ π 0 and K s 0 K ± π ∓ η cross sections using initial-state radiation

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2017-05-30

    The processes e + e - → Kmore » $$0\\atop{S}$$ K ±π ∓π 0 and e + e - → K$$0\\atop{S}$$ K ±π ∓η are studied over a continuum of energies from threshold to 4 GeV with the initial-state photon radiation method. Using 454 fb -1 of data collected with the BABAR detector at the SLAC PEP-II storage ring, the first measurements of the cross sections for these processes are obtained. The intermediate resonance structures from K* 0(Kπ) 0, K *(892) ± (Kπ) ∓ , and K$$0\\atop{S}$$K ±ρ ∓ are studied. Lastly, the J / ψ is observed in all of these channels, and corresponding branching fractions are measured.« less

  14. Performances of RPCs in the BaBar experiment

    NASA Astrophysics Data System (ADS)

    Anulli, F.; Baldini, R.; Band, H.; Bionta, R.; Brau, J.; Brigljevic, V.; Buzzo, A.; Calcaterra, A.; Carpinelli, M.; Cartaro, T.; Cavallo, N.; Crosetti, G.; De Nardo, G.; De Sangro, R.; Eichenbaum, A.; Falciai, D.; Fabozzi, F.; Ferroni, F.; Finocchiaro, G.; Forti, F.; Frey, R.; Johnson, J.; Gatto, C.; Grauges-Pous, E.; Iwasaki, M.; Lange, D.; Lista, L.; Lo Vetere, M.; Lu, C.; Neal, H.; Neri, N.; Macri, M.; Messener, B.; Monge, M. R.; Moore, T.; Morganti, S.; Palano, A.; Paoloni, E.; Paolucci, P.; Passaggio, S.; Pastore, F.; Patrignani, C.; Patteri, P.; Peruzzi, I.; Piccolo, D.; Piccolo, M.; Piredda, G.; Pompili, A.; Robutti, E.; Roodman, A.; Santroni, A.; Sciacca, C.; Sinev, N.; Soha, A.; Storm, D.; Tosi, S.; Va'vra, J.; Xie, Y.; Wright, D.; Wisniewski, W.

    2003-12-01

    The BaBar experiment uses a big system based on RPC detectors to discriminate muons from pions and to identify neutral hadrons. About 2000 m2 of RPC chambers have been working at SLAC since the end of 1998. We report on the performances of the RPC chambers focusing on new problems discovered in the RPC behaviour. These problems started very soon after the installation of the chambers on the detector when the high-ambient temperature triggered an increase of dark currents inside the chambers and a reduction of the efficiency. Careful analysis of the BaBar data and dedicated R&D efforts in the laboratory have helped to identify the main source of the trouble in the linseed oil varnish on the bakelite electrodes.

  15. Breakthrough: X-ray Laser Captures Atoms and Molecules in Action

    ScienceCinema

    Bergmann, Uwe

    2018-02-13

    The Linac Coherent Light Source at SLAC is the world's most powerful X-ray laser. Just two years after turning on in 2009, breakthrough science is emerging from the LCLS at a rapid pace. A recent experiment used the X-rays to create and probe a 2-million-degree piece of matter in a controlled way for the first time-a significant leap toward understanding the extreme conditions found in the hearts of stars and giant planets, and a finding which could further guide research into nuclear fusion, the mechanism that powers the sun. Upcoming experiments will investigate the fundamental, atomic-scale processes behind such phenomena as superconductivity and magnetism, as well as peering into the molecular workings of photosynthesis in plants.

  16. ‘Schroedinger’s Cat’ Molecules Give Rise to Exquisitely Detailed Movies

    ScienceCinema

    None

    2018-01-16

    One of the most famous mind-twisters of the quantum world is the thought experiment known as “Schroedinger’s Cat,” in which a cat placed in a box and potentially exposed to poison is simultaneously dead and alive until someone opens the box and peeks inside. Scientists have known for a long time that an atom or molecule can also be in two different states at once. Now researchers at the Stanford PULSE Institute and the Department of Energy’s SLAC National Accelerator Laboratory have exploited this Schroedinger’s Cat behavior to create X-ray movies of atomic motion with much more detail than ever before.

  17. Proceedings of the 24. SLAC summer institute on particle physics: The strong interaction, from hadrons to partons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, J.; DePorcel, L.; Dixon, L.

    1997-06-01

    This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q{sup 2}.more » Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  18. Characterizing Radio Emission From Extensive Air Showers with the SLAC-T510 Experiment, with Applications to ANITA

    NASA Astrophysics Data System (ADS)

    McGuire, Felicia Ann

    Essential to metal-oxide-semiconductor field-effect transistor (MOSFET) scaling is the reduction of the supply voltage to mitigate the power consumption and corresponding heat dissipation. Conventional dielectric materials are subject to the thermal limit imposed by the Boltzmann factor in the subthreshold swing, which places an absolute minimum on the supply voltage required to modulate the current. Furthermore, as technology approaches the 5 nm node, electrostatic control of a silicon channel becomes exceedingly difficult, regardless of the gating technique. This notion of "the end of silicon scaling" has rapidly increased research into more scalable channel materials as well as new methods of transistor operation. Among the many promising options are two-dimensional (2D) FETs and negative capacitance (NC) FETs. 2D-FETs make use of atomically thin semiconducting channels that have enabled demonstrated scalability beyond what silicon can offer. NC-FETs demonstrate an effective negative capacitance arising from the integration of a ferroelectric into the transistor gate stack, allowing sub-60 mV/dec switching. While both of these devices provide significant advantages, neither can accomplish the ultimate goal of a FET that is both low-voltage and scalable. However, an appropriate fusion of the 2D-FET and NC-FET into a 2D NC-FET has the potential of enabling a steep-switching device that is dimensionally scalable beyond the 5 nm technology node. In this work, the motivation for and operation of 2D NC-FETs is presented. Experimental realization of 2D NC-FETs using 2D transition metal dichalcogenide molybdenum disulfide (MoS2) as the channel is shown with two different ferroelectric materials: 1) a solution-processed, polymeric poly(vinylidene difluoride trifluoroethylene) ferroelectric and 2) an atomic layer deposition (ALD) grown hafnium zirconium oxide (HfZrO2) ferroelectric. Each ferroelectric was integrated into the gate stack of a 2D-FET having either a top-gate (polymeric ferroelectric) or bottom-gate (HfZrO2 ferroelectric) configuration. HfZrO 2 devices with metallic interfacial layers (between ferroelectric and dielectric) and thinner ferroelectric layers were found to reduce both the hysteresis and the threshold voltage. Detailed characterization of the devices was performed and, most significantly, the 2D NC-FETs with HfZrO2 reproducibly yielded subthreshold swings well below the thermal limit with over more than four orders of magnitude in drain current modulation. HfZrO 2 devices without metallic interfacial layers were utilized to explore the impact of ferroelectric thickness, dielectric thickness, and dielectric composition on device performance. The impact of an interfacial metallic layer on the device operation was investigated in devices with HfZrO2 and shown to be crucial at enabling sub-60 mV/dec switching and large internal voltage gains. The significance of dielectric material choice on device performance was explored and found to be a critical factor in 2D NC-FET transistor operation. These successful results pave the way for future integration of this new device structure into existing technology markets.

  19. All-Optical Electron Injector

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald

    2002-04-01

    Conventional electron acceleration at a place like SLAC needs miles to boost particles up to 50 GeV energies by feeding microwaves into a succession of cavities. In recent years we have been developing alternative acceleration concepts, based on lasers focused into plasmas, that might someday do the job in a much smaller space without the use of cavities. Our near term goal is to produce a first stage accelerator that outputs electron beams with lower energy but with properties that are more suitable for x-ray sources, such as those based on Compton scattering or the proposed linear synchrotrons at SLAC and DESY. In the plasma wakefield approach, for example, a terawatt laser beam is focused onto a gas jet, ionizing it and driving plasma waves that move at relativistic speeds. If timed just right, electrons in the plasma can surf the plasma waves to high speeds, as high as 100 MeV in the space of only a millimeter. NanoCoulombs of charge have been accelerated in well-collimated beams (1-degree divergence angle). One problem with this concept is the mismatch between the electron source (sometimes an external photocathode, sometimes an uncontrolled cloud of electrons from the plasma itself) and the incoming laser pulse. We will be reporting methods for generating electrons in a controllable way, namely the use of a pair of crossed laser beams which position, heat, and synchronize the insertion of electrons into the plasma wave. We show that this "all-optical injection" increases the number and energy of energetic electrons as compared with use of only one laser beam. It has been shown theoretically that this approach can ultimately be used to reduce the electron energy spread to a few percent. Besides potential applications to particle physics and x-ray lasers, high gradient acceleration schemes are also expected to benefit the production of medical radioisotopes and the ignition of thermonuclear fusion reactions.

  20. Essential Role of RAB27A in Determining Constitutive Human Skin Color

    PubMed Central

    Yoshida-Amano, Yasuko; Hachiya, Akira; Ohuchi, Atsushi; Kobinger, Gary P.; Kitahara, Takashi; Takema, Yoshinori; Fukuda, Mitsunori

    2012-01-01

    Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs) in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (ΔL* = 4.4) in the

  1. Fourth Generation Light Sources

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    1997-05-01

    Concepts and designs are now being developed at laboratories around the world for light sources with performance levels that exceed present sources, including the very powerful and successful third generation synchrotron radiation sources that have come on line in the past few years. Workshops (M. Cornacchia and H. Winick (eds), Workshop on Fourth Generation Light Sources, Feb. 24-27, 1992, SSRL Report 92/02) (J.-L. Laclare (ed), ICFA Workshop on Fourth Generation Light Sources, Jan. 22-25, 1996, ESRF Report) have been held to review directions for future sources. A main thrust is to increase the brightness and coherence of the radiation using storage rings with lower electron-beam emittance or free-electron lasers (FELs). In the infra-red part of the spectrum very high brightness and coherence is already provided by FEL user facilities driven by linacs and storage rings. It now appears possible to extend FEL operation to the VUV, soft X-ray and even hard X-ray spectral range, to wavelengths down to the angstrom range, using high energy linacs equipped with high-brightness rf photoinjectors and bunch-length compressors. R&D to develop such sources is in progress at BNL, DESY, KEK, SLAC and other laboratories. In the absence of mirrors to form optical cavities, short wavelengths are reached in FEL systems in which a high peak current, low-emittance electron beam becomes bunch-density modulated at the optical wavelength in a single pass through a long undulator by self-amplified spontaneous emission (SASE); i.e.; startup from noise. A proposal to use the last kilometer of the three kilometer SLAC linac (the first two kilometers will be used for injection to the PEP II B-Factory) to provide 15 GeV electron beams to reach 1.5 Angstroms by SASE in a 100 m long undulator is in preparation.

  2. Plasma Accelerators Race to 10 GeV and Beyond

    NASA Astrophysics Data System (ADS)

    Katsouleas, Tom

    2005-10-01

    This paper reviews the concepts, recent progress and current challenges for realizing the tremendous electric fields in relativistic plasma waves for applications ranging from tabletop particle accelerators to high-energy physics. Experiments in the 90's on laser-driven plasma wakefield accelerators at several laboratories around the world demonstrated the potential for plasma wakefields to accelerate intense bunches of self-trapped particles at rates as high as 100 GeV/m in mm-scale gas jets. These early experiments offered impressive gradients but large energy spread (100%) and short interaction lengths. Major breakthroughs have recently occurred on both fronts. Three groups (LBL-US, LOA-France and RAL-UK) have now entered a new regime of laser wakefield acceleration resulting in 100 MeV mono-energetic beams with up to nanoCoulombs of charge and very small angular spread. Simulations suggest that current lasers are just entering this new regime, and the scaling to higher energies appears attractive. In parallel with the progress in laser-driven wakefields, particle-beam driven wakefield accelerators are making large strides. A series of experiments using the 30 GeV beam of the Stanford Linear Accelerator Center (SLAC) has demonstrated high-gradient acceleration of electrons and positrons in meter-scale plasmas. The UCLA/USC/SLAC collaboration has accelerated electrons beyond 1 GeV and is aiming at 10 GeV in 30 cm as the next step toward a ``plasma afterburner,'' a concept for doubling the energy of a high-energy collider in a few tens of meters of plasma. In addition to wakefield acceleration, these and other experiments have demonstrated the rich physics bounty to be reaped from relativistic beam-plasma interactions. This includes plasma lenses capable of focusing particle beams to the highest density ever produced, collective radiation mechanisms capable of generating high-brightness x-ray beams, collective refraction of particles at a plasma interface, and

  3. Instantaneous global spatial interaction? Exploring the Gaussian inequality, distance and Internet pings in a global network

    NASA Astrophysics Data System (ADS)

    Baker, R. G. V.

    2005-12-01

    The Internet has been publicly portrayed as a new technological horizon yielding instantaneous interaction to a point where geography no longer matters. This research aims to dispel this impression by applying a dynamic form of trip modelling to investigate pings in a global computer network compiled by the Stanford Linear Accelerator Centre (SLAC) from 1998 to 2004. Internet flows have been predicted to have the same mathematical operators as trips to a supermarket, since they are both periodic and constrained by a distance metric. Both actual and virtual trips are part of a spectrum of origin-destination pairs in the time-space convergence of trip time-lines. Internet interaction is very near to the convergence of these time-lines (at a very small time scale in milliseconds, but with interactions over thousands of kilometres). There is a lag effect and this is formalised by the derivation of Gaussian and gravity inequalities between the time taken (Δ t) and the partitioning of distance (Δ x). This inequality seems to be robust for a regression of Δ t to Δ x in the SLAC data set for each year (1998 to 2004). There is a constant ‘forbidden zone’ in the interaction, underpinned by the fact that pings do not travel faster than the speed of light. Superimposed upon this zone is the network capacity where a linear regression of Δ t to Δ x is a proxy summarising global Internet connectivity for that year. The results suggest that there has been a substantial improvement in connectivity over the period with R 2 increasing steadily from 0.39 to 0.65 from less Gaussian spreading of the ping latencies. Further, the regression line shifts towards the inequality boundary from 1998 to 2004, where the increased slope shows a greater proportional rise in local connectivity over global connectivity. A conclusion is that national geography still does matter in spatial interaction modelling of the Internet.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Mark

    Plasma wakefield acceleration has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider is the focus of FACET, a National User Facility at SLAC. The existing FACET National User Facility uses part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and positrons. FACET-II is a new test facility to develop advanced acceleration and coherent radiationmore » techniques with high-energy electron and positron beams. It is the only facility in the world with high energy positron beams. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The design parameters for FACET-II are set by the requirements of the plasma wakefield experimental program. To drive the plasma wakefield requires a high peak current, in excess of 10kA. To reach this peak current, the electron and positron design bunch size is 10μ by 10μ transversely with a bunch length of 10μ. This is more than 200 times better than what has been achieved at the existing FACET. The beam energy is 10 GeV, set by the Linac length available and the repetition rate is up to 30 Hz. The FACET-II project is scheduled to be constructed in three major stages. Components of the project discussed in detail include the following: electron injector, bunch compressors and linac, the positron system, the Sector 20 sailboat and W

  5. Progress Toward a Gigawatt-Class Annular Beam Klystron with a Thermionic Electron Gun

    NASA Astrophysics Data System (ADS)

    Fazio, M.; Carlsten, B.; Farnham, J.; Habiger, K.; Haynes, W.; Myers, J.; Nelson, E.; Smith, J.; Arfin, B.; Haase, A.

    2002-08-01

    In an effort to reach the gigawatt power level in the microsecond pulse length regime Los Alamos, in collaboration with SLAC, is developing an annular beam klystron (ABK) with a thermionic electron gun. We hope to address the causes of pulse shortening in very high peak power tubes by building a "hard-vacuum" tube in the 10-10 Torr range with a thermionic electron gun producing a constant impedance electron-beam. The ABK has been designed to operate at 5 Hz pulse repetition frequency to allow for RF conditioning. The electron gun has a magnetron injection gun configuration and uses a dispenser cathode running at 1100 degC to produce a 4 kA electron beam at 800 kV. The cathode is designed to run in the temperature-limited mode to help maintain beam stability in the gun. The beam-stick consisting of the electron gun, an input cavity, an idler cavity, and drift tube, and the collector has been designed collaboratively, fabricated at SLAC, then shipped to Los Alamos for testing. On the test stand at Los Alamos a low voltage emission test was performed, but unfortunately as we prepared for high voltage testing a problem with the cathode heater was encountered that prevented the cathode from reaching a high enough temperature for electron emission. A post-mortem examination will be done shortly to determine the exact cause of the heater failure. The RF design has been proceeding and is almost complete. The output cavity presents a challenging design problem in trying to efficiently extract energy from the low impedance beam while maintaining a gap voltage low enough to avoid breakdown and a Q high enough to maintain mode purity. In the next iteration, the ABK will have a new cathode assembly installed along with the remainder of the RF circuit. This paper will discuss the electron gun and the design of the RF circuit along with a report on the status of the work.

  6. Physical Attraction: The Mysteries of Magnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stohr, Joachim

    2004-12-14

    Most people have intuitive associations with the word 'magnetism' based on everyday life: refrigerator magnets, the compass, north and south poles, or someone's 'magnetic personality'. Few people, however, realize how complicated the phenomenon really is, how much research still deals with the topic today, and how much it penetrates our modern industrialized world - from electricity, wireless communication at the speed of light to magnetic sensors in cars and data storage in computers. Stohr's lecture will provide a glimpse at the magic and science behind magnetism: its long history, scientific breakthroughs in its understanding, and its use in our modernmore » society. In the process Stohr will show how research at SSRL/SLAC is addressing some of the forefront issues in magnetism research and technology today.« less

  7. Circulation and Purification in the LUX-ZEPLIN System Test

    NASA Astrophysics Data System (ADS)

    Alsum, Shaun; Lz Collaboration

    2016-03-01

    LZ is a dark-matter direct detection experiment whose detector is a two-phase TPC using approximately seven tons of active xenon as its scintillator. The xenon must have few electronegative impurities to ensure sufficient electron transport through the drift region. The LZ purification system is being prototyped in the LZ system test, a test platform located at SLAC using about 100kg of Xenon, which consists of gas circulation through a SAES getter. We utilize a dual-phase and a gas-phase heat exchanger to reduce needed cooling power. To achieve this circulation we employ an all metal seal triple diaphragm pump, also prototyped in the System Test. This talk will present early results from the system test as well as some baseline LZ designs. The LUX-ZEPLIN dark matter direct detection experiment.

  8. Note: Simulation and test of a strip source electron gun.

    PubMed

    Iqbal, Munawar; Islam, G U; Misbah, I; Iqbal, O; Zhou, Z

    2014-06-01

    We present simulation and test of an indirectly heated strip source electron beam gun assembly using Stanford Linear Accelerator Center (SLAC) electron beam trajectory program. The beam is now sharply focused with 3.04 mm diameter in the post anode region at 15.9 mm. The measured emission current and emission density were 1.12 A and 1.15 A/cm(2), respectively, that corresponds to power density of 11.5 kW/cm(2), at 10 kV acceleration potential. The simulated results were compared with then and now experiments and found in agreement. The gun is without any biasing, electrostatic and magnetic fields; hence simple and inexpensive. Moreover, it is now more powerful and is useful for accelerators technology due to high emission and low emittance parameters.

  9. Performance of Superconducting Magnet Prototypes for LCLS-II Linear Accelerator

    DOE PAGES

    Kashikhin, Vladimir; Andreev, Nikolai; DiMarco, Joseph; ...

    2017-01-05

    The new LCLS-II Linear Superconducting Accelerator at SLAC needs superconducting magnet packages installed inside SCRF Cryomodules to focus and steer an electron beam. Two magnet prototypes were built and successfully tested at Fermilab. Magnets have an iron dominated configuration, quadrupole and dipole NbTi superconducting coils, and splittable in the vertical plane configuration. Magnets inside the Cryomodule are conductively cooled through pure Al heat sinks. Both magnets performance was verified by magnetic measurements at room temperature, and during cold tests in liquid helium. Test results including magnetic measurements are discussed. Special attention was given to the magnet performance at low currentsmore » where the iron yoke and the superconductor hysteresis effects have large influence. Both magnet prototypes were accepted for the installation in FNAL and JLAB prototype Cryomodules.« less

  10. Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma

    NASA Astrophysics Data System (ADS)

    Adli, E.; Lindstrøm, C. A.; Allen, J.; Clarke, C. I.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; O'Shea, B.; Yakimenko, V.; An, W.; Clayton, C. E.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Corde, S.; Lu, W.

    2016-10-01

    We report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. The attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam-plasma interactions in general and plasma wakefield accelerator technology in particular.

  11. A study of Channeling, Volume Reflection and Volume Capture of 3.35 - 14.0 GeV Electrons in a bent Silicon Crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wistisen, T. N.; Uggerhoj, U. I.; Wienands, U.

    2015-12-03

    We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111) plane in a strongly bent quasi-mosaic silicon crystal. Additionally, these phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5 and 14.0 GeV with a crystal with bending radius of 0.15m, corresponding to curvatures of 0.070, 0.088, 0.13, 0.22 and 0.29 times the critical curvature respectively. We have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission and the widths of the distributionmore » of channeled particles parallel and orthogonal to the plane.« less

  12. Recent Results on T and CP Violation at BABAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez Perez, Alejandro

    2015-02-06

    CP-violation (CPV) and Time-reversal violation (TRV) are intimately related through the CPT theorem: if one of these discrete symmetries is violated the other one has to be violated in such a way to conserve CPT. Although CPV in the B 0B 0-bar system has been established by the B-factories, implying indirectly TRV, there is still no direct evidence of TRV. We report on the observation of TRV in the B-meson system performed with a dataset of 468 × 10 6 BB-bar pairs produced in Υ(4S) decays collected by the BABAR detector at the PEP-II asymmetric-energy e +e - collider atmore » the SLAC National Accelerator Laboratory. We also report on other CPV measurements recently performed on the B-meson system« less

  13. Archaeopteryx: Bringing the Dino-Bird to Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Uwe

    Some 150 million years ago, a strange creature died in a tropical lagoon that today is located in Bavaria, Germany. In 1861, a single feather of this creature was discovered. Not long afterward, a complete fossil was found with the same bird-like feathers but dinosaur-like anatomical features. Darwin had just published 'On the Origin of Species'; could this be the missing link that Darwin's supporters hoped to find? Recently, two of the now eleven discovered Archaeopteryx fossils, and that first feather, were brought to SLAC, where, using the intense X-ray beam, researchers searched for the chemical remains of the originalmore » living creatures. Please join us for this lecture, which will explain how the studies attempt to bring the original dino-bird back to life.« less

  14. BaBar superconducting coil: design, construction and test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, R A; Berndt, M; Burgess, W

    2001-01-26

    The BABAR Detector, located in the PEP-II B-Factory at the Stanford Linear Accelerator Center, includes a large 1.5 Tesla superconducting solenoid, 2.8 m bore and length 3.7 m. The two layer solenoid is wound with an aluminum stabilized conductor which is graded axially to produce a {+-} 3% field uniformity in the tracking region. This paper summarizes the 3 year design, fabrication and testing program of the superconducting solenoid. The work was carried out by an international collaboration between INFN, LLNL and SLAC. The coil was constructed by Ansaldo Energia. Critical current measurements of the superconducting strand, cable and conductor,more » cool-down, operation with the thermo-siphon cooling, fast and slow discharges, and magnetic forces are discussed in detail.« less

  15. Observation of a narrow meson decaying to D+sπ0γ at a mass of 2.458 GeV/c2

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Barate, R.; Boutigny, D.; Gaillard, J.-M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Robbe, P.; Tisserand, V.; Zghiche, A.; Palano, A.; Pompili, A.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Ofte, I.; Stugu, B.; Abrams, G. S.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Day, C. T.; Gill, M. S.; Gritsan, A. V.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Leclerc, C.; Levi, M. E.; Lynch, G.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Telnov, A. V.; Wenzel, W. A.; Ford, K.; Harrison, T. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; Penny, R. C.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Steinke, M.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Kelly, M. P.; Latham, T. E.; Mackay, C.; Wilson, F. F.; Abe, K.; Cuhadar-Donszelmann, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Kyberd, P.; McKemey, A. K.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Golubev, V. B.; Ivanchenko, V. N.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Yushkov, A. N.; Best, D.; Bruinsma, M.; Chao, M.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Mommsen, R. K.; Roethel, W.; Stoker, D. P.; Buchanan, C.; Hartfiel, B. L.; Gary, J. W.; Layter, J.; Shen, B. C.; Wang, K.; del Re, D.; Hadavand, H. K.; Hill, E. J.; Macfarlane, D. B.; Paar, H. P.; Rahatlou, Sh.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Dahmes, B.; Kuznetsova, N.; Levy, S. L.; Long, O.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Heusch, C. A.; Lockman, W. S.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Turri, M.; Walkowiak, W.; Williams, D. C.; Wilson, M. G.; Albert, J.; Chen, E.; Dubois-Felsmann, G. P.; Dvoretskii, A.; Erwin, R. J.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Abe, T.; Blanc, F.; Bloom, P.; Chen, S.; Clark, P. J.; Ford, W. T.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Smith, J. G.; van Hoek, W. C.; Zhang, L.; Harton, J. L.; Hu, T.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Zhang, J.; Altenburg, D.; Brandt, T.; Brose, J.; Colberg, T.; Dickopp, M.; Dubitzky, R. S.; Hauke, A.; Lacker, H. M.; Maly, E.; Müller-Pfefferkorn, R.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Spaan, B.; Wilden, L.; Bernard, D.; Bonneaud, G. R.; Brochard, F.; Cohen-Tanugi, J.; Grenier, P.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Khan, A.; Lavin, D.; Muheim, F.; Playfer, S.; Swain, J. E.; Andreotti, M.; Azzolini, V.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Negrini, M.; Piemontese, L.; Sarti, A.; Treadwell, E.; Anulli, F.; Baldini-Ferroli, R.; Biasini, M.; Calcaterra, A.; de Sangro, R.; Falciai, D.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Pioppi, M.; Zallo, A.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Bailey, S.; Morii, M.; Won, E.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Eschrich, I.; Gaillard, J. R.; Morton, G. W.; Nash, J. A.; Sanders, P.; Taylor, G. P.; Grenier, G. J.; Lee, S.-J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Yi, J.; Davier, M.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Petersen, T. C.; Plaszczynski, S.; Schune, M. H.; Tantot, L.; Wormser, G.; Brigljević, V.; Cheng, C. H.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bevan, A. J.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Kay, M.; Parry, R. J.; Payne, D. J.; Sloane, R. J.; Touramanis, C.; Back, J. J.; Harrison, P. F.; Shorthouse, H. W.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flack, R. L.; Flaecher, H. U.; George, S.; Green, M. G.; Kurup, A.; Marker, C. E.; McMahon, T. R.; Ricciardi, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Brown, D.; Davis, C. L.; Allison, J.; Barlow, N. R.; Barlow, R. J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Lafferty, G. D.; Lyon, A. J.; Weatherall, J. H.; Williams, J. C.; Farbin, A.; Jawahery, A.; Kovalskyi, D.; Lae, C. K.; Lillard, V.; Roberts, D. A.; Blaylock, G.; Dallapiccola, C.; Flood, K. T.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Moore, T. B.; Saremi, S.; Staengle, H.; Willocq, S.; Cowan, R.; Sciolla, G.; Taylor, F.; Yamamoto, R. K.; Mangeol, D. J.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Cote-Ahern, D.; Taras, P.; Nicholson, H.; Cartaro, C.; Cavallo, N.; de Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Losecco, J. M.; Gabriel, T. A.; Brau, B.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Pulliam, T.; Wong, Q. K.; Brau, J.; Frey, R.; Potter, C. T.; Sinev, N. B.; Strom, D.; Torrence, E.; Colecchia, F.; Dorigo, A.; Galeazzi, F.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Tiozzo, G.; Voci, C.; Benayoun, M.; Briand, H.; Chauveau, J.; David, P.; de La Vaissière, Ch.; del Buono, L.; Hamon, O.; John, M. J.; Leruste, Ph.; Ocariz, J.; Pivk, M.; Roos, L.; Stark, J.; T'jampens, S.; Therin, G.; Manfredi, P. F.; Re, V.; Behera, P. K.; Gladney, L.; Guo, Q. H.; Panetta, J.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bucci, F.; Calderini, G.; Carpinelli, M.; del Gamba, V.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Martinez-Vidal, F.; Morganti, M.; Neri, N.; Paoloni, E.; Rama, M.; Rizzo, G.; Sandrelli, F.; Walsh, J.; Haire, M.; Judd, D.; Paick, K.; Wagoner, D. E.; Danielson, N.; Elmer, P.; Lu, C.; Miftakov, V.; Olsen, J.; Smith, A. J.; Tanaka, H. A.; Varnes, E. W.; Bellini, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Mazzoni, M. A.; Morganti, S.; Pierini, M.; Piredda, G.; Safai Tehrani, F.; Voena, C.; Christ, S.; Wagner, G.; Waldi, R.; Adye, T.; de Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Xella, S. M.; Aleksan, R.; Emery, S.; Gaidot, A.; Ganzhur, S. F.; Giraud, P.-F.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Schott, G.; Vasseur, G.; Yeche, Ch.; Zito, M.; Purohit, M. V.; Weidemann, A. W.; Yumiceva, F. X.; Aston, D.; Bartelt, J.; Bartoldus, R.; Berger, N.; Boyarski, A. M.; Buchmueller, O. L.; Convery, M. R.; Coupal, D. P.; Dong, D.; Dorfan, J.; Dujmic, D.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Grauges-Pous, E.; Hadig, T.; Halyo, V.; Hryn'ova, T.; Innes, W. R.; Jessop, C. P.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Langenegger, U.; Leith, D. W.; Libby, J.; Luitz, S.; Luth, V.; Lynch, H. L.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Simi, G.; Snyder, A.; Soha, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Va'Vra, J.; Wagner, S. R.; Weaver, M.; Weinstein, A. J.; Wisniewski, W. J.; Wright, D. H.; Young, C. C.; Burchat, P. R.; Edwards, A. J.; Meyer, T. I.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Saeed, M. A.; Saleem, M.; Wappler, F. R.; Bugg, W.; Krishnamurthy, M.; Spanier, S. M.; Eckmann, R.; Kim, H.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Borean, C.; Bosisio, L.; della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Vitale, L.; Vuagnin, G.; Panvini, R. S.; Banerjee, Sw.; Brown, C. M.; Fortin, D.; Jackson, P. D.; Kowalewski, R.; Roney, J. M.; Band, H. R.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; di Lodovico, F.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Prepost, R.; Sekula, S. J.; von Wimmersperg-Toeller, J. H.; Wu, J.; Wu, S. L.; Yu, Z.; Neal, H.

    2004-02-01

    A narrow state, which we label DsJ(2458)+, with a mass 2458.0±1.0 (stat)±1.0 (syst) MeV/c2, is observed in the inclusive D+sπ0γ mass distribution in 91 fb-1 of e+e- annihilation data recorded by the BABAR detector at the SLAC PEP-II asymmetric-energy e+e- storage ring. The observed width is consistent with the experimental resolution. The data favor decay through D*s(2112)+π0 rather than through D*sJ(2317)+γ. An analysis of D+sπ0 data accounting for the influence of the DsJ(2458)+ produces a D*sJ(2317)+ mass of 2317.3±0.4 (stat)±0.8 (syst) MeV/c2.

  16. Phenomenology of the SU(3)_c⊗ SU(3)_L⊗ U(1)_X model with right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Gutiérrez, D. A.; Ponce, W. A.; Sánchez, L. A.

    2006-05-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3)_c⊗ SU(3)_L⊗ U(1)_X with right-handed neutrinos is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produces a quark mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions for achieving a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model.

  17. Phenomenology of the SU(3)c⊗SU(3)L⊗U(1)X model with exotic charged leptons

    NASA Astrophysics Data System (ADS)

    Salazar, Juan C.; Ponce, William A.; Gutiérrez, Diego A.

    2007-04-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3)c⊗SU(3)L⊗U(1)X with exotic charged leptons, is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produce quark and charged lepton mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions to achieve a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model.

  18. Antimatter: What is and where did it go?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roodman, Aaron

    2008-10-28

    In this public lecture we will explore the mystery of antimatter: Where did it go? Why is the universe made up of only matter, with no observable antimatter? And why does the universe have any matter left in it anyway? The SLAC 'B'-Factory was built to answer these questions. Over the last decade, almost a billion 'B'-mesons were created and studied at the B-Factory to search for subtle differences between matter and antimatter, differences that lie at the heart of the antimatter mystery. We will explain the matter-antimatter discoveries made at the B-Factory, and their connection to this year's Nobelmore » prize in physics. It does not matter if you have no prior knowledge of Antimatter; just bring your curiosity.« less

  19. Hadronic charmless B decays at the SLD

    NASA Astrophysics Data System (ADS)

    Reinertsen, Per Lasse

    Rare decays of beauty particles were studied in several two-body exclusive hadronic charmless modes using the 19.4 pb -1 Z-pole data collected with the SLD detector at SLAC from 1993 to 1998. These decays are mediated by both tree level b-->u and one-loop penguin b-->s,d transitions. Upper limits for the branching ratios are set for the investigated modes Bs, B0-->P+P- , B+-->VP+ and Bs, B0-->VV , where the pseudoscalar particle P+ is either p+ or K+ and the vector particle V is either r0,K*0 or f . Using an event selection algorithm consisting of a set of hard cuts combined with a set of discriminator functions, the efficiencies range between 24%, and 37% with near zero background.

  20. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    DOE PAGES

    Fletcher, L. B.; Zastrau, U.; Galtier, E.; ...

    2016-08-15

    Here, we present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen andmore » focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].« less

  1. Anion channels: master switches of stress responses.

    PubMed

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Measurement of the branching fraction of Gamma(4S) --> B0B0.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges-Pous, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Kelly, M P; Cuhadar-Donszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bondioli, M; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Zhang, J; Chen, A; Eckhart, E A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Spaan, B; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Nogowski, R; Otto, S; Petzold, A; Schott, G; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Marks, J; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Pierini, M; Plaszczynski, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Touramanis, C; Cormack, C M; Di Lodovico, F; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Simi, G; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Christ, S; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Graziani, G; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Mohapatra, A K; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Soha, A; Stelzer, J; Strube, J; Su, D; Sullivan, M K; Thompson, J; Va'vra, J; Wagner, S R; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Ricca, G Della; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Jackson, P D; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2005-07-22

    We report the first measurement of the branching fraction f(00) for Gamma(4S) --> B(0)B(0). The data sample consists of 81.7 fb(-1) collected at the Gamma(4S) resonance with the BABAR detector at the SLAC PEP-II asymmetric-energy e(+)e(-) storage ring. Using partial reconstruction of the decay B(0) --> D(*+) l(-)nu(l) in which only the charged lepton and the soft pion from the decay D(*+) --> D(0)pi(+) are reconstructed, we obtain f(00) = 0.487 +/- 0.010(stat) +/- 0.008(syst). Our result does not depend on the branching fractions of B(0) --> D(*+)l(-)nu(l) and D(*+) --> D(0)pi(+) decays, on the ratio of the charged and neutral B meson lifetimes, nor on the assumption of isospin symmetry.

  3. Simulation of PEP-II Accelerator Backgrounds Using TURTLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, R.J.; Fieguth, T.; /SLAC

    2006-02-15

    We present studies of accelerator-induced backgrounds in the BaBar detector at the SLAC B-Factory, carried out using LPTURTLE, a modified version of the DECAY TURTLE simulation package. Lost-particle backgrounds in PEP-II are dominated by a combination of beam-gas bremstrahlung, beam-gas Coulomb scattering, radiative-Bhabha events and beam-beam blow-up. The radiation damage and detector occupancy caused by the associated electromagnetic shower debris can limit the usable luminosity. In order to understand and mitigate such backgrounds, we have performed a full program of beam-gas and luminosity-background simulations, that include the effects of the detector solenoidal field, detailed modeling of limiting apertures in bothmore » collider rings, and optimization of the betatron collimation scheme in the presence of large transverse tails.« less

  4. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, L. B., E-mail: lbfletch@slac.stanford.edu; Galtier, E.; Gamboa, E. J.

    2016-11-15

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focusedmore » on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].« less

  5. The DIRC front-end electronics chain for BaBar

    NASA Astrophysics Data System (ADS)

    Bailly, P.; Chauveau, J.; Del Buono, L.; Genat, J. F.; Lebbolo, H.; Roos, L.; Zhang, B.; Beigbeder, C.; Bernier, R.; Breton, D.; Caceres, T.; Chase, R.; Ducorps, A.; Hrisoho, A.; Imbert, P.; Sen, S.; Tocut, V.; Truong, K.; Wormser, G.; Zomer, F.; Bonneaud, G.; Dohou, F.; Gastaldi, F.; Matricon, P.; Renard, C.; Thiebaux, C.; Vasileiadis, G.; Verderi, M.; Oxoby, G.; Va'Vra, J.; Warner, D.; Wilson, R. J.

    1999-08-01

    The detector of Internally Reflected Cherenkov light (DIRC) of the BaBar detector (SLAC Stanford, USA) measures better than 1 ns the arrival time of Cherenkov photoelectrons, detected in a 11 000 phototubes array and their amplitude spectra. It mainly comprises of 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom Analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom Digital TDC chips for timing measurements with 500 ps binning and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected from up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test of the pre-production chips have been performed as well as system tests.

  6. Observation of the baryonic B decay B{sup 0}{yields}{Lambda}{sub c}{sup +}{Lambda}K{sup -}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    2011-10-01

    We report the observation of the baryonic B decay B{sup 0}{yields}{Lambda}{sub c}{sup +}{Lambda}K{sup -} with a significance larger than 7 standard deviations based on 471x10{sup 6} BB pairs collected with the BABAR detector at the PEP-II storage ring at SLAC. We measure the branching fraction for the decay B{sup 0}{yields}{Lambda}{sub c}{sup +}{Lambda}K{sup -} to be (3.8{+-}0.8{sub stat}{+-}0.2{sub sys}{+-}1.0{sub {Lambda}}{sub c}{sup +})x10{sup -5}. The uncertainties are statistical, systematic, and due to the uncertainty in the {Lambda}{sub c}{sup +} branching fraction. We find that the {Lambda}{sub c}{sup +}K{sup -} invariant-mass distribution shows an enhancement above 3.5 GeV/c{sup 2}.

  7. The EGS5 Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba

    2005-12-20

    In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users ofmore » EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4

  8. Investigation of ion beam space charge compensation with a 4-grid analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, C., E-mail: c.ullmann@gsi.de; Adonin, A.; Berezov, R.

    2016-02-15

    Experiments to investigate the space charge compensation of pulsed high-current heavy ion beams are performed at the GSI ion source text benches with a 4-grid analyzer provided by CEA/Saclay. The technical design of the 4-grid analyzer is revised to verify its functionality for measurements at pulsed high-current heavy ion beams. The experimental investigation of space charge compensation processes is needed to increase the performance and quality of current and future accelerator facilities. Measurements are performed directly downstream a triode extraction system mounted to a multi-cusp ion source at a high-current test bench as well as downstream the post-acceleration system ofmore » the high-current test injector (HOSTI) with ion energies up to 120 keV/u for helium and argon. At HOSTI, a cold or hot reflex discharge ion source is used to change the conditions for the measurements. The measurements were performed with helium, argon, and xenon and are presented. Results from measurements with single aperture extraction systems are shown.« less

  9. The Nucifer Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cucoanes, A.S., E-mail: cucoanes@subatech.in2p3.fr

    In nuclear reactors, a large number of antineutrinos are generated in the decay chains of the fission products; thus a survey of the antineutrino flux could provide valuable information related to the uranium and plutonium content of the core. This application generated interest by the IAEA in using antineutrino detectors as a potential safeguard tool. Here we present the Nucifer experiment, developed in France, by CEA and CNRS/IN2P3. The design of this new antineutrino detector has focused on safety, size reduction, reliability and high detection efficiency with a good background rejection. The Nucifer detector is currently taking data at themore » OSIRIS research reactor, inside CEA-Saclay. Presently, the ongoing analyses are considering the main sources of background for the antineutrino detection; the first antineutrino result is expected in 2013. A possible contribution to the understanding of the so called “reactor antineutrino anomaly” is also discussed. Finally, we present a brief description of the proposed experiments at very short baselines (VSBL) from reactors in France.« less

  10. Seminar on "MAGNETISM"

    NASA Astrophysics Data System (ADS)

    Lander, Gerard H.

    1998-12-01

    During the course of this seminar we had 4 presentations by people who had participated in the earlier poster session. The speakers and titles were: (1) U. Gasser (PSI, Switzerland): "Dimer splitting in RxY1-xNi2B2C". High resolution inelastic work done on polycrystalline samples at the IRIS spectrometer at ISIS and determining the exchange interactions in these superconducting materials. (2) B. Roessli (PSI, Switzerland): "Enhancement of magnetic fluctuations in UPd2Al3 below Tc". High resolution work done on single crystals at the cold source IN14 triple axis spectrometer at the ILL and also involving polarisation analysis. (3) P. Wisniewski (Wroclaw, Poland): "Magnetic structures in U3X4-type uranium pnictides - neutron diffraction studies". Elastic scattering experiments done at Saclay on single crystals with both polarised and unpolarised neutrons. (4) A. Schneidewind (TU Dresden): "Investigation of magnetic structures of NdCu2 by synchrotron x-ray scattering". Work done at the ID20 diffractometer at the ESRF and involving resonant and non-resonant scattering, as well as polarisation analysis…

  11. Effects of radiation on lithium aluminate samples properties

    NASA Astrophysics Data System (ADS)

    Botter, F.; Lefevre, F.; Rasneur, B.; Trotabas, M.; Roth, E.

    1986-11-01

    The irradiation behaviour of lithium aluminate, a candidate material for a fusion reactor blanket, has been investigated. About 130 samples of 7.5% 6Li content γ-LiAlO 2 have been loaded in a 6 level device, and were irradiated for 25.7 FPD in the core of the Osiris reactor at Saclay at the end of 1984, within an experiment named ALICE 1. The properties of several textural groups have been examined before and after irradiation and the correlation of the results observed as a function of the irradiation conditions is given. No significant variation of the properties, as a whole, was shown at 400°C under fluences of 4.7 × 10 20 n cm -2 fast neutrons ( > 1 MeV) and 1.48 × 10 20 n cm -2 thermal neutrons. At 600°C, under the highest flux, weight losses less than 1%, and decreases of 2 to 8% of the sound velocity were measured. Generally, neither swelling nor breakage, except those due to combined mechanical and thermal shocks, were observed.

  12. A Micromegas-based telescope for muon tomography: The WatTo experiment

    NASA Astrophysics Data System (ADS)

    Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.; Winkler, M.

    2016-10-01

    This paper reports about the first Micromegas-based telescope built for applications in muon tomography. The telescope consists of four, 50×50 cm2 resistive multiplexed Micromegas with a 2D layout and a self-triggering electronics based on the Dream chip. Thanks to the multiplexing, the four detectors were readout with a single Front-End Unit. The high voltages were provided by a dedicated card using low consumption CAEN miniaturized modules. A nano-PC (Hummingboard) ensured the HV control and monitoring coupled with a temperature feedback as well as the data acquisition and storage. The overall consumption of the instrument yielded 30 W only, i.e. the equivalent of a standard bulb. The telescope was operated outside during 3.5 months to image the water tower of the CEA-Saclay research center, including a 1.5-month campaign with solar panels. The development of autonomous, low consumption muon telescopes with unprecedented accuracy opens new applications in imaging as well as in the field of muon metrology.

  13. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source.

    PubMed

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  14. Numerical and Experimental Thermal Responses of Single-cell and Differential Calorimeters: from Out-of-Pile Calibration to Irradiation Campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, J.; Reynard-Carette, C.; Carette, M.

    2015-07-01

    The nuclear radiation energy deposition rate (usually expressed in W.g{sup -1}) is a key parameter for the thermal design of experiments, on materials and nuclear fuel, carried out in experimental channels of irradiation reactors such as the French OSIRIS reactor in Saclay or inside the Polish MARIA reactor. In particular the quantification of the nuclear heating allows to predicting the heat and thermal conditions induced in the irradiation devices or/and structural materials. Various sensors are used to quantify this parameter, in particular radiometric calorimeters also called in-pile calorimeters. Two main kinds of in-pile calorimeter exist with in particular specific designs:more » single-cell calorimeter and differential calorimeter. The present work focuses on these two calorimeter kinds from their out-of-pile calibration step (transient and steady experiments respectively) to comparison between numerical and experimental results obtained from two irradiation campaigns (MARIA reactor and OSIRIS reactor respectively). The main aim of this paper is to propose a steady numerical approach to estimate the single-cell calorimeter response under irradiation conditions. (authors)« less

  15. Measurement of branching fractions and charge asymmetries in B+/--->rho+/-pi0 and B+/--->rho0pi+/- decays, and search for B0-->rho0pi0.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Teodorescu, L; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Layter, J; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Erwin, R J; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Tanaka, H A; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Cristinziani, M; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Grauges-Pous, E; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-07-30

    We present measurements of branching fractions and charge asymmetries in B-meson decays to rho(+)pi(0), rho(0)pi(+), and rho(0)pi(0). The data sample comprises 89x10(6) Upsilon(4S)-->BBmacr; decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We find the charge-averaged branching fractions B(B+-->rho(+)pi(0))=[10.9+/-1.9(stat)+/-1.9(syst)]x10(-6) and B(B+-->rho(0)pi(+))=(9.5+/-1.1+/-0.9)x10(-6), and we set a 90% confidence-level upper limit B(B0-->rho(0)pi(0))<2.9x10(-6). We measure the charge asymmetries ACP(pi(0))(rho(+))=0.24+/-0.16+/-0.06 and ACP(pi(+))(rho(0))=-0.19+/-0.11+/-0.02.

  16. Parallel computation of transverse wakes in linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Xiaowei; Ko, Kwok

    1996-11-01

    SLAC has proposed the detuned structure (DS) as one possible design to control the emittance growth of long bunch trains due to transverse wakefields in the Next Linear Collider (NLC). The DS consists of 206 cells with tapering from cell to cell of the order of few microns to provide Gaussian detuning of the dipole modes. The decoherence of these modes leads to two orders of magnitude reduction in wakefield experienced by the trailing bunch. To model such a large heterogeneous structure realistically is impractical with finite-difference codes using structured grids. The authors have calculated the wakefield in the DSmore » on a parallel computer with a finite-element code using an unstructured grid. The parallel implementation issues are presented along with simulation results that include contributions from higher dipole bands and wall dissipation.« less

  17. Note: Simulation and test of a strip source electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Munawar, E-mail: muniqbal.chep@pu.edu.pk; Institute of High Energy Physics, Chinese Acedemy of Sciences, Beijing 100049; Islam, G. U.

    We present simulation and test of an indirectly heated strip source electron beam gun assembly using Stanford Linear Accelerator Center (SLAC) electron beam trajectory program. The beam is now sharply focused with 3.04 mm diameter in the post anode region at 15.9 mm. The measured emission current and emission density were 1.12 A and 1.15 A/cm{sup 2}, respectively, that corresponds to power density of 11.5 kW/cm{sup 2}, at 10 kV acceleration potential. The simulated results were compared with then and now experiments and found in agreement. The gun is without any biasing, electrostatic and magnetic fields; hence simple and inexpensive.more » Moreover, it is now more powerful and is useful for accelerators technology due to high emission and low emittance parameters.« less

  18. Positron production by x rays emitted by betatron motion in a plasma wiggler.

    PubMed

    Johnson, D K; Auerbach, D; Blumenfeld, I; Barnes, C D; Clayton, C E; Decker, F J; Deng, S; Emma, P; Hogan, M J; Huang, C; Ischebeck, R; Iverson, R; Joshi, C; Katsouleas, T C; Kirby, N; Krejcik, P; Lu, W; Marsh, K A; Mori, W B; Muggli, P; O'Connell, C L; Oz, E; Siemann, R H; Walz, D; Zhou, M

    2006-10-27

    Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad collide with a 1.7 mm thick tungsten target to produce electron-positron pairs. The positron spectra are found to be strongly influenced by the plasma density and length as well as the electron bunch length. By characterizing the beam propagation in the ion column these influences are quantified and result in excellent agreement between the measured and calculated positron spectra.

  19. Performance simulation of BaBar DIRC bar boxes in TORCH

    NASA Astrophysics Data System (ADS)

    Föhl, K.; Brook, N.; Castillo García, L.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; Ros García, A.; van Dijk, M.

    2017-12-01

    TORCH is a large-area precision time-of-flight detector based on the DIRC principle. The DIRC bar boxes of the BaBar experiment at SLAC could possibly be reused to form a part of the TORCH detector time-of-flight wall area, proposed to provide positive particle identification of low momentum kaons in the LHCb experiment at CERN. For a potential integration of BaBar bar boxes into TORCH, new imaging readout optics are required. From the several designs of readout optics that have been considered, two are used in this paper to study the effect of BaBar bar optical imperfections on the detector reconstruction performance. The kaon-pion separation powers obtained from analysing simulated photon hit patterns show the performance reduction for a BaBar bar of non-square geometry compared to a perfectly rectangular cross section.

  20. Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure

    DOE PAGES

    Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...

    2016-01-20

    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less

  1. Search for the decay D0→γγ and measurement of the branching fraction for D0→π0π0

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Morris, J. P.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Buenger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2012-05-01

    We search for the rare decay of the D0 meson to two photons, D0→γγ, and present a measurement of the branching fraction for a D0 meson decaying to two neutral pions, B(D0→π0π0). The data sample analyzed corresponds to an integrated luminosity of 470.5fb-1 collected by the BABAR detector at the PEP-II asymmetric-energy e+e- collider at SLAC. We place an upper limit on the branching fraction, B(D0→γγ)<2.2×10-6, at 90% confidence level. This limit improves on the existing limit by an order of magnitude. We also find B(D0→π0π0)=(8.4±0.1±0.4±0.3)×10-4.

  2. Electromagnetic Modeling of Human Body Using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada

    Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.

  3. Upgrading the Digital Electronics of the PEP-II Bunch Current Monitors at the Stanford Linear Accelerator Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Josh; /SLAC

    2006-08-28

    The testing of the upgrade prototype for the bunch current monitors (BCMs) in the PEP-II storage rings at the Stanford Linear Accelerator Center (SLAC) is the topic of this paper. Bunch current monitors are used to measure the charge in the electron/positron bunches traveling in particle storage rings. The BCMs in the PEP-II storage rings need to be upgraded because components of the current system have failed and are known to be failure prone with age, and several of the integrated chips are no longer produced making repairs difficult if not impossible. The main upgrade is replacing twelve old (1995)more » field programmable gate arrays (FPGAs) with a single Virtex II FPGA. The prototype was tested using computer synthesis tools, a commercial signal generator, and a fast pulse generator.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, T. J.; Weisend, II, J. G.

    The TESLA collaboration developed a unique variant of SRF cryomodule designs, the chief feature being use of the large, low pressure helium vapor return pipe as the structural support backbone of the cryomodule. Additional innovative features include all cryogenic piping within the cryomodule (no parallel external cryogenic transfer line), long strings of RF cavities within a single cryomodule, and cryomodules connected in series. Several projects, including FLASH and XFEL at DESY, LCLS-II at SLAC, and the ILC technical design have adopted this general design concept. Advantages include saving space by eliminating the external transfer line, relatively tight packing of RFmore » cavities along the beamline due to fewer warm-cold transitions, and potentially lower costs. However, a primary disadvantage is the relative lack of independence for warm-up, replacement, and cool-down of individual cryomodules.« less

  5. Second user workshop on high-power lasers at the Linac Coherent Light Source

    DOE PAGES

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore » experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less

  6. Fabrication and radio frequency test of large-area MgB 2 films on niobium substrates

    DOE PAGES

    Ni, Zhimao; Guo, Xin; Welander, Paul B.; ...

    2017-01-19

    Magnesium diboride (MgB 2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB 2 films on metal substrates is needed. Here, in this work, high quality MgB 2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩmore » at 4 K and 11.4 GHz. Finally, the fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB 2 films are presented.« less

  7. A small Unix-based data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engberg, D.; Glanzman, T.

    1994-02-01

    The proposed SLAC B Factory detector plans to use Unix-based machines for all aspects of computing, including real-time data acquisition and experimental control. A R and D program has been established to investigate the use of Unix in the various aspects of experimental computation. Earlier R and D work investigated the basic real-time aspects of the IBM RS/6000 workstation running AIX, which claims to be a real-time operating system. The next step in this R and D is the construction of a prototype data acquisition system which attempts to exercise many of the features needed in the final on-line systemmore » in a realistic situation. For this project, the authors have combined efforts with a team studying the use of novel cell designs and gas mixtures in a new prototype drift chamber.« less

  8. Correlation analysis on real-time tab-delimited network monitoring data

    DOE PAGES

    Pan, Aditya; Majumdar, Jahin; Bansal, Abhay; ...

    2016-01-01

    End-End performance monitoring in the Internet, also called PingER is a part of SLAC National Accelerator Laboratory’s research project. It was created to answer the growing need to monitor network both to analyze current performance and to designate resources to optimize execution between research centers, and the universities and institutes co-operating on present and future operations. The monitoring support reflects the broad geographical area of the collaborations and requires a comprehensive number of research and financial channels. The data architecture retrieval and methodology of the interpretation have emerged over numerous years. Analyzing this data is the main challenge due tomore » its high volume. Finally, by using correlation analysis, we can make crucial conclusions about how the network data affects the performance of the hosts and how it depends from countries to countries.« less

  9. Fabrication and radio frequency test of large-area MgB 2 films on niobium substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Zhimao; Guo, Xin; Welander, Paul B.

    Magnesium diboride (MgB 2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB 2 films on metal substrates is needed. Here, in this work, high quality MgB 2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩmore » at 4 K and 11.4 GHz. Finally, the fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB 2 films are presented.« less

  10. Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma

    DOE PAGES

    Adli, Erik; Lindstrom, C. A.; Allen, J.; ...

    2016-10-12

    Here, we report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. Themore » attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam–plasma interactions in general and plasma wakefield accelerator technology in particular.« less

  11. State of the art in electromagnetic modeling for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, Arno; Kabel, Andreas; Lee, Lie-Quan

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefieldmore » damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.« less

  12. The DIRC front-end electronics chain for BaBar

    NASA Astrophysics Data System (ADS)

    Bailly, P.; Beigbeder, C.; Bernier, R.; Breton, D.; Bonneaud, G.; Caceres, T.; Chase, R.; Chauveau, J.; Del Buono, L.; Dohou, F.; Ducorps, A.; Gastaldi, F.; Genat, J. F.; Hrisoho, A.; Imbert, P.; Lebbolo, H.; Matricon, P.; Oxoby, G.; Renard, C.; Roos, L.; Sen, S.; Thiebaux, C.; Truong, K.; Tocut, V.; Vasileiadis, G.; Va'Vra, J.; Verderi, M.; Warner, D.; Wilson, R. J.; Wormser, G.; Zhang, B.; Zomer, F.

    2000-12-01

    Recent results from the Front-End electronics of the Detector of Internally Reflected Cerenkov light (DIRC) for the BaBar experiment at SLAC (Stanford, USA) are presented. It measures to better than 1 ns the arrival time of Cerenkov photoelectrons detected in a 11000 phototubes array and their amplitude spectra. It mainly comprises 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom digital time to digital chips (TDC) for timing measurements with 500 ps binning and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected front up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test results of the pre-production chips are presented, as well as system tests.

  13. Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adli, Erik; Lindstrom, C. A.; Allen, J.

    Here, we report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. Themore » attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam–plasma interactions in general and plasma wakefield accelerator technology in particular.« less

  14. Photo nuclear energy loss term for muon-nucleus interactions based on xi scaling model of QCD

    NASA Technical Reports Server (NTRS)

    Roychoudhury, R.

    1985-01-01

    Extensive air showers (EMC) experiments discovered a significant deviation of the ratio of structure functions of iron and deuteron from unity. It was established that the quark parton distribution in nuclei are different from the corresponding distribution in the nucleus. It was examined whether these results have an effect on the calculation of photo nucleus energy loss term for muon-nucleus nuclear interaction. Though the EMC and SLAC data were restricted to rather large q sq region it is expected that the derivation would persist even in the low q sq domain. For the ratio of iron and deuteron structure function a rather naive least square fit of the form R(x) = a + bx was taken and it is assumed that the formula is valid for the whole q sq region the absence of any knowledge of R(x) for small q sq.

  15. Comparison of a new calculation of energy-energy correlations with {ital e}{sup +}{ital e}{sup {minus}}{r_arrow} hadrons data at the {ital Z}{sup 0} resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, K.; Abt, I.; Ahn, C.J.

    1995-10-01

    We have compared a new QCD calculation by Clay and Ellis of energy-energy correlations (EEC`s) and their asymmetry (AEEC`s) in {ital e}{sup +}{ital e}{sup {minus}} annihilation into hadrons with data collected by the SLD experiment at SLAC. From fits of the new calculation, complete at {ital O}({alpha}{sub {ital s}}{sup 2}), we obtained {alpha}{sub {ital s}}({ital M}{sub {ital Z}}{sup 2})=0.1184{plus_minus}0.0031(expt){plus_minus}0.0129(theory) (EEC) and {alpha}{sub {ital s}}({ital M}{sub {ital Z}}{sup 2})=0.1120{plus_minus}0.0034(expt){plus_minus}0.0036(theory) (AEEC). The EEC result is significantly lower than that obtained from comparable fits using the {ital O}({alpha}{sub {ital s}}{sup 2}) calculation of Kunszt and Nason.

  16. Novel Micromegas trackers

    NASA Astrophysics Data System (ADS)

    Sabatie, Franck

    2017-09-01

    The latest development in Micromegas trackers includes the Micromegas Vertex Tracker (MVT) soon to be installed in Jefferson Lab Hall B, in the CLAS12 central tracking system. The MVT is composed of 6 cylindrical layers and 6 flat disks of resistive bulk Micromegas detectors. They have been designed to withstand the high particle flux environment and the high magnetic field using a low material budget of less than 0.5% of a radiation length per detector. The MVT is read out using front-end electronics based on the ``Dream'' Asic developed at CEA Saclay/Irfu. The low material budget requirements and very stringent space restrictions of the central tracking system surrounded by a 5T solenoid prevent the use of on-detector frontend electronics. The ability of the Dream chip to work with high-capacitance detectors allows deploying the electronics some 2 m away using flat micro-coaxial cables. After a short introduction to Micromegas detectors and the state-of-the-art achievements in this technology, I will focus on the CLAS12 MVT detector system, from the fabrication techniques to the readout electronics. Possible future developments will briefly be presented as well.

  17. Physics Program at The RIBF with MINOS

    NASA Astrophysics Data System (ADS)

    Obertelli, Alexandre; Doornenbal, Pieter; Corsi, Anna; Kondo, Yosuke; Kubota, Yuki; Lee, Jenny; Nakamura, Takashi; Orr, Nigel; Sakurai, Hiroyoshi; Sasano, Masaki; Uesaka, Tomohiro

    MINOS is a new device composed of a thick hydrogen target and a vertex tracker [1]. It has been primarily conceived for the spectroscopy of rare isotopes produced at fragmentation facilities such as the RIKEN Radioactive Isotope Beam Facility. In the near future, MINOS in association with other detectors and spectrometers should contribute to exciting physics programs at the RIBF focusing on nuclei produced by hydrogen-induced secondary knockout reactions. The full detector and its electronics have been finalized at CEA Saclay and validated in Japan at the end of 2013. Among foreseen experiments, a scientific program named SEASTAR dedicated to the study of shell evolution and measurement of new 2+ state energies in medium-mass unstable nuclei has been initiated at the RIBF. SEASTAR aims at exploiting the unique opportunities offered by the RIBF and the association of the high-efficiency DALI2 gamma array [2] and MINOS. The first campaign was held in May 2014. In this communication, a brief presentation of the MINOS detection system is presented as well as the intended physics program at the RIBF. A report on the first SEASTAR campaign foreseen this spring is given.

  18. High intensity proton injector for facility of antiproton and ion research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezov, R., E-mail: r.berezov@gsi.de; Brodhage, R.; Fils, J.

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBTmore » is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.« less

  19. The reliability of photoneutron cross sections for 90,91,92,94Zr

    NASA Astrophysics Data System (ADS)

    Varlamov, V. V.; Davydov, A. I.; Ishkhanov, B. S.; Orlin, V. N.

    2018-05-01

    Data on partial photoneutron reaction cross sections (γ,1n) and (γ,2n) for 90,91,92,94Zr obtained at Livermore (USA) and for 90Zr obtained at Saclay (France) were analyzed. Experimental data were obtained using quasimonoenergetic photon beams from the annihilation in flight of relativistic positrons. The method of photoneutron multiplicity sorting based on the neutron energy measuring was used to separate partial reactions. The research carried out is based on the objective of using the physical criteria of data reliability. The large systematic uncertainties were found in partial cross sections, since they do not satisfy those criteria. To obtain the reliable cross sections of the partial (γ,1n) and (γ,2n) and total (γ,1n) + (γ,2n) reactions on 90,91,92,94Zr and (γ,3n) reaction on 94Zr, the experimental-theoretical method was used. It is based on the experimental data for neutron yield cross section rather independent from the neutron multiplicity and theoretical equations of the combined photonucleon reaction model (CPNRM). Newly evaluated data are compared with experimental ones. The reasons of noticeable disagreements between those are discussed.

  20. Tests and foreseen developments of fibered-OSLD gamma heating measurements in low-power reactors

    NASA Astrophysics Data System (ADS)

    Gruel, A.; Guillou, M. Le; Blaise, P.; Destouches, C.; Magne, S.

    2018-01-01

    In this paper are presented test measurements of a fibered-OSLD system performed during a dedicated experimental phase in EOLE zero-power reactor. The measurement setup consists of an OSLD crystal connected onto the extremity of an optical fiber and a laser stimulation system, manufactured by the CEA/LIST in Saclay. The OSL sensor is remotely stimulated via an optical fiber using a diode-pumped solid-state laser. The OSL light is collected and guided back along the same fiber to a photomultiplier tube. Results obtained using this system are compared to usual gamma heating measurement protocol using OSLD pellets. The presence of induced radio-luminescence in the OSLD during the irradiation was also observed and could be used to monitor the gamma flux. The feasibility of remote measurements is achieved, whereas further developments could be conducted to improve this technique since the readout procedure still requires to withdraw the OSLD off the gamma flux (hence from the core) on account of the dose rate (around a few Gy.h-1), and the readout time remains quite long for on-line applications. Several improvements are foreseen, and will be tested in the forthcoming years.

  1. Lost in Fathoms

    NASA Astrophysics Data System (ADS)

    Tondeur, Anaïs; Chomaz, Jean-Marc

    2014-11-01

    In 2012, at the very point where two continents collided, the island of Nuuk disappeared without trace. At the same time, in Brisbane, the 34th International Geological Congress advanced a new era-the Anthropocene: an age where mankind has become a global telluric force. Was the disappearance of Nuuk island a one-off or a direct consequence of the emergence of the Anthropocene? This project was developed during a year of research as an artist-in-residence at LadHyX and has evolved from an expedition of the emergent part of the Mid-Atlantic ridge and the region of deep oceanic water dive. This talk will present Lost In fathoms a narratives composed of installations, drawings and photographs by the means of which we investigate the causes involved in the disappearance of Nuuk island. It challenges the perception of oceanic and geologic time scales and human's impact on the environment. This project is exhibited from October 16th to November 29th 2014, at GV Art Gallery in London, a contemporary art gallery devoted to art and science shows. Acknowledgment: GV Art Gallery London, Chaire DDX École Polytechnique, LaSIPS Université Paris-Saclay.

  2. Design, test, and calibration of an electrostatic beam position monitor

    NASA Astrophysics Data System (ADS)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  3. New Snapshots of Photosynthesis Captured by SLAC’s X-ray Laser

    ScienceCinema

    None

    2018-06-13

    The machinery responsible for photosynthesis – while commonplace and essential to life on Earth – is still not fully understood. One of its molecular mysteries involves how a protein complex, photosystem II, harvests energy from light and uses it to split water into hydrogen and oxygen. The process generates the oxygen in the air that we breathe. New X-ray methods at the Department of Energy’s SLAC National Accelerator Laboratory have captured the first detailed image of this protein complex at room temperature, which allows scientists to closely watch how water is split during photosynthesis at the temperature at which it occurs naturally. The research team took the images using the bright, fast pulses of light at SLAC’s X-ray free-electron laser – the Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility.

  4. Measurement of time-dependent CP asymmetries in B0-->D(*)+/-pi-/+ decays and constraints on sin(2beta+gamma).

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Teodorescu, L; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Layter, J; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Erwin, R J; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Biasini, M; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Pioppi, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gaillard, J R; Morton, G W; Nash, J A; Sanders, P; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Wong, Q K; Brau, J; Frey, R; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Tanaka, H A; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Tehrani, F Safai; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Grauges-Pous, E; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-06-25

    We present a measurement of CP-violating asymmetries in fully reconstructed B0-->D(*)+/-pi-/+ decays in approximately 88 x 10(6) upsilon(4S)-->BBmacr; decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. From a time-dependent maximum-likelihood fit we obtain the following for the CP-violating parameters: a=-0.022+/-0.038 (stat)+/-0.020 (syst), a*=-0.068+/-0.038 (stat)+/-0.020 (syst), c(lep)=+0.025+/-0.068 (stat)+/-0.033 (syst), and c*(lep)=+0.031+/-0.070 (stat)+/-0.033 (syst). Using other measurements and theoretical assumptions we interpret the results in terms of the angles of the Cabibbo-Kobayashi-Maskawa unitarity triangle, and find |sin((2beta+gamma)|>0.69 at 68% confidence level. We exclude the hypothesis of no CP violation [sin(2beta+gamma)=0] at 83% confidence level.

  5. Measurements of the mass and width of the eta(c) meson and of an eta(c)(2S) candidate.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kral, J F; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Barlow, N R; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Shen, B C; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Schwanke, U; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; Van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Tinslay, J; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Biasini, M; Calcaterra, A; De Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Pioppi, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gaillard, J R; Morton, G W; Nash, J A; Sanders, P; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Strother, P; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, R J; Forti, A C; Hart, P A; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Milek, M; Patel, P M; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Hast, C; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Wong, Q K; Brau, J; Frey, R; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Tanaka, H A; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Grauges-Pous, E; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Robertson, S H; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-04-09

    The mass m(eta(c)) and total width Gamma(eta(c))(tot) of the eta(c) meson have been measured in two-photon interactions at the SLAC e(+)e(-) asymmetric B Factory with the BABAR detector. With a sample of approximately 2500 reconstructed eta(c)-->K(0)(S)K+/-pi(-/+) decays in 88 fb(-1) of data, the results are m(eta(c))=2982.5+/-1.1(stat)+/-0.9(syst) MeV/c(2) and Gamma(eta(c))(tot)=34.3+/-2.3(stat)+/-0.9(syst) MeV/c(2). Using the same decay mode, a second resonance with 112+/-24 events is observed with a mass of 3630.8+/-3.4(stat)+/-1.0(syst) MeV/c(2) and width of 17.0+/-8.3(stat)+/-2.5(syst) MeV/c(2). This observation is consistent with expectations for the eta(c)(2S) state.

  6. Adaptive method for electron bunch profile prediction

    DOE PAGES

    Scheinker, Alexander; Gessner, Spencer

    2015-10-15

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. Thus, the simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrialmore » control system. Finally, the main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET.« less

  7. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE PAGES

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.; ...

    2016-12-01

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  8. A vertex detector for SLD

    NASA Astrophysics Data System (ADS)

    Damerell, C. J. S.; English, R. L.; Gillman, A. R.; Lintern, A. L.; Phillips, D.; Rong, G.; Sutton, C.; Wickens, F. J.; Agnew, G.; Clarke, P.; Hedges, S.; Watts, S. J.

    1989-03-01

    The SLAC Linear Collider is currently being commissioned. A second-generation detector for SLC, known as SLD, is now under construction. In the centre of this 4000 ton detector there will be a vertex detector (VXD) consisting of 4 barrels of 2-dimensional CCDs, approximately 250 CCDs in total. This detector will be used as a tracking microscope, able to pinpoint the outgoing tracks with a precision of about 5 μm, and thus to distinguish between particles produced at the primary vertex and those which result from the decay of heavy-flavour quarks (charm, bottom and possibly others) or from the decay of heavy leptons. This paper describes the present state of the VXD project, with particular emphasis on the signal processing procedures which will reduce the 60 million measurements of pixel contents for each event to a manageable level (some tens of kilobytes).

  9. Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-06-22

    The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test themore » digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.« less

  10. Covariance mapping of two-photon double core hole states in C 2 H 2 and C 2 H 6 produced by an x-ray free electron laser

    DOE PAGES

    Mucke, M; Zhaunerchyk, V; Frasinski, L J; ...

    2015-07-01

    Few-photon ionization and relaxation processes in acetylene (C 2H 2) and ethane (C 2H 6) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the samemore » FEL and at third generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods.« less

  11. Using Solid State Disk Array as a Cache for LHC ATLAS Data Analysis

    NASA Astrophysics Data System (ADS)

    Yang, W.; Hanushevsky, A. B.; Mount, R. P.; Atlas Collaboration

    2014-06-01

    User data analysis in high energy physics presents a challenge to spinning-disk based storage systems. The analysis is data intense, yet reads are small, sparse and cover a large volume of data files. It is also unpredictable due to users' response to storage performance. We describe here a system with an array of Solid State Disk as a non-conventional, standalone file level cache in front of the spinning disk storage to help improve the performance of LHC ATLAS user analysis at SLAC. The system uses several days of data access records to make caching decisions. It can also use information from other sources such as a work-flow management system. We evaluate the performance of the system both in terms of caching and its impact on user analysis jobs. The system currently uses Xrootd technology, but the technique can be applied to any storage system.

  12. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  13. Summary of the 2014 Beam-Halo Monitoring Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Alan

    2015-09-25

    Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurementsmore » with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.« less

  14. A precise measurement of the left-right cross section asymmetry in Z boson production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lath, A.

    1994-09-01

    The thesis presents a measurement of the left-right asymmetry, A{sub LR}, n the production cross section of Z Bosons produced by e{sup +}e{sup -} annihilations, using polarized electrons, at a center of mass energy of 91.26 Gev. The data presented was recorded by the SLD detector at the SLAC Linear Collider during the 1993 run. The mean luminosity-weighted polarization of the electron beam was {rho}{sup lum} = (63.0{+-}1.1)%. Using a sample of 49,392 Z events, we measure A{sub LR} to be 0.1626{+-}0.0071(stat){+-}0.0030(sys.), which determined the effective weak mixing angle to be sin{sup 2} {theta}{sub W}{sup eff} = 0.2292{+-}0.0009(stat.){+-}0.0004(sys.). This resultmore » differs from that expected by the Standard Model of Particles and Fields by 2.5 standard deviations.« less

  15. Observation of the decay B- → D(s)((*)+) K- ℓ- ν(ℓ).

    PubMed

    Sanchez, P del Amo; Lees, J P; Poireau, V; Prencipe, E; Tisserand, V; Garra Tico, J; Grauges, E; Martinelli, M; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Battaglia, M; Brown, D N; Hooberman, B; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Tanabe, T; Hawkes, C M; Watson, A T; Koch, H; Schroeder, T; Asgeirsson, D J; Hearty, C; Mattison, T S; McKenna, J A; Khan, A; Randle-Conde, A; Blinov, V E; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Yushkov, A N; Bondioli, M; Curry, S; Kirkby, D; Lankford, A J; Mandelkern, M; Martin, E C; Stoker, D P; Atmacan, H; Gary, J W; Liu, F; Long, O; Vitug, G M; Campagnari, C; Hong, T M; Kovalskyi, D; Richman, J D; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Hitlin, D G; Ongmongkolkul, P; Porter, F C; Rakitin, A Y; Andreassen, R; Dubrovin, M S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Nagel, M; Nauenberg, U; Smith, J G; Wagner, S R; Ayad, R; Toki, W H; Jasper, H; Karbach, T M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Schubert, K R; Schwierz, R; Bernard, D; Verderi, M; Clark, P J; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Fioravanti, E; Franchini, P; Luppi, E; Munerato, M; Negrini, M; Petrella, A; Piemontese, L; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Nicolaci, M; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Guido, E; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Tosi, S; Bhuyan, B; Prasad, V; Lee, C L; Morii, M; Adametz, A; Marks, J; Schenk, S; Uwer, U; Bernlochner, F U; Ebert, M; Lacker, H M; Lueck, T; Volk, A; Dauncey, P D; Tibbetts, M; Behera, P K; Mallik, U; Chen, C; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Arnaud, N; Davier, M; Derkach, D; da Costa, J Firmino; Grosdidier, G; Le Diberder, F; Lutz, A M; Malaescu, B; Perez, A; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, L; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Chavez, C A; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Paramesvaran, S; Wren, A C; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Hafner, A; Alwyn, K E; Bailey, D; Barlow, R J; Jackson, G; Lafferty, G D; West, T J; Anderson, J; Cenci, R; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Salvati, E; Cowan, R; Dujmic, D; Fisher, P H; Sciolla, G; Zhao, M; Lindemann, D; Patel, P M; Robertson, S H; Schram, M; Biassoni, P; Lazzaro, A; Lombardo, V; Palombo, F; Stracka, S; Cremaldi, L; Godang, R; Kroeger, R; Sonnek, P; Summers, D J; Nguyen, X; Simard, M; Taras, P; De Nardo, G; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Wang, W F; Corwin, L A; Honscheid, K; Kass, R; Morris, J P; Rahimi, A M; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Feltresi, E; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Ben-Haim, E; Bonneaud, G R; Briand, H; Calderini, G; Chauveau, J; Hamon, O; Leruste, Ph; Marchiori, G; Ocariz, J; Prendki, J; Sitt, S; Biasini, M; Manoni, E; Rossi, A; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Casarosa, G; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Pegna, D Lopes; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Piredda, G; Renga, F; Hartmann, T; Leddig, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; de Monchenault, G Hamel; Vasseur, G; Yèche, Ch; Zito, M; Allen, M T; Aston, D; Bard, D J; Bartoldus, R; Benitez, J F; Cartaro, C; Convery, M R; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Sevilla, M Franco; Fulsom, B G; Gabareen, A M; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Santoro, V; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Sun, S; Suzuki, K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Young, C C; Ziegler, V; Chen, X R; Park, W; Purohit, M V; White, R M; Wilson, J R; Sekula, S J; Bellis, M; Burchat, P R; Edwards, A J; Miyashita, T S; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Guttman, N; Soffer, A; Lund, P; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Wray, B C; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Lanceri, L; Vitale, L; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Choi, H H F; Hamano, K; King, G J; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Latham, T E; Puccio, E M T; Band, H R; Dasu, S; Flood, K T; Pan, Y; Prepost, R; Vuosalo, C O; Wu, S L

    2011-07-22

    We report the observation of the decay B- → D(s)((*)+) K- ℓ- ν(ℓ) based on 342  fb(-1) of data collected at the Υ(4S) resonance with the BABAR detector at the PEP-II e+ e- storage rings at SLAC. A simultaneous fit to three D(s)(+) decay chains is performed to extract the signal yield from measurements of the squared missing mass in the B meson decay. We observe the decay B- → D(s)((*)+) K- ℓ- ν(ℓ) with a significance greater than 5 standard deviations (including systematic uncertainties) and measure its branching fraction to be B(B- → D(s)((*)+) K- ℓ- ν(ℓ)) = [6.13(-1.03)(+1.04)(stat)±0.43(syst)±0.51(B(D(s)))]×10(-4), where the last error reflects the limited knowledge of the D(s) branching fractions.

  16. rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi

    2017-11-01

    We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.

  17. New Snapshots of Photosynthesis Captured by SLAC’s X-ray Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-11-22

    The machinery responsible for photosynthesis – while commonplace and essential to life on Earth – is still not fully understood. One of its molecular mysteries involves how a protein complex, photosystem II, harvests energy from light and uses it to split water into hydrogen and oxygen. The process generates the oxygen in the air that we breathe. New X-ray methods at the Department of Energy’s SLAC National Accelerator Laboratory have captured the first detailed image of this protein complex at room temperature, which allows scientists to closely watch how water is split during photosynthesis at the temperature at which itmore » occurs naturally. The research team took the images using the bright, fast pulses of light at SLAC’s X-ray free-electron laser – the Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility.« less

  18. Operational Experience from LCLS-II Cryomodule Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Renzhuo; Hansen, Benjamin; White, Michael

    This paper describes the initial operational experience gained from testing Linac Coherent Light Source II (LCLS-II) cryomodules at Fermilab’s Cryomodule Test Facility (CMTF). Strategies for a controlled slow cooldown to 100 K and a fast cooldown past the niobium superconducting transition temperature of 9.2 K will be described. The test stand for the cryomodules at CMTF is sloped to match gradient in the LCLS-II tunnel at Stanford Linear Accelerator (SLAC) laboratory, which adds an additional challenge to stable liquid level control. Control valve regulation, Superconducting Radio-Frequency (SRF) power compensation, and other methods of stabilizing liquid level and pressure in themore » cryomodule 2.0 K SRF cavity circuit will be discussed. Several different pumping configurations using cold compressors and warm vacuum pumps have been used on the cryomodule 2.0 K return line and the associated results will be described.« less

  19. Compact Spreader Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placidi, M.; Jung, J. -Y.; Ratti, A.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibilitymore » when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.« less

  20. Bonner Prize Address: Measurements of the electromagnetic properties of nucleons and nuclei at short distance scales

    NASA Astrophysics Data System (ADS)

    Raymond, Arnold

    2000-04-01

    The talk will present the story of a series of experiments, beginning in 1973 and continuing today, that have measured the internal structure of nuclei and the nucleons using high energy beams of electrons and photons at the Stanford Linear Accelerator Center. These experiments have probed nuclear and nucleon structure in the energy and momentum transfer region where the meson-nucleon description merges with the quark-gluon picture. The experiments have worked at the border between nuclear and particle physics, and were conducted by large collaborative teams. Some were carried out in the context of a special program, called NPAS (Nuclear Physics at SLAC). The early results from these measurements helped stimulate the ideas and helped train and motivate the physicists who went on to build the Jefferson Laboratory. A brief summary of some highlights from the early measurements and updates on recent results will be given.

  1. Operational experience from LCLS-II cryomodule testing

    NASA Astrophysics Data System (ADS)

    Wang, R.; Hansen, B.; White, M.; Hurd, J.; Atassi, O. Al; Bossert, R.; Pei, L.; Klebaner, A.; Makara, J.; Theilacker, J.; Kaluzny, J.; Wu, G.; Harms, E.

    2017-12-01

    This paper describes the initial operational experience gained from testing Linac Coherent Light Source II (LCLS-II) cryomodules at Fermilab’s Cryomodule Test Facility (CMTF). Strategies for a controlled slow cooldown to 100 K and a fast cooldown past the niobium superconducting transition temperature of 9.2 K will be described. The test stand for the cryomodules at CMTF is sloped to match gradient in the LCLS-II tunnel at Stanford Linear Accelerator (SLAC) laboratory, which adds an additional challenge to stable liquid level control. Control valve regulation, Superconducting Radio-Frequency (SRF) power compensation, and other methods of stabilizing liquid level and pressure in the cryomodule 2.0 K SRF cavity circuit will be discussed. Several different pumping configurations using cold compressors and warm vacuum pumps have been used on the cryomodule 2.0 K return line and the associated results will be described.

  2. A General Purpose High Performance Linux Installation Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachsmann, Alf

    2002-06-17

    With more and more and larger and larger Linux clusters, the question arises how to install them. This paper addresses this question by proposing a solution using only standard software components. This installation infrastructure scales well for a large number of nodes. It is also usable for installing desktop machines or diskless Linux clients, thus, is not designed for cluster installations in particular but is, nevertheless, highly performant. The infrastructure proposed uses PXE as the network boot component on the nodes. It uses DHCP and TFTP servers to get IP addresses and a bootloader to all nodes. It then usesmore » kickstart to install Red Hat Linux over NFS. We have implemented this installation infrastructure at SLAC with our given server hardware and installed a 256 node cluster in 30 minutes. This paper presents the measurements from this installation and discusses the bottlenecks in our installation.« less

  3. Plastic scintillator block as photon beam monitor for EGRET calibration

    NASA Technical Reports Server (NTRS)

    Lin, Y. C.; Hofstadter, R.; Nolan, P. L.; Walker, A. H.; Mattox, J. R.; Hughes, E. B.

    1991-01-01

    The EGRET (Energetic Gamma Ray Experiment Telescope) detector has been calibrated at SLAC (Stanford Linear Accelerator) and, to a lesser degree, at the MIT Bates Linear Accelerator Center. To monitor the photon beams for the calibration, a plastic scintillator block, 5 cm x 5 cm in cross section, 15 cm in length, and viewed by a single photomultiplier tube, was used for the entire beam energy range of 15 MeV to 10 GeV. The design operation, and method of analysis of the beam intensity are presented. A mathematical framework has been developed to treat the general case of a beam with multiphoton beam pulses and with a background component. A procedure to deal with the fluctuations of the beam intensity over a data-taking period was also developed. The photon beam monitor is physically sturdy, electronically steady, simple to construct, and easy to operate. Its major merits lie in its sheer simplicity of construction and operation and in the wide energy range it can cover.

  4. Observation of the decay B-->J/psietaK and search for X(3872)-->J/psieta.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Watson, N K; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Khan, A; Lavin, D; Muheim, F; Playfer, S; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Tehrani, F Safai; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Cristinziani, M; De Nardo, G; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-07-23

    We report the observation of the B meson decay B+/- -->J/psietaK+/- and evidence for the decay B0-->J/psietaK0S, using 90 x 10(6) BB; events collected at the Upsilon(4S) resonance with the BABAR detector at the SLAC PEP-II e+e- asymmetric-energy storage ring. We obtain branching fractions of B(B+/- -->J/psietaK+/-) = [10.8 +/- 2.3(stat) +/- 2.4(syst)] x 10(-5) and B(B0-->J/psietaK0S) = [8.4 +/- 2.6(stat) +/- 2.7(syst)] x 10(-5). We search for the new narrow mass state, the X(3872), recently reported by the Belle Collaboration, in the decay B+/- -->X(3872)K+/-,X(3872)-->J/psieta and determine an upper limit of B[B +/- -->X(3872)K+/- -->J/psietaK+/-] < 7.7 x 10(-6) at 90% confidence level. Copyright 2004 The American Physical Society

  5. Enrico Fermi Awards Ceremony for Dr. Mildred S. Dresselhaus and Dr. Burton Richter, May 2012 (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    ScienceCinema

    Chu, Steven [Dept. of Energy (DOE), Washington DC (United States)

    2018-06-12

    The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On May 7, 2012 it was conferred upon two exceptional scientists: Dr. Mildred Dresselhaus, 'for her scientific leadership, her major contributions to science and energy policy, her selfless work in science education and the advancement of diversity in the scientific workplace, and her highly original and impactful research,' and Dr. Burton Richter, 'for the breadth of his influence in the multiple disciplines of accelerator physics and particle physics, his profound scientific discoveries, his visionary leadership as SLAC Director, his leadership of science, and his notable contributions in energy and public policy.' Dr. John Holder, Director of the White House Office of Science and Technology Policy, opened the ceremony, and Dr. Bill Brinkman, Director of DOE's Office of Science introduced the main speaker, Dr. Steven Chu, U.S. Energy Secretary.

  6. Warp-X: A new exascale computing platform for beam–plasma simulations

    DOE PAGES

    Vay, J. -L.; Almgren, A.; Bell, J.; ...

    2018-01-31

    Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less

  7. Supplement: Proceedings XIth Latin American Congress of Surface Science and Its Applications (XI CLACSA)

    NASA Astrophysics Data System (ADS)

    Häberle, Patricio; Fuenzalida, Victor

    2004-07-01

    The 2003 Congreso Latinoamericano de Ciencia de Superficies y sus Aplicaciones (Latin American Congress of Surface Science and Its Applications) was held in Pucón, Chile, 7-12 December 2003. XI CLACSA is the continuation of a series of events that started in 1980. Until 1992, this series was called Simposio Latinoamericano de Física de Superficies (SLAFS). In recognition of the interdisciplinary nature of the field, starting in 1994 the meeting became CLACSA. The conference was organized by the Sociedad Latinoamericana de Ciencia de Superficies (SLACS) with the purpose of becoming a forum for the exchange of information associated with scientific research carried out in Latin America in the field of surface physics, systems of low dimensionality and areas related to condensed matter physics and science of materials. This scientific event has enjoyed a large participation from Latin American scientists, and has helped to stimulate the collaboration between researchers from Europe, Latin America and the United States.

  8. Mapping the metal uptake in plants from Jasper Ridge Biological Preserve using synchrotron micro-focused X-ray fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Allison

    2015-08-20

    Serpentine soil originates in the Earth’s mantle and contains high concentrations of potentially toxic transition metals. Although serpentine soil limits plant growth, endemic and adapted plants at Jasper Ridge Biological Preserve, located behind SLAC National Accelerator Laboratory, can tolerate these conditions. Serpentine soil and seeds belonging to native California and invasive plants were collected at Jasper Ridge. The seeds were grown hydroponically and on serpentine and potting soil to examine the uptake and distribution of ions in the roots and shoots using synchrotron micro-focused X-ray fluorescence spectroscopy. The results were used to determine differences between serpentine-tolerant plants. Rye grown onmore » potting soil was enriched in Ni, Fe, Mn, and Cr compared to purple needlegrass grown on serpentine soil. Serpentine vegetation equally suppressed the uptake of Mn, Ni, and Fe in the roots and shoots. The uptake of Ca and Mg affected the uptake of other elements such as K, S, and P.« less

  9. Design of a 100 MW X-band klystron

    NASA Astrophysics Data System (ADS)

    Eppley, Kenneth

    1989-02-01

    Future linear colliders will require klystrons with higher peak power at higher frequency than are currently in use. SLAC is currently designing a 100 MW klystron at 11.4 GHz as a prototype for such a tube. The gun has been designed for 440 kV and 510 amps. Transporting this beam through a 5 mm radius X-band drift tube presents the major design problem. The area convergence ratio of 190 to one is over ten times higher than is found in conventional klystrons. Even with high magnetic fields of 6 to 7 kilogauss careful matching is required to prevent excessive scalloping. Extensive EGUN and CONDOR simulations have been made to optimize the transmission and RF efficiency. The EGUN simulations indicate that better matching is possible by using resonant magnetic focusing. CONDOR calculations indicate efficiencies of 45 percent are possible with a double output cavity. We will discuss the results of the simulations and the status of the experimental program.

  10. Numerical design of an EBIS collector to optimize electron collection and ion extraction

    NASA Astrophysics Data System (ADS)

    Dietrich, Jürgen

    1990-12-01

    For the Frankfurt EBIS (R. Becker et al., Nucl. Instr. and Meth. B24/25 (1987) 838, ref. [1]), a new collector was designed using the relativistic electron optics program EGUN (W.B. Herrmannsfeldt, SLAC-331 (1988), ref. [2]) and the magnetic field program INTMAG (R. Becker, Nucl. Instr. and Meth. B42 (1989) 303, ref. [3]). To model the fringing field of the main solenoid, a bucking coil and a cylindrical shim is provided. The current of the bucking coil and the position and shape of the shim are optimized with INTMAG for minimum fringing field to allow expansion of the electron beam by its space charge. The magnetic field data output from INTMAG is directly used as input for EGUN to calculate the electron and ion trajectories. The initial conditions for the trajectories were computed from the paraxial ray equation. Different operation modes of the collector are investigated including the behaviour of secondary electrons.

  11. Timing Calibration of the USA Experiment

    NASA Astrophysics Data System (ADS)

    Ray, P. S.; Wood, K. S.; Bandyopadhyay, R. M.; Fritz, G.; Hertz, P.; Kowalski, M. P.; Lovellette, M. N.; Wolff, M. T.; Yentis, D.; Bloom, E.; Focke, W.; Giebels, B.; Godfrey, G.; Reilly, K. T.; Saz Parkinson, P.; Shabad, G.; Scargle, J.; Backer, D.; Somer, A.; USA Experiment Science Working Group

    2000-10-01

    The USA Experiment on ARGOS is an X-ray proportional counter timing experiment, launched in January 1999, which is carrying out a broad program studying X-ray binaries, rotation-powered pulsars, and other bright X-ray sources. Photon events are time tagged to an accuracy of 2 μ s by reference to an onboard GPS receiver built by Boeing (then Rockwell International). Unfortunately, the GPS receiver has an anomaly that causes it to drop out of lock after a few hours. We describe the procedures developed to work around the GPS anomaly and recover accurate absolute time. Simultaneous observations of several rotation-powered pulsars with RXTE were made for comparison with contemporaneous radio timing measurements and to explore time transfer from satellite to satellite. Basic research in X-ray Astronomy at the Naval Research Laboratory is supported by NRL/ONR. Work on USA at SLAC is supported by Department of Energy contract DE-AC03-76SF00515.

  12. Improved Limits on $$B^{0}$$ Decays to Invisible $(+gamma)$ Final States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J.P.; Poireau, V.; Tisserand, V.

    2013-11-01

    We establish improved upper limits on branching fractions for B{sup 0} decays to final states where the decay products are purely invisible (i.e., no observable final state particles) and for final states where the only visible product is a photon. Within the Standard Model, these decays have branching fractions that are below the current experimental sensitivity, but various models of physics beyond the Standard Model predict significant contributions for these channels. Using 471 million B{bar B} pairs collected at the {Upsilon} (4S) resonance by the BABAR experiment at the PEP-II e{sup +}e{sup -} storage ring at the SLAC National Acceleratormore » Laboratory, we establish upper limits at the 90% confidence level of 2.4 x 10{sup -5} for the branching fraction of B{sup 0} {yields} invisible and 1.7 x 10{sup -5} for the branching fraction of B{sup 0} {yields} invisible + {gamma}.« less

  13. Mapping the Metal Uptake in Plants from Jasper Ridge Biological Preserve - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Allison

    2015-08-24

    Serpentine soil originates in the Earth’s mantle and contains high concentrations of potentially toxic transition metals. Although serpentine soil limits plant growth, endemic and adapted plants at Jasper Ridge Biological Preserve, located behind SLAC National Accelerator Laboratory, can tolerate these conditions. Serpentine soil and seeds belonging to native California and invasive plants were collected at Jasper Ridge. The seeds were grown hydroponically and on serpentine and potting soil to examine the uptake and distribution of ions in the roots and shoots using synchrotron micro-focused X-ray fluorescence spectroscopy. The results were used to determine differences between serpentinetolerant plants. Rye grown onmore » potting soil was enriched in Ni, Fe, Mn, and Cr compared to purple needlegrass grown on serpentine soil. Serpentine vegetation equally suppressed the uptake of Mn, Ni, and Fe in the roots and shoots. The uptake of Ca and Mg affected the uptake of other elements such as K, S, and P.« less

  14. Symplectic Propagation of the Map, Tangent Map and Tangent Map Derivative through Quadrupole and Combined-Function Dipole Magnets without Truncation

    NASA Astrophysics Data System (ADS)

    Bruhwiler, D. L.; Cary, J. R.; Shasharina, S.

    1998-04-01

    The MAPA accelerator modeling code symplectically advances the full nonlinear map, tangent map and tangent map derivative through all accelerator elements. The tangent map and its derivative are nonlinear generalizations of Browns first- and second-order matrices(K. Brown, SLAC-75, Rev. 4 (1982), pp. 107-118.), and they are valid even near the edges of the dynamic aperture, which may be beyond the radius of convergence for a truncated Taylor series. In order to avoid truncation of the map and its derivatives, the Hamiltonian is split into pieces for which the map can be obtained analytically. Yoshidas method(H. Yoshida, Phys. Lett. A 150 (1990), pp. 262-268.) is then used to obtain a symplectic approximation to the map, while the tangent map and its derivative are appropriately composed at each step to obtain them with equal accuracy. We discuss our splitting of the quadrupole and combined-function dipole Hamiltonians and show that typically few steps are required for a high-energy accelerator.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Steven

    The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On May 7, 2012 it was conferred upon two exceptional scientists: Dr. Mildred Dresselhaus, 'for her scientific leadership, her major contributions to science and energy policy, her selfless work in science education and the advancement of diversity in the scientific workplace, and her highly original and impactful research,' and Dr. Burton Richter, 'for the breadth of his influence in the multiple disciplines of accelerator physics and particle physics, his profound scientific discoveries, his visionary leadershipmore » as SLAC Director, his leadership of science, and his notable contributions in energy and public policy.' Dr. John Holder, Director of the White House Office of Science and Technology Policy, opened the ceremony, and Dr. Bill Brinkman, Director of DOE's Office of Science introduced the main speaker, Dr. Steven Chu, U.S. Energy Secretary.« less

  16. Adaptive method for electron bunch profile prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial controlmore » system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.« less

  17. ePix100 camera: Use and applications at LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carini, G. A., E-mail: carini@slac.stanford.edu; Alonso-Mori, R.; Blaj, G.

    2016-07-27

    The ePix100 x-ray camera is a new system designed and built at SLAC for experiments at the Linac Coherent Light Source (LCLS). The camera is the first member of a family of detectors built around a single hardware and software platform, supporting a variety of front-end chips. With a readout speed of 120 Hz, matching the LCLS repetition rate, a noise lower than 80 e-rms and pixels of 50 µm × 50 µm, this camera offers a viable alternative to fast readout, direct conversion, scientific CCDs in imaging mode. The detector, designed for applications such as X-ray Photon Correlation Spectroscopymore » (XPCS) and wavelength dispersive X-ray Emission Spectroscopy (XES) in the energy range from 2 to 10 keV and above, comprises up to 0.5 Mpixels in a very compact form factor. In this paper, we report the performance of the camera during its first use at LCLS.« less

  18. A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination.

    PubMed

    Pornsiriwong, Wannarat; Estavillo, Gonzalo M; Chan, Kai Xun; Tee, Estee E; Ganguly, Diep; Crisp, Peter A; Phua, Su Yin; Zhao, Chenchen; Qiu, Jiaen; Park, Jiyoung; Yong, Miing Tiem; Nisar, Nazia; Yadav, Arun Kumar; Schwessinger, Benjamin; Rathjen, John; Cazzonelli, Christopher I; Wilson, Philippa B; Gilliham, Matthew; Chen, Zhong-Hua; Pogson, Barry J

    2017-03-21

    Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3'-phosphoadenosine 5'- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis . Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1 -2. PAP also inhibits wild type and abi1 -1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca 2+ ; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses.

  19. Evidence for the hb(1P) meson in the decay Υ(3S)→π0hb(1P)

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Petzold, A.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Blount, N. L.; Brau, J.; Frey, R.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Robertson, S. H.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Guttman, N.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2011-11-01

    Using a sample of 122×106 Υ(3S) events recorded with the BABAR detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we search for the hb(1P) spin-singlet partner of the P-wave χbJ(1P) states in the sequential decay Υ(3S)→π0hb(1P), hb(1P)→γηb(1S). We observe an excess of events above background in the distribution of the recoil mass against the π0 at mass 9902±4(stat)±2(syst)MeV/c2. The width of the observed signal is consistent with experimental resolution, and its significance is 3.1σ, including systematic uncertainties. We obtain the value (4.3±1.1(stat)±0.9(syst))×10-4 for the product branching fraction B(Υ(3S)→π0hb)×B(hb→γηb).

  20. Amplitude analysis of B0→K+π-π0 and evidence of direct CP violation in B→K*π decays

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2011-06-01

    We analyze the decay B0→K+π-π0 with a sample of 4.54×108 BB¯ events collected by the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, and extract the complex amplitudes of seven interfering resonances over the Dalitz plot. These results are combined with amplitudes measured in B0→KS0π+π- decays to construct isospin amplitudes from B0→K*π and B0→ρK decays. We measure the phase of the isospin amplitude Φ3/2, useful in constraining the Cabibbo-Kobayashi-Maskawa unitarity triangle angle γ and evaluate a CP rate asymmetry sum rule sensitive to the presence of new physics operators. We measure direct CP violation in B0→K*+π- decays at the level of 3σ when measurements from both B0→K+π-π0 and B0→KS0π+π- decays are combined.