Sample records for sacramento river san

  1. 33 CFR 110.224 - San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...

  2. 33 CFR 110.224 - San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...

  3. 33 CFR 110.224 - San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...

  4. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. (a) San Joaquin River Deep Water Channel between Suisun Bay and the easterly end of the channel at...

  5. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. (a) San Joaquin River Deep Water Channel between Suisun Bay and the easterly end of the channel at...

  6. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. (a) San Joaquin River Deep Water Channel between Suisun Bay and the easterly end of the channel at...

  7. Dissolved pesticide concentrations entering the Sacramento-San Joaquin Delta from the Sacramento and San Joaquin Rivers, California, 2012-13

    USGS Publications Warehouse

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2014-01-01

    Surface-water samples were collected from the Sacramento and San Joaquin Rivers where they enter the Sacramento–San Joaquin Delta, and analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected twice per month from May 2012 through July 2013 and from May 2012 through April 2013 at the Sacramento River at Freeport, and the San Joaquin River near Vernalis, respectively. Samples were analyzed by two separate laboratory methods by using gas chromatography with mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). A total of 37 pesticides and degradates were detected in water samples collected during the study (18 herbicides, 11 fungicides, 7 insecticides, and 1 synergist). The most frequently detected pesticides overall were the herbicide hexazinone (detected in 100 percent of the samples); 3,4-dichloroaniline (97 percent), which is a degradate of the herbicides diuron and propanil; the fungicide azoxystrobin (83 percent); and the herbicides diuron (72 percent), simazine (66 percent), and metolachlor (64 percent). Insecticides were rarely detected during the study. Pesticide concentrations varied from below the method detection limits to 984 ng/L (hexazinone). Twenty seven pesticides and (or) degradates were detected in Sacramento River samples, and the average number of pesticides per sample was six. The most frequently detected compounds in these samples were hexazinone (detected in 100 percent of samples), 3,4-dichloroaniline (97 percent), azoxystrobin (88 percent), diuron (56 percent), and simazine (50 percent). Pesticides with the highest detected maximum concentrations in Sacramento River samples included the herbicide clomazone (670 ng/L), azoxystrobin (368 ng/L), 3,4-dichloroaniline (364 ng/L), hexazinone (130 ng/L), and propanil (110 ng/L), and all but hexazinone are primarily associated with

  8. Invasive aquatic vegetation management in the Sacramento-San Joaquin River Delta: status recommendations

    USDA-ARS?s Scientific Manuscript database

    Widespread growth of invasive aquatic vegetation is a major stressor to the Sacramento-San Joaquin River Delta, a region of significant agricultural, industrial, and ecological importance. Total invaded area in the Delta is increasing, with the risk of new invasions a continual threat. However, inva...

  9. Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California

    USGS Publications Warehouse

    Sickman, James O.; DiGiorgio, Carol L.; Davisson, M. Lee; Lucero, Delores M.; Bergamaschi, Brian A.

    2010-01-01

    We used radiocarbon measurements of dissolved organic carbon (DOC) to resolve sources of riverine carbon within agriculturally dominated landscapes in California. During 2003 and 2004, average Δ14C for DOC was −254‰ in agricultural drains in the Sacramento–San Joaquin Delta, −218‰ in the San Joaquin River, −175‰ in the California State Water Project and −152‰ in the Sacramento River. The age of bulk DOC transiting the rivers of California’s Central Valley is the oldest reported for large rivers and suggests wide-spread loss of soil organic matter caused by agriculture and urbanization. Using DAX 8 adsorbent, we isolated and measured 14C concentrations in hydrophobic acid fractions (HPOA); river samples showed evidence of bomb-pulse carbon with average Δ14C of 91 and 76‰ for the San Joaquin and Sacramento Rivers, respectively, with older HPOA, −204‰, observed in agricultural drains. An operationally defined non-HPOA fraction of DOC was observed in the San Joaquin River with seasonally computed Δ14C values of between −275 and −687‰; the source of this aged material was hypothesized to be physically protected organic-matter in high clay-content soils and agrochemicals (i.e., radiocarbon-dead material) applied to farmlands. Mixing models suggest that the Sacramento River contributes about 50% of the DOC load in the California State Water Project, and agricultural drains contribute approximately one-third of the load. In contrast to studies showing stabilization of soil carbon pools within one or two decades following land conversion, sustained loss of soil organic matter, occurring many decades after the initial agricultural-land conversion, was observed in California’s Central Valley.

  10. Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Wright, S.A.; Schoellhamer, D.H.

    2005-01-01

    [1] Where rivers encounter estuaries, a transition zone develops where riverine and tidal processes both affect sediment transport processes. One such transition zone is the Sacramento-San Joaquin River Delta, a large, complex system where several rivers meet to form an estuary (San Francisco Bay). Herein we present the results of a detailed sediment budget for this river/estuary transitional system. The primary regional goal of the study was to measure sediment transport rates and pathways in the delta in support of ecosystem restoration efforts. In addition to achieving this regional goal, the study has produced general methods to collect, edit, and analyze (including error analysis) sediment transport data at the interface of rivers and estuaries. Estimating sediment budgets for these systems is difficult because of the mixed nature of riverine versus tidal transport processes, the different timescales of transport in fluvial and tidal environments, and the sheer complexity and size of systems such as the Sacramento-San Joaquin River Delta. Sediment budgets also require error estimates in order to assess whether differences in inflows and outflows, which could be small compared to overall fluxes, are indeed distinguishable from zero. Over the 4 year period of this study, water years 1999-2002, 6.6 ?? 0.9 Mt of sediment entered the delta and 2.2 ?? 0.7 Mt exited, resulting in 4.4 ?? 1.1 Mt (67 ?? 17%) of deposition. The estimated deposition rate corresponding to this mass of sediment compares favorably with measured inorganic sediment accumulation on vegetated wetlands in the delta.

  11. Organic Carbon Trends, Loads, and Yields to the Sacramento-San Joaquin Delta, California, Water Years 1980 to 2000

    USGS Publications Warehouse

    Saleh, Dina K.; Domagalski, Joseph L.; Kratzer, Charles R.; Knifong, Donna L.

    2003-01-01

    Organic carbon, nutrient, and suspended sediment concentration data were analyzed for the Sacramento and San Joaquin River Basins for the period 1980-2000. The data were retrieved from three sources: the U.S. Geological Survey's National Water Information System, the U.S. Environmental Protection Agency's Storage and Retrieval System, and the California Interagency Ecological Program's relational database. Twenty sites were selected, all of which had complete records of daily streamflow data. These data met the minimal requirements of the statistical programs used to estimate trends, loads, and yields. The seasonal Kendall program was used to estimate trends in organic carbon, nutrient, and suspended sediment. At all 20 sites, analyses showed that in the 145 analyses for the seven constituents, 95 percent of the analyses had no significant trend. Dissolved organic carbon (DOC) concentrations were significant only for four sites: the American River at Sacramento, the Sacramento River sites near Freeport, Orestimba Creek at River Roads near Crows Landing, and the San Joaquin River near Vernalis. Loads were calculated using two programs, ESTIMATOR and LOADEST2. The 1998 water year was selected to describe loads in the Sacramento River Basin. Organic carbon, nutrient, and suspended sediment loads at the Sacramento River sites near Freeport included transported loads from two main upstream sites: the Sacramento River at Verona and the American River at Sacramento. Loads in the Sacramento River Basin were affected by the amount of water diverted to the Yolo Bypass (the amount varies annually, depending on the precipitation and streamflow). Loads at the Sacramento River sites near Freeport were analyzed for two hydrologic seasons: the irrigation season (April to September) and the nonirrigation season (October to March). DOC loads are lower during the irrigation season then they are during the nonirrigation season. During the irrigation season, water with low

  12. 78 FR 15878 - Drawbridge Operation Regulations; Sacramento River, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... Operation Regulations; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Tower Drawbridge across Sacramento River, mile 59.0, at Sacramento, CA... temporary change to the operation of the Tower Drawbridge, mile 59.0, over Sacramento River, at Sacramento...

  13. Spatial and temporal variation of biological control agents associated with Eichhornia crassipes in the Sacramento-San Joaquin River Delta, California

    USDA-ARS?s Scientific Manuscript database

    Invasive aquatic weeds, such as water hyacinth (Eichhornia crassipes), severely limit the ecosystem services provided by the Sacramento-San Joaquin River Delta. As part of the biological control program in the Delta, two weevils, Neochetina bruchi and N. eichhorniae (Coleoptera: Curculionidae) and a...

  14. Trends in nutrient concentrations, loads, and yields in streams in the Sacramento, San Joaquin, and Santa Ana Basins, California, 1975-2004

    USGS Publications Warehouse

    Kratzer, Charles R.; Kent, Robert; Seleh, Dina K.; Knifong, Donna L.; Dileanis, Peter D.; Orlando, James L.

    2011-01-01

    A comprehensive database was assembled for the Sacramento, San Joaquin, and Santa Ana Basins in California on nutrient concentrations, flows, and point and nonpoint sources of nutrients for 1975-2004. Most of the data on nutrient concentrations (nitrate, ammonia, total nitrogen, orthophosphate, and total phosphorus) were from the U.S. Geological Survey's National Water Information System database (35.2 percent), the California Department of Water Resources (21.9 percent), the University of California at Davis (21.6 percent), and the U.S. Environmental Protection Agency's STOrage and RETrieval database (20.0 percent). Point-source discharges accounted for less than 1 percent of river flows in the Sacramento and San Joaquin Rivers, but accounted for close to 80 percent of the nonstorm flow in the Santa Ana River. Point sources accounted for 4 and 7 percent of the total nitrogen and total phosphorus loads, respectively, in the Sacramento River at Freeport for 1985-2004. Point sources accounted for 8 and 17 percent of the total nitrogen and total phosphorus loads, respectively, in the San Joaquin River near Vernalis for 1985-2004. The volume of wastewater discharged into the Santa Ana River increased almost three-fold over the study period. However, due to improvements in wastewater treatment, the total nitrogen load to the Santa Ana River from point sources in 2004 was approximately the same as in 1975 and the total phosphorus load in 2004 was less than in 1975. Nonpoint sources of nutrients estimated in this study included atmospheric deposition, fertilizer application, manure production, and tile drainage. The estimated dry deposition of nitrogen exceeded wet deposition in the Sacramento and San Joaquin Valleys and in the basin area of the Santa Ana Basin, with ratios of dry to wet deposition of 1.7, 2.8, and 9.8, respectively. Fertilizer application increased appreciably from 1987 to 2004 in all three California basins, although manure production increased in the

  15. Initial Development of Riparian and Marsh Vegetation on Dredged-material Islands in the Sacramento-San Joaquin River Delta, California

    Treesearch

    A. Sidney England; Mark K. Sogge; Roy A. Woodward

    1989-01-01

    Natural vegetation establishment and development were monitored for 3 1/2 years on a new, dredged-material island located within the breached levees at Donlon Island in the Sacramento-San Joaquin River Delta. Vegetation measurements and maps prepared annually indicate that marsh and riparian vegetation types have developed rapidly. Topographic data for the island has...

  16. 75 FR 16006 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.4, at Sacramento, CA. The deviation is necessary to allow the bridge owner to make bridge... Sacramento River, at Sacramento, CA. The I Street Drawbridge navigation span provides 109 feet vertical...

  17. 76 FR 11960 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.0, at Sacramento, CA. The deviation is necessary to allow the community to participate in the... Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The Tower Drawbridge navigation span...

  18. 76 FR 23188 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.0, at Sacramento, CA. The deviation is necessary to allow the community to participate in the... Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The Tower Drawbridge navigation span...

  19. 76 FR 79067 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.0, at Sacramento, CA. The deviation is necessary to allow community celebration of New Year's... Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The Tower Drawbridge navigation span...

  20. 76 FR 20843 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.0, at Sacramento, CA. The deviation is necessary to allow the community to participate in the... the Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The Tower Drawbridge navigation...

  1. 76 FR 26181 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... 59.0, at Sacramento, CA. The deviation is necessary to allow the community to participate in the Hope... Drawbridge, mile 59.0, over Sacramento River, at Sacramento, CA. The drawbridge navigation span provides a...

  2. 77 FR 10371 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary..., mile 59.0, at Sacramento, CA. The deviation is necessary to allow the bridge owner to conduct... change to the operation of the Tower Drawbridge, mile 59.0, Sacramento River, at Sacramento, CA. The...

  3. Appendix A The influence of junction hydrodynamics on entrainment of juvenile salmon into the interior Sacramento-San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Ramón Casañas, Cintia; Burau, Jon; Blake, Aaron; Acosta, Mario; Rueda, Francisco

    2017-04-01

    River junctions where water may follow two or more alternative pathways (diffluences) could be critical points in river networks where aquatic migratory species select different migration routes. Federally listed Sacramento River Chinook salmon juveniles must survive passage through the tidal Sacramento - San Joaquin River Delta in order to successfully out-migrate to the ocean. Two of the four main migration routes identified for salmon in the Sacramento River direct them to the interior of the delta, where salmon survival is known to decrease dramatically. Migration route selection is thought to be advection-dominated, but the combination of physical and biological processes that control route selection is still poorly understood. The reach in the Sacramento-River where the entrances of the two lower-survival migration routes are located is strongly influenced by the tides, with flows reversing twice daily, and the two diffluences are located in the outside of the same Sacramento River bend where secondary circulation occurs. Three dimensional simulations are conducted, both in the Eularian and Lagrangian frame, to understand tidal and secondary-circulation effects on the migration route selection of juveniles within this reach of the Sacramento River. Although salmon behavior is reduced to the simplest (passively-driven neutrally-buoyant particles), the preliminary results here presented are consistent with previous studies that show that during the flood tide almost all the flow, and thus, all the salmon, are directed to the interior delta through these two migration routes. Simulated fish entrainment rates into the interior of the delta tend to be larger than those expected from flow entrainment calculations alone, particularly during ebb tides. Several factors account for these tendencies. First, the fraction of the flow diverted to the side channel in the shallowest layers tend to be higher than in the deeper layers, as a result of the secondary circulation

  4. 78 FR 23489 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of deviation... operating regulation that governs the Tower Drawbridge across Sacramento River, mile 59.0, at Sacramento, CA. The deviation is necessary to allow the community to participate in the Capital City Classic Run. This...

  5. 77 FR 40800 - Safety Zone: Sacramento River Closure for Aerial Cable Installation, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ...-AA00 Safety Zone: Sacramento River Closure for Aerial Cable Installation, Sacramento, CA AGENCY: Coast... zone in the navigable waters of the Sacramento River near Sherman Island, CA in support of the...; Sacramento River Closure for Aerial Cable Installation, Sacramento, CA. (a) Location. This temporary safety...

  6. Nitrification and Microbial Activity in Response to Wastewater Effluent in the Sacramento/San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Challenor, T.; Damashek, J.; Tolar, B. B.; Francis, C.; Casciotti, K. L.

    2016-12-01

    Nitrification, the oxidation of ammonium (NH4+) to nitrate (NO3-) by a coterie of ammonia-oxidizing bacteria (AOB) and archaea (AOA), is a crucial step in removing nitrogen from marine ecosystems. The Sacramento/San Joaquin River delta receives ammonium-laden effluent from the Sacramento Regional Wastewater Treatment Plant (SRWTP) and nitrate from agriculture runoff. The system provides freshwater to irrigate the Central Valley and drinking water for many millions of people. In recent years, however, this environment has experienced ecological turmoil - the Pelagic Organism Decline (POD) refers to a die-out of fish and other species over the course of three decades. One explanation implicated excessive ammonium input, claiming it limited primary productivity and hurt pelagic fish down the line. A new hypothesis, however, posits that the ecosystem may soon face the opposite problem: over-productivity and hypoxia due to increased light availability and reduced turbidity. Studying the rate of nitrification and the makeup of the microbial community will further elucidate how nutrient loading has impacted this ecosystem. Nitrification rates were calculated from water samples collected in the Sacramento River starting at the SRWTP and moving downstream. Samples were spiked with 15N-labeled ammonium and incubated for 24 hours in triplicate. Four time-points were extracted and the "denitrifier" method was used to measure the isotopic ratio of N over time. DNA and RNA were extracted from filtered water at each site and PCR and qPCR assays were used targeting the amoA gene, which encodes the α-subunit of ammonia monooxygenase, responsible for oxidizing ammonium to nitrite (NO2-). Consistent with previous nitrification data, rates were highest in the lower river downstream of the SRWTP, where nitrate concentrations were correspondingly elevated. AOB predominated in the ammonia oxidizing community, and some clades were unique to this ecosystem. Nitrifying microbes provide an

  7. Sacramento River Water Treatment Plant Intake Pier & Access Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  8. 78 FR 42452 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... Operation Regulation; Sacramento River, Sacramento, CA AGENCY: Coast Guard, DHS. ACTION: Notice of deviation... Sacramento, CA. The deviation is necessary to allow the bridge owner to make bridge repairs. This deviation... Sacramento, CA. The drawbridge navigation span provides 109 feet vertical clearance above Mean High Water in...

  9. Adaptive Management Methods to Protect the California Sacramento-San Joaquin Delta Water Resource

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  10. Measured flow and tracer-dye data for spring 1996 and 1997 for the south Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Oltmann, Richard N.

    1999-01-01

    During the spring of years when the flow of the San Joaquin River is less than 7,000 cubic feet per second (ft3/s) a temporary rock barrier is installed by the California Department of Water Resources (DWR) at the head of Old River (HOR) in the south Sacramento-San Joaquin Delta to prevent out migrating salmon in the San Joaquin River from entering Old River and being drawn to the State and federal pumping facilities (Figure 1). The export rate of the pumping facilities also is reduced during these migration periods to minimize the draw of fish to the export facilities through the other channels connected to the San Joaquin River north of the HOR such as Turner Cut, Columbia Cut, and Middle River.

  11. Evaluation of a floating fish guidance structure at a hydrodynamically complex river junction in the Sacramento-San Joaquin River Delta, California, USA

    USGS Publications Warehouse

    Romine, Jason G.; Perry, Russell W.; Pope, Adam C.; Stumpner, Paul; Liedtke, Theresa L.; Kumagai, Kevin K; Reeves, Ryan L

    2016-01-01

    Survival of out-migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento–San Joaquin River delta, California, USA, varies by migration route. Survival of salmonids that enter the interior and southern Delta can be as low as half that of salmonids that remain in the main-stem Sacramento River. Reducing entrainment into the higher-mortality routes, such as Georgiana Slough, should increase overall survival. In spring 2014, a floating fish-guidance structure (FFGS) designed to reduce entrainment into Georgiana Slough was deployed just upstream of the Georgiana Slough divergence. We used acoustic telemetry to evaluate the effect of the FFGS on Chinook entrainment to Georgiana Slough. At intermediate discharge (200–400 m3 s–1), entrainment into Georgiana Slough was five percentage points lower when the FFGS was in the on state (19.1% on; 23.9% off). At higher discharge (>400 m3 s–1), entrainment was higher when the FFGS was in the on state (19.3% on; 9.7% off), and at lower discharge (0–200 m3 s–1) entrainment was lower when the FFGS was in the on state (43.7% on; 47.3% off). We found that discharge, cross-stream fish position, time of day, and proportion of flow remaining in the Sacramento River contributed to the probability of being entrained to Georgiana Slough.

  12. Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California.

    PubMed

    Weston, Donald P; Lydy, Michael J

    2010-03-01

    While studies have documented the presence of pyrethroid insecticides at acutely toxic concentrations in sediments, little quantitative data on sources exist. Urban runoff, municipal wastewater treatment plants and agricultural drains in California's Sacramento-San Joaquin River Delta were sampled to understand their importance as contributors of these pesticides to surface waters. Nearly all residential runoff samples were toxic to the amphipod, Hyalella azteca, and contained pyrethroids at concentrations exceeding acutely toxic thresholds, in many cases by 10-fold. Toxicity identification evaluation data were consistent with pyrethroids, particularly bifenthrin and cyfluthrin, as the cause of toxicity. Pyrethroids passed through secondary treatment systems at municipal wastewater treatment facilities and were commonly found in the final effluent, usually near H. azteca 96-h EC(50) thresholds. Agricultural discharges in the study area only occasionally contained pyrethroids and were also occasional sources of toxicity related to the organophosphate insecticide chlorpyrifos. Discharge of the pyrethroid bifenthrin via urban stormwater runoff was sufficient to cause water column toxicity in two urban creeks, over at least a 30 km reach of the American River, and at one site in the San Joaquin River, though not in the Sacramento River.

  13. Habitat and Populations of the Valley Elderberry Longhorn Beetle Along the Sacramento River

    Treesearch

    F. Jordan Lang; James D. Jokerst; Gregory E. Sutter

    1989-01-01

    Prior to 1985, the valley elderberry longhorn beetle, a threatened species protected under the federal Endangered Species Act, was known only from northern California riparian areas along the American River and Putah Creek in the Sacramento Valley, and along several rivers in the northern San Joaquin Valley. During 1985-1987, our study extended the known range of the...

  14. The nature of organic carbon in density-fractionated sediments in the Sacramento-San Joaquin River Delta (California)

    NASA Astrophysics Data System (ADS)

    Wakeham, S. G.; Canuel, E. A.

    2015-10-01

    Rivers are the primary means by which sediments and carbon are transported from the terrestrial biosphere to the oceans but gaps remain in our understanding of carbon associations from source to sink. Bed sediments from the Sacramento-San Joaquin River Delta (CA) were fractionated according to density and analyzed for sediment mass distribution, elemental (C and N) composition, mineral surface area, and stable carbon and radiocarbon isotope compositions of organic carbon (OC) and fatty acids to evaluate the nature of organic carbon in river sediments. OC was unevenly distributed among density fractions. Mass and TOC were in general concentrated in mesodensity (1.6-2.0 and 2.0-2.5 g cm-3) fractions, comprising 84.0 ± 1.3 % of total sediment mass and 80.8 ± 13.3 % of total OC (TOC). Low density (< 1.6 g cm-3) material, although rich in OC (34.0 ± 2.0 % OC) due to woody debris, constituted only 17.3 ± 12.8 % of TOC. High density (> 2.5 g cm-3) organic-poor, mineral material made-up 13.7 ± 1.4 % of sediment mass and 2.0 ± 0.9 % of TOC. Stable carbon isotope compositions of sedimentary OC were relatively uniform across bulk and density fractions (δ13C -27.4 ± 0.5 ‰). Radiocarbon content varied from Δ14C values of -382 (radiocarbon age 3800 yr BP) to +94 ‰ (modern) indicating a~mix of young and pre-aged OC. Fatty acids were used to further constrain the origins of sedimentary OC. Short-chain n-C14-n-C18 fatty acids of algal origin were depleted in δ13C (δ13C -37.5 to -35.2 ‰) but were enriched in 14C (Δ14C > 0) compared to long-chain n-C24-n-C28 acids of vascular plant origins with higher δ13C (-33.0 to -31.0 ‰) but variable Δ14C values (-180 and 61 ‰). These data demonstrate the potentially complex source and age distributions found within river sediments and provide insights about sediment and organic matter supply to the Sacramento-San Joaquin River Delta.

  15. Water-quality assessment of the Sacramento River basin, California : water quality of fixed sites, 1996-1998

    USGS Publications Warehouse

    Domagalski, Joseph L.; Dileanis, Peter D.

    2000-01-01

    concentrations of mercury were mostly higher than the criterion. Exceedances of water-quality standards happened most frequently during winter when suspended-sediment concen-trations also were elevated. Most mercury is found in association with suspended sediment. The greatest loading or transport of mercury out of the Sacramento River Basin to the San Francisco Bay occurs in the winter and principally follows storm events.

  16. Effect of Land Cover Type and Structure on Water Cycling Dynamics for Agricultural and Wetland Sites in the Sacramento/San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Eichelmann, E.; Hemes, K. S.; Baldocchi, D. D.

    2016-12-01

    The Sacramento/San Joaquin river delta is an important source of fresh water for California. To reverse soil subsidence, which is linked to draining the natural wetlands for agriculture, parts of the Sacramento/San Joaquin river delta have been restored to managed wetlands. While these restored wetlands provide greenhouse gas benefits compared to agricultural use of the land, implications for the water balance of these ecosystems, specifically evapotranspiration, are not well known. Based on multiple years of eddy covariance measurements of water, CO2, and sensible energy fluxes we explored the water cycling dynamics for several sites under different land use covers in the Sacramento/San Joaquin river delta. We investigated four sites under agricultural use (rice, corn, and alfalfa crops and cow pasture) and three restored wetland sites of varying ages and structures to examine the influence of land cover type and structure on evapotranspiration, sensible energy flux, and water use efficiency. While the wetland and the rice sites are usually flooded for the majority of the year, the alfalfa, corn, and pasture sites have a water table that is maintained to be below ground level throughout the year. The three wetland sites also have different fractions of open water to vegetation, covering a gradient from very dense vegetation with no open water to a fairly open structure with large pools of open water. These differences in land cover (dry vs flooded and fraction of open water to vegetation) have an effect on the patterns of evapotranspiration on diurnal to annual timescales. Although the flooded sites (wetland sites and rice) tend to have larger annual evapotranspiration than the drained sites (cow pasture, alfalfa, and corn), the fraction of open water to vegetation affects the extend to which the flooded sites' evapotranspiration exceeds that of drained sites. On diurnal timescales, we found that flooded sites with a larger fraction of open water to vegetation

  17. Trends in the sediment yield of the Sacramento River, California, 1957-2001

    USGS Publications Warehouse

    Wright, Scott A.; Schoellhamer, David H.

    2004-01-01

    Human activities within a watershed, such as agriculture, urbanization, and dam building, may affect the sediment yield from the watershed. Because the equilibrium geomorphic form of an estuary is dependent in part on the sediment supply from the watershed, anthropogenic activities within the watershed have the potential to affect estuary geomorphology. The Sacramento River drains the northern half of California’s Central Valley and is the primary source of sediment to San Francisco Bay. In this paper, it is shown that the delivery of suspended-sediment from the Sacramento River to San Francisco Bay has decreased by about one-half during the period 1957 to 2001. Many factors may be contributing to the trend in sediment yield, including the depletion of erodible sediment from hydraulic mining in the late 1800s, trapping of sediment in reservoirs, riverbank protection, altered land-uses (such as agriculture, grazing, urbanization, and logging), and levees. This finding has implications for planned tidal wetland restoration activities around San Francisco Bay, where an adequate sediment supply will be needed to build subsided areas to elevations typical of tidal wetlands as well as to keep pace with projected sea-level rise. In a broader context, the study underscores the need to address anthropogenic impacts on watershed sediment yield when considering actions such as restoration within downstream depositional areas.

  18. 77 FR 20718 - Drawbridge Operation Regulation; Sacramento River, Isleton, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... Operation Regulation; Sacramento River, Isleton, CA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... regulation that governs the Isleton Drawbridge across Sacramento River, mile 18.7, at Isleton, CA. The... operation of the Isleton Drawbridge, mile 18.7, over Sacramento River, at Isleton, CA. The drawbridge...

  19. 78 FR 23849 - Inland Waterways Navigation Regulation: Sacramento River, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ...-AB95 Inland Waterways Navigation Regulation: Sacramento River, CA AGENCY: Coast Guard, DHS. ACTION... Regulation: Sacramento River, CA'' in the Federal Register (78 FR 4785). That rule announced our intent to... the Decker Island restricted anchorage area in the Sacramento River. The restricted anchorage area was...

  20. Mercury in sport fish from the Sacramento-San Joaquin Delta region, California, USA.

    PubMed

    Davis, Jay A; Greenfield, Ben K; Ichikawa, Gary; Stephenson, Mark

    2008-02-25

    Total mercury (Hg) concentrations were determined in fillet tissue of sport fish captured in the Sacramento-San Joaquin River Delta and surrounding tributaries, a region particularly impacted by historic gold and mercury mining activity. In 1999 and 2000, mercury concentrations were measured in 767 samples from ten fish species. Largemouth bass (Micropterus salmoides), the primary target species, exhibited a median Hg concentration of 0.53 mug g(-1) (N=406). Only 23 largemouth bass (6%) were below a 0.12 mug g(-1) threshold corresponding to a 4 meals per month safe consumption limit. Most of the largemouth bass (222 fish, or 55% of the sample) were above a 0.47 mug g(-1) threshold corresponding to a 1 meal per month consumption limit. Striped bass (Morone saxatilis), channel catfish (Ictalurus punctatus), white catfish (Ameirus catus), and Sacramento pikeminnow (Ptychocheilus grandis) also had relatively high concentrations, with 31% or more of samples above 0.47 mug g(-1). Concentrations were lowest in redear (Lepomis microlophus) and bluegill (Lepomis macrochirus) sunfish, with most samples below 0.12 mug g(-1), suggesting that targeting these species for sport and subsistence fishing may reduce human dietary exposure to Hg in the region. An improved method of analysis of covariance was performed to evaluate spatial variation in Hg in largemouth bass captured in 2000, while accounting for variability in fish length. Using this approach, Hg concentrations were significantly elevated in the Feather River, northern Delta, lower Cosumnes River, and San Joaquin River regions. In spite of elevated Hg concentrations on all of its tributaries, the central Delta had concentrations that were low both in comparison to safe consumption guidelines and to other locations.

  1. Distribution and Joint Fish-Tag Survival of Juvenile Chinook Salmon Migrating through the Sacramento-San Joaquin River Delta, California, 2008

    USGS Publications Warehouse

    Holbrook, Christopher M.; Perry, Russell W.; Adams, Noah S.

    2009-01-01

    Acoustic telemetry was used to obtain the movement histories of 915 juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) through the lower San Joaquin River and Sacramento-San Joaquin Delta, California, in 2008. Data were analyzed within a release-recapture framework to estimate survival, route distribution, and detection probabilities among three migration pathways through the Delta. The pathways included the primary route through the San Joaquin River and two less direct routes (Old River and Turner Cut). Strong inferences about survival were limited by premature tag failure, but estimates of fish distribution among migration routes should be unaffected by tag failure. Based on tag failure tests (N = 66 tags), we estimated that only 55-78 percent of the tags used in this study were still functioning when the last fish was detected exiting the study area 15 days after release. Due to premature tag failure, our 'survival' estimates represent the joint probability that both the tag and fish survived, not just survival of fish. Low estimates of fish-tag survival could have been caused by fish mortality or fish travel times that exceeded the life of the tag, but we were unable to differentiate between the two. Fish-tag survival through the Delta (from Durham Ferry to Chipps Island by all routes) ranged from 0.05 +or- 0.01 (SE) to 0.06 +or- 0.01 between the two weekly release groups. Among the three migration routes, fish that remained in the San Joaquin River exhibited the highest joint fish-tag survival (0.09 +or- 0.02) in both weeks, but only 22-33 percent of tagged fish used this route, depending on the week of release. Only 4-10 percent (depending on week) of tagged fish traveled through Turner Cut, but no tagged fish that used this route were detected exiting the Delta. Most fish (63-68 percent, depending on week of release) migrated through Old River, but fish-tag survival through this route (0.05 +or- 0.01) was only about one-half that of fish that

  2. Benthic macroinvertebrate assemblages and their relations with environmental variables in the Sacramento and San Joaquin River drainages, California, 1993-1997

    USGS Publications Warehouse

    Brown, Larry R.; May, Jason T.

    2000-01-01

    Data were collected in the San Joaquin and Sacramento river drainages to evaluate associations between macroinvertebrate assemblages and environmental variables as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Samples were collected at 53 sites from 1993 to 1995 in the San Joaquin River drainage and in 1996 and 1997 in the Sacramento River drainage. Macroinvertebrates were collected from riffles or from large woody debris (snags) when riffles were absent. Macroinvertebrate taxa were aggregated to the family (or higher) level of taxonomic organization, resulting in 81 taxa for analyses. Only the 50 most common taxa were used for two-way indicator species analysis (TWINSPAN) and canonical correspondence analysis. TWINSPAN analysis defined four groups of riffle samples and four groups of snag samples based on macroinvertebrate assemblages. Analysis of variance identified differences in environmental and biotic characteristics of the groups. These results combined with the results of canonical correspondence analysis indicated that patterns in riffle sample assemblage structure were highly correlated with a gradient in physical and chemical conditions associated with elevation. The results also suggested that flow regulation associated with large storage reservoirs has negative effects on the total number of taxa and density of macroinvertebrates below foothill dams. Analysis of the snag samples showed that, although elevation remained a significant variable, mean dominant substrate size, gradient, specific conductance, water temperature, percentage of the basin in agricultural land use, and percentage of the basin in combined agricultural and urban land uses were more important factors in explaining assemblage structure. Macroinvertebrate assemblages on snags may be useful in family level bioassessments of environmental conditions in valley floor habitats. In the Sierra Nevada and its foothills, the strong influence of elevation

  3. 75 FR 20815 - Notice of Intent To Prepare an Environmental Assessment and to Conduct San Joaquin River Chinook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... Intent To Prepare an Environmental Assessment and to Conduct San Joaquin River Chinook Salmon Scoping... of spring-run Chinook salmon to the mainstem of the San Joaquin River. DATES: NMFS will conduct a..., Sacramento, CA 95814. Comments may also be submitted electronically to SJRSpringSalmon@nooa.gov . Comments...

  4. Effect of tides, river flow, and gate operations on entrainment of juvenile salmon into the interior Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Perry, Russell W.; Brandes, Patricia L.; Burau, Jon R.; Sandstrom, Philip T.; Skalski, John R.

    2015-01-01

    Juvenile Chinook Salmon Oncorhynchus tshawytscha emigrating from natal tributaries of the Sacramento River, California, must negotiate the Sacramento-San Joaquin River Delta (hereafter, the Delta), a complex network of natural and man-made channels linking the Sacramento River with San Francisco Bay. Fish that enter the interior and southern Delta—the region to the south of the Sacramento River where water pumping stations are located—survive at a lower rate than fish that use alternative migration routes. Consequently, total survival decreases as the fraction of the population entering the interior Delta increases, thus spurring management actions to reduce the proportion of fish that are entrained into the interior Delta. To better inform management actions, we modeled entrainment probability as a function of hydrodynamic variables. We fitted alternative entrainment models to telemetry data that identified when tagged fish in the Sacramento River entered two river channels leading to the interior Delta (Georgiana Slough and the gated Delta Cross Channel). We found that the probability of entrainment into the interior Delta through both channels depended strongly on the river flow and tidal stage at the time of fish arrival at the river junction. Fish that arrived during ebb tides had a low entrainment probability, whereas fish that arrived during flood tides (i.e., when the river's flow was reversed) had a high probability of entering the interior Delta. We coupled our entrainment model with a flow simulation model to evaluate the effect of nighttime closures of the Delta Cross Channel gates on the daily probability of fish entrainment into the interior Delta. Relative to 24-h gate closures, nighttime closures increased daily entrainment probability by 3 percentage points on average if fish arrived at the river junction uniformly throughout the day and by only 1.3 percentage points if 85% of fish arrived at night. We illustrate how our model can be used to

  5. Measured flow and tracer-dye data showing the anthropogenic effects on the hydrodynamics of south Sacramento-San Joaquin Delta, California, spring 1996 and 1997

    USGS Publications Warehouse

    Oltmann, Richard N.

    1998-01-01

    Tidal flows were measured using acoustic Doppler current profilers and ultrasonic velocity meters during spring 1996 and 1997 in south Sacramento-San Joaquin Delta, California, when (1) a temporary barrier was installed at the head of Old River to prevent the entrance of migrating San Joaquin River salmon smolts, (2) the rate of water export from the south Delta was reduced for an extended period of time, and (3) a 30-day pulse flow was created on the San Joaquin River to move salmon smolts north away from the export facilities during spring 1997. Tracer-dye measurements also were made under these three conditions.

  6. Chinese mitten crab surveys of San Joaquin River basin and Suisun Marsh, California, 2000

    USGS Publications Warehouse

    May, Jason T.; Brown, Larry R.

    2001-01-01

    Juvenile Chinese mitten crabs (Eriocheir sinensis) are known to use both brackish and freshwater habitats as rearing areas. The objectives of this study were to examine the habitat use and potential effects of mitten crabs in the freshwater habitats of the San Joaquin River drainage up-stream of the Sacramento-San Joaquin Delta. After several unsuccessful attempts to catch or observe mitten crabs by trapping, electrofishing, and visual observations, the study was redirected to determine the presence of crabs in the San Joaquin River (in the vicinity of Mossdale) and Suisun Marsh. Monthly surveys using baited traps in the San Joaquin River were done from June through November 2000 and in the Suisun Marsh from August through October 2000. No mitten crabs were caught in the San Joaquin River Basin and only one mitten crab was caught in Suisun Marsh. Surveys were conducted at 92 locations in the San Joaquin River Basin by deploying 352 traps for 10,752 hours of trapping effort; in Suisun Marsh, 34 locations were investigated by deploying 150 traps for 3,600 hours of trapping effort. The baited traps captured a variety of organisms, including catfishes (Ictularidae), yellowfin gobies (Acantho-gobius flavimanus), and crayfish (Decapoda). It is unclear whether the failure to capture mitten crabs in the San Joaquin River Basin and Suisun Marsh was due to ineffective trapping methods, or repre-sents a general downward trend in populations of juvenile mitten crabs in these potential rearing areas or a temporary decline related to year-class strength. Available data (since 1998) on the number of mitten crabs entrained at federal and state fish salvage facilities indicate a downward trend in the number of crabs, which may indicate a declining trend in use of the San Joaquin River Basin by juvenile mitten crabs. Continued monitoring for juvenile Chinese mitten crabs in brackish and freshwater portions of the Sacramento-San Joaquin River Basins is needed to better assess the

  7. Statistical models of temperature in the Sacramento-San Joaquin delta under climate-change scenarios and ecological implications

    USGS Publications Warehouse

    Wagner, R.W.; Stacey, M.; Brown, L.R.; Dettinger, M.

    2011-01-01

    Changes in water temperatures caused by climate change in California's Sacramento-San Joaquin Delta will affect the ecosystem through physiological rates of fishes and invertebrates. This study presents statistical models that can be used to forecast water temperature within the Delta as a response to atmospheric conditions. The daily average model performed well (R2 values greater than 0.93 during verification periods) for all stations within the Delta and San Francisco Bay provided there was at least 1 year of calibration data. To provide long-term projections of Delta water temperature, we forced the model with downscaled data from climate scenarios. Based on these projections, the ecological implications for the delta smelt, a key species, were assessed based on temperature thresholds. The model forecasts increases in the number of days above temperatures causing high mortality (especially along the Sacramento River) and a shift in thermal conditions for spawning to earlier in the year. ?? 2011 The Author(s).

  8. 76 FR 9709 - Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Bay Delta Estuary is the hub of California's water distribution system, supplying some or all of the... Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary AGENCY... interested parties on possible EPA actions to address water quality conditions affecting aquatic resources in...

  9. Modeling pesticide loadings from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zhang, M.

    2016-12-01

    The Sacramento-San Joaquin Delta is an ecologically rich, hydrologically complex area that serves as the hub of California's water supply. However, pesticides have been routinely detected in the Delta waterways, with concentrations exceeding the benchmark for the protection of aquatic life. Pesticide loadings into the Delta are partially attributed to the San Joaquin watershed, a highly productive agricultural watershed located upstream. Therefore, this study aims to simulate pesticide loadings to the Delta by applying the Soil and Water Assessment Tool (SWAT) model to the San Joaquin watershed, under the support of the USDA-ARS Delta Area-Wide Pest Management Program. Pesticide use patterns in the San Joaquin watershed were characterized by combining the California Pesticide Use Reporting (PUR) database and GIS analysis. Sensitivity/uncertainty analyses and multi-site calibration were performed in the simulation of stream flow, sediment, and pesticide loads along the San Joaquin River. Model performance was evaluated using a combination of graphic and quantitative measures. Preliminary results indicated that stream flow was satisfactorily simulated along the San Joaquin River and the major eastern tributaries, whereas stream flow was less accurately simulated in the western tributaries, which are ephemeral small streams that peak during winter storm events and are mainly fed by irrigation return flow during the growing season. The most sensitive parameters to stream flow were CN2, SOL_AWC, HRU_SLP, SLSUBBSN, SLSOIL, GWQMN and GW_REVAP. Regionalization of parameters is important as the sensitivity of parameters vary significantly spatially. In terms of evaluation metric, NSE tended to overrate model performance when compared to PBIAS. Anticipated results will include (1) pesticide use pattern analysis, (2) calibration and validation of stream flow, sediment, and pesticide loads, and (3) characterization of spatial patterns and temporal trends of pesticide yield.

  10. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    USDA-ARS?s Scientific Manuscript database

    Quantitative information on pesticide loading into the Sacramento-San Joaquin Delta waterways of northern California is critical for water resource management in the region, and potentially useful for biological weed control planning. The San Joaquin watershed, an agriculturally intensive area, is a...

  11. Fish communities of the Sacramento River Basin: Implications for conservation of native fishes in the Central Valley, California

    USGS Publications Warehouse

    May, J.T.; Brown, L.R.

    2002-01-01

    The associations of resident fish communities with environmental variables and stream condition were evaluated at representative sites within the Sacramento River Basin, California between 1996 and 1998 using multivariate ordination techniques and by calculating six fish community metrics. In addition, the results of the current study were compared with recent studies in the San Joaquin River drainage to provide a wider perspective of the condition of resident fish communities in the Central Valley of California as a whole. Within the Sacramento drainage, species distributions were correlated with elevational and substrate size gradients; however, the elevation of a sampling site was correlated with a suite of water-quality and habitat variables that are indicative of land use effects on physiochemical stream parameters. Four fish community metrics - percentage of native fish, percentage of intolerant fish, number of tolerant species, and percentage of fish with external anomalies - were responsive to environmental quality. Comparisons between the current study and recent studies in the San Joaquin River drainage suggested that differences in water-management practices may have significant effects on native species fish community structure. Additionally, the results of the current study suggest that index of biotic integrity-type indices can be developed for the Sacramento River Basin and possibly the entire Central Valley, California. The protection of native fish communities in the Central Valley and other arid environments continues to be a conflict between human needs for water resources and the requirements of aquatic ecosystems; preservation of these ecosystems will require innovative management strategies.

  12. Metals transport in the Sacramento River, California, 1996-1997; Volume 2: Interpretation of metal loads

    USGS Publications Warehouse

    Alpers, Charles N.; Antweiler, Ronald C.; Taylor, Howard E.; Dileanis, Peter D.; Domagalski, Joseph L.

    2000-01-01

    Metals transport in the Sacramento River, northern California, from July 1996 to June 1997 was evaluated in terms of metal loads from samples of water and suspended colloids that were collected on up to six occasions at 13 sites in the Sacramento River Basin. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions, respectively. This study focused primarily on loads of cadmium, copper, lead, and zinc, with secondary emphasis on loads of aluminum, iron, and mercury.Trace metals in acid mine drainage from abandoned and inactive base-metal mines, in the East and West Shasta mining districts, enter the Sacramento River system in predominantly dissolved form into both Shasta Lake and Keswick Reservoir. The proportion of trace metals that was dissolved (as opposed to colloidal) in samples collected at Shasta and Keswick dams decreased in the order zinc ≈ cadmium > copper > lead. At four sampling sites on the Sacramento River--71, 256, 360, and 412 kilometers downstream of Keswick Dam--trace-metal loads were predominantly colloidal during both high- and low-flow conditions. The proportion of total cadmium, copper, lead, and zinc loads transported to San Francisco Bay and the Sacramento-San Joaquin Delta estuary (referred to as the Bay-Delta) that is associated with mineralized areas was estimated by dividing loads at Keswick Dam by loads 412 kilometers downstream at Freeport and the Yolo Bypass. During moderately high flows in December 1996, mineralization-related total (dissolved + colloidal) trace-metal loads to the Bay-Delta (as a percentage of total loads measured downstream) were cadmium, 87 percent; copper, 35 percent; lead, 10 percent; and zinc, 51 percent. During flood conditions in January 1997 loads were cadmium, 22 percent; copper, 11 percent; lead, 2 percent; and zinc, 15

  13. Occurrence and transport of total mercury and methyl mercury in the Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1999-01-01

    Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada, east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation are known to occur in stagnant wetland

  14. 78 FR 6814 - Notice of Intent to Prepare an Environmental Impact Statement for the Sacramento-San Joaquin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... an Environmental Impact Statement for the Sacramento-San Joaquin Delta Islands and Levees Feasibility... Sacramento-San Joaquin Delta Islands and Levees Feasibility Study (Delta Study). The EIS will be prepared in... environmental analysis should be received at (see ADDRESSES) by March 15, 2013. ADDRESSES: Written comments...

  15. The Middle Sacramento River: Human Impacts on Physical and Ecological Processes Along a Meandering River

    Treesearch

    Koll Buer; Dave Forwalter; Mike Kissel; Bill Stohlert

    1989-01-01

    Native plant and wildlife communities along Northern California's middle Sacramento River (Red Bluff to Colusa) originally adapted to a changing pattern of erosion and deposition across a broad meander belt. The erosion-deposition process was in balance, with the river alternately building and eroding terraces. Human-induced changes to the Sacramento River,...

  16. The economic value of Trinity River water

    USGS Publications Warehouse

    Douglas, A.J.; Taylor, J.G.

    1999-01-01

    The Trinity River, largest tributary of the Klamath River, has its head-waters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the Sacramento River, and power production at three of these installations would diminish if no Trinity River water were diverted to the Sacramento River. After Trinity River water reaches the Sacramento River, it flows toward the Sacramento-San Joaquin Delta and San Francisco Bay. Trinity River water is pumped via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The social cost of putting more water down the Trinity River is the sum of the value of the foregone consumer surplus from hydropower production as well as the value of the foregone irrigation water. Sharply diminished instream flows have also severely affected the size and robustness of Trinity River salmon, steelhead, shad and sturgeon runs. Survey data were used to estimate the non-market benefits of augmenting Trinity River instream flows by letting more water flow down the Trinity and moving less water to the Sacramento River. Preservation benefits for Trinity River instream flows and fish runs are $803 million per annum for the scenario that returns the most water down the Trinity River, a value that greatly exceeds the social cost estimate.The Trinity River, largest tributary of the Klamath River, has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the

  17. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    NASA Astrophysics Data System (ADS)

    Bubenheim, D.; Potter, C. S.; Zhang, M.; Madsen, J.

    2017-12-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern and Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant management in the California Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they improve decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  18. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    NASA Technical Reports Server (NTRS)

    Bubenheim, David; Potter, Christopher; Zhang, Minghua; Madsen, John

    2017-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern to Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant in the Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they are improving decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  19. Mercury concentrations and loads in a large river system tributary to San Francisco Bay, California, USA

    USGS Publications Warehouse

    David, N.; McKee, L.J.; Black, F.J.; Flegal, A.R.; Conaway, C.H.; Schoellhamer, D.H.; Ganju, N.K.

    2009-01-01

    In order to estimate total mercury (HgT) loads entering San Francisco Bay, USA, via the Sacramento-San Joaquin River system, unfiltered water samples were collected between January 2002 and January 2006 during high flow events and analyzed for HgT. Unfiltered HgT concentrations ranged from 3.2 to 75 ng/L and showed a strong correlation (r2 = 0.8, p < 0.001, n = 78) to suspended sediment concentrations (SSC). During infrequent large floods, HgT concentrations relative to SSC were approximately twice as high as observed during smaller floods. This difference indicates the transport of more Hg-contaminated particles during high discharge events. Daily HgT loads in the Sacramento-San Joaquin River at Mallard Island ranged from below the limit of detection to 35 kg. Annual HgT loads varied from 61 ?? 22 kg (n = 5) in water year (WY) 2002 to 470 ?? 170 kg (n = 25) in WY 2006. The data collected will assist in understanding the long-term recovery of San Francisco Bay from Hg contamination and in implementing the Hg total maximum daily load, the long-term cleanup plan for Hg in the Bay. ?? 2009 SETAC.

  20. California coastal processes study: Skylab. [San Pablo and San Francisco Bays

    NASA Technical Reports Server (NTRS)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In San Pablo Bay, the patterns of dredged sediment discharges were plotted over a three month period. It was found that lithogenous particles, kept in suspension by the fresh water from the Sacramento-San Joaquin, were transported downstream to the estuarine area at varying rates depending on the river discharge level. Skylab collected California coastal imagery at limited times and not at constant intervals. Resolution, however, helped compensate for lack of coverage. Increased spatial and spectral resolution provided details not possible utilizing Landsat imagery. The S-192 data was reformatted; band by band image density stretching was utilized to enhance sediment discharge patterns entrainment, boundaries, and eddys. The 26 January 1974 Skylab 4 imagery of San Francisco Bay was taken during an exceptionally high fresh water and suspended sediment discharge period. A three pronged surface sediment pattern was visible where the Sacramento-San Joaquin Rivers entered San Pablo Bay through Carquinez Strait.

  1. Imaging P and S attenuation in the Sacramento-San Joaquin Delta region, northern California

    USGS Publications Warehouse

    Eberhart-Phillips, Donna; Thurber, Clifford; Fletcher, Jon Peter B.

    2014-01-01

    We obtain 3-D Qp and Qs models for the Delta region of the Sacramento and San Joaquin Rivers, a large fluvial-agricultural portion of the Great Valley located between the Sierra Nevada batholith and the San Francisco Bay - Coast Ranges region of active faulting. Path attenuation t* values have been obtained for P and S data from 124 distributed earthquakes, with a longer variable window for S based on the energy integral. We use frequency dependence of 0.5 consistent with other studies, and weakly favored by the t* S data. A regional initial model was obtained by solving for Q as a function of velocity. In the final model, the Great Valley basin has low Q with very low Q (<50) for the shallowest portion of the Delta. There is an underlying strong Q contrast to the ophiolite basement which is thickest with highest Q under the Sacramento basin, and a change in structure is apparent across the Suisun Bay as a transition to thinner ophiolite. Moderately low Q is found in the upper crust west of the Delta region along the faults in the eastern North Bay Area, while, moderately high Q is found south of the Delta, implying potentially stronger ground motion for earthquake sources to the south. Very low Q values in the shallow crust along parts of the major fault zones may relate to sediment and abundant microfractures. In the lower crust below the San Andreas and Calaveras-Hayward-Rodgers Creek fault zones, the observed low Q is consistent with grain-size reduction in ductile shear zones and is lowest under the San Andreas which has large cumulative strain. Similarly moderately low Q in the ductile lower crust of the Bay Area block between the major fault zones implies a broad distributed shear zone.

  2. Exploring SWOT discharge algorithm accuracy on the Sacramento River

    NASA Astrophysics Data System (ADS)

    Durand, M. T.; Yoon, Y.; Rodriguez, E.; Minear, J. T.; Andreadis, K.; Pavelsky, T. M.; Alsdorf, D. E.; Smith, L. C.; Bales, J. D.

    2012-12-01

    Scheduled for launch in 2019, the Surface Water and Ocean Topography (SWOT) satellite mission will utilize a Ka-band radar interferometer to measure river heights, widths, and slopes, globally, as well as characterize storage change in lakes and ocean surface dynamics with a spatial resolution ranging from 10 - 70 m, with temporal revisits on the order of a week. A discharge algorithm has been formulated to solve the inverse problem of characterizing river bathymetry and the roughness coefficient from SWOT observations. The algorithm uses a Bayesian Markov Chain estimation approach, treats rivers as sets of interconnected reaches (typically 5 km - 10 km in length), and produces best estimates of river bathymetry, roughness coefficient, and discharge, given SWOT observables. AirSWOT (the airborne version of SWOT) consists of a radar interferometer similar to SWOT, but mounted aboard an aircraft. AirSWOT spatial resolution will range from 1 - 35 m. In early 2013, AirSWOT will perform several flights over the Sacramento River, capturing river height, width, and slope at several different flow conditions. The Sacramento River presents an excellent target given that the river includes some stretches heavily affected by management (diversions, bypasses, etc.). AirSWOT measurements will be used to validate SWOT observation performance, but are also a unique opportunity for testing and demonstrating the capabilities and limitations of the discharge algorithm. This study uses HEC-RAS simulations of the Sacramento River to first, characterize expected discharge algorithm accuracy on the Sacramento River, and second to explore the required AirSWOT measurements needed to perform a successful inverse with the discharge algorithm. We focus on several specific research questions affecting algorithm performance: 1) To what extent do lateral inflows confound algorithm performance? We examine the ~100 km stretch of river from Colusa, CA to the Yolo Bypass, and investigate how the

  3. Effects of the proposed California WaterFix North Delta Diversion on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Delta, northern California

    USGS Publications Warehouse

    Perry, Russell W.; Pope, Adam C.

    2018-05-11

    The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3 /s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta. In this report, we conduct four analyses to investigate the effect of the NDD and its proposed operation on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha). All analyses used the results of a Bayesian survival model that allowed us to simulate travel time, migration routing, and survival of juvenile Chinook salmon migrating through the Delta in response to NDD operations, which affected both inflows to the Delta and operation of the Delta Cross Channel (DCC). For the first analysis, we evaluated the effect of the NDD bypass rules on salmon survival. The NDD bypass rules are a set of operational rule curves designed to provide adaptive levels of fish protection by defining allowable diversion rates as a function of (1) Sacramento River discharge as measured at Freeport, and (2) time of year when endangered runs requiring the most protection are present. We determined that all bypass rule curves except constant low-level pumping (maximum diversion of 900 ft3 /s) could cause a sizeable decrease in survival by as

  4. Determination of channel capacity of the Mokelumne River downstream from Camanche Dam, San Joaquin and Sacramento Counties, California

    USGS Publications Warehouse

    Simpson, R.G.

    1972-01-01

    This study evaluates the adequacy of a 39-mile reach of the Mokelumne River in San Joaquin and Sacramento Counties, California, to carry planned flood releases between Camanche Reservoir and the Bensons Ferry Bridge near Thornton. The flood releases from Camanche Reservoir are to be restricted, insofar as possible, so that the flows in the Mokelumne River will not exceed 5,000 cfs (cubic feet per second) as measured at the gaging station below Camanche Dam. Areas of inundation and computed floodwater profiles are based on channel conditions in late 1970 and on observed water-surface profiles during flood releases of about 5,000 cfs in January 1969 and January 1970. The inundated area shown on the maps (appendix A) and the water-surface elevations indicated on the cross sections (appendix G) are for the flood releases of those dates. The following conclusions are contingent on there being no levee failures during periods of high flow and no significant channel changes since the flood release of January 1970. 1. High tides in San Francisco Bay and, to a greater degree, flood stages on the Cosumnes River, cause backwater in the study reach. Severe backwater conditions occurring simultaneously with a flow of 5,000 cfs in the Mokelumne River can increase the flood stage 4 to 6 feet at Bensons Ferry Bridge (cross section 1). Backwater effects decrease in an upstream direction and are less than 0.5 foot at cross section 35, a river distance of 8.6 miles upstream from cross section 1, and 1.5 miles downstream from the Peltier Road bridge. 2. In the reach between cross sections 1 and 35, a 5,000 cfs release from Camanche Reservoir with maximum backwater effect (measured at cross section 1 at the mouth of the Cosumnes River) is confined within the natural or leveed banks except on the right bank flood plain between cross sections 12 and 19. 3. Upstream from cross section 35, there is overbank flooding at a flow of 5,000 cfs between cross sections 48 and 51, and 62 and 67

  5. 234U/238U and δ87Sr in peat as tracers of paleosalinity in the Sacramento-San Joaquin Delta of California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Paces, James B.; Alpers, Charles N.; Windham-Myers, Lisamarie; Neymark, Leonid; Bullen, Thomas D.; Taylor, Howard E.

    2013-01-01

    The purpose of this study was to determine the history of paleosalinity over the past 6000+ years in the Sacramento-San Joaquin Delta (the Delta), which is the innermost part of the San Francisco Estuary. We used a combination of Sr and U concentrations, d87Sr values, and 234U/238U activity ratios (AR) in peat as proxies for tracking paleosalinity. Peat cores were collected in marshes on Browns Island, Franks Wetland, and Bacon Channel Island in the Delta. Cores were dated using 137Cs, the onset of Pb and Hg contamination from hydraulic gold mining, and 14C. A proof of concept study showed that the dominant emergent macrophyte and major component of peat in the Delta, Schoenoplectus spp., incorporates Sr and U and that the isotopic composition of these elements tracks the ambient water salinity across the Estuary. Concentrations and isotopic compositions of Sr and U in the three main water sources contributing to the Delta (seawater, Sacramento River water, and San Joaquin River water) were used to construct a three-end-member mixing model. Delta paleosalinity was determined by examining variations in the distribution of peat samples through time within the area delineated by the mixing model. The Delta has long been considered a tidal freshwater marsh region, but only peat samples from Franks Wetland and Bacon Channel Island have shown a consistently fresh signal (<0.5 ppt) through time. Therefore, the eastern Delta, which occurs upstream from Bacon Channel Island along the San Joaquin River and its tributaries, has also been fresh for this time period. Over the past 6000+ years, the salinity regime at the western boundary of the Delta (Browns Island) has alternated between fresh and oligohaline (0.5-5 ppt).

  6. USGS science at work in the San Francisco Bay and Sacramento-San Joaquin Delta estuary

    USGS Publications Warehouse

    Shouse, Michelle K.; Cox, Dale A.

    2013-01-01

    The San Francisco Bay and Sacramento-San Joaquin Delta form one of the largest estuaries in the United States. The “Bay-Delta” system provides water to more than 25 million California residents and vast farmlands, as well as key habitat for birds, fish, and other wildlife. To help ensure the health of this crucial estuary, the U.S. Geological Survey, in close cooperation with partner agencies and organizations, is providing science essential to addressing societal issues associated with water quantity and quality, sediment transportation, environmental contamination, animal health and status, habitat restoration, hazards, ground subsidence, and climate change.

  7. Improved error estimates of a discharge algorithm for remotely sensed river measurements: Test cases on Sacramento and Garonne Rivers

    NASA Astrophysics Data System (ADS)

    Yoon, Yeosang; Garambois, Pierre-André; Paiva, Rodrigo C. D.; Durand, Michael; Roux, Hélène; Beighley, Edward

    2016-01-01

    We present an improvement to a previously presented algorithm that used a Bayesian Markov Chain Monte Carlo method for estimating river discharge from remotely sensed observations of river height, width, and slope. We also present an error budget for discharge calculations from the algorithm. The algorithm may be utilized by the upcoming Surface Water and Ocean Topography (SWOT) mission. We present a detailed evaluation of the method using synthetic SWOT-like observations (i.e., SWOT and AirSWOT, an airborne version of SWOT). The algorithm is evaluated using simulated AirSWOT observations over the Sacramento and Garonne Rivers that have differing hydraulic characteristics. The algorithm is also explored using SWOT observations over the Sacramento River. SWOT and AirSWOT height, width, and slope observations are simulated by corrupting the "true" hydraulic modeling results with instrument error. Algorithm discharge root mean square error (RMSE) was 9% for the Sacramento River and 15% for the Garonne River for the AirSWOT case using expected observation error. The discharge uncertainty calculated from Manning's equation was 16.2% and 17.1%, respectively. For the SWOT scenario, the RMSE and uncertainty of the discharge estimate for the Sacramento River were 15% and 16.2%, respectively. A method based on the Kalman filter to correct errors of discharge estimates was shown to improve algorithm performance. From the error budget, the primary source of uncertainty was the a priori uncertainty of bathymetry and roughness parameters. Sensitivity to measurement errors was found to be a function of river characteristics. For example, Steeper Garonne River is less sensitive to slope errors than the flatter Sacramento River.

  8. 77 FR 75556 - Safety Zone; Sacramento New Year's Eve Fireworks Display, Sacramento River, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... navigable waters of the Sacramento River near positions 38[deg]34'48.26'' N, 121[deg]30'38.52'' W (NAD 83) and 38[deg]34'49.84'' N, 121[deg]30'29.59'' W (NAD 83). Upon the commencement of the first fireworks....26'' N, 121[deg]30'38.52'' W (NAD 83) within a radius of 1,000 feet. Upon the commencement of the...

  9. Mercury and methylmercury in water and sediment of the Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, Joseph L.

    2001-01-01

    Mercury (Hg) and methylmercury (CH3Hg+) concentrations in streambed sediment and water were determined at 27 locations throughout the Sacramento River Basin, CA. Mercury in sediment was elevated at locations downstream of either Hg mining or Au mining activities where Hg was used in the recovery of Au. Methylmercury in sediment was highest (2.84 ng/g) at a location with the greatest wetland land cover, in spite of lower total Hg at that site relative to other river sites. Mercury in unfiltered water was measured at 4 locations on the Sacramento River and at tributaries draining the mining regions, as well as agricultural regions. The highest levels of Hg in unfiltered water (2248 ng/l) were measured at a site downstream of a historic Hg mining area, and the highest levels at all sites were measured in samples collected during high streamflow when the levels of suspended sediment were also elevated. Mercury in unfiltered water exceeded the current federal and state recommended criterion for protection of aquatic life (50 ng/l as total Hg in unfiltered water) only during high streamflow conditions. The highest loading of Hg to the San Francisco Bay system was attributed to sources within the Cache Creek watershed, which are downstream of historic Hg mines, and to an unknown source or sources to the mainstem of the Sacramento River upstream of historic Au mining regions. That unknown source is possibly associated with a volcanic deposit. Methylmercury concentrations also were dependent on season and hydrologic conditions. The highest levels (1.98 ng/l) in the Sacramento River, during the period of study, were measured during a major flood event. The reactivity of Hg in unfiltered water was assessed by measuring the amount available for reaction by a strong reducing agent. Although most Hg was found to be nonreactive, the highest reactivity (7.8% of the total Hg in water) was measured in the sample collected from the same site with high CH3Hg+ in sediment, and during

  10. Sources, bioavailability, and photoreactivity of dissolved organic carbon in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Stepanauskas, R.; Moran, M.A.; Bergamaschi, B.A.; Hollibaugh, J.T.

    2005-01-01

    We analyzed bioavailability, photoreactivity, fluorescence, and isotopic composition of dissolved organic carbon (DOC) collected at 13 stations in the Sacramento-San Joaquin River Delta during various seasons to estimate the persistence of DOC from diverse shallow water habitat sources. Prospective large-scale wetland restorations in the Delta may change the amount of DOC available to the food web as well as change the quality of Delta water exported for municipal use. Our study indicates that DOC contributed by Delta sources is relatively refractory and likely mostly the dissolved remnants of vascular plant material from degrading soils and tidal marshes rather than phytoplankton production. Therefore, the prospective conversion of agricultural land into submerged, phytoplankton-dominated habitats may reduce the undesired export of DOC from the Delta to municipal users. A median of 10% of Delta DOC was rapidly utilizable by bacterioplankton. A moderate dose of simulated solar radiation (286 W m-2 for 4 h) decreased the DOC bioavailability by an average of 40%, with a larger relative decrease in samples with higher initial DOC bioavailability. Potentially, a DOC-based microbial food web could support ???0.6 ?? 109 g C of protist production in the Delta annually, compared to ???17 ?? 109 g C phytoplankton primary production. Thus, DOC utilization via the microbial food web is unlikely to play an important role in the nutrition of Delta zooplankton and fish, and the possible decrease in DOC concentration due to wetland restoration is unlikely to have a direct effect on Delta fish productivity. ?? Springer 2005.

  11. Pesticides in surface water measured at select sites in the Sacramento River basin, California, 1996-1998

    USGS Publications Warehouse

    Domagalski, Joseph L.

    2000-01-01

    Pesticides were measured in one urban stream, one agricultural stream, one site on the Sacramento River, and one large flood control channel over a period of 18 months during 1996-1998. All sites were located within the Sacramento River Basin of California. Measurements were made on 83 pesticides or pesticide transformation products by either gas chromatography/mass spectrometry or by high performance liquid chromatography with ultraviolet light spectrometry. Some pesticides were detected frequently at the agricultural stream and downstream in the Sacramento River and at the flood control channel of the Sacramento River. These were pesticides related to rice farming (molinate, carbofuran, thiobencarb, and bentazon); herbicides used both agriculturally or for roadside maintenance (diuron, simazine, and metolachlor); or insecticides used on orchards and row corps (diazinon and chlorpyrifos). No pesticide concen-trations above enforceable water quality criteria were measured at either the agricultural site or the Sacramento River sites. In contrast to the agricul-tural site, insecticides used for household, lawn, or garden maintenance were the most frequently detected pesticides at the urban site. Diazinon, an organophosphate insecticide, exceeded recom-mended criteria for the protection of aquatic life, and the diazinon levels were frequently above known toxic levels for certain zooplankton species at the urban site. Because of the low discharge of the urban stream, pesticide concentrations were greatly diluted upon mixing with Sacramento River water.

  12. Distribution and geochemistry of selected trace elements in the Sacramento River near Keswick Reservoir

    USGS Publications Warehouse

    Antweiler, Ronald C.; Taylor, Howard E.; Alpers, Charles N.

    2012-01-01

    The effect of heavy metals from the Iron Mountain Mines (IMM) Superfund site on the upper Sacramento River is examined using data from water and bed sediment samples collected during 1996-97. Relative to surrounding waters, aluminum, cadmium, cobalt, copper, iron, lead, manganese, thallium, zinc and the rare-earth elements (REE) were all present in high concentrations in effluent from Spring Creek Reservoir (SCR), which enters into the Sacramento River in the Spring Creek Arm of Keswick Reservoir. SCR was constructed in part to regulate the flow of acidic, metal-rich waters draining the IMM Superfund site. Although virtually all of these metals exist in SCR in the dissolved form, upon entering Keswick Reservoir they at least partially converted via precipitation and/or adsorption to the particulate phase. In spite of this, few of the metals settled out; instead the vast majority was transported colloidally down the Sacramento River at least to Bend Bridge, 67. km from Keswick Dam.The geochemical influence of IMM on the upper Sacramento River was variable, chiefly dependent on the flow of Spring Creek. Although the average flow of the Sacramento River at Keswick Dam is 250m 3/s (cubic meters per second), even flows as low as 0.3m 3/s from Spring Creek were sufficient to account for more than 15% of the metals loading at Bend Bridge, and these proportions increased with increasing Spring Creek flow.The dissolved proportion of the total bioavailable load was dependent on the element but steadily decreased for all metals, from near 100% in Spring Creek to values (for some elements) of less than 1% at Bend Bridge; failure to account for the suspended sediment load in assessments of the effect of metals transport in the Sacramento River can result in estimates which are low by as much as a factor of 100. ?? 2012.

  13. Distribution and geochemistry of selected trace elements in the Sacramento River near Keswick Reservoir

    USGS Publications Warehouse

    Antweiler, Ronald C.; Taylor, Howard E.; Alpers, Charles N.

    2012-01-01

    The effect of heavy metals from the Iron Mountain Mines (IMM) Superfund site on the upper Sacramento River is examined using data from water and bed sediment samples collected during 1996-97. Relative to surrounding waters, aluminum, cadmium, cobalt, copper, iron, lead, manganese, thallium, zinc and the rare-earth elements (REE) were all present in high concentrations in effluent from Spring Creek Reservoir (SCR), which enters into the Sacramento River in the Spring Creek Arm of Keswick Reservoir. SCR was constructed in part to regulate the flow of acidic, metal-rich waters draining the IMM Superfund site. Although virtually all of these metals exist in SCR in the dissolved form, upon entering Keswick Reservoir they at least partially converted via precipitation and/or adsorption to the particulate phase. In spite of this, few of the metals settled out; instead the vast majority was transported colloidally down the Sacramento River at least to Bend Bridge, 67 km from Keswick Dam. The geochemical influence of IMM on the upper Sacramento River was variable, chiefly dependent on the flow of Spring Creek. Although the average flow of the Sacramento River at Keswick Dam is 250 m3/s (cubic meters per second), even flows as low as 0.3 m3/s from Spring Creek were sufficient to account for more than 15% of the metals loading at Bend Bridge, and these proportions increased with increasing Spring Creek flow. The dissolved proportion of the total bioavailable load was dependent on the element but steadily decreased for all metals, from near 100% in Spring Creek to values (for some elements) of less than 1% at Bend Bridge; failure to account for the suspended sediment load in assessments of the effect of metals transport in the Sacramento River can result in estimates which are low by as much as a factor of 100.

  14. Characterizing Flow and Suspended Sediment Trends in the Sacramento River Basin, CA Using Hydrologic Simulation Program - FORTRAN (HSPF)

    NASA Astrophysics Data System (ADS)

    Stern, M. A.; Flint, L. E.; Flint, A. L.; Wright, S. A.; Minear, J. T.

    2014-12-01

    A watershed model of the Sacramento River Basin, CA was developed to simulate streamflow and suspended sediment transport to the San Francisco Bay Delta (SFBD) for fifty years (1958-2008) using the Hydrological Simulation Program - FORTRAN (HSPF). To compensate for the large model domain and sparse data, rigorous meteorological development and characterization of hydraulic geometry were employed to spatially distribute climate and hydrologic processes in unmeasured locations. Parameterization techniques sought to include known spatial information for tributaries such as soil information and slope, and then parameters were scaled up or down during calibration to retain the spatial characteristics of the land surface in un-gaged areas. Accuracy was assessed by comparing model calibration to measured streamflow. Calibration and validation of the Sacramento River ranged from "good" to "very good" performance based upon a "goodness-of-fit" statistical guideline. Model calibration to measured sediment loads were underestimated on average by 39% for the Sacramento River, and model calibration to suspended sediment concentrations were underestimated on average by 22% for the Sacramento River. Sediment loads showed a slight decreasing trend from 1958-2008 and was significant (p < 0.0025) in the lower 50% of stream flows. Hypothetical climate change scenarios were developed using the Climate Assessment Tool (CAT). Several wet and dry scenarios coupled with temperature increases were imposed on the historical base conditions to evaluate sensitivity of streamflow and sediment on potential changes in climate. Wet scenarios showed an increase of 9.7 - 17.5% in streamflow, a 7.6 - 17.5% increase in runoff, and a 30 - 93% increase in sediment loads. The dry scenarios showed a roughly 5% decrease in flow and runoff, and a 16 - 18% decrease in sediment loads. The base hydrology was most sensitive to a temperature increase of 1.5 degrees Celsius and an increase in storm intensity and

  15. Middle Sacramento River Refuge: A Feasibility Study

    Treesearch

    Charles J. Houghten; Frank J. Michny

    1989-01-01

    The woodlands and other streamside habitat of the Sacramento River's riparian system have been severely reduced within the last century. This riparian habitat and its ability to sustain diverse populations of fish, migratory birds, mammals, and other wildlife have been significantly impacted by water control projects, agricultural developments, and other land uses...

  16. Fate and transport of metam spill in Sacramento river

    USGS Publications Warehouse

    Wang, P.-F.; Mill, T.; Martin, J.L.; Wool, T.A.

    1997-01-01

    A mass balance model was developed and applied to the Sacramento River in northern California during the July 1991 Sacramento River metam-sodium spill. The transport and reactions of metam-sodium, a soil fumigant, and the volatile and toxic methyl isothiocyanate (MITC) were simulated during the two-and-a-half days of movement along a 68-km stretch of river. Results from modeling were compared with field data for MITC, which is the only product measured downriver after the spill. Agreement between the simulated and measured values of MITC concentrations were found at Doney Creek (65.9 km downstream). Results illuminated the complexities and unique characteristics associated with the multiple kinetic processes of the chemical plume in the river. In particular, the photolysis of metam-sodium followed zero-order kinetics for high concentrations and first-order kinetics for low concentrations, a unique phenomenon consistent with the finding reported in a laboratory study. Concentrations of metam-sodium for transition from zero- to first-order, obtained by calibration and model sensitivity analyses, were in the same range as those in the reported laboratory results. ??ASCE.

  17. The nature of organic carbon in density-fractionated sediments in the Sacramento-San Joaquin River Delta (California)

    NASA Astrophysics Data System (ADS)

    Wakeham, S. G.; Canuel, E. A.

    2016-02-01

    Rivers are the primary means by which sediments and carbon are transported from the terrestrial biosphere to the oceans but gaps remain in our understanding of carbon associations from source to sink. Bed sediments from the Sacramento-San Joaquin River Delta (CA) were fractionated according to density and analyzed for sediment mass distribution, elemental (C and N) composition, mineral surface area, and stable carbon and radiocarbon isotope compositions of organic carbon (OC) and fatty acids to evaluate the nature of organic carbon in river sediments. OC was unevenly distributed among density fractions. Mass and OC were in general concentrated in mesodensity (1.6-2.0 and 2.0-2.5 g cm-3) fractions, comprising 84.0 ± 1.3 % of total sediment mass and 80.8 ± 13.3 % of total OC (TOC). Low-density (< 1.6 g cm-3) material, although rich in OC (34.0 ± 2.0 % OC) due to woody debris, constituted only 17.3 ± 12.8 % of TOC. High-density (> 2.5 g cm-3) organic-poor, mineral-rich material made-up 13.7 ± 1.4 % of sediment mass and 2.0 ± 0.9 % of TOC. Stable carbon isotope compositions of sedimentary OC were relatively uniform across bulk and density fractions (δ13C -27.4 ± 0.5 ‰). Radiocarbon content varied from Δ14C values of -382 (radiocarbon age 3800 yr BP) to +94 ‰ (modern) indicating a mix of young and old OC. Fatty acids were used to further constrain the origins of sedimentary OC. Short-chain n-C14-n-C18 fatty acids of algal origin were depleted in 13C (δ13C -37.5 to -35.2 ‰) but were enriched in 14C (Δ14C > 0) compared to long-chain n-C24-n-C28 acids of vascular plant origins with higher δ13C (-33.0 to -31.0 ‰) but variable Δ14C values (-180 and 61 ‰). These data demonstrate the potentially complex source and age distributions found within river sediments and provide insights about sediment and organic matter supply to the Delta.

  18. Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries

    USGS Publications Warehouse

    Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.

    1995-01-01

    Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.

  19. Recent research on the hydrodynamics of the Sacramento - San Joaquin River Delta and north San Francisco Bay

    USGS Publications Warehouse

    Burau, J.R.; Monismith, S.G.; Stacey, M.T.; Oltmann, R.N.; Lacy, J.R.; Schoellhamer, D.H.

    1999-01-01

    This article presents an overview of recent findings from hydrodynamic research on circulation and mixing in the Sacramento-San Joaquin Delta (Delta) (Figure 1) and North San Francisco Bay (North Bay) (Figure 2). For the purposes of this article, North Bay includes San Pablo Bay, Carquinez Strait, and Suisun Bay. The findings presented are those gained from field studies carried out by the U.S. Geological Survey (USGS), as part of the Interagency Ecological Program (IEP), and Stanford University beginning about 1993. The premise behind these studies was that a basic understanding of circulation and mixing patterns in the Bay and Delta is an essential part of understanding how biota and water quality are affected by natural hydrologic variability, water appropriation, and development activities. Data collected for the field studies described in this article have significantly improved our understanding of Bay and Delta hydrodynamics. Measured flows ,in the Delta have provided valuable information on how water moves through the Delta's network of channels and how export pumping affects flows. Studies of the shallows and shallow-channel exchange processes conducted in Honker Bay have shown that the water residence time in Honker Bay is much shorter than previously reported (on the order of hours to several tidal cycles instead ofweeks). Suisun Bay studies have provided data on hydrodynamic transport and accumulation mechanisms that operate primarily in the channels. The Suisun Bay studies have caused us to revise our understanding of residual circulation in the channels of North Bay and of "entrapment" mechanisms in the low salinity zone. Finally, detailed tidal and residual (tidally averaged) time-scale studies of the mechanisms that control gravitational circulation in the estuary show that density-driven transport in the channels is governed by turbulence time-scale (seconds) interactions between the mean flow and stratification. The hydrodynamic research

  20. Meanderbelt Dynamics of the Sacramento River, California

    Treesearch

    Michael D. Harvey

    1989-01-01

    A 160 km-long reach of Sacramento River was studied with the objective of predicting future changes in channel planform and their effects on water-surface elevations. Planform data were used to develop regression relationships between bend radius of curvature (Rc) and both short-term (5 years) and long term (90 years) lateral migration rates (MR) and migration...

  1. Effect of Climate Extremes, Seasonal Change, and Agronomic Practices on Measured Evapotranspiration and CO2 Exchange in Sacramento-San Joaquin River Delta Alfalfa Fields

    NASA Astrophysics Data System (ADS)

    Clay, J.; Kent, E. R.; Leinfelder-Miles, M.; Paw U, K. T.; Little, C.; Lambert, J. J.

    2017-12-01

    Evapotranspiration and CO2 exchange was measured in five alfalfa fields in the Sacramento-San Joaquin River Delta region from 2016 to 2017 using eddy covariance and surface renewal methods. Seasonal changes of evapotranspiration and CO2 fluxes were compared between 2016, a drought year, and 2017, a high rainfall year. Additionally, changes in evapotranspiration and CO2 flux were investigated across various agronomic considerations, such as irrigation methods (border-check flood and sub-surface), stand life, and herbicide programs. Components of the energy balance, including net radiation, latent heat, ground heat flux, and sensible heat, were evaluated considering correlations to wind speed measured by three sonic anemometers, irrigation frequency, and crop cutting cycle. Comparisons between two different types of radiometers were also carried out. Under drought conditions, we observed higher amounts of evapotranspiration in a field having a stand life of less than two years of age compared to older stands, and in a sub-surface irrigated field compared to flood irrigated fields.

  2. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  3. 75 FR 10814 - Proposed Programmatic Safe Harbor Agreement for the Sacramento River Conservation Area Forum in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ...] Proposed Programmatic Safe Harbor Agreement for the Sacramento River Conservation Area Forum in Shasta... Enhancement of Survival Permit from the Sacramento River Conservation Area Forum (applicant) under the... Conservation Area Forum under the Act (16 U.S.C 1531 et seq.). The permit application includes a proposed Safe...

  4. Investigation of several aspects of LANDSAT-4 data quality. [Sacramento, San Francisco, and NE Arkansas

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C. (Principal Investigator)

    1984-01-01

    The Thematic Mapper scene of Sacramento, CA acquired during the TDRSS test was received in TIPS format. Quadrants for both scenes were tested for band-to-band registration using reimplemented block correlation techniques. Summary statistics for band-to-band registrations of TM band combinations for Quadrant 4 of the NE Arkansas scene in TIPS format are tabulated as well as those for Quadrant 1 of the Sacramento scene. The system MTF analysis for the San Francisco scene is completed. The thermal band did not have sufficient contrast for the targets used and was not analyzed.

  5. SAN FRANCISCO ESTUARY PROJECT COMPREHENSIVE CONSERVATION AND MANAGEMENT PLAN

    EPA Science Inventory

    The Estuary, a significant natural resource, San Francisco Bay and the Delta combine to form the West Coast's largest estuary. The Estuary conveys the waters of the Sacramento and San Joaquin Rivers to the Pacific Ocean. It encompasses roughly 1,600 square miles, drains over 40 p...

  6. 7. DETAIL OF INTAKE PIER, LOOKING SOUTHWEST FROM EASTERN SACRAMENTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF INTAKE PIER, LOOKING SOUTHWEST FROM EASTERN SACRAMENTO LEVEE. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  7. Laboratory Jet Erosion Tests on the Lower American River Soil Samples, Sacramento, CA- Phase 2

    DTIC Science & Technology

    2017-05-01

    ER D C/ G SL T R- 17 -8 Laboratory Jet Erosion Tests on the Lower American River Soil Samples, Sacramento, CA – Phase 2 G eo te ch ni...Jet Erosion Tests on the Lower American River Soil Samples, Sacramento, CA – Phase 2 Johannes L. Wibowo and Bryant A. Robbins Geotechnical and...Appendix B: Soil Mechanics Data ........................................................................................................... 71

  8. Factors influencing the biogeochemistry of sedimentary carbon and phosphorus in the Sacramento-San Joaquin Delta

    USGS Publications Warehouse

    Nilsen, E.B.; Delaney, M.L.

    2005-01-01

    This study characterizes organic carbon (Corganic) and phosphorus (P) geochemistry in surface sediments of the Sacramento-San Joaquin Delta, California. Sediment cores were collected from five sites on a sample transect from the edge of the San Francisco Bay eastward to the freshwater Consumnes River. The top 8 cm of each core were analyzed (in 1-cm intervals) for Corganic, four P fractions, and redox-sensitive trace metals (uranium and manganese). Sedimentary Corganic concentrations and Corganic:P ratios decreased, while reactive P concentrations increased moving inland in the Delta. The fraction of total P represented by organic P increased inland, while that of authigenic P was higher bayward than inland reflecting increased diagenetic alteration of organic matter toward the bayward end of the transect. The redox indicator metals are consistent with decreasing sedimentary suboxia inland. The distribution of P fractions and C:P ratios reflect the presence of relatively labile organic matter in upstream surface sediments. Sediment C and P geochemistry is influenced by site-specific particulate organic matter sources, the sorptive power of the sedimentary material present, physical forcing, and early diagenetic transformations presumably driven by Corganic oxidation. ?? 2005 Estuarine Research Federation.

  9. A New Data Acquisition Portal for the Sacramento River Settlement Contractors

    NASA Astrophysics Data System (ADS)

    Narlesky, P. E., C. A.; Williams, P. E., A. M.

    2017-12-01

    In 1964, the United States Bureau of Reclamation (Reclamation) executed settlement contracts with the Sacramento River Settlement Contractors (SRSC), entities which hold water rights along the Sacramento River with area of origin protection or that are senior to Reclamation's water rights for Shasta Reservoir. Shasta is the cornerstone of the federal Central Valley Project (CVP), one of the nation's largest multi-purpose water conservation programs. In order to optimize CVP operations for multiple beneficial uses including water supply, fisheries, water quality, and waterfowl habitat, the SRSC voluntarily agreed to adaptively manage diversions throughout the year in close coordination with Reclamation. MBK Engineers assists the SRSC throughout this process by collecting, organizing, compiling, and distributing diversion data to Reclamation and others involved in operational decisions related to Shasta Reservoir and the CVP. To improve and expand participation in diversions reporting, we have developed the SRSC Web Portal, which launches a data-entry dashboard for members of the SRSC to facilitate recording and transmittal of both predicted and observed monthly and daily flow diversion data. This cloud-hosted system leverages a combination of Javascript interactive visualization libraries with a database-backed Python web framework to present streamlined data-entry forms and valuable SRSC program summary illustrations. SRSC program totals, which can now be aggregated through queries to the web-app's database backend, are used by Reclamation, SRSC, fish agencies, and others to inform operational decisions. By submitting diversion schedules and tracking actual diversions through the portal, contractors will also be directly contributing to the development of a richer and more consistently-formatted historical record for demand hydrology in the Sacramento River Watershed; this may be useful in future water supply studies. Adoption of this technology will foster an

  10. Selected trace elements in the Sacramento River, California: occurrence and distribution.

    PubMed

    Taylor, H E; Antweiler, R C; Roth, D A; Alpers, C N; Dileanis, P

    2012-05-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements-including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium-were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going

  11. Selected trace elements in the Sacramento River, California: Occurrence and distribution

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, David A.; Dileanis, Peter D.; Alpers, Charles N.

    2012-01-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements—including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium—were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going

  12. Methods of analysis and quality-assurance practices of the U.S. Geological Survey organic laboratory, Sacramento, California; determination of pesticides in water by solid-phase extraction and capillary-column gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Crepeau, Kathryn L.; Domagalski, Joseph L.; Kuivila, Kathryn

    1994-01-01

    Analytical method and quality-assurance practices were developed for a study of the fate and transport of pesticides in the Sacramento-San Joaquin Delta and the Sacramento and San Joaquin River. Water samples were filtered to remove suspended parti- culate matter and pumped through C-8 solid-phase extraction cartridges to extract the pesticides. The cartridges were dried with carbon dioxide, and the pesticides were eluted with three 2-milliliter aliquots of hexane:diethyl ether (1:1). The eluants were analyzed using capillary-column gas chromatography/mass spectrometry in full-scan mode. Method detection limits for analytes determined per 1,500-milliliter samples ranged from 0.006 to 0.047 microgram per liter. Recoveries ranged from 47 to 89 percent for 12 pesticides in organic-free, Sacramento River and San Joaquin River water samples fortified at 0.05 and 0.26 microgram per liter. The method was modified to improve the pesticide recovery by reducing the sample volume to 1,000 milliliters. Internal standards were added to improve quantitative precision and accuracy. The analysis also was expanded to include a total of 21 pesticides. The method detection limits for 1,000-milliliter samples ranged from 0.022 to 0.129 microgram per liter. Recoveries ranged from 38 to 128 percent for 21 pesticides in organic-free, Sacramento River and San Joaquin River water samples fortified at 0.10 and 0.75 microgram per liter.

  13. Pesticides and pesticide degradation products in stormwater runoff: Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1996-01-01

    Pesticides in stormwater runoff, within the Sacramento River Basin, California, were assessed during a storm that occurred in January 1994. Two organophosphate insecticides (diazinon and methidathion), two carbamate pesticides (molinate and carbofuran), and one triazine herbicide (simazine) were detected. Organophosphate pesticide concentrations increased with the rising stage of the hydrographs; peak concentrations were measured near peak discharge. Diazinon oxon, a toxic degradation product of diazinon, made up approximately 1 to 3 percent of the diazinon load. The Feather River was the principal source of organophosphate pesticides to the Sacramento River during this storm. The concentrations of molinate and carbofuran, pesticides applied to rice fields during May and June, were relatively constant during and after the storm. Their presence in surface water was attributed to the flooding and subsequent drainage, as a management practice to degrade rice stubble prior to the next planting. A photodegradation product of molinate, 4-keto molinate, was in all samples where molinate was detected and made up approximately 50 percent of the total molinate load. Simazine, a herbicide used in orchards and to control weeds along the roadways, was detected in the storm runoff, but it was not possible to differentiate the two sources of that pesticide to the Sacramento River.

  14. Geologic maps of the Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Atwater, Brian F.

    1982-01-01

    The Sacramento-San Joaquin Delta, the arm of the San Francisco Bay estuary that reaches into the Central Valley of California, differs from typical coastal-plain deltas in three important respects.  First, rather than meeting the ocean individually and directly, all major waterways of this delta discharge via a single constricted outlet into a chain of estuarine bays and straits.  Second, in the most common vertical sequence of deposits, peat and mud deposited in tidal marshes and swamps (tidal wetlands) directly overlie alluvium or eolian sand, a sequence recording a landward spread of tidal environments rather than the seaward migration of fluvial environments that is typical of coastal-plain deltas (Cosby, 1941, p. 43; Thompson, 1957, p. 12; Shlemon and Begg, 1975, p. 259; Atwater and Belknap, 1980).  Finally, intensive human use has led to a peculiar set of conflicts involving rights to water and responsibilities for flood-control levees (Kockelman and other, 1982).

  15. A project summary: Water and energy budget assessment for a non-tidal wetland in the Sacramento-San Joaquin delta

    USGS Publications Warehouse

    Anderson, Frank E.; Snyder, R.L.; Paw, U.K.T.; Drexler, Judith Z.

    2004-01-01

    The methods used to obtain universal cover coefficient (Kc) values for a non-tidal restored wetland in the Sacramento-San Joaquin river delta, US, during the summer of the year 2002 and to investigate possible differences during changing wind patterns are described. A micrometeorological tower over the wetland was established to quantify actual evapotranspiration (ETa) rates and surface energy fluxes for water and energy budget analysis. The eddy-covariance (EC) system was used to measure the surface energy budget data in the period from May 23 to November 6, 2002. The results show that K c values should be lower during westerly than northerly wind events during the midseason period due to the reduced vapor pressure deficit.

  16. Effects of Bank Revetment on Sacramento River, California

    Treesearch

    Michael D. Harvey; Chester C. Watson

    1989-01-01

    Twelve low radius of curvature bends, half of which were rivetted, were studied in the Butte Basin reach of Sacramento River, California, to determine whether bank revetment deleteriously affected salmonid habitat. At low discharge (128.6 cubic meters/s) it was demonstrated that revetment does not cause channel narrowing or deepening, nor does it prevent re-entrainment...

  17. Temporally intensive study of trace metals in sediments and bivalves from a large river-estuarine system: Suisun Bay/delta in San Francisco Bay

    USGS Publications Warehouse

    Luoma, S.N.; Dagovitz, R.; Axtmann, E.

    1990-01-01

    Distributions in time and space of Ag, Cd, Cr, Cu, Pb and Zn were determined in fine-grained sediments and in the filter-feeding bivalve Corbicula sp. of Suisun Bay/delta at the mouth of the Sacramento and San Joaquin Rivers in North San Francisco Bay. Samples were collected from seven stations at near-monthly intervals for 3 years. Aggregated data showed little chronic contamination with Ag, Zn and Pb in the river and estuary. Substantial chronic contamination with Cd, Cu and Cr in Suisun Bay/delta occurred, especially in Corbicula, compared with the lower San Joaquin River. Salinity appeared to have secondary effects, if any, on metal concentrations in sediments and metal bioavailability to bivalves. Space/time distributions of Cr were controlled by releases from a local industry. Analyses of time series suggested substantial inputs of Cu might originate from the Sacramento River during high inflows to the Bay, and Cd contamination had both riverine and local sources. Concentrations of metals in sediments correlated with concentrations in Corbicula only in annually or 3-year aggregated data. Condition index for Corbicula was reduced where metal contamination was most severe. The biological availability of Cu and Cd to benthos was greater in Suisun Bay than in many other estuaries. Thus small inputs into this system could have greater impacts than might occur elsewhere; and organisms were generally more sensitive indicators of enrichment than sediments in this system.

  18. Evaluation of sources and loading of pesticides to the Sacramento River, California, USA, during a storm event of winter 2005.

    PubMed

    Guo, Lei; Kelley, Kevin; Goh, Kean S

    2007-11-01

    A monitoring study was conducted in the tributaries and main stem of the Sacramento River, California, USA, during the storm event of January 26 to February 1, 2005. The purpose of the study was to evaluate the sources and loading of pesticides in the Sacramento River watershed during the winter storm season. A total of 26 pesticides or pesticide degradates were analyzed, among which five pesticides and one triazine degradate were detected. Diuron, diazinon, and simazine were found in all streams with a total load of 110.4, 15.4, and 15.7 kg, respectively, in the Sacramento River over the single storm event. Bromacil, hexazinone, and the triazine degradate diaminochlorotriazine were only detected in two smaller drainage canals with a load ranged from 0.25 to 7 kg. The major source of pesticides detected in the main stem Sacramento River was from the most upstream subbasin, the Sacramento River above Colusa, where detected pesticides either exceeded or were close to those at the main outlet of the Sacramento River at Alamar Marina. The higher precipitation in this subbasin was partly responsible for the greater contribution of pesticides observed. Diazinon was the only pesticide with concentrations above water quality criteria, indicating that additional mitigation measures may be needed to reduce its movement to surface water.

  19. Occurrence and Transport of Diazinon in the Sacramento River and Selected Tributaries, California, during Two Winter Storms, January?February 2001

    USGS Publications Warehouse

    Dileanis, Peter D.; Brown, David L.; Knifong, Donna L.; Saleh, Dina

    2003-01-01

    Diazinon, an organophosphate insecticide, is applied as an orchard dormant spray in the Sacramento Valley during the winter months when the area receives most of its annual rainfall. During winter rainstorms that frequently follow dormant spray applications, some of the applied pesticide is transported in storm runoff to the Sacramento River and its tributaries. Diazinon is also used to control insect pests on residential and commercial properties in urban areas and is frequently detected in urban storm runoff draining into the Sacramento River system. Between January 24 and February 14, 2001, diazinon concentrations and loads were measured in the Sacramento River and selected tributaries during two winter storms that occurred after dormant spray applications were made to orchards in the Sacramento Valley. Water samples were collected at 21 sites that represented agricultural and urban inputs on a variety of scales, from small tributaries and drains representing local land use to main-stem river sites representing regional effects. Concentrations of diazinon ranged from below laboratory reporting levels to 1,380 nanograms per liter (ng/L), with a median of 55 ng/L during the first monitored storm and 26 ng/L during the second. The highest concentrations were observed in small channels draining predominantly agricultural land. About 26,000 pounds of diazinon were reported applied to agricultural land in the study area just before and during the monitoring period. About 0.2 percent of the applied insecticide appeared to be transported to the lower Sacramento River during that period. The source of about one third of the total load measured in the lower Sacramento River appears to be in the portion of the drainage basin upstream of the city of Colusa. About 12 percent of the diazinon load in the lower Sacramento River was transported from the Feather River Basin, which drains much of the mountainous eastern portions of the Sacramento River Basin. Diazinon use in the

  20. Geologic logs of geotechnical cores from the subsurface Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Maier, Katherine L.; Ponti, Daniel J.; Tinsley, John C.; Gatti, Emma; Pagenkopp, Mark

    2014-01-01

    This report presents and summarizes descriptive geologic logs of geotechnical cores collected from 2009–12 in the Sacramento–San Joaquin Delta, California, by the California Department of Water Resources. Graphic logs are presented for 1,785.7 ft of retained cores from 56 borehole sites throughout the Sacramento-San Joaquin Delta. Most core sections are from a depth of ~100–200 feet. Cores primarily contain mud, silt, and sand lithologies. Tephra (volcanic ash and pumice), paleosols, and gravels are also documented in some core sections. Geologic observations contained in the core logs in this report provide stratigraphic context for subsequent sampling and data for future chronostratigraphic subsurface correlations.

  1. GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, RIVER SPAN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, RIVER SPAN, LOOKING NORTHWEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  2. The effect of submerged aquatic vegetation expansion on a declining turbidity trend in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Hestir, E.L.; Schoellhamer, David H.; Jonathan Greenberg,; Morgan-King, Tara L.; Ustin, S.L.

    2016-01-01

    Submerged aquatic vegetation (SAV) has well-documented effects on water clarity. SAV beds can slow water movement and reduce bed shear stress, promoting sedimentation and reducing suspension. However, estuaries have multiple controls on turbidity that make it difficult to determine the effect of SAV on water clarity. In this study, we investigated the effect of primarily invasive SAV expansion on a concomitant decline in turbidity in the Sacramento-San Joaquin River Delta. The objective of this study was to separate the effects of decreasing sediment supply from the watershed from increasing SAV cover to determine the effect of SAV on the declining turbidity trend. SAV cover was determined by airborne hyperspectral remote sensing and turbidity data from long-term monitoring records. The turbidity trends were corrected for the declining sediment supply using suspended-sediment concentration data from a station immediately upstream of the Delta. We found a significant negative trend in turbidity from 1975 to 2008, and when we removed the sediment supply signal from the trend it was still significant and negative, indicating that a factor other than sediment supply was responsible for part of the turbidity decline. Turbidity monitoring stations with high rates of SAV expansion had steeper and more significant turbidity trends than those with low SAV cover. Our findings suggest that SAV is an important (but not sole) factor in the turbidity decline, and we estimate that 21–70 % of the total declining turbidity trend is due to SAV expansion.

  3. Organic matter sources and rehabilitation of the Sacramento-San Joaquin Delta (California, USA)

    USGS Publications Warehouse

    Jassby, A.D.; Cloern, J.E.

    2000-01-01

    1. The Sacramento San Joaquin River Delta, a complex mosaic of tidal freshwater habitats in California, is the focus of a major ecosystem rehabilitation effort because of significant long-term changes in critical ecosystem functions. One of these functions is the production, transport and transformation of organic matter that constitutes the primary food supply, which may be sub-optimal at trophic levels supporting fish recruitment. A long historical data set is used to define the most important organic matter sources, the factors underlying their variability, and the implications of ecosystem rehabilitation actions for these sources. 2. Tributary-borne loading is the largest organic carbon source on an average annual Delta-wide basis; phytoplankton production and agricultural drainage are secondary; wastewater treatment plant discharge, tidal marsh drainage and possibly aquatic macrophyte production are tertiary; and benthic microalgal production, urban run-off and other sources are negligible. 3. Allochthonous dissolved organic carbon must be converted to particulate form - with losses due to hydraulic flushing and to heterotroph growth inefficiency - before it becomes available to the metazoan food web. When these losses are accounted for, phytoplankton production plays a much larger role than is evident from a simple accounting of bulk organic carbon sources, especially in seasons critical for larval development and recruitment success. Phytoplankton-derived organic matter is also an important component of particulate loading to the Delta. 4. The Delta is a net producer of organic matter in critically dry years but, because of water diversion from the Delta, transport of organic matter from the Delta to important, downstream nursery areas in San Francisco Bay is always less than transport into the Delta from upstream sources. 5. Of proposed rehabilitation measures, increased use of floodplains probably offers the biggest increase in organic matter sources. 6

  4. Inter-population differences in salinity tolerance and osmoregulation of juvenile wild and hatchery-born Sacramento splittail

    USGS Publications Warehouse

    Verhille, Christine E.; Dabruzzi, Theresa F.; Cocherell, Dennis E.; Mahardja, Brian; Feyrer, Frederick V.; Foin, Theodore C.; Baerwald, Melinda R.; Fangue, Nann A.

    2016-01-01

    The Sacramento splittail (Pogonichthys macrolepidotus) is a minnow endemic to the highly modified San Francisco Estuary of California, USA and its associated rivers and tributaries. This species is composed of two genetically distinct populations, which, according to field observations and otolith strontium signatures, show largely allopatric distribution patterns as recently hatched juveniles. Juvenile Central Valley splittail are found primarily in the nearly fresh waters of the Sacramento and San Joaquin rivers and their tributaries, whereas San Pablo juveniles are found in the typically higher-salinity waters (i.e. up to 10‰) of the Napa and Petaluma Rivers. As the large salinity differences between young-of-year habitats may indicate population-specific differences in salinity tolerance, we hypothesized that juvenile San Pablo and Central Valley splittail populations differ in their response to salinity. In hatchery-born and wild-caught juvenile San Pablo splittail, we found upper salinity tolerances, where mortalities occurred within 336 h of exposure to 16‰ or higher, which was higher than the upper salinity tolerance of 14‰ for wild-caught juvenile Central Valley splittail. This, in conjunction with slower recovery of plasma osmolality, but not ion levels, muscle moisture or gill Na+,K+-ATPase activity, in Central Valley relative to San Pablo splittail during osmoregulatory disturbance provides some support for our hypothesis of inter-population variation in salinity tolerance and osmoregulation. The modestly improved salinity tolerance of San Pablo splittail is consistent with its use of higher-salinity habitats. Although confirmation of the putative adaptive difference through further studies is recommended, this may highlight the need for population-specific management considerations.

  5. Inter-population differences in salinity tolerance and osmoregulation of juvenile wild and hatchery-born Sacramento splittail

    PubMed Central

    Verhille, Christine E; Dabruzzi, Theresa F; Cocherell, Dennis E; Mahardja, Brian; Feyrer, Frederick; Foin, Theodore C; Baerwald, Melinda R; Fangue, Nann A

    2016-01-01

    Abstract The Sacramento splittail (Pogonichthys macrolepidotus) is a minnow endemic to the highly modified San Francisco Estuary of California, USA and its associated rivers and tributaries. This species is composed of two genetically distinct populations, which, according to field observations and otolith strontium signatures, show largely allopatric distribution patterns as recently hatched juveniles. Juvenile Central Valley splittail are found primarily in the nearly fresh waters of the Sacramento and San Joaquin rivers and their tributaries, whereas San Pablo juveniles are found in the typically higher-salinity waters (i.e. up to 10‰) of the Napa and Petaluma Rivers. As the large salinity differences between young-of-year habitats may indicate population-specific differences in salinity tolerance, we hypothesized that juvenile San Pablo and Central Valley splittail populations differ in their response to salinity. In hatchery-born and wild-caught juvenile San Pablo splittail, we found upper salinity tolerances, where mortalities occurred within 336 h of exposure to 16‰ or higher, which was higher than the upper salinity tolerance of 14‰ for wild-caught juvenile Central Valley splittail. This, in conjunction with slower recovery of plasma osmolality, but not ion levels, muscle moisture or gill Na+,K+-ATPase activity, in Central Valley relative to San Pablo splittail during osmoregulatory disturbance provides some support for our hypothesis of inter-population variation in salinity tolerance and osmoregulation. The modestly improved salinity tolerance of San Pablo splittail is consistent with its use of higher-salinity habitats. Although confirmation of the putative adaptive difference through further studies is recommended, this may highlight the need for population-specific management considerations. PMID:27293743

  6. Sediment geochemistry of Corte Madera Marsh, San Francisco Bay, California: have local inputs changed, 1830-2010?

    USGS Publications Warehouse

    Takesue, Renee K.; Jaffe, Bruce E.

    2013-01-01

    Large perturbations since the mid-1800s to the supply and source of sediment entering San Francisco Bay have disturbed natural processes for more than 150 years. Only recently have sediment inputs through the Sacramento-San Joaquin Delta (the Delta) decreased to what might be considered pre-disturbance levels. Declining sediment inputs to San Francisco Bay raise concern about continued tidal marsh accretion, particularly if sea level rise accelerates in the future. The aim of this study is to explore whether the relative amount of local-watershed sediment accumulating in a tidal marsh has changed as sediment supply from the Sacramento-San Joaquin Rivers has decreased. To address this question, sediment geochemical indicators, or signatures, in the fine fraction (silt and clay) of Sacramento River, San Joaquin River, San Francisco Bay, and Corte Madera Creek sediment were identified and applied in sediment recovered from Corte Madera Marsh, one of the few remaining natural marshes in San Francisco Bay. Total major, minor, trace, and rare earth element (REE) contents of fine sediment were determined by inductively coupled plasma mass and atomic emission spectroscopy. Fine sediment from potential source areas had the following geochemical signatures: Sacramento River sediment downstream of the confluence of the American River was characterized by enrichments in chromium, zirconium, and heavy REE; San Joaquin River sediment at Vernalis and Lathrop was characterized by enrichments in thorium and total REE content; Corte Madera Creek sediment had elevated nickel contents; and the composition of San Francisco Bay mud proximal to Corte Madera Marsh was intermediate between these sources. Most sediment geochemical signatures were relatively invariant for more than 150 years, suggesting that the composition of fine sediment in Corte Madera Marsh is not very sensitive to changes in the magnitude, timing, or source of sediment entering San Francisco Bay through the Delta. Nor

  7. Communication eases pains of acquisition. Suburban hospital becomes part of Mercy Healthcare Sacramento.

    PubMed

    1995-03-01

    In 1991 American River Hospital, a facility in the suburbs of Sacramento, CA, was bought by Mercy Healthcare Sacramento. At the time, MHS owned three hospitals and a number of outpatient delivery sites. The acquisition fit MHS's strategic plan, which was to develop an integrated delivery system covering the metropolitan area. After completing the purchase, MHS began consolidating the operations of the new Mercy American River Hospital with those of nearby Mercy San Juan Hospital. Consolidation was eased by the fact that the two facilities shared a primary service area, with many physicians serving on the staffs of both hospitals. Though they had been competitors, the hospitals had collaborated on a number of activities. And they shared a common vision of managed care. An employee climate survey conducted in 1993 showed that some American River employees had, before the acquisition, feared being "inappropriately influenced by the Catholic Church." Others saw American River and Mercy San Juan as differing in their patient care and worried that the two styles might not be compatible. Still other American River employees were afraid they would lose their jobs. But the survey revealed that American River employees had seen no major cultural barriers to the acquisition. They had perceived MHS as a values-driven organization whose focus was the healing ministry. During the consolidation, a joint MHS-American River communications team held meetings and published newsletters to help employees understand the process. American River employees participated in a formal blessing of the transfer of their hospital's ownership to MHS.

  8. The Sacramento-San Joaquin Delta Conflict: Strategic Insights for California's Policymakers

    NASA Astrophysics Data System (ADS)

    Moazezi, M. R.

    2013-12-01

    The Sacramento-San Joaquin Delta - a major water supply source in California and a unique habitat for many native and invasive species--is on the verge of collapse due to a prolonged conflict over how to manage the Delta. There is an urgent need to expedite the resolution of this conflict because the continuation of the status quo would leave irreversible environmental consequences for the entire state. In this paper a systematic technique is proposed for providing strategic insights into the Sacramento-San Joaquin Delta conflict. Game theory framework is chosen to systematically analyze behavioral characteristics of decision makers as well as their options in the conflict with respect to their preferences using a formal mathematical language. The Graph Model for Conflict Resolution (GMCR), a recent game-theoretic technique, is applied to model and analyze the Delta conflict in order to better understand the options, preferences, and behavioral characteristics of the major decision makers. GMCR II as a decision support system tool based on GMCR concept is used to facilitate the analysis of the problem through a range of non-cooperative game theoretic stability definitions. Furthermore, coalition analysis is conducted to analyze the potential for forming partial coalitions among decision makers, and to investigate how forming a coalition can influence the conflict resolution process. This contribution shows that involvement of the State of California is necessary for developing an environmental-friendly resolution for the Delta conflict. It also indicates that this resolution is only achievable through improving the fragile levee systems and constructing a new water export facility.

  9. Use of dissolved inorganic carbon isotopes to track photosynthesis, respiration, and nitrification along a 56 mile transect in the Sacramento River and San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Peek, S.; Young, M. B.

    2013-12-01

    A decline in phytoplankton stocks in the San Francisco Bay and Delta is thought to contribute to the pelagic organism decline observed over the past two decades. One factor controlling phytoplankton growth rate is the availability of nutrients. Although there is an excess of nutrients in the Bay and Delta, the type and relative abundance of nutrients is critical to phytoplankton growth. To evaluate the response of phytoplankton to nutrient sources and to better understand phytoplankton dynamics downstream, we tested the hypothesis that the δ13C values of dissolved inorganic carbon (DIC) along with conventional water chemistry analyses will record events such as increased nitrification (related to the Sacramento River Wastewater Treatment Plant ammonium input) and algal blooms, and reflect the balance between photosynthesis and bacterial respiration. Multiple parameters affect [DIC] and its δ13C, including DIC sources, pH, and biological processes. Consumption of CO2 by phytoplankton during photosynthesis and by autotrophic bacteria during nitrification both result in increases in δ13C-DIC. However, photosynthesis and nitrification have very different relationships to chlorophyll and nutrient concentrations. The balance between heterotrophic bacterial respiration and photosynthesis should be reflected in trends in DIC, nutrient, and chlorophyll concentration, and δ13C-DIC. The δ13C of DIC should also be reflected in the δ13C of phytoplankton with approximately a 20 per mil fractionation. Significant deviation in the fractionation factor may indicate local variations in growth rate, nutrient availability, or speciation. Combined, these parameters should provide a gauge of the relative importance of the above mentioned processes. To test this hypothesis, we collected 19 water samples per cruise between July 2012 and July 2013 along a 56 mile transect between Rio Vista on the Sacramento River and San Francisco Bay near Angel Island during 8 cruises on the USGS RV

  10. Assessing the contribution of wetlands and subsided islands to dissolved organic matter and disinfection byproduct precursors in the Sacramento-San Joaquin River Delta: A geochemical approach

    USGS Publications Warehouse

    Kraus, T.E.C.; Bergamaschi, B.A.; Hernes, P.J.; Spencer, R.G.M.; Stepanauskas, R.; Kendall, C.; Losee, R.F.; Fujii, R.

    2008-01-01

    This study assesses how rivers, wetlands, island drains and open water habitats within the Sacramento-San Joaquin River Delta affect dissolved organic matter (DOM) content and composition, and disinfection byproduct (DBP) formation. Eleven sites representative of these habitats were sampled on six dates to encompass seasonal variability. Using a suite of qualitative analyses, including specific DBP formation potential, absorbance, fluorescence, lignin content and composition, C and N stable isotopic compositions, and structural groupings determined using CPMAS (cross polarization, magic angle spinning) 13C NMR, we applied a geochemical fingerprinting approach to characterize the DOM from different Delta habitats, and infer DOM and DBP precursor sources and estimate the relative contribution from different sources. Although river input was the predominant source of dissolved organic carbon (DOC), we observed that 13-49% of the DOC exported from the Delta originated from sources within the Delta, depending on season. Interaction with shallow wetlands and subsided islands significantly increased DOC and DBP precursor concentrations and affected DOM composition, while deep open water habitats had little discernable effect. Shallow wetlands contributed the greatest amounts of DOM and DBP precursors in the spring and summer, in contrast to island drains which appeared to be an important source during winter months. The DOM derived from wetlands and island drains had greater haloacetic acid precursor content relative to incoming river water, while two wetlands contributed DOM with greater propensity to form trihalomethanes. These results are pertinent to restoration of the Delta. Large scale introduction of shallow wetlands, a proposed restoration strategy, could alter existing DOC and DBP precursor concentrations, depending on their hydrologic connection to Delta channels. ?? 2008 Elsevier Ltd.

  11. Selenium biogeochemistry in the San Francisco Bay estuary: changes in water column behavior

    NASA Astrophysics Data System (ADS)

    Cutter, Gregory A.; Cutter, Lynda S.

    2004-11-01

    The cycling of dissolved selenium was examined in the North San Francisco Bay estuary using 5 surface water transects from the Pacific Ocean (Golden Gate) to the Sacramento and San Joaquin Rivers, monthly river sampling, and three collections of oil refinery effluents during 1997-2000. By combining these data with earlier results from the mid-1980s, a nearly 16-year record of riverine fluxes, estuarine processes, and anthropogenic inputs was obtained. The Sacramento River concentrations and speciation have remained unchanged over the period, and while the speciation of selenium in the San Joaquin is similar, its dissolved selenium concentrations have decreased by almost one half. More significantly, the concentration of selenium from oil refinery discharges to the mid-estuary has decreased 66% and its speciation changed from one dominated by selenite (66%) to one that is only 14% selenite. This change in refinery effluents occurred while our study was underway, with the result being a pronounced decrease in selenite concentrations (82%), and hence total dissolved selenium, in the mid-estuary. A companion study found that sediment/water exchange is a minor flux to the estuary, and hence selenium inputs from the Sacramento River, as well as refineries during low flow (summer, fall) periods exert major controls on the dissolved selenium behavior in this estuary. Nevertheless, in situ processes associated with organic matter cycling (photosynthesis and respiration) still modify the distributions and internal transformations of dissolved selenium, notably organic selenide.

  12. Improving Aquatic Plant Management in the California Sacramento-San Joaquin Delta

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Potter, Chris

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass), direct operations, and assess management impacts on plant communities. Archived satellite records going are used to review results from previous climate and management events and aide in developing long-term strategies. Modeling at local and watershed scales provides insight into land-use effects on water quality. Plant growth models informed by remote sensing are being applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments, phenology, environmental regulations, and economics in selection of management practices. Initial utilization of remote sensing tools developed for mapping of aquatic invasive weeds improved operational efficiency by focusing limited chemical use to strategic areas with high plant-control impact and incorporating mechanical harvesting when chemical use is restricted. These assessment methods provide a comprehensive and quantitative view of aquatic invasive plants communities in the California Delta, both spatial and temporal, informed by ecological understanding with the objective of improving management and assessment effectiveness.

  13. Advancement of Salinity and Flow Monitoring in the San Francisco Bay Delta

    EPA Pesticide Factsheets

    This report describes the utility and approximate cost of expanding the salinity water quality monitoring network along the axis of the San Francisco Estuary from Suisun Bay to Rio Vista on the Sacramento River.

  14. Characterizing changes in streamflow and sediment supply in the Sacramento River Basin, California, using hydrological simulation program—FORTRAN (HSPF)

    USGS Publications Warehouse

    Stern, Michelle A.; Flint, Lorraine E.; Minear, Justin T.; Flint, Alan L.; Wright, Scott A.

    2016-01-01

    A daily watershed model of the Sacramento River Basin of northern California was developed to simulate streamflow and suspended sediment transport to the San Francisco Bay-Delta. To compensate for sparse data, a unique combination of model inputs was developed, including meteorological variables, potential evapotranspiration, and parameters defining hydraulic geometry. A slight decreasing trend of sediment loads and concentrations was statistically significant in the lowest 50% of flows, supporting the observed historical sediment decline. Historical changes in climate, including seasonality and decline of snowpack, contribute to changes in streamflow, and are a significant component describing the mechanisms responsible for the decline in sediment. Several wet and dry hypothetical climate change scenarios with temperature changes of 1.5 °C and 4.5 °C were applied to the base historical conditions to assess the model sensitivity of streamflow and sediment to changes in climate. Of the scenarios evaluated, sediment discharge for the Sacramento River Basin increased the most with increased storm magnitude and frequency and decreased the most with increases in air temperature, regardless of changes in precipitation. The model will be used to develop projections of potential hydrologic and sediment trends to the Bay-Delta in response to potential future climate scenarios, which will help assess the hydrological and ecological health of the Bay-Delta into the next century.

  15. Sources of nitrogen and phosphorous to northern San Francisco Bay

    USGS Publications Warehouse

    Hager, Stephen W.; Schemel, Laurence E.

    1992-01-01

    We studied nutrient sources to the Sacramento River and Suisun Bay (northern San Francisco Bay) and the influence which these sources have on the distributions of dissolved inorganic nitrogen (DIN) and dissolved reactive phosphorus (DRP) in the river and bay. We found that agricultural return flow drains and a municipal wastewater treatment plant were the largest sources of nutrients to the river during low river flow. The Sutter and Colusa agricultural drains contributed about 70% of the transport of DIN and DRP by the river above Sacramento (about 20% of the total transport by the river) between August 8 and September 26, 1985. Further downstream, the Sacramento Regional Wastewater Treatment Plant discharged DIN and DRP at rates that were roughly 70% of total DIN and DRP transport by the river at that time. Concentrations at Rio Vista on the tidal river below the Sacramento plant and at the head of the estuary were related to the reciprocals of the river flows, indicating the importance of dilution of the Sacramento waste by river flows. During very dry years, elevated DIN and DRP concentrations were observed in Suisun Bay. We used a steady-state, one-dimensional, single-compartment box model of the bay, incorporating terms for advection, exchange, and waste input, to calculate a residual rate for all processes not included in the model. We found that the residual for DIN was related to concentrations of chlorophylla (Chla). The residual for DRP was also related to Chla at high concentrations of Chla, but showed significant losses of DRP at low Chla concentrations. These losses were typically equivalent to about 80% of the wastewater input rate.

  16. Determination of channel capacity of the Sacramento River between Ordbend and Glenn, Butte and Glenn counties, California

    USGS Publications Warehouse

    Simpson, R.G.

    1976-01-01

    The adequacy of an 8.5-mi reach of the Sacramento River to carry flood flows is evaluated. The reach studied is in Butte and Glenn Counties, California, and extends northward from the present east-bank Sacramento River Flood Control Project levee near Glenn upstream to the Ord Ferry gaging station near Ordbend. There is a west-bank levee throughout the study reach. Flows analyzed range from 11,500 to 265,000 cfs. Computed water-surface elevations are based on topography obtained during September through November 1974. The present Sacramento River Flood Control Project levees at the downstream end of the study reach near Glenn are designed to contain flows up to 150,000 cfs. Water-surface elevations computed for flows of this magnitude are about 6 to 8 ft below the top of the existing west-bank levee throughout the study reach. (Woodard-USGS)

  17. Organic carbon sources and sinks in San Francisco Bay: variability induced by river flow

    USGS Publications Warehouse

    Jassby, Alan D.; Powell, T.M.; Cloern, James E.

    1993-01-01

    Sources and sinks of organic carbon for San Francisco Bay (California, USA) were estimated for 1980. Sources for the southern reach were dominated by phytoplankton and benthic microalgal production. River loading of organic matter was an additional important factor in the northern reach. Tidal marsh export and point sources played a secondary role. Autochthonous production in San Francisco Bay appears to be less than the mean for temperate-zone estuaries, primarily because turbidity limits microalgal production and the development of seagrass beds. Exchange between the Bay and Pacific Ocean plays an unknown but potentially important role in the organic carbon balance. Interannual variability in the organic carbon supply was assessed for Suisun Bay, a northern reach subembayment that provides habitat for important fish species (delta smelt Hypomesus transpacificus and larval striped bass Morone saxatilus). The total supply fluctuated by an order of magnitude; depending on the year, either autochthonous sources (phytoplankton production) or allochthonous sources (riverine loading) could be dominant. The primary cause of the year-to-year change was variability of freshwater inflows from the Sacramento and San Joaquin rivers, and its magnitude was much larger than long-term changes arising from marsh destruction and point source decreases. Although interannual variability of the total organic carbon supply could not be assessed for the southern reach, year-to-year changes in phytoplankton production were much smaller than in Suisun Bay, reflecting a relative lack of river influence.

  18. Erosion Characteristics and Horizontal Variability for Small Erosion Depths in the Sacramento - San Joaquin River Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Schoellhamer, D. H.; Manning, A. J.; Work, P. A.

    2015-12-01

    Cohesive sediment in the Sacramento-San Joaquin River Delta affects pelagic fish habitat, contaminant transport, and marsh accretion. Observations of suspended-sediment concentration in the delta indicate that about 0.05 to 0.20 kg/m2 are eroded from the bed during a tidal cycle. If erosion is horizontally uniform, the erosion depth is about 30 to 150 microns, the typical range in diameter of suspended flocs. Application of an erosion microcosm produces similarly small erosion depths. In addition, core erodibility in the microcosm calculated with a horizontally homogeneous model increases with depth, contrary to expectations for a consolidating bed, possibly because the eroding surface area increases as applied shear stress increases. Thus, field observations and microcosm experiments, combined with visual observation of horizontally varying biota and texture at the surface of sediment cores, indicate that a conceptual model of erosion that includes horizontally varying properties may be more appropriate than assuming horizontally homogeneous erosive properties. To test this hypothesis, we collected five cores and measured the horizontal variability of shear strength within each core in the top 5.08 cm with a shear vane. Small tubes built by a freshwater worm and macroalgae were observed on the surface of all cores. The shear vane was inserted into the sediment until the top of the vane was at the top of the sediment, torque was applied to the vane until the sediment failed and the vane rotated, and the corresponding dial reading in Nm was recorded. The dial reading was assumed to be proportional to the surface strength. The horizontal standard deviation of the critical shear stress was about 30% of the mean. Results of the shear vane test provide empirical evidence that surface strength of the bed varies horizontally. A numerical simulation of erosion with an areally heterogeneous bed reproduced erosion characteristics observed in the microcosm.

  19. Use of Sediment Core Records to Understand Anthropogenic Impacts on Carbon Delivery to the Sacramento-San Joaquin River Delta, CA

    NASA Astrophysics Data System (ADS)

    Canuel, E. A.; Lerberg, E.; Kuehl, S. S.; Dickhut, R. M.; Bianchi, T. S.; Wakeham, S. G.; Smith, R.

    2008-12-01

    Anthropogenic activities, including climate change, will influence connections between the hydrologic and carbon cycles as well as the exchange of materials between terrestrial and aquatic systems. Altered precipitation will influence the delivery of water, suspended sediment and carbon, while construction of dams and reservoirs and changes in land use alter the flow paths and transport of sediment and associated materials to downstream ecosystems. We used the Sacramento-San Joaquin River Delta CA (Delta, hereafter) as a model system for understanding how human activities influenced the delivery and composition of organic carbon (OC) over the past 50-60 years. Sediment cores from the Delta were used to examine human impacts on carbon sources, amounts, and ages. Sediment and carbon accumulation rates were four to eight-fold higher pre-1972 relative to post-1972, coincident with completion of several large reservoirs and increased agriculture and urbanization in the Delta watershed. Several classes of biomarkers demonstrate that terrigenous OC has decreased since the 1940s. Radiocarbon isotopes of TOC and fatty acids in surface sediments indicate that much of the OC is highly reworked (900-1400 years BP) and vascular plant biomarkers have the oldest ages suggesting erosion of soils. Together, these data suggest that human activities have altered the amount, sources, and ages of carbon accumulating in the Delta. Projected increases in aridity and changes in the timing and amounts of freshwater delivery associated with anthropogenic climate change are likely to exacerbate these modifications to the delivery of carbon and sediment.

  20. Mapping invasive aquatic vegetation in the Sacramento-San Joaquin Delta using hyperspectral imagery.

    PubMed

    Underwood, E C; Mulitsch, M J; Greenberg, J A; Whiting, M L; Ustin, S L; Kefauver, S C

    2006-10-01

    The ecological and economic impacts associated with invasive species are of critical concern to land managers. The ability to map the extent and severity of invasions would be a valuable contribution to management decisions relating to control and monitoring efforts. We investigated the use of hyperspectral imagery for mapping invasive aquatic plant species in the Sacramento-San Joaquin Delta in the Central Valley of California, at two spatial scales. Sixty-four flightlines of HyMap hyperspectral imagery were acquired over the study region covering an area of 2,139 km(2) and field work was conducted to acquire GPS locations of target invasive species. We used spectral mixture analysis to classify two target invasive species; Brazilian waterweed (Egeria densa), a submerged invasive, and water hyacinth (Eichhornia crassipes), a floating emergent invasive. At the relatively fine spatial scale for five sites within the Delta (average size 51 ha) average classification accuracies were 93% for Brazilian waterweed and 73% for water hyacinth. However, at the coarser, Delta-wide scale (177,000 ha) these accuracy results were 29% for Brazilian waterweed and 65% for water hyacinth. The difference in accuracy is likely accounted for by the broad range in water turbidity and tide heights encountered across the Delta. These findings illustrate that hyperspectral imagery is a promising tool for discriminating target invasive species within the Sacramento-San Joaquin Delta waterways although more work is needed to develop classification tools that function under changing environmental conditions.

  1. Diel and seasonal movements by adult Sacramento pikeminnow (Ptychocheilus grandis) in the Eel River, northwestern California

    Treesearch

    Bret C. Harvey; Rodney J. Nakamoto

    1999-01-01

    Abstract - In late summer and fall, radio-tagged adult Sacramento pike-minnow (Ptychocheilus grandis) at three sites in the Eel River of northwestern California moved more at night than during the day. Fish moved up to 535 m at night and returned to their original positions the following morning. Adult Sacramento pikeminnow at all sites occupied only pools during the...

  2. Functional variability of habitats within the Sacramento-San Joaquin Delta: Restoration implications

    USGS Publications Warehouse

    Lucas, L.V.; Cloern, J.E.; Thompson, J.K.; Monsen, N.E.

    2002-01-01

    We have now entered an era of large-scale attempts to restore ecological functions and biological communities in impaired ecosystems. Our knowledge base of complex ecosystems and interrelated functions is limited, so the outcomes of specific restoration actions are highly uncertain. One approach for exploring that uncertainty and anticipating the range of possible restoration outcomes is comparative study of existing habitats similar to future habitats slated for construction. Here we compare two examples of one habitat type targeted for restoration in the Sacramento-San Joaquin River Delta. We compare one critical ecological function provided by these shallow tidal habitats - production and distribution of phytoplankton biomass as the food supply to pelagic consumers. We measured spatial and short-term temporal variability of phytoplankton biomass and growth rate and quantified the hydrodynamic and biological processes governing that variability. Results show that the production and distribution of phytoplankton biomass can be highly variable within and between nearby habitats of the same type, due to variations in phytoplankton sources, sinks, and transport. Therefore, superficially similar, geographically proximate habitats can function very differently, and that functional variability introduces large uncertainties into the restoration process. Comparative study of existing habitats is one way ecosystem science can elucidate and potentially minimize restoration uncertainties, by identifying processes shaping habitat functionality, including those that can be controlled in the restoration design.

  3. Past leaded gasoline emissions as a nonpoint source tracer in riparian systems: A study of river inputs to San Francisco Bay

    USGS Publications Warehouse

    Dunlap, C.E.; Bouse, R.; Flegal, A.R.

    2000-01-01

    Variations in the isotopic composition of lead in 1995-1998 river waters flowing into San Francisco Bay trace the washout of lead deposited in the drainage basin from leaded gasoline combustion. At the confluence of the Sacramento and San Joaquin rivers where they enter the Bay, the isotopic compositions of lead in the waters define a linear trend away from the measured historical compositions of leaded gas in California. The river waters are shifted away from leaded gasoline values and toward an isotopic composition similar to Sierra Nevadan inputs which became the predominant source of sedimentation in San Francisco Bay following the onset of hydraulic gold mining in 1853. Using lead isotopic compositions of hydraulic mine sediments and average leaded gasoline as mixing end members, we calculate that more than 50% of the lead in the present river water originated from leaded gasoline combustion. The strong adsorption of lead (log K(d) > 7.4) to particulates appears to limit the flushing of gasoline lead from the drainage basin, and the removal of that lead from the system may have reached an asymptotic limit. Consequently, gasoline lead isotopes should prove to be a useful nonpoint source tracer of the environmental distribution of particle- reactive anthropogenic metals in freshwater systems.

  4. Regional skew for California, and flood frequency for selected sites in the Sacramento-San Joaquin River Basin, based on data through water year 2006

    USGS Publications Warehouse

    Parrett, Charles; Veilleux, Andrea; Stedinger, J.R.; Barth, N.A.; Knifong, Donna L.; Ferris, J.C.

    2011-01-01

    Improved flood-frequency information is important throughout California in general and in the Sacramento-San Joaquin River Basin in particular, because of an extensive network of flood-control levees and the risk of catastrophic flooding. A key first step in updating flood-frequency information is determining regional skew. A Bayesian generalized least squares (GLS) regression method was used to derive a regional-skew model based on annual peak-discharge data for 158 long-term (30 or more years of record) stations throughout most of California. The desert areas in southeastern California had too few long-term stations to reliably determine regional skew for that hydrologically distinct region; therefore, the desert areas were excluded from the regional skew analysis for California. Of the 158 long-term stations used to determine regional skew, 145 have minimally regulated annual-peak discharges, and 13 stations are dam sites for which unregulated peak discharges were estimated from unregulated daily maximum discharge data furnished by the U.S. Army Corp of Engineers. Station skew was determined by using an expected moments algorithm (EMA) program for fitting the Pearson Type 3 flood-frequency distribution to the logarithms of annual peak-discharge data. The Bayesian GLS regression method previously developed was modified because of the large cross correlations among concurrent recorded peak discharges in California and the use of censored data and historical flood information with the new expected moments algorithm. In particular, to properly account for these cross-correlation problems and develop a suitable regression model and regression diagnostics, a combination of Bayesian weighted least squares and generalized least squares regression was adopted. This new methodology identified a nonlinear function relating regional skew to mean basin elevation. The regional skew values ranged from -0.62 for a mean basin elevation of zero to 0.61 for a mean basin elevation

  5. Floods of 1952 in California. Flood of January 1952 in the south San Francisco Bay region; Snowmelt flood of 1952 in Kern River, Tulare Lake, and San Joaquin River basins

    USGS Publications Warehouse

    Rantz, S.E.; Stafford, H.M.

    1956-01-01

    Two major floods occurred in California in 1952. The first was the flood of January 11-13 in the south San Francisco Bay region that resulted from heavy rains which began on the morning of January 11 and ended about noon January 13. This flood was notable for the magnitude of the peak discharges, although these discharges were reduced by the controlling effect of reservoirs for conservation and flood-control purposes. The flood damage was thereby reduced, and no lives were lost; damage, nevertheless, amounted to about $1.400.000. The second flood was due, not to the immediate runoff of heavy rain, but to the melting of one of the largest snow packs ever recorded in the Sierra Nevada range. In the spring and summer of 1952, flood runoff occurred on all the major streams draining the Sierra Nevada. In the northern half of the Central Valley basin?the Sacramento River basin?flood volumes and maximum daily discharges were not exceptional. and flood damage was not appreciable. However, in the southern half, which is formed by the Kern River, Tulare Lake, and San Joaquin River basins, new records for snowmelt runoff were established for some streams; but for below-normal temperatures and shorter, less warm hot spells, record flood discharges would have occurred on many others. In the three basins an area of 200,000 acres. largely cropland. was inundated, and damage was estimated at $11,800,000.

  6. Population Trends and Management of the Bank Swallow (Riparia riparia) on the Sacramento River, California

    Treesearch

    Barrett A. Garrison; Ronald W. Schlorff; Joan M. Humphrey; Stephen A. Laymon; Frank J. Michny

    1989-01-01

    Annual monitoring of Bank Swallows (Riparia riparia) along the Sacramento River, California has been conducted since 1986 to determine population trends, evaluate impacts from bank protection and flood control projects, and implement and monitor mitigation efforts. The population of Bank Swallows in a 50-mile river reach remained static over 3...

  7. Quaternary tephrochronology and deposition in the subsurface Sacramento-San Joaquin Delta, California, U.S.A.

    USGS Publications Warehouse

    Maier, Katherine L.; Gatti, Emma; Wan, Elmira; Ponti, Daniel J.; Pagenkopp, Mark; Starratt, Scott W.; Olson, Holly A.; Tinsley, John

    2015-01-01

    We document characteristics of tephra, including facies and geochemistry, from 27 subsurface sites in the Sacramento-San Joaquin Delta, California, to obtain stratigraphic constraints in a complex setting. Analyzed discrete tephra deposits are correlative with: 1) an unnamed tephra from the Carlotta Formation near Ferndale, California, herein informally named the ash of Wildcat Grade (<~1.450 - >~0.780 Ma), 2) the Rockland ash bed (~0.575 Ma), 3) the Loleta ash bed (~0.390 Ma), and 4) a middle Pleistocene tephra resembling volcanic ash deposits at Tulelake, California, and Pringle Falls, Bend, and Summer Lake, Oregon, herein informally named the dacitic ash of Hood (<~0.211 to >~0.180 Ma, correlated age). All four tephra are derived from Cascades volcanic sources. The Rockland ash bed erupted from the southern Cascades near Lassen Peak, California, and occurs in deposits up to >7 m thick as observed in core samples taken from ~40 m depth below land surface. Tephra facies and tephra age constraints suggest rapid tephra deposition within fluvial channel and overbank settings, likely related to flood events shortly following the volcanic eruption. Such rapidly deposited tephra are important chronostratigraphic markers that suggest varying sediment accumulation rates (~0.07-0.29 m/1000 yr) in Quaternary deposits below the modern Sacramento-San Joaquin Delta. This study provides the first steps in developing a subsurface Quaternary stratigraphic framework necessary for future hazard assessment.

  8. Comparing Multiple Evapotranspiration-calculating Methods, Including Eddy Covariance and Surface Renewal, Using Empirical Measurements from Alfalfa Fields in the Sacramento-San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Clay, J.; Kent, E. R.; Leinfelder-Miles, M.; Lambert, J. J.; Little, C.; Paw U, K. T.; Snyder, R. L.

    2016-12-01

    Eddy covariance and surface renewal measurements were used to estimate evapotranspiration (ET) over a variety of crop fields in the Sacramento-San Joaquin River Delta during the 2016 growing season. However, comparing and evaluating multiple measurement systems and methods for determining ET was focused upon at a single alfalfa site. The eddy covariance systems included two systems for direct measurement of latent heat flux: one using a separate sonic anemometer and an open path infrared gas analyzer and another using a combined system (Campbell Scientific IRGASON). For these methods, eddy covariance was used with measurements from the Campbell Scientific CSAT3, the LI-COR 7500a, the Campbell Scientific IRGASON, and an additional R.M. Young sonic anemometer. In addition to those direct measures, the surface renewal approach included several energy balance residual methods in which net radiation, ground heat flux, and sensible heat flux (H) were measured. H was measured using several systems and different methods, including using multiple fast-response thermocouple measurements and using the temperatures measured by the sonic anemometers. The energy available for ET was then calculated as the residual of the surface energy balance equation. Differences in ET values were analyzed between the eddy covariance and surface renewal methods, using the IRGASON-derived values of ET as the standard for accuracy.

  9. San Francisco and Bay Area, CA, USA

    NASA Image and Video Library

    1991-06-14

    STS040-152-100 (5-14 June 1991) --- Although clouds obscure part of the city of San Francisco and the mouth of San Francisco Bay, development and physiographic features in the immediate vicinity of the bay are well displayed. The photograph clearly shows the eastern part of the city, including the Embarcadero, the Bay Bridge, which was damaged in the 1989 earthquake, and Candlestick Park, San Mateo, and Dumbarton Bridges, cross the southern portion of the bay. Vari-colored salt ponds also rim the southern Bay near Moffett Field. Highway 280 runs along the San Andreas fault south of the city. On the eastern margin of the bay are Berkeley the Sacramento River and the Haywood and Calaveras faults.

  10. Heavy mineral analysis for assessing the provenance of sandy sediment in the San Francisco Bay Coastal System

    USGS Publications Warehouse

    Wong, Florence L.; Woodrow, Donald L.; McGann, Mary

    2013-01-01

    Heavy or high-specific gravity minerals make up a small but diagnostic component of sediment that is well suited for determining the provenance and distribution of sediment transported through estuarine and coastal systems worldwide. By this means, we see that surficial sand-sized sediment in the San Francisco Bay Coastal System comes primarily from the Sierra Nevada and associated terranes by way of the Sacramento and San Joaquin Rivers and is transported with little dilution through the San Francisco Bay and out the Golden Gate. Heavy minerals document a slight change from the strictly Sierran-Sacramento mineralogy at the confluence of the two rivers to a composition that includes minor amounts of chert and other Franciscan Complex components west of Carquinez Strait. Between Carquinez Strait and the San Francisco Bar, Sierran sediment is intermingled with Franciscan-modified Sierran sediment. The latter continues out the Gate and turns southward towards beaches of the San Francisco Peninsula. The Sierran sediment also fans out from the San Francisco Bar to merge with a Sierran province on the shelf in the Gulf of the Farallones. Beach-sand sized sediment from the Russian River is transported southward to Point Reyes where it spreads out to define a Franciscan sediment province on the shelf, but does not continue southward to contribute to the sediment in the Golden Gate area.

  11. Lateral migration of the Middle Sacramento River, California

    USGS Publications Warehouse

    Brice, James Coble

    1977-01-01

    Rates and processes of lateral erosion were studied for the middle Sacramento River between Chico Landing and Colusa, Calif. , a river distance of about 50 miles which is bordered by valuable agricultural land. The study is based on comparison of maps made during 1867-1949 and on aerial photographs made during 1924-74. Meander loops migrate by downstream translation in a direction nearly perpendicular to the loop axis. Loops are cut off by straight or diagonal chutes across the meander neck. The sinuosity of the river has gradually decreased from a value of 1.56 in 1896 to 1.35 in 1974. The morphology and curvature of meander loops cut off before white settlers came to the area indicate that the river was more stable, as well as more sinuous , then than now; subsequent morphologic changes are attributed mainly to the clearing of riparian vegetation and the effects of levees in reducing the area of overflow. The bank-erosion is 1.82 acres per year per stream mile or about 15 feet per year per stream foot for the period 1896-1974. (Woodard-USGS)

  12. Sediment characteristics in the San Antonio River Basin downstream from San Antonio, Texas, and at a site on the Guadalupe River downstream from the San Antonio River Basin, 1966-2013

    USGS Publications Warehouse

    Crow, Cassi L.; Banta, J. Ryan; Opsahl, Stephen P.

    2014-01-01

    San Antonio and surrounding municipalities in Bexar County, Texas, are in a rapidly urbanizing region in the San Antonio River Basin. The U.S. Geological Survey, in cooperation with the San Antonio River Authority and the Texas Water Development Board, compiled historical sediment data collected between 1996 and 2004 and collected suspended-sediment and bedload samples over a range of hydrologic conditions in the San Antonio River Basin downstream from San Antonio, Tex., and at a site on the Guadalupe River downstream from the San Antonio River Basin during 2011–13. In the suspended-sediment samples collected during 2011–13, an average of about 94 percent of the particles was less than 0.0625 millimeter (silt and clay sized particles); the 50 samples for which a complete sediment-size analysis was performed indicated that an average of about 69 percent of the particles was less than 0.002 millimeter. In the bedload samples collected during 2011–13, an average of 51 percent of sediment particles was sand-sized particles in the 0.25–0.5 millimeter-size range. In general, the loads calculated from the samples indicated that bedload typically composed less than 1 percent of the total sediment load. A least-squares log-linear regression was developed between suspended-sediment concentration and instantaneous streamflow and was used to estimate daily mean suspended-sediment loads based on daily mean streamflow. The daily mean suspended-sediment loads computed for each of the sites indicated that during 2011–12, the majority of the suspended-sediment loads originated upstream from the streamflow-gaging station on the San Antonio River near Elmendorf, Tex. A linear regression relation was developed between turbidity and suspended-sediment concentration data collected at the San Antonio River near Elmendorf site because the high-resolution data can facilitate understanding of the complex suspended-sediment dynamics over time and throughout the river basin.

  13. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.

    2017-06-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear

  14. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    USGS Publications Warehouse

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.

    2017-01-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear

  15. BACTERIOPLANKTON DYNAMICS IN NORTHERN SAN FRANCISCO BAY: ROLE OF PARTICLE ASSOCIATION AND SEASONAL FRESHWATER FLOW

    EPA Science Inventory

    Bacterioplankton abundance and metabolic characteristics were observed in northern San Francisco Bay, California, during spring and summer 1996 at three sites: Central Bay, Suisun Bay, and the Sacramento River. These sites spanned a salinity gradient from marine to freshwater, an...

  16. Katrina's Lessons in California: Social and Political Trajectories of Flood Management in the Sacramento River Watershed since 2005

    NASA Astrophysics Data System (ADS)

    Comby, E.; Le Lay, Y. F.; Piegay, H.

    2017-12-01

    Over the last decade, major changes have occurred in the way that environments are managed. They can be linked with external or internal events which may shape public perception. An external event can reveal a forgotten risk and create a social problem (Hilgartner et Bosk 1988). Following the Advocacy Coalition Framework (Sabatier 1988), we studied the role of Hurricane Katrina in flood management in California from 2005 to 2013. How do policies intend to increase the city's resilience? We compared different flood policies of the Sacramento River from 2005 to 2013, by combining field observations with a principal dataset of 340 regional newspaper items (Sacramento Bee). Media coverage was analyzed using content, quotation, and textometry as well as GIS. We underlined temporal variability in public perceptions towards floods. Some planning choices (such as levees) became controversial, while journalists praised weirs, bypasses, and dams. However, Katrina does not seem to have a real impact on urban sprawl strategies in three Sacramento neighborhoods (Fig.1). We analyzed also the limits of the comparison between New Orleans and Sacramento. Dialog between stakeholders existed in space and time between here (California) and elsewhere (Louisiana), present (post-2005) and past (Katrina catastrophe), and risk and disaster. Katrina was a national scandal with political announcements. However, flood policy was developed first at a regional and then local scales. After Katrina awareness, conflicts appear: some California residents refuse to have a policy linked to Katrina applied to them. We underlined that different stakeholders became prominent: it may be useless to tackle with only one institution. Some institutions had an integrated river management, while others kept a traditional risk management. We assessed the changes in river management while using discourse to understand the (potential) shift in human-river relationships from risk management to integrated river

  17. Riparian valley oak (Quercus lobata) forest restoration on the middle Sacramento River, California

    Treesearch

    F. Thomas Griggs; Gregory H. Golet

    2002-01-01

    In 1989 The Nature Conservancy initiated a riparian horticultural restoration program on the floodplain of the middle Sacramento River, California. At nearly all restoration sites Valley oak (Quercus lobata Nee) comprised a major component of the planting design. Valley oaks are a keystone tree species of lowland floodplain habitats in California...

  18. Conflicts in River Management: A Conservationist's Perspective on Sacramento River Riparian Habitats—Impacts, Threats, Remedies, Opportunities, and Consensus

    Treesearch

    Richard Spotts

    1989-01-01

    The Sacramento River's historic riparian habitats have been reduced by over 98 percent due to cumulative, adverse human activities. These activities continue to jeopardize the remaining riparian habitats. The results of these trends is more endangered species conflicts and listings, coupled with less fish, beautiful scenery, and other resource values. This paper...

  19. The persistence of lead from past gasoline emissions and mining drainage in a large riparian system: Evidence from lead isotopes in the Sacramento River, California

    USGS Publications Warehouse

    Dunlap, C.E.; Alpers, Charles N.; Bouse, R.; Taylor, Howard E.; Unruh, D.M.; Flegal, A.R.

    2008-01-01

    Lead concentrations and isotope ratios measured in river water colloids and streambed sediment samples along 426 km of the Sacramento River, California reveal that the influence of lead from the historical mining of massive sulfide deposits in the West Shasta Cu-mining district (at the headwaters of the Sacramento River) is confined to a 60 km stretch of river immediately downstream of that mining region, whereas inputs from past leaded gasoline emissions and historical hydraulic Au-mining in the Sierra Nevadan foothills are the dominant lead sources in the remaining 370 km of the river. Binary mixing calculations suggest that more than 50% of the lead in the Sacramento River outside of the region of influence of the West Shasta Cu-mining district is derived from past depositions of leaded gasoline emissions. This predominance is the first direct documentation of the geographic extent of gasoline lead persistence throughout a large riparian system (>160,000 km2) and corroborates previous observations based on samples taken at the mouth of the Sacramento River. In addition, new analyses of sediment samples from the hydraulic gold mines of the Sierra Nevada foothills confirm the present-day fluxes into the Sacramento River of contaminant metals derived from historical hydraulic Au-mining that occurred during the latter half of the 19th and early part of the 20th centuries. These fluxes occur predominantly during periods of elevated river discharge associated with heavy winter precipitation in northern California. In the broadest context, the study demonstrates the potential for altered precipitation patterns resulting from climate change to affect the mobility and transport of soil-bound contaminants in the surface environment. ?? 2008 Elsevier Ltd.

  20. Microsatellite analyses of San Franciscuito Creek rainbow trout

    USGS Publications Warehouse

    Nielsen, Jennifer L.

    2000-01-01

    Microsatellite genetic diversity found in San Francisquito Creek rainbow trout support a close genetic relationship with rainbow trout (Oncorhynchus mykiss) from another tributary of San Francisco Bay, Alameda Creek, and coastal trout found in Lagunitas Creek, Marin County, California. Fish collected for this study from San Francisquito Creek showed a closer genetic relationship to fish from the north-central California steelhead ESU than for any other listed group of O. mykiss. No significant genotypic or allelic frequency associations could be drawn between San Francisquito Creek trout and fish collected from the four primary rainbow trout hatchery strains in use in California, i.e. Whitney, Mount Shasta, Coleman, and Hot Creek hatchery fish. Indeed, genetic distance analyses (δµ2) supported separation between San Francisquito Creek trout and all hatchery trout with 68% bootstrap values in 1000 replicate neighbor-joining trees. Not surprisingly, California hatchery rainbow trout showed their closest evolutionary relationships with contemporary stocks derived from the Sacramento River. Wild collections of rainbow trout from the Sacramento-San Joaquin basin in the Central Valley were also clearly separable from San Francisquito Creek fish supporting separate, independent ESUs for two groups of O. mykiss (one coastal and one Central Valley) with potentially overlapping life histories in San Francisco Bay. These data support the implementation of management and conservation programs for rainbow trout in the San Francisquito Creek drainage as part of the central California coastal steelhead ESU.

  1. Characterizing Land Surface Change and Levee Stability in the Sacramento-San Joaquin Delta Using UAVSAR Radar Imagery

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen; Bawden, Gerald; Deverel, Steven; Dudas, Joel; Hensley, Scott

    2011-01-01

    The Sacramento-San Joaquin Delta is one of the primary water sources for the state of California and represents a complex geographical area comprised of tidal marshland, levee rimmed islands that are used primarily for agriculture, and urban encroachment. Land subsidence has dropped many of the Delta islands 3 to >7 meters below mean sea level and requires nearly 1700 km of levees to maintain the integrity of the islands and flow of water through the Delta. The current average subsidence rates for each island varies, with 1.23 cm/yr on Sherman Island and 2.2 cm/yr for Bacon Island, as determined by ground-based instruments located at isolated points in the Delta. The Delta's status as the most critical water resource for the state, an endangered ecosystem, and an area continuously threatened with levee breakage from hydrostatic pressure and the danger of earthquakes on several major faults in the San Francisco area make it a focus of monitoring efforts by both the state and national government. This activity is now almost entirely done by ground-based efforts, but the benefits of using remote sensing for wide scale spatial coverage and frequent temporal coverage is obvious. The UAVSAR airborne polarimetric and differential interferometric L-band synthetic aperture radar system has been used to collected monthly images of the Sacramento-San Joaquin Delta and much of the adjacent Suisun Marsh since July 2009 to characterize levee stability, image spatially varied subsidence, and assess how well the UAVSAR performs in an area with widespread agriculture production.

  2. Seismic Tomography of the Sacramento -- San Joaquin River Delta: Joint P-wave/Gravity and Ambient Noise Methods

    NASA Astrophysics Data System (ADS)

    Teel, Alexander C.

    The Sacramento -- San Joaquin River Delta (SSJRD) is an area that has been identified as having high seismic hazard but has resolution gaps in the seismic velocity models of the area due to a scarcity of local seismic stations and earthquakes. I present new three-dimensional (3D) P-wave velocity (Vp) and S-wave velocity (Vs) models for the SSJRD which fill in the sampling gaps of previous studies. I have created a new 3D seismic velocity model for the SSJRD, addressing an identified need for higher resolution velocity models in the region, using a new joint gravity/body-wave tomography algorithm. I am able to fit gravity and arrival-time residuals jointly using an empirical density-velocity relationship to take advantage of existing gravity data in the region to help fill in the resolution gaps of previous velocity models in the area. I find that the method enhances the ability to resolve the relief of basin structure relative to seismic-only tomography at this location. I find the depth to the basement to be the greatest in the northwest portion of the SSJRD and that there is a plateau in the basement structure beneath the southeast portion of the SSJRD. From my findings I infer that the SSJRD may be prone to focusing effects and basin amplification of ground motion. A 3D, Vs model for the SSJRD and surrounding area was created using ambient noise tomography. The empirical Green's functions are in good agreement with published cross-correlations and match earthquake waveforms sharing similar paths. The group velocity and shear velocity maps are in good agreement with published regional scale models. The new model maps velocity values on a local scale and successfully recovers the basin structure beneath the Delta. From this Vs model I find the maximum depth of the basin to reach approximately 15 km with the Great Valley Ophiolite body rising to a depth of 10 km east of the SSJRD. We consider our basement-depth estimates from the Vp model to be more robust than

  3. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    USGS Publications Warehouse

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  4. GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH APPROACH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH APPROACH, LOOKING SOUTH. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  5. GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH ABUTMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH ABUTMENT, LOOKING NORTHWEST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  6. DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, PICKET HAND RAIL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, PICKET HAND RAIL, LOOKING WEST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  7. DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, LOOKING SOUTHEAST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  8. GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, EAST SIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, EAST SIDE, LOOKING SOUTHWEST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  9. Hydrologic variability, water chemistry, and phytoplankton biomass in a large flood plain of the Sacramento River, CA, U.S.A.

    USGS Publications Warehouse

    Schemel, L.E.; Sommer, T.R.; Muller-Solger, A. B.; Harrell, W.C.

    2004-01-01

    The Yolo Bypass, a large, managed floodplain that discharges to the headwaters of the San Francisco Estuary, was studied before, during, and after a single, month-long inundation by the Sacramento River in winter and spring 2000. The primary objective was to identify hydrologic conditions and other factors that enhance production of phytoplankton biomass in the floodplain waters. Recent reductions in phytoplankton have limited secondary production in the river and estuary, and increased phytoplankton biomass is a restoration objective for this system. Chlorophyll a was used as a measure of phytoplankton biomass in this study. Chlorophyll a concentrations were low (<4 ??g l -1) during inundation by the river when flow through the floodplain was high, but concentrations rapidly increased as river inflow decreased and the floodplain drained. Therefore, hydrologic conditions in the weeks following inundation by river inflow appeared most important for producing phytoplankton biomass in the floodplain. Discharges from local streams were important sources of water to the floodplain before and after inundation by the river, and they supplied dissolved inorganic nutrients while chlorophyll a was increasing. Discharge from the floodplain was enriched in chlorophyll a relative to downstream locations in the river and estuary during the initial draining and later when local stream inflows produced brief discharge pulses. Based on the observation that phytoplankton biomass peaks during drainage events, we suggest that phytoplankton production in the floodplain and biomass transport to downstream locations would be higher in years with multiple inundation and draining sequences.

  10. DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, LOOKING NORTHWEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  11. GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, WEST SIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, WEST SIDE, LOOKING EAST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  12. GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH ABUTMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH ABUTMENT, LOOKING SOUTHWEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  13. GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH APPROACH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH APPROACH, LOOKING NORTH. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  14. DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, PICKET HAND RAIL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, PICKET HAND RAIL, LOOKING WEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  15. VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND LATERAL BRACING, LOOKING SOUTH. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  16. Gain-loss study of lower San Pedro Creek and the San Antonio River, San Antonio, Texas, May-October 1999

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2002-01-01

    Five streamflow gain-loss measurement surveys were made along lower San Pedro Creek and the San Antonio River from Mitchell Street to South Loop 410 east of Kelly Air Force Base in San Antonio, Texas, during May–October 1999. All of the measurements were made during dry periods, when stormwater runoff was not occurring and effects of possible bank storage were minimized. San Pedro Creek and the San Antonio River were divided into six subreaches, and streamflow measurements were made simultaneously at the boundaries of these subreaches so that streamflow gains or losses and estimates of inflow from or outflow to shallow ground water could be quantified for each subreach. There are two possible sources of ground-water inflow to lower San Pedro Creek and the San Antonio River east of Kelly Air Force Base. One source is direct inflow of shallow ground water into the streams. The other source is ground water that enters tributaries that flow into the San Antonio River. The estimated mean direct inflow of ground water to the combined San Pedro Creek and San Antonio River study reach was 3.0 cubic feet per second or 1.9 million gallons per day. The mean tributary inflow of ground water was estimated to be 1.9 cubic feet per second or 1.2 million gallons per day. The total estimated inflow of shallow ground water was 4.9 cubic feet per second or 3.2 million gallons per day. The amount of inflow from springs and seeps (estimated by observation) is much less than the amount of direct ground-water inflow estimated from the gain-loss measurements. Therefore, the presence of springs and seeps might not be a reliable indicator of the source of shallow ground water entering the river. Most of the shallow ground water that enters the San Antonio River from tributary inflow enters from the west side, through Concepcion Creek, inflows near Riverside Golf Course, and Six-Mile Creek. 

  17. VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND LATERAL BRACING, LOOKING NORTH. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  18. Transport of diazinon in the San Joaquin River Basin, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.

  19. DISTRIBUTION AND COMPOSITION OF DISSOLVED AND PARTICULATE ORGANIC CARBON IN NORTHERN SAN FRANCISCO BAY DURING LOW FRESHWATER FLOW CONDITIONS

    EPA Science Inventory

    The distribution of organic matter was studied in northern San Francisco Bay monthly through spring and summer 1996 along the salinity gradient from the Sacramento River to Central Bay. Dissolved constituents included monosaccharides (MONO), total carbohydrates (TCHO), dissolved ...

  20. Environmental factors associated with long-term changes in chlorophyll concentration in the Sacramento-San Joaquin delta and Suisun Bay, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, P.W.

    Long-term changes in chlorophyll concentration were predicted from environmental variables using Box-Jenkins transfer function models for the Sacramento and San Joaquin rivers and Suisun Bay. The indication that oceanic phytoplankton biomass for the California regions is associated with climatic phenomena produced by El Nino and the Southern Oscillation (ENSO) was one of several factors used to standardize the dataset. Data used for the analyses were collected continuously on a semimonthly or monthly basis over the 17-yr period between 1971 and 1987. Groups of highly correlated environmental variables were summarized along three environmental axes using principal component analysis. The first environmentalmore » axis summarized river flow and specific conductance. The second environmental axis summarized water transparency and the third environmental axis summarized air and water temperature. Chlorophyll concentration was significantly cross-correlated with environmental axes and individual environmental variables. Transfer function models developed to describe changes in chlorophyll concentration over time were characterized by lag responses and described between 41% and 51% of the data variation. Significant cross-correlations between environmental axes and the California climate index (CA SLP) were used to develop a conceptual model of the link between regional climate and estuarine production. 50 refs., 5 figs.« less

  1. Effects of flow diversions on water and habitat quality: Examples from California's highly manipulated Sacramento–San Joaquin Delta

    USGS Publications Warehouse

    Monsen, Nancy E.; Cloern, James E.; Burau, Jon R.

    2007-01-01

    We use selected monitoring data to illustrate how localized water diversions from seasonal barriers, gate operations, and export pumps alter water quality across the Sacramento-San Joaquin Delta (California). Dynamics of water-quality variability are complex because the Delta is a mixing zone of water from the Sacramento and San Joaquin Rivers, agricultural return water, and the San Francisco Estuary. Each source has distinct water-quality characteristics, and the contribution of each source varies in response to natural hydrologic variability and water diversions. We use simulations with a tidal hydrodynamic model to reveal how three diversion events, as case studies, influence water quality through their alteration of Delta-wide water circulation patterns and flushing time. Reduction of export pumping decreases the proportion of Sacramento- to San Joaquin-derived fresh water in the central Delta, leading to rapid increases in salinity. Delta Cross Channel gate operations control salinity in the western Delta and alter the freshwater source distribution in the central Delta. Removal of the head of Old River barrier, in autumn, increases the flushing time of the Stockton Ship Channel from days to weeks, contributing to a depletion of dissolved oxygen. Each shift in water quality has implications either for habitat quality or municipal drinking water, illustrating the importance of a systems view to anticipate the suite of changes induced by flow manipulations, and to minimize the conflicts inherent in allocations of scarce resources to meet multiple objectives.

  2. Revegetation of Riparian Trees and Shrubs on Alluvial Soils Along the Upper Sacramento River, 1987-1988

    Treesearch

    Steven P. Chainey; F. Jordan Lang; Skip Mills

    1989-01-01

    Two sites on the Sacramento River near Red Bluff and Colusa, California were planted with seven native tree species plus valley elderberry (a shrub) in an effort to mitigate for the loss of woody riparian vegetation from bank protection construction projects in the area. The stateowned environmental easements on terraces on the river side of the levees had been planted...

  3. Using remote sensing to monitor past changes and assess future scenarios for the Sacramento-San Joaquin River Delta waterways, California USA

    NASA Astrophysics Data System (ADS)

    Santos, Maria J.; Hestir, Erin; Khanna, Shruti; Ustin, Susan L.

    2017-04-01

    Historically, deltas have been extensively affected both by natural processes and human intervention. Thus, understanding drivers, predicting impacts and optimizing solutions to delta problems requires a holistic approach spanning many sectors, disciplines and fields of expertise. Deltas are ideal model systems to understand the effects of the interaction between social and ecological domains, as they face unprecedented disturbances and threats to their biological and ecological sustainability. The challenge for deltas is to meet the goals of supporting biodiversity and ecosystem processes while also provisioning fresh water resources for human use. We provide an overview of the last 150 years of the Sacramento-San Joaquin River delta, where we illustrate the parallel process of an increase in disturbances, by particularly zooming in on the current cascading effects of invasive species on geophysical and biological processes. Using remote sensing data coupled with in situ measurements of water quality, turbidity, and species presence we show how the spread and persistence of aquatic invasive species affects sedimentation processes and ecosystem functioning. Our results show that the interactions between the biological and physical conditions in the Delta affect the trajectory of dominance by native and invasive aquatic plant species. Trends in growth and community characteristics associated with predicted impacts of climate change (sea level rise, warmer temperatures, changes in the hydrograph with high winter and low summer outflows) do not provide simple predictions. Individually, the impact of specific environmental changes on the biological components can be predicted, however it is the complex interactions of biological communities with the suite of physical changes that make predictions uncertain. Systematic monitoring is critical to provide the data needed to document and understand change of these delta systems, and to identify successful adaptation

  4. Occurrence and transport of diazinon in the Sacramento River, California, and selected tributaries during three winter storms, January-February 2000

    USGS Publications Warehouse

    Dileanis, Peter D.; Bennett, Kevin P.; Domagalski, Joseph L.

    2002-01-01

    The organophosphate pesticide diazinon is applied as a dormant orchard spray in the Sacramento Valley, California, during the winter when the area receives a majority of its annual rainfall. Dormant spray pesticides, thus, have the potential to wash off the areas of application and migrate with storm runoff to streams in the Sacramento River Basin. Previous monitoring studies have shown that rain and associated runoff from winter storms plays an important role in the transport of diazinon from point of application to the Sacramento River and tributaries. Between January 30 and February 25, 2000, diazinon concentrations in the Sacramento River and selected tributaries were monitored on 5 consecutive days during each of three winter storms that moved through the Sacramento Valley after diazinon had been applied to orchards in the basin. Water samples were collected at 17 sites chosen to represent the effect of upstream land use at local and regional scales. Most samples were analyzed using an enzyme-linked immunosorbent assay (ELISA). Analysis by gas chromatography with electron capture detector and thermionic specific detector (GC/ECD/TSD) and gas chromatography with mass spectrometry (GC/MS) was done on split replicates from over 30 percent of the samples to confirm ELISA results and to provide lower analytical reporting limits at selected sites [30 ng/L (nanogram per liter) for ELISA, 20 ng/L for GC/ECD/TSD, and 2 ng/L for GC/MS]. Concentrations determined from ELISA analyses were consistently higher than concentrations for split samples analyzed by gas chromatography methods. Because of bias between diazinon concentrations using ELISA and gas chromatography methods, results from ELISA analyses were not compared to water-quality criteria. Load calculations using the ELISA analyses are similarly biased. Because the bias was consistent, however, the ELISA data is useful in site-to-site comparisons used to rank the relative levels and contributions of diazinon from

  5. Transport of diazinon in the San Joaquin River basin, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1997-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  6. Backwater Flooding in San Marcos, TX from the Blanco River

    NASA Technical Reports Server (NTRS)

    Earl, Richard; Gaenzle, Kyle G.; Hollier, Andi B.

    2016-01-01

    Large sections of San Marcos, TX were flooded in Oct. 1998, May 2015, and Oct. 2015. Much of the flooding in Oct. 1998 and Oct. 2015 was produced by overbank flooding of San Marcos River and its tributaries by spills from upstream dams. The May 2015 flooding was almost entirely produced by backwater flooding from the Blanco River whose confluence is approximately 2.2 miles southeast of downtown. We use the stage height of the Blanco River to generate maps of the areas of San Marcos that are lower than the flood peaks and compare those results with data for the observed extent of flooding in San Marcos. Our preliminary results suggest that the flooding occurred at locations more than 20 feet lower than the maximum stage height of the Blanco River at San Marcos gage (08171350). This suggest that the datum for either gage 08171350 or 08170500 (San Marcos River at San Marcos) or both are incorrect. There are plans for the U.S. Army Corps of Engineers to construct a Blanco River bypass that will divert Blanco River floodwaters approximately 2 miles farther downstream, but the $60 million price makes its implementation problematic.

  7. Assessing societal impacts when planning restoration of large alluvial rivers: a case study of the Sacramento River project, California.

    PubMed

    Golet, Gregory H; Roberts, Michael D; Larsen, Eric W; Luster, Ryan A; Unger, Ron; Werner, Gregg; White, Gregory G

    2006-06-01

    Studies have shown that ecological restoration projects are more likely to gain public support if they simultaneously increase important human services that natural resources provide to people. River restoration projects have the potential to influence many of the societal functions (e.g., flood control, water quality) that rivers provide, yet most projects fail to consider this in a comprehensive manner. Most river restoration projects also fail to take into account opportunities for revitalization of large-scale river processes, focusing instead on opportunities presented at individual parcels. In an effort to avoid these pitfalls while planning restoration of the Sacramento River, we conducted a set of coordinated studies to evaluate societal impacts of alternative restoration actions over a large geographic area. Our studies were designed to identify restoration actions that offer benefits to both society and the ecosystem and to meet the information needs of agency planning teams focusing on the area. We worked with local partners and public stakeholders to design and implement studies that assessed the effects of alternative restoration actions on flooding and erosion patterns, socioeconomics, cultural resources, and public access and recreation. We found that by explicitly and scientifically melding societal and ecosystem perspectives, it was possible to identify restoration actions that simultaneously improve both ecosystem health and the services (e.g., flood protection and recreation) that the Sacramento River and its floodplain provide to people. Further, we found that by directly engaging with local stakeholders to formulate, implement, and interpret the studies, we were able to develop a high level of trust that ultimately translated into widespread support for the project.

  8. Adjusting survival estimates for premature transmitter failure: A case study from the Sacramento-San Joaquin Delta

    USGS Publications Warehouse

    Holbrook, Christopher M.; Perry, Russell W.; Brandes, Patricia L.; Adams, Noah S.

    2013-01-01

    In telemetry studies, premature tag failure causes negative bias in fish survival estimates because tag failure is interpreted as fish mortality. We used mark-recapture modeling to adjust estimates of fish survival for a previous study where premature tag failure was documented. High rates of tag failure occurred during the Vernalis Adaptive Management Plan’s (VAMP) 2008 study to estimate survival of fall-run Chinook salmon (Oncorhynchus tshawytscha) during migration through the San Joaquin River and Sacramento-San Joaquin Delta, California. Due to a high rate of tag failure, the observed travel time distribution was likely negatively biased, resulting in an underestimate of tag survival probability in this study. Consequently, the bias-adjustment method resulted in only a small increase in estimated fish survival when the observed travel time distribution was used to estimate the probability of tag survival. Since the bias-adjustment failed to remove bias, we used historical travel time data and conducted a sensitivity analysis to examine how fish survival might have varied across a range of tag survival probabilities. Our analysis suggested that fish survival estimates were low (95% confidence bounds range from 0.052 to 0.227) over a wide range of plausible tag survival probabilities (0.48–1.00), and this finding is consistent with other studies in this system. When tags fail at a high rate, available methods to adjust for the bias may perform poorly. Our example highlights the importance of evaluating the tag life assumption during survival studies, and presents a simple framework for evaluating adjusted survival estimates when auxiliary travel time data are available.

  9. Effect of distal Sacramento-San Joaquin Delta outflow on suspended-sediment flux in Lower South San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Livsey, D. N.; Downing-Kunz, M.; Schoellhamer, D. H.; Shellenbarger, G.; Wright, S. A.

    2016-12-01

    Tidal marshes are an important component of estuarine ecosystems. Within the San Francisco Bay Estuary (SFB) tidal marshes play an important role in food web dynamics, are home to an array of endemic mammals, birds, and fishes, filter pollutants, and dampen coastal flooding. With 80% of SFB tidal marshes lost to human development, numerous restoration efforts are underway. The largest tidal marsh restoration project in SFB, the South Bay Salt Pond Restoration Project, is underway in Lower South San Francisco Bay to restore 60,000 ha of this critical habitat; however, rising sea levels, could jeopardize these gains without concomitant vertical accretion rates of the marsh surface via organic matter accumulation and sediment deposition. Recent work in Lower South Bay using continuously collected data from water years (WY) 2009-11 indicates that the direction of net springtime residual sediment flux is related to the amount of springtime Sacramento-San Joaquin Delta (Delta) outflow. Large outflow freshens the Central Bay, causing a density gradient and inverse gravitational circulation that flushes Lower South Bay. In this study we extend the sediment budget for Lower South Bay from WY 2011 to present using 15-minute turbidity and velocity data paired with Acoustic Doppler Current Profiler cross-sectional measurements and in situ suspended-sediment concentration samples to: 1) further examine the mechanisms controlling net springtime residual sediment flux, and 2) further test the hypothesis that Delta outflow controls the direction of net sediment flux for Lower South Bay.

  10. What hydrological dynamics emerge from the interaction of land conversion and flood levee construction? Using dynamical systems models to explore the development of California's Sacramento-San Joaquin Watersheds.

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Hutton, P.; Sivapalan, M.; MacVean, L. J.

    2016-12-01

    The hydrological impacts of land development include the simultaneous modifications of land cover, water abstraction and hydraulics. While reservoir construction and irrigation offer water managers de facto control of the hydrologic budget in the upper and middle reaches of river basins, the pattern of development in lowland areas incorporates drainage of wetlands, leveeing of flood plains, and rain-fed agriculture. The resulting hydrological function is then an emergent property of the interaction of land use change with flood control infrastructure. Using the lowland areas of California's Sacramento and San Joaquin Rivers as a motivating case study, we showed that this emergent behavior arises from two key interacting stochastic processes: one governing the water available to and used by dryland agriculture, and one governing the spatial dynamics of near-channel flooding impounded by levees. Comparable annual water balance dynamics can arise under managed and unmanaged conditions. Similarities in water balance, however, can mask large differences in seasonality and channel hydraulics.

  11. DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, BUILDER’S PLATE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, BUILDER’S PLATE, LOOKING NORTHEAST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  12. 19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, IN CENTRAL PORTION OF SAN LUIS OBISPO, CALIFORNIA. Leeds Hill Barnard & Jewett - Consulting Engineers, February 1942. - Salinas River Project, Cuesta Tunnel, Southeast of U.S. 101, San Luis Obispo, San Luis Obispo County, CA

  13. Program Updates - San Antonio River Basin

    EPA Pesticide Factsheets

    This page will house updates for this urban waters partnership location. As projects progress, status updates can be posted here to reflect the ongoing work by partners in San Antonio working on the San Antonio River Basin.

  14. External Scan 2000: Environmental Scan of the Greater Sacramento Area.

    ERIC Educational Resources Information Center

    Beachler, Judith

    This document provides a summary of the social, economic, and political changes at state and national levels that affect the Los Rios Community College District (LRCCD) in California. LRCCD consists of American River College (ARC), Cosumnes River College (CRC), and Sacramento City College (SCC). Demographic trends show that Greater Sacramento is…

  15. Innovation in monitoring: The U.S. Geological Survey Sacramento–San Joaquin River Delta, California, flow-station network

    USGS Publications Warehouse

    Burau, Jon; Ruhl, Cathy; Work, Paul A.

    2016-01-29

    The U.S. Geological Survey (USGS) installed the first gage to measure the flow of water into California’s Sacramento–San Joaquin River Delta from the Sacramento River in the late 1800s. Today, a network of 35 hydro-acoustic meters measure flow throughout the delta. This region is a critical part of California’s freshwater supply and conveyance system. With the data provided by this flow-station network—sampled every 15 minutes and updated to the web every hour—state and federal water managers make daily decisions about how much freshwater can be pumped for human use, at which locations, and when. Fish and wildlife scientists, working with water managers, also use this information to protect fish species affected by pumping and loss of habitat. The data are also used to help determine the success or failure of efforts to restore ecosystem processes in what has been called the “most managed and highly altered” watershed in the country.

  16. 77 FR 44139 - Drawbridge Operation Regulation; Sacramento River, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... Sacramento, CA. The deviation is necessary to allow the community to participate in the Fleet Feet Event, Run... September 9, 2012 to allow the community to participate in the Fleet Feet Event, Run To Remember 10K. This...

  17. Metals transport in the Sacramento River, California, 1996-1997; Volume 1, Methods and data

    USGS Publications Warehouse

    Alpers, Charles N.; Taylor, Howard E.; Domagalski, Joseph L.

    2000-01-01

    Metals transport in the Sacramento River, northern California, was evaluated on the basis of samples of water, suspended colloids, streambed sediment, and caddisfly larvae that were collected on one to six occasions at 19 sites in the Sacramento River Basin from July 1996 to June 1997. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions; respectively. Tangential-flow ultrafiltration with 10,000 nominal molecular weight limit, or daltons (0.005 micrometer equivalent), pore-size membranes was used to separate metals in streamwater into ultrafiltrate (operationally defined dissolved fraction) and retentate (colloidal fraction) components, respectively. Conventional filtration with capsule filters (0.45 micrometer pore-size) and membrane filters (0.40 micrometer pore-size) and total-recoverable analysis of unfiltered (whole-body) samples were done for comparison at all sites. Because the total-recoverable analysis involves an incomplete digestion of particulate matter, a more reliable measurement of whole-water concentrations is derived from the sum of the dissolved component that is based on the ultrafiltrate plus the suspended component that is based on a total digestion of colloid concentrates from the ultra-filtration retentate. Metals in caddisfly larvae were determined for whole-body samples and cytosol extracts, which are intercellular solutions that provide a more sensitive indication of the metals that have been bioaccumulated. Trace metals in acidic, metal-rich drainage from abandoned and inactive sulfide mines were observed to enter the Sacramento River system (specifically, into both Shasta Lake and Keswick Reservoir) in predominantly dissolved form, as operationally defined using ultrafiltrates. The predominant source of acid mine drainage to Keswick Reservoir is

  18. San Francisco Bay, California as seen from STS-59

    NASA Image and Video Library

    1994-04-14

    STS059-213-009 (9-20 April 1994) --- San Francisco Bay. Orient with the sea up. The delta of the combined Sacramento and San Joaquin Rivers occupies the foreground, San Francisco Bay the middle distance, and the Pacific Ocean the rest. Variations in water color caused both by sediment load and by wind streaking strike the eye. Man-made features dominate this scene. The Lafayette/Concord complex is left of the bay head, Vallejo is to the right, the Berkeley/Oakland complex rims the shoreline of the main bay, and San Francisco fills the peninsula beyond. Salt-evaporation ponds contain differently-colored algae depending on salinity. The low altitude (less than 120 nautical miles) and unusually-clear air combine to provide unusually-strong green colors in this Spring scene. Hasselblad camera.

  19. San Francisco Bay, California as seen from STS-59

    NASA Technical Reports Server (NTRS)

    1994-01-01

    San Francisco Bay as seen from STS-59. View is oriented with the sea up. The delta of the combined Sacramento and San Joaquin Rivers occupies the foreground with San Francisco Bay in the middle distance, then the Pacific Ocean. Variations in water color caused both by sediment load and by wind streaking strike the eye. Man-made features dominate this scene. The Lafayette/Concord complex is left of the bay head, Vallejo is to the right, the Berkeley/Oakland complex rims the shoreline of the main bay, and San Francisco fills the peninsula beyond. Salt-evaporation ponds contain differently-colored algae depending on salinity. The low altitude (less than 120 nautical miles) and unusually-clear air combine to provide unusually-strong green colors in this Spring scene.

  20. Preliminary assessment of DOC and THM precursor loads from a freshwater restored wetland, an agricultural field, and a tidal wetland in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Fujii, R.; Bergamaschi, B.A.; Ganju, N.K.; Fleck, J.A.; Burow-Fogg, K.R.; Schoellhamer, D.; Deverel, S.J.

    2003-01-01

    Water exported from the Sacramento-San Joaquin River Delta supplies drinking water to more than 22 million people in California. At certain times of the year, Delta waters contain relatively high concentrations of dissolved organic carbon (DOC) and bromide. During these times, chlorination of Delta water for drinking water disinfection will form disinfection byproducts, such as trihalomethanes (THMs), that can exceed the U.S. Environmental Protection Agency's maximum contaminant level for THMs of 80 mg/L. Important sources of DOC and THM precursors (types of DOC that form THMs when chlorinated) to the Delta include rivers, drainage water from peat islands, water from wetlands and areas with extensive riparian vegetation, and in-channel growth of algae and macrophytes. Due to proposed ecosystem restoration and creation of wetlands in the Delta, there is an urgent need for information on the relative loads of DOC and THM precursors produced from three different land uses: restored wetlands constructed for subsidence mitigation, tidal wetlands, and agricultural operations. We have been conducting research in the Delta to provide this information. A restored wetland and agricultural field located on Twitchell Island, and a tidal wetland on Browns Island have been monitored for flow, DOC, and THM precursors. Initial results indicate that the loads of DOC and THM precursors are similar for the restored wetland (surface water only) and the agricultural field. These land uses produce DOC loads of about 14 and 11 g C/m2/yr, respectively, and THM precursor loads of about 1.7 and 1.0 g THM/m2/yr, respectively. Estimates of DOC and THM precursor loads for the tidal wetland site on Browns Island and seepage associated with the restored wetland are being developed.

  1. Suspended and Dissolved Matter in the Sacramento River and Delta Region Under Drought Conditions

    NASA Astrophysics Data System (ADS)

    Ackleson, S. G.; Rhea, W. J.; Blaser, S.; Wilkerson, F. P.; Dugdale, R. C.; Davis, C. O.; Tufillaro, N. B.

    2016-02-01

    The State of California is experiencing the fourth year of a historic drought that, as it continues to worsen, has raised concerns about future agricultural production and prompted emergency water restrictions. The Sacramento River drainage basin and estuary fall within the drought area classified as extreme to exceptional. To document the ecological effects of this drought and to serve as baseline conditions with which to compare future non-drought conditions, a series of seasonal field campaigns were conducted between June 2014 and October 2015 to characterize the concentration, composition, and morphology of particulate and dissolved matter within the lower reaches of the Sacramento River and delta region. In situ measurements of spectral light scatter and absorption due to water impurities are compared with water sample analyses for pigment and suspended sediment concentration. In situ measurements are used to derive remote sensing algorithms for impurity concentration and composition from above-water and remotely sensed radiometric measurements. Results indicate a seasonally stable riverine water mass and particle population feeding into a delta region with complicated hydrodynamics, point sources of wetland detritus and dissolved organic matter, and heterogeneous particle assemblages. Possible changes as a result of an El Nino are discussed.

  2. Plant Community Development, Site Quality Analysis and River Dynamics in the Design of Riparian Preserves on the Middle Sacramento River, California

    Treesearch

    Niall F. McCarten

    1989-01-01

    Loss of riparian habitat along the Middle Sacramento River, over the last 100 years, has reduced a once contiguous riparian forest to a series of disjunct remnants of varying size and quality. With limited financial resources to purchase and protect some of the remaining riparian plant communities, it has become necessary to develop methods to select which of the...

  3. Dissolved pesticide concentrations detected in storm-water runoff at selected sites in the San Joaquin River basin, California, 2000-2001

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn; Whitehead, Andrew

    2003-01-01

    As part of a collaborative study involving the United States Geological Survey Toxics Substances Hydrology Project (Toxics Project) and the University of California, Davis, Bodega Marine Laboratory (BML), water samples were collected at three sites within the San Joaquin River Basin of California and analyzed for dissolved pesticides. Samples were collected during, and immediately after, the first significant rainfall (greater than 0.5 inch per day) following the local application of dormant spray, organophosphate insecticides during the winters of 2000 and 2001. All samples were collected in conjunction with fish-caging experiments conducted by BML researchers. Sites included two locations potentially affected by runoff of agricultural chemicals (San Joaquin River near Vernalis, California, and Orestimba Creek at River Road near Crows Landing, California, and one control site located upstream of pesticide input (Orestimba Creek at Orestimba Creek Road near Newman, California). During these experiments, fish were placed in cages and exposed to storm runoff for up to ten days. Following exposure, the fish were examined for acetylcholinesterase concentrations and overall genetic damage. Water samples were collected throughout the rising limb of the stream hydrograph at each site for later pesticide analysis. Concentrations of selected pesticides were measured in filtered water samples using solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC/MS) at the U.S. Geological Survey organic chemistry laboratory in Sacramento, California. Results of these analyses are presented.

  4. Graphical method for estimating occurrence and duration of a critical low flow in the Sacramento River at Freeport, California

    USGS Publications Warehouse

    Harmon, J.G.

    1983-01-01

    Sacramento County expects to begin operation of the Sacramento Regional Wastewater Treatment Plant in 1982. The California State Water Resources Control Board has ruled that the plant will not be allowed to release effluent into the Sacramento River when flow in the river is 4,000 cubic feet per second or less. Depending on tide condition, flows less than 4,000 cubic feet per second may occur either once or twice during each 24-hour 50-minute tide cycle when the daily mean flow is less than about 12,000 cubic feet per second. Daily means flows less than 12,000 cubic feet per second occur about 28% of the time. Riverflow at the plant outfall is monitored by an acoustic streamflow-measuring system. Regulation of effluent released from the plant will normally be based on real-time flow data computed by the acoustic system. A graphical method for determining the occurrence and duration of flows of 4,000 cubic feet per second and less was developed as a backup system to be used if a temporary failure in the acoustic system occurs. (USGS)

  5. Estimation of reservoir inflow in data scarce region by using Sacramento rainfall runoff model - A case study for Sittaung River Basin, Myanmar

    NASA Astrophysics Data System (ADS)

    Myo Lin, Nay; Rutten, Martine

    2017-04-01

    The Sittaung River is one of four major rivers in Myanmar. This river basin is developing fast and facing problems with flood, sedimentation, river bank erosion and salt intrusion. At present, more than 20 numbers of reservoirs have already been constructed for multiple purposes such as irrigation, domestic water supply, hydro-power generation, and flood control. The rainfall runoff models are required for the operational management of this reservoir system. In this study, the river basin is divided into (64) sub-catchments and the Sacramento Soil Moisture Accounting (SAC-SMA) models are developed by using satellite rainfall and Geographic Information System (GIS) data. The SAC-SMA model has sixteen calibration parameters, and also uses a unit hydrograph for surface flow routing. The Sobek software package is used for SAC-SMA modelling and simulation of river system. The models are calibrated and tested by using observed discharge and water level data. The statistical results show that the model is applicable to use for data scarce region. Keywords: Sacramento, Sobek, rainfall runoff, reservoir

  6. Transport of sediment-bound organochlorine pesticides to the San Joaquin River, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1998-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced Rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  7. 25 CFR 162.503 - San Xavier and Salt River Pima-Maricopa Reservations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false San Xavier and Salt River Pima-Maricopa Reservations. 162... AND PERMITS Special Requirements for Certain Reservations § 162.503 San Xavier and Salt River Pima... statutory authority for long-term leasing on the San Xavier and Salt River Pima-Maricopa Reservations...

  8. 25 CFR 162.603 - San Xavier and Salt River Pima-Maricopa Reservations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false San Xavier and Salt River Pima-Maricopa Reservations. 162... AND PERMITS Special Requirements for Certain Reservations § 162.603 San Xavier and Salt River Pima... statutory authority for long-term leasing on the San Xavier and Salt River Pima-Maricopa Reservations...

  9. 25 CFR 162.503 - San Xavier and Salt River Pima-Maricopa Reservations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true San Xavier and Salt River Pima-Maricopa Reservations. 162... AND PERMITS Special Requirements for Certain Reservations § 162.503 San Xavier and Salt River Pima... statutory authority for long-term leasing on the San Xavier and Salt River Pima-Maricopa Reservations...

  10. 25 CFR 162.503 - San Xavier and Salt River Pima-Maricopa Reservations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false San Xavier and Salt River Pima-Maricopa Reservations. 162... AND PERMITS Special Requirements for Certain Reservations § 162.503 San Xavier and Salt River Pima... statutory authority for long-term leasing on the San Xavier and Salt River Pima-Maricopa Reservations...

  11. Trace elements in Corbicula fluminea from the San Joaquin River, California

    USGS Publications Warehouse

    Leland, H.V.; Scudder, B.C.

    1990-01-01

    (i) Trace element concentrations in soft tissue of the benthic bivalve, Corbicula fluminea, from the San Joaquin River and its major tributaries were examined during the primary irrigation season in relation to the spatial variation in concentrations of major, minor and trace constituents in riverwater and sediments. (ii) Selenium concentrations in Corbicula from perennial flow reaches of the San Joaquin River and its major tributaries varied directly with the solute (??? 0.45 ??m) Se concentrations of riverwater. Elevated concentrations occurred in clams from sites with substantial discharge originating as subsurface drainage and irrigation return flows. Both tissue and solute Se concentrations declined from June through the end of the primary irrigation season. (iii) Arsenic concentrations in Corbicula from perennial flow reaches of the San Joaquin River varied directly with the HNO3-extractable (pH 2) As:Fe ratio of suspended matter, providing evidence that sorption to oxyhydroxide surfaces is an important control on the biological availability of As. However, Corbicula from several tributaries draining alluvium derived from the Sierra Nevada had lower As concentrations than would be predicted by the relation developed for perennial flow sites of the San Joaquin River. Arsenic concentrations in Corbicula from the Tuolumne and Merced Rivers and upstream reaches of the San Joaquin River were higher than in clams from the downstream perennial flow reaches of the San Joaquin River. Concentrations of As in clams from downstream perennial flow reaches of the San Joaquin River increased from June through the end of the primary irrigation season. (iv) Mercury concentrations in Corbicula were elevated in upstream reaches of the San Joaquin River, in the Merced and Tuolumne Rivers, and in tributaries draining the Coast Ranges. Mean Cd and Cu concentrations in Corbicula were elevated in the Merced and Tuolumne Rivers, Orestimba Creek and a perennial flow reach of the San

  12. Using Satellite Remote Sensing to Map Changes in Aquatic Invasive Plant Cover in the Sacramento-San Joaquin River Delta of California

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2017-01-01

    Waterways of the Sacramento San Joaquin Delta have recently become infested with invasive aquatic weeds such as floating water hyacinth (Eichhoria crassipes) and water primrose (Ludwigia peploides). These invasive plants cause many negative impacts, including, but not limited to: the blocking of waterways for commercial shipping and boating; clogging of irrigation screens, pumps and canals; and degradation of biological habitat through shading. Zhang et al. (1997, Ecological Applications, 7(3), 1039-1053) used NASA Landsat satellite imagery together with field calibration measurements to map physical and biological processes within marshlands of the San Francisco Bay. Live green biomass (LGB) and related variables were correlated with a simple vegetation index ratio of red and near infra-red bands from Landsat images. More recently, the percent (water area) cover of water hyacinth plotted against estimated LGB of emergent aquatic vegetation in the Delta from September 2014 Landsat imagery showed a 80% overall accuracy. For the past two years, we have partnered with the U. S. Department of Agriculture (USDA) and the Department of Plant Sciences, University of California at Davis to conduct new validation surveys of water hyacinth and water primrose coverage and LGB in Delta waterways. A plan is underway to transfer decision support tools developed at NASA's Ames Research Center based on Landsat satellite images to improve Delta-wide integrated management of floating aquatic weeds, while reducing chemical control costs. The main end-user for this application project will be the Division of Boating and Waterways (DBW) of the California Department of Parks and Recreation, who has the responsibility for chemical control of water hyacinth in the Delta.

  13. Characterizing land surface change and levee stability in the Sacramento-San Joaquin Delta using UAVSAR radar imagery

    USGS Publications Warehouse

    Jones, C.; Bawden, G.; Deverel, S.; Dudas, J.; Hensley, S.

    2011-01-01

    The islands of the Sacramento-San Joaquin Delta have been subject to subsidence since they were first reclaimed from the estuary marshlands starting over 100 years ago, with most of the land currently lying below mean sea level. This area, which is the primary water resource of the state of California, is under constant threat of inundation from levee failure. Since July 2009, we have been imaging the area using the quad-polarimetric UAVSAR L-band radar, with eighteen data sets collected as of April 2011. Here we report results of our polarimetric and differential interferometric analysis of the data for levee deformation and land surface change. ?? 2011 IEEE.

  14. Riders on the storm: selective tidal movements facilitate the spawning migration of threatened delta smelt in the San Francisco Estuary

    USGS Publications Warehouse

    Bennett, W.A.; Burau, Jon R.

    2015-01-01

    Migration strategies in estuarine fishes typically include behavioral adaptations for reducing energetic costs and mortality during travel to optimize reproductive success. The influence of tidal currents and water turbidity on individual movement behavior were investigated during the spawning migration of the threatened delta smelt, Hypomesus transpacificus, in the northern San Francisco Estuary, California, USA. Water current velocities and turbidity levels were measured concurrently with delta smelt occurrence at sites in the lower Sacramento River and San Joaquin River as turbidity increased due to first-flush winter rainstorms in January and December 2010. The presence/absence of fish at the shoal-channel interface and near the shoreline was quantified hourly over complete tidal cycles. Delta smelt were caught consistently at the shoal-channel interface during flood tides and near the shoreline during ebb tides in the turbid Sacramento River, but were rare in the clearer San Joaquin River. The apparent selective tidal movements by delta smelt would facilitate either maintaining position or moving upriver on flood tides, and minimizing advection down-estuary on ebb tides. These movements also may reflect responses to lateral gradients in water turbidity created by temporal lags in tidal velocities between the near-shore and mid-channel habitats. This migration strategy can minimize the energy spent swimming against strong river and tidal currents, as well as predation risks by remaining in turbid water. Selection pressure on individuals to remain in turbid water may underlie population-level observations suggesting that turbidity is a key habitat feature and cue initiating the delta smelt spawning migration.

  15. 78 FR 5837 - Cancellation of Environmental Impact Statement/Environmental Impact Report on the Sacramento...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ...: The Sacramento River Water Reliability Study (SRWRS) was a water supply plan consistent with the Water... supplies to meet growing water supply demands and reliability objectives in their respective service areas.../Environmental Impact Report on the Sacramento River Water Reliability Study, California AGENCY: Bureau of...

  16. Modeling chinook salmon with SALMOD on the Sacramento River, California

    USGS Publications Warehouse

    Bartholow, J.M.

    2004-01-01

    Four races of Pacific salmon crowd the Sacramento River below a large reservoir that prevents access to historical spawning grounds. Each race is keyed to spawn at specific times through the year. A salmon population model was used to estimate: (1) the effects that unique run timing, interacting with seasonal river flows and water temperatures, have on each race; and (2) which habitats appeared to be the most limiting for each race. The model appeared to perform well without substantive calibration. Late fall, winter, and spring run Chinook do not appear to have the same production potential as fall run Chinook even though fall run production is more variable than that for the other three races. Spring fish have the lowest production on average, and production appears to be declining through time, perhaps making that race harder to recover should the population become more depressed. Rearing habitat appears to be the factor most limiting production for all races, but water temperature is responsible for most year-to-year production variation.

  17. Agricultural Chemical Concentrations and Loads in Rivers Draining the Central Valley, California, to the San Francisco Bay-Delta Estuary: Before and During an Extended Drought

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.

    2016-12-01

    Drought or near drought conditions have occurred in California since 2012. Although some parts of the State received near normal precipitation in water year 2016, other locations were still below average. Extended drought can impact aquatic organisms in a variety of ways because of decreased flows and elevated water temperature. However, lower precipitation and availability of irrigation water may limit subsequent runoff, resulting in reduced concentrations and loads of certain environmental toxicants, such as pesticides and ammonia, thereby limiting their toxic effects. In this study, funded by the U.S. Geological Survey National Water Quality Program, the occurrence of 227 pesticides and degradation products, and nutrients was assessed before and during this current drought in the two largest rivers draining to the San Francisco Bay: the Sacramento and San Joaquin Rivers. The watersheds of both rivers include substantial agricultural and urban land use. Herbicides, insecticides, fungicides, and ammonia were detected throughout the study (2010 to 2016) and models of daily concentration using the seasonal wave model (rloadest) were formulated to assess the amount of time that concentrations may have exceeded benchmark levels known to be toxic to aquatic organisms. Frequently detected pesticides included the fungicide azoxystrobin, herbicides or their degradation products such as diuron, glyphosate, and metolachlor, and insecticides such as imidacloprid. Compounds that are transported primarily by surface runoff generally showed decreasing concentrations as the drought progressed, especially in the San Joaquin River. Compounds mainly transported by groundwater, as indicated by seasonal concentration profiles, had more stable concentrations in the rivers. Mass loads to the Bay all decreased, as expected, because of the lower river discharge. When compared to aquatic-life benchmarks, modeled concentrations indicated that individual compounds were not contributing to

  18. 17. Photocopy of photograph (from California State Library, Sacramento, California, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph (from California State Library, Sacramento, California, c. 1890) EXTERIOR, REAR VIEW OF MISSION, C. 1890 - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  19. 77 FR 19690 - Notice of Inventory Completion: California Department of Parks and Recreation, Sacramento, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ...: California Department of Parks and Recreation, Sacramento, CA AGENCY: National Park Service, Interior. ACTION... Department of Parks and Recreation, 1416 9th Street, Room 902, Sacramento, CA 95814, telephone (916) 653-8893... located in San Diego County, CA. This notice is published as part of the National Park Service's...

  20. Modeling Investigation of Spring Chinook Salmon Habitat in San Joaquin River Restoration Program

    NASA Astrophysics Data System (ADS)

    Liu, L.; Ramires, J.

    2013-12-01

    As the second longest river in California, the San Joaquin River (SJR) is a vital natural resource to numerous residents and industries and provides an array of activities within Central Valley, home to some of California's most productive agricultural areas. Originating in the high Sierra Nevada, mainly from snowmelt and runoff, and passing through the middle sections including Fresno and Madera counties, eventually the SJR conjoins with the Sacramento River, constructing the largest river delta on the west coast of North America. Along with human necessities, the river used to be crucial for the propagation and survivability of Chinook salmon and other aquatic and wildlife. However, the SJR has experienced hydraulic disconnection throughout certain reaches due to extensive water diversion. Indigenous salmon populations have been degraded over the years due to insufficient flows and anthropogenic activities. In 2006, to maintain salmon and other fish populations to a point of self-sustainment, the San Joaquin River Restoration Project (SJRRP) was established to restore flows along the SJR from Friant Dam to the confluence of the Merced River by routing the original SJR in different pathways. One of the major tasks of the SJRRP, so called 'Reach 4B Project', was to modify and improve channel capacity of reach 4B, east side bypass and Mariposa bypass of the SJR. Multiple scenarios for the alteration and modification of the SJR water pathway were designed to ensure fish passage by retrofitting existing channels and to provide adequate flow throughout the study area. The goal of the SJRRP project 4B was to provide an efficient passage for adult Chinook salmon to spawning beds further upstream and a safe route for yearling to the delta. The objective of this research project is to characterize the stream properties (current velocities, depth, etc.) of each proposed alternative in Project 4B2 under the same upstream conditions using a modeling method. A depth

  1. Diazinon and chlorpyrifos loads in the San Joaquin River basin, California, January and February 2000

    USGS Publications Warehouse

    Kratzer, Charles R.; Zamora, Celia; Knifong, Donna L.

    2002-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2000 in the San Joaquin River Basin was less than 21 percent of application in 1993 and 1994. A total of 13 sites were sampled weekly during nonstorm periods and more frequently during two storm periods. The sites included five major river and eight minor tributary sites. The highest concentrations of diazinon and chlorpyrifos occurred during the storm periods. Four samples from major river sites (Tuolumne River and two San Joaquin River sites) had diazinon concentrations greater than 0.08 microgram per liter, the concentration being considered by the state of California as its criterion maximum concentration for the protection of aquatic habitat. One sample from a major river site (San Joaquin River) exceeded the equivalent State guideline of 0.02 microgram per liter for chlorpyrifos. At the eight minor tributary sites, 24 samples exceeded the diazinon guideline and four samples exceeded the chlorpyrifos guideline. The total diazinon load in the San Joaquin River near Vernalis during January and February 2000 was 19.6 pounds active ingredient; of this, 8.17 pounds active ingredient was transported during two storms. In 1994, 27.4 pounds active ingredient was transported during two storms. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2000 was 5.68 pounds active ingredient; of this, 2.17 pounds active ingredient was transported during the two storms. During the frequently sampled February 2000 storm, the main sources of diazinon in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (25 percent), Tuolumne River Basin (14 percent), and the Stanislaus River Basin (10 percent). The main sources of chlorpyrifos in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (17 percent), Tuolumne River Basin (13 percent), and the Merced River Basin (11 percent). The total January and February diazinon load in the

  2. 23. Photocopy of photograph (from California State Library, Sacramento, California, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of photograph (from California State Library, Sacramento, California, C. 1909) EXTERIOR, VIEW OF SOUTH FRONT OF CONVENTO IN RUINS, C. 1909 - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  3. 32. Historic American Buildings Survey From California State Library Sacramento, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Historic American Buildings Survey From California State Library Sacramento, California Original: Re-photo: February 1940 DETAIL OF ENTRANCE (East Elevation) - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  4. 6. Historic American Buildings Survey From California State Library Sacramento, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Historic American Buildings Survey From California State Library Sacramento, California Original: Ante 1860 Re-photo: February 1940 VIEW FROM SOUTHEAST - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  5. Recreation Connections at the Regional Level: Public Access along the Sacramento River as a Multi-agency Effort

    Treesearch

    David Rolloff; Ron Unger; Marie Kit Veerkamp

    2004-01-01

    This study was conducted to assess existing and potential public recreation uses, access, needs, and opportunities along California’s Sacramento River in a 100-mile-long, four-county study area located between the communities of Red Bluff and Colusa. The study was funded by a CALFED grant awarded jointly to The Nature Conservancy, the U.S. Fish and Wildlife Service,...

  6. Concentrations of organic contaminants detected during managed flow conditions, San Joaquin River and Old River, California, 2001

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn

    2005-01-01

    Concentrations of organic contaminants were determined in water samples collected at six surface-water sites located along the San Joaquin and Old Rivers during April through June 2001. Water samples were collected, coincident with salmon smolt caging studies conducted by researchers from the Bodega Marine Laboratory at the University of California at Davis to characterize exposure of the salmon smolt to organic contaminants. Sampling occurred prior to, during, and following the implementation of managed streamflow conditions on the San Joaquin and Old Rivers as part of the Vernalis Adaptive Management Plan. Thirteen pesticides were detected in water samples collected during this study, and at least five pesticides were detected in each sample. The total number of pesticide detections varied little between river systems and between sites, but the maximum concentrations of most pesticides occurred in San Joaquin River samples. The total number of pesticides detected varied little over the three time periods. However, during the period of managed streamflow, the fewest number of pesticides were detected at their absolute maximum concentration. Nine wastewater compounds were detected during this study. Suspended-sediment concentrations were similar for the San Joaquin and Old Rivers except during the period of managed streamflow conditions, when suspended-sediment concentration was higher at sites on the San Joaquin River than at sites on the Old River. Values for water parameters (pH, specific conductance, and hardness) were lowest during the period of managed flows.

  7. 33. Historic American Buildings Survey From California State Library Sacramento, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Historic American Buildings Survey From California State Library Sacramento, California Original: 1860's Re-photo: February 1940 INTERIOR OF CHURCH BEFORE RESTORATION - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  8. Tomographic Rayleigh-wave group velocities in the Central Valley, California centered on the Sacramento/San Joaquin Delta

    USGS Publications Warehouse

    Fletcher, Jon Peter B.; Erdem, Jemile; Seats, Kevin; Lawrence, Jesse

    2016-01-01

    If shaking from a local or regional earthquake in the San Francisco Bay region were to rupture levees in the Sacramento/San Joaquin Delta then brackish water from San Francisco Bay would contaminate the water in the Delta: the source of fresh water for about half of California. As a prelude to a full shear-wave velocity model that can be used in computer simulations and further seismic hazard analysis, we report on the use of ambient noise tomography to build a fundamental-mode, Rayleigh-wave group velocity model for the region around the Sacramento/San Joaquin Delta in the western Central Valley, California. Recordings from the vertical component of about 31 stations were processed to compute the spatial distribution of Rayleigh wave group velocities. Complex coherency between pairs of stations were stacked over 8 months to more than a year. Dispersion curves were determined from 4 to about 18 seconds. We calculated average group velocities for each period and inverted for deviations from the average for a matrix of cells that covered the study area. Smoothing using the first difference is applied. Cells of the model were about 5.6 km in either dimension. Checkerboard tests of resolution, which is dependent on station density, suggest that the resolving ability of the array is reasonably good within the middle of the array with resolution between 0.2 and 0.4 degrees. Overall, low velocities in the middle of each image reflect the deeper sedimentary syncline in the Central Valley. In detail, the model shows several centers of low velocity that may be associated with gross geologic features such as faulting along the western margin of the Central Valley, oil and gas reservoirs, and large cross cutting features like the Stockton arch. At shorter periods around 5.5s, the model’s western boundary between low and high velocities closely follows regional fault geometry and the edge of a residual isostatic gravity low. In the eastern part of the valley, the boundaries

  9. Tomographic Rayleigh wave group velocities in the Central Valley, California, centered on the Sacramento/San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Fletcher, Jon B.; Erdem, Jemile; Seats, Kevin; Lawrence, Jesse

    2016-04-01

    If shaking from a local or regional earthquake in the San Francisco Bay region were to rupture levees in the Sacramento/San Joaquin Delta, then brackish water from San Francisco Bay would contaminate the water in the Delta: the source of freshwater for about half of California. As a prelude to a full shear-wave velocity model that can be used in computer simulations and further seismic hazard analysis, we report on the use of ambient noise tomography to build a fundamental mode, Rayleigh wave group velocity model for the region around the Sacramento/San Joaquin Delta in the western Central Valley, California. Recordings from the vertical component of about 31 stations were processed to compute the spatial distribution of Rayleigh wave group velocities. Complex coherency between pairs of stations was stacked over 8 months to more than a year. Dispersion curves were determined from 4 to about 18 s. We calculated average group velocities for each period and inverted for deviations from the average for a matrix of cells that covered the study area. Smoothing using the first difference is applied. Cells of the model were about 5.6 km in either dimension. Checkerboard tests of resolution, which are dependent on station density, suggest that the resolving ability of the array is reasonably good within the middle of the array with resolution between 0.2 and 0.4°. Overall, low velocities in the middle of each image reflect the deeper sedimentary syncline in the Central Valley. In detail, the model shows several centers of low velocity that may be associated with gross geologic features such as faulting along the western margin of the Central Valley, oil and gas reservoirs, and large crosscutting features like the Stockton arch. At shorter periods around 5.5 s, the model's western boundary between low and high velocities closely follows regional fault geometry and the edge of a residual isostatic gravity low. In the eastern part of the valley, the boundaries of the low

  10. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... executing river and harbor improvement work for the United States, and displaying the signals prescribed by... exercise special caution to avoid interference with the work on which the plant is engaged. Dredges...); a wharf or other structure; work under construction; plant engaged in river and harbor improvement...

  11. 21. Photocopy of photograph (from California State Library, Sacramento, California, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph (from California State Library, Sacramento, California, c. 1903) EXTERIOR, SOUTH FRONT & WEST SIDE OF MISSION IN RUINOUS STATE BEFORE RESTORATION, C. 1903 - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  12. Preliminary assessment of the effects of selenium in agricultural drainage on fish in the San Joaquin Valley

    USGS Publications Warehouse

    Saiki, M.K.; Jennings, M.R.; Hamilton, S.J.; Dinar, A.; Zilberman, D.

    1991-01-01

    Concentrations of total selenium were measured in whole-body samples of seven fishes from the Sacramento and San Joaquin River systems and the San Francisco Bay complex. Concentrations of selenium (up to 11 µg/g dry weight in whole-body composite samples) were highest in fish from canals and sloughs in the Grassland Water District (Grasslands) that received large inflows of subsurface agricultural drainage water. Slightly lower selenium concentrations occurred in fish from the San Joaquin River immediately downstream from tributaries draining the Grasslands. Although circumstantial evidence suggests that selenium-sensitive species such as bluegills and largemouth bass are being excluded from the Grasslands, conclusive evidence of selenium toxicity is still lacking. In response to earlier reports of high concentrations of selenium in several species collected from the Grasslands, the California Department of Health Services has urged people to limit consumption of fish from this region.

  13. National Water-Quality Assessment Program: The Sacramento River Basin

    USGS Publications Warehouse

    Domagalski, Joseph L.; Brown, Larry R.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status of and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to identify the major natural and human factors that affect the quality of those resources. In addressing these goals, the program will provide a wealth of water- quality information that will be useful to policy makers and managers at the national, State, and local levels. A major asset of the NAWQA program is that it will allow for the integration of water-quality information collected at several scales. A major component of the program is the study-unit investigation-the foundation of national- level assessment. The 60 study units of the NAWQA program are hydrologic systems that include parts of most major river basins and aquifer systems of the conterminous United States. These study units cover areas of 1,000 to more than 60,000 square miles and represent 60 to 70 percent of the Nation's water use and population served by public water supplies. Investigations of the first 20 study units began in 1991. In 1994, the Sacramento River Basin was among the second set of 20 NAWQA study units selected for investigation.

  14. Combined use of stable isotopes and hydrologic modeling to better understand nutrient sources and cycling in highly altered systems (Invited)

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Guerin, M.; Stringfellow, W. T.; Silva, S. R.; Harter, T.; Parker, A.

    2013-12-01

    The Sacramento and San Joaquin Rivers provide the majority of freshwater for the San Francisco Bay Delta. Both rivers are important sources of drinking and irrigation water for California, and play critical roles in the health of California fisheries. Understanding the factors controlling water quality and primary productivity in these rivers and the Delta is essential for making sound economic and environmental water management decisions. However, these highly altered surface water systems present many challenges for water quality monitoring studies due to factors such as multiple potential nutrient and contaminant inputs, dynamic source water inputs, and changing flow regimes controlled by both natural and engineered conditions. The watersheds for both rivers contain areas of intensive agriculture along with many other land uses, and the Sacramento River receives significant amounts of treated wastewater from the large population around the City of Sacramento. We have used a multi-isotope approach combined with mass balance and hydrodynamic modeling in order to better understand the dominant nutrient sources for each of these rivers, and to track nutrient sources and cycling within the complex Delta region around the confluence of the rivers. High nitrate concentrations within the San Joaquin River fuel summer algal blooms, contributing to low dissolved oxygen conditions. High δ15N-NO3 values combined with the high nitrate concentrations suggest that animal manure is a significant source of nitrate to the San Joaquin River. In contrast, the Sacramento River has lower nitrate concentrations but elevated ammonium concentrations from wastewater discharge. Downstream nitrification of the ammonium can be clearly traced using δ15N-NH4. Flow conditions for these rivers and the Delta have strong seasonal and inter-annual variations, resulting in significant changes in nutrient delivery and cycling. Isotopic measurements and estimates of source water contributions

  15. 76 FR 70480 - Otay River Estuary Restoration Project, South San Diego Bay Unit of the San Diego Bay National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... River Estuary Restoration Project, South San Diego Bay Unit of the San Diego Bay National Wildlife...), intend to prepare an environmental impact statement (EIS) for the proposed Otay River Estuary Restoration... any one of the following methods. Email: [email protected] . Please include ``Otay Estuary NOI'' in the...

  16. Methane Fluxes in a Composite Landscape in the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Guha, A.; Detto, M.; Baldocchi, D. D.; Goldstein, A. H.

    2009-12-01

    Much of the Sacramento-San Joaquin Delta region post the Gold Rush era was reclaimed and drained for agriculture by building a network of ‘islands’ surrounded by levees. The exposure of organic peat soil to air has caused the peat soil to oxidize and soil to subside. Today, a combination of oxidation, subsidence, erosion, and compaction has caused many ‘islands’ to be 10 m below sea level. The continued oxidation/subsidence of the Delta peatlands is threatening long-term agricultural use of these lands by pushing the soil level further and further below sea-level. In an attempt to protect the Delta, State and Federal governmental institutions (e.g. CalFed) and local water districts are converting some of these agricultural lands back to wetlands. This is being accomplished by breaching levees, with the intent of sequestering carbon and building up the soils, by introducing flooded crops, like rice, or carbon farming by converting farm land to native tules and cattails. Knowing what the environmental trade-offs of such land conversion are on coupled carbon and water exchange is critical for proper environmental management, as there can be many unintended consequences such as the emission of greenhouse gases that promote global warming. Large greenhouse gas fluxes specially that of methane are expected from wetlands in the Sacramento-San Joaquin Delta for a variety of reasons. This campaign aimed at measuring the methane fluxes over the complex and fragmented landscapes of the Delta where a piece of land can vary from being a slight sink of methane to a vast source depending upon land use, land cover and degree of saturation of soil. Los Gatos Research (LGR) designed and fabricated a mobile trailer which housed their latest closed-path infrared laser based absorption spectrometers for fast response in-situ measurements of methane at a frequency which permits eddy covariance technique to be applied to measure flux. The trailer was taken to selected landscapes

  17. Fine-scale habitat preference of green sturgeon (Acipenser medirostris) within three spawning locations in the Sacramento River, California

    USGS Publications Warehouse

    Wyman, Megan T.; Thomas, Michael J.; McDonald, Richard R.; Hearn, Alexander R.; Battleson, Ryan D.; Chapman, Eric D.; Kinzel, Paul J.; Minear, J. Tobey; Mora, Ethan A.; Nelson, Jonathan M.; Pagel, Matthew D.; Klimley, A. Peter

    2018-01-01

    Vast sections of the Sacramento River have been listed as critical habitat by the National Marine Fisheries Service for green sturgeon spawning (Acipenser medirostris), yet spawning is known to occur at only a few specific locations. This study reveals the range of physical habitat variables selected by adult green sturgeon during their spawning period. We integrated fine-scale fish positions, physical habitat characteristics, discharge, bathymetry, and simulated velocity and depth using a 2-dimensional hydraulic model (FaSTMECH). The objective was to create habitat suitability curves for depth, velocity, and substrate type within three known spawning locations over two years. An overall cumulative habitat suitability score was calculated that averaged the depth, velocity, and substrate scores over all fish, sites, and years. A weighted usable area (WUA) index was calculated throughout the sampling periods for each of the three sites. Cumulative results indicate that the microhabitat characteristics most preferred by green sturgeon in these three spawning locations were velocities between 1.0-1.1 m/s, depths of 8-9 m, and gravel and sand substrate. This study provides guidance for those who may in the future want to increase spawning habitat for green sturgeon within the Sacramento River.

  18. A Study of Vegetation on Revetments Sacramento River Bank Protection Project. Phase 1. Literature Review and Pilot Study

    DTIC Science & Technology

    1990-11-01

    California, Sacramento, CA. 106 Fletcher, William B., and Davidson, Russell L. 1988. "South Santiam River Bank Protection Study, A Pilot Study for the... Poundstone , President Reclamation District 108 P. 0. Box 887 Colusa, CA 95932 Mr. Glenn Hiatt, President Reclamation District 1500 Star Route Knights Landing...R. Farnsworth. Also present were Engineer Kenneth Larch, Attorney George Besyo. Secretary-Manager David P. Grenicher, Emery Poundstone , Jack Wallace

  19. Environmental setting of the San Joaquin-Tulare basins, California

    USGS Publications Warehouse

    Gronberg, JoAnn A.; Dubrovsky, Neil M.; Kratzer, Charles R.; Domagalski, Joseph L.; Brown, Larry R.; Burow, Karen R.

    1998-01-01

    The National Water-Quality Assessment Program for the San Joaquin- Tulare Basins began in 1991 to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology. The San Joaquin-Tulare Basins study unit, which covers approximately 31,200 square miles in central California, is made up of the San Joaquin Valley, the eastern slope of the Coast Ranges to the west, and the western slope of the Sierra Nevada to the east. The sediments of the San Joaquin Valley can be divided into alluvial fans and basin deposits. The San Joaquin River receives water from tributaries draining the Sierra Nevada and Coast Ranges, and except for streams discharging directly to the Sacramento-San Joaquin Delta, is the only surface- water outlet from the study unit. The surface-water hydrology of the San Joaquin-Tulare Basins study unit has been significantly modified by development of water resources. Almost every major river entering the valley from the Sierra Nevada has one or more reservoirs. Almost every tributary and drainage into the San Joaquin River has been altered by a network of canals, drains, and wasteways. The Sierra Nevada is predominantly forested, and the Coast Ranges and the foothills of the Sierra Nevada are predominately rangeland. The San Joaquin Valley is dominated by agriculture, which utilized approximately 14.7 million acre-feet of water and 597 million pounds active ingredient of nitrogen and phosphorus fertilizers in 1990, and 88 million pounds active ingredient of pesticides in 1991. In addition, the livestock industry contributed 318 million pounds active ingredient of nitrogen and phosphorus from manure in 1987. This report provides the background information to assess the influence of these and other factors on water quality and to provide the foundation for the design and interpretation of all spatial data. These characterizations provide a basis for comparing the influences of human activities

  20. Constraints on the sedimentation history of San Francisco Bay from 14C and 10Be

    USGS Publications Warehouse

    VanGeen, A.; Valette-Silver, N. J.; Luoma, S.N.; Fuller, C.C.; Baskaran, M.; Tera, F.; Klein, J.

    1999-01-01

    Industrialization and urbanization around San Francisco Bay as well as mining and agriculture in the watersheds of the Sacramento and San Joaquin rivers have profoundly modified sedimentation patterns throughout the estuary. We provide some constraints on the onset of these erosional disturbances with 10Be data for three sediment cores: two from Richardson Bay, a small embayment near the mouth of San Francisco Bay, and one from San Pablo Bay, mid-way between the river delta and the mouth. Comparison of pre-disturbance sediment accumulation determined from three 14C-dated mollusk shells in one Richardson Bay core with more recent conditions determined from the distribution of 210Pb and 234Th [Fuller, C.C., van Geen, A., Baskaran, M, Anima, R.J., 1999. Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 239,240Pu.] shows that the accumulation rate increased by an order of magnitude at this particular site. All three cores from San Francisco Bay show subsurface maxima in 10Be concentrations ranging in magnitude from 170 to 520 x 106 atoms/g. The transient nature of the increased 10Be input suggests that deforestation and agricultural develop- ment caused basin-wide erosion of surface soils enriched in 10Be. probably before the turn of the century.

  1. Trace elements and organic compounds in streambed sediment and aquatic biota from the Sacramento River Basin, California, October and November 1995

    USGS Publications Warehouse

    MacCoy, Dorene E.; Domagalski, Joseph L.

    1999-01-01

    Elevated levels of trace elements and hydrophobic organic compounds were detected in streambed sediments and aquatic biota [Asiatic clam (Corbicula fluminea) or bottom-feeding fish] of the Sacramento River Basin, California, during October and November 1995. Trace elements detected included cadmium, copper, mercury, lead, and zinc. Elevated levels of cadmium, copper, and zinc in the upper Sacramento River are attributed to a mining land use, and elevated levels of zinc and lead in an urban stream, and possibly in the lower Sacramento River, are attributed to urban runoff processes. Elevated levels of mercury in streambed sediment are attributed to either past mercury mining or to the use of mercury in past gold mining operations. Mercury mining was an important land use within the Coast Ranges in the past and gold mining was an important land use of the Sierra Nevada in the past. Mercury was the only trace element found in elevated levels in the tissue of aquatic biota, and those levels also could be attributed to either mining or urban runoff. Hydrophobic organic compounds also were detected in streambed sediments and aquatic biota. The most frequently detected compounds were DDT and its breakdown products, dieldrin, oxychlordane, and toxaphene. Differences were found in the types of compounds detected at agricultural sites and the urban site. Although both types of sites had measurable concentrations of DDT or its breakdown products, the urban site also had measurable concentrations of pesticides used for household pest control. Few semivolatile compounds were detected in the streambed sediments of any site. The semivolatile compound p-cresol, a coal-tar derivative associated with road maintenance, was found in the highest concentration.

  2. Implications of the miocene(?) crooked ridge river of northern arizona for the evolution of the colorado river and grand canyon

    USGS Publications Warehouse

    Lucchitta, Ivo; Holm, Richard F.; Lucchitta, Baerbel K.

    2013-01-01

    The southwesterly course of the probably pre–early Miocene and possibly Oligocene Crooked Ridge River can be traced continuously for 48 km and discontinuously for 91 km in northern Arizona (United States). The course is visible today in inverted relief. Pebbles in the river gravel came from at least as far northeast as the San Juan Mountains (Colorado). The river valley was carved out of easily eroded Jurassic and Cretaceous rocks whose debris overloaded the river with abundant detritus, probably steepening the gradient. After the river became inactive, the regional drainage network was rearranged three times, and the nearby Four Corners region was lowered 1–2 km by erosion. The river provides constraints on the early evolution of the Colorado River and Grand Canyon. Continuation of this river into lakes in Arizona or Utah is unlikely, as is integration through Grand Canyon by lake spillover. The downstream course of the river probably was across the Kaibab arch in a valley roughly coincident with the present eastern Grand Canyon. Beyond this point, the course may have continued to the drainage basin of the Sacramento River, or to the proto–Snake River drainage. Crooked Ridge River was beheaded by the developing San Juan River, which pirated its waters and probably was tributary to a proto–Colorado River, flowing roughly along its present course west of the Monument upwarp.

  3. Sediment transport of streams tributary to San Francisco, San Pablo, and Suisun Bays, California, 1909-66

    USGS Publications Warehouse

    Porterfield, George

    1980-01-01

    A review of historical sedimentation data is presented, results of sediment-data collection for water years 1957-59 are summarized, and long-term sediment-discharge estimates from a preliminary report are updated. Comparison of results based on 3 years of data to those for the 10 water years, 1957-66, provides an indication of the adequacy of the data obtained during the short period to define the long-term relation between sediment transport and streamflow. During 1909-66, sediment was transported to the entire San Francisco Bay system at an average rate of 8.6 million cubic yards per year. The Sacramento and San Joaquin River basins provided about 83% of the sediment inflow to the system annually during 1957-66 and 86% during 1909-66. About 98% of this inflow was measured or estimated at sediment measuring sites. Measured sediment inflow directly to the bays comprised only about 40% of the total discharged by basins directly tributary to the bays. About 90% of the total sediment discharge to the delta and the bays in the San Francisco Bay system thus was determined on the basis of systematic measurements. (USGS)

  4. 25 CFR 162.503 - San Xavier and Salt River Pima-Maricopa Reservations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false San Xavier and Salt River Pima-Maricopa Reservations. 162.503 Section 162.503 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Special Requirements for Certain Reservations § 162.503 San Xavier and Salt River Pima-Maricopa Reservations. (a) Purpose and scope....

  5. Dissolved pesticide concentrations in the Sacramento-San Joaquin Delta and Grizzly Bay, California, 2011-12

    USGS Publications Warehouse

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2013-01-01

    Surface-water samples were collected from sites within the Sacramento-San Joaquin Delta and Grizzly Bay, California, during the spring in 2011 and 2012, and they were analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected and analyzed as part of a collaborative project studying the occurrence and characteristics of phytoplankton in the San Francisco Estuary. Samples were analyzed by two separate laboratory methods employing gas chromatography/mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). Eighteen pesticides were detected in samples collected during 2011, and the most frequently detected compounds were the herbicides clomazone, diuron, hexazinone and metolachlor, and the diuron degradates 3,4-dichloroaniline and N-(3,4-dichlorophenyl)-N’-methylurea (DCPMU). Concentrations for all compounds were less than 75 ng/L, except for the rice herbicide clomazone and the fungicide tetraconazole, which had maximum concentrations of 535 and 511 ng/L, respectively. In samples collected in 2012, a total of 16 pesticides were detected. The most frequently detected compounds were the fungicides azoxystrobin and boscalid and the herbicides diuron, hexazinone, metolachlor, and simazine. Maximum concentrations for all compounds detected in 2012 were less than 75 ng/L, except for the fungicide azoxystrobin and the herbicides hexazinone and simazine, which were detected at up to 188, 134, and 140 ng/L, respectively.

  6. High flow and riparian vegetation along the San Miguel River, Colorado

    USGS Publications Warehouse

    Friedman, J.M.; Auble, G.T.

    2000-01-01

    Riparian ecosystems are characterized by abundance of water and frequent flow related disturbance. River regulation typically decreases peak flows, reducing the amount of disturbance and altering the vegetation. The San Miguel River is one of the last relatively unregulated rivers remaining in the Colorado River Watershed. One goal of major landowners along the San Miguel including the Bureau of Land Management and The Nature Conservancy is to maintain their lands in a natural condition. Conservation of an entire river corridor requires an integrated understanding of the variability in ecosystems and external influences along the river. Therefore, the Bureau of Land Management and others have fostered a series of studies designed to catalogue that variability, and to characterize the processes that maintain the river as a whole. In addition to providing information useful to managers, these studies present a rare opportunity to investigate how a Colorado river operates in the absence of regulation.

  7. Isotopic Evidence of Nitrate Sources and its Relationship to Algae in the San Joaquin River, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Young, M. B.; Stringfellow, W. T.; Borglin, S. E.; Kratzer, C. R.; Dahlgren, R. A.; Schmidt, C.; Rollog, M. E.

    2007-12-01

    Many competing demands have been placed on the San Joaquin River including deep water shipping, use as agricultural and drinking water, transport of agricultural and urban runoff, and recreation. These long-established demands limit the management options and increase the importance of understanding the river dynamics. The relationships among sources of water, nitrate, and algae in the San Joaquin River must be understood before management decisions can be made to optimize aquatic health. Isotopic analyses of water samples collected along the San Joaquin River in 2005-2007 have proven useful in assessing these relationships: sources of nitrate, the productivity of the San Joaquin River, and the relationship between nitrate and algae in the river. The San Joaquin River receives water locally from wetlands and agricultural return flow, and from three relatively large tributaries whose headwaters are in the Sierra Nevada. The lowest nitrate concentrations occur during periods of high flow when the proportion of water from the Sierra Nevada is relatively large, reflecting the effect of dilution from the big tributaries and indicating that a large fraction of the nitrate is of local origin. Nitrogen isotopes of nitrate in the San Joaquin River are relatively high (averaging about 12 per mil), suggesting a significant source from animal waste or sewage and/or the effects of denitrification. The d15N of nitrate varies inversely with concentration, indicating that these high isotopic values are also a local product. The d15N values of nitrate from most of the local tributaries is lower than that in the San Joaquin suggesting that nitrate from these tributaries does not account for a significant fraction of nitrate in the river. The source of the non-tributary nitrate must be either small unmeasured surface inputs or groundwater. To investigate whether groundwater might be a significant source of nitrate to the San Joaquin River, groundwater samples are being collected

  8. High Frequency Monitoring of Isotopic Signatures Elucidates Potential Effects of Restoring Floodplain Habitat in the Sacramento-San Joaquin Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Nakamoto, B. J.; Fogel, M. L.; Jeffres, C.; Viers, J. H.

    2017-12-01

    Increasing the quality and quantity of habitat for native species in the Sacramento-San Joaquin Delta is a high priority for California water managers. The McCormack-Williamson Tract (MWT) is a subsided island (38.253° N -121.284° W) situated at the confluence of the Cosumnes and Mokelumne rivers, near the inland extent of tidal influence. MWT experienced unexpected levee failure on February 11, 2017, during the wettest year of record for the Mokelumne-Cosumnes river system, which provided a unique opportunity to examine the potential trajectory of future restoration actions within the Delta. We carried out high frequency sampling (n=32, 13% of days) of suspended particulate organic matter (SPOM) and waters in the Mokelumne and Cosumnes river systems, including nearby sloughs, and the post-failure, flooded interior of MWT. Carbon (δ13C) and nitrogen (δ15N) isotopes in SPOM and δ2H and δ18O of waters were analyzed and in situ water quality data were collected in tandem, thus contextualizing isotopic data. Sampling was confined to an 8 km2 region surrounding MWT (6.7 km2 interior). This unintentional flooding provided a natural before-after-control-impact experiment to study the effect that sudden inundation of a Delta island can have on food web development and ecosystem function. Source waters were isotopically distinct (p<.01), and co-varied along the Global Meteoric Water Line (R2>0.9), providing a semi-conservative tracer of mixing. The δ13C values of SPOM varied between -37.3 and -23.9‰ and were significantly more negative on the flooded island by 1.2‰ (p<.01), possibly due to increased recycling of organic carbon concomitant with accelerated ecosystem metabolism. Concurrently, δ15N values varied between 1.0 and 12.4‰ and were not significantly different between riverine and flooded island sites. Our data indicate that this river system is highly dynamic over short periods of flood inundation (13 weeks) with new freshwater habitats exhibiting

  9. 2. Historic American Buildings Survey Sacramento Chamber of Commerce Original: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey Sacramento Chamber of Commerce Original: 1851 (Drawing) Re-photo: April 1940 GENERAL VIEW - Sutter's Mill, American River (submerged), Coloma, El Dorado County, CA

  10. SAN FRANCISCO BAY WETLANDS REGIONAL MONITORING PROGRAM

    EPA Science Inventory

    The geographic area to be monitored is the San Francisco Estuary and its watersheds from the Golden Gate to the Sacramento-San Joaquin Delta at Broad Slough. The initial focus will be the baylands of the region defined as the lands between the maximum and minimum elevations of t...

  11. Sediment and water chemistry of the San Juan River and Escalante River deltas of Lake Powell, Utah, 2010-2011

    USGS Publications Warehouse

    Hornewer, Nancy J.

    2014-01-01

    Recent studies have documented the presence of trace elements, organic compounds including polycyclic aromatic hydrocarbons, and radionuclides in sediment from the Colorado River delta and from sediment in some side canyons in Lake Powell, Utah and Arizona. The fate of many of these contaminants is of significant concern to the resource managers of the National Park Service Glen Canyon National Recreation Area because of potential health impacts to humans and aquatic and terrestrial species. In 2010, the U.S. Geological Survey began a sediment-core sampling and analysis program in the San Juan River and Escalante River deltas in Lake Powell, Utah, to help the National Park Service further document the presence or absence of contaminants in deltaic sediment. Three sediment cores were collected from the San Juan River delta in August 2010 and three sediment cores and an additional replicate core were collected from the Escalante River delta in September 2011. Sediment from the cores was subsampled and composited for analysis of major and trace elements. Fifty-five major and trace elements were analyzed in 116 subsamples and 7 composited samples for the San Juan River delta cores, and in 75 subsamples and 9 composited samples for the Escalante River delta cores. Six composited sediment samples from the San Juan River delta cores and eight from the Escalante River delta cores also were analyzed for 55 low-level organochlorine pesticides and polychlorinated biphenyls, 61 polycyclic aromatic hydrocarbon compounds, gross alpha and gross beta radionuclides, and sediment-particle size. Additionally, water samples were collected from the sediment-water interface overlying each of the three cores collected from the San Juan River and Escalante River deltas. Each water sample was analyzed for 57 major and trace elements. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for the sediment-core subsamples and composited

  12. High-Resolution Digital Terrain Models of the Sacramento/San Joaquin Delta Region, California

    USGS Publications Warehouse

    Coons, Tom; Soulard, Christopher E.; Knowles, Noah

    2008-01-01

    The U.S. Geological Survey (USGS) Western Region Geographic Science Center, in conjunction with the USGS Water Resources Western Branch of Regional Research, has developed a high-resolution elevation dataset covering the Sacramento/San Joaquin Delta region of California. The elevation data were compiled photogrammically from aerial photography (May 2002) with a scale of 1:15,000. The resulting dataset has a 10-meter horizontal resolution grid of elevation values. The vertical accuracy was determined to be 1 meter. Two versions of the elevation data are available: the first dataset has all water coded as zero, whereas the second dataset has bathymetry data merged with the elevation data. The projection of both datasets is set to UTM Zone 10, NAD 1983. The elevation data are clipped into files that spatially approximate 7.5-minute USGS quadrangles, with about 100 meters of overlap to facilitate combining the files into larger regions without data gaps. The files are named after the 7.5-minute USGS quadrangles that cover the same general spatial extent. File names that include a suffix (_b) indicate that the bathymetry data are included (for example, sac_east versus sac_east_b). These files are provided in ESRI Grid format.

  13. Characterizing and simulating sediment loads and transport in the lower part of the San Antonio River Basin

    USGS Publications Warehouse

    Banta, J. Ryan; Ockerman, Darwin J.; Crow, Cassi; Opsahl, Stephen P.

    2015-01-01

    This extended abstract is based on the U.S. Geological Survey Scientific Investigations Reports by Crow et al. (2013) and Banta and Ockerman (2014). Suspended sediment in rivers and streams can play an important role in ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. The quantity and type of suspended sediment can affect the biological communities (Wood and Armitage, 1997), the concentration and movement of natural constituents and anthropogenic contaminants (Moran and others, 2012), and the amount of sediment deposition in coastal environments (Milliman and Meade, 1983). To better understand suspended-sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority and Texas Water Development Board, conducted a two-phase study to (1) collect and analyze sediment data to characterize sediment conditions in the San Antonio River downstream of San Antonio, Texas, and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads for four watersheds in the San Antonio River Basin, downstream from San Antonio, Texas.

  14. 3. Historic American Buildings Survey Sacramento Chamber of Commerce Original: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey Sacramento Chamber of Commerce Original: Re-photo: April 1940 GOLD DISCOVERED HERE JANUARY 20, 1848 - Sutter's Mill, American River (submerged), Coloma, El Dorado County, CA

  15. Plant community, primary productivity, and environmental conditions following wetland re-establishment in the Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Miller, R.L.; Fujii, R.

    2010-01-01

    Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in two re-established wetlands in the Sacramento San-Joaquin River Delta, California for 9 years after flooding to determine how relatively small differences in water depth affect carbon storage rates over time. To estimate annual carbon inputs, plant species cover, standing above- and below-ground plant biomass, and annual biomass turnover rates were measured, and allometric biomass models for Schoenoplectus (Scirpus) acutus and Typha spp., the emergent marsh dominants, were developed. As the wetlands developed, environmental factors, including water temperature, depth, and pH were measured. Emergent marsh vegetation colonized the shallow wetland more rapidly than the deeper wetland. This is important to potential carbon storage because emergent marsh vegetation is more productive, and less labile, than submerged and floating vegetation. Primary production of emergent marsh vegetation ranged from 1.3 to 3.2 kg of carbon per square meter annually; and, mid-season standing live biomass represented about half of the annual primary production. Changes in species composition occurred in both submerged and emergent plant communities as the wetlands matured. Water depth, temperature, and pH were lower in areas with emergent marsh vegetation compared to submerged vegetation, all of which, in turn, can affect carbon cycling and storage rates. ?? Springer Science+Business Media B.V. 2009.

  16. Timber resource statistics of the Sacramento resource area of California.

    Treesearch

    J.D. Lloyd; Joel Moen; Charles L. Bolsinger

    1986-01-01

    This report is one of five that provide timber resource statistics for 57 of the 58 counties in California (San Francisco is excluded). This report presents statistics from a 1981-84 inventory of the timber resources of Butte, Colusa, El Dorado, Glenn, Lake, Napa, Nevada, Placer, Plumas, Sacramento, Sierra, Sutter, Tehama, Yolo, and Yuba Counties. Tables presented are...

  17. Flood hydrology of Butte Basin, 1973-77 water years, Sacramento Valley, California

    USGS Publications Warehouse

    Simpson, R.G.

    1978-01-01

    Flooding in Butte Basin, CA., is caused primarily by overflow from the Sacramento River on the western boundary. Stage and discharge data were collected during 1973-77 at 6 recording and 45 crest-stage gages within the basin and combined with discharge records on the main channel of the Sacramento River to determine total flow and flow distribution at the latitudes of Ord Ferry, Butte City, and Gridley Road. Water-surface profiles throughout the basin, inflow/change-in-storage/outflow relations of the Butte Sink, and channel changes of the Sacramento River are shown. During 1973-77, total peak flows decreased an average of 7 percent between the latitudes of Ord Ferry and Butte City, with measured peaks from 100,000 to 200,000 cfs (cubic feet per second). The largest floodflow measured was 195,000 cfs on January 17, 1974, at the latitude of Ord Ferry. For a given flood, overland flow did not change significantly in peak magnitude between Afton Boulevard, Butte City, and Gridley road. Overland flows of about 45,000 and about 24,000 cfs were measured on January 18 and April 1, 1974, respectively. (Woodard-USGS)

  18. Anthropogenic influence on sedimentation and intertidal mudflat change in San Pablo Bay, California: 1856-1983

    USGS Publications Warehouse

    Jaffe, B.E.; Smith, R.E.; Foxgrover, A.C.

    2007-01-01

    Analysis of a series of historical bathymetric surveys has revealed large changes in morphology and sedimentation from 1856 to 1983 in San Pablo Bay, California. In 1856, the morphology of the bay was complex, with a broad main channel, a major side channel connecting to the Petaluma River, and an ebb-tidal delta crossing shallow parts of the bay. In 1983, its morphology was simpler because all channels except the main channel had filled with sediment and erosion had planed the shallows creating a uniform gently sloping surface. The timing and patterns of geomorphic change and deposition and erosion of sediment were influenced by human activities that altered sediment delivery from rivers. From 1856 to 1887, high sediment delivery (14.1 ?? 106 m3/yr) to San Francisco Bay during the hydraulic gold-mining period in the Sierra Nevada resulted in net deposition of 259 ?? 14 ?? 106 m3 in San Pablo Bay. This rapid deposition filled channels and increased intertidal mudflat area by 60% (37.4 ?? 3.4 to 60.6 ?? 6.2 km2). From 1951 to 1983, 23 ?? 3 ?? 106 m3 of sediment was eroded from San Pablo Bay as sediment delivery from the Sacramento and San Joaquin Rivers decreased to 2.8 ?? 106 m3/yr because of damming of rivers, riverbank protection, and altered land use. Intertidal mudflat area in 1983 was 31.8 ?? 3.9 km2, similar to that in 1856. Intertidal mudflat distribution in 1983, however, was fairly uniform whereas most of the intertidal mudflats were in the western part of San Pablo Bay in 1856. Sediment delivery, through its affect on shallow parts of the bay, was determined to be a primary control on intertidal mudflat area. San Pablo Bay has been greatly affected by human activities and will likely continue to erode in the near term in response to a diminished sediment delivery from rivers. ?? 2007 Elsevier Ltd. All rights reserved.

  19. Selenium and other elements in freshwater fishes from the irrigated San Joaquin Valley, California

    USGS Publications Warehouse

    Saiki, M.K.; Jennings, M.R.; May, T.W.

    1992-01-01

    Arsenic (As), chromium (Cr), mercury (Hg), and selenium (Se) were measured in composite whole-body samples of five fishes — bluegill (Lepomis macrochirus), common carp (Cyprinus carpio), mosquitofish (Gambusia affinis), largemouth bass (Micropterus salmoides), and Sacramento blackfish (Orthodon microlepidotus) — from the San Joaquin River system to determine if concentrations were elevated from exposure to agricultural subsurface (tile) drainage. Except for Cr, the concentrations of these elements in fishes from one or more sites were elevated; however, only Se approached concentrations that may adversely affect survival, growth, or reproduction in warm water fishes. Moreover, only Se among the four measured elements exhibited a geographic (spatial) pattern that coincided with known inflows of tile drainage to the San Joaquin River and its tributaries. Historical data from the Grassland Water District (Grasslands; a region exposed to concentrated tile drainage) suggested that concentrations of Se in fishes were at maximum during or shortly after 1984 and have been slightly lower since then. The recent decline of Se concentrations in fishes from the Grasslands could be temporary if additional acreages of irrigated lands in this portion of the San Joaquin Valley must be tile-drained to protect agricultural crops from rising groundwater tables.

  20. Tamarisk and river restoration along the San Pedro and Gila Rivers

    Treesearch

    Juliet Stromberg; Sharon Lite; Charles Paradzick

    2005-01-01

    The abundance of tamarisk (Tamarix ramosissima and related species) along the San Pedro and Gila River flood plains varies with differences in stream flow regimes. Tamarisk abundance, relative to Fremont cottonwood and Goodding willow, is greater at sites with more intermittent stream flows and deeper and more fluctuating ground-water levels....

  1. A Decision Support System for Mitigating Stream Temperature Impacts in the Sacramento River

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Zagona, E. A.; Rajagopalan, B.

    2014-12-01

    Increasing demands on the limited and variable water supply across the West can result in insufficient streamflow to sustain healthy fish habitat. We develop an integrated decision support system (DSS) for modeling and mitigating stream temperature impacts and demonstrate it on the Sacramento River system in California. Water management in the Sacramento River is a complex task with a diverse set of demands ranging from municipal supply to mitigation of fisheries impacts due to high water temperatures. Current operations utilize the temperature control device (TCD) structure at Shasta Dam to mitigate these high water temperatures downstream at designated compliance points. The TCD structure at Shasta Dam offers a rather unique opportunity to mitigate water temperature violations through adjustments to both release volume and temperature. In this study, we develop and evaluate a model-based DSS with four broad components that are coupled to produce the decision tool for stream temperature mitigation: (i) a suite of statistical models for modeling stream temperature attributes using hydrology and climate variables of critical importance to fish habitat; (ii) a reservoir thermal model for modeling the thermal structure and, consequently, the water release temperature, (iii) a stochastic weather generator to simulate weather sequences consistent with seasonal outlooks; and, (iv) a set of decision rules (i.e., 'rubric') for reservoir water releases in response to outputs from the above components. Multiple options for modifying releases at Shasta Dam were considered in the DSS, including mixing water from multiple elevations through the TCD and using different acceptable levels of risk. The DSS also incorporates forecast uncertainties and reservoir operating options to help mitigate stream temperature impacts for fish habitat, while efficiently using the reservoir water supply and cold pool storage. The use of these coupled tools in simulating impacts of future climate

  2. Characterization of subsurface stratigraphy along the lower American River floodplain using electrical resistivity, Sacramento, California, 2011

    USGS Publications Warehouse

    Burton, Bethany L.; Powers, Michael H.; Ball, Lyndsay B.

    2014-01-01

    In July 2011, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, completed a geophysical survey using electrical resistivity along an approximately 6-mile reach of the lower American River in Sacramento, California, to map near-surface lithological variations. This survey is a part of a manifold and comprehensive study of river-flow dynamics and geologic boundary-property knowledge necessary to estimate scour potential and levee erosion risk. Data were acquired on the left (south or west) bank between river mile 5 and 10.7 as well as a short section on the right bank from river mile 5.4 to 6. Thirteen direct-current resistivity profiles and approximately 8.3 miles of capacitively coupled resisistivity data were acquired along accessible areas of the floodplain between the levee and river bank. Capacitively coupled resistivity was used as a reconnaissance tool, because it allowed for greater spatial coverage of data but with lower resolution and depth of investigation than the DC resistivity method. The study area contains Pleistocene-age alluvial deposits, dominated by gravels, sands, silts, and clays, that vary in both lateral extent and depth. Several generations of lithologic logs were used to help interpret resistivity variations observed in the resistivity models.

  3. Organochlorine pesticide residues in bed sediments of the San Joaquin River, California

    USGS Publications Warehouse

    Gilliom, Robert J.; Clifton, Daphne G.

    1990-01-01

    Bed sediments of the San Joaquin River and its tributaries were sampled during October 7–11, 1985, and analyzed for organochiorine pesticide residues in order to determine their areal distribution and to evaluate and prioritize needs for further study. Residues of DDD, DDE, DDT, and dieldrin are widespread in the fine-grained bed sediments of the San Joaquin River and its tributaries despite little or no use of these pesticides for more than 15 years. The San Joaquin River has among the highest bed-sediment concentrations of DDD, DDE, DDT, and dieldrin residues of major rivers in the United States. Concentrations of all four pesticides were correlated with each other and with the amount of organic carbon and fine-grained particles in the bed sediments. The highest concentrations occurred in bed sediments of westside tributary streams. Potential tributary loads of DDD, DDE, DDT, and dieldrin to the San Joaquin River were computed from bed-sediment concentrations and data on streamfiow and suspended-sediment concentration in order to identify the general magnitude of differences between streams and to determine study priorities. The estimated loads indicate that the most important sources of residues during the study period were Salt Slough because of a high load of fine sediment, and Newman Wasteway, Orestimba Creek, and Hospital Creek because of high bed-sediment concentrations. Generally, the highest estimated loads of DDD, DDE, DDT, and dieldrin were in Orestimba and Hospital Creeks.

  4. Effects of human alterations on the hydrodynamics and sediment transport in the Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.

    2015-01-01

    The Sacramento-San Joaquin Delta, California, (Delta) has been significantly altered since the mid-nineteenth century. Many existing channels have been widened or deepened and new channels have been created for navigation and water conveyance. Tidal marshes have been drained and leveed to form islands that have subsided, some of which have permanently flooded. To understand how these alterations have affected hydrodynamics and sediment transport in the Delta, we analysed measurements from 27 sites, along with other spatial data, and previous literature. Results show that: (a) the permanent flooding of islands results in an increase in the shear velocity of channels downstream, (b) artificial widening and deepening of channels generally results in a decrease in shear velocity except when the channel is also located downstream of a flooded island, (c) 1.5 Mt/year of sediment was deposited in the Delta (1997–2010), and of this deposited sediment, 0.31 Mt/year (21%) was removed through dredging.

  5. Geophysical Characterization of the American River Levees, Sacramento, California, using Electromagnetics, Capacitively Coupled Resistivity, and DC Resistivity

    USGS Publications Warehouse

    Asch, Theodore H.; Deszcz-Pan, Maria; Burton, Bethany L.; Ball, Lyndsay B.

    2008-01-01

    A geophysical characterization of a portion of American River levees in Sacramento, California was conducted in May, 2007. Targets of interest included the distribution and thickness of sand lenses that underlie the levees and the depth to a clay unit that underlies the sand. The concern is that the erosion of these sand lenses can lead to levee failure in highly populated areas of Sacramento. DC resistivity (Geometric?s OhmMapper and Advanced Geosciences, Inc.?s SuperSting R8 systems) and electromagnetic surveys (Geophex?s GEM-2) were conducted over a 6 mile length of the levee on roads and bicycle and horse trails. 2-D inversions were conducted on all the geophysical data. The OhmMapper and SuperSting surveys produced consistent inversion results that delineated potential sand and clay units. GEM-2 apparent resistivity data were consistent with the DC inversion results. However, the GEM-2 data could not be inverted due to low electromagnetic response levels, high ambient electromagnetic noise, and large system drifts. While this would not be as large a problem in conductive terrains, it is a problem for a small induction number electromagnetic profiling system such as the GEM-2 in a resistive terrain (the sand lenses). An integrated interpretation of the geophysical data acquired in this investigation is presented in this report that includes delineation of those areas consisting of predominantly sand and those areas consisting predominantly of clay. In general, along most of this part of the American River levee system, sand lenses are located closest to the river and clay deposits are located further away from the river. The interpreted thicknesses of the detected sand deposits are variable and range from 10 ft up to 60 ft. Thus, despite issues with the GEM-2 inversion, this geophysical investigation successfully delineated sand lenses and clay deposits along the American River levee system and the approximate depths to underlying clay zones. The results of

  6. Regional and Large-Scale Climate Influences on Tree-Ring Reconstructed Null Zone Position in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Stahle, D.; Griffin, D.; Cleaveland, M.; Fye, F.; Meko, D.; Cayan, D.; Dettinger, M.; Redmond, K.

    2007-05-01

    A new network of 36 moisture sensitive tree-ring chronologies has been developed in and near the drainage basins of the Sacramento and San Joaquin Rivers. The network is based entirely on blue oak (Quercus douglasii), which is a California endemic found from the lower forest border up into the mixed conifer zone in the Coast Ranges, Sierra Nevada, and Cascades. These blue oak tree-ring chronologies are highly correlated with winter-spring precipitation totals, Sacramento and San Joaquin streamflow, and with seasonal variations in salinity and null zone position in San Francisco Bay. Null zone is the non-tidal bottom water location where density-driven salinity and river-driven freshwater currents balance (zero flow). It is the area of highest turbidity, water residence time, sediment accumulation, and net primary productivity in the estuary. Null zone position is measured by the distance from the Golden Gate of the 2 per mil bottom water isohaline and is primarily controlled by discharge from the Sacramento and San Joaquin Rivers (and ultimately by winter-spring precipitation). The location of the null zone is an estuarine habitat indicator, a policy variable used for ecosystem management, and can have a major impact on biological resources in the San Francisco estuary. Precipitation-sensitive blue oak chronologies can be used to estimate null zone position based on the strong biogeophysical interaction among terrestrial, aquatic, and estuarine ecosystems, orchestrated by precipitation. The null zone reconstruction is 626-years long and provides a unique long term perspective on the interannual to decadal variability of this important estuarine habitat indicator. Consecutive two-year droughts (or longer) allow the null zone to shrink into the confined upper reaches of Suisun Bay, causing a dramatic reduction in phytoplankton production and favoring colonization of the estuary by marine biota. The reconstruction indicates an approximate 10 year recurrence interval

  7. San Joaquin River Riparian Habitat Below Friant Dam: Preservation and Restoration

    Treesearch

    Donn Furman

    1989-01-01

    Riparian habitat along California's San Joaquin River in the 25 miles between Friant Darn and Freeway 99 occurs on approximately 6 percent of its historic range. It is threatened directly and indirectly by increased urban encroachment such as residential housing, certain recreational uses, sand and gravel extraction, aquiculture, and road construction. The San...

  8. Studies of the San Francisco Bay, California, estuarine ecosystem regional monitoring program results, 1996

    USGS Publications Warehouse

    Baylosis, Jelriza I.; Edmunds, Jody L.; Cole, Brian E.; Cloern, James E.

    1997-01-01

    As part of a regional monitoring program, water samples were collected in the San Francisco Bay estuary during 21 cruises from January through December 1996. Conductivity, temperature, light attenuation, turbidity, oxygen, and in-vivo chlorophyll fluorescence were measured longitudinally and vertically in the main channel of the estuary from south of the Dumbarton Bridge in the southern part of the Bay to Rio Vista on the Sacramento River. Discrete water samples were analyzed for chlorophyll a, phaeopigments, suspended participate matter, and dissolved oxygen. Water density was calculated from salinity, temperature, and pressure (depth), and is included in the data summaries.

  9. Reconnaissance of the quality of surface water in the San Rafael River basin, Utah

    USGS Publications Warehouse

    Mundorff, J.C.; Thompson, Kendall R.

    1982-01-01

    The water-quality reconnaissance of the San Rafael River basin, Utah, encompassed an area of about 2,300 square miles (5,960 square kilometers). Data were obtained by the U.S. Geological Survey one or more times at 116 sites from June 1977 to September 1978. At 19 other sites visited during the same period, the streams were dry. Precipitation and stream discharge were significantly less than normal during 1977 and ranged from less than to more than normal during 1978. Exposed rocks in the San Rafael River basin range in age from Permian to Holocene. The Carmel Formation of Jurassic age and various members of the Mancos Shale of Cretaceous age are major contributors of dissolved solids to streams in the basin. There are eight major reservoirs having a total usable capacity of 115, 000 acre-feet (142 cubic hectometers); seven are mainly for irrigation supply; one, having a usable capacity of 30,530 acre-feet (38 cubic hectometers), is for power plant water supply. From about April to November, major diversions from Huntington, Cottonwood, and Ferron Creeks nearly deplete the flow downstream; during such periods, downstream flow in these streams and in the San Rafael River is mainly irrigation-return flow and some ground-water seepage. The water at the points of major diversion on Huntington, Cottonwood, and Ferron Creeks is of excellent quality for irrigation; salinity hazard is low to medium, and sodium hazard is low. Dissolved-solids concentrations are less than 500 milligrams per liter. The water at the mouths of Huntington, Cottonwood, and Ferron Creeks has markedly larger dissolved-solids concentrations than does the water upstream from major diversions. The changes in the chemical quality occur in stream reaches that cross a belt of land 10 to 15 miles (16 to 24 kilometers) wide where the Mancos Shale is widely exposed. This also is the area where nearly all the intensive irrigation in the San Rafael River basin is practiced. There are no perennial tributaries

  10. Levee Vertical Land Motion Changes in the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Telling, J. W.; Brooks, B. A.; Glennie, C. L.; Ericksen, T. L.; Knowles, N.

    2017-12-01

    The Sacramento-San Joaquin Delta is home to numerous islands that provide economically and agriculturally important land. However, the island interiors are sinking and most sit below sea level, making the levee roads that surround the islands vital for their continued health and productivity. Airborne LiDAR (Light Detection and Ranging) data over the islands was collected in 2007 by the California Department of Water Resources and mobile LiDAR data was collected along the levee roads on Bacon, Bouldin, Jersey, and Brannan-Andrus Islands in 2015 and 2016 by the USGS. These datasets provide high resolution topographic models with 8 year separation that can be used to examine topographic change along the levees. A cross-section of each dataset was output along the approximate centerline of the levee road, so that profiles of the 2007 and 2015/2016 LiDAR observations could be compared. Regions of levee road subsidence and of levee road construction and reinforcement on the order of 0-3 centimeters per year were evident in locations around the islands. There is a high degree of spatial variability of these rates even for individual islands. These results were compared to the levee road maps published by the CA Delta Stewardship Council and it was found that the regions of reinforcement and subsidence did not always align between the published maps and the LiDAR data. Additionally, the levee road heights and rates of change, in regions of road subsidence, were compared to sea level rise projections to evaluate the risk that rising sea level may pose to the islands in the future.

  11. Results and evaluation of a pilot primary monitoring network, San Francisco Bay, California, 1978

    USGS Publications Warehouse

    Bradford, W.L.; Iwatsubo, R.T.

    1980-01-01

    A primary monitoring network of 12 stations, with measurements at 1-meter depth intervals every 2 weeks during periods of high inflow from the Sacramento-San Joaquin River delta, and every 4-6 weeks during seasonal low delta inflows, appears adequate to observe major changes in ambient water quality in San Francisco Bay. A 1-year study tested the network operation and determined that analysis of the data could demonstrate the major changes in salinity, temperature, and light-attenuation distributions known to occur, based on earlier research, in response to variations of delta inflow and to other physical processes. Observations of eddies at two stations, of the influence of water from a river flooding in the extreme south bay, and of difference in salinity and temperature laterally across the entrance to the south bay are all new but are consistent with existing models. The pH, dissolved oxygen, and light-attenuation measurements, while adequate to observe small-scale vertical variations, are not sufficiently sensitive to detect the effects of phytoplankton blooms. (USGS)

  12. Levee Seepage Detection in the Sacramento-San Joaquin Delta Using Polarimetric SAR

    NASA Astrophysics Data System (ADS)

    An, K.; Jones, C. E.; Bekaert, D. P.

    2017-12-01

    The Sacramento-San Joaquin Delta's extensive levee system protects over 2,800 km2 of reclaimed lands and serves as the main irrigation and domestic water supply for the state of California. However, ongoing subsidence and disaster threats from floods and earthquakes make the Delta levee system highly vulnerable, endangering water supplies for 23 million California residents and 2.5 million acres of agricultural land. Levee failure in the Delta can cause saltwater intrusion from San Francisco Bay, reducing water quality and curtailing water exports to residents, commercial users, and farmers. To protect the Delta levee system, it is essential to search for signs of seepage in which water is piping through or beneath levees, which can be associated with deformation of the levees themselves. Until now, in-situ monitoring has largely been applied, however, this is a time-consuming and expensive approach. We use data acquired with NASA's UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) airborne radar instrument to identify and characterize levee seepages and associated land subsidence through advanced remote sensing technologies. The high spatial resolution of UAVSAR can help to direct surveys to areas that are likely to be experiencing damage. UAVSAR is an L-band airborne sensor with high signal-to-noise ratio, repeat flight track accuracy, and spatial resolution of 7x7 m2 (for multi-looked products) that is necessary for detailed levee monitoring. The adaptability of radar instruments in their ability to see through smoke, haze, and clouds during the day or night, is especially relevant during disaster events, when cloud cover or lack of solar illumination inhibits traditional visual surveys of damage. We demonstrate the advantages of combining polarimetric radar imagery with geographic information systems (GIS) datasets in locating seepage features along critical levee infrastructure in the Delta for 2009-2016. The ability to efficiently locate potential

  13. Detections, concentrations, and distributional patterns of compounds of emerging concern in the San Antonio River Basin, Texas, 2011-12

    USGS Publications Warehouse

    Opsahl, Stephen P.; Lambert, Rebecca B.

    2013-01-01

    The distributional patterns of detections and concentrations of individual compounds and compound classes show the influence of wastewater-treatment plant (WWTP) outfalls on the quality of water in the San Antonio River Basin. In the Medina River Subbasin, the minimal influence of wastewater is evident as far downstream as the Macdona site. Downstream from the Macdona site, the Medina River receives treated municipal wastewater from both the Medio Creek Water Recycling Center site from an unnamed tributary at the plant and the Leon Creek Water Recycling Center site from Comanche Creek at the plant, and corresponding increases in both the number of detections and the total concentrations of all measured compounds at all downstream sampling sites were evident. Similarly, the San Antonio River receives treated municipal wastewater as far upstream as the SAR Witte site (San Antonio River at Witte Museum, San Antonio, Tex.) and additional WWTP outfalls along the Medina River upstream from the confluence of the Medina and San Antonio Rivers. Consequently, all samples collected along the main stem of the San Antonio River had higher concentrations of CECs in comparison to sites without upstream WWTPs. Sites in urbanized areas without upstream WWTPs include the Leon 35 site (Leon Creek at Interstate Highway 35, San Antonio, Tex.), the Alazan site (Alazan Creek at Tampico Street, San Antonio, Tex.), and the San Pedro site (San Pedro Creek at Probandt Street, at San Antonio, Tex.). The large number of detections at sites with no upstream wastewater source demonstrated that CECs can be detected in streams flowing through urbanized areas without a large upstream source of treated municipal wastewater. A general lack of detection of pharmaceuticals in streams without upstream outfalls of treated wastewater appears to be typical for streams throughout the San Antonio River Basin and may be a useful indicator of point-source versus nonpoint-source contributions of these compounds

  14. Estimation of streamflow gains and losses in the lower San Antonio River watershed, south-central Texas, 2006-10

    USGS Publications Warehouse

    Lizarraga, Joy S.; Wehmeyer, Loren L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, the Evergreen Underground Water Conservation District, and the Goliad County Groundwater Conservation District, investigated streamflow gains and losses during 2006-10 in the lower San Antonio River watershed in south-central Texas. Streamflow gains and losses were estimated using 2006-10 continuous streamflow records from 11 continuous streamflow-gaging stations, and discrete streamflow measurements made at as many as 20 locations on the San Antonio River and selected tributaries during four synoptic surveys during 2006-7. From the continuous streamflow records, the greatest streamflow gain on the lower San Antonio River occurred in the reach from Falls City, Tex., to Goliad, Tex. The greatest streamflow gain on Cibolo Creek during 2006-10 occurred in the reach from near Saint Hedwig, Tex., to Sutherland Springs, Tex. The San Antonio River between Floresville, Tex., and Falls City was the only reach that had an estimated streamflow loss during 2006-10. During all four synoptic streamflow measurement surveys, the only substantially flowing tributary reach to the main stem of the lower San Antonio River was Cibolo Creek. Along the main stem of the lower San Antonio River, verifiable gains larger than the potential measurement error were estimated in two of the four synoptic streamflow measurement surveys. These gaining reaches occurred in the two most downstream reaches of the San Antonio River between Goliad and Farm Road (FM) 2506 near Fannin, Tex., and between FM 2506 near Fannin to near McFaddin. There were verifiable gains in streamflow in Cibolo Creek, between La Vernia, Tex., and the town of Sutherland Springs during all four surveys, estimated at between 4.8 and 14 ft3/s.

  15. Elevational dependence of projected hydrologic changes in the San Francisco Estuary and watershed

    USGS Publications Warehouse

    Knowles, N.; Cayan, D.R.

    2004-01-01

    California's primary hydrologic system, the San Francisco Estuary and its upstream watershed, is vulnerable to the regional hydrologic consequences of projected global climate change. Previous work has shown that a projected warming would result in a reduction of snowpack storage leading to higher winter and lower spring-summer streamflows and increased spring-summer salinities in the estuary. The present work shows that these hydrologic changes exhibit a strong dependence on elevation, with the greatest loss of snowpack volume in the 1300-2700 m elevation range. Exploiting hydrologic and estuarine modeling capabilities to trace water as it moves through the system reveals that the shift of water in mid-elevations of the Sacramento river basin from snowmelt to rainfall runoff is the dominant cause of projected changes in estuarine inflows and salinity. Additionally, although spring-summer losses of estuarine inflows are balanced by winter gains, the losses have a stronger influence on salinity since longer spring-summer residence times allow the inflow changes to accumulate in the estuary. The changes in inflows sourced in the Sacramento River basin in approximately the 1300-2200 m elevation range thereby lead to a net increase in estuarine salinity under the projected warming. Such changes would impact ecosystems throughout the watershed and threaten to contaminate much of California's freshwater supply.

  16. Characterizing the SWOT discharge error budget on the Sacramento River, CA

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a

  17. Using a non-physical behavioural barrier to alter migration routing of juvenile Chinook salmon in the Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Perry, R.W.; Romine, J.G.; Adams, N.S.; Blake, A.R.; Burau, J.R.; Johnston, S.V.; Liedtke, T.L.

    2012-01-01

    Anthropogenic alterations to river systems, such as irrigation and hydroelectric development, can negatively affect fish populations by reducing survival when fish are routed through potentially dangerous locations. Non-physical barriers using behavioural stimuli are one means of guiding fish away from such locations without obstructing water flow. In the Sacramento–San Joaquin River Delta, we evaluated a bio-acoustic fish fence (BAFF) composed of strobe lights, sound and a bubble curtain, which was intended to divert juvenile Chinook salmon (Oncorhynchus tshawytscha) away from Georgiana Slough, a low-survival migration route that branches off the Sacramento River. To quantify fish response to the BAFF, we estimated individual entrainment probabilities from two-dimensional movement paths of juvenile salmon implanted with acoustic transmitters. Overall, 7.7% of the fish were entrained into Georgiana Slough when the BAFF was on, and 22.3% were entrained when the BAFF was off, but a number of other factors influenced the performance of the BAFF. The effectiveness of the BAFF declined with increasing river discharge, likely because increased water velocities reduced the ability of fish to avoid being swept across the BAFF into Georgiana Slough. The BAFF reduced entrainment probability by up to 40 percentage points near the critical streakline, which defined the streamwise division of flow vectors entering each channel. However, the effect of the BAFF declined moving in either direction away from the critical streakline. Our study shows how fish behaviour and the environment interacted to influence the performance of a non-physical behavioural barrier in an applied setting.

  18. Seasonal/Yearly Salinity Variations in San Francisco Bay

    USGS Publications Warehouse

    Peterson, David H.; Cayan, Daniel R.; Dettinger, Michael D.; DiLeo, Jeanne Sandra; Hager, Stephen E.; Knowles, Noah; Nichols, Frederic H.; Schemel, Laurence E.; Smith, Richard E.; Uncles, Reginald J.

    1995-01-01

    The ability of resource agencies to manage fish, wildlife and freshwater supplies of San Francisco Bay estuary requires an integrated knowledge of the relations between the biota and their physical environment. A key factor in these relations is the role of salinity in determining both the physical and the biological character of the estuary. The saltiness of the water, and particularly its seasonal and interannual patterns of variability, affects which aquatic species live where within the estuary. Salinity also determines where water can and cannot be diverted for human consumption and irrigated agriculture, and plays a role in determining the capacity of the estuary to cleanse itself of wastes. In short, salinity is a fundamental property of estuarine physics and chemistry that, in turn, determines the biological characteristics of each estuary. Freshwater is a major control on estuarine salinity. Most freshwater supplied to the Bay is from river flow through the Delta, which is primarily runoff from the Sierra Nevada. Most contaminants in San Francisco Bay are from the Sacramento/San Joaquin Valley and the local watershed around the Bay rather than the sea or atmosphere. Land is the primary source of freshwater and freshwater serves as a tracer of land-derived substances such as the trace metals (copper, lead and selenium), pesticides and plant nutrients (nitrate and phosphate). The U.S. Geological Survey is collaborating with other agencies and institutions in studying San Francisco Bay salinity using field observations and numerical simulations to define the physical processes that control salinity. The issues that arise from salinity fluctuations, however, differ in the northern and southern parts of the bay. In North Bay we need to know how salinity responds to freshwater flow through the Sacramento/San Joaquin Delta; this knowledge will benefit water managers who determine how much delta flow is needed a) to protect freshwater supplies for municipal water

  19. San Pedro River Aquifer Binational Report

    USGS Publications Warehouse

    Callegary, James B.; Minjárez Sosa, Ismael; Tapia Villaseñor, Elia María; dos Santos, Placido; Monreal Saavedra, Rogelio; Grijalva Noriega, Franciso Javier; Huth, A. K.; Gray, Floyd; Scott, C. A.; Megdal, Sharon; Oroz Ramos, L. A.; Rangel Medina, Miguel; Leenhouts, James M.

    2016-01-01

    The United States and Mexico share waters in a number of hydrological basins and aquifers that cross the international boundary. Both countries recognize that, in a region of scarce water resources and expanding populations, a greater scientific understanding of these aquifer systems would be beneficial. In light of this, the Mexican and U.S. Principal Engineers of the International Boundary and Water Commission (IBWC) signed the “Joint Report of the Principal Engineers Regarding the Joint Cooperative Process United States-Mexico for the Transboundary Aquifer Assessment Program" on August 19, 2009 (IBWC-CILA, 2009). This IBWC “Joint Report” serves as the framework for U.S.-Mexico coordination and dialogue to implement transboundary aquifer studies. The document clarifies several details about the program such as background, roles, responsibilities, funding, relevance of the international water treaties, and the use of information collected or compiled as part of the program. In the document, it was agreed by the parties involved, which included the IBWC, the Mexican National Water Commission (CONAGUA), the U.S. Geological Survey (USGS), and the Universities of Arizona and Sonora, to study two priority binational aquifers, one in the San Pedro River basin and the other in the Santa Cruz River basin. This report focuses on the Binational San Pedro Basin (BSPB). Reasons for the focus on and interest in this aquifer include the fact that it is shared by the two countries, that the San Pedro River has an elevated ecological value because of the riparian ecosystem that it sustains, and that water resources are needed to sustain the river, existing communities, and continued development. This study describes the aquifer’s characteristics in its binational context; however, most of the scientific work has been undertaken for many years by each country without full knowledge of the conditions on the other side of the border. The general objective of this study is to

  20. Installation Development Environmental Assessment Travis Air Force Base, California

    DTIC Science & Technology

    2007-11-01

    United States Code USEPA United States Environmental Protection Agency USFWS United States Fish and Wildlife Service USGS United States...kilometers) north to south, its northern half referred to as the Sacramento Valley and its southern half as the San Joaquin Valley . This area is...Sacramento and San Joaquin Rivers, fans and floodplains of tributary streams, and terraces and foothills around the edge of the valleys . Elevation

  1. ASTER First Views of San Francisco River, Brazil - Visible/near Infrared VNIR Image monochrome

    NASA Image and Video Library

    2000-03-11

    This image of the San Francisco River channel, and its surrounding flood zone, in Brazil was acquired by band 3N of ASTER's Visible/Near Infrared sensor. The surrounding area along the river channel in light gray to white could be covered by dense tropical rain forests. The water surface of the San Francisco River shows rather gray color as compared to small lakes and tributaries, which could indicate that the river water is contaminated by suspended material. The size of image: 20 km x 20 km approx., ground resolution 15 m x 15 m approximately. http://photojournal.jpl.nasa.gov/catalog/PIA02451

  2. Results of a prototype surface water network design for pesticides developed for the San Joaquin River Basin, California

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1997-01-01

    A nested surface water monitoring network was designed and tested to measure variability in pesticide concentrations in the San Joaquin River and selected tributaries during the irrigation season. The network design an d sampling frequency necessary for determining the variability and distribution in pesticide concentrations were tested in a prototype study. The San Joaquin River Basin, California, was sampled from April to August 1992, a period during the irrigation season where there was no rainfall. Orestimba Creek, which drains a part of the western San Joaquin Valley, was sampled three times per week for 6 weeks, followed by a once per week sampling for 6 weeks, and the three times per week sampling for 6 weeks. A site on the San Joaquin River near the mouth of the basin, and an irrigation drain of the eastern San Joaquin Valley, were sampled weekly during the entire sampling period. Pesticides were most often detected in samples collected from Orestimba Creek. This suggests that the western valley was the principal source of pesticides to the San Joaquin River during the irrigation season. Irrigation drainage water was the source of pesticides to Orestimba Creek. Pesticide concentrations of Orestimba Creek showed greater temporal variability when sampled three times per week than when sampled once a week, due to variations in field management and irrigation. The implication for the San Joaquin River basin (an irrigation-dominated agricultural setting) is that frequent sampling of tributary sites is necessary to describe the variability in pesticides transported to the San Joaquin River.

  3. Critical role of seasonal tributaries for native fish and aquatic biota in the Sacramento River

    NASA Astrophysics Data System (ADS)

    Marchetti, M.

    2016-12-01

    We examined the ecology of seasonal tributaries in California in terms of native fishes and aquatic macroinvertebrates. This talk summarizes data from five individual studies. Studying juvenile Chinook growth using otolith microstructure we find that fish grow faster and larger in seasonal tributaries. In a four-year study on the abundance of native fish larvae in tributaries of the Sacramento River we find certain tributaries produce an order of magnitude more native fish larvae than nearby permanent streams. In a study comparing the distribution and abundance of aquatic macroinvertebrates in a seasonal tributary with a permanent stream we find the seasonal tributary contains unique taxa, higher drift densities and ecologically distinct communities. In a cross-watershed comparison of larval fish drift we find that a seasonal tributary produces more larvae than all other streams/rivers we examined. In a comparison of juvenile Chinook growth morphology between seasonal and permanent streams using geometric morphometrics we find that salmon show phenotypic plasticity and their growth is characteristically different in seasonal tributaries. Taken together, this body of work highlights the critical ecological importance of this habitat.

  4. Supporting Priority State Activities in the Bay Delta

    EPA Pesticide Factsheets

    EPA written comments on the Bay Delta Strategic Workplan and EPA comments at SWRCB March 19, 2008 public workshop on development of San Francisco Bay/Sacramento-San Joaquin River Delta Strategic Workplan.

  5. Razorback sucker movements and habitat use in the San Juan River inflow, Lake Powell, Utah, 1995-1997

    USGS Publications Warehouse

    Karp, C.A.; Mueller, G.

    2002-01-01

    Seventeen subadult, hatchery-reared razorback suckers (Xyrauchen texanus; (x̄ = 456 mm total length) were implanted with sonic transmitters and tracked for 23 months in the lower 89.6 km of the San Juan River (San Juan arm of Lake Powell, Utah). Fish were released at 2 sites, and 9 made extensive up-and downstream movements (x = 47.8 km; contact was lost with 4, and 4 others presumably died or lost their transmitters). The San Juan arm is primarily inundated canyon; however, most fish contacts occurred in shallow coves and shoreline with thick stands of flooded salt cedar in the upper inflow area. Eight fish frequented the Piute Farms river/lake mixing zone, and at least 4 moved upstream into the San Juan River. Seven fish were found in 2 aggregations in spring (3 fish in Neskahi Bay in 1996 and 4 fish just downstream of Piute Farms in 1997), and these may have been associated with spawning activity. Continued presence of razorback suckers in the Piute Farms area and lower San Juan River suggests the San Juan inflow to Lake Powell could be used as an alternate stocking site for reintroduction efforts.

  6. Uranium in the Surrounding of San Marcos-Sacramento River Environment (Chihuahua, Mexico)

    PubMed Central

    Rentería-Villalobos, Marusia; Cortés, Manuel Reyes; Mantero, Juan; Manjón, Guillermo; García-Tenorio, Rafael; Herrera, Eduardo; Montero-Cabrera, Maria Elena

    2012-01-01

    The main interest of this study is to assess whether uranium deposits located in the San Marcos outcrops (NW of Chihuahua City, Mexico) could be considered as a source of U-isotopes in its surrounding environment. Uranium activity concentrations were determined in biota, ground, and surface water by either alpha or liquid scintillation spectrometries. Major ions were analyzed by ICP-OES in surface water and its suspended matter. For determining uranium activity in biota, samples were divided in parts. The results have shown a possible lixiviation and infiltration of uranium from geological substrate into the ground and surface water, and consequently, a transfer to biota. Calculated annual effective doses by ingestion suggest that U-isotopes in biota could not negligibly contribute to the neighboring population dose. By all these considerations, it is concluded that in this zone there is natural enhancement of uranium in all environmental samples analyzed in the present work. PMID:22536148

  7. Pesticide transport in the San Joaquin River Basin

    USGS Publications Warehouse

    Dubrovsky, N.M.; Kratzer, C.R.; Panshin, S.Y.; Gronberg, J.A.M.; Kuivila, K.M.

    2000-01-01

    Pesticide occurrence and concentrations were evaluated in the San Joaquin River Basin to determine potential sources and mode of transport. Land use in the basin is mainly agricultural. Spatial variations in pesticide occurrence were evaluated in relation to pesticide application and cropping patterns in three contrasting subbasins and at the mouth of the basin. Temporal variability in pesticide occurrence was evaluated by fixed interval sampling and by sampling across the Hydrograph during winter storms. Four herbicides (simazine, metolachlor, dacthal, and EPTC) and two insecticides (diazinon and chlorpyrifos) were detected in more than 50 percent of the samples. Temporal, and to a lesser extent spatial, variation in pesticide occurrence is usually consistent with pesticide application and cropping patterns. Diazinon concentrations changed rapidly during winter storms, and both eastern and western tributaries contributed diazinon to the San Joaquin River at concentrations toxic to the water flea Ceriodaphnia dubia at different times during the hydrograph. During these storms, toxic concentrations resulted from the transport of only a very small portion of the applied diazinon.

  8. Two Dimensional Movement Patterns of Juvenile Winter Run and Late Fall Run Chinook Salmon at the Fremont Weir, Sacramento River, CA

    DTIC Science & Technology

    2017-07-01

    ER D C/ EL T R- 17 -1 0 Two-Dimensional Movement Patterns of Juvenile Winter- Run and Late-Fall- Run Chinook Salmon at the Fremont Weir...default. ERDC/EL TR-17-10 July 2017 Two-Dimensional Movement Patterns of Juvenile Winter- Run and Late-Fall- Run Chinook Salmon at the Fremont Weir...Sacramento River, smaller winter- run Chinook and larger late-fall- run Chinook salmon were tagged and released into a 2D telemetry array dur- ing the

  9. Forecasting Selenium Discharges to the San Francisco Bay-Delta Estuary: Ecological Effects of A Proposed San Luis Drain Extension

    USGS Publications Warehouse

    Presser, Theresa S.; Luoma, Samuel N.

    2006-01-01

    , and effects of selenium released to the Bay-Delta through use of (1) historical land-use, drainage, alluvial-fill, and runoff databases; (2) existing knowledge concerning biogeochemical reactions and physiological parameters of selenium (e.g., speciation, partitioning between dissolved and particulate forms, and bivalve assimilation efficiency); and (3) site-specific data mainly from 1986 to 1996 for clams and bottom-feeding fish and birds. Selenium load scenarios consider effluents from North Bay oil refineries and discharges of agricultural drainage from the San Joaquin Valley to enable calculation of (a) a composite freshwater endmember selenium concentration at the head of the estuary; and (b) a selenium concentration at a selected seawater location (Carquinez Strait) as a foundation for modeling. Analysis of selenium effects also takes into account the mode of conveyance for agricultural drainage (i.e., the San Luis Drain or San Joaquin River); and flows of the Sacramento River and San Joaquin River on a seasonal or monthly basis. Load scenarios for San Joaquin Valley mirror predictions made since 1955 of a worsening salt (and by inference, selenium) build-up exacerbated by an arid climate and massive irrigation. The reservoir of selenium in the San Joaquin Valley is sufficient to provide loading at an annual rate of approximately 42,500 pounds of selenium to a Bay-Delta disposal point for 63 to 304 years at the lower range of projections presented here, even if influx of selenium from the California Coast Ranges could be curtailed. Disposal of wastewaters on an annual basis outside of the San Joaquin Valley may slow the degradation of valley resources, but drainage alone cannot alleviate the salt and selenium build-up in the San Joaquin Valley, at least within a century. Load scenarios also show the different proportions of selenium loading to the Bay-Delta. Oil refinery loads from 1986 to 1992 ranged from 8.5 to 20 pounds of selenium per day;

  10. 75 FR 39207 - Notice of Intent To Prepare an Environmental Assessment and Conduct San Joaquin River Chinook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... Intent To Prepare an Environmental Assessment and Conduct San Joaquin River Chinook Salmon Scoping... Chinook salmon to the mainstem of the San Joaquin River. The document contained incorrect contact... second column, correct the e-mail address that was listed as SJRSpringSalmon@noaa.gov to read SJRSpring...

  11. Geochemical assessment of metals and dioxin in sediment from the San Carlos Reservoir and the Gila, San Carlos, and San Francisco Rivers, Arizona

    USGS Publications Warehouse

    Church, Stan E.; Choate, LaDonna M.; Marot, Marci E.; Fey, David L.; Adams, Monique; Briggs, Paul H.; Brown, Zoe Ann

    2005-01-01

    In October 2004, we sampled stream-bed sediment, terrace sediment, and sediment from the San Carlos Reservoir to determine the spatial and chronological variation of six potentially toxic metals-Cu, Pb, Zn, Cd, As, and Hg. Water levels in the San Carlos Reservoir were at a 20-year low at an elevation of 2,409 ft (734.3 m). Four cores were taken from the reservoir: one from the San Carlos River arm, one from the Gila River arm, and two from the San Carlos Reservoir just west of the Pinal County line. Radioisotope chronometry (7Be, 137Cs, and 210Pb) conducted on sediment from the reservoir cores provides a good chronological record back to 1959. Chronology prior to that, during the 1950s, is based on our interpretation of the 137Cs anomaly in reservoir cores. During and prior to the 1950s, the reservoir was dry and sediment-accumulation rates were irregular; age control based on radioisotope data was not possible. We recovered sediment at the base of one 4-m-long core that may date back to the late 1930s. The sedimentological record contains two discrete events, one about 1978-83 and one about 1957, where the Cu concentration in reservoir sediment exceeded recommended sediment quality guidelines and should have had an effect on sensitive aquatic and benthic organisms. Concentrations of Zn determined in sediment deposited during the 1957(?) event also exceeded recommended sediment quality guidelines. Concentration data for Cu from the four cores clearly indicate that the source of this material was upstream on the Gila River. Lead isotope data, coupled with the geochemical data from a 2M HCl-1 percent H2O2 leach of selected sediment samples, show two discrete populations of data. One represents the dominant sediment load derived from the Safford Valley, and a second reflects sediment derived from the San Francisco River. The Cu concentration spikes in the reservoir cores have chemical and Pb isotope signatures that indicate that deposits in a porphyry copper deposit

  12. Potential effects of anticipated coal mining on salinity of the Price, San Rafael, and Green Rivers, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linkskov, K.L.

    1986-01-01

    The impact of anticipated coal mining in Utah on the salinity of the Price, San Rafael, and Green Rivers is to be addressed in the repermitting of existing mines and permitting of new mines. To determine the potential impacts, mathematical models were developed for the Price and San Rafael River basins. Little impact on the quantity and quality of streamflow is expected for the Price and San Rafael Rivers. The increase in mean monthly flow of the Price River downstream from Scofield Reservoir is projected as 3.5 cu ft/sec, ranging from 1.7% in June to 140% in February. At themore » mouth of the Price River, the potential increase in mean monthly flow is projected as 12.6 cu ft/sec, ranging from 3.7% in May to 37.7% in January. The potential changes in dissolved solids concentration would range from a 20.7% decrease in January to a 1.3% increase in June. At the mouth of the San Rafael River, the potential increase in mean monthly flow ranges from 2.9 cu ft/sec in February to 6.7 cu ft/sec in May, with the increase ranging from 0.8% in June to 12.6% in November. The potential changes in dissolved solids concentration would range from a 5.3% decrease in March to a 0.6% increase in May. The anticipated mining in the Price and San Rafael River basins is not expected to cause a detectable change in the quantity and quality of streamflow in the Green River. The projected peak increase in flow resulting from discharge from the mines is less than 0.3% of the average flow in the Green River. 18 refs., 6 figs., 17 tabs.« less

  13. The influence of major dams on hydrology through the drainage network of the Sacramento River basin, California

    USGS Publications Warehouse

    Singer, M.B.

    2007-01-01

    This paper reports basinwide patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term streamflow gauges located various distances downstream of major dams and confluences in the Sacramento River basin in California, USA. Streamflow data from 10 gauging stations downstream of major dams were divided into hydrologic series corresponding to the periods before and after dam construction. Pre- and post-dam flows were compared with respect to hydrograph characteristics representing frequency, magnitude and shape: annual flood peak, annual flow trough, annual flood volume, time to flood peak, flood drawdown time and interarrival time. The use of such a suite of characteristics within a statistical and graphical framework allows for generalising distinct strategies of flood control operation that can be identified without any a priori knowledge of operations rules. Dam operation is highly dependent on the ratio of reservoir capacity to annual flood volume (impounded runoff index). Dams with high values of this index generally completely cut off flood peaks thus reducing time to peak, drawdown time and annual flood volume. Those with low values conduct early and late flow releases to extend the hydrograph, increasing time to peak, drawdown time and annual flood volume. The analyses reveal minimal flood control benefits from foothill dams in the lower Sacramento River (i.e. dissipation of the down-valley flood control signal). The lower part of the basin is instead reliant on a weir and bypass system to control lowland flooding. Data from a control gauge (i.e. with no upstream dams) suggest a background signature of global climate change expressed as shortened flood hydrograph falling limbs and lengthened flood interarrival times at low exceedence probabilities. This research has implications for flood control, water resource management, aquatic and riparian ecosystems and for rehabilitation strategies involving flow alteration and

  14. Ontogenetic behavior and dispersal of Sacramento River white sturgeon, Acipenser transmontanus, with a note on body color

    USGS Publications Warehouse

    Kynard, B.; Parker, E.

    2005-01-01

    We studied Sacramento River white sturgeon, Acipenser transmontanus, in the laboratory to develop a conceptual model of ontogenetic behavior and provide insight into probable behavior of wild sturgeon. After hatching, free embryos initiated a low intensity, brief downstream dispersal during which fish swam near the bottom and were photonegative. The weak, short dispersal style and behavior of white sturgeon free embryos contrasts greatly with the intense, long dispersal style and behavior (photopositive and swimming far above the bottom) of dispersing free embryos of other sturgeon species. If spawned eggs are concentrated within a few kilometers downstream of a spawning site, the adaptive significance of the free embryo dispersal is likely to move fish away from the egg deposition site to avoid predation and reduce fish density prior to feeding. Larvae foraged on the open bottom, swam <1 m above the bottom, aggregated, but did not disperse. Early juveniles initiated a strong dispersal with fish strongly vigorously swimming downstream. Duration of the juvenile dispersal is unknown, but the strong swimming likely disperses fish many kilometers. Recruitment failure in white sturgeon populations may be a mis-match between the innate fish dispersal and post-dispersal rearing habitat, which is now highly altered by damming and reservoirs. Sacramento River white sturgeon has a two-step downstream dispersal by the free embryo and juvenile life intervals. Diel activity of all life intervals peaked at night, whether fish were dispersing or foraging. Nocturnal behavior is likely a response to predation, which occurs during both activities. An intense black-tail body color was present on foraging larvae, but was weak or absent on the two life intervals that disperse. Black-tail color may be an adaptation for avoiding predation, signaling among aggregated larvae, or both, but not for dispersal. ?? Springer 2005.

  15. Streamflow, dissolved solids, suspended sediment, and trace elements, San Joaquin River, California, June 1985-September 1988

    USGS Publications Warehouse

    Hill, B.R.; Gilliom, R.J.

    1993-01-01

    The 1985-88 study period included hydrologic extremes throughout most of central California. Except for an 11-month period during and after the 1986 flood, San Joaquin River streamflows during 1985-88 were generally less than median for 1975-88. The Merced Tuolumne, and Stanislaus Rivers together comprised 56 to 69 percent of the annual San Joaquin River flow, Salt and Mud Sloughs together comprised 6 to 19 percent, the upper San Joaquin River comprised 2 to 25 percent, and unmeasured sources from agricultural discharges and ground water accounted for 13 to 20 percent. Salt and Mud Sloughs and the unmeasured sources contribute most of the dissolved-solids load. The Merced, Tuolumne, and Stanislaus Rivers greatly dilute dissolved-solids concentrations. Suspended-sediment concentration peaked sharply at more than 600 milligrams per liter during the flood of February 1986. Concentrations and loads varied seasonally during low-flow conditions, with concentrations highest during the early summer irrigation season. Trace elements present primarily in dissolved phases are arsenic, boron, lithium, molybdenum, and selenium. Boron concentrations exceeded the irrigation water-quality criterion of 750 micrograms per liter more than 75 percent of the time in Salt and Mud Sloughs and more than 50 percent of the time at three sites on the San Joaquin River. Selenium concentrations exceeded the aquatic-life criterion of 5 micrograms per liter more than 75 percent of the time in Salt Slough and more than 50 percent of the time in Mud Slough and in the San Joaquin River from Salt Slough to the Merced River confluence. Concentrations of dissolved solids, boron, and selenium usually are highest during late winter to early spring, lower in early summer, higher again in mid-to-late summer, and the lowest in autumn, and generally correspond to seasonal inflows of subsurface tile-drain water to Salt and Mud Sloughs. Trace elements present primarily in particulate phases are aluminum

  16. Compounds of emerging concern in the San Antonio River Basin, Texas, 2011–12

    USGS Publications Warehouse

    Lambert, Rebecca B.; Opsahl, Stephen P.

    2016-11-16

    The City of San Antonio and the surrounding municipalities in Bexar County, Texas, are among the fastest growing cities in the Nation. Increases in residential and commercial development are changing runoff patterns and likely will increase chemical loads into streams. The U.S. Geological Survey, in cooperation with the San Antonio River Authority, evaluated the concentrations and distributional patterns of selected “compounds of emerging concern” (CECs) by collecting and analyzing water-quality samples from 20 sites in the San Antonio River Basin, Tex., during 2011–12. On the basis of their chemical composition or similar uses, the CECs discussed in this fact sheet are wastewater compounds, pharmaceutical compounds (hereinafter referred to as “pharmaceuticals”), and steroidal hormone and sterol compounds (hereinafter referred to as “steroidal hormones and sterols”). Three synoptic sampling events were completed during 2011–12 to analyze for CECs in the San Antonio River Basin. Samples were analyzed for 54 wastewater compounds, 13 pharmaceuticals, 17 steroidal hormones, and 4 sterols. Overall, the concentrations of all CECs analyzed for during this study were low, generally close to or less than the laboratory reporting level.

  17. Digital geospatial presentation of geoelectrical and geotechnical data for the lower American River and flood plain, east Sacramento, California

    USGS Publications Warehouse

    Ball, Lyndsay B.; Burton, Bethany L.; Powers, Michael H.; Asch, Theodore H.

    2015-01-01

    To characterize the extent and thickness of lithologic units that may have differing scour potential, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, has performed several geoelectrical surveys of the lower American River channel and flood plain between Cal Expo and the Rio Americano High School in east Sacramento, California. Additional geotechnical data have been collected by the U.S. Army Corps of Engineers and its contractors. Data resulting from these surveys have been compiled into similar database formats and converted to uniform geospatial datums and projections. These data have been visualized in a digital three-dimensional framework project that can be viewed using freely available software. These data facilitate a comprehensive analysis of the resistivity structure underlying the lower American River corridor and assist in levee system management.

  18. News about the San Antonio River Basin within Bexar County (Texas)

    EPA Pesticide Factsheets

    News about the San Antonio River Basin of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  19. Hazard evaluation of inorganics, singly and in mixtures, to Flannelmouth Sucker Catostomus latipinnis in the San Juan River, New Mexico

    USGS Publications Warehouse

    Hamilton, S.J.; Buhl, K.J.

    1997-01-01

    Larval flannelmouth sucker (Catostomus latipinnis) were exposed to arsenate, boron, copper, molybdenum, selenate, selenite, uranium, vanadium, and zinc singly, and to five mixtures of five to nine inorganics. The exposures were conducted in reconstituted water representative of the San Juan River near Shiprock, New Mexico. The mixtures simulated environmental ratios reported for sites along the San Juan River (San Juan River backwater, Fruitland marsh, Hogback East Drain, Mancos River, and McElmo Creek). The rank order of the individual inorganics, from most to least toxic, was: copper > zinc > vanadium > selenite > selenate > arsenate > uranium > boron > molybdenum. All five mixtures exhibited additive toxicity to flannelmouth sucker. In a limited number of tests, 44-day-old and 13-day-old larvae exhibited no difference in sensitivity to three mixtures. Copper was the major toxic component in four mixtures (San Juan backwater, Hogback East Drain, Mancos River, and McElmo Creek), whereas zinc was the major toxic component in the Fruitland marsh mixture, which did not contain copper. The Hogback East Drain was the most toxic mixture tested. Comparison of 96-h LC50values with reported environmental water concentrations from the San Juan River revealed low hazard ratios for arsenic, boron, molybdenum, selenate, selenite, uranium, and vanadium, moderate hazard ratios for zinc and the Fruitland marsh mixture, and high hazard ratios for copper at three sites and four environmental mixtures representing a San Juan backwater, Hogback East Drain, Mancos River, and McElmo Creek. The high hazard ratios suggest that inorganic contaminants could adversely affect larval flannelmouth sucker in the San Juan River at four sites receiving elevated inorganics.

  20. The contribution of rice agriculture to methylmercury in surface waters: A review of data from the Sacramento Valley, California

    USGS Publications Warehouse

    Tanner, K. Christy; Windham-Myers, Lisamarie; Fleck, Jacob; Tate, Kenneth W.; McCord, Stephen A.; Linquist, Bruce A.

    2017-01-01

    Methylmercury (MeHg) is a bioaccumulative pollutant produced in and exported from flooded soils, including those used for rice (Oriza sativa L.) production. Using unfiltered aqueous MeHg data from MeHg monitoring programs in the Sacramento River watershed from 1996 to 2007, we assessed the MeHg contribution from rice systems to the Sacramento River. Using a mixed-effects regression analysis, we compared MeHg concentrations in agricultural drainage water from rice-dominated regions (AgDrain) to MeHg concentrations in the Sacramento and Feather Rivers, both upstream and downstream of AgDrain inputs. We also calculated MeHg loads from AgDrains and the Sacramento and Feather Rivers. Seasonally, MeHg concentrations were higher during November through May than during June through October, but the differences varied by location. Relative to upstream, November through May AgDrain least-squares mean MeHg concentration (0.18 ng L−1, range 0.15–0.23 ng L−1) was 2.3-fold higher, while June through October AgDrain mean concentration (0.097 ng L−1, range 0.6–1.6 ng L−1) was not significantly different from upstream. June through October AgDrain MeHg loads contributed 10.7 to 14.8% of the total Sacramento River MeHg load. Missing flow data prevented calculation of the percent contribution of AgDrains in November through May. At sites where calculation was possible, November through May loads made up 70 to 90% of the total annual load. Elevated flow and MeHg concentration in November through May both contribute to the majority of the AgDrain MeHg load occurring during this period. Methylmercury reduction efforts should target elevated November through May MeHg concentrations in AgDrains. However, our findings suggest that the contribution and environmental impact of rice is an order of magnitude lower than previous studies in the California Yolo Bypass.

  1. Facing the great disaster : How the men and women of the U.S. Geological Survey responded to the 1906 "San Francisco Earthquake"

    USGS Publications Warehouse

    Colvard, Elizabeth M.; Rogers, James

    2006-01-01

    It was the most devastating earthquake in California’s history. At 5:12 a.m. on April 18, 1906, the ground under the San Francisco Bay Area shook violently for more than 40 seconds. The magnitude 7.8 earthquake created a rupture along nearly 300 miles of the San Andreas Fault and was felt from southern Oregon to Los Angeles. Because the earthquake’s epicenter was just offshore from San Francisco, the impact on that city was catastrophic. Fragments of broken houses and buildings tumbled into the streets. The pipeline carrying water into the city was severed; fires triggered by broken gas mains raged out of control for 3 days. An area of almost 5 square miles in the heart of the city was destroyed by shaking and fire, and earthquake damage was widespread elsewhere. At least 3,000 people were killed, and 225,000 were left homeless. Drinking water, food, and supplies quickly became scarce.In 1906, the only permanent U.S. Geological Survey (USGS) office in California was the Pacific Division topographic mapping office in Sacramento, 70 miles up the Sacramento River from San Francisco Bay. The office had been established just 3 years earlier and was the only USGS office ever created for the sole function of topographic mapping. At the time of the earthquake, many USGS topographers were in Sacramento preparing for a summer of field work.Although moderate shaking was felt in Sacramento, then a town of about 30,000 people, detailed information about the earthquake was slow to reach the residents there. USGS topographic engineer George R. Davis, not knowing the full extent of the damage, was fearful that his 62-year-old father Edward Davis in San Francisco was caught up in the devastation. George therefore left Sacramento on the first train bound for the San Francisco Bay area. “He was very worried. The phones were down and he wasn’t sure whether or not the hotel his father was living in was damaged,” said George Davis’s daughter Anna (Davis) Rogers, then an

  2. The lower San Pedro River: hydrology and flow restoration for biodiversity conservation

    Treesearch

    Jeanmarie Haney

    2005-01-01

    The lower San Pedro River, downstream from Benson, is a nearly unfragmented habitat containing perennial flow reaches that support riparian vegetation that serve as “stepping stones” for migratory species. The Nature Conservancy has purchased farm properties and retired agricultural pumping along the lower river, based largely on results from hydrologic analyses...

  3. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    DOE PAGES

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt; ...

    2018-01-26

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash–Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that futuremore » disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate–disturbance scenarios is at least 6–11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15–21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. Furthermore, these findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.« less

  4. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    NASA Astrophysics Data System (ADS)

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt; McDowell, Nathan G.; Xu, Chonggang; Vivoni, Enrique; Middleton, Richard S.

    2018-01-01

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash-Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that future disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate-disturbance scenarios is at least 6-11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15-21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. These findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.

  5. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash–Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that futuremore » disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate–disturbance scenarios is at least 6–11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15–21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. Furthermore, these findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.« less

  6. Urban Waters and the San Antonio River Basin within Bexar County (Texas)

    EPA Pesticide Factsheets

    The San Antonio River Basin of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  7. Assessment of interim flow water-quality data of the San Joaquin River restoration program and implications for fishes, California, 2009-11

    USGS Publications Warehouse

    Wulff, Marissa L.; Brown, Larry R.

    2015-01-01

    After more than 50 years of extensive water diversion for urban and agriculture use, a major settlement was reached among the U.S. Departments of the Interior and Commerce, the Natural Resources Defense Council, and the Friant Water Users Authority in an effort to restore the San Joaquin River. The settlement received Federal court approval in October 2006 and established the San Joaquin River Restoration Program, a multi-agency collaboration between State and Federal agencies to restore and maintain fish populations, including Chinook salmon, in the main stem of the river between Friant Dam and the confluence with the Merced River. This is to be done while avoiding or minimizing adverse water supply effects to all of the Friant Division contractors that could result from restoration flows required by the settlement. The settlement stipulates that water- and sediment-quality data be collected to help assess the restoration goals. This report summarizes and evaluates water-quality data collected in the main stem of the San Joaquin River between Friant Dam and the Merced River by the U.S. Bureau of Reclamation for the San Joaquin River Restoration Program during 2009-11. This summary and assessment consider sampling frequency for adequate characterization of variability, sampling locations for sufficient characterization of the San Joaquin River Restoration Program restoration reach, sampling methods for appropriate media (water and sediment), and constituent reporting limits. After reviewing the water- and sediment-quality results for the San Joaquin River Restoration Program, several suggestions were made to the Fisheries Management Work Group, a division of the San Joaquin River Restoration Program that focuses solely on the reintroduction strategies and health of salmon and other native fishes in the river. Water-quality results for lead and total organic carbon exceeded the Surface Water Ambient Monitoring Program Basin Plan Objectives for the San Joaquin Basin

  8. Organochlorine pesticide residues in bed sediments of the San Joaquin River and its tributary streams, California

    USGS Publications Warehouse

    Gilliom, R.J.; Clifton, D.G.

    1987-01-01

    The distribution and concentrations of organochlorine pesticide residues in bed sediments were assessed from samples collected at 24 sites in the San Joaquin River and its tributaries in the San Joaquin Valley, California. Sampling was designed to collect the finest grained bed sediments present in the vicinity of each site. One or more of the 14 pesticides analyzed were detected at every site. Pesticides detected at one or more sites were chlordane, DDD, DDE, DDT, dieldrin, endosulfan, mirex, and toxaphene. Pesticides not detected were endrin, heptachlor, heptachlor epoxide, lindane, methoxychlor, and perthane. The most frequently detected pesticides were DDD (83% of sites), DDE (all sites), DDT (33% of sites), and dieldrin (58% of sites). Maximum concentrations of these pesticides, which were correlated with each other and with the amount of organic carbon in the sample, were DDD, 260 micrograms/kg; DDE, 430 micrograms/kg; DDT, 420 micrograms/kg; and dieldrin, 8.9 micrograms/kg. Six small tributary streams that drain agricultural areas west of the San Joaquin River had the highest concentrations. Water concentrations and loads were estimated for each pesticide from its concentration in bed sediments, the concentration of suspended sediment, and streamflow. Estimated loadings of DDD, DDE, DDT, and dieldrin from tributaries to the San Joaquin River indicate that most of the loading to the river at the time of the study was probably from the westside tributaries. Estimated water concentrations exceeded the aquatic life criterion for the sum of DDD, DDE, and DDt of 0.001 microgram/L at nine of the 24 sites sampled. Five of the nine sites are westside tributaries and one is the San Joaquin River near Vernalis. (Author 's abstract)

  9. In Situ Stoichiometry in a Large River: Continuous Measurement of Doc, NO3 and PO4 in the Sacramento River

    NASA Astrophysics Data System (ADS)

    Downing, B. D.; Pellerin, B. A.; Bergamaschi, B. A.; Saraceno, J.

    2011-12-01

    Studying controls on geochemical processes in rivers and streams is difficult because concentration and composition often changes rapidly in response to physical and biological forcings. Understanding biogeochemical dynamics in rivers will improve current understanding of the role of watershed sources to carbon cycling, river and stream ecology, and loads to estuaries and oceans. Continuous measurements of dissolved organic carbon (DOC), nitrate (NO3-) and soluble reactive phosphate (SRP) concentrations are now possible, along with some information about DOC composition. In situ sensors designed to measure these constituents provide high frequency, real-time data that can elucidate hydrologic and biogeochemical controls which are difficult to detect using more traditional sampling approaches. Here we present a coupled approach, using in situ optical instrumentation with discharge measurements to provide quantitative estimates of constituent loads to investigate C, NO3- and SRP sources and processing in the Sacramento River, CA, USA. Continuous measurement of DOC concentration was conducted by use of a miniature in situ fluorometer (Turner Designs Cyclops) designed to measure chromophoric dissolved organic matter fluorescence (FDOM) over the course of an entire year. Nitrate was measured concurrently using a Satlantic SUNA and phosphate was measured using a WETLabs model Cycle-P instrument for a two week period in July 2011. Continuous measurement from these instruments paired with continuous measurement of physical water quality variables such as temperature, pH, specific conductance, dissolved oxygen, and turbidity, were used to investigate physical and chemical dynamics of DOC, NO3-, SRP over varying time scales. Deploying these instruments at pre-existing USGS discharge gages allowed for calculation of instantaneous and integrated constituent fluxes, as well as filling in gaps in our understanding biogeochemical processes and transport. Results from the study

  10. Event-based washload transport and sedimentation in and around flood bypasses: Case study from the Sacramento Valley, California

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Aalto, R. A.

    2005-05-01

    In large river systems, suspended sediment transport and deposition patterns are often affected by channel constraints engineered for flood conveyance or navigation. Such managed channels typically have a limited number of overflow loci through which suspended sediment enters the river's floodplain. Engineered flood bypasses are narrow relic floodplains that are supplied by overflow diversion weirs along managed river channels, and support agriculture and complex aquatic and riparian habitats that are sensitive to the delivery of floods, fine sediment, and adsorbed contaminants. They function as wide, shallow conveyance channels parallel to the main river, and therefore present an opportunity to assess the applicability of existing theory for delivery to and settling of suspended sediment within floodplains. This study is an investigation of hydrograph characteristics, sediment delivery, and sedimentation within the upstream reaches of flood bypasses closest to the weir. We present analysis of hydrologic and sediment records and modeling in the Sacramento River basin. The effects of a single large flood in 1964-1965 were analyzed by documenting hydrograph characteristics, computing event-based sediment discharges and reach erosion/deposition through the bypass system, modeling bypass deposition, and comparing modeled results near the weirs with dated sediment cores. The rapidly rising, slowly declining 1964 flood was generated by storm runoff in the Sierra Nevada. The modeling results indicate: washload discharge through the lower valley 0.5 to 1.7 times long-term annual averages; mainstem reach erosion/deposition 0.5 to 1.25 times annual averages; and centimeter scale deposition in flood bypasses. The results are corroborated by a set of sediment cores extracted from Sacramento Valley bypasses, which were dated with 210Pb geochronology and analyzed for grain size. The modeling and data suggest net sediment accumulation between the channel and flood weirs and in

  11. Measurements of Greenhouse Gases around the Sacramento Area: The Airborne Greenhouse Emissions Survey (AGES) Campaign

    NASA Astrophysics Data System (ADS)

    Karion, A.; Fischer, M. L.; Turnbull, J. C.; Sweeney, C.; Faloona, I. C.; Zagorac, N.; Guilderson, T. P.; Saripalli, S.; Sherwood, T.

    2009-12-01

    The state of California is leading the United States by enacting legislation (AB-32) to reduce greenhouse gas emissions to 1990 levels by 2020. The success of reduction efforts can be gauged with accurate emissions inventories and potentially verified with atmospheric measurements of greenhouse gases (GHGs) over time. Measurements of multiple GHGs and associated trace gas species in a specific region also provide information on emissions ratios for source apportionment. We conducted the Airborne Greenhouse Emissions Survey (AGES) campaign to determine emissions signature ratios for the sources that exist in the San Francisco Bay and Sacramento Valley areas. Specifically, we attempt to determine the emissions signatures of sources that influence ongoing measurements made at a tall-tower measurement site near Walnut Grove, CA. For two weeks in February and March of 2009, a Cessna 210 was flown throughout the Sacramento region, making continuous measurements of CO2, CH4, and CO while also sampling discrete flasks for a variety of additional tracers, including SF6, N2O, and 14C in CO2 (Δ14CO2). Flight paths were planned using wind predictions for each day to maximize sampling of sources whose emissions would also be sampled contemporaneously by the instrumentation at the Walnut Grove tower (WGC), part of the ongoing California Greenhouse Gas Emissions Measurement (CALGEM) project between NOAA/ESRL’s Carbon Cycle group and Lawrence Berkeley National Laboratory (LBNL). Flights were performed in two distinct patterns: 1) flying across a plume upwind and downwind of the Sacramento urban area, and 2) flying across the Sacramento-San Joaquin Delta from Richmond to Walnut Grove, a region consisting of natural wetlands as well as several power plants and refineries. Results show a variety of well-correlated mixing ratio signals downwind of Sacramento, documenting the urban signature emission ratios, while emissions ratios in the Delta region were more variable, likely due

  12. Potential exposure of larval and juvenile delta smelt to dissolved pesticides in the Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Kuivila, K.M.; Moon, G.E.

    2004-01-01

    The San Francisco Estuary is critical habitat for delta smelt Hypomesus transpacificus, a fish whose abundance has declined greatly since 1983 and is now listed as threatened. In addition, the estuary receives drainage from the Central Valley, an urban and agricultural region with intense and diverse pesticide usage. One possible factor of the delta smelt population decline is pesticide toxicity during vulnerable larval and juvenile stages, but pesticide concentrations are not well characterized in delta smelt spawning and nursery habitat. The objective of this study was to estimate the potential exposure of delta smelt during their early life stages to dissolved pesticides. For 3 years (1998-2000), water samples from the Sacramento-San Joaquin Delta were collected during April-June in coordination with the California Department of Fish and Game's delta smelt early life stage monitoring program. Samples were analyzed for pesticides using solid-phase extraction and gas chromatography/mass spectrometry. Water samples contained multiple pesticides, ranging from 2 to 14 pesticides in each sample. In both 1999 and 2000, elevated concentrations of pesticides overlapped in time and space with peak densities of larval and juvenile delta smelt. In contrast, high spring outflows in 1998 transported delta smelt away from the pesticide sampling sites so that exposure could not be estimated. During 2 years, larval and juvenile delta smelt were potentially exposed to a complex mixture of pesticides for a minimum of 2-3 weeks. Although the measured concentrations were well below short-term (96-h) LC50 values for individual pesticides, the combination of multiple pesticides and lengthy exposure duration could potentially have lethal or sublethal effects on delta smelt, especially during early larval development.

  13. Pyrethroid sorption to Sacramento River suspended solids and bed sediments

    PubMed Central

    Fojut, Tessa L.; Young, Thomas M.

    2011-01-01

    Sorption of pyrethroid insecticides to solid materials will typically dominate the fate and transport of these hydrophobic compounds in aquatic environments. Batch reactor isotherm experiments were performed with bifenthrin and λ-cyhalothrin with suspended material and bed sediment collected from the Sacramento River, CA. These batch reactor experiments were performed with low spiking concentrations and a long equilibration time (28 d) to be more relevant to environmental conditions. Sorption to suspended material and bed sediment was compared to examine the role of differential sorption between these phases in the environmental transport of pyrethroids. The equilibrium sorption data were fit to the Freundlich isotherm model and fit with r2 > 0.87 for all experiments. Freundlich exponents ranged from 0.72 ± 0.19 to 1.07 ± 0.050, indicating sorption nonlinearity for some of the experimental conditions and linearity for others over the concentration range tested. The Freundlich capacity factors were larger for the suspended solids than for the bed sediments and the suspended material had a higher specific surface area and higher organic carbon content compared to the bed sediment. Calculated organic carbon-normalized distribution coefficients were larger than those previously reported in the literature by approximately an order of magnitude and ranged from 106.16 to 106.68 at an equilibrium aqueous concentration of 0.1 µg/L. Higher than expected sorption of pyrethroids to the tested materials may be explained by sorption to black carbon and/or mineral surfaces. PMID:21191877

  14. An investigation of several aspects of LANDSAT-5 data quality. [Palmer County, Shelby, mt; White sands, NM; Great Salt Lake, UT; San Matted Bridge and Sacramento, California

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C. (Principal Investigator)

    1984-01-01

    Band-to-band registration, geodetic registration, interdector noise, and the modulation transfer function (MTE) are discussed for the Palmer County; TX scene. Band combinations for several LANDSAT 4 and LANDSAT 5 scenes; the geodetic registration test for the Sacramento, CA area; periodic noise components in TM band 5; and grey level measurements by detector for Great Salt Lake (UT) dark water forescans and backscans are considered. Results of MTF analyses of the San Mateo Bridge and of TM high resolution and aerial Daedalus scanner imagery are consistent and appear to be repeatable. An oil-on-sand target was constructed on the White Sands Missile Range in New Mexico. The two-image analysis procedure used is summarized.

  15. Evidence of a Shift in the Littoral Fish Community of the Sacramento-San Joaquin Delta

    PubMed Central

    Farruggia, Mary Jade; Schreier, Brian; Sommer, Ted

    2017-01-01

    Many estuarine and freshwater ecosystems worldwide have undergone substantial changes due to multiple anthropogenic stressors. Over the past two decades, the Sacramento-San Joaquin Delta (Delta) in California, USA, saw a severe decline in pelagic fishes, a shift in zooplankton community composition, and a rapid expansion of invasive aquatic vegetation. To evaluate whether major changes have also occurred in the littoral fish community, we analyzed a beach seine survey dataset collected from 1995 to 2015 from 26 sites within the Delta. We examined changes in the Delta fish community at three different ecological scales (species, community, and biomass), using clustering analyses, trend tests, and change-point analyses. We found that the annual catch per effort for many introduced species and some native species have increased since 1995, while few experienced a decline. We also observed a steady pattern of change over time in annual fish community composition, driven primarily by a steady increase in non-native Centrarchid species. Lastly, we found that littoral fish biomass has essentially doubled over the 21-year study period, with Mississippi Silverside Menidia audens and fishes in the Centrarchidae family driving most of this increase. The changes in the catch per effort, fish community composition, and biomass per volume indicate that a shift has occurred in the Delta littoral fish community and that the same factors affecting the Delta’s pelagic food web may have been a key driver of change. PMID:28118393

  16. Evidence of a Shift in the Littoral Fish Community of the Sacramento-San Joaquin Delta.

    PubMed

    Mahardja, Brian; Farruggia, Mary Jade; Schreier, Brian; Sommer, Ted

    2017-01-01

    Many estuarine and freshwater ecosystems worldwide have undergone substantial changes due to multiple anthropogenic stressors. Over the past two decades, the Sacramento-San Joaquin Delta (Delta) in California, USA, saw a severe decline in pelagic fishes, a shift in zooplankton community composition, and a rapid expansion of invasive aquatic vegetation. To evaluate whether major changes have also occurred in the littoral fish community, we analyzed a beach seine survey dataset collected from 1995 to 2015 from 26 sites within the Delta. We examined changes in the Delta fish community at three different ecological scales (species, community, and biomass), using clustering analyses, trend tests, and change-point analyses. We found that the annual catch per effort for many introduced species and some native species have increased since 1995, while few experienced a decline. We also observed a steady pattern of change over time in annual fish community composition, driven primarily by a steady increase in non-native Centrarchid species. Lastly, we found that littoral fish biomass has essentially doubled over the 21-year study period, with Mississippi Silverside Menidia audens and fishes in the Centrarchidae family driving most of this increase. The changes in the catch per effort, fish community composition, and biomass per volume indicate that a shift has occurred in the Delta littoral fish community and that the same factors affecting the Delta's pelagic food web may have been a key driver of change.

  17. Science advancements key to increasing management value of life stage monitoring networks for endangered Sacramento River winter-run Chinook salmon in California

    USGS Publications Warehouse

    Johnson, Rachel C.; Windell, Sean; Brandes, Patricia L.; Conrad, J. Louise; Ferguson, John; Goertler, Pascale A. L.; Harvey, Brett N.; Heublein, Joseph; Isreal, Joshua A.; Kratville, Daniel W.; Kirsch, Joseph E.; Perry, Russell W.; Pisciotto, Joseph; Poytress, William R.; Reece, Kevin; Swart, Brycen G.

    2017-01-01

    A robust monitoring network that provides quantitative information about the status of imperiled species at key life stages and geographic locations over time is fundamental for sustainable management of fisheries resources. For anadromous species, management actions in one geographic domain can substantially affect abundance of subsequent life stages that span broad geographic regions. Quantitative metrics (e.g., abundance, movement, survival, life history diversity, and condition) at multiple life stages are needed to inform how management actions (e.g., hatcheries, harvest, hydrology, and habitat restoration) influence salmon population dynamics. The existing monitoring network for endangered Sacramento River winterrun Chinook Salmon (SRWRC, Oncorhynchus tshawytscha) in California’s Central Valley was compared to conceptual models developed for each life stage and geographic region of the life cycle to identify relevant SRWRC metrics. We concluded that the current monitoring network was insufficient to diagnose when (life stage) and where (geographic domain) chronic or episodic reductions in SRWRC cohorts occur, precluding within- and among-year comparisons. The strongest quantitative data exist in the Upper Sacramento River, where abundance estimates are generated for adult spawners and emigrating juveniles. However, once SRWRC leave the upper river, our knowledge of their identity, abundance, and condition diminishes, despite the juvenile monitoring enterprise. We identified six system-wide recommended actions to strengthen the value of data generated from the existing monitoring network to assess resource management actions: (1) incorporate genetic run identification; (2) develop juvenile abundance estimates; (3) collect data for life history diversity metrics at multiple life stages; (4) expand and enhance real-time fish survival and movement monitoring; (5) collect fish condition data; and (6) provide timely public access to monitoring data in open data

  18. Reconstructing paleosalinity in the Sacramento-San Joaquin Delta of California using major elements in peat

    NASA Astrophysics Data System (ADS)

    Drexler, J. Z.; Alpers, C. N.; Taylor, H. E.; Windham-Myers, L.; Neymark, L. A.; Paces, J. B.

    2010-12-01

    Marshes in the Sacramento-San Joaquin Delta, the most landward extent of the San Francisco Estuary, started forming around ~6,700 years ago. Currently, Delta marshes are classified as tidal freshwater, however it is unknown to what degree the salinity regime has varied between brackish and fresh conditions since marsh development. This information is important to managers considering major changes to the flow regime in the Delta, because such changes could impact the future sustainability of endangered species such as the Delta smelt (Hypomesus transpacificus), which live in or just upstream of the mixing zone between fresh and brackish water. The main goal of the Rates and Evolution of PEat Accretion through Time project (REPEAT II) is to reconstruct paleosalinity regimes in the Delta. We are using elemental concentrations of Na, Ca, K, and Mg (the major cations in ocean water) in peat profiles to develop a quantitative index of salinity for the past 6000+ years. We are normalizing the elemental concentrations to Ti (a proxy for inorganic sediment content because it is inversely correlated with loss on ignition, a measure of peat organic content) to correct for bias in elemental concentrations caused by variations in the inorganic sediment content of peat through time. Plots of Ti-normalized element concentration vs. peat depth (or age) indicate that Browns Island, a brackish marsh on the western edge of the Delta, has experienced significant variations in salinity through the millennia. Vertical peat profiles show a spatial trend of decreasing salinity from west (bay-side) to east (landward) (i.e., Browns Island > Sherman Island > Franks Wetland ≧ Bacon Channel Island). During the period from 2300 to 500 calibrated years before present, Na concentrations in peat at Browns Island indicate a particularly saline period, with peat containing up to 3 wt. % Na. In the last 100 years or so, salinity at Browns Island has apparently decreased and the Na content of peat

  19. Physical characteristics of the lower San Joaquin River, California, in relation to white sturgeon spawning habitat, 2011–14

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.; Whealdon-Haught, Daniel R.; Kinzel, Paul J.

    2017-07-19

    The U.S. Fish and Wildlife Service confirmed that white sturgeon (Acipenser transmontanus) recently spawned in the lower San Joaquin River, California. Decreases in the San Francisco Bay estuary white sturgeon population have led to an increased effort to understand their migration behavior and habitat preferences. The preferred spawning habitat of other white sturgeon (for example, those in the Columbia and Klamath Rivers) is thought to be areas that have high water velocity, deep pools, and coarse bed material. Coarse bed material (pebbles and cobbles), in particular, is important for the survival of white sturgeon eggs and larvae. Knowledge of the physical characteristics of the lower San Joaquin River can be used to preserve sturgeon spawning habitat and lead to management decisions that could help increase the San Francisco Bay estuary white sturgeon population.Between 2011 and 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, assessed selected reaches and tributaries of the lower river in relation to sturgeon spawning habitat by (1) describing selected spawning reaches in terms of habitat-related physical characteristics (such as water depth and velocity, channel slope, and bed material) of the lower San Joaquin River between its confluences with the Stanislaus and Merced Rivers, (2) describing variations in these physical characteristics during wet and dry years, and (3) identifying potential reasons for these variations.The lower San Joaquin River was divided into five study reaches. Although data were collected from all study reaches, three subreaches where the USFWS collected viable eggs at multiple sites in 2011–12 from Orestimba Creek to Sturgeon Bend were of special interest. Water depth and velocity were measured using two different approaches—channel cross sections and longitudinal profiles—and data were collected using an acoustic Doppler current profiler.During the first year of data collection (water

  20. Lowland riparian herpetofaunas: the San Pedro River in southeastern Arizona

    Treesearch

    Philip C. Rosen

    2005-01-01

    Previous work has shown that southeastern Arizona has a characteristic, high diversity lowland riparian herpetofauna with 62-68 or more species along major stream corridors, and 46-54 species in shorter reaches within single biomes, based on intensive fieldwork and museum record surveys. The San Pedro River supports this characteristic herpetofauna, at least some of...

  1. Multi-year coupled biogeochemical and biophysical impacts of restoring drained agricultural peatlands to wetlands across the Sacramento-San Joaquin Delta, California, USA.

    NASA Astrophysics Data System (ADS)

    Hemes, K. S.; Eichelmann, E.; Chamberlain, S.; Knox, S. H.; Oikawa, P.; Sturtevant, C.; Verfaillie, J. G.; Baldocchi, D. D.

    2017-12-01

    Globally, delta ecosystems are critical for human livelihoods, but are at increasingly greater risk of degradation. The Sacramento-San Joaquin River Delta (`Delta') has been subsiding dramatically, losing close to 100 Tg of carbon since the mid 19th century due in large part to agriculture-induced oxidation of the peat soils through drainage and cultivation. Efforts to re-wet the peat soils through wetland restoration are attractive as climate mitigation activities. While flooded wetland systems have the potential to sequester significant amounts of carbon as photosynthesis outpaces aerobic respiration, the highly-reduced conditions can result in significant methane emissions. This study will utilize three years (2014-2016) of continuous, gap-filled, CO2 and CH4 flux data from a mesonetwork of seven eddy covariance towers in the Delta to compute GHG budgets for the restored wetlands and agricultural baseline sites measured. Along with biogeochemical impacts of wetland restoration, biophysical impacts such as changes in reflectance, energy partitioning, and surface roughness, can have significant local to regional impacts on air temperature and heat fluxes. We hypothesize that despite flooded wetlands reducing albedo, wetland land cover will cool the near-surface air temperature due to increased net radiation being preferentially partitioned into latent heat flux and rougher canopy conditions allowing for more turbulent mixing with the atmosphere. This study will investigate the seasonal and diurnal patterns of turbulent energy fluxes and the surface properties that drive them. With nascent policy mechanisms set to compensate landowners and farmers for low emission land use practices beyond reforestation, it is essential that policy mechanisms take into consideration how the biophysical impacts of land use change could drive local to regional-scale climatic perturbations, enhancing or attenuating the biogeochemical impacts.

  2. Suspended sediment and organic contaminants in the San Lorenzo River, California, water years 2009-2010

    USGS Publications Warehouse

    Draut, Amy E.; Conaway, Christopher H.; Echols, Kathy R.; Storlazzi, Curt D.; Ritchie, Andrew

    2011-01-01

    This report presents analyses of suspended sediment and organic contaminants measured during a two-year study of the San Lorenzo River, central California, which discharges into the Pacific Ocean within the Monterey Bay National Marine Sanctuary. Most suspended-sediment transport occurred during flooding caused by winter storms; 55 percent of the sediment load was transported by the river during a three-day flood in January 2010. Concentrations of polyaromatic hydrocarbons can exceed regulatory criteria during high-flow events in the San Lorenzo River. These results highlight the importance of episodic sediment and contaminant transport in steep, mountainous, coastal watersheds and emphasize the importance of understanding physical processes and quantifying chemical constituents in discharge from coastal watersheds on event-scale terms.

  3. Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment

    EPA Pesticide Factsheets

    A Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment was published in 2010, and a Strawman Proposal was developed in 2012 by the Coalition for Urban/Rural Environmental Stewardship, California Water Resources Board, EPA.

  4. California Data Exchange Center

    Science.gov Websites

    Historical Strong El Nino Years (PDF): 8-Station | 5-Station | 6-Station River Forecast Delta Tide Forecast year has been monitoring water quality in the Sacramento-San Joaquin Delta and upper San Francisco Delta and San Francisco Bay. http://www.water.ca.gov/news/newsreleases/2016/121916.pdf 12/12/2016

  5. Selected hydrologic data, San Pitch River drainage basin, Utah

    USGS Publications Warehouse

    Robinson, G.B. Jr.

    1968-01-01

    The u.s. Geological Survey investigated the ground-water resources of the San Pitch River drainage basin during the period 1964- 67. The investigation was a cooperative project, financed equally by the Utah Department of Natural Resources, Division of Water Rights, and the Federal Government, and was a part of an investigation of the groundwater resources of the entire Sevier River drainage system.This report is intended to serve two purposes: (1) To make available to the public basic water-resources data useful in planning and studying development of water resources and (2) to supplement an interpretive report that will be published later. Included in the release are data collected by the Geological Survey since 1930.

  6. A novel approach to flow estimation in tidal rivers

    NASA Astrophysics Data System (ADS)

    Moftakhari, H. R.; Jay, D. A.; Talke, S. A.; Kukulka, T.; Bromirski, P. D.

    2013-08-01

    Reliable estimation of river discharge to the ocean from large tidal rivers is vital for water resources management and climate analyses. Due to the difficulties inherent in measuring tidal-river discharge, flow records are often limited in length and/or quality and tidal records often predate discharge records. Tidal theory indicates that tides and river discharge interact through quadratic bed friction, which diminishes and distorts the tidal wave as discharge increases. We use this phenomenon to develop a method of estimating river discharge for time periods with tidal data but no flow record. Employing sequential 32 day harmonic analyses of tidal properties, we calibrate San Francisco (SF), CA tide data to the Sacramento River delta outflow index from 1930 to 1990, and use the resulting relationship to hindcast river flow from 1858 to 1929. The M2 admittance (a ratio of the observed M2 tidal constituent to its astronomical forcing) best reproduces high flows, while low-flow periods are better represented by amplitude ratios based on higher harmonics (e.g.,M4/M22). Results show that the annual inflow to SF Bay is now 30% less than before 1900 and confirm that the flood of January 1862 was the largest since 1858.

  7. Techniques and equipment required for precise stream gaging in tide-affected fresh-water reaches of the Sacramento River, California

    USGS Publications Warehouse

    Smith, Winchell

    1971-01-01

    Current-meter measurements of high accuracy will be required for calibration of an acoustic flow-metering system proposed for installation in the Sacramento River at Chipps Island in California. This report presents an analysis of the problem of making continuous accurate current-meter measurements in this channel where the flow regime is changing constantly in response to tidal action. Gaging-system requirements are delineated, and a brief description is given of the several applicable techniques that have been developed by others. None of these techniques provides the accuracies required for the flowmeter calibration. A new system is described--one which has been assembled and tested in prototype and which will provide the matrix of data needed for accurate continuous current-meter measurements. Analysis of a large quantity of data on the velocity distribution in the channel of the Sacramento River at Chipps Island shows that adequate definition of the velocity can be made during the dominant flow periods--that is, at times other than slack-water periods--by use of current meters suspended at elevations 0.2 and 0.8 of the depth below the water surface. However, additional velocity surveys will be necessary to determine whether or not small systematic corrections need be applied during periods of rapidly changing flow. In the proposed system all gaged parameters, including velocities, depths, position in the stream, and related times, are monitored continuously as a boat moves across the river on the selected cross section. Data are recorded photographically and transferred later onto punchcards for computer processing. Computer programs have been written to permit computation of instantaneous discharges at any selected time interval throughout the period of the current meter measurement program. It is anticipated that current-meter traverses will be made at intervals of about one-half hour over periods of several days. Capability of performance for protracted

  8. Age Determination of the Remaining Peat in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; de Fontaine, Christian S.; Knifong, Donna L.

    2007-01-01

    Introduction The Sacramento-San Joaquin Delta of California was once a 1,400 square kilometer (km2) tidal marsh, which contained a vast layer of peat ranging up to 15 meters (m) thick (Atwater and Belknap, 1980). Because of its favorable climate and highly fertile peat soils, the majority of the Delta was drained and reclaimed for agriculture during the late 1800s and early 1900s. Drainage of the peat soils changed the conditions in the surface layers of peat from anaerobic (having no free oxygen present) to aerobic (exposed to the atmosphere). This change in conditions greatly increased the decomposition rate of the peat, which consists largely of organic (plant) matter. Thus began the process of land-surface subsidence, which initially was a result of peat shrinkage and compaction, and later largely was a result of oxidation by which organic carbon in the peat essentially vaporized to carbon dioxide (Deverel and others, 1998; Ingebritsen and Ikehara, 1999). Because of subsidence, the land-surface elevation on farmed islands in the Delta has decreased from a few meters to as much as 8 m below local mean sea level (California Department of Water Resources, 1995; Steve Deverel, Hydrofocus, Inc., written commun., 2007). The USGS, in collaboration with the University of California at Davis, and Hydrofocus Inc. of Davis, California, has been studying the formation of the Delta and the impact of wetland reclamation on the peat column as part of a project called Rates and Evolution of Peat Accretion through Time (REPEAT). The purpose of this report is to provide results on the age of the remaining peat soils on four farmed islands in the Delta.

  9. An Environmental Scan of the Greater Sacramento Area and of Area Students Served by Los Rios Community College District.

    ERIC Educational Resources Information Center

    Glyer-Culver, Betty

    Prepared by California's Los Rios Community College District, this environmental scan summarizes social, economic, and political changes at the national, state, and district levels, focusing on trends in the district's three colleges: American River College, Cosumnes River College, and Sacramento City College. The first section reviews demographic…

  10. Pyrethroid sorption to Sacramento River suspended solids and bed sediments.

    PubMed

    Fojut, Tessa L; Young, Thomas M

    2011-04-01

    Sorption of pyrethroid insecticides to solid materials will typically dominate the fate and transport of these hydrophobic compounds in aquatic environments. Batch reactor isotherm experiments were performed with bifenthrin and λ-cyhalothrin with suspended material and bed sediment collected from the Sacramento River, California, USA. These batch reactor experiments were performed with low spiking concentrations and a long equilibration time (28 d) to be more relevant to environmental conditions. Sorption to suspended material and bed sediment was compared to examine the role of differential sorption between these phases in the environmental transport of pyrethroids. The equilibrium sorption data were fit to the Freundlich isotherm model and fit with r(2)  > 0.87 for all experiments. Freundlich exponents ranged from 0.72 ± 0.19 to 1.07 ± 0.050, indicating sorption nonlinearity for some of the experimental conditions and linearity for others over the concentration range tested. The Freundlich capacity factors were larger for the suspended solids than for the bed sediments, and the suspended material had a higher specific surface area and higher organic carbon content compared to the bed sediment. Calculated organic carbon-normalized distribution coefficients were larger than those previously reported in the literature, by approximately an order of magnitude, and ranged from 10(6.16) to 10(6.68) at an equilibrium aqueous concentration of 0.1 µg/L. Higher than expected sorption of pyrethroids to the tested materials may be explained by sorption to black carbon and/or mineral surfaces. Copyright © 2011 SETAC.

  11. Potential effects of anticipated coal mining on salinity of the Price, San Rafael, and Green Rivers, Utah

    USGS Publications Warehouse

    Lindskov, K.L.

    1986-01-01

    The impact of anticipated coal mining in Utah on the salinity of the Price, San Rafael, and Green Rivers is to be addressed in the repermitting of existing mines and permitting of new mines. To determine the potential impacts, mathematical models were developed for the Price and San Rafael River basins. Little impact on the quantity and quality of streamflow is expected for the Price and San Rafael Rivers. The increase in mean monthly flow of the Price River downstream from Scofield Reservoir is projected as 3.5 cu ft/sec, ranging from 1.7% in June to 140% in February. The potential increase in dissolved solids concentration downstream from Scofield Reservoir would range from 10.4% in June and July (from 202 to 223 mg/L) to 97.0% in February (from 202 to 398 mg/L). However, the concentration of the mixture of mine water with the existing flow released from Scofield Reservoir would contain less than 500 mg/L of dissolved solids. At the mouth of the Price River, the potential increase in mean monthly flow is projected as 12.6 cu ft/sec, ranging from 3.7% in May to 37.7% in January. The potential changes in dissolved solids concentration would range from a 20.7% decrease in January (from 3,677 to 2,917 mg/L) to a 1.3% increase in June (from 1,911 to 1,935 mg/L). At the mouth of the San Rafael River , the potential increase in mean monthly flow ranges from 2.9 cu ft/sec in February to 6.7 cu ft/sec in May, with the increase ranging from 0.8% in June to 12.6% in November. The potential changes in dissolved solids concentration would range from a 5.3 % decrease in March (from 2,318 to 2,195 mg/L) to a 0.6% increase in May (from 1,649 to 1,659 mg/L). The anticipated mining in the Price and San Rafael River basins is not expected to cause a detectable change in the quantity and quality of streamflow in the Green River. The projected peak increase in flow resulting from discharge from the mines is less than 0.3% of the average flow in the Green River. (Author 's abstract)

  12. A review of circulation and mixing studies of San Francisco Bay, California

    USGS Publications Warehouse

    Smith, Lawrence H.

    1987-01-01

    A description of the major characteristics and remaining unknowns of circulation and mixing in San Francisco Bay has been constructed from a review of published studies. From a broad perspective San Francisco Bay is an ocean-river mixing zone with a seaward flow equal to the sum of the river inflows less evaporation. Understanding of circulation and mixing within the bay requires quantification of freshwater inflows and ocean-bay exchanges, characterization of source-water variations, and separation of the within-bay components of circulation and mixing processes. Description of net circulation and mixing over a few days to a few months illustrates best the interactions of major components. Quantification of tidal circulation and mixing is also necessary because net circulation and mixing contain a large tide-induced component, and because tidal variations are dominant in measurements of stage, currents, and salinity. The discharge of the Sacramento-San Joaquin Delta into Suisun Bay is approximately 90 percent of the freshwater inflow to San Francisco Bay. Annual delta discharge is characterized by a winter season of high runoff and a summer season of low runoff. For the period 1956 to 1985 the mean of monthly discharges exceeded 1,000 cubic meters per second (35,000 cubic feet per second) for the months of December through April, whereas for July through October, it was less than 400 cubic meters per second (14,000 cubic feet per second). The months of November, May, and June commonly were transition months between these seasons. Large year-to-year deviations from this annual pattern have occurred frequently. Much less is known about the ocean-bay exchange process. Net exchanges depend on net seaward flow in the bay, tidal amplitude, and longshore coastal currents, but exchanges have not yet been measured successfully. Source-water variations are ignored by limiting discussion of mixing to salinity. The bay is composed of a northern reach, which is strongly

  13. Bathymetric survey and digital elevation model of Little Holland Tract, Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Snyder, Alexander G.; Lacy, Jessica R.; Stevens, Andrew W.; Carlson, Emily M.

    2016-06-10

    The U.S. Geological Survey conducted a bathymetric survey in Little Holland Tract, a flooded agricultural tract, in the northern Sacramento-San Joaquin Delta (the “Delta”) during the summer of 2015. The new bathymetric data were combined with existing data to generate a digital elevation model (DEM) at 1-meter resolution. Little Holland Tract (LHT) was historically diked off for agricultural uses and has been tidally inundated since an accidental levee breach in 1983. Shallow tidal regions such as LHT have the potential to improve habitat quality in the Delta. The DEM of LHT was developed to support ongoing studies of habitat quality in the area and to provide a baseline for evaluating future geomorphic change. The new data comprise 138,407 linear meters of real-time-kinematic (RTK) Global Positioning System (GPS) elevation data, including both bathymetric data collected from personal watercraft and topographic elevations collected on foot at low tide. A benchmark (LHT15_b1) was established for geodetic control of the survey. Data quality was evaluated both by comparing results among surveying platforms, which showed systematic offsets of 1.6 centimeters (cm) or less, and by error propagation, which yielded a mean vertical uncertainty of 6.7 cm. Based on the DEM and time-series measurements of water depth, the mean tidal prism of LHT was determined to be 2,826,000 cubic meters. The bathymetric data and DEM are available at http://dx.doi.org/10.5066/F7RX9954. 

  14. Distribution and abundance of Least Bell’s Vireos (Vireo bellii pusillus) and Southwestern Willow Flycatchers (Empidonax traillii extimus) on the Middle San Luis Rey River, San Diego County, southern California—2017 data summary

    USGS Publications Warehouse

    Allen, Lisa D.; Howell, Scarlett L.; Kus, Barbara E.

    2018-04-20

    We surveyed for Least Bell’s Vireos (LBVI) (Vireo bellii pusillus) and Southwestern Willow Flycatchers (SWFL) (Empidonax traillii extimus) along the San Luis Rey River, between College Boulevard in Oceanside and Interstate 15 in Fallbrook, California (middle San Luis Rey River), in 2017. Surveys were conducted from April 13 to July 11 (LBVI) and from May 16 to July 28 (SWFL). We found 146 LBVI territories, at least 107 of which were occupied by pairs. Five additional transient LBVIs were detected. LBVIs used five different habitat types in the survey area: mixed willow, willow-cottonwood, willow-sycamore, riparian scrub, and upland scrub. Forty-four percent of the LBVIs occurred in habitat characterized as mixed willow and 89 percent of the LBVI territories occurred in areas with greater than 50 percent native plant cover. Of 16 banded LBVIs detected in the survey area, 8 had been given full color-band combinations prior to 2017. Four other LBVIs with single (natal) federal bands were recaptured and banded in 2017. Three LBVIs with single dark blue federal bands indicating that they were banded as nestlings on the lower San Luis Rey River and one LBVI with a single gold federal band indicating that it was banded as a nestling on Marine Corps Base Camp Pendleton (MCBCP) could not be recaptured for identification. One banded LBVI emigrated from the middle San Luis Rey River to the lower San Luis Rey River in 2017.One resident SWFL territory and one transient Willow Flycatcher of unknown subspecies (WIFL) were observed in the survey area in 2017. The resident SWFL territory, which was comprised of mixed willow habitat (5–50 percent native plant cover), was occupied by a single male from May 22 to June 21, 2017. No evidence of pairing or nesting activity was observed. The SWFL male was banded with a full color-combination indicating that he was originally banded as a nestling on the middle San Luis Rey River in 2014 and successfully bred in the survey area in 2016

  15. Determination of bench-mark elevations at Bethel Island and vicinity, Contra Costa and San Joaquin counties, California, 1987

    USGS Publications Warehouse

    Blodgett, J.C.; Ikehara, M.E.; McCaffrey, William F.

    1988-01-01

    Elevations of 49 bench marks in the southwestern part of the Sacramento-San Joaquin River Delta were determined during October and November 1987. A total of 58 miles of level lines were run in the vicinity of Bethel Island and the community of Discovery Bay. The datum of these surveys is based on a National Geodetic Survey bench mark T934 situated on bedrock 10.5 mi east of Mount Diablo and near Marsh Creek Reservoir. The accuracy of these levels, based on National Geodetic Survey standards, was of first, second, and third order, depending on the various segments surveyed. Several bench marks were noted as possibly being stable, but most show evidence of instability. (USGS)

  16. Response of macroinvertebrate communities to temporal dynamics of pesticide mixtures: A case study from the Sacramento River watershed, California.

    PubMed

    Chiu, Ming-Chih; Hunt, Lisa; Resh, Vincent H

    2016-12-01

    Pesticide pollution from agricultural field run-off or spray drift has been documented to impact river ecosystems worldwide. However, there is limited data on short- and long-term effects of repeated pulses of pesticide mixtures on biotic assemblages in natural systems. We used reported pesticide application data as input to a hydrological fate and transport model (Soil and Water Assessment Tool) to simulate spatiotemporal dynamics of pesticides mixtures in streams on a daily time-step. We then applied regression models to explore the relationship between macroinvertebrate communities and pesticide dynamics in the Sacramento River watershed of California during 2002-2013. We found that both maximum and average pesticide toxic units were important in determining impacts on macroinvertebrates, and that the compositions of macroinvertebrates trended toward taxa having higher resilience and resistance to pesticide exposure, based on the Species at Risk pesticide (SPEAR pesticides ) index. Results indicate that risk-assessment efforts can be improved by considering both short- and long-term effects of pesticide mixtures on macroinvertebrate community composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Hydrogeologic reconnaissance of the San Miguel River basin, southwestern Colorado

    USGS Publications Warehouse

    Ackerman, D.J.; Rush, F.E.

    1984-01-01

    The San Miguel River Basin encompasses 4,130 square kilometers of which about two-thirds is in the southeastern part of the Paradox Basin. The Paradox Basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Evaporite beds of mostly salt are both overlain and underlain by confining beds. Aquifers are present above and below the confining-bed sequence. The principal element of ground-water outflow from the upper aquifer is flow to the San Miguel River and its tributaries; this averages about 90 million cubic meters per year. A water budget for the lower aquifer has only two equal, unestimated elements, subsurface outflow and recharge from precipitation. The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. No brines have been sampled and no brine discharges have been identified in the basin. Salt water has been reported for petroleum-exploration wells, but no active salt solution has been identified. (USGS)

  18. Sources and Transport of Nutrients, Organic Carbon, and Chlorophyll-a in the San Joaquin River Upstream of Vernalis, California, during Summer and Fall, 2000 and 2001

    USGS Publications Warehouse

    Kratzer, Charles R.; Dileanis, Peter D.; Zamora, Celia; Silva, Steven R.; Kendall, Carol; Bergamaschi, Brian A.; Dahlgren, Randy A.

    2004-01-01

    Oxidizable materials from the San Joaquin River upstream of Vernalis can contribute to low dissolved oxygen episodes in the Stockton Deep Water Ship Channel that can inhibit salmon migration in the fall. The U.S. Geological Survey collected and analyzed samples at four San Joaquin River sites in July through October 2000 and June through November 2001, and at eight tributary sites in 2001. The data from these sites were supplemented with data from samples collected and analyzed by the University of California at Davis at three San Joaquin River sites and eight tributary sites as part of a separate study. Streamflows in the San Joaquin River were slightly above the long-term average in 2000 and slightly below average in 2001. Nitrate loads at Vernalis in 2000 were above the long-term average, whereas loads in 2001 were close to average. Total nitrogen loads in 2000 were slightly above average, whereas loads in 2001 were slightly below average. Total phosphorus loads in 2000 and 2001 were well below average. These nutrient loads correspond with the flow-adjusted concentration trends--nitrate concentrations significantly increased since 1972 (p 0.05). Loading rates of nutrients and dissolved organic carbon increased in the San Joaquin River in the fall with the release of wetland drainage into Mud Slough and with increased reservoir releases on the Merced River. During August 2000 and September 2001, the chlorophyll-a loading rates and concentrations in the San Joaquin River declined and remained low during the rest of the sampling period. The most significant tributary sources of nutrients were the Tuolumne River, Harding Drain, and Mud Slough. The most significant tributary sources of dissolved organic carbon were Salt Slough, Mud Slough, and the Tuolumne and Stanislaus Rivers. Compared with nutrients and dissolved organic carbon, the tributaries were minor sources of chlorophyll-a, suggesting that most of the chlorophyll-a was produced in the San Joaquin River

  19. Effects of hydrologic infrastructure on flow regimes of California's Central Valley rivers: Implications for fish populations

    USGS Publications Warehouse

    Brown, Larry R.; Bauer, Marissa L.

    2010-01-01

    Alteration of natural flow regimes is generally acknowledged to have negative effects on native biota; however, methods for defining ecologically appropriate flow regimes in managed river systems are only beginning to be developed. Understanding how past and present water management has affected rivers is an important part of developing such tools. In this paper, we evaluate how existing hydrologic infrastructure and management affect streamflow characteristics of rivers in the Central Valley, California and discuss those characteristics in the context of habitat requirements of native and alien fishes. We evaluated the effects of water management by comparing observed discharges with estimated discharges assuming no water management ("full natural runoff"). Rivers in the Sacramento River drainage were characterized by reduced winter–spring discharges and augmented discharges in other months. Rivers in the San Joaquin River drainage were characterized by reduced discharges in all months but particularly in winter and spring. Two largely unaltered streams had hydrographs similar to those based on full natural runoff of the regulated rivers. The reduced discharges in the San Joaquin River drainage streams are favourable for spawning of many alien species, which is consistent with observed patterns of fish distribution and abundance in the Central Valley. However, other factors, such as water temperature, are also important to the relative success of native and alien resident fishes. As water management changes in response to climate change and societal demands, interdisciplinary programs of research and monitoring will be essential for anticipating effects on fishes and to avoid unanticipated ecological outcomes.

  20. Status of White Sturgeon (Acipenser transmontanus Richardson, 1863) throughout the species range, threats to survival, and prognosis for the future

    USGS Publications Warehouse

    Hildebrand, L. R.; Drauch Schreier, Andrea; Lepla, K.; McAdam, S. O.; McLellan, J; Parsley, Michael J.; Paragamian, V L; Young, S P

    2016-01-01

    White Sturgeon, Acipenser transmontanus (WS), are distributed throughout three major river basins on the West Coast of North America: the Sacramento-San Joaquin, Columbia, and Fraser River drainages. Considered the largest North American freshwater fish, some WS use estuarine habitat and make limited marine movements between river basins. Some populations are listed by the United States or Canada as threatened or endangered (upper Columbia River above Grand Coulee Dam; Kootenai River; lower, middle and, upper Fraser River and Nechako River), while others do not warrant federal listing at this time (Sacramento-San Joaquin Rivers; Columbia River below Grand Coulee Dam; Snake River). Threats that impact WS throughout the species’ range include fishing effects and habitat alteration and degradation. Several populations suffer from recruitment limitations or collapse due to high early life mortality associated with these threats. Efforts to preserve WS populations include annual monitoring, harvest restrictions, habitat restoration, and conservation aquaculture. This paper provides a review of current knowledge on WS life history, ecology, physiology, behavior, and genetics and presents the status of WS in each drainage. Ongoing management and conservation efforts and additional research needs are identified to address present and future risks to the species.

  1. Diel activity patterns of juvenile late fall-run Chinook salmon with implications for operation of a gated water diversion in the Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Plumb, John M.; Adams, Noah S.; Perry, Russell W.; Holbrook, Christopher; Romine, Jason G.; Blake, Aaron R.; Burau, Jon R.

    2016-01-01

    In the Sacramento-San Joaquin River Delta, California, tidal forces that reverse river flows increase the proportion of water and juvenile late fall-run Chinook salmon diverted into a network of channels that were constructed to support agriculture and human consumption. This area is known as the interior delta, and it has been associated with poor fish survival. Under the rationale that the fish will be diverted in proportion to the amount of water that is diverted, the Delta Cross Channel (DCC) has been prescriptively closed during the winter out-migration to reduce fish entrainment and mortality into the interior delta. The fish are thought to migrate mostly at night, and so daytime operation of the DCC may allow for water diversion that minimizes fish entrainment and mortality. To assess this, the DCC gate was experimentally opened and closed while we released 2983 of the fish with acoustic transmitters upstream of the DCC to monitor their arrival and entrainment into the DCC. We used logistic regression to model night-time arrival and entrainment probabilities with covariates that included the proportion of each diel period with upstream flow, flow, rate of change in flow and water temperature. The proportion of time with upstream flow was the most important driver of night-time arrival probability, yet river flow had the largest effect on fish entrainment into the DCC. Modelling results suggest opening the DCC during daytime while keeping the DCC closed during night-time may allow for water diversion that minimizes fish entrainment into the interior delta.

  2. Implications for future survival of delta smelt from four climate change scenarios for the Sacramento–San Joaquin Delta, California

    USGS Publications Warehouse

    Brown, Larry R.; Bennett, William A.; Wagner, R. Wayne; Morgan-King, Tara; Knowles, Noah; Feyrer, Frederick; Schoellhamer, David H.; Stacey, Mark T.; Dettinger, Mike

    2013-01-01

    Changes in the position of the low salinity zone, a habitat suitability index, turbidity, and water temperature modeled from four 100-year scenarios of climate change were evaluated for possible effects on delta smelt Hypomesus transpacificus, which is endemic to the Sacramento–San Joaquin Delta. The persistence of delta smelt in much of its current habitat into the next century appears uncertain. By mid-century, the position of the low salinity zone in the fall and the habitat suitability index converged on values only observed during the worst droughts of the baseline period (1969–2000). Projected higher water temperatures would render waters historically inhabited by delta smelt near the confluence of the Sacramento and San Joaquin rivers largely uninhabitable. However, the scenarios of climate change are based on assumptions that require caution in the interpretation of the results. Projections like these provide managers with a useful tool for anticipating long-term challenges to managing fish populations and possibly adapting water management to ameliorate those challenges.

  3. 78 FR 39597 - Safety Zone; Hilton Fourth of July Fireworks, San Joaquin River, Venice Island, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Zone; Hilton Fourth of July Fireworks, San Joaquin River, Venice Island, CA AGENCY: Coast Guard, DHS... the Hilton Fourth of July Fireworks in the Captain of the Port, San Francisco area of responsibility...'' W (NAD83) for the Hilton Fourth of July Fireworks in 33 CFR 165.1191, Table 1, Item number 17. This...

  4. Finite-frequency traveltime tomography of San Francisco Bay region crustal velocity structure

    USGS Publications Warehouse

    Pollitz, F.F.

    2007-01-01

    Seismic velocity structure of the San Francisco Bay region crust is derived using measurements of finite-frequency traveltimes. A total of 57 801 relative traveltimes are measured by cross-correlation over the frequency range 0.5-1.5 Hz. From these are derived 4862 'summary' traveltimes, which are used to derive 3-D P-wave velocity structure over a 341 ?? 140 km2 area from the surface to 25 km depth. The seismic tomography is based on sensitivity kernels calculated on a spherically symmetric reference model. Robust elements of the derived P-wave velocity structure are: a pronounced velocity contrast across the San Andreas fault in the south Bay region (west side faster); a moderate velocity contrast across the Hayward fault (west side faster); moderately low velocity crust around the Quien Sabe volcanic field and the Sacramento River delta; very low velocity crust around Lake Berryessa. These features are generally explicable with surface rock types being extrapolated to depth ???10 km in the upper crust. Generally high mid-lower crust velocity and high inferred Poisson's ratio suggest a mafic lower crust. ?? Journal compilation ?? 2007 RAS.

  5. Occurrence and accumulation of pesticides and organic contaminants in river sediment, water and clam tissues from the San Joaquin River and tributaries, California

    USGS Publications Warehouse

    Pereira, W.E.; Domagalski, Joseph L.; Hostettler, F.D.; Brown, L.R.; Rapp, J.B.

    1996-01-01

    A study was conducted in 1992 to assess the effects of anthropogenic activities and land use on the water quality of the San Joaquin River and its major tributaries. This study focused on pesticides and organic contaminants, looking at distributions of contaminants in water, bed and suspended sediment, and the bivalve Corbicula fluminea. Results indicated that this river system is affected by agricultural practices and urban runoff. Sediments from Dry Creek contained elevated concentrations of polycyclic aromatic hydrocarbons (PAHs), possibly derived from urban runoff from the city of Modesto; suspended sediments contained elevated amounts of chlordane. Trace levels of triazine herbicides atrazine and simazine were present in water at most sites. Sediments, water, and bivalves from Orestimba Creek, a westside tributary draining agricultural areas, contained the greatest levels of DDT (1,1,1-trichloro-2-2-bis[p-chlorophenyl]ethane), and its degradates DDD (1,1-dichloro-2,2-bis[p-chlorophenyl]ethane), and DDE (1,1-dichloro-2,2- bis[p-chlorophenyl]ethylene). Sediment adsorption co efficients (K(oc)), and bioconcentration factors (BCF) in Corbicula of DDT, DDD, and DDE at Orestimba Creek were greater than predicted values. Streams of the western San Joaquin Valley can potentially transport significant amounts of chlorinated pesticides to the San Joaquin River, the delta, and San Francisco Bay. Organochlorine compounds accumulate in bivalves and sediment and may pose a problem to other biotic species in this watershed.

  6. Resource intensification and osteoarthritis patterns: changes in activity in the prehistoric Sacramento-San Joaquin Delta region.

    PubMed

    Cheverko, Colleen M; Bartelink, Eric J

    2017-10-01

    Ethnohistoric accounts and archaeological research from Central California document a shift from the use of lower-cost, high-ranked resources (e.g., large game) toward the greater use of higher-cost, low-ranked resources (e.g., acorns and small seeds) during the Late Holocene (4500-200 BP). The subsistence transition from higher consumption of large game toward an increased reliance on acorns was likely associated with increases in levels of logistical mobility and physical activity. This study predicts that mobility and overall workload patterns changed during this transition to accommodate new food procurement strategies and incorporate new dietary resources during the Late Holocene in Central California. Osteoarthritis prevalence was scored in the shoulder, elbow, hip, and knee of adult individuals (n = 256) from seven archaeological sites in the Sacramento-San Joaquin Delta region. Comparisons were made between osteoarthritis prevalence, sex, age-at-death, and time period using ANCOVAs. The results of this study indicate significant increases in osteoarthritis prevalence in the hip of adult males and females during the Late Period (1200-200 BP), even after correcting for the cumulative effects of age. No differences were observed between the sexes or between time periods for the shoulder, elbow, and knee joints. The temporal increase in hip osteoarthritis supports the hypothesis that there was an increasing need for greater logistical mobility over time to procure key resources away from the village sites. Additionally, the lack of sex differences in osteoarthritis prevalence may suggest that females and males likely performed similar levels of activity during these periods. © 2017 Wiley Periodicals, Inc.

  7. Is it restoration or reconciliation? California's experience restoring the Sacramento - San Joaquin River Delta provides lessons learned and pathways forward to sustain critical ecosystem functions and services in a highly managed riverine delta.

    NASA Astrophysics Data System (ADS)

    Viers, J. H.; Kelsey, R.

    2014-12-01

    Reconciling the needs of nature and people in California's Sacramento - San Joaquin River Delta represents one of the most critical ecosystem management imperatives in western North America. Over 150 years the Delta has been managed for near-term human benefits and in the process 95% of riverine and deltaic wetlands have been lost throughout the region. Despite extensive land conversion and alteration of hydrological and physical processes, the Delta remains important habitat for migratory birds and is home to over 60% of California's native fish species. It is also the waterwheel for the state's vast water distribution network and is maintained by a system of constructed levees that are at risk from catastrophic failure due to sea level rise, floods, and/or seismic activity. Such a collapse would have dire consequences for > 25M humans and world's 10th largest economy that depend on its freshwater. Thus, the ultimate cost of this ecosystem alteration and simplification is a riverscape that is no longer reliable for nature or people. For 30 years, attempts to 'restore' Delta ecosystems and improve reliability have met with mixed results. For example, reconnection of floodplains to floodwaters has resulted in improved ecological health for native fishes and recharge to localized aquifers. Uncoordinated releases of discharges below dams, however, have resulted in diminished water quality and populations of indicator species. Attempts to create wildlife friendly farms have been countered by an increase in perennial agriculture and commensurate increases in irrigation water demand. From these lessons learned, we demonstrate three key components of a reconciled Delta that will be necessary in the future: 1) full restoration of critical habitats, reconnecting land and water to rebuild ecosystem function; 2) landscape redesign, incorporating natural and engineered infrastructure to create a biologically diverse, resilient landscape to support both agriculture and natural

  8. The legacy of wetland drainage on the remaining peat in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Christian S. de Fontaine,; Steven J. Deverel,

    2009-01-01

    Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 55–80% of the original peat layer on the farmed islands has been lost due to landsurface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 2900-5700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface.

  9. Extending the Concept and Practice of Classroom Based Research to California Community Colleges. Final Report.

    ERIC Educational Resources Information Center

    Sacramento City Coll., CA. Learning Resources Div.

    With support from the California Community College Fund for Instructional Improvement, 14 classroom-based research studies were conducted in fall 1991 at American River College (ARC), Consumnes River College (CRC), Sacramento City College (SCC), San Joaquin Delta College (SJDC), Solano Community College (SoCC), and Yuba Community College (YCC).…

  10. Dual-RiverSonde measurements of two-dimensional river flow patterns

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Stumpner, P.; Burau, J.R.

    2008-01-01

    Two-dimensional river flow patterns have been measured using a pair of RiverSondes in two experiments in the Sacramento-San Joaquin River Delta system of central California during April and October 2007. An experiment was conducted at Walnut Grove, California in order to explore the use of dual RiverSondes to measure flow patterns at a location which is important in the study of juvenile fish migration. The data available during the first experiment were limited by low wind, so a second experiment was conducted at Threemile Slough where wind conditions and surface turbulence historically have resulted in abundant data. Both experiments included ADCP near-surface velocity measurements from either manned or unmanned boats. Both experiments showed good comparisons between the RiverSonde and ADCP measurements. The flow conditions at both locations are dominated by tidal effects, with partial flow reversal at Walnut Grove and complete flow reversal at Threemile Slough. Both systems showed complex flow patterns during the flow reversals. Quantitative comparisons between the RiverSondes and an ADCP on a manned boat at Walnut Grove showed mean differences of 4.5 cm/s in the u (eastward) and 7.6 cm/s in the v (northward) components, and RMS differences of 14.7 cm/s in the u component and 21.0 cm/s in the v component. Quantitative comparisons between the RiverSondes and ADCPs on autonomous survey vessels at Threemile Slough showed mean differences of 0.007 cm/s in the u component and 0.5 cm/s in the v component, and RMS differences of 7.9 cm/s in the u component and 13.5 cm/s in the v component after obvious outliers were removed. ?? 2008 IEEE.

  11. Copper, cadmium, and zinc concentrations in juvenile Chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; Thompson, Larry D.; Walsh, Daniel

    2001-01-01

    This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from river sites were examinedfor gut contents to document their consumption of variousinvertebrate taxa, whereas salmon from river sites and thehatchery were used for metal determinations. Midge(Chironomidae) and caddisfly (Trichoptera) larvae and mayfly(Ephemeroptera) nymphs were collected for metal determinationsduring April–June from river sites and from Battle and Buttecreeks. The fish hatchery and Battle and Butte creeks served asreference sites because they had no history of receiving minedrainage. Salmon consumed mostly midge larvae and pupae (44.0%,damp-dry biomass), caddisfly larvae (18.9%), Cladocera (5.8%),and mayfly nymphs (5.7%). These results demonstrated thatinsects selected for metal determinations were important as fishforage. Dry-weight concentrations of Cu, Cd, and Zn weregenerally far higher in salmon and insects from the river thanfrom reference sites. Within the river, high metalconcentrations persisted as far downstream as South Meridian (thelowermost sampling site). Maximum concentrations of Cd (30.7 μg g-1) and Zn (1230 μg g-1),but not Cu (87.4 μg g-1), in insects exceeded amounts that other investigators reported as toxic when fed for prolonged periods to juvenile salmonids.

  12. Chlorinated hydrocarbon pesticides and polychlorinated biphenyls in sediment cores from San Francisco Bay

    USGS Publications Warehouse

    Venkatesan, M.I.; De Leon, R. P.; VanGeen, A.; Luoma, S.N.

    1999-01-01

    Sediment cores of known chronology from Richardson and San Pablo Bays in San Francisco Bay, CA, were analyzed for a suite of chlorinated hydrocarbon pesticides and polychlorinated biphenyls to reconstruct a historic record of inputs. Total DDTs (DDT = 2,4'- and 4,4'-dichlorodiphenyltrichloroethane and the metabolites, 2,4'- and 4,4'-DDE, -DDD) range in concentration from 4-21 ng/g and constitute a major fraction (> 84%) of the total pesticides in the top 70 cm of Richardson Bay sediment. A subsurface maximum corresponds to a peak deposition date of 1969-1974. The first measurable DDT levels are found in sediment deposited in the late 1930's. The higher DDT inventory in the San Pablo relative to the Richardson Bay core probably reflects the greater proximity of San Pablo Bay to agricultural activities in the watershed of the Sacramento and San Joaquin rivers. Total polychlorinated biphenyls (PCBs) occur at comparable levels in the two Bays (< 1-34 ng/g). PCBs are first detected in sediment deposited during the 1930's in Richardson Bay, about a decade earlier than the onset of detectable levels of DDTs. PCB inventories in San Pablo Bay are about a factor of four higher in the last four decades than in Richardson Bay, suggesting a distribution of inputs not as strongly weighed towards the upper reaches of the estuary as DDTs. The shallower subsurface maximum in PCBs compared to DDT in the San Pablo Bay core is consistent with the imposition of drastic source control measures four these constituents in 1970 and 1977 respectively. The observed decline in DDT and PCB levels towards the surface of both cores is consistent with a dramatic drop in the input of these pollutants once the effect of sediment resuspension and mixing is taken into account.

  13. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Méndez-García, C.; Renteria-Villalobos, M.; García-Tenorio, R.; Montero-Cabrera, M. E.

    2014-07-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. 232Th-series, 238U-series, 40K and 137Cs activity concentrations (AC, Bq kg-1) were determined by gamma spectrometry with a high purity Ge detector. 238U and 234U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to 210Pb activities. Results were verified by 137Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High 238U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento - Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) 234U/overflow="scroll">238U and 238U/overflow="scroll">226Ra in sediments have values between 0.9-1.2, showing a behavior close to radioactive equilibrium in the entire basin. 232Th/overflow="scroll">238U, 228Ra/overflow="scroll">226Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.

  14. Application of hydrologic tools and monitoring to support managed aquifer recharge decision making in the Upper San Pedro River, Arizona, USA

    USGS Publications Warehouse

    Lacher, Laurel J.; Turner, Dale S.; Gungle, Bruce W.; Bushman, Brooke M.; Richter, Holly E.

    2014-01-01

    The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr). Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.

  15. Sacramento City Unified School District and Sacramento City College Articulation Council Year-End Report.

    ERIC Educational Resources Information Center

    Giugni, Tom; Burris, Douglas W.

    In 1982, the President of Sacramento City College (SCC) and the Superintendent of the Sacramento City Unified School District (SCUSD) developed the new concept of a joint articulation council to address current problems related to the number of under-prepared students and the possible duplication of effort in basic skills instruction and…

  16. Tracing seasonal nitrate sources and loads in the San Joaquin River using nitrogen and oxygen stable isotopes

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Silva, S.; Stringfellow, W. T.; Dahlgren, R. A.

    2007-12-01

    The San Joaquin River (SJR) is a heavily impacted river draining a major agricultural basin in central California. This river receives nitrate inputs from multiple point and non-point sources including agriculture, livestock, waste water treatment plants, septic systems, urban run-off, and natural soil leaching. Nitrate inputs to the SJR may play a significant role in driving algal blooms and reducing overall water quality. The San Joaquin River discharges into the San Francisco Bay-Delta ecosystem, and reduced water quality and large algal blooms in the SJR may play a significant role in driving critically low oxygen levels in the Stockton Deep Water Shipping Channel. Correct identification of the major nitrate sources to the SJR is important for coordinating mitigation efforts throughout the SJR-Delta-San Francisco Bay region. Measurements of the nitrogen and oxygen isotopic composition of nitrate were made monthly to bimonthly from 2005 through 2007 within the Lower SJR, major tributaries, and various other water input sources in order to assess spatial and temporal variations in nitrate inputs and cycling in this heavily impacted watershed. The oxygen and hydrogen isotopic composition of water was also measured to better distinguish water sources and identify changes in water inputs. A very wide range of δ15N-NO3 and δ18O-NO3 values were observed in the main stem SJR and tributaries. The δ15N values ranged from +2 to +17 ‰, and the δ18O values ranged from -1 to +18 ‰. Except for a major agricultural drain site (San Luis Drain), all the sites showed temporal changes in both δ15N-NO3 and δ18O-NO3 much greater than the differences seen between individual sites. In general, the δ15N values of nitrate in the larger tributary rivers (Merced, Tuolumne and Stanislaus) were much lower than those of the main stem SJR from April to May; however, after June the tributary values began to rise toward the values in the main stem river. Some of the highest δ15N-NO3

  17. Characterizing Sources of Recharge and Groundwater Quality in Sacramento Aquifers Following California's Historic Drought

    NASA Astrophysics Data System (ADS)

    Robertson, C. A.; Paukert Vankeuren, A. N.; Wagner, A. J.; Blackburn, C.; Druecker, D.

    2016-12-01

    Characterizing recharge will be critical for sustainable groundwater use, particularly following California's historic five-year drought . Groundwater is of great importance to Sacramento, which is a high priority basin as determined by the Sustainable Groundwater Management Act of 2014. The California State University, Sacramento (CSUS) campus has 18 monitoring wells, making it an ideal laboratory for examination of recharge sources and water quality in confined and unconfined aquifers in the Central Valley aquifer system. Historically, CSUS aquifers appear to have been recharged by water from the Western Sierra Nevada. The campus is bounded by the Lower American River, and some of its wells are in hydraulic connection with the river1. Lower than average river stage during the drought may have affected recharge to the aquifers from the river. Additionally, low impact development (LID) stormwater-management ponds have recently been installed on campus in an effort to increase infiltration and to help mitigate contamination of the aquifers and American River from campus runoff. The recently installed LID ponds on campus may have increased infiltration of local precipitation into the unconfined aquifer. Data collected from the monitoring wells allow for the examination of differences between the confined and unconfined aquifer systems in the Central Valley. To identify recharge sources, stable isotope and major ion analyses for samples collected from both campus aquifers are compared to samples from local precipitation and rivers in the Western Sierra Nevada feeding the American River. These results are used to assess current water quality and compared to historic datasets collected by the USGS to reveal changes that have occurred as a result of the recent drought. These data are the first in a dataset developed by CSUS Geology students for long-term monitoring of local groundwater quality. 1Moran et al., 2004. LLNL, UCR-203258.

  18. Hydrologic responses of a tropical catchment in Thailand and two temperate/cold catchments in north America to global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, T.Y.; Ahmad, Z.

    The hydrologic impact or sensitivities of three medium-sized catchments to global warming, one of tropical climate in Northern Thailand and two of temperate climate in the Sacramento and San Joaquin River basins of California, were investigated.

  19. Levee Monitoring with Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.

    2012-01-01

    Topics in this presentation are: 1. Overview of radar remote sensing 2. Surface change detection with Differential Interferometric Radar Processing 3. Study of the Sacramento - San Joaquin levees 4. Mississippi River Levees during the Spring 2011 floods.

  20. ASTER Images San Francisco Bay Area

    NASA Image and Video Library

    2000-04-26

    These images of the San Francisco Bay region were acquired on March 3, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. Each covers an area 60 kilometers (37 miles) wide and 75 kilometers (47 miles) long. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image the Earth for the next 6 years to map and monitor the changing surface of our planet. Upper Left: The color infrared composite uses bands in the visible and reflected infrared. Vegetation is red, urban areas are gray; sediment in the bays shows up as lighter shades of blue. Thanks to the 15 meter (50-foot) spatial resolution, shadows of the towers along the Bay Bridge can be seen. Upper right: A composite of bands in the short wave infrared displays differences in soils and rocks in the mountainous areas. Even though these regions appear entirely vegetated in the visible, enough surface shows through openings in the vegetation to allow the ground to be imaged. Lower left: This composite of multispectral thermal bands shows differences in urban materials in varying colors. Separation of materials is due to differences in thermal emission properties, analogous to colors in the visible. Lower right: This is a color coded temperature image of water temperature, derived from the thermal bands. Warm waters are in white and yellow, colder waters are blue. Suisun Bay in the upper right is fed directly from the cold Sacramento River. As the water flows through San Pablo and San Francisco Bays on the way to the Pacific, the waters warm up. http://photojournal.jpl.nasa.gov/catalog/PIA02605

  1. Characterization of major lithologic units underlying the lower American River using water-borne continuous resistivity profiling, Sacramento, California, June 2008

    USGS Publications Warehouse

    Ball, Lyndsay B.; Teeple, Andrew

    2013-01-01

    The levee system of the lower American River in Sacramento, California, is situated above a mixed lithology of alluvial deposits that range from clay to gravel. In addition, sand deposits related to hydraulic mining activities underlie the floodplain and are preferentially prone to scour during high-flow events. In contrast, sections of the American River channel have been observed to be scour resistant. In this study, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, explores the resistivity structure of the American River channel to characterize the extent and thickness of lithologic units that may impact the scour potential of the area. Likely lithologic structures are interpreted, but these interpretations are non-unique and cannot be directly related to scour potential. Additional geotechnical data would provide insightful data on the scour potential of certain lithologic units. Additional interpretation of the resistivity data with respect to these results may improve interpretations of lithology and scour potential throughout the American River channel and floodplain. Resistivity data were collected in three profiles along the American River using a water-borne continuous resistivity profiling technique. After processing and modeling these data, inverted resistivity profiles were used to make interpretations about the extent and thickness of possible lithologic units. In general, an intermittent high-resistivity layer likely indicative of sand or gravel deposits extends to a depth of around 30 feet (9 meters) and is underlain by a consistent low-resistivity layer that likely indicates a high-clay content unit that extends below the depth of investigation (60 feet or 18 meters). Immediately upstream of the Watt Avenue Bridge, the high-resistivity layer is absent, and the low-resistivity layer extends to the surface where a scour-resistant layer has been previously observed in the river bed.

  2. Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in North San Francisco Bay, California

    USGS Publications Warehouse

    McLaughlin, K.; Kendall, C.; Silva, S.R.; Young, M.; Paytan, A.

    2006-01-01

    A seasonal analysis assesing variations in the oxygen isotopic composition of dissolved inorganic phosphate (DIP) was conducted in the San Francisco Bay estuarine system, California. Isotopic fractionation of oxygen in DIP (exchange of oxygen between phosphate and environmental water) at surface water temperatures occurs only as a result of enzyme-mediated, biological reactions. Accordingly, if phospate demand is low relative to input and phosphate is not heavily cycled in the ecosystem, the oxygen isotopic composition of DIP (?? 18Op) will reflect the isotopic composition of the source of phosphate to the system. Such is the case for the North San Francisco Bay, an anthropogenically impacted estuary with high surface water phosphate concentrations. Variability in the ?? 18Op in the bay is primarily controlled by mixing of water masses with different ??18Op signatures. The ??18Op values range from 11.4??? at the Sacramento River to 20.1??? at the Golden Gate. Deviations from the two-component mixing model for the North Bay reflect additional, local sources of phosphate to the estuary that vary seasonally. Most notably, deviations from the mixing model occur at the confluence of a major river into the bay during periods of high river discharge and near wastewater treatment outlets. These data suggest that ??18Op can be an effective tool for identifying P point sources and understanding phosphate dynamics in estuarine systems. Copyright 2006 by the American Geophysical Union.

  3. SCENARIO ANALYSIS FOR THE SAN PEDRO RIVER, ANALYZING HYDROLOGICAL CONSEQUENCES FOR A FUTURE ENVIRONMENT

    EPA Science Inventory

    Studies of future management and policy options based on different assumptions provide a mechanism to examine possible outcomes and especially their likely benefits and consequences. The San Pedro River in Arizona and Sonora, Mexico is an area that has undergone rapid changes in ...

  4. Trends in streamflow of the San Pedro River, southeastern Arizona, and regional trends in precipitation and streamflow in southeastern Arizona and southwestern New Mexico

    USGS Publications Warehouse

    Thomas, Blakemore E.; Pool, Don R.

    2006-01-01

    This study was done to improve the understanding of trends in streamflow of the San Pedro River in southeastern Arizona. Annual streamflow of the river at Charleston, Arizona, has decreased by more than 50 percent during the 20th century. The San Pedro River is one of the few remaining free-flowing perennial streams in the arid Southwestern United States, and the riparian forest along the river supports several endangered species and is an important habitat for migratory birds. Trends in seasonal and annual precipitation and streamflow were evaluated for surrounding areas in southeastern Arizona and southwestern New Mexico to provide a regional perspective for the trends of the San Pedro River. Seasonal and annual streamflow trends and the relation between precipitation and streamflow in the San Pedro River Basin were evaluated to improve the understanding of the causes of trends. There were few significant trends in seasonal and annual precipitation or streamflow for the regional study area. Precipitation and streamflow records were analyzed for 11 time periods ranging from 1930 to 2002; no significant trends were found in 92 percent of the trend tests for precipitation, and no significant trends were found in 79 percent of the trend tests for streamflow. For the trends in precipitation that were significant, 90 percent were positive and most of those positive trends were in records of winter, spring, or annual precipitation that started during the mid-century drought in 1945-60. For the trends in streamflow that were significant, about half were positive and half were negative. Trends in precipitation in the San Pedro River Basin were similar to regional precipitation trends for spring and fall values and were different for summer and annual values. The largest difference was in annual precipitation, for which no trend tests were significant in the San Pedro River Basin, and 23 percent of the trend tests were significantly positive in the rest of the study area

  5. Shear-wave velocity model from Rayleigh wave group velocities centered on the Sacramento/San Joaquin Delta

    USGS Publications Warehouse

    Fletcher, Jon Peter B.; Erdem, Jemile

    2017-01-01

    Rayleigh wave group velocities obtained from ambient noise tomography are inverted for an upper crustal model of the Central Valley, California, centered on the Sacramento/San Joaquin Delta. Two methods were tried; the first uses SURF96, a least-squares routine. It provides a good fit to the data, but convergence is dependent on the starting model. The second uses a genetic algorithm, whose starting model is random. This method was tried at several nodes in the model and compared to the output from SURF96. The genetic code is run five times and the variance of the output of all five models can be used to obtain an estimate of error. SURF96 produces a more regular solution mostly because it is typically run with a smoothing constraint. Models from the genetic code are generally consistent with the SURF96 code sometimes producing lower velocities at depth. The full model, calculated using SURF96, employed a 2-pass strategy, which used a variable damping scheme in the first pass. The resulting model shows low velocities near the surface in the Central Valley with a broad asymmetrical sedimentary basin located close to the western edge of the Central Valley near 122°W longitude. At shallow depths the Rio Vista Basin is found nestled between the Pittsburgh/Kirby Hills and Midland faults, but a significant basin also seems to exist to the west of the Kirby Hills fault. There are other possible correlations between fast and slow velocities in the Central Valley and geologic features such as the Stockton Arch, oil or gas producing regions and the fault-controlled western boundary of the Central Valley.

  6. Shear-wave Velocity Model from Rayleigh Wave Group Velocities Centered on the Sacramento/San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Fletcher, Jon B.; Erdem, Jemile

    2017-10-01

    Rayleigh wave group velocities obtained from ambient noise tomography are inverted for an upper crustal model of the Central Valley, California, centered on the Sacramento/San Joaquin Delta. Two methods were tried; the first uses SURF96, a least squares routine. It provides a good fit to the data, but convergence is dependent on the starting model. The second uses a genetic algorithm, whose starting model is random. This method was tried at several nodes in the model and compared to the output from SURF96. The genetic code is run five times and the variance of the output of all five models can be used to obtain an estimate of error. SURF96 produces a more regular solution mostly because it is typically run with a smoothing constraint. Models from the genetic code are generally consistent with the SURF96 code sometimes producing lower velocities at depth. The full model, calculated using SURF96, employed a 2-pass strategy, which used a variable damping scheme in the first pass. The resulting model shows low velocities near the surface in the Central Valley with a broad asymmetrical sedimentary basin located close to the western edge of the Central Valley near 122°W longitude. At shallow depths, the Rio Vista Basin is found nestled between the Pittsburgh/Kirby Hills and Midland faults, but a significant basin also seems to exist to the west of the Kirby Hills fault. There are other possible correlations between fast and slow velocities in the Central Valley and geologic features such as the Stockton Arch, oil or gas producing regions and the fault-controlled western boundary of the Central Valley.

  7. 42. Photocopy of photograph (original photograph in possession of Sacramento ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Photocopy of photograph (original photograph in possession of Sacramento Archives and Museum Collection Center, Sacramento, California) Original photographer and year unknown. BEANS GROWING ON THE PHILIP S. DRIVER ESTATE LANDS IN NATOMAS DISTRICT NO. 1000. - Reclamation District 1000, Northwest Sacramento County & southwest Sutter County, bisected by State Highway No. 99, Sacramento, Sacramento County, CA

  8. The legacy of wetland drainage on the remaining peat in the Sacramento San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, J.Z.; De Fontaine, C. S.; Deverel, S.J.

    2009-01-01

    Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 5580 of the original peat layer on the farmed islands has been lost due to land-surface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 29005700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface. ?? 2009 The Society of Wetland Scientists.

  9. Riverine based eco-tourism: Trinity River non-market benefits estimates

    USGS Publications Warehouse

    Douglas, A.J.; Taylor, J.G.

    1998-01-01

    California's Central Valley Project (CVP) was approved by voters in a statewide referendum in 1933. CVP referendum approval initiated funding for construction of important water development projects that had far reaching effects on regional water supplies. The construction of Trinity Dam in 1963 and the subsequent transbasin diversion of Trinity River flow was one of several CVP projects that had noteworthy adverse environmental and regional economic impacts. The Trinity River is the largest tributary of the Klamath River, and has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel. Before 1963, the Trinity River was a major recreation resource of Northern California. The loss of streamflow has had a marked adverse impact on Trinity River-related recreation activities and the size and robustness of Trinity River salmon, steelhead, shad, and sturgeon runs. Trinity River water produces hydropower during its transit via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The benefits provided by Trinity River instream flow-related environmental amenities were estimated with the travel cost method (TCM). Trinity River non-market benefits are about $406 million per annum, while the social cost of sending water down the Trinity River ranges from $17 to $42 million per annum, depending on the exact flow. We also discuss the relative magnitude of Trinity River survey data contingent value method (CVM) benefits estimates.

  10. Northern California and San Francisco Bay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The left image of this pair was acquired by MISR's nadir camera on August 17, 2000 during Terra orbit 3545. Toward the top, and nestled between the Coast Range and the Sierra Nevadas, are the green fields of the Sacramento Valley. The city of Sacramento is the grayish area near the right-hand side of the image. Further south, San Francisco and other cities of the Bay Area are visible.

    On the right is a zoomed-in view of the area outlined by the yellow polygon. It highlights the southern end of San Francisco Bay, and was acquired by MISR's airborne counterpart, AirMISR, during an engineering check-out flight on August 25, 1997. AirMISR flies aboard a NASA ER-2 high-altitude aircraft and contains a single camera that rotates to different view angles. When this image was acquired, the AirMISR camera was pointed 70 degrees forward of the vertical. Colorful tidal flats are visible in both the AirMISR and MISR imagery.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

    For more information: http://www-misr.jpl.nasa.gov

  11. Chemical quality of ground water in the central Sacramento Valley, California

    USGS Publications Warehouse

    Fogelman, Ronald P.

    1978-01-01

    The study area includes about 1,200 square miles in the central Sacramento Valley adjacent to the Sacramento River from Knights Landing to Los Molinos, Calif. With recent agricultural development in the area, additional land has been brought under irrigation from land which had been used primarily for dry farming and grazing. This report documents the chemical character of the ground water prior to water-level declines resulting from extensive pumping for irrigation or to changes caused by extensive use of imported surface water. Chemical analyses of samples from 209 wells show that most of the area is underlain by ground water of a quality suitable for most agricultural and domestic purposes. Most of the water sampled in the area has dissolved-solids concentrations ranging from 100 to 700 milligrams per liter. The general water types for the area are a calcium magnesium bicarbonate or magnesium calcium bicarbonate and there are negligible amounts of toxic trace elements. (Woodard-USGS)

  12. Extensometer, water-level, and lithologic data from Bacon and Bethel Islands in Sacramento-San Joaquin Delta, California, September 1987 to August 1993

    USGS Publications Warehouse

    Kerr, Barry D.; Leighton, David A.

    1999-01-01

    Compaction, water-level, and lithologic data were collected at extensometer sites on Bacon and Bethel Islands, anchored at 436 and 536 feet below land surface, respectively. The data reported here are part of a study of the processes causing subsidence in the Sacramento?San Joaquin Delta. The depths were selected to ensure that they were well below the peat layer and the primary aquifer, which minimized the effects of peat loss and shallow ground-water withdrawal. Compaction and depth to ground water were measured monthly at Bacon Island from September 1987 through August 1993 and at Bethel Island from August 1988 through August 1993. After automatic digital data loggers were installed at Bacon Island in December 1988 and at Bethel Island in September 1989, hourly readings also were made. Calculated rates of compaction were 0.0015 and 0.0016 feet per year at Bacon and Bethel Islands, respectively. Cumulative compaction at the Bacon Island site from September 1987 to August 1993 was about 0.009 feet. Cumulative compaction at the Bethel Island site from August 1988 to August 1993 was about 0.008 feet.

  13. 78 FR 6833 - Final Environmental Impact Statement/Environmental Impact Report for the San Joaquin River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ...The Bureau of Reclamation and the San Joaquin River Exchange Contractors Water Authority have prepared a Final Environmental Impact Statement/Environmental Impact Report (EIS/EIR) for a 25-Year Water Transfer Program, 2014-2038. The proposed new program would provide for the transfer and/or exchange of up to 150,000 acre-feet of substitute water from the San Joaquin River Exchange Contractors Water Authority to several potential users over a 25-year timeframe (water service years 2014-2038). A Notice of Availability of the joint Draft EIS/EIR was published in the Federal Register on Friday, May 4, 2012 (77 FR 26578). The written comment period on the Draft EIS/EIR ended Tuesday, July 3, 2012. The Final EIS/EIR contains responses to all comments received and reflects comments and additional information received during the review period.

  14. San Francisco Bay nutrients and plankton dynamics as simulated by a coupled hydrodynamic-ecosystem model

    NASA Astrophysics Data System (ADS)

    Liu, Qianqian; Chai, Fei; Dugdale, Richard; Chao, Yi; Xue, Huijie; Rao, Shivanesh; Wilkerson, Frances; Farrara, John; Zhang, Hongchun; Wang, Zhengui; Zhang, Yinglong

    2018-06-01

    An open source coupled physical-biogeochemical model is developed for San Francisco Bay (SFB) to study nutrient cycling and plankton dynamics as well as to assist ecosystem based management and risk assessment. The biogeochemical model in this study is based on the Carbon, Silicate and Nitrogen Ecosystem (CoSiNE) model, and coupled to the unstructured grid, Semi-Implicit Cross-scale Hydroscience Integrated System Model (SCHISM). The SCHISM-CoSiNE model reproduces the spatial and temporal variability in nutrients and plankton biomass, and its physical and biogeochemical performance is successfully tested using comparisons with shipboard and fixed station observations. The biogeochemical characteristics of the SFB during wet and dry years are investigated by changing the input of the major rivers. River discharges from the Sacramento and San Joaquin Rivers affect the phytoplankton biomass in North SFB through both advection and dilution of nutrient (including ammonium, NH4) concentrations in the river. The reduction in residence time caused by increased inflows can result in decreased biomass accumulation, while the corresponding reduction in NH4 concentration favors the growth of biomass. In addition, the model is used to make a series of sensitivity experiments to examine the response of SFB to changes in 1) nutrient loading from rivers and wastewater treatment plants (WWTPs), 2) a parameter (ψ) defining NH4 inhibition of nitrate (NO3) uptake by phytoplankton, 3) bottom grazing and 4) suspended sediment concentration. The model results show that changes in NH4 input from rivers or WWTPs affect the likelihood of phytoplankton blooms via NH4 inhibition and that the choice of ψ is critical. Bottom grazing simulated here as increased plankton mortality demonstrates the potential for bivalve reduction of chlorophyll biomass and the need to include bivalve grazing in future models. Furthermore, the model demonstrates the need to include sediments and their contribution

  15. Use of Hyperspectral Remote Sensing to Evaluate Efficacy of Aquatic Plant Management

    USDA-ARS?s Scientific Manuscript database

    Invasive aquatic weeds negatively affect biodiversity, fluvial dynamics, water quality, and water storage and conveyance for a variety of human resource demands. In California’s Sacramento-San Joaquin River Delta one submersed species - Brazilian waterweed (Egeria densa) - and one floating species ...

  16. Projecting cumulative benefits of multiple river restoration projects: an example from the Sacramento-San Joaquin River system in California

    USGS Publications Warehouse

    Kondolf, G. Mathias; Angermeier, Paul L.; Cummins, Kenneth; Dunne, Thomas; Healey, Michael; Kimmerer, Wim; Moyle, Peter B.; Murphy, Dennis; Patten, Duncan; Railsback, Steve F.; Reed, Denise J.; Spies, Robert B.; Twiss, Robert

    2008-01-01

    Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to “restore” pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.

  17. Using 10Be erosion rates and fluvial channel morphology to constrain fault throw rates in the southwestern Sacramento River Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Cyr, A. J.

    2013-12-01

    The Sacramento - San Joaquin River Delta, California, USA, is a critical region for California water resources, agriculture, and threatened or endangered species. This landscape is affected by an extensive set of levees that enclose artificial islands created for agricultural use. In addition to their importance for sustaining agriculture, this levee system also supports extensive transport and power transmission infrastructure and urban/suburban development. These levees are susceptible to damage from even moderate ground shaking by either a large earthquake on one of the high-activity faults in the nearby San Francisco Bay region, or even a moderate earthquake on one of the low-activity faults in the Delta region itself. However, despite this danger the earthquake hazards in this region are poorly constrained due to our lack of understanding of faults in and near the Delta region. As part of an effort to better constrain the seismic hazard associated with known, but poorly constrained, faults in the region, a geomorphic analysis of the Dunnigan Hills, northwest of Woodland, CA, is being combined with cosmogenic 10Be catchment-averaged erosion rates. The Dunnigan Hills are a low-relief (maximum elevation 87 m) landscape generated by fault-bend folding above the west-vergent Sweitzer reverse fault that soles into a blind east-vergent reverse fault. These faults have been imaged by seismic reflection data, and local microseismicity indicates that this system is actively propagating to the east. However, the throw rates on the faults in this system remain unconstrained, despite the potential for significant shaking such as that experienced in the nearby April, 1892 earthquake sequence between Winters and Vacaville, Ca, ~25 km to the south, which has been estimated at magnitude 6.0 or greater. Geomorphic and cosmogenic 10Be analyses from 12 catchments draining the eastern flank of the Dunnigan Hills will be used to infer vertical rock uplift rates to better constrain

  18. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    USGS Publications Warehouse

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  19. Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors

    USGS Publications Warehouse

    Leland, H.V.; Brown, L.R.; Mueller, D.K.

    2001-01-01

    1. The taxonomic composition and biomass of the phytoplankton and the taxonomic composition of the phytobenthos of the San Joaquin River and its major tributaries were examined in relation to water chemistry, habitat and flow regime. Agricultural drainage and subsurface flow contribute to a complex gradient of salinity and nutrients in this eutrophic, 'lowland type' river.2. Because of light-limiting conditions for growth, maintenance demands of the algae exceed production during summer and autumn in the San Joaquin River where there is no inflow from tributaries. In contrast to substantial gains in concentration of inorganic nitrogen and soluble reactive phosphorus during the summer of normal-flow years, net losses of algal biomass (2-4 ??g L-1 day-1 chlorophyll a) occurred in a mid-river segment with no significant tributary inflow. However, downstream of a large tributary draining the Sierra Nevada, a substantial net gain in algal biomass (6-11 μg L-1 day-1) occurred in the summer, but not in the spring (loss of 1-6 μg L-1 day-1) or autumn (loss of 2-5 ??g L-1 day-1).3. The phytoplankton was dominated in summer by 'r-selected' centric diatoms (Thalassiosirales), species both tolerant of variable salinity and widely distributed in the San Joaquin River. Pennate diatoms were proportionally more abundant (in biomass) in the winter, spring and autumn. Abundant taxa included the diatoms Cyclotella meneghiniana, Skeletonema cf. potamos, Cyclostephanos invisitatus, Thalassiosira weissflogii, Nitzschia acicularis, N. palea and N. reversa, and the chlorophytes Chlamydomonas sp. and Scenesdesmus quadricauda. Patterns in the abundance of species indicated that assembly of the phytoplankton is limited more by light and flow regime than by nutrient supply.4. The phytobenthos was dominated by larger, more slowly reproducing pennate diatoms. Few of the abundant species are euryhaline. The diatoms Navicula recens and Nitzschia inconspicua and cyanophytes, Oscillatoria spp

  20. Large-scale time-series InSAR analysis of the Sacramento-San Joaquin delta subsidence using UAVSAR

    NASA Astrophysics Data System (ADS)

    Bekaert, D. P.; Jones, C. E.; An, K.; Huang, M. H.

    2016-12-01

    The Sacramento-San Joaquin delta (Delta) contains more than 1700 km of levees that protect various reclaimed lands from flooding. Most of the delta is experiencing subsidence at rates that can exceed 5 cm/yr locally, and which can affect the structural integrity of the levees. In-situ and airborne LIDAR monitoring of this extensive levee network is expensive, making Interferometric Synthetic Aperture Radar (InSAR) an attractive, cost-effective alternative that can provide uniform and consistent monitoring. InSAR has proven to be a powerful technique to study surface displacements at high accuracy (few mm/year), over large regions (up to 250 km wide swaths), and at a high spatial resolution (up to a meter). However widespread usage of InSAR, particularly within the application community, is challenged by several technical issues, the most significant of which are decorrelation noise introduced by a change of scattering properties (e.g., moisture and vegetation), and noise due to variation in atmospheric properties between different SAR acquisitions (i.e., tropospheric delay). These effects are particularly limiting in the rural/agricultural setting of the Delta. We demonstrate the usage of InSAR for spatially comprehensive subsidence monitoring both at the scale of the levees and at a scale that captures the intra-island variability. The study uses data collected over a period of six years (2009-2015) with NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument, which is the prototype airborne instrument for the NISAR mission. We mitigate atmospheric noise by estimating a correction from state-of-the-art weather models, and reduce decorrelation noise by utilizing L-band SAR and using advanced time-series InSAR processing methods. Our analysis includes nine UAVSAR flight lines that cover altogether an area of approximately 8500 km2, including the Delta and the surrounding areas.

  1. Illustration of a fingerprinting method to isolate Gold King Release Metals from Background Concentrations in the San Juan River

    EPA Science Inventory

    Detecting the Gold King Mine metals as the release plume passed was difficult once it entered the San Juan River on August 8, 2015. Plume metals concentrations were relatively low after 200 km of travel and deposition in the Animas River while background concentrations of the sa...

  2. Collection of an adult gizzard shad (Dorosoma cepedianum) from the San Juan River, Utah

    USGS Publications Warehouse

    Mueller, G.A.; Brooks, J.L.

    2004-01-01

    We collected an adult gizzard shad (Dorosoma cepedianum) from the San Juan River just upstream of Lake Powell, Utah, on 6 June 2000. This represents the first documented occurrence of the species in the Colorado River or its tributaries. The adult male (35 cm TL, 470 g) was taken by trammel net from a small (0.5 ha), shallow (<2 m) backwater along with several other fish that included 3 endangered razorback sucker (Xyrauchen texanus). The specimen is stored at the Museum of Southwestern Biology, University of New Mexico, Albuquerque (curation number 49122).

  3. Littoral fish assemblages of the alien-dominated Sacramento-San Joaquin Delta, California, 1980-1983 and 2001-2003

    USGS Publications Warehouse

    Brown, L.R.; Michniuk, D.

    2007-01-01

    We analyzed monthly boat electrofishing data to characterize the littoral fish assemblages of five regions of the Sacramento-San Joaquin Delta (northern, southern, eastern, western, and central), California, during two sampling periods, 1980-1983 (1980s) and 2001-2003 (2000s), to provide information pertinent to the restoration of fish populations in this highly altered estuary. During the 1980s, almost 11,000 fish were captured, including 13 native species and 24 alien species. During the 2000s, just over 39,000 fish were captured, including 15 native species and 24 alien species. Catch per unit effort (CPUE) of total fish, alien fish, and centrarchid fish were greater in the 2000s compared with the 1980s, largely because of increased centrarchid fish CPUE. These differences in CPUE were associated with the spread of submerged aquatic vegetation (SAV), particularly an alien aquatic macrophyte Egeria densa. Native fish CPUE declined from the 1980s to the 2000s, but there was no single factor that could explain the decline. Native fish were most abundant in the northern region during both sampling periods. Nonmetric multidimensional scaling indicated similar patterns of fish assemblage composition during the two sampling periods, with the northern and western regions characterized by the presence of native species. The separation of the northern and western regions from the other regions was most distinct in the 2000s. Our results suggest that native fish restoration efforts will be most successful in the northern portion of the Delta. Management decisions on the Delta should include consideration of possible effects on SAV in littoral habitats and the associated fish assemblages and ecological processes. ?? 2007 Estuarine Research Federation.

  4. Mapping Evapotranspiration in the Sacramento San Joaquin Delta using simulated ECOSTRESS Thermal Data: Validation and Inter-comparison

    NASA Astrophysics Data System (ADS)

    Wong, A.; Jin, Y.; He, R.; Hulley, G.; Fisher, J.; Lee, C. M.; Rivera, G.; Hook, S. J.; Medellin-Azuara, J.; Kent, E. R.; Paw U, K. T.; Gao, F.; Lund, J. R.

    2017-12-01

    Irrigation accounts for 80% of human freshwater consumption, and most of it return to the atmosphere through evapotranspiration (ET). In California, where our water resources are limited and heavily utilized, the need for a cost-effective, timely, and consistent spatial estimate of crop ET, from the farm to watershed level, is becoming increasingly important. The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), to be launched in mid-2018, will provide the most detailed and accurate temperature measurements ever acquired from space and thus unique opportunities for estimating ET at the farm scale. We simulated the ECOSTRESS thermal data at a 70 m resolution using VIIRS thermal observations and ASTER emissivity data in the Sacramento-San Joaquin Delta region for the 2016 water year. Three remote sensing based ET methods were then applied to estimate ET using simulated ECOSTRESS data and optical data from Landsat and VIIRS, including Priestley-Taylor approaches developed by the Jet Propulsion Laboratory (PT-JPL) and by UC Davis (PT-UCD), and the Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model. We compared these three sets of ET estimates with field measurements at sixteen sites over five crop types (Alfalfa, Corn, Pasture, Tomato, and Beardless Wheat). Good agreement was found between satellite-based estimates and field measurements. Our results demonstrate that thermal data from the upcoming ECOSTRESS mission will reduce the uncertainty in ET estimates. A continuous monitoring of the dynamics and spatial heterogeneity of consumptive water use at a field scale will help prepare and inform to adaptively manage water, canopy, and planting density to maximize yield with least amount of water.

  5. Development of a shared vision for groundwater management to protect and sustain baseflows of the Upper San Pedro River, Arizona, USA

    USGS Publications Warehouse

    Richter, Holly E.; Gungle, Bruce; Lacher, Laurel J.; Turner, Dale S.; Bushman, Brooke M.

    2014-01-01

    Groundwater pumping along portions of the binational San Pedro River has depleted aquifer storage that supports baseflow in the San Pedro River. A consortium of 23 agencies, business interests, and non-governmental organizations pooled their collective resources to develop the scientific understanding and technical tools required to optimize the management of this complex, interconnected groundwater-surface water system. A paradigm shift occurred as stakeholders first collaboratively developed, and then later applied, several key hydrologic simulation and monitoring tools. Water resources planning and management transitioned from a traditional water budget-based approach to a more strategic and spatially-explicit optimization process. After groundwater modeling results suggested that strategic near-stream recharge could reasonably sustain baseflows at or above 2003 levels until the year 2100, even in the presence of continued groundwater development, a group of collaborators worked for four years to acquire 2250 hectares of land in key locations along 34 kilometers of the river specifically for this purpose. These actions reflect an evolved common vision that considers the multiple water demands of both humans and the riparian ecosystem associated with the San Pedro River.

  6. Application of techniques to identify coal-mine and power-generation effects on surface-water quality, San Juan River basin, New Mexico and Colorado

    USGS Publications Warehouse

    Goetz, C.L.; Abeyta, Cynthia G.; Thomas, E.V.

    1987-01-01

    Numerous analytical techniques were applied to determine water quality changes in the San Juan River basin upstream of Shiprock , New Mexico. Eight techniques were used to analyze hydrologic data such as: precipitation, water quality, and streamflow. The eight methods used are: (1) Piper diagram, (2) time-series plot, (3) frequency distribution, (4) box-and-whisker plot, (5) seasonal Kendall test, (6) Wilcoxon rank-sum test, (7) SEASRS procedure, and (8) analysis of flow adjusted, specific conductance data and smoothing. Post-1963 changes in dissolved solids concentration, dissolved potassium concentration, specific conductance, suspended sediment concentration, or suspended sediment load in the San Juan River downstream from the surface coal mines were examined to determine if coal mining was having an effect on the quality of surface water. None of the analytical methods used to analyzed the data showed any increase in dissolved solids concentration, dissolved potassium concentration, or specific conductance in the river downstream from the mines; some of the analytical methods used showed a decrease in dissolved solids concentration and specific conductance. Chaco River, an ephemeral stream tributary to the San Juan River, undergoes changes in water quality due to effluent from a power generation facility. The discharge in the Chaco River contributes about 1.9% of the average annual discharge at the downstream station, San Juan River at Shiprock, NM. The changes in water quality detected at the Chaco River station were not detected at the downstream Shiprock station. It was not possible, with the available data, to identify any effects of the surface coal mines on water quality that were separable from those of urbanization, agriculture, and other cultural and natural changes. In order to determine the specific causes of changes in water quality, it would be necessary to collect additional data at strategically located stations. (Author 's abstract)

  7. Floods of November-December 1950 in the Central Valley basin, California

    USGS Publications Warehouse

    Paulsen, C.G.

    1953-01-01

    The flood of November-December 1950 in the Central Valley basin was the greatest in most parts of the basin since the turn of the century and probably was exceeded in the lower San Joaquin River basin only by the historic flood of 1862. In respect to monetary loss, the 1950 flood was the most disastrous in the history of the basin. Loss of life was remarkably small when one considers the extensive damage and destruction to homes and other property, which is estimated at 33 million dollars. Outstanding features of the flood were its unprecedented occurrence so early in the winter flood season, its magnitude in respect to both peak and volume in most major tributaries, and the occurrence of a succession of near-peak flows with a period of three weeks. The flood was caused by a series of storms during the period November 16 to December 8, which brought exceptionally warm, moisture-laden air inland against the Sierra Nevada range and caused intense rainfall, instead of snowfall, at unusually high altitudes. Basin-wide totals of rainfall during the period ranged from 30 inches over the Yuba and American River basins to 13 inches over the upper Sacramento and Feather River basins. Based on continuous records of discharge on major tributaries for periods ranging from 22 to 55 years and averaging about 43 years, the 1950 flood peaks were the greatest of record on the American, Cosumnes, Mokelumne, Stanislaus, Tuolumne, Merced, Chowchilla, Fresno, lower San Joaquin, Kings, Kaweah, Tule, and Kern Rivers. Second highest peak of record occurred during the flood of March 1928 on the Yuba, American and Mokelumne Rivers; the flood of Marcn 1940 on Cosumnes River; the flood of January 1911 on the Stanislaus and Tuolumne Rivers; the flood of December 1937 on the Merced, Kings, and Kaweah Rivers; the flood of March 1938 on the Chowchilla, Fresno, and lower San Joaquin Rivers; and the flood of March 1943 on the Tule and Kern Rivers. Peak discharges for 1950 did not exceed previous

  8. Biological and associated water-quality data for lower Olmos Creek and upper San Antonio River, San Antonio, Texas, April - September 1989

    USGS Publications Warehouse

    Taylor, R. Lynn; Ferreira, Rodger F.

    1995-01-01

    Biological and associated water-quality data were collected from lower Olmos Creek and upper San Antonio River in San Antonio, Texas, during April-September 1989. Benthic macroinvertebrate, periphyton, and phytoplankton communities were sampled at three sites along the Olmos Creek/San Antonio River system. Total mean densities of benthic macroinvertebrates for the three sites ranged from 670 to 10,000 organisms per square meter. The most abundant macroinvertebrates were the class Insecta (insects). Total densities of periphyton ranged from 2,900 to 110,000 cells per square millimeter. Cyanophyta (blue-green algae) and Bacillariophyta (diatoms) were the predominant periphyton organisms. Total densities of phyto- plankton ranged from 5,000 to 47,000 cells per square milliliter. Blue-green algae accounted for more than one- half of the phytoplankton in each sample. Hardness ranged from 160 to 250 milligrams per liter as calcium carbonate, and alkalinity ranged from 130 to 220 milligrams per liter as calcium carbonate. The largest dissolved nitrite concentration was 0.038 milligram per liter. The largest total phosphorus concentration was 0.150 milligram per liter, over one-half of which was dissolved orthophosphate. Total aluminum and total iron were the only trace elements in water to exceed the reporting threshold by large concen- trations. Total aluminum concentrations ranged from 70 to 280 micrograms per liter, and total iron concentrations ranged from 70 to 340 micrograms per liter. Lead was the most prominent trace element in bottom-material samples, with concentrations ranging from 30 to 230 micrograms per gram.

  9. Sacramento Transportation Authority 1996-97 Final Budget

    DOT National Transportation Integrated Search

    1996-07-16

    The Governing Board of the Sacramento Transportation Authority (STA) and the : Sacramento Abandoned Vehicle Service Authority (SAVSA) present the 1996-97 Final Budget for these two entities. This document represents the operational plan for administe...

  10. Groundwater contributions of flow, nitrate, and dissolved organic carbon to the lower San Joaquin River, California, 2006-08

    USGS Publications Warehouse

    Zamora, Celia; Dahlgren, Randy A.; Kratzer, Charles R.; Downing, Bryan D.; Russell, Ann D.; Dileanis, Peter D.; Bergamaschi, Brian A.; Phillips, Steven P.

    2013-01-01

    The influence of groundwater on surface-water quality in the San Joaquin River, California, was examined for a 59-mile reach from the confluence with Salt Slough to Vernalis. The primary objective of this study was to quantify the rate of groundwater discharged to the lower San Joaquin River and the contribution of nitrate and dissolved organic carbon concentrations to the river. Multiple lines of evidence from four independent approaches were used to characterize groundwater contributions of nitrogen and dissolved organic carbon. Monitoring wells (in-stream and bank wells), streambed synoptic surveys (stream water and shallow groundwater), longitudinal profile surveys by boat (continuous water-quality parameters in the stream), and modeling (MODFLOW and VS2DH) provided a combination of temporal, spatial, quantitative, and qualitative evidence of groundwater contributions to the river and the associated quality. Monitoring wells in nested clusters in the streambed (in-stream wells) and on both banks (bank wells) along the river were monitored monthly from September 2006 to January 2009. Nitrate concentrations in the bank wells ranged from less than detection—that is, less than 0.01 milligrams per liter (mg/L) as nitrogen (N)—to approximately 13 mg/L as N. Nitrate was not detected at 17 of 26 monitoring wells during the study period. Dissolved organic carbon concentrations among monitoring wells were highly variable, but they generally ranged from 1 to 4 mg/L. In a previous study, 14 bank wells were sampled once in 1988 following their original installation. With few exceptions, specific conductivity and nitrate concentrations measured in this study were virtually identical to those measured 20 years ago. Streambed synoptic measurements were made by using a temporarily installed drive-point piezometer at 113 distinct transects across the stream during 4 sampling events. Nitrate concentrations exceeded the detection limit of 0.01 mg/L as N in 5 percent of

  11. First establishment of the planthopper Megamelus scutellaris Berg 1883 (Hemiptera: Delphacidae) released for biological control of water hyacinth in California

    USDA-ARS?s Scientific Manuscript database

    Water hyacinth (Eichhornia crassipes (Martius) Solms-Laubach) is a non-native, invasive floating aquatic weed in the Sacramento San Joaquin Delta and associated river watersheds of northern California. Prior efforts to control water hyacinth biologically in this region have not led to sustained cont...

  12. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    USGS Publications Warehouse

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural

  13. 78 FR 1246 - Otay River Estuary Restoration Project; South San Diego Bay Unit and Sweetwater Marsh Unit of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ...-FF08RSDC00] Otay River Estuary Restoration Project; South San Diego Bay Unit and Sweetwater Marsh Unit of the... scoping with regard to the environmental impact statement (EIS) for the proposed Otay River Estuary... one of the following methods. Email: [email protected] . Please include ``Otay Estuary NOI'' in the...

  14. Physical, chemical, and biological data for detailed study of irrigation drainage in the San Juan River area, New Mexico, 1993-94, with supplemental data, 1991-95

    USGS Publications Warehouse

    Thomas, C.L.; Lusk, J.D.; Bristol, R.S.; Wilson, R.M.; Shineman, A.R.

    1997-01-01

    In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior formed an interbureau task group to prepare a plan for investigating water- quality problems on irrigation projects sponsored by the Department of the Interior. The San Juan River area in northwestern New Mexico was one of the areas designated for study. Investigators collected water, bottom-sediment, soil, and biological samples at more than 50 sites in the San Juan River area during 1993-94. Sample sites included (1) sites located within Department of the Interior irrigation project service areas, or areas that receive drainage from irrigation projects; (2) reference sites for comparison with irrigation project sites; and (3) sites located within the reach of the San Juan River from Navajo Dam to 10 miles downstream from the dam. The types of habitat sampled included the main stem of the San Juan River, backwater areas adjacent to the San Juan River, tributaries to the San Juan River, ponds, seeps, irrigation-delivery canals, irrigation-drainage canals, a stock tank, and shallow ground water. The types of media sampled included water, bottom sediment, soil, aquatic plants, aquatic invertebrates, amphibians, and fish. Semipermeable-membrane devices were used as a surrogate medium to sample both air and water in some instances. Sample measurements included concentrations of major ions, trace elements, organochlorine pesticides, polychlorinated biphenyls, polycyclic-aromatic-hydrocarbon compounds, and stable isotopes of hydrogen and oxygen. This report presents tables of physical, chemical, and biological data collected for the U.S. Department of the Interior National Irrigation Water-Quality Program. Additionally, supplemental physical, chemical, and biological data collected in association with the Navajo Indian Irrigation Project are presented.

  15. Simulation of hydrologic conditions and suspended-sediment loads in the San Antonio River Basin downstream from San Antonio, Texas, 2000-12

    USGS Publications Warehouse

    Banta, J. Ryan; Ockerman, Darwin J.

    2014-01-01

    Suspended sediment in rivers and streams can play an important role in ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand suspended-sediment loads and transport in a watershed, the U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, developed a Hydrological Simulation Program—FORTRAN model to simulate hydrologic conditions and suspended-sediment loads during 2000–12 for four watersheds, which comprise the overall study area in the San Antonio River Basin (hereinafter referred to as the “USGS–2014 model”). The study area consists of approximately 2,150 square miles encompassing parts of Bexar, Guadalupe, Wilson, Karnes, DeWitt, Goliad, Victoria, and Refugio Counties. The USGS–2014 model was calibrated for hydrology and suspended sediment for 2006–12. Overall, model-fit statistics and graphic evaluations from the calibration and testing periods provided multiple lines of evidence indicating that the USGS–2014 model simulations of hydrologic and suspended-sediment conditions were mostly “good” to “very good.” Model simulation results indicated that approximately 1,230 tons per day of suspended sediment exited the study area and were delivered to the Guadalupe River during 2006–12, of which approximately 62 percent originated upstream from the study area. Sample data and simulated model results indicate that most of the suspended-sediment load in the study area consisted of silt- and clay-sized particles (less than 0.0625 millimeters). The Cibolo Creek watershed was the largest contributor of suspended sediment from the study area. For the entire study area, open/developed land and cropland exhibited the highest simulated soil erosion rates; however, the largest contributions of sediment (by land-cover type) were pasture and forest/rangeland/shrubland, which together composed approximately 80 percent of the land cover of the

  16. 3. Historic American Buildings Survey California State Library Collection Sacramento ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey California State Library Collection Sacramento Co. History Thompson & West Sketch of 1880 Rephoto 1960 NORTHEAST CORNER - B. F. Hastings Bank Building, 128-132 J Street, Sacramento, Sacramento County, CA

  17. Assessment of Goods and Valuation of Ecosystem Services (AGAVES), San Pedro River Basin, U.S./Mexico

    EPA Science Inventory

    A consortium of federal, academic, and non-government organizations (NGO) partners have established a collaborative research enterprise in the San Pedro River Basin to develop methods, standards, and tools to assess and value ecosystem goods and services. The central premise of e...

  18. Continuous Water Quality Monitoring in the Sacramento-San Joaquin Delta to support Ecosystem Science

    NASA Astrophysics Data System (ADS)

    Downing, B. D.; Bergamaschi, B. A.; Pellerin, B. A.; Saraceno, J.; Sauer, M.; Kraus, T. E.; Burau, J. R.; Fujii, R.

    2013-12-01

    Characterizing habitat quality and nutrient availability to food webs is an essential step for understanding and predicting the success of pelagic organisms in the Sacramento-San Joaquin Delta (Delta). The difficulty is that water quality and nutrient supply changes continuously as tidal and wind-driven currents move new water parcels to and from comparatively static geomorphic settings. Understanding interactions between nutrient cycling, suspended sediment, and plankton dynamics with flow and tidal range relative to position in the estuary is critical to predicting and managing bottom up effects on aquatic habitat in the Delta. Historically, quantifying concentrations and loads in the Delta has relied on water quality data collected at monthly intervals. Current in situ optical sensors for nutrients, dissolved organic matter (DOM) and algal pigments (chlorophyll-A, phycocyanin) allow for real-time, high-frequency measurements on time scales of seconds, and extending up to years. Such data is essential for characterizing changes in water quality over short and long term temporal scales as well as over broader spatial scales. High frequency water quality data have been collected at key stations in the Delta since 2012. Sensors that continuously measure nitrate, DOM, algal pigments and turbidity have been co-located at pre-existing Delta flow monitoring stations. Data from the stations are telemetered to USGS data servers and are designed to run autonomously with a monthly service interval, where sensors are cleaned and checked against calibration standards. The autonomous system is verified against discrete samples taken monthly and intensively over periodic ebb to flood tidal cycles. Here we present examples of how coupled optical and acoustic data from the sensor network to improve our understanding of nutrient and DOM dynamics and fluxes. The data offer robust quantitative estimates of concentrations and constituent fluxes needed to investigate biogeochemical

  19. A Sr-Nd isotopic study of sand-sized sediment provenance and transport for the San Francisco Bay coastal system

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Foxgrover, Amy C.; Hein, James R.; Swarzenski, Peter W.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    A diverse suite of geochemical tracers, including 87Sr/86Sr and 143Nd/144Nd isotope ratios, the rare earth elements (REEs), and select trace elements were used to determine sand-sized sediment provenance and transport pathways within the San Francisco Bay coastal system. This study complements a large interdisciplinary effort (Barnard et al., 2012) that seeks to better understand recent geomorphic change in a highly urbanized and dynamic estuarine-coastal setting. Sand-sized sediment provenance in this geologically complex system is important to estuarine resource managers and was assessed by examining the geographic distribution of this suite of geochemical tracers from the primary sources (fluvial and rock) throughout the bay, adjacent coast, and beaches. Due to their intrinsic geochemical nature, 143Nd/144Nd isotopic ratios provide the most resolved picture of where sediment in this system is likely sourced and how it moves through this estuarine system into the Pacific Ocean. For example, Nd isotopes confirm that the predominant source of sand-sized sediment to Suisun Bay, San Pablo Bay, and Central Bay is the Sierra Nevada Batholith via the Sacramento River, with lesser contributions from the Napa and San Joaquin Rivers. Isotopic ratios also reveal hot-spots of local sediment accumulation, such as the basalt and chert deposits around the Golden Gate Bridge and the high magnetite deposits of Ocean Beach. Sand-sized sediment that exits San Francisco Bay accumulates on the ebb-tidal delta and is in part conveyed southward by long-shore currents. Broadly, the geochemical tracers reveal a complex story of multiple sediment sources, dynamic intra-bay sediment mixing and reworking, and eventual dilution and transport by energetic marine processes. Combined geochemical results provide information on sediment movement into and through San Francisco Bay and further our understanding of how sustained anthropogenic activities which limit sediment inputs to the system (e

  20. Ground-water hydrology of the San Pitch River drainage basin, Sanpete County, Utah

    USGS Publications Warehouse

    Robinson, Gerald B.

    1971-01-01

    The San Pitch River drainage basin in central Utah comprises an area of about 850 square miles; however, the investigation was concerned primarily with the Sanpete and Arapien Valleys, which comprise about 250 square miles and contain the principal ground-water reservoirs in the basin. Sanpete Valley is about 40 miles long and has a maximum width of 13 miles, and Arapien Valley is about 8 miles long and 1 mile wide. The valleys are bordered by mountains and plateaus that range in altitude from 5,200 to 11,000 feet above mean sea level.The average annual precipitation on the valleys is about 12 inches, but precipitation on the surrounding mountains reaches a maximum of about 40 inches per year. Most of the precipitation on the mountains falls as snow, and runoff from snowmelt during the spring and summer is conveyed to the valleys by numerous tributaries of the San Pitch River. Seepage from the tributary channels and underflow beneath the channels are the major sources of recharge to the ground-water reservoir in the valleys.Unconsolidated valley fill constitutes the main ground-water reservoir in Sanpete and Arapien Valleys. The fill, which consists mostly of coalescing alluvial fans and flood deposits of the San Pitch River, ranges in particle size from clay to boulders. Where they are well sorted, these deposits yield large quantities of water to wells.Numerous springs discharge from consolidated rocks in the mountains adjacent to the valleys and along the west margin of Sanpete Valley, which is marked by the Sevier fault. The Green River Formation of Tertiary age and several other consolidated formations yield small to large quantities of water to wells in many parts of Sanpete Valley. Most water in the bedrock underlying the valley is under artesian pressure, and some of this water discharges upward into the overlying valley fill.The water in the valley fill in Sanpete Valley moves toward the center of the valley and thence downstream. The depth to water along

  1. A Millennial-Scale Record of Mercury and Lead Contamination in Peatlands of the Sacramento-San Joaquin Delta of California

    NASA Astrophysics Data System (ADS)

    Drexler, J. Z.; Alpers, C. N.; Neymark, L. A.; Paces, J. B.; Fuller, C.

    2015-12-01

    Peat cores from two micro-tidal marshes in the Sacramento-San Joaquin Delta of California (the landward end of the San Francisco Estuary) were used to track the onset of anthropogenic pollution on the west coast of the United States. Cores were sectioned into 2-cm depth intervals and analyzed for lead (Pb), mercury (Hg), and titanium (Ti) concentrations and Pb isotope compositions. Peat profiles were dated using radiocarbon, 210Pb, and 137Cs. Pre-anthropogenic concentrations of Pb and Hg in peat ranged from 0.60 to 13.0 μg g-1and from 6.9 to 71 ng g-1, respectively. For much of the past 6,000+ years, the Delta was free from anthropogenic pollution; however, beginning in ~1425 CE, Hg and Pb concentrations, Pb/Ti ratios, Pb enrichment factors (EFs), and HgEFs all increased. Pb isotope compositions of the peat suggest that this uptick was likely caused by mining and smelting activities originating in Asia. The next increases in Pb and Hg contamination occurred during the California Gold Rush (beginning ~1850 CE), when concentrations reached their highest levels (74 μg g-1 Pb, 990 ng g-1 Hg; PbEF = 12 and HgEF = 28). Pb concentrations increased again beginning in the ~1920s with the incorporation of Pb additives in gasoline. The phase-out of lead additives in the late 1980s was reflected in Pb isotope ratios and reductions in Pb concentrations in the surface layers of the peat. The rise and fall of Hg contamination was also tracked by the peat archive, with the highest Hg concentrations occurring just before 1963 CE and then decreasing during the post-1963 period. Overall the results show that the Delta was a pristine region for most of its ~6,700-year existence; however, since ~1425 CE, it has received Pb and Hg contamination from both global and regional sources. This study demonstrates that micro-tidal peatlands can be a highly useful archive for establishing the onset of anthropogenic contamination and chronicling the transition from a pristine to a polluted

  2. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Méndez-García, C.; Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx; Renteria-Villalobos, M.

    2008-01-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. ²³²Th-series, ²³⁸U-series, ⁴⁰K and ¹³⁷Cs activity concentrations (AC, Bq kg⁻¹) were determined by gamma spectrometry with a high purity Ge detector. ²³⁸U and ²³⁴U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating ofmore » core sediments was performed applying CRS method to ²¹⁰Pb activities. Results were verified by ¹³⁷Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High ²³⁸U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento – Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) ²³⁴U/²³⁸U and ²³⁸U/²²⁶Ra in sediments have values between 0.9–1.2, showing a behavior close to radioactive equilibrium in the entire basin. ²³²Th/²³⁸U, ²²⁸Ra/²²⁶Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.« less

  3. Effects of reintroduced beaver (Castor canadensis) on riparian bird community structure along the upper San Pedro River, southeastern Arizona and northern Sonora, Mexico

    USGS Publications Warehouse

    Johnson, Glenn E.; van Riper, Charles

    2014-01-01

    Chapter 1.—We measured bird abundance and richness along the upper San Pedro River in 2005 and 2006, in order to document how beavers (Castor canadensis) may act as ecosystem engineers after their reintroduction to a desert riparian area in the Southwestern United States. In areas where beavers colonized, we found higher bird abundance and richness of bird groups, such as all breeding birds, insectivorous birds, and riparian specialists, and higher relative abundance of many individual species—including several avian species of conservation concern. Chapter 2.—We conducted bird surveys in riparian areas along the upper San Pedro River in southeastern Arizona (United States) and northern Sonora (Mexico) in order to describe factors influencing bird community dynamics and the distribution and abundance of species, particularly those of conservation concern. These surveys were also used to document the effects of the ecosystem-altering activities of a recently reintroduced beavers (Castor canadensis). Chapter 3.—We reviewed Southwestern Willow Flycatcher (Empidonax traillii extimus) nest records and investigated the potential for future breeding along the upper San Pedro River in southeastern Arizona, where in July 2005 we encountered the southernmost verifiable nest attempt for the species. Continued conservation and management of the area’s riparian vegetation and surface water has potential to contribute additional breeding sites for this endangered Willow Flycatcher subspecies. Given the nest record along the upper San Pedro River and the presence of high-density breeding sites to the north, the native cottonwood-willow forests of the upper San Pedro River could become increasingly important to E. t. extimus recovery, especially considering the anticipated effect of the tamarisk leaf beetle (Diorhabda carinulata) on riparian habitat north of the region.

  4. Structural and lithologic study of northern coast ranges and Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Analysis of ERTS-1 imagery of the Northern California Coast Ranges has disclosed a potential relation between a heretofore unrecognized fracture system and known deposits of mercury and geothermally active areas in the Coast Range and between oil and gas fields in the Sacramento Valley. Three potentially important systems of linear elements within the Coast Ranges, detected on ERTS-1 imagery, may represent fault systems or zones of shearing because topographic offset and stratigraph disruption can be seen along one or two of the lineations. One of the systems in subparallel to the San Andreas fault and is confined to the Pacific Coastal Belt. Another set is confined to the central core of the Coast Ranges. The third set of linear features (Valley System) has not heretofore been recognized. Some of the known mercury deposits and geothermally active areas near Clear Lake, in the Coast Ranges, are along the Valley System or at the intersection of the Central and Valley Systems. The plotted locations of some of the oil and gas fields in the Sacramento Valley are associated with the Valley and/or Central Systems. If these relations prove reliable, the ERTS-1 imagery may prove to be an extremely useful exploration tool.

  5. 77 FR 47581 - Revisions to the California State Implementation Plan, Mojave Desert, Northern Sierra, Sacramento...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ...EPA is proposing to approve revisions to the Mojave Desert Air Quality Management District (MDAQMD), Northern Sierra Air Quality Management District (NSAQMD), Sacramento Metropolitan Air Quality Management District (SMAQMD) and San Diego County Air Pollution Control District (SDCAPCD) portions of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) emissions from automotive parts and component, automobile refinishing, metal parts and products, and miscellaneous coating and refinishing operations. We are proposing to approve local rules to regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  6. Three-dimensional seismic velocity structure of the San Francisco Bay area

    USGS Publications Warehouse

    Hole, J.A.; Brocher, T.M.; Klemperer, S.L.; Parsons, T.; Benz, H.M.; Furlong, K.P.

    2000-01-01

    Seismic travel times from the northern California earthquake catalogue and from the 1991 Bay Area Seismic Imaging Experiment (BASIX) refraction survey were used to obtain a three-dimensional model of the seismic velocity structure of the San Francisco Bay area. Nonlinear tomography was used to simultaneously invert for both velocity and hypocenters. The new hypocenter inversion algorithm uses finite difference travel times and is an extension of an existing velocity tomography algorithm. Numerous inversions were performed with different parameters to test the reliability of the resulting velocity model. Most hypocenters were relocated 12 km under the Sacramento River Delta, 6 km beneath Livermore Valley, 5 km beneath the Santa Clara Valley, and 4 km beneath eastern San Pablo Bay. The Great Valley Sequence east of San Francisco Bay is 4-6 km thick. A relatively high velocity body exists in the upper 10 km beneath the Sonoma volcanic field, but no evidence for a large intrusion or magma chamber exists in the crust under The Geysers or the Clear Lake volcanic center. Lateral velocity contrasts indicate that the major strike-slip faults extend subvertically beneath their surface locations through most of the crust. Strong lateral velocity contrasts of 0.3-0.6 km/s are observed across the San Andreas Fault in the middle crust and across the Hayward, Rogers Creek, Calaveras, and Greenville Faults at shallow depth. Weaker velocity contrasts (0.1-0.3 km/s) exist across the San Andreas, Hayward, and Rogers Creek Faults at all other depths. Low spatial resolution evidence in the lower crust suggests that the top of high-velocity mafic rocks gets deeper from west to east and may be offset under the major faults. The data suggest that the major strike-slip faults extend subvertically through the middle and perhaps the lower crust and juxtapose differing lithology due to accumulated strike-slip motion. The extent and physical properties of the major geologic units as

  7. California salmon and steelhead: Beyond the crossroads

    USGS Publications Warehouse

    Mills, Terry J.; McEwan, Dennis R.; Jennings, Mark R.; Stouder, Deanna J.; Bisson, Peter A.; Naiman, Robert J.

    1997-01-01

    Virtually all California salmon (Oncorhynchus spp.) and steelhead (O. mykiss) stocks have declined to record or near-record low levels during 1980-95. Escapement of naturally spawning Klamath and Sacramento basin fall-run chinook salmon (O. tshawytscha) stocks has fallen consistently below the goals of 35,000 adults (Klamath) and 120,000 adults (Sacramento) established by the Pacific Fishery Management Council. These two stocks constitute the primary management units for ocean harvest regulations in California and southern Oregon. This decline triggered a mandatory review of ocean harvest and inland production conditions in each basin. The Sacramento winter-run chinook salmon, once numbering >100,000 adult spawners, was listed as threatened in 1990 and endangered in 1994 under the Endangered Species Act. The listing occurred as a result of a precipitous decline in abundance (to <200 adult spawners) and significant threats to this stock’s continued existence.Spring-run chinook salmon, historically an abundant component of California’s inland fish fauna with >500,000 adult spawners, has been extirpated from the San Joaquin River basin. However, remnant populations of this naturally spawning stock remain within the Klamath, Smith, and Sacramento river basins. Unfortunately, annual counts of 3,000-25,000 spawners in the Sacramento River basin during the past 25 years are largely of hatchery origin. Recent steelhead data from the same region indicate that many stocks are close to extinction, and nearly all steel-head in the Sacramento River are also of hatchery origin. Both spring-run chinook salmon and summer steelhead are considered to be species of special concern by the California Department of Fish and Game because of their limited distributions and sensitivities to degraded habitat conditions. The southern race of winter steelhead south of Point Conception is nearly extinct and remnant populations have been recently recorded in only 9 streams.Coastal cutthroat

  8. Detritus fuels ecosystem metabolism but not metazoan food webs in San Francisco estuary's freshwater delta

    USGS Publications Warehouse

    Sobczak, W.V.; Cloern, J.E.; Jassby, A.D.; Cole, B.E.; Schraga, T.S.; Arnsberg, A.

    2005-01-01

    Detritus from terrestrial ecosystems is the major source of organic matter in many streams, rivers, and estuaries, yet the role of detritus in supporting pelagic food webs is debated. We examined the importance of detritus to secondary productivity in the Sacramento and San Joaquin River Delta (California, United States), a large complex of tidal freshwater habitats. The Delta ecosystem has low primary productivity but large detrital inputs, so we hypothesized that detritus is the primary energy source fueling production in pelagic food webs. We assessed the sources, quantity, composition, and bioavailability of organic matter among a diversity of habitats (e.g., marsh sloughs, floodplains, tidal lakes, and deep river channels) over two years to test this hypothesis. Our results support the emerging principle that detritus dominates riverine and estuarine organic matter supply and supports the majority of ecosystem metabolism. Yet in contrast to prevailing ideas, we found that detritus was weakly coupled to the Delta's pelagic food web. Results from independent approaches showed that phytoplankton production was the dominant source of organic matter for the Delta's pelagic food web, even though primary production accounts for a small fraction of the Delta's organic matter supply. If these results are general, they suggest that the value of organic matter to higher trophic levels, including species targeted by programs of ecosystem restoration, is a function of phytoplankton production. ?? 2005 Estuarine Research Federation.

  9. The Use of Radar to Improve Rainfall Estimation over the Tennessee and San Joaquin River Valleys

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Gatlin, Patrick N.; Felix, Mariana; Carey, Lawrence D.

    2010-01-01

    This slide presentation provides an overview of the collaborative radar rainfall project between the Tennessee Valley Authority (TVA), the Von Braun Center for Science & Innovation (VCSI), NASA MSFC and UAHuntsville. Two systems were used in this project, Advanced Radar for Meteorological & Operational Research (ARMOR) Rainfall Estimation Processing System (AREPS), a demonstration project of real-time radar rainfall using a research radar and NEXRAD Rainfall Estimation Processing System (NREPS). The objectives, methodology, some results and validation, operational experience and lessons learned are reviewed. The presentation. Another project that is using radar to improve rainfall estimations is in California, specifically the San Joaquin River Valley. This is part of a overall project to develop a integrated tool to assist water management within the San Joaquin River Valley. This involves integrating several components: (1) Radar precipitation estimates, (2) Distributed hydro model, (3) Snowfall measurements and Surface temperature / moisture measurements. NREPS was selected to provide precipitation component.

  10. Inputs of the Dormant-Spray Pesticide, Diazinon, to the San Joaquin River, California, February 1993

    USGS Publications Warehouse

    Domagalski, Joseph L.; Dubrovsky, Neil M.; Kratzer, Charles R.

    1995-01-01

    INTRODUCTION The objective of the National Water Quality Assessment (NAWQA) Program of the U.S. Geological Survey is to describe the status and trends of the Nation's water quality with respect to natural features of the environment and human activities or land-use. Pesticides are a major water-quality issue in the San Joaquin Valley of California (fig. 1), and pesticide residues may be transported to rivers and streams in agricultural runoff following winter storms. Three sites in the western San Joaquin Valley were monitored during and after two February 1993 storms. The storms occurred after extensive spraying of organophosphate insecticides, mostly diazinon, on almond and other stone-fruit orchards.

  11. Isotopic and Chemical Analysis of Nitrate Sources and Cycling in the San Joaquin River Near Stockton, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Bemis, B.; Wankel, S.; Bergamaschi, B.; Kratzer, C.; Dileanis, P.; Erickson, D.; Avery, E.; Paxton, K.

    2002-12-01

    Fish migration through the deep-water channel in the San Joaquin River at Stockton, California is inhibited by low oxygen concentrations during the summer months. The cause for this condition appears to be stagnation and decomposition of algae with attendant oxygen consumption. Algae growth in the San Joaquin River is promoted by nutrients entering the river mainly in the form of nitrate. Possible significant sources of nitrate include soil, fertilizer from agriculture, manure from dairy operations, and N derived from municipal sewage. A 2000 CALFED pilot study investigated the sources and cycling of nitrate at four sites along the San Joaquin River upstream of Stockton using the carbon and nitrogen isotopes of total dissolved and particulate organic matter, together with hydrological measurements and various concentration data, including chlorophyll-a. The nitrate source, its relationship to phytoplankton, and the effect of the nitrate source and cycling on the N isotopic composition of dissolved and particulate organic matter were the primary concerns of the study. The d15N values of dissolved organic nitrogen (DON) were used as a proxy for nitrate d15N because nitrate comprised about 90% of DON. Chlorophyll-a and C:N ratios indicated that the particulate organic matter (POM) consisted largely of plankton and therefore the d15N of POM was used as a proxy for the d15N of plankton. A tentative interpretation of the pilot study was that nitrate was a major nutrient for the plankton and the nitrate was of anthropogenic origin, possibly sewage or animal waste. To test these assumptions and interpretations, we are currently analyzing a set of samples collected in 2001. In addition to the previous sample types, a subset of samples will be measured directly for nitrate d15N to assess the validity of using d15N of DON as a proxy for nitrate.

  12. Chemical analyses for selected wells in San Joaquin County and part of Contra Costa County, California

    USGS Publications Warehouse

    Keeter, Gail L.

    1980-01-01

    The study area of this report includes the eastern valley area of Contra Costa County and all of San Joaquin County, an area of approximately 1,600 square miles in the northern part of the San Joaquin Valley, Calif. Between December 1977 and December 1978, 1,489 wells were selectively canvassed. During May and June in 1978 and 1979, water samples were collected for chemical analysis from 321 of these wells. Field determinations of alkalinity, conductance, pH, and temperature were made, and individual constituents were analyzed. This report is the fourth in a series of baseline data reports on wells in the Sacramento and San Joaquin Valleys. (USGS)

  13. 2. Historic American Building Survey History of Sacramento County Thompson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Building Survey History of Sacramento County Thompson & West Illustration Original 1880 Rephoto 1960 N.W. Corner of 3rd + P ST., SOUTH HOUSE (Property of Mrs. E.B. Crocker, 3rd & P St.) - Crocker Art Gallery, 216 O Street, Sacramento, Sacramento County, CA

  14. Automated River Reach Definition Strategies: Applications for the Surface Water and Ocean Topography Mission

    NASA Astrophysics Data System (ADS)

    Frasson, Renato Prata de Moraes; Wei, Rui; Durand, Michael; Minear, J. Toby; Domeneghetti, Alessio; Schumann, Guy; Williams, Brent A.; Rodriguez, Ernesto; Picamilh, Christophe; Lion, Christine; Pavelsky, Tamlin; Garambois, Pierre-André

    2017-10-01

    The upcoming Surface Water and Ocean Topography (SWOT) mission will measure water surface heights and widths for rivers wider than 100 m. At its native resolution, SWOT height errors are expected to be on the order of meters, which prevent the calculation of water surface slopes and the use of slope-dependent discharge equations. To mitigate height and width errors, the high-resolution measurements will be grouped into reaches (˜5 to 15 km), where slope and discharge are estimated. We describe three automated river segmentation strategies for defining optimum reaches for discharge estimation: (1) arbitrary lengths, (2) identification of hydraulic controls, and (3) sinuosity. We test our methodologies on 9 and 14 simulated SWOT overpasses over the Sacramento and the Po Rivers, respectively, which we compare against hydraulic models of each river. Our results show that generally, height, width, and slope errors decrease with increasing reach length. However, the hydraulic controls and the sinuosity methods led to better slopes and often height errors that were either smaller or comparable to those of arbitrary reaches of compatible sizes. Estimated discharge errors caused by the propagation of height, width, and slope errors through the discharge equation were often smaller for sinuosity (on average 8.5% for the Sacramento and 6.9% for the Po) and hydraulic control (Sacramento: 7.3% and Po: 5.9%) reaches than for arbitrary reaches of comparable lengths (Sacramento: 8.6% and Po: 7.8%). This analysis suggests that reach definition methods that preserve the hydraulic properties of the river network may lead to better discharge estimates.

  15. Availability of high-magnitude streamflow for groundwater banking in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Kocis, Tiffany N.; Dahlke, Helen E.

    2017-08-01

    California’s climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF) for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. The results show that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for 25-30 days between November and April. The results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  16. Monitoring the Northern San Francisco Bay Water Quality with Landsat-8. Nicholas B. Tufillaroa , and Curtiss O. Davisa. aOregon State University, Corvallis, OR, 97331, USA, nbt@coas.oregonstate.edu

    NASA Astrophysics Data System (ADS)

    Davis, C. O.; Tufillaro, N.

    2016-02-01

    Landsat-8's high spatial resolution ( 30 nm nominal), improved signal-to-noise (12bit digitizer) and expanded band set open up new applications for coastal and in-land waters. We use a recent ocean color processor for Landsat-8 created by Vanhellemont and Ruddick (RSE, 2015)to examine changes in the Northern San Francisco Bay, in particular looking for possiblechanges due to the on-going California drought. For instance, a temporary drought barrier to prevent salt water intrusion was placed during May of 2015 at West False River in the Sacramento-San Joaquin Delta. Using the new Landsat-8 ocean color products, we illustrate how to monitor changes in macro algae and plants (Sago pondweed (native), Curly pondweed (non-native)) in regions directly effected,such as the Franks Track region. Product maps using panchromatic enhancement ( 15 m resolution) andscene based atmospheric correction allow a detailed synoptic look every 16 days during theSpring, Summer, and Fall of 2015. This work is part of a larger NASA funded project aimed atimproving the modeling and predictive capabilities of the biogeochemical state for the San Francisco Bay(Davis, PI: Impacts of Population Growth on the San Francisco Bay and Delta Ecosystem, 2014-2017).

  17. High-resolution marine seismic reflection data from the San Francisco Bay area

    USGS Publications Warehouse

    Childs, Jonathan R.; Hart, Patrick; Bruns, Terry R.; Marlow, Michael S.; Sliter, Ray

    2000-01-01

    Between 1993 and 1997, the U.S. Geological Survey acquired high-resolution, marine seismic-reflection profile data across submerged portions of known and inferred upper crustal fault zones throughout the greater San Francisco Bay area. Surveys were conducted oversouth San Francisco Bay in the vicinity of the San Bruno shoal (roughly between the San Francisco and Oakland airports), over the offshore extension of the San Andreas fault system west of the Golden Gate, over the Hayward fault to Rodgers Creek fault step-over in San Pablo Bay, and over the Kirby Hills fault where it crosses the western Sacramento Delta. Reconnaissance profiles were acquired elsewhere throughout the San Francisco and San Pablo Bays. These data were acquired by the U.S. Geological Survey, Western Coastal and Marine Geology Team, under the auspices of the Central California/San Francisco Bay Earthquake Hazards Project. Analysis and interpretation of some of these profiles has been published by Marlow and others (1996, 1999). Further analysis and interpretation of these data are available in a USGS. Professional Paper Crustal Structure of the Coastal and Marine San Francisco Bay Region, T. Parsons, editor, http://geopubs.wr.usgs.gov/prof-paper/pp1658/ [link added 2012 mfd].

  18. Alternative Futures for Landscapes in the Upper San Pedro River Basin of Arizona and Sonora

    Treesearch

    Carl Steinitz; Robert Anderson; Hector Arias; Scott Bassett; Michael Flaxman; Tomas Goode; Thomas Maddock III; David Mouat; Robert Peiser; Allan Shearer

    2005-01-01

    The Upper San Pedro River Basin in southeastern Arizona is well known for its avian diversity; however, water use by Sierra Vista, Fort Huachuca, and agriculture in the basin threatens to lower its water table. This, in turn, could alter vegetation in the basin in a way that would negatively impact habitat currently supporting nesting of the endangered Southwestern...

  19. Analysis of the Transport and Fate of Metals Released From the Gold King Mine in the Animas and San Juan Rivers

    EPA Science Inventory

    This project’s objectives were to provide analysis of water quality following the release of acid mine drainage in the Animas and San Juan Rivers in a timely manner to 1) generate a comprehensive picture of the plume at the river system level, 2) help inform future monitoring eff...

  20. Public Opinion Poll on Community Priorities: Sacramento

    ERIC Educational Resources Information Center

    Sierra Health Foundation, 2009

    2009-01-01

    The primary goal of this study was to measure public perceptions, opinions and priorities as they pertain to youth issues in Sacramento for the purposes of further developing public and private youth programming and public policy in the Sacramento region. By presenting a "statistically reliable" profile of public opinion on youth issues,…

  1. Interpretation of snowcover from satellite imagery for use in water supply forecasts in the Sierra Nevada

    NASA Technical Reports Server (NTRS)

    Brown, A. J.; Hannaford, J. F.

    1975-01-01

    The California ASVT test area is composed of two study areas; one in Northern California covering the Upper Sacramento and Feather River Basins, and the other covering the Southern Sierra Basins of the San Joaquin, Kings, Kaweah, Tule, and Kern Rivers. Experiences of reducing snowcover from satellite imagery; the accuracy of present water supply forecast schemes; and the potential advantages of introducing snowcover into the forecast procedures are described.

  2. Transport of sediment-bound organochlorine pesticides to the San Joaquin River, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Suspended sediment samples were collected in westside tributaries and the main stem of the San Joaquin River, California, in June 1994 during the irrigation season and in January 1995 during a winter storm. These samples were analyzed for 15 organochlorine pesticides to determine their occurrence and their concentrations on suspended sediment and to compare transport during the irrigation season (April to September) to transport during winter storm runoff (October to March). Ten organochlorine pesticides were detected during the winter storm runoff; seven during the irrigation season. The most frequently detected organochlorine pesticides during both sampling periods were p,p'-DDE, p,p'-DDT, p,p'-DDD, dieldrin, toxaphene, and chlordane. Dissolved samples were analyzed for three organochlorine pesticides during the irrigation season and for 15 during the winter storm. Most calculated total concentrations of p,p'-DDT, chlordane, dieldrin, and toxaphene exceeded chronic criteria for the protection of freshwater aquatic life. At eight sites in common between sampling periods, suspended sediment concentrations and streamflow were greater during the winter storm runoff median concentration of 3,590 mg/L versus 489 mg/and median streamflow of 162 ft3/s versus 11 ft3/s. Median concentrations of total DDT (sum of p,p'-DDD, p,p'-DDE, and p,p'-DDT), chlordane, dieldrin, and toxaphene on suspended sediment were slightly greater during the irrigation season, but instantaneous loads of organochlorine pesticides at the time of sampling were substantially greater during the winter storm. Estimated loads for the entire irrigation season exceeded estimated loads for the January 1995 storm by about 2 to 4 times for suspended transport and about 3 to 11 times for total transport. However, because the mean annual winter runoff is about 2 to 4 times greater than the runoff during the January 1995 storm, mean winter transport may be similar to irrigation season transport. This conclusion

  3. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    NASA Technical Reports Server (NTRS)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  4. Bedform movement recorded by sequential single-beam surveys in tidal rivers

    USGS Publications Warehouse

    Dinehart, R.L.

    2002-01-01

    A portable system for bedform-mapping was evaluated in the delta of the lower Sacramento and San Joaquin Rivers, California, from 1998 to 2000. Bedform profiles were surveyed with a two-person crew using an array of four single-beam transducers on boats about 6 m in length. Methods for processing the bedform profiles into maps with geographic coordinates were developed for spreadsheet programs and surface-contouring software. Straight reaches were surveyed every few days or weeks to determine locations of sand deposition, net transport directions, flow thresholds for bedform regimes, and bedform-transport rates. In one channel of unidirectional flow, the portable system was used to record changes in bedform regime through minor fluctuations of low discharge, and through high discharges near channel capacity. In another channel with reversing flows from tides, the portable system recorded directions of net bedload-transport that would be undetectable by standard bedload sampling alone.

  5. Suspended sediment transport trough a large fluvial-tidal channel network

    USGS Publications Warehouse

    Wright, Scott A.; Morgan-King, Tara L.

    2015-01-01

    The confluence of the Sacramento and San Joaquin Rivers, CA, forms a large network of interconnected channels, referred to as the Sacramento-San Joaquin Delta (the Delta). The Delta comprises the transition zone from the fluvial influences of the upstream rivers and tidal influences of San Francisco Bay downstream. Formerly an extensive tidal marsh, the hydrodynamics and geomorphology of Delta have been substantially modified by humans to support agriculture, navigation, and water supply. These modifications, including construction of new channels, diking and draining of tidal wetlands, dredging of navigation channels, and the operation of large pumping facilities for distribution of freshwater from the Delta to other parts of the state, have had a dramatic impact on the physical and ecological processes within the Delta. To better understand the current physical processes, and their linkages to ecological processes, the USGS maintains an extensive network of flow, sediment, and water quality gages in the Delta. Flow gaging is accomplished through use of the index-velocity method, and sediment monitoring uses turbidity as a surrogate for suspended-sediment concentration. Herein, we present analyses of the transport and dispersal of suspended sediment through the complex network of channels in the Delta. The primary source of sediment to the Delta is the Sacramento River, which delivers pulses of sediment primarily during winter and spring runoff events. Upon reaching the Delta, the sediment pulses move through the fluvial-tidal transition while also encountering numerous channel junctions as the Sacramento River branches into several distributary channels. The monitoring network allows us to track these pulses through the network and document the dominant transport pathways for suspended sediment. Further, the flow gaging allows for an assessment of the relative effects of advection (the fluvial signal) and dispersion (from the tides) on the sediment pulses as they

  6. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of

  7. Ambient Noise Tomography In The Great Valley, California Near The Sacramento/San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Fletcher, J. B.; Seats, K.; Lawrence, J. F.; Erdem, J.

    2013-12-01

    We use ambient noise tomography to develop a shear-wave velocity model of the Great Valley centered on the Sacramento/San Joaquin Delta, which is located just west of Stockton, CA. The 3-D model is needed for ground motion simulations resulting from Delta and Bay area earthquakes to better estimate the seismic hazard for sites in the Delta. We analyze ground motion data from a 24-station network consisting of up to 14 USGS stations, 5 Berkeley Digital Seismic Net (BDSN) stations, and 5 Transportable Array (TA) stations that were deployed in 2006 and 2007. Ground motions are measured using broadband seismometers with a broad frequency response from about 0.016 to 20 Hz or greater. Seismograms are Fourier transformed in 1 hour overlapping segments and coherencies (normalized cross correlations) between stations are computed. Coherencies are stacked for a minimum of 8 months in 2006 to over 17 months starting in January 2012. Time series, transformed from coherencies that are filtered in narrow bands centered at periods from about 4.5s to 20s are used to determine the group velocity dispersion curves between pairs of stations. A velocity model is imaged for each period. Smoothing is applied. We considered block sizes ranging from 0.05° to 0.10° and obtained the best resolution at 0.08° (8.9 km). Checkerboard tests show that the full set of stations yields adequate resolution throughout the Delta. We image an irregular low-velocity structure (-0.1 to -0.2 km/s below average of 1.55 km/s at 5.5s period) that is roughly coincident with the Delta, but extends about 40 km to the north at short periods (4s to 10s). At longer periods, the low-velocity structure shrinks in area as the periods increase (up to 18.5s) and the center shifts about 20 km to the north. Also, at longer periods, higher velocities form a 130 km wide band on the eastern margin of the study area presumably indicating basement velocities of the western edge of the Sierra Nevada Mountains and the

  8. 78 FR 66058 - Habitat Conservation Plan for South Sacramento County, California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Connector Joint Powers Authority, the Sacramento Regional County Sanitation District, the Sacramento County Water Agency, and a South Sacramento Habitat Conservation Plan Joint Powers Authority) for activities... listed fish or wildlife is defined under the Act as to harass, harm, pursue, hunt, shoot, wound, kill...

  9. American River Watershed Investigation, California. Volume 7. Appendix S. Part 2

    DTIC Science & Technology

    1991-12-01

    towhee Pipilo erythrophthalmus C,U,F Brown towhee Pipilo fuscus C,U,F Rufous-crowned sparrow Aimophila ruficeps C,R Chipping sparrow Spizella passerina C,R...developed as a result of the changes to this agricultural system . According to Estep (1989b), prey density and availability change with the cycles of crop...and Levee ............... 13 12. Modify Sacramento Weir and Bypass ........... ... 14 13. Sacramento River Flood Control System ....... ... 15 14

  10. HOWARD FORK ACID ROCK DRAINAGE SOURCE INTERCEPTION STUDY; HOWARD FORK OF THE SAN MIGUEL RIVER NEAR OPHIR, COLORADO

    EPA Science Inventory

    This project proposes to analyze regional hydrogeology as it relates to mine workings which discharge significant heavy metals into the Howard Fork of the San Miguel River and recommend strategies to intercept and divert water away from mineralized zones. The study also includes...

  11. COMPOSITIONAL LANDSCAPE METRICS AND LANDCOVER CONNECTIVITY MEASURES FOR THE SUB-WATERSHEDS OF THE UPPER SAN PEDRO RIVER 1997

    EPA Science Inventory

    Various compositional landscape metrics and landcover connectivity measures for the sub-watersheds of the Upper San Pedro River. Metrics were computed using the ATtILA v.3.03 ArcView extension. Inputs included the sub-watershed coverage obtained from the USDA-ARS-SWRC in Tucson,...

  12. 75 FR 71145 - San Joaquin River Restoration Program: Reach 4B, Eastside Bypass, and Mariposa Bypass Channel and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation San Joaquin River Restoration Program: Reach 4B...: Bureau of Reclamation, Interior. ACTION: Revised notice of intent to prepare an Environmental Impact...., the NRDC, Friant Water Users Authority, and the Departments of the Interior and Commerce (Settling...

  13. Distribution and abundance of Least Bell’s Vireos (Vireo bellii pusillus) and Southwestern Willow Flycatchers (Empidonax traillii extimus) on the Middle San Luis Rey River, San Diego, southern California—2016 data summary

    USGS Publications Warehouse

    Allen, Lisa D.; Howell, Scarlett L.; Kus, Barbara E.

    2017-09-29

    Executive SummaryWe surveyed for Least Bell’s Vireos (LBVI) (Vireo bellii pusillus) and Southwestern Willow Flycatchers (SWFL) (Empidonax traillii extimus) along the San Luis Rey River, between College Boulevard in Oceanside and Interstate 15 in Fallbrook, California (middle San Luis Rey River), in 2016. Surveys were done from March 30 to July 11 (LBVI) and from May 18 to July 30 (SWFL). We found 142 LBVI territories, at least 106 of which were occupied by pairs. Six additional transient LBVIs were detected. Of 20 banded LBVIs detected in the survey area, 9 had been given full color-band combinations prior to 2016, although we were unable to determine the exact color combination of 1 female LBVI. Seven other LBVIs with single (natal) federal bands were recaptured and banded in 2016. Four vireos with single dark blue federal bands indicating that they were banded as nestlings on the lower San Luis Rey River could not be recaptured for identification.Three SFWL territories were observed in the survey area in 2016. Two territories were occupied by pairs and one by a male of unknown breeding status. Both pairs attempted to nest at least once, and both pairs were successful, fledging three young each. Nesting began in early June and continued into July. Brown-Headed Cowbird (Molothrus ater) eggs were not observed in either nest. An additional 12 transient Willow Flycatchers of unknown subspecies were detected in 2016.Two of the five resident SWFLs were originally banded as nestlings on Marine Corps Base Camp Pendleton. One male and one female were banded as nestlings on Camp Pendleton in 2009 and 2011, respectively. One natal male of unknown breeding status, originally banded as a nestling on the middle San Luis Rey River in 2015, was recaptured and given a unique color combination in 2016. This male was later detected on Marine Corps Base Camp Pendleton.

  14. Ballast Water Self Monitoring

    DTIC Science & Technology

    2011-11-01

    Analytical Methods .........................................................22  7 Estimated Capital Cost for Vessels Needing Additional Ballast Water...streams; narrative water-quality based effluent limits; inspection, monitoring, recordkeeping, and reporting requirements; and additional requirements...decline of several pelagic fish species in the Sacramento-San Joaquin River Delta by reducing the plankton food base of the ecosystem (California State

  15. Determining Water Quality Trends in the Sacramento-San Joaquin Delta Watershed in the Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Kynett, K.; Azimi-Gaylon, S.; Doidic, C.

    2014-12-01

    The Sacramento-San Joaquin Delta and Suisun Marsh (Delta) is the largest estuary on the West Coast of the Americas and is a resource of local, State, and national significance. The Delta is simultaneously the most critical component of California's water supply, a primary focus of the state's ecological conservation measures, and a vital resource deeply imperiled by degraded water quality. Delta waterbodies are identified as impaired by salinity, excess nutrients, low dissolved oxygen, pathogens, pesticides, heavy metals, and other contaminants. Climate change is expected to exacerbate the impacts of existing stressors in the Delta and magnify the challenges of managing this natural resource. A clear understanding of the current state of the watershed is needed to better inform scientists, decision makers, and the public about potential impacts from climate change. The Delta Watershed Initiative Network (Delta WIN) leverages the ecological benefits of healthy watersheds, and enhances, expands and creates opportunities for greater watershed health by coordinating with agencies, established programs, and local organizations. At this critical junction, Delta WIN is coordinating data integration and analysis to develop better understanding of the existing and emerging water quality concerns. As first steps, Delta WIN is integrating existing water quality data, analyzing trends, and monitoring to fill data gaps and to evaluate indicators of climate change impacts. Available data will be used for trend analysis; Delta WIN will continue to monitor where data is incomplete and new questions arise. Understanding how climate change conditions may affect water quality will be used to inform efforts to build resilience and maintain water quality levels which sustain aquatic life and human needs. Assessments of historical and new data will aid in recognition of potential climate change impacts and in initiating implementation of best management practices in collaboration with

  16. The Cenozoic evolution of the San Joaquin Valley, California

    USGS Publications Warehouse

    Bartow, J. Alan

    1991-01-01

    The San Joaquin Valley, which is the southern part of the 700-km-long Great Valley of California, is an asymmetric structural trough that is filled with a prism of upper Mesozoic and Cenozoic sediments up to 9 km thick; these sediments rest on crystalline basement rocks of the southwestward-tilted Sierran block. The San Joaquin sedimentary basin is separated from the Sacramento basin to the north by the buried Stockton arch and associated Stockton fault. The buried Bakersfield arch near the south end of the valley separates the small Maricopa-Tejon subbasin at the south end of the San Joaquin basin from the remainder of the basin. Cenozoic strata in the San Joaquin basin thicken southeastward from about 800 m in the north to over 9,000 m in the south. The San Joaquin Valley can be subdivided into five regions on the basis of differing structural style. They are the northern Sierran block, the southern Sierran block, the northern Diablo homocline, the westside fold belt, and the combined Maricopa-Tejon subbasin and southmargin deformed belt. Considerable facies variation existed within the sedimentary basin, particularly in the Neogene when a thick section of marine sediment accumulated in the southern part of the basin, while a relatively thin and entirely nonmarine section was deposited in the northern part. The northern Sierran block, the stable east limb of the valley syncline between the Stockton fault and the San Joaquin River, is the least deformed region of the valley. Deformation consists mostly of a southwest tilt and only minor late Cenozoic normal faulting. The southern Sierran block, the stable east limb of the valley syncline between the San Joaquin River and the Bakersfield arch, is similar in style to the northern part of the block, but it has a higher degree of deformation. Miocene or older normal faults trend mostly north to northwest and have a net down-to-the-west displacement with individual offsets of as much as 600 m. The northern Diablo

  17. COMPOSITIONAL LANDSCAPE METRICS AND LANDCOVER CONNECTIVITY MEASURES FOR THE SUB-WATERSHEDS OF THE UPPER SAN PEDRO RIVER 1973

    EPA Science Inventory

    Various compositional landscape metrics and landcover connectivity measures for the sub-watersheds of the Upper San Pedro River. Metrics were computed using the ATtILA v3.03 ArcView extension. Inputs included the sub-watershed coverage obtained from the USDA-ARS-SWRC in Tucson, A...

  18. Drainage-return, surface-water withdrawal, and land-use data for the Sacramento-San Joaquin Delta, with emphasis on Twitchell Island, California

    USGS Publications Warehouse

    Templin, William E.; Cherry, Daniel E.

    1997-01-01

    Partial data on drainage returns and surface-water withdrawals are presented for areas of the Sacramento-San Joaquin Delta, California, for March 1994 through February 1996. These areas cover most of the delta. Data are also presented for all drainage returns and some surface-water withdrawals for Twitchell Island, which is in the western part of the delta. Changes in land use between 1968 and 1991 are also presented for the delta. Measurements of monthly drainage returns and surface-water withdrawals were made using flowmeters installed in siphons and drain pipes on Twitchell Island. Estimates of monthly returns throughout the delta were made using electric power-consumption data with pump-efficiency-test data. For Twitchell Island, monthly measured drainage returns for the 1995 calendar year totaled about 11,200 acre-feet, whereas drainage returns estimated from power-consumption data totaled 5 percent less at about 10,600 acre-feet. Monthly surface-water withdrawals onto Twitchell Island through 12 of the 21 siphons totaled about 2,400 acre-feet for 1995. For most of the delta, the monthly estimated drainage returns for 1995 totaled about 430,000 acre-feet. The area consisting of Bouldin, Brannan, Staten, Tyler, and Venice Islands had the largest estimated drainage returns for calendar year 1995. Between 1968 and 1991, native vegetation in the delta decreased by 25 percent (about 40,000 acres), and grain and hay crops increased by 340 percent (about 71,000 acres). For Twitchell Island, native vegetation decreased about 77 percent (about 850 acres), while field crop acreage increased by about 44 percent (about 780 acres).

  19. 3. Photographic copy of map. San Carlos Project, Arizona. Irrigation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photographic copy of map. San Carlos Project, Arizona. Irrigation System. Department of the Interior. United States Indian Service. No date. Circa 1939. (Source: Henderson, Paul. U.S. Indian Irrigation Service. Supplemental Storage Reservoir, Gila River. November 10, 1939, RG 115, San Carlos Project, National Archives, Rocky Mountain Region, Denver, CO.) - San Carlos Irrigation Project, Lands North & South of Gila River, Coolidge, Pinal County, AZ

  20. Water management controls net carbon exchange in drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta, CA

    NASA Astrophysics Data System (ADS)

    Hatala, J.; Detto, M.; Sonnentag, O.; Verfaillie, J. G.; Baldocchi, D. D.

    2011-12-01

    Draining peatlands for agricultural cultivation creates an ecosystem shift with some of the fastest rates and largest magnitudes of carbon loss attributable to land-use change, yet peatland drainage is practiced around the world due to the high economic benefit of fertile soil. The Sacramento-San Joaquin Delta in California was drained at the end of the 19th century for agriculture and human settlement, and as a result, has lost 5-8m of peat soil due to oxidation. To reverse subsidence and capture carbon, there is increasing interest in converting drained agricultural land-uses back to flooded conditions to inhibit further peat oxidation. However, this method remains relatively untested at the landscape-scale. This study analyzed the short-term effects of drained to flooded land-use conversion on the balance of carbon, water, and energy over two years at two landscapes in the Delta. We used the eddy covariance method to compare CO2, CH4, H2O, and energy fluxes under the same meteorological conditions in two different land-use types: a drained pasture grazed by cattle, and a flooded newly-converted rice paddy. By analyzing differences in the fluxes from these two land-use types we determined that water management and differences in the plant canopy both play a fundamental role in governing the seasonal pattern and the annual budgets of CO2 and CH4 fluxes at these two sites. While the pasture was a source of carbon to the atmosphere in both years, the rice paddy captured carbon through NEE, even after considering losses from CH4. Especially during the fallow winter months, flooding the soil at the rice paddy inhibited loss of CO2 through ecosystem respiration when compared with the carbon exchange from the drained pasture.

  1. 1. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING NORTHEAST FROM WESTERN LEVEE OF THE SACRAMENTO RIVER. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  2. 1. VIEW LOOKING SOUTHWEST AT TURNOUT ON SAN TAN FLOODWATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING SOUTHWEST AT TURNOUT ON SAN TAN FLOOD-WATER CANAL TO SAN TAN INDIAN CANAL - San Carlos Irrigation Project, San Tan Flood Water Canal, North Side of Gila River, Coolidge, Pinal County, AZ

  3. Implications for sustainability of a changing agricultural mosaic in the Sacramento-San Joaquin Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Lucero, C. E.; Deverel, S. J.; Jacobs, P.; Kelsey, R.

    2015-12-01

    Transformed from the largest wetland system on the west coast of the United States to agriculture, the Sacramento-San Joaquin Delta is an extreme teaching example of anthropogenic threats to sustainability. For over 6,000 years, over 280,000 ha of intertidal freshwater marsh accreted due to seal level rise and sediment deposition. Farming of organic soils since 1850 resulted in land subsidence caused primarily by oxidation. Over 2 billion cubic meters of soil were lost resulting in elevations on Delta islands ranging from -1 to -8 m and increased risk of levee failures and water supply disruption. Alteration of water flows and habitat caused dramatic declines in aquatic species. A cycle in which oxidation of organic soils leads to deepening of drainage ditches to maintain an aerated root zone which in turn results in sustained oxidation and subsidence is perpetuated by the momentum of the status quo despite evidence that agricultural practices are increasingly unsustainable. Flooding of the soils breaks the oxidation/subsidence cycle. We assessed alternate land uses and the carbon market as a potential impetus for change. Using the peer-reviewed and locally calibrated SUBCALC model, we estimated net global warming potential for a range of scenarios for a representative island, from status quo to incorporating significant proportions of subsidence-mitigating land use. We analyzed economic implications by determining profit losses or gains when a simulated GHG offset market is available for wetlands using a regional agricultural production and economic optimization model, We estimated baseline GHG emissions at about 60,000 tons CO2-e per year. In contrast, modeled implementation of rice and wetlands resulted in substantial emissions reductions to the island being a net GHG sink. Subsidence would be arrested or reversed where these land uses are implemented. Results of economic modeling reveal that conversion to wetlands can have significant negative farm financial

  4. Changes in Rice Pesticide Use and Surface Water Concentrations in the Sacramento River Watershed, California

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn

    2004-01-01

    Pesticides applied to rice fields in California are transported into the Sacramento River watershed by the release of rice field water. Despite monitoring and mitigation programs, concentrations of two rice pesticides, molinate and thiobencarb, continue to exceed the surface-water concentration performance goals established by the Central Valley Regional Water Quality Control Board. There have been major changes in pesticide use over the past decade, and the total amount of pesticides applied remains high. Molinate use has declined by nearly half, while thiobencarb use has more than doubled; carbofuran has been eliminated and partially replaced by the pyrethroid pesticide lambda-cyhalothrin. A study was conducted in 2002 and 2003 by the U.S. Geological Survey to determine if the changes in pesticide use on rice resulted in corresponding changes in pesticide concentrations in surface waters. During the rice growing season (May-July), water samples, collected weekly at three sites in 2002 and two sites in 2003, were analyzed for pesticides using both solid-phase and liquid-liquid extraction in combination with gas chromatography/mass spectrometry. Analytes included lambda-cyhalothrin, molinate, thiobencarb, and two degradation products of molinate: 2-keto-molinate and 4-keto-molinate. Molinate, thiobencarb, and 4-keto-molinate were detected in all samples, 2-keto-molinate was detected in less than half of the samples, and lambda-cyhalothrin was not detected in any samples. At two of the sites sampled in 2002 (Colusa Basin Drain 1 and Sacramento Slough), concentrations of molinate were similar, but thiobencarb concentrations differed by a factor of five. Although concentrations cannot be estimated directly from application amounts in different watersheds, the ratio of molinate to thiobencarb concentrations can be compared with the ratio of molinate to thiobencarb use in the basins. The higher concentration ratio in the Sacramento Slough Basin, compared with the ratio

  5. Determination of traveltimes in the lower San Joaquin River basin, California, from dye-tracer studies during 1994-1995

    USGS Publications Warehouse

    Kratzer, Charles R.; Biagtan, Rhoda N.

    1997-01-01

    Dye-tracer studies were done in the lower San Joaquin River Basin in February 1994, June 1994, and February 1995. Dye releases were made in the Merced River (February 1994), Salt Slough (June 1994), Tuolumne River (February 1995), and Dry Creek (February 1995). The traveltimes determined in the studies aided the interpretation of pesticide data collected during storm sampling and guided sample collection during a Lagrangian pesticide study. All three studies used rhodamine WT 20-percent dye solution, which was released as a slug in midstream. The mean traveltime determined in the dye studies were compared to estimates based on regression equations of mean stream velocity as a function of streamflow. Dye recovery, the ratio of the calculated dye load at downstream sites to the initial amount of dye released, was determined for the 1994 studies and a dye-dosage formula was evaluated for all studies. In the February 1994 study, mean traveltime from the Merced River at River Road to the San Joaquin River near Vernalis (46.8 river miles) was 38.5 hours, and to the Delta-Mendota Canal at Tracy pumps (84.3 river miles) was 90.4 hours. In the June 1994 study, mean traveltime from Salt Slough at Highway 165 to Vernalis (64.0 river miles) was 80.1 hours. In the February 1995 study, the mean traveltime from the Tuolumne River at Roberts Ferry to Vernalis (51.5 river miles) was 35.8 hours. For the 1994 studies, the regression equations provided suitable estimates of travel-time, with ratios of estimated traveltime to mean dye traveltime of 0.94 to 1.08. However, for the 1995 dye studies, the equations considerably underestimated traveltime, with ratios of 0.49 to 0.73.In the February 1994 study, 70 percent of the dye released was recovered at Vernalis and 35percent was recovered at the Delta-Mendota Canal at Tracy pumps. In the June 1994 study, recovery was 61 percent at Patterson, 43 percent just upstream of the Tuolumne River confluence, and 37 percent at Vernalis. The dye

  6. Quantity and sources of base flow in the San Pedro River near Tombstone, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Gungle, Bruce

    2010-01-01

    Base flow in the upper San Pedro River at the gaging station (USGS station 09471550) near Tombstone, Arizona, is an important factor in the long-term sustainability of the river's riparian ecosystem. Most base flow occurs during the non-summer months (typically, from November to May), because evapotranspiration (ET) is greater than groundwater discharge to the riparian zone during the growing season and typically causes periods of zero flow in the spring and fall. Streamflow during the summer months occurs only as a result of rainfall and runoff. Using a hydrograph separation technique that partitions streamflow into stormflow and base flow, based on the change in runoff from the previous day, median base flow at the Tombstone gage from 1968 to 2009 (1987 to 1996 data absent) is 4,890 acre-ft/yr. Median base flow for the earlier period of record, 1968 to 1986, is 5,830 acre-ft/yr and for the later period, 1997 to 2009, is 2,880 acre-ft/yr. Base flow in the upper San Pedro River is derived from groundwater discharge to the river from the regional and alluvial aquifer. The regional aquifer is defined as having recharge zones away from the river, primarily at mountain fronts and along ephemeral channels. The alluvial aquifer is recharged mainly from stormflow. Based on environmental isotope data, the composition of base flow in the upper San Pedro River at the gaging station near Tombstone is 74 +/- 10 percent regional groundwater and 26 +/- 10 percent summer storm runoff stored as alluvial groundwater for the 2000 to 2009 period. The volume of base flow in a given year is well explained, using multiple regression, by mean daily flow during the previous October and by rainfall during the months of December and January (R2 = 0.9). This does not suggest that streamflow is composed only of these two sources; rather, these two sources control the degree of saturation of the near-stream alluvial aquifer and, therefore, the amount of winter base-flow infiltration that is

  7. Investigating Historic Parcel Changes to Understand Land Use Trends: A Methodology and Application for the San Pedro River Watershed

    EPA Science Inventory

    Long-term land use and land cover change, and the associated impacts, pose critical challenges to sustaining healthy communities and ecosystems. In this study, a methodology was developed to use parcel data to evaluate land use trends in southeast Arizona’s San Pedro River Water...

  8. 20. 'Erection Plan, Renewal of Bridge 210 C over Sacramento ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. 'Erection Plan, Renewal of Bridge 210 C over Sacramento River near Tehama, Calif., 3 140'-0' S. T. Riveted Thru Truss Spans, 17'-9' C. to C. Trusses, 31'-0' C. To C. Chords. U.S.S. P. Co. Pacific Coast Dept., Order No. SF 604, Southern Pacific Co., Order No. 51168-P-38428, 1925 Specifications, Scale in. ft., American Bridge Co., Ambridge Plant, Dwgs. made at Ambridge No. 5 in charge of Reehl, Detailed by W.F.R., Date, Checked by L.A.E., Date 1/5/29, Fld. conn. chk. by ENN, Date 3/9/29, Order No. F5659, Sheet No. E3.' - Southern Pacific Railroad Shasta Route, Bridge No. 210.52, Milepost 210.52, Tehama, Tehama County, CA

  9. Organic Biomarkers Along the River-Coastal Ocean Continuum: Human Activities and their Influence on Carbon Delivery (Invited)

    NASA Astrophysics Data System (ADS)

    Canuel, E. A.; Pondell, C. R.

    2010-12-01

    Human-induced changes in land-use and water diversion have modified the connectivity between upstream sources of organic carbon (OC) and their delivery to the coastal ocean. This connectivity will likely be further modified by climate variability. Biomarkers provide useful tools for tracing the delivery of terrigeous OC from the watershed to downstream environments. In this study, we used the Sacramento-San Joaquin River Delta CA and its watershed as a model system for understanding how human activities influenced delivery and composition of organic carbon (OC) over the past 50-60 years. Biomarker records, stable isotopes, and radiocarbon ages of bulk carbon signatures preserved in sediment cores were used to examine human impacts on carbon sources, amounts, and ages. Our presentation will discuss: 1) alterations in the sources of carbon preserved in the historical sedimentary record; and 2) environmental implications of such changes.

  10. Recovery of coded wire tags at a caspian tern colony in San Francisco Bay: A technique to evaluate impacts of avian predation on juvenile salmonids

    USGS Publications Warehouse

    Evans, A.F.; Roby, D.D.; Collis, K.; Cramer, B.M.; Sheggeby, J.A.; Adrean, L.J.; Battaglia, D.S.; Lyons, Donald E.

    2011-01-01

    We recovered coded wire tags (CWTs) from a colony of Caspian terns Hydroprogne caspia on Brooks Island in San Francisco Bay, California, to evaluate predation on juvenile salmonids originating from the Sacramento and San Joaquin rivers. Subsamples of colony substrate representing 11.7% of the nesting habitat used by the terns yielded 2,079 salmonid CWTs from fish released and subsequently consumed by terns in 2008. The estimated number of CWTs deposited on the entire tern colony was 40,143 (ranging from 26,763 to 80,288), once adjustments were made to account for tag loss and the total amount of nesting habitat used by terns. Tags ingested by terns and then egested on the colony were undamaged, and the tags' complete numeric codes were still identifiable. The CWTs found on the tern colony indicated that hatchery Chinook salmon Oncorhynchus tshawytscha trucked to and released in San Pablo Bay were significantly more likely to be consumed by Caspian terns than Chinook salmon that migrated in-river to the bay; 99.7% of all tags recovered were from bay-released Chinook salmon. Of the CWTs recovered on the tern colony, 98.0% were from fall-run Chinook salmon, indicating a higher susceptibility to tern predation than for the spring run type. None of the approximately 518,000 wild Chinook salmon that were coded-wire-tagged and released in the basin were recovered on the tern colony, suggesting that the impacts on wild, U.S. Endangered Species Act-listed Chinook salmon populations were minimal in 2008. Overall, we estimate that 0.3% of the approximately 12.3 million coded-wire-tagged Chinook salmon released in the basin in 2008 were subsequently consumed by Caspian terns from the Brooks Island colony. These results indicate that CWTs implanted in juvenile salmon can be recovered from a piscivorous waterbird colony and used to evaluate smolt losses for runs that are tagged. Abstract We recovered coded wire tags (CWTs) from a colony of Caspian terns Hydroprogne caspia on

  11. 77 FR 24252 - Notice of Release From Federal Grant Assurance Obligations for Sacramento International Airport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... Assurance Obligations for Sacramento International Airport (SMF), Sacramento, CA AGENCY: Federal Aviation... of land comprising approximately 6.50 acres of airport property at the Sacramento International Airport, California. The County of Sacramento proposes to release the 6.50 acres for sale to the...

  12. Structural and lithologic study of northern coast ranges and Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The pattern of linear systems within the project area has been extended into the western foothill belt of the Sierra Nevada. The chief pattern of linear features in the western Sierran foothill belt trends about N. 10 - 15 deg W., but in the vicinity of the Feather River the trend of the features abruptly changes to about N. 50-60 deg W and appears to be contiguous across the Sacramento Valley with a similar system of linear features in the Coast Ranges. The linear features in the Modoc Plateau and Klamath Mt. areas appear unrelated to the systems detected in the Coast Ranges of Sierran foothill belt. Although the change in trend of the Sierran structural features has been previously suggested and the interrelationship of the Klamath Mt. region with the northern Sierra Nevadas has been postulated, the data obtained from the ERTS-1 imagery strengthens these notions and provides for the first time evidence of a direct connection of the structural trends within the alluviated part of the Sacramento Valley. In addition rocks of Pleistocene and Holocene age are offset by some of the linear features seen on ERTS-1 imagery and hence may record the latest episode of geologic deformation in north-central California.

  13. Streamflow gains and losses in the Colorado River in northwestern Burnet and southeastern San Saba Counties, Texas

    USGS Publications Warehouse

    Braun, Christopher L.; Grzyb, Scott D.

    2015-08-12

    During the spring 2014 gain-loss survey, 11 reaches were combined into 3 in an attempt to consolidate gains and losses as well as group reaches within the same hydrogeologic units. An unverifiable loss was measured in the reach farthest upstream, which crosses a combination of alluvium and Ellenburger-San Saba aquifer outcrop, whereas an unverifiable gain was measured in the middle reach, which crosses each of the different hydrogeologic units represented in the study area. The reach farthest downstream crosses an area where only the Ellenburger-San Saba aquifer crops out; a streamflow gain of 123 ft3/s was measured in this reach, exceeding the potential error of 93.9 ft3/s. The verifiable streamflow gain in this downstream reach implies the Ellenburger-San Saba aquifer was discharging groundwater to the Colorado River in this part of the study area under the hydrologic conditions of the spring 2014 gain-loss survey.

  14. Fragmented Landscapes in the San Gorgonio Pass Region: Insights into Quaternary Strain History of the Southern San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.; Landis, G. P.; Alvarez, R. M.

    2006-12-01

    The San Gorgonio Pass (SGP) region is a zone of structural complexity within the southern San Andreas Fault system that is characterized by (1) multiple strands of the San Andreas Fault (SAF), (2) intense and diverse microseismicity, (3) contraction within the SGP fault zone (SGPfz), and (4) complex and diverse landforms - all a consequence of structural complications in the vicinity of the southeastern San Bernardino Mountains (SBM). Multiple strands of the SAF zone in the SGP region partition the landscape into discrete geomorphic/geologic domains, including: San Gorgonio Mountain (SGM), Yucaipa Ridge (YR), Kitching Peak (KP), Pisgah Peak (PP), and Coachella Valley (CV) domains. The morphology of each domain reflects the tectonic history unique to that region. Development of the SGP knot in the Mission Creek strand of the SAF (SAFmi) led to westward deflection of the SAFmi, juxtaposition of the KP, PP, and SGM domains, initiation of uplift of YR domain along thrust faults in headwaters of San Gorgonio River, and development of the San Jacinto Fault. Slip on the SAF diminished as a result, thereby allowing integrated drainage systems to develop in the greater SGP region. San Gorgonio River, Whitewater River, and Mission Creek are discrete drainages that transport sediment across the SGM, YR, PP, KP, and CV domains into alluvial systems peripheral to the SGP region. There, depositional units (San Timoteo Formation, upper member, deformed gravels of Whitewater River) all contain clasts of SBM-type and San Gabriel Mountain-type basement, thus constraining slip on the SAF in the SGP region. Middle and late Pleistocene slip on the Mill Creek strand of the SAF (SAFm) in the SGP region has attempted to bypass the SGP knot, and has disrupted landscapes established during SAFmi quiescence. Restoration of right-slip on the SAFm is key to deciphering landscape history. Matti and others (1985, 1992) proposed that a bi-lobed alluvial deposit in the Raywood Flats area has been

  15. 18. INTAKE PIER, BRIDGE DETAILS, SHEET 9 OF 117, 1920. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTAKE PIER, BRIDGE DETAILS, SHEET 9 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  16. Electronic tagging of green sturgeon reveals population structure and movement among estuaries

    USGS Publications Warehouse

    Lindley, S.T.; Erickson, D.L.; Moser, M.L.; Williams, G.; Langness, O.P.; McCovey, B.W.; Belchik, M.; Vogel, D.; Pinnix, W.; Kelly, J.T.; Heublein, J.C.; Klimley, A.P.

    2011-01-01

    Green sturgeon Acipenser medirostris spend much of their lives outside of their natal rivers, but the details of their migrations and habitat use are poorly known, which limits our understanding of how this species might be affected by human activities and habitat degradation.We tagged 355 green sturgeon with acoustic transmitters on their spawning grounds and in known nonspawning aggregation sites and examined their movement among these sites and other potentially important locations using automated data-logging hydrophones. We found that green sturgeon inhabit a number of estuarine and coastal sites over the summer, including the Columbia River estuary, Willapa Bay, Grays Harbor, and the estuaries of certain smaller rivers in Oregon, especially the Umpqua River estuary. Green sturgeon from different natal rivers exhibited different patterns of habitat use; most notably, San Francisco Bay was used only by Sacramento River fish, while the Umpqua River estuary was used mostly by fish from the Klamath and Rogue rivers. Earlier work, based on analysis of microsatellite markers, suggested that the Columbia River mixed stock was mainly composed of fish from the Sacramento River, but our results indicate that fish from the Rogue and Klamath River populations frequently use the Columbia River as well. We also found evidence for the existence of migratory contingentswithin spawning populations.Our findings have significant implications for the management of the threatened Sacramento River population of green sturgeon, which migrates to inland waters outside of California where anthropogenic impacts, including fisheries bycatch and water pollution, may be a concern. Our results also illustrate the utility of acoustic tracking to elucidate the migratory behavior of animals that are otherwise difficult to observe. ?? American Fisheries Society 2011.

  17. Measurement of bridge scour at the SR-32 crossing of the Sacramento River at Hamilton City, California, 1987-92

    USGS Publications Warehouse

    Blodgett, J.C.; Harris, Carroll D.; ,

    1993-01-01

    A study of the State Route 32 crossing of the Sacramento River near Hamilton City, California, is being made to determine those channel and bridge factors that contribute to scour at the site. Three types of scour data have been measured-channel bed (natural) scour, constriction (general) scour, and local (bridge-pier induced) scour. During the years 1979-93, a maximum of 3.4 ft of channel bed scour, with a mean of 1.4 ft, has been measured. Constriction scour, which may include channel bed scour, has been measured at the site nine times during the years 1987-92. The calculated amount of constriction scour ranged from 0.2 to 3.0 ft, assuming the reference is the mean bed elevation. Local scour was measured four times at the site in 1991 and 1992 and ranged from -2.1 (fill) to 11.6 ft , with the calculated amounts dependent on the bed reference elevation and method of computation used. Surveys of the channel bed near the bridge piers indicate the horizontal location of lowest bed elevation (maximum depth of scour) may vary at least 17 ft between different surveys at the same pier and most frequently is located downstream from the upstream face of the pier.

  18. Spatial variability in groundwater N2 and N2O in the San Joaquin River

    NASA Astrophysics Data System (ADS)

    Hinshaw, S.; Dahlgren, R. A.

    2010-12-01

    The San Joaquin River is surrounded by nearly 2 million acres of irrigated agricultural land. Groundwater inputs from agricultural areas can have severe negative effects on water quality with high nitrate concentrations being a major concern. Riparian zones are important ecological habitats that mitigate nitrogen loading from groundwater discharging into rivers primarily by denitrification. Denitrification is a permanent removal of nitrate by anaerobic microbial communities via the reduction to NO, N2O and N2. However, previous studies have shown that these areas can be source of N2O emissions. Although removal of nitrate through denitrification is advantageous from a water quality perspective, N2O is a harmful greenhouse gas. This study aimed to investigate nitrogen dynamics and dissolved N gases in surface and groundwater of the riparian zones of the San Joaquin River. Excess N2 and N2O concentrations were measured in surface and groundwater at 4 locations along a 33 km reach of the river. Samples were collected within bank sediments and 5 transect points across the river at depth intervals between 2-3 cm and 150 cm. Dissolved N2 and Ar were measured by membrane inlet mass spectrometry and used to estimate excess dissolved N2 concentrations. Dissolved N2O concentrations were measured using the headspace equilibrium technique and analyzed with a gas chromatograph. Both N2 uptake and excess N2 were present, ranging from -3.40 to 8.65 N2 mg/L with a median concentration of 1.20 N2 mg/L. Significantly lower concentrations of N2O were present ranging from 0.0 to 0.12 N2O mg/L. Deeper groundwater sites had significantly higher N2 and N2O concentrations coinciding with decreased O2. The presence of excess N2 and low N2O concentrations documents the importance of denitrification in removing nitrate from groundwater. Further investigation will examine N2O emissions from riparian soils and benthic sediments using static chambers and focus on nitrogen pathways that

  19. A millennial-scale record of Pb and Hg contamination in peatlands of the Sacramento-San Joaquin Delta of California, USA.

    PubMed

    Drexler, Judith Z; Alpers, Charles N; Neymark, Leonid A; Paces, James B; Taylor, Howard E; Fuller, Christopher C

    2016-05-01

    In this paper, we provide the first record of millennial patterns of Pb and Hg concentrations on the west coast of the United States. Peat cores were collected from two micro-tidal marshes in the Sacramento-San Joaquin Delta of California. Core samples were analyzed for Pb, Hg, and Ti concentrations and dated using radiocarbon and (210)Pb. Pre-anthropogenic concentrations of Pb and Hg in peat ranged from 0.60 to 13.0μgg(-1)and from 6.9 to 71ngg(-1), respectively. For much of the past 6000+ years, the Delta was free from anthropogenic pollution, however, beginning in ~1425CE, Hg and Pb concentrations, Pb/Ti ratios, Pb enrichment factors (EFs), and HgEFs all increased. Pb isotope compositions of the peat suggest that this uptick was likely caused by smelting activities originating in Asia. The next increases in Pb and Hg contamination occurred during the California Gold Rush (beginning ~1850CE), when concentrations reached their highest levels (74μgg(-1) Pb, 990ngg(-1) Hg; PbEF=12 and HgEF=28). Lead concentrations increased again beginning in the ~1920s with the incorporation of Pb additives in gasoline. The phase-out of lead additives in the late 1980s was reflected in changes in Pb isotope ratios and reductions in Pb concentrations in the surface layers of the peat. The rise and subsequent fall of Hg contamination was also tracked by the peat archive, with the highest Hg concentrations occurring just before 1963CE and then decreasing during the post-1963 period. Overall, the results show that the Delta was a pristine region for most of its ~6700-year existence; however, since ~1425CE, it has received Pb and Hg contamination from both global and regional sources. Published by Elsevier B.V.

  20. A note on the effect of wind waves on vertical mixing in Franks Tract, Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Thompson, Janet K.; Jones, Nicole L.; Stephen G. Monismith,

    2008-01-01

    A one-dimensional numerical model that simulates the effects of whitecapping waves was used to investigate the importance of whitecapping waves to vertical mixing at a 3-meter-deep site in Franks Tract in the Sacramento-San Joaquin Delta over an 11-day period. Locally-generated waves of mean period approximately 2 s were generated under strong wind conditions; significant wave heights ranged from 0 to 0.3 m. A surface turbulent kinetic energy flux was used to model whitecapping waves during periods when wind speeds > 5 m s-1 (62% of observations). The surface was modeled as a wind stress log-layer for the remaining 38% of the observations. The model results demonstrated that under moderate wind conditions (5–8 m s-1 at 10 m above water level), and hence moderate wave heights, whitecapping waves provided the dominant source of turbulent kinetic energy to only the top 10% of the water column. Under stronger wind (> 8 m s-1), and hence larger wave conditions, whitecapping waves provided the dominant source of turbulent kinetic energy over a larger portion of the water column; however, this region extended to the bottom half of the water column for only 7% of the observation period. The model results indicated that phytoplankton concentrations close to the bed were unlikely to be affected by the whitecapping of waves, and that the formation of concentration boundary layers due to benthic grazing was unlikely to be disrupted by whitecapping waves. Furthermore, vertical mixing of suspended sediment was unlikely to be affected by whitecapping waves under the conditions experienced during the 11-day experiment. Instead, the bed stress provided by tidal currents was the dominant source of turbulent kinetic energy over the bottom half of the water column for the majority of the 11-day period.

  1. A millennial-scale record of Pb and Hg contamination in peatlands of the Sacramento-San Joaquin Delta of California, USA

    USGS Publications Warehouse

    Drexler, Judith; Alpers, Charles N.; Neymark, Leonid; Paces, James B.; Taylor, Howard E.; Fuller, Christopher C.

    2016-01-01

    In this paper, we provide the first record of millennial patterns of Pb and Hg concentrations on the west coast of the United States. Peat cores were collected from two micro-tidal marshes in the Sacramento-San Joaquin Delta of California. Core samples were analyzed for Pb, Hg, and Ti concentrations and dated using radiocarbon, 210Pb, and 137Cs. Pre-anthropogenic concentrations of Pb and Hg in peat ranged from 0.60 to 13.0 µg g-1and from 6.9 to 71 ng g-1, respectively. For much of the past 6000+ years, the Delta was free from anthropogenic pollution, however, beginning in ~1425 CE, Hg and Pb concentrations, Pb/Ti ratios, Pb enrichment factors (EFs), and HgEFs all increased. Pb isotope compositions of the peat suggest that this uptick was likely caused by smelting activities originating in Asia. The next increases in Pb and Hg contamination occurred during the California Gold Rush (beginning ~1850 CE), when concentrations reached their highest levels (74 µg g-1 Pb, 990 ng g-1 Hg; PbEF = 12 and HgEF = 28). Lead concentrations increased again beginning in the ~1920s with the incorporation of Pb additives in gasoline. The phase-out of lead additives in the late 1980s was reflected in Pb isotope ratios and reductions in Pb concentrations in the surface layers of the peat. The rise and fall of Hg contamination was also tracked by the peat archive, with the highest Hg concentrations occurring just before 1963 CE and then decreasing during the post-1963 period. Overall, the results show that the Delta was a pristine region for most of its ~6700-year existence; however, since ~1425 CE, it has received Pb and Hg contamination from both global and regional sources.

  2. 2. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING NORTH. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  3. 15. SUPERSTRUCTURE PLANS, ELEVATION AND DETAILS, SHEET 4 OF 117, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. SUPERSTRUCTURE PLANS, ELEVATION AND DETAILS, SHEET 4 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  4. 16. INTAKE PIER, PLANS ELEVATIONS, AND SECTIONS, SHEETS 5 OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTAKE PIER, PLANS ELEVATIONS, AND SECTIONS, SHEETS 5 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  5. 4. DETAIL OF THE BRIDGE PIER SHOWING THE SUSPENSION CABLE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF THE BRIDGE PIER SHOWING THE SUSPENSION CABLE, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  6. 3. APPROACH TO THE ACCESS BRIDGE AND INTAKE PIER, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. APPROACH TO THE ACCESS BRIDGE AND INTAKE PIER, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  7. 19. INTAKE CONDUITS, PROFILE, SECTIONS, AND DETAILS, SHEET 10 OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTAKE CONDUITS, PROFILE, SECTIONS, AND DETAILS, SHEET 10 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  8. 17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  9. 10. DETAIL VIEW OF LOWER LEVEL OF INTAKE PIER SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL VIEW OF LOWER LEVEL OF INTAKE PIER SHOWING THE RIVER HEIGHT INDICATOR, ONE OF THE FIVE GATE OPENINGS, AND MOORINGS, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  10. Climate-change influences on the response of macroinvertebrate communities to pesticide contamination in the Sacramento River, California watershed.

    PubMed

    Chiu, Ming-Chih; Hunt, Lisa; Resh, Vincent H

    2017-03-01

    Limited studies have addressed how future climate-change scenarios may alter the effects of pesticides on biotic assemblages or the effects of exposures to repeated pulses of pesticide mixtures. We used reported pesticide-use data as input to a hydrological fate and transport model (Soil and Water Assessment Tool) under multiple climate-change scenarios to simulate spatiotemporal dynamics of pesticides mixtures in streams on a daily time-step in the Sacramento River watershed of California. We predicted that there will be increased pesticide application with warming across the watershed, especially in upstream areas. Using a statistical model describing the relationship between macroinvertebrate communities and pesticide dynamics, we found that compared to the baseline period of 1970-1999: (1) most climate-change scenarios predicted increased rainfall and warming across the watershed during 2070-2099; and (2) increasing pesticide contamination and increased impact on macroinvertebrates will likely occur in most areas of the watershed by 2070-2099; and (3) lower increases in effects of pesticides on macroinvertebrates were predicted for the downstream areas with intensive agriculture compared to some upstream areas with less-intensive agriculture. Future efforts on practical adaptation and mitigation strategies can be improved by awareness of altered threats of pesticide mixtures under future climate-change conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 75 FR 18068 - Revisions to the California State Implementation Plan, Sacramento Metropolitan Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... the California State Implementation Plan, Sacramento Metropolitan Air Quality Management District... final action to approve revisions to the Sacramento Metropolitan Air Quality Management District (SMAQMD...) * * * (362) * * * (i) * * * (C) Sacramento Metropolitan Air Quality Management District. (1) Rule 450...

  12. 20. COMPLETION OF INTAKE CONDUITS, PLANS, PROFILES, AND DETAILS, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. COMPLETION OF INTAKE CONDUITS, PLANS, PROFILES, AND DETAILS, SHEET 115 OF 117, 1922. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  13. 12. INTERIOR VIEW OF GATE OPERATOR ROOM, SHOWING SLIDES GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR VIEW OF GATE OPERATOR ROOM, SHOWING SLIDES GATE OPERATORS, LOOKING NORTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  14. National Transportation Safety Board Pipeline Special Investigation Report: Evaluation of Pipeline Failures During Flooding and of Spill Response Actions, San Jacinto River Near Houston Texas, October 1994

    DOT National Transportation Integrated Search

    1996-09-06

    In mid-October 1994, major flooding occurred in the San Jacinto River flood plain near Houston, Texas. Due to the flooding, 8 pipelines ruptured and many others were undermined. Ignition of petroleum and petroleum products released into the river res...

  15. 76 FR 20242 - Revisions to the California State Implementation Plan; Sacramento Metropolitan Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... the California State Implementation Plan; Sacramento Metropolitan Air Quality Management District... a revision to the Sacramento Metropolitan Air Quality Management District's portion of the... (Permit No. 17359), which was issued by the Sacramento Metropolitan Air Quality Management District...

  16. 78 FR 53270 - Revision of Air Quality Implementation Plan; California; Sacramento Metropolitan Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... Quality Implementation Plan; California; Sacramento Metropolitan Air Quality Management District... to the Sacramento Metropolitan Air Quality Management District (SMAQMD or District) portion of the..., Sacramento Metropolitan Air Quality Management District, Rule 214 (Federal New Source Review), Rule 203...

  17. 5. OBLIQUE VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. OBLIQUE VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING SOUTHWEST, FROM THE EASTERN LEVEE. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  18. 21. COMPLETION OF INTAKE CONDUITS REVISED, PIPE SECTIONS AND PLANS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. COMPLETION OF INTAKE CONDUITS REVISED, PIPE SECTIONS AND PLANS, SHEET 117 OF 117, 1922. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  19. 8. VIEW OF ACCESS BRIDGE AND INTAKE PIER FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF ACCESS BRIDGE AND INTAKE PIER FROM THE BRIDGE PIER ABUTMENT, LOOKING NORTHEAST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  20. 9. VIEW OF INTAKE PIER AND MAIN SPAN OF ACCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF INTAKE PIER AND MAIN SPAN OF ACCESS BRIDGE FROM WATER LEVEL, LOOKING NORTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  1. 13. INTERIOR VIEW OF GATE OPERATOR ROOM, SHOWING UNFINISHED CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR VIEW OF GATE OPERATOR ROOM, SHOWING UNFINISHED CONCRETE WALLS AND SLIDE GATE OPERATORS, LOOKING NORTH. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  2. 6. VIEW OF APPROACH SPAN AND MAIN SPAN OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF APPROACH SPAN AND MAIN SPAN OF THE ACCESS BRIDGE AND INTAKE PIER, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  3. Comparative water-quality assessment of the Hai He River basin in the People's Republic of China and three similar basins in the United States

    USGS Publications Warehouse

    Domagalski, Joseph L.; Xinquan, Zhou; Chao, Lin; Deguo, Zhi; Chi, Fan Lan; Kaitai, Xu; Ying, Lu; Luo, Yang; Shide, Liu; Dewen, Liu; Yong, Guo; Qi, Tian; Jing, Liu; Weidong, Yu; Shedlock, Robert; Knifong, Donna

    2001-01-01

    Ground-water quality with respect to nitrate, major inorganic constituents, pesticides, stable isotopes, and tritium was assessed in the agricultural Tangshan region in the Hai He River basin of the People's Republic of China and compared with three similar regions in the United States: the Delmarva Peninsula of the States of Delaware, Maryland, and Virginia, and the San Joaquin and Sacramento Valleys of the State of California. These four regions are considered similar with respect to size, land use, or climate. Median nitrate concentrations were found to be similar in the four regions in most instances, and those median concentrations were below the American nitrate drinking water standard of 10 milligrams per liter, however, higher concentrations, and a greater range of concentration, were evident for the Tangshan region.

  4. Mapping the Extent of the Lovejoy Basalt Beneath the Sacramento Valley, CA, Using Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Langenheim, V. E.; Sweetkind, D. S.; Springhorn, S.

    2014-12-01

    The Lovejoy Basalt is a distinctive Miocene (~16 Ma) unit that erupted from Thompson Peak in the northeast Sierra Nevada, flowed southwest across the Sierra Nevada into the Sacramento Valley. It crops out in a few places in Sacramento Valley: (1) near Chico and Oroville on the east side of the valley, (2) Orland Buttes on the west side, and (3) Putnam Peak, some 250 km southwest of Thompson Peak. The basalt is also encountered in drill holes, but its extent is not entirely known. The Lovejoy Basalt is strongly magnetic and, in general, reversely magnetized, making it an excellent target for aeromagnetic mapping. Recently acquired aeromagnetic data (flight line spacing 800 m at an altitude of 240 m) indicate a characteristic, sinuous, short-wavelength magnetic pattern associated with outcrops and known subcrops of Lovejoy Basalt. Filtering of these data to enhance negative, short-wavelength anomalies defines two large bands of negative anomalies that trend southwest of Chico and Oroville and appear to coalesce about 25 km north of Sutter Buttes. Another band of negative anomalies extends north of the junction roughly along the Sacramento River 40 km to Deer Creek. The anomalies become more subdued to the north, suggesting that the Lovejoy thins to the north. Aeromagnetic data also indicate a large subcrop of Lovejoy Basalt that extends 25 km north-northeast from exposures at Orland Buttes. Driller logs from gas and water wells confirm our mapping of Lovejoy within these areas. The sinuous magnetic lows are not continuous south of Sutter Buttes, but form isolated patches that are aligned in a north-south direction south of the concealed Colusa Dome to Putnam Peak and an east-west, 20-km-long band about 15 km south of Sutter Buttes. Other reversed anomalies in the Sacramento Valley coincide with volcanic necks in the Sutter Buttes and Colusa Dome; these produce semicircular anomalies that are distinct from those caused by the Lovejoy Basalt.

  5. Gravity data from the San Pedro River Basin, Cochise County, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Winester, Daniel

    2011-01-01

    The U.S. Geological Survey, Arizona Water Science Center in cooperation with the National Oceanic and Atmospheric Administration, National Geodetic Survey has collected relative and absolute gravity data at 321 stations in the San Pedro River Basin of southeastern Arizona since 2000. Data are of three types: observed gravity values and associated free-air, simple Bouguer, and complete Bouguer anomaly values, useful for subsurface-density modeling; high-precision relative-gravity surveys repeated over time, useful for aquifer-storage-change monitoring; and absolute-gravity values, useful as base stations for relative-gravity surveys and for monitoring gravity change over time. The data are compiled, without interpretation, in three spreadsheet files. Gravity values, GPS locations, and driving directions for absolute-gravity base stations are presented as National Geodetic Survey site descriptions.

  6. CHANGES IN LOWLAND FLOODPLAIN SEDIMENTATION PROCESSES: PRE-DISTURBANCE TO POST-REHABILITATION, COSUMNES RIVER, CA. (R825433)

    EPA Science Inventory

    During the late Holocene, sediment deposition on the lowland Cosumnes River floodplain, CA has depended on factors that varied temporally and spatially, such as basin subsidence, sea level rise, flow, and sediment supply from both the Sacramento River system and from the Cosum...

  7. 4. Photographic copy of map. San Carlos Irrigation Project, Gila ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photographic copy of map. San Carlos Irrigation Project, Gila River Indian Reservation, Pinal County, Arizona. Department of the Interior. Office of Indian Affairs. 1940. (Source: SCIP Office, Coolidge, AZ) Photograph is an 8'x10' enlargement from a 4'x5' negative. - San Carlos Irrigation Project, Lands North & South of Gila River, Coolidge, Pinal County, AZ

  8. 11. DETAIL VIEW OF APPROACH TO INTAKE PIER FROM ACCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF APPROACH TO INTAKE PIER FROM ACCESS BRIDGE, SHOWING DOOR TO INTERIOR GATE OPERATOR ROOM, LOOKING WEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  9. Measurement of Subsidence Across the Sacramento Delta: Applying InSAR to a Coherence-challenged Area

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Sharma, P.

    2014-12-01

    InSAR-based measurement of ground subsidence rates are notoriously challenging in agricultural areas because of rapid temporal decorrelation introduced by physical disturbance of the ground and water content changes. This can be mitigated by the use of longer wavelength instruments and time series techniques, but measurement remains a challenge particularly in areas where the deformation rates are low. Here we discuss techniques developed to work with low coherence data in a project to measure sub-island scale subsidence rates across the Sacramento-San Joaquin Delta using SBAS processing of L-band UAVSAR data collected between July 2009 and February 2014. Determination of rates in this area is particularly valuable because of the Delta's critical importance as a water resource for the State of California and as an enormously productive estuarine ecosystem. Subsidence across the region has left most of the man-made islands below mean sea level and the levees maintaining their integrity are subject to a wide range of threats, including failure during earthquakes on the nearby Hayward and San Andreas fault. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  10. 14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION FORCE MAINS, TREATED WATER PIPELINES, AND FILTRATION PLANT, SHEET 1 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  11. Use of stable carbon and nitrogen isotopes to trace the larval striped bass food chain in the Sacramento-San Joaquin Estuary, California, April to September 1985

    USGS Publications Warehouse

    Rast, Walter; Sutton, J.E.

    1989-01-01

    To assess one potential cause for the decline of the striped bass fishery in the Sacramento-San Joaquin Estuary, stable carbon and nitrogen isotope ratios were used to examine the trophic structures of the larval striped bass food chain, and to trace the flux of these elements through the food chain components. Study results generally confirm a food chain consisting of the elements, phytoplankton/detritus-->zooplankton/Neomysis shrimp-->larval striped bass. The stable isotope ratios generally become more positive as one progresses from the lower to the higher trophic level food chain components, and no unusual trophic structure was found in the food chain. However, the data indicate an unidentified consumer organism occupying an intermediate position between the lower and higher trophic levels of the larval striped bass food chain. Based on expected trophic interactions, this unidentified consumer would have a stable carbon isotope ratio of about 28/mil and a stable nitrogen isotope ratio of about 8/mi. Three possible feeding stages for larval striped bass also were identified, based on their lengths. The smallest length fish seem to subsist on their yolk sac remnants, and the largest length fish subsist on Neomysis shrimp and zooplankton. The intermediate-length fish represent a transition stage between primary food sources and/or use of a mixture of food sources. (USGS)

  12. 39. PENCIL SKETCH OF SELECTED DESIGN, DEPICTING OCEANGOING VESSEL (WHICH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. PENCIL SKETCH OF SELECTED DESIGN, DEPICTING OCEAN-GOING VESSEL (WHICH WERE STILL NAVIGATING SACRAMENTO RIVER IN 1930s) APPROACHING LIFT SPAN Drawn by project architect Alfred Eichler, 1935 - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  13. Anthropogenic impacts on the quality of streambed sediments in the lower Sacramento River watershed, California.

    PubMed

    Hwang, Hyun-Min; Green, Peter G; Holmes, Robert W

    2009-01-01

    To investigate the occurrence of contaminants and to assess their toxicity potential to benthic organisms, streambed sediments were collected from three agricultural and one urban influenced small waterways in the lower Sacramento River watershed and analyzed for PAHs, organochlorine (OC) and organophosphorus (OP) pesticides, pyrethroids, and metals. These sites had low benthic biotic index scores in earlier field surveys. The occurrence patterns of these contaminants and iron normalized enrichment factors of metals reflect the land use patterns around study sites. DDTs were detected in all samples while chlordanes were found only at the urban influenced site. No OP pesticides were found in any sediment presumably due to their high water solubilities and low solid-water partitioning. DDTs, PAHs, and metals at sites in the Biggs/West Gridley Canal showed a gradient increasing toward downstream. Distribution patterns of individual PAHs and their ratios found in sediment from the Biggs/West Gridley Canal downstream site resemble those of petroleum. PAHs in this site might originate from petroleum oils that have been used as agricultural pesticides. The enrichment factor of vanadium, which is an indicator of petroleum residue, was also higher in this site. The anthropogenic enrichment of copper at all Biggs/West Gridley Canal sites might be because of significant use of copper based pesticides. The high enrichment factor of lead at the urban influenced Dry Creek site might be related to historical use of leaded gasoline. All sediment samples had at least one chemical that exceed the threshold effects concentration (TEC). Total probable effects concentration quotients (tPECQs) were greater than 1 at all sites, indicating that sediment bound contaminants in the study sites can possibly pose toxic effects. This finding can be linked to lower biotic index scores observed in previous regional monitoring studies.

  14. Urban Sacramento oak reforestation: 17 years and 20,000 trees

    Treesearch

    Zarah Wyly; Erika Teach

    2015-01-01

    The Sacramento Tree Foundation (Tree Foundation), a nonprofit organization operating in the greater Sacramento California region, has been engaged in planting native oak trees in urban and suburban areas since 1998. Through an effort to provide efficient access to tree mitigation services and support compliance with local tree protection ordinances, more than 20,038...

  15. Timber resource statistics for the Sacramento resource area of California.

    Treesearch

    Karen L. Waddell; Patricia M. Bassett

    1997-01-01

    This report is a summary of timber resource statistics for the Sacramento Resource Area of California, which includes Butte, Colusa, El Dorado, Glenn, Lake, Napa, Nevada, Placer, Plumas, Sacramento, Sierra, Sutter, Tehama, Yolo, and Yuba Counties. Data were collected as part of a statewide multiresource inventory. The inventory sampled private and public lands except...

  16. Spawning by Rhinichthys osculus (Cyprinidae), in the San Francisco River, New Mexico

    USGS Publications Warehouse

    Mueller, Gordon A.

    1984-01-01

    The speckles dace Rhinichthys osculus [Girard] is the most widely distributed and ubiquitous fish in the western United States (Moyle, Inland Fishes of California, 1976). Although common, very little information is available concerning thje reproductive behavior of speckled dace or the environmental cues which trigger spawning activity. Several hundred speckled dace were observed spawning in the San Francisco River, 4.8 km upstream from Reserve, Catron County, New Mexico, on June 2-3, 1981. Spawning was in an area of disturbed substrate at a time when other reaches of the streambed were overgrown with diatoms, filamentous algae, and macrophytes. This note described the spawning site and reproductive behavior and proposes that physical disturbance is a major cue for reproductive activity in the species.

  17. Sacramento Valley, CA, USA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Sacramento Valley (40.5N, 121.5W) of California is the northern extension of the Central Valley, main agriculture region of the state. Hundreds of truck farms, vineyards and orchards can be seen throughout the length and breadth of the valley which was reclaimed from the desert by means of intensive and extensive irrigation projects.

  18. Preliminary subsidence investigation of Sacramento Valley, California

    USGS Publications Warehouse

    Lofgren, B.E.; Ireland, R.L.

    1973-01-01

    Although a number of agencies have made leveling surveys in Sacramento Valley and a valleywide network of first- and second-order control exists, few areas have sufficient control for determining whether land subsidence has occurred and if so, how much, within the time span of vertical control. Available data suggest that 0.2 to 0.9 foot (0.06 to 0.3 m) of subsidence probably has occurred from 1935-42 to 1964 in an extensive agricultural area of heavy ground-water pumping between Zamora and Davis, and that as much as 2 feet (0.6 m) of subsidence has occurred in at least two areas of pumping overdraft--east of Zamora, and west of Arbuckle. A comparison of maps showing long-term water-level decline and average annual ground-water pumpage indicates several other areas of probable subsidence. In six general areas--northwest of Sacramento; northeast of Sacramento; southeast of Yuba City; 10 miles (16 km) north of Willows; 20 miles (32 km) north of Willows; and especially in the Arbuckle area,ground-water declines have quite probably produced significant subsidence. In two areas of most intensive pumping, no long-term water-level declines have occurred, and no subsidence is indicated. If problems of land subsidence are of concern in Sacramento Valley, and if estimates of historic subsidence or subsidence potential are needed, serious consideration should be given to a field program of basic-data collection. Second-order leveling along a few carefully selected lines of existing control, and the installation and operation of two or three compaction recorders in areas of continuing water-level decline, would provide helpful data for estimating .past and future subsidence.

  19. Dissolved organic carbon concentrations and compositions, and trihalomethane formation potentials in waters from agricultural peat soils, Sacramento-San Joaquin Delta, California; implications for drinking-water quality

    USGS Publications Warehouse

    Fujii, Roger; Ranalli, Anthony J.; Aiken, George R.; Bergamaschi, Brian A.

    1998-01-01

    Water exported from the Sacramento-San Joaquin River delta (Delta) is an important drinking-water source for more than 20 million people in California. At times, this water contains elevated concentrations of dissolved organic carbon and bromide, and exceeds the U.S. Environmental Protection Agency's maximum contaminant level for trihalomethanes of 0.100 milligrams per liter if chlorinated for drinking water. About 20 to 50 percent of the trihalomethane precursors to Delta waters originates from drainage water from peat soils on Delta islands. This report elucidates some of the factors and processes controlling and affecting the concentration and quality of dissolved organic carbon released from peat soils and relates the propensity of dissolved organic carbon to form trihalomethanes to its chemical composition.Soil water was sampled from near-surface, oxidized, well-decomposed peat soil (upper soil zone) and deeper, reduced, fibrous peat soil (lower soil zone) from one agricultural field in the west central Delta over 1 year. Concentrations of dissolved organic carbon in the upper soil zone were highly variable, with median concentrations ranging from 46.4 to 83.2 milligrams per liter. Concentrations of dissolved organic carbon in samples from the lower soil zone were much less variable and generally slightly higher than samples from the upper soil zone, with median concentrations ranging from 49.3 to 82.3 milligrams per liter. The dissolved organic carbon from the lower soil zone had significantly higher aromaticity (as measured by specific ultraviolet absorbance) and contained significantly greater amounts of aromatic humic substances (as measured by XAD resin fractionation and carbon-13 nuclear magnetic resonance analysis of XAD isolates) than the dissolved organic carbon from the upper soil zone. These results support the conclusion that more aromatic forms of dissolved organic carbon are produced under anaerobic conditions compared to aerobic conditions

  20. A Tidally Averaged Sediment-Transport Model for San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan A.; Schoellhamer, David H.

    2009-01-01

    A tidally averaged sediment-transport model of San Francisco Bay was incorporated into a tidally averaged salinity box model previously developed and calibrated using salinity, a conservative tracer (Uncles and Peterson, 1995; Knowles, 1996). The Bay is represented in the model by 50 segments composed of two layers: one representing the channel (>5-meter depth) and the other the shallows (0- to 5-meter depth). Calculations are made using a daily time step and simulations can be made on the decadal time scale. The sediment-transport model includes an erosion-deposition algorithm, a bed-sediment algorithm, and sediment boundary conditions. Erosion and deposition of bed sediments are calculated explicitly, and suspended sediment is transported by implicitly solving the advection-dispersion equation. The bed-sediment model simulates the increase in bed strength with depth, owing to consolidation of fine sediments that make up San Francisco Bay mud. The model is calibrated to either net sedimentation calculated from bathymetric-change data or measured suspended-sediment concentration. Specified boundary conditions are the tributary fluxes of suspended sediment and suspended-sediment concentration in the Pacific Ocean. Results of model calibration and validation show that the model simulates the trends in suspended-sediment concentration associated with tidal fluctuations, residual velocity, and wind stress well, although the spring neap tidal suspended-sediment concentration variability was consistently underestimated. Model validation also showed poor simulation of seasonal sediment pulses from the Sacramento-San Joaquin River Delta at Point San Pablo because the pulses enter the Bay over only a few days and the fate of the pulses is determined by intra-tidal deposition and resuspension that are not included in this tidally averaged model. The model was calibrated to net-basin sedimentation to calculate budgets of sediment and sediment-associated contaminants. While

  1. A comprehensive analysis of high-magnitude streamflow and trends in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Kocis, T. N.; Dahlke, H. E.

    2017-12-01

    California's climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US. This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF "metrics") over multiple time periods for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. In addition, we present trend analyses conducted on the same dataset and all HMF metrics using generalized additive models, the Mann-Kendall trend test, and the Signal to Noise Ratio test. The results of the comprehensive analysis show, in short, that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta, often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for a total of 25-30 days between November and April. Preliminary trend tests suggest that all HMF metrics show limited change over the last 50 years. As a whole, the results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  2. Greenhouse gas emissions and carbon sequestration potential in restored freshwater marshes in the Sacramento San-Joaquin Delta, California

    NASA Astrophysics Data System (ADS)

    Knox, S. H.; Sturtevant, C. S.; Oikawa, P. Y.; Matthes, J. H.; Dronova, I.; Anderson, F. E.; Verfaillie, J. G.; Baldocchi, D. D.

    2015-12-01

    Wetlands can be effective carbon sinks due to limited decomposition rates in anaerobic soil. As such there is a growing interest in the use of restored wetlands as biological carbon sequestration projects for greenhouse gas (GHG) emission reduction programs. However, using wetlands to offset emissions requires accurate accounting of both carbon dioxide (CO2) and methane (CH4) exchange since wetlands are also sources of CH4. To date few studies have quantified CO2 and CH4 exchange from restored wetlands or assessed how these fluxes vary during ecosystem development. In this study, we report on multiple years of eddy covariance measurements of CO2 and CH4 fluxes from two restored freshwater marshes of differing ages (one restored in 1997 and the other in 2010) in the Sacramento-San Joaquin Delta, CA. Measurements at the younger restored wetland started in October 2010 and began in April 2011 at the older site. The younger restored wetland showed considerable year-to-year variability in the first 4 years following restoration, with CO2 uptake ranging from 12 to 420 g C-CO2 m-2 yr-1. Net CO2 uptake at the older wetland was overall greater than at the younger site, ranging from 292 to 585 g C-CO2 m-2 yr-1. Methane emissions were on average higher at the younger wetland (46 g C-CH4 m-2 yr-1) relative to the older one (33 g C-CH4 m-2 yr-1). In terms of the GHG budgets (assuming a global warming potential of 34), the younger wetland was consistently a GHG source, emitting on average 1439 g CO2 eq m-2 yr-1, while the older wetland was a GHG sink in two of the years of measurement (sequestering 651 and 780 g CO2 eq m-2 yr-1 in 2012 and 2013, respectively) and a source of 750 g CO2 eq m-2 yr-1 in 2014. This study highlights how dynamic CO2 and CH4 fluxes are in the first years following wetland restoration and suggests that restored wetlands have the potential to act as GHG sinks but this may depend on time since restoration.

  3. 75 FR 53332 - San Carlos Irrigation Project, Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation San Carlos Irrigation Project, Arizona AGENCY..., as amended, on the rehabilitation of San Carlos Irrigation Project (SCIP) water delivery facilities... convey irrigation water from the Gila River and Central Arizona Project (CAP) to agricultural lands in...

  4. Streamflow and water-quality properties in the West Fork San Jacinto River Basin and regression models to estimate real-time suspended-sediment and total suspended-solids concentrations and loads in the West Fork San Jacinto River in the vicinity of Conroe, Texas, July 2008-August 2009

    USGS Publications Warehouse

    Bodkin, Lee J.; Oden, Jeannette H.

    2010-01-01

    To better understand the hydrology (streamflow and water quality) of the West Fork San Jacinto River Basin downstream from Lake Conroe near Conroe, Texas, including spatial and temporal variation in suspended-sediment (SS) and total suspended-solids (TSS) concentrations and loads, the U.S. Geological Survey, in cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality, measured streamflow and collected continuous and discrete water-quality data during July 2008-August 2009 in the West Fork San Jacinto River Basin downstream from Lake Conroe. During July 2008-August 2009, discrete samples were collected and streamflow measurements were made over the range of flow conditions at two streamflow-gaging stations on the West Fork San Jacinto River: West Fork San Jacinto River below Lake Conroe near Conroe, Texas (station 08067650) and West Fork San Jacinto River near Conroe, Texas (station 08068000). In addition to samples collected at these two main monitoring sites, discrete sediment samples were also collected at five additional monitoring sites to help characterize water quality in the West Fork San Jacinto River Basin. Discrete samples were collected semimonthly, regardless of flow conditions, and during periods of high flow resulting from storms or releases from Lake Conroe. Because the period of data collection was relatively short (14 months) and low flow was prevalent during much of the study, relatively few samples collected were representative of the middle and upper ranges of historical daily mean streamflows. The largest streamflows tended to occur in response to large rainfall events and generally were associated with the largest SS and TSS concentrations. The maximum SS and TSS concentrations at station 08067650 (180 and 133 milligrams per liter [mg/L], respectively) were on April 19, 2009, when the instantaneous streamflow was the third largest associated with a discrete sample at the station. SS concentrations

  5. Turbid Bottom Waters and Ammonium-Rich Freshwaters as Nitrification Hotspots in a Large Urban Estuary (San Francisco Bay, CA)

    NASA Astrophysics Data System (ADS)

    Damashek, J.; Casciotti, K. L.; Francis, C.

    2015-12-01

    Nitrification is the link between reduced and oxidized forms of inorganic nitrogen, and is therefore a crucial step in the estuarine nitrogen cycle. Ammonia-oxidizing microorganisms catalyze the rate-limiting step of ammonia oxidation to nitrite and thus play key roles in the biogeochemical cycling nutrient-rich estuaries. Yet, few studies have measured nitrification rates in tandem with ammonia oxidizer functional gene (amoA) expression, abundance, and diversity in estuary waters. Here, we present a multi-year data set on the microbial ecology and biogeochemistry of nitrification in the San Francisco Bay-Delta, the largest estuary on the North American west coast, collected throughout all regions of the estuary from 2012 to 2014. Data on microbial community distributions use functional gene-based PCR assays to assess the diversity, abundance, and mRNA expression of ammonia oxidizers, while stable isotope tracer experiments were used to measure nitrification rates. Ammonia-oxidizing archaea (AOA) typically outnumbered ammonia-oxidizing bacteria (AOB) throughout the sampled gradient, though the relative abundance of AOB was often greater in brackish regions. mRNA expression of amoA appeared to largely track DNA abundance, but suggested only a fraction of the ammonia-oxidizing community was typically active. AOA were always numerically dominant in the Sacramento River, where average nitrification rates were highest, suggesting the AOA communities in this river are responsible for a relatively constant nitrification hotspot. Additionally, depth profiles of nitrification rates suggested high biogeochemical activity near the sediment-water interface in samples with abnormally high turbidity, indicating similar but transient nitrification hotspots in bottom waters containing resuspended sediments. This work increases our knowledge of the ecology and dynamics of ammonia oxidizers in the San Francisco Bay-Delta, with time series data allowing for the putative

  6. Potential effects of anticipated coal mining on salinity of the Price, San Rafael, and Green Rivers, Utah. Water Resources Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindskov, K.L.

    1986-01-01

    The overall objective of the report is to describe the potential cumulative impacts of anticipated coal mining on the dissolved-solids concentrations in the Price, San Rafael, and Green Rivers. The changes considered were (1) salt loads in ground water that would be intercepted by mines and discharged to nearby streams in order to dewater the mines and (2) salt loads resulting from surface disturbance associated with the anticipated mining. The anticipated salt loads were estimated from (1) reports prepared under contract with the Office of Surface Mining Reclamation and Enforcement--Cumulative Hydrologic Impact Assessments of several drainages tributary to the Pricemore » and San Rafael Rivers that may be impacted by the mining, (2) information from determinations of probable hydrologic impacts in individual permit applications submitted to the Utah Division of Oil, Gas, and Mining, (3) monitoring reports for the National Pollutant Discharge Elimination System furnished to the U.S. Environmental Protection Agency, and (4) other miscellaneous monitoring data for the permit areas.« less

  7. "Informed Self-Placement" at American River College: A Case Study. National Center Report Number #07-2

    ERIC Educational Resources Information Center

    Felder, Jonathan E.; Finney, Joni E.; Kirst, Michael W.

    2007-01-01

    "Informed math self-placement," a program implemented at American River College in Sacramento, California, to determine students' readiness for college-level math, has been in place for three years. This case study describes the development and implementation of math self-placement at American River. Math self-placement consists of a…

  8. Perspective View with Landsat Overlay, Sacramento, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    California's state capitol, Sacramento, can be seen clustered along the American and Sacramento Rivers in this computer-generated perspective viewed from the west. Folsom Lake is in the center and the Sierra Nevada is above, with the edge of Lake Tahoe just visible at top center.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: scale varies in this perspective image Location: 38.6 deg. North lat., 121.3 deg. West lon. Orientation: looking east Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet) Date Acquired: February 2000 (SRTM)

  9. Impacts of river segmentation strategies on reach-averaged product uncertainties for the upcoming Surface Water and Ocean Topography (SWOT) mission

    NASA Astrophysics Data System (ADS)

    Frasson, R. P. M.; Wei, R.; Minear, J. T.; Tuozzolo, S.; Domeneghetti, A.; Durand, M. T.

    2016-12-01

    Averaging is a powerful method to reduce measurement noise associated with remote sensing observation of water surfaces. However, when dealing with river measurements, the choice of which points are averaged may affect the quality of the products. We examine the effectiveness of three fully automated reach definition strategies: In the first, we break up reaches at regular intervals measured along the rivers' centerlines. The second strategy consists of identifying hydraulic controls by searching for inflection points on water surface profiles. The third strategy takes into consideration river planform features, breaking up reaches according to channel sinuosity. We employed the Jet Propulsion Laboratory's (JPL) SWOT hydrology simulator to generate 9 synthetic SWOT observations of the Sacramento River in California, USA and 14 overpasses of the Po River in northern Italy. In order to create the synthetic SWOT data, the simulator requires the true water digital elevation model (DEM), which we constructed from hydraulic models of both rivers, and the terrain DEM, which we built from LiDAR data of both basins. We processed the simulated pixel clouds using the JPL's RiverObs package, which traces the river centerline and estimates water surface height and river width on equally spaced nodes located along the centerline. Subsequently, we applied the three reach definition methodologies to the nodes and to the hydraulic models' outputs to generate simulated reach-averaged observations and the reach-averaged truth respectively. Our results generally indicate that height, width, slope, and discharge errors decrease with increasing reach length, with most of the accuracy gains occurring when reach length increases to up to 15 km for both the narrow (Sacramento) and the wide (Po) rivers. The "smart" methods led to smaller slope, width, and discharge errors for the Sacramento River when compared to arbitrary reaches of similar length whereas, for the for the Po River all

  10. Near-bed turbulence and sediment flux measurements in tidal channels

    USGS Publications Warehouse

    Wright, S.A.; Whealdon-Haught, D.R.

    2012-01-01

    Understanding the hydrodynamics and sediment transport dynamics in tidal channels is important for studies of estuary geomorphology, sediment supply to tidal wetlands, aquatic ecology and fish habitat, and dredging and navigation. Hydrodynamic and sediment transport data are essential for calibration and testing of numerical models that may be used to address management questions related to these topics. Herein we report preliminary analyses of near-bed turbulence and sediment flux measurements in the Sacramento-San Joaquin Delta, a large network of tidal channels and wetlands located at the confluence of the Sacramento and San Joaquin Rivers, California, USA (Figure 1). Measurements were made in 6 channels spanning a wide range of size and tidal conditions, from small channels that are primarily fluvial to large channels that are tidally dominated. The results of these measurements are summarized herein and the hydrodynamic and sediment transport characteristics of the channels are compared across this range of size and conditions.

  11. Estimation of the Role of Natural Climatic Trends and Local Depositional Conditions on Peat Formation in the Sacramento-San Joaquin Delta, Based on Palynological and Paleomagnetic Data

    NASA Astrophysics Data System (ADS)

    Delusina, I.; Verosub, K. L.

    2014-12-01

    The Sacramento-San Joaquin Delta of California is a critical ecosystem for reconstructing natural and anthropogenic impacts on environmental conditions, understanding stream development, and assessing the fate of artificial levees. Peat formation is influenced by all these processes and represents the combined effects of climatic and hydrographic evolution. In the framework of Project REPEAT, we studied three peat cores using palynological and paleomagnetic methods, focusing on the influence of the general climatic setting and postglacial sea-level changes during the last 6500 years on the process of peat formation and the interplay of local environmental and hydrological conditions. In this report we consider the hypothesis that peat accretion was closely related to general climatic trends, as reflected in atmospheric carbon storage in the Delta sediments, and to general sea-level fluctuation. Based on the fact that the bulk density of the peat is closely correlated with organic carbon content, we examine: 1) whether the pollen concentration is highest when the organic carbon content in the cores is a maximum and corresponds to the warmest episodes; 2) whether organic content is inversely related to the lithic content as determined by paleomagnetic measurements; 3) whether a salinity index based on pollen criteria is highest during the highest stands of sea level; 4) and whether the C3/C4 plant index is a good measure of the carbon content of the peat.

  12. Distribution and movements of female northern pintails radiotagged in San Joaquin Valley, California

    USGS Publications Warehouse

    Fleskes, Joseph P.; Jarvis, Robert L.; Gilmer, David S.

    2002-01-01

    To improve understanding of northern pintail (Anas acuta) distribution in central California (CCA), we radiotagged 191 Hatch-Year (HY) and 228 After-Hatch-Year (AHY) female northern pintails during late August-early October, 1991-1993, in the San Joaquin Valley (SJV) and studied their movements through March each year. Nearly all (94.3%) wintered in CCA, but 5.7% went to southern California, Mexico, or unknown areas; all that went south left before hunting season. Of the 395 radiotagged pintails that wintered in CCA, 83% flew from the SJV north to other CCA areas (i.e., Sacramento Valley [SACV], Sacramento-San Joaquin River Delta [Delta], Suisun Marsh, San Francisco Bay) during September-January; most went during December. Movements coincid- ed with start of hunting seasons and were related to pintail age, mass, capture location, study year, and weather. Among pintails with less than average mass, AHY individuals tended to leave the SJV earlier than HY individuals. Weekly distribution was similar among capture locations and years but a greater percentage of pintails radiotagged in Tulare Basin (south part of SJV) were known to have (10.3% vs. 0.9%) or probably (13.8% vs. 4.6%) wintered south of CCA than pintails radiotagged in northern SJV areas (i.e., Grassland Ecological Area [EA] and Mendota Wildlife Area [WA]). Also, a greater percentage of SJV pintails went to other CCA areas before hunting season in the drought year of 1991-1992 than later years (10% vs. 3-5%). The percent of radiotagged pintails from Grass- land EA known to have gone south of CCA also was greater during 1991-1992 than later years (2% vs. 0%), but both the known (19% vs. 4%) and probable (23% vs. 12%) percent from Tulare Basin that went south was greatest during 1993-1994, when availability of flooded fields there was lowest. The probability of pintails leaving the SJV was 57% (95% CI = 8-127%) greater on days with than without rain, and more movements per bird out of SJV occurred in years

  13. 77. VIEW SHOWING CONDITION OF OLD M STREET BRIDGE PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. VIEW SHOWING CONDITION OF OLD M STREET BRIDGE PIER 1 DOLPHIN, LOOKING SOUTHEAST, March 1, 1935. (Steamer Delta King is moored at River Lines Terminal.) - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  14. Increased selenium threat as a result of invasion of the exotic bivalve Potamocorbula amurensis into the San Francisco Bay-Delta.

    PubMed

    Linville, Regina G; Luoma, Samuel N; Cutter, Lynda; Cutter, Gregory A

    2002-04-01

    Following the aggressive invasion of the bivalve, Potamocorbula amurensis, in the San Francisco Bay-Delta in 1986, selenium contamination in the benthic food web increased. Concentrations in this dominant (exotic) bivalve in North Bay were three times higher in 1995-1997 than in earlier studies, and 1990 concentrations in benthic predators (sturgeon and diving ducks) were also higher than in 1986. The contamination was widespread, varied seasonally and was greater in P. amurensis than in co-occurring and transplanted species. Selenium concentrations in the water column of the Bay were enriched relative to the Sacramento River but were not as high as observed in many contaminated aquatic environments. Total Se concentrations in the dissolved phase never exceeded 0.3 microg Se per l in 1995 and 1996; Se concentrations on particulate material ranged from 0.5 to 2.0 microg Se per g dry weight (dw) in the Bay. Nevertheless, concentrations in P. amurensis reached as high as 20 microg Se per g dw in October 1996. The enriched concentrations in bivalves (6-20 microg Se per g dw) were widespread throughout North San Francisco Bay in October 1995 and October 1996. Concentrations varied seasonally from 5 to 20 microg Se per g dw, and were highest during the periods of lowest river inflows and lowest after extended high river inflows. Transplanted bivalves (oysters, mussels or clams) were not effective indicators of either the degree of Se contamination in P. amurensis or the seasonal increases in contamination in the resident benthos. Se is a potent environmental toxin that threatens higher trophic level species because of its reproductive toxicity and efficient food web transfer. Bivalves concentrate selenium effectively because they bioaccumulate the element strongly and lose it slowly; and they are a direct link in the exposure of predaceous benthivore species. Biological invasions of estuaries are increasing worldwide. Changes in ecological structure and function are well

  15. Increased selenium threat as a result of invasion of the exotic bivalve Potamocorbula amurensis into the San Francisco Bay-Delta

    USGS Publications Warehouse

    Linville, R.G.; Luoma, S.N.; Cutter, L.; Cutter, G.A.

    2002-01-01

    Following the aggressive invasion of the bivalve, Potamocorbula amurensis, in the San Francisco Bay-Delta in 1986, selenium contamination in the benthic food web increased. Concentrations in this dominant (exotic) bivalve in North Bay were three times higher in 1995-1997 than in earlier studies, and 1990 concentrations in benthic predators (sturgeon and diving ducks) were also higher than in 1986. The contamination was widespread, varied seasonally and was greater in P. amurensis than in co-occurring and transplanted species. Selenium concentrations in the water column of the Bay were enriched relative to the Sacramento River but were not as high as observed in many contaminated aquatic environments. Total Se concentrations in the dissolved phase never exceeded 0.3 ??g Se per l in 1995 and 1996; Se concentrations on particulate material ranged from 0.5 to 2.0 ??g Se per g dry weight (dw) in the Bay. Nevertheless, concentrations in P. amurensis reached as high as 20 ??g Se per g dw in October 1996. The enriched concentrations in bivalves (6-20 ??g Se per g dw) were widespread throughout North San Francisco Bay in October 1995 and October 1996. Concentrations varied seasonally from 5 to 20 ??g Se per g dw, and were highest during the periods of lowest river inflows and lowest after extended high river inflows. Transplanted bivalves (oysters, mussels or clams) were not effective indicators of either the degree of Se contamination in P. amurensis or the seasonal increases in contamination in the resident benthos. Se is a potent environmental toxin that threatens higher trophic level species because of its reproductive toxicity and efficient food web transfer. Bivalves concentrate selenium effectively because they bioaccumulate the element strongly and lose it slowly; and they are a direct link in the exposure of predaceous benthivore species. Biological invasions of estuaries are increasing worldwide. Changes in ecological structure and function are well known in

  16. Diazinon and chlorpyrifos loads in precipitation and urban and agricultural storm runoff during January and February 2001 in the San Joaquin River basin, California

    USGS Publications Warehouse

    Zamora, Celia; Kratzer, Charles R.; Majewski, Michael S.; Knifong, Donna L.

    2003-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2001 in the San Joaquin River Basin was 24 percent less and 3.2 times more than applications in 2000, respectively. A total of 16 sites were sampled during January and February 2001 storm events: 7 river sites, 8 precipitation sites, and 1 urban storm drain. The seven river sites were sampled weekly during nonstorm periods and more frequently during storm runoff from a total of four storms. The monitoring of storm runoff at a city storm drain in Modesto, California, occurred simultaneously with the collection of precipitation samples from eight sites during a January 2001 storm event. The highest concentrations of diazinon occurred during the storm periods for all 16 sites, and the highest concentrations of chlorpyrifos occurred during weekly nonstorm sampling for the river sites and during the January storm period for the urban storm drain and precipitation sites. A total of 60 samples (41 from river sites, 10 from precipitation sites, and 9 from the storm drain site) had diazinon concentrations greater than 0.08 ?g/L, the concentration being considered by the California Department of Fish and Game as its criterion maximum concentration for the protection of aquatic habitats. A total of 18 samples (2 from river sites, 9 from precipitation sites, and 7 from the storm drain site) exceeded the equivalent California Department of Fish and Game guideline of 0.02 ?g/L for chlorpyrifos. The total diazinon load in the San Joaquin River near Vernalis during January and February 2001 was 23.8 pounds active ingredient; of this amount, 16.9 pounds active ingredient were transported by four storms, 1.06 pounds active ingredient were transported by nonstorm events, and 5.82 pounds active ingredient were considered to be baseline loads. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2001 was 2.17 pounds active ingredient; of this amount, 0.702 pound active

  17. Occurrence and distribution of organochlorine compounds in sediment and livers of striped bass (Morone saxatilis) from the San Francisco Bay-Delta Estuary

    USGS Publications Warehouse

    Pereira, W.E.; Hostettler, F.D.; Cashman, J.R.; Nishioka, R.S.

    1994-01-01

    A preliminary assessment was made in 1992 of chlorinated organic compounds in sediments and in livers of striped bass from the San Francisco Bay-Delta Estuary. Samples of sediment and striped bass livers contained DDT (ethane, 1,1,1-trichloro-2,2-bis (p-chlorophenyl)-) and its degradation products, DDD (ethane, 1,1-dichloro-2,2-bis(p-chlorophenyl)-) and DDE (ethylene, 1,1-dichloro-2,2-bis (p-chlorophenyl)-); PCBs (polychlorinated biphenyls); alpha and gamma chlordane, and cis and trans nonachlor. In addition, the livers of striped bass contained small concentrations of DCPA (dimethyl tetrachloroterephthalate), a pre-emergent herbicide. Agricultural run-off from the Sacramento and San Joaquin Rivers, as well as atmospheric deposition, are probably responsible for a low chronic background of DDT in sediments throughout San Francisco Bay. Larger concentrations of DDT in sediment near Richmond in the Central Bay, and Coyote Creek in the South Bay may be derived from point sources. Ratios of pentachloro isomers of PCBs to hexachloro isomers in the South Bay sediments were different from those in the Central and North Bay, suggesting either differences in microbial activity in the sediments or different source inputs of PCBs. Concentrations of alpha chlordane in livers of striped bass were greater than those of gamma chlordane, which suggests a greater environmental stability and persistence of alpha chlordane. Trans nonachlor, a minor component of technical chlorodane, was present in greater concentrations than alpha and gamma chlordane and cis nonachlor. Trans nonachlor is more resistant to metabolism than alpha and gamma chlordane and cis nonachlor, and serves as an environmentally stable marker compound of chlordane contamination in the estuary. Chlorinated organic compounds have bioaccumulated in the livers of striped bass. These compounds may contribute to the decline of the striped bass in San Francisco Bay-Delta Estuary.

  18. Algal Biomass as an Indicator for Biochemical Oxygen Demand in the San Joaquin River, California.

    NASA Astrophysics Data System (ADS)

    Volkmar, E. C.; Dalhgren, R. A.

    2005-12-01

    Episodes of hypoxia (DO < 2 mg/L) occur in the lower San Joaquin River (SJR), California, and are typically most acute in the late summer and fall. The oxygen deficit can stress and kill aquatic organisms, and often inhibits the upstream migration of fall-run Chinook salmon. Hypoxia is most pronounced downstream from the Stockton Deep Water Ship Channel, which has been dredged from a depth of 2-3 m to about 11 m to allow ocean-going ships to reach the Port of Stockton. To protect aquatic organisms and facilitate the upstream migration of fall-run Chinook salmon, the minimum water quality standard for DO is 6 mg/L during September through November, and 5 mg/L for the remainder of the year. A five year study examined components contributing to biochemical oxygen demand (BOD): ammonia, algal biomass, non-algal particulate organic matter, and dissolved organic carbon. BOD shows a significant increase in loading rates as the SJR flows downstream, which parallels the load of algal biomass due to instream growth. BOD loading rates from tributaries accounts for 28% in a wet year and 39% in a dry year. Regression analysis revealed that chlorophyll-a + pheophyton-a was the only significant (p<0.05) predictor for BOD (r2 = 0.71). Less than 20% of the BOD was found in the dissolved fraction (<0.45 μm). The average BOD decomposition rate of the SJR and tributaries is 0.0841 d-1. We conclude that algal biomass is the primary contributor to BOD loads in the San Joaquin River.

  19. A new seamless, high-resolution digital elevation model of the San Francisco Bay-Delta Estuary, California

    USGS Publications Warehouse

    Fregoso, Theresa A.; Wang, Rueen-Fang; Ateljevich, Eli; Jaffe, Bruce E.

    2017-06-14

    Climate change, sea-level rise, and human development have contributed to the changing geomorphology of the San Francisco Bay - Delta (Bay-Delta) Estuary system. The need to predict scenarios of change led to the development of a new seamless, high-resolution digital elevation model (DEM) of the Bay – Delta that can be used by modelers attempting to understand potential future changes to the estuary system. This report details the three phases of the creation of this DEM. The first phase took a bathymetric-only DEM created in 2005 by the U.S. Geological Survey (USGS), refined it with additional data, and identified areas that would benefit from new surveys. The second phase began a USGS collaboration with the California Department of Water Resources (DWR) that updated a 2012 DWR seamless bathymetric/topographic DEM of the Bay-Delta with input from the USGS and modifications to fit the specific needs of USGS modelers. The third phase took the work from phase 2 and expanded the coverage area in the north to include the Yolo Bypass up to the Fremont Weir, the Sacramento River up to Knights Landing, and the American River up to the Nimbus Dam, and added back in the elevations for interior islands. The constant evolution of the Bay-Delta will require continuous updates to the DEM of the Delta, and there still are areas with older data that would benefit from modern surveys. As a result, DWR plans to continue updating the DEM.

  20. Mapping Changes in the Distribution of Aquatic Plant Species in the Sacramento-San Joaquin Delta from Airborne AVIRIS-ng Data

    NASA Astrophysics Data System (ADS)

    Ustin, S.; Khanna, S.; Bellvert, J.; Ustin, J. D.; Shapiro, K.

    2016-12-01

    Starting in the late 1980s major invasive aquatic pests began to expand their distributions in the Sacramento-San Joaquin Delta, California, USA, an area of 2,219 Km2 with 1,800 Km waterways. The most aggressive are the floating weed, Eichhornia crassipes (water hyacinth) and the submerged Egeria densa (Brazilian waterweed). The distribution of these species has reportedly expanded during the 2011-2015 drought. We mapped the distributions of invasive aquatic species using data from NASA's Airborne Visible InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), which was flown over the Delta November 14, 15, 17, 24, 25, 2014 and September 17-21, 2015 by the Jet Propulsion Laboratory (JPL). AVIRIS-NG measures 432 bands across the visible and reflected solar infrared, in wavelengths between 346 nm to 2505 nm. Sixty-one flightlines were flown at a nominal spatial resolution of 2.5 m x 2.5 m each year. Field data, identifying locations of aquatic species (1,036 points in 2014 and 1,375 in 2015) were collected by boat between October 20-30, 2014 and September 9-17, 2015 and were used for training and validation. The Random Forest (RF) machine learning algorithm was used to classify the species locations each year. The resulting classification was highly consistent with the field data, and produced pixel-based overall accuracy from confusion matrices of 83.9% with kappa values > 0.8 (indicating excellent agreement) in 2014 and overall accuracy of 95.8 and kappa value > 0.9 in 2015. Species distributions were highly dynamic between years. Submerged macrophytes increased their extent and density in 2015 from 779.4 m2 in 2014 to 1170.6 m2. Floating macrophytes acreage decreased from 354.0 m2 in 2014 to 191.4 m2 in 2015. Water hyacinth cover decreased throughout the delta due to chemical control activities but much of the cleared area was replaced by water primrose or submerged species. Water primrose increased from 83.6 m2 in 2014 to 114.3 m2 in 2015.