Science.gov

Sample records for safe natural antimicrobial

  1. Novel natural food antimicrobials.

    PubMed

    Juneja, Vijay K; Dwivedi, Hari P; Yan, Xianghe

    2012-01-01

    Naturally occurring antimicrobial compounds could be applied as food preservatives to protect food quality and extend the shelf life of foods and beverages. These compounds are naturally produced and isolated from various sources, including plants, animals and microorganisms, in which they constitute part of host defense systems. Many naturally occurring compounds, such as nisin, plant essential oils, and natamycin, have been widely studied and are reported to be effective in their potential role as antimicrobial agents against spoilage and pathogenic microorganisms. Although some of these natural antimicrobials are commercially available and applied in food processing, their efficacy, consumer acceptance and regulation are not well defined. This manuscript reviews natural antimicrobial compounds with reference to their applications in food when applied individually or in combination with other hurdles. It also reviews the mechanism of action of selected natural antimicrobials, factors affecting their antimicrobial activities, and future prospects for use of natural antimicrobials in the food industry.

  2. Nanostructures for delivery of natural antimicrobials in food.

    PubMed

    Lopes, Nathalie Almeida; Brandelli, Adriano

    2017-04-10

    Natural antimicrobial compounds are a topic of utmost interest in food science due to the increased demand for safe and high-quality foods with minimal processing. The use of nanostructures is an interesting alternative to protect and delivery antimicrobials in food, also providing controlled release of natural compounds such as bacteriocins and antimicrobial proteins, and also for delivery of plant derived antimicrobials. A diversity of nanostructures are capable of trapping natural antimicrobials maintaining the stability of substances that are frequently sensitive to food processing and storage conditions. This article provides an overview on natural antimicrobials incorporated in nanostructures, showing an effective antimicrobial activity on a diversity of food spoilage and pathogenic microorganisms.

  3. Antimicrobial and cytotoxic activity of red propolis: an alert for its safe use.

    PubMed

    Lopez, B G-C; de Lourenço, C C; Alves, D A; Machado, D; Lancellotti, M; Sawaya, A C H F

    2015-09-01

    Red propolis is a resinous product popularly consumed in Brazil as it improves health, and it is considered a nutraceutical. The objective of this study was to test the antimicrobial activity of eight samples of red propolis from Brazil and Cuba to assess the possibility of application of this natural product as an antimicrobial agent, along with a study of its cytotoxic activity against non-tumor cell lines to evaluate at which concentrations it could be safely used. The chemical profile of the samples was evaluated by UHPLC-MS. All the samples presented antimicrobial activity which was tested using agar diffusion and serial dilution methods; and these samples displayed a better activity against most Gram-negative bacteria with minimum inhibitory concentration (MIC) in the range between 6·25 μg ml(-1) and 500 μg ml(-1). However our studies also revealed an inherent cytotoxic effect against HaCaT human keratinocytes and BALBc 3T3. To have a noncytotoxic and safe use of red propolis, it is necessary to use a concentration below the IC50 cytotoxic values. The traditional use of propolis does not necessarily guarantee its safety. The evaluation of the safety of bioactive natural products should always be considered together with the evaluation of the activity. © 2015 The Society for Applied Microbiology.

  4. Safe, acceptable anti-microbial strategies for distillate fuels

    SciTech Connect

    Hill, E.C.

    1995-05-01

    Microbiological fouling, spoilage and corrosion have for years been considered as end-user problems but they have now become endemic up-stream affecting cargoes, tank farms and terminals. Trading agreements to share storage and distribution facilities impose the need to mutually agree antimicrobial strategies which satisfy all health, safety and environmental regulations wherever that fuel is distributed and used. Also agreed must be the infection levels at which antimicrobial action is initiated. Physical decontamination methods are described and the use of biocides discussed in relation to increasing regulatory restrictions.

  5. Food applications of natural antimicrobial compounds

    PubMed Central

    Lucera, Annalisa; Costa, Cristina; Conte, Amalia; Del Nobile, Matteo A.

    2012-01-01

    In agreement with the current trend of giving value to natural and renewable resources, the use of natural antimicrobial compounds, particularly in food and biomedical applications, becomes very frequent. The direct addition of natural compounds to food is the most common method of application, even if numerous efforts have been made to find alternative solutions to the aim of avoiding undesirable inactivation. Dipping, spraying, and coating treatment of food with active solutions are currently applied to product prior to packaging as valid options. The aim of the current work is to give an overview on the use of natural compounds in food sector. In particular, the review will gather numerous case-studies of meat, fish, dairy products, minimally processed fruit and vegetables, and cereal-based products where these compounds found application. PMID:23060862

  6. Food applications of natural antimicrobial compounds.

    PubMed

    Lucera, Annalisa; Costa, Cristina; Conte, Amalia; Del Nobile, Matteo A

    2012-01-01

    In agreement with the current trend of giving value to natural and renewable resources, the use of natural antimicrobial compounds, particularly in food and biomedical applications, becomes very frequent. The direct addition of natural compounds to food is the most common method of application, even if numerous efforts have been made to find alternative solutions to the aim of avoiding undesirable inactivation. Dipping, spraying, and coating treatment of food with active solutions are currently applied to product prior to packaging as valid options. The aim of the current work is to give an overview on the use of natural compounds in food sector. In particular, the review will gather numerous case-studies of meat, fish, dairy products, minimally processed fruit and vegetables, and cereal-based products where these compounds found application.

  7. Novel food packaging systems with natural antimicrobial agents.

    PubMed

    Irkin, Reyhan; Esmer, Ozlem Kizilirmak

    2015-10-01

    A new type of packaging that combines food packaging materials with antimicrobial substances to control microbial surface contamination of foods to enhance product microbial safety and to extend shelf-life is attracting interest in the packaging industry. Several antimicrobial compounds can be combined with different types of packaging materials. But in recent years, since consumer demand for natural food ingredients has increased because of safety and availability, these natural compounds are beginning to replace the chemical additives in foods and are perceived to be safer and claimed to alleviate safety concerns. Recent research studies are mainly focused on the application of natural antimicrobials in food packaging system. Biologically derived compounds like bacteriocins, phytochemicals, enzymes can be used in antimicrobial food packaging. The aim of this review is to give an overview of most important knowledge about application of natural antimicrobial packagings with model food systems and their antimicrobial effects on food products.

  8. An overview of natural antimicrobials role in food.

    PubMed

    Pisoschi, Aurelia Magdalena; Pop, Aneta; Georgescu, Cecilia; Turcuş, Violeta; Olah, Neli Kinga; Mathe, Endre

    2018-01-01

    The present paper aims to review the natural food preservatives with antimicrobial properties emphasizing their importance for the future of food manufacturing and consumers' health. The extraction procedures applied to natural antimicrobials will be considered, followed by the description of some natural preservatives' antimicrobial mechanism of action, including (i) membrane rupture with ATP-ase activity inhibition, (ii) leakage of essential biomolecules from the cell, (iii) disruption of the proton motive force and (iiii) enzyme inactivation. Moreover, a provenance-based classification of natural antimicrobials is discussed by considering the sources of origin for the major natural preservative categories: plants, animals, microbes and fungi. As well, the structure influence on the antimicrobial potential is considered. Natural preservatives could also constitute a viable alternative to address the critical problem of microbial resistance, and to hamper the negative side effects of some synthetic compounds, while meeting the requirements for food safety, and exerting no negative impact on nutritional and sensory attributes of foodstuffs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Proactive Approach for Safe Use of Antimicrobial Coatings in Healthcare Settings: Opinion of the COST Action Network AMiCI

    PubMed Central

    Ahonen, Merja; Kahru, Anne; Ivask, Angela; Kasemets, Kaja; Kõljalg, Siiri; Mantecca, Paride; Vinković Vrček, Ivana; Keinänen-Toivola, Minna M.; Crijns, Francy

    2017-01-01

    Infections and infectious diseases are considered a major challenge to human health in healthcare units worldwide. This opinion paper was initiated by EU COST Action network AMiCI (AntiMicrobial Coating Innovations) and focuses on scientific information essential for weighing the risks and benefits of antimicrobial surfaces in healthcare settings. Particular attention is drawn on nanomaterial-based antimicrobial surfaces in frequently-touched areas in healthcare settings and the potential of these nano-enabled coatings to induce (eco)toxicological hazard and antimicrobial resistance. Possibilities to minimize those risks e.g., at the level of safe-by-design are demonstrated. PMID:28362344

  10. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-11-25

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  11. NATURAL ANTIMICROBIALS AND THEIR ROLE IN VAGINAL HEALTH: A SHORT REVIEW

    PubMed Central

    Dover, S. E.; Aroutcheva, A. A.; Faro, S.; Chikindas, M. L.

    2009-01-01

    Lactobacillus species maintain the vaginal ecosystem in a healthy condition by production of antimicrobial substances. Depletion of lactobacilli in the vagina results in bacterial vaginosis (BV), where the normal flora is replaced by several bacterial pathogens, usually Gardnerella vaginalis and obligate anaerobes. BV may cause complications such as premature labor, low birth weight and increased risk of HIV acquisition. The currently recommended antibiotic treatments for BV are not always effective and often lead to reoccurrence of the infection. In many cases, this is due to the antibiotic-resistant forms of the pathogens. Therefore, there is an interest in the development of treatments using antimicrobials derived primarily from Lactobacillus spp., such as ribosomally produced antimicrobial peptides (bacteriocins) and lactic acid. These substances effectively inhibit pathogenic bacteria, are safe and do not pose any threat to healthy vaginal Lactobacillus spp. It may be possible to find an effective treatment against BV while reducing the infection’s reoccurrence and the treatment-related complications through hurdle technology. This would be achieved by combining antimicrobials produced by Lactobacillus spp. with different natural antimicrobials obtained from plants or other non-pathogenic organisms. PMID:20657710

  12. All Natural and Clean-Label Preservatives and Antimicrobial Agents Used during Poultry Processing and Packaging.

    PubMed

    Grant, Ar'quette; Parveen, Salina

    2017-04-01

    The poultry industry is faced with compounding pressures of maintaining product safety and wholesomeness while keeping up with consumer trends of all-natural foods and label accuracy. Consumers are increasingly demanding that their foods be minimally processed and contain compounds that are easily read and recognized, i.e., products must be clean labeled. The purpose of this review is to briefly describe several natural antimicrobial agents that can be incorporated into poultry processing. These compounds and their essential oils were included in this mini-review because they are generally recognized as safe by the U.S. Food and Drug Administration and are considered clean label: thyme extract, rosemary extract, garlic, and oregano. This list of natural antimicrobial agents by no means includes all of the options available to poultry processors. Rather, this review provides a brief glance at the potential these natural antimicrobial agents have in terms of reduced pathogenicity, increased shelf stability, and sensory acceptability through direct product application or as part of the product packaging.

  13. 77 FR 23105 - Supporting Safe and Responsible Development of Unconventional Domestic Natural Gas Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... Safe and Responsible Development of Unconventional Domestic Natural Gas Resources #0; #0; #0..., 2012 Supporting Safe and Responsible Development of Unconventional Domestic Natural Gas Resources By... and responsible development of unconventional domestic natural gas resources and associated...

  14. Development of non-natural flavanones as antimicrobial agents.

    PubMed

    Fowler, Zachary L; Shah, Karan; Panepinto, John C; Jacobs, Amy; Koffas, Mattheos A G

    2011-01-01

    With growing concerns over multidrug resistance microorganisms, particularly strains of bacteria and fungi, evolving to become resistant to the antimicrobial agents used against them, the identification of new molecular targets becomes paramount for novel treatment options. Recently, the use of new treatments containing multiple active ingredients has been shown to increase the effectiveness of existing molecules for some infections, often with these added compounds enabling the transport of a toxic molecule into the infecting species. Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Combining these ideas we first sought to investigate the potency of natural flavonoids in the presence of efflux pump inhibitors to limit Escherichia coli growth. Then we used the natural flavonoid scaffold to synthesize non-natural flavanone molecules and further evaluate their antimicrobial efficacy on Escherichia coli, Bacillus subtilis and the fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus. Of those screened, we identified the synthetic molecule 4-chloro-flavanone as the most potent antimicrobial compound with a MIC value of 70 µg/mL in E. coli when combined with the inhibitor Phe-Arg-ß-naphthylamide, and MICs of 30 µg/mL in S. cerevesiae and 30 µg/mL in C. neoformans when used alone. Through this study we have demonstrated that combinatorial synthesis of non-natural flavonones can identify novel antimicrobial agents with activity against bacteria and fungi but with minimal toxicity to human cells.

  15. Development of Non-Natural Flavanones as Antimicrobial Agents

    PubMed Central

    Fowler, Zachary L.; Shah, Karan; Panepinto, John C.; Jacobs, Amy; Koffas, Mattheos A. G.

    2011-01-01

    With growing concerns over multidrug resistance microorganisms, particularly strains of bacteria and fungi, evolving to become resistant to the antimicrobial agents used against them, the identification of new molecular targets becomes paramount for novel treatment options. Recently, the use of new treatments containing multiple active ingredients has been shown to increase the effectiveness of existing molecules for some infections, often with these added compounds enabling the transport of a toxic molecule into the infecting species. Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Combining these ideas we first sought to investigate the potency of natural flavonoids in the presence of efflux pump inhibitors to limit Escherichia coli growth. Then we used the natural flavonoid scaffold to synthesize non-natural flavanone molecules and further evaluate their antimicrobial efficacy on Escherichia coli, Bacillus subtilis and the fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus. Of those screened, we identified the synthetic molecule 4-chloro-flavanone as the most potent antimicrobial compound with a MIC value of 70 µg/mL in E. coli when combined with the inhibitor Phe-Arg-ß-naphthylamide, and MICs of 30 µg/mL in S. cerevesiae and 30 µg/mL in C. neoformans when used alone. Through this study we have demonstrated that combinatorial synthesis of non-natural flavonones can identify novel antimicrobial agents with activity against bacteria and fungi but with minimal toxicity to human cells. PMID:22039419

  16. Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles

    PubMed Central

    Yun, Ji Ho; Lee, Jung Eun; Lee, Hee Ju; Nho, Chu Won; Bae, Gwi- Nam; Jung, Jae Hee

    2015-01-01

    Controlling bioaerosols has become more important with increasing participation in indoor activities. Treatments using natural-product nanomaterials are a promising technique because of their relatively low toxicity compared to inorganic nanomaterials such as silver nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity, filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and antimicrobial activity increased as a function of nanoparticle deposition time (590, 855, and 1150 µg/cm2filter at 3-, 6-, and 9-min depositions, respectively). In filter tests, the antimicrobial efficacy was greater against Staphylococcus epidermidis than Micrococcus luteus; ~61, ~73, and ~82% of M. luteus cells were inactivated on filters that had been coated for 3, 6, and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S. epidermidis. Although statistically significant differences in filtration performance were not observed between samples as a function of deposition time, the average filtration efficacy was slightly higher for S. epidermidis aerosols (~97%) than for M. luteus aerosols (~95%). High-performance liquid chromatography (HPLC) and electrospray ionization-tandem mass spectrometry (ESI/MS) analyses confirmed that the major chemical compounds in the E. japonica extract were 1(ß)-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaempferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bacterial strains than a reference soluble nickel compound, which is classified as a human carcinogen. This study provides valuable information for the development of a bioaerosol control

  17. Essential oils as natural food antimicrobial agents: a review.

    PubMed

    Vergis, Jess; Gokulakrishnan, P; Agarwal, R K; Kumar, Ashok

    2015-01-01

    Food-borne illnesses pose a real scourge in the present scenario as the consumerism of packaged food has increased to a great extend. Pathogens entering the packaged foods may survive longer, which needs a check. Antimicrobial agents either alone or in combination are added to the food or packaging materials for this purpose. Exploiting the antimicrobial property, essential oils are considered as a "natural" remedy to this problem other than its flavoring property instead of using synthetic agents. The essential oils are well known for its antibacterial, antiviral, antimycotic, antiparasitic, and antioxidant properties due to the presence of phenolic functional group. Gram-positive organisms are found more susceptible to the action of the essential oils. Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives. This review is intended to provide an overview of the essential oils and their role as natural antimicrobial agents in the food industry.

  18. Antimicrobial nanomaterials derived from natural products—A review

    DOE PAGES

    Wang, Ji; Vermerris, Wilfred

    2016-03-30

    Modern medicine has relied heavily on the availability of effective antibiotics to manage infections and enable invasive surgery. With the emergence of antibiotic-resistant bacteria, novel approaches are necessary to prevent the formation of biofilms on sensitive surfaces such as medical implants. Advances in nanotechnology have resulted in novel materials and the ability to create novel surface topographies. This review article provides an overview of advances in the fabrication of antimicrobial nanomaterials that are derived from biological polymers or that rely on the incorporation of natural compounds with antimicrobial activity in nanofibers made from synthetic materials. Furthermore, the availability of thesemore » novel materials will contribute to ensuring that the current level of medical care can be maintained as more bacteria are expected to develop resistance against existing antibiotics.« less

  19. Antimicrobial nanomaterials derived from natural products—A review

    SciTech Connect

    Wang, Ji; Vermerris, Wilfred

    Modern medicine has relied heavily on the availability of effective antibiotics to manage infections and enable invasive surgery. With the emergence of antibiotic-resistant bacteria, novel approaches are necessary to prevent the formation of biofilms on sensitive surfaces such as medical implants. Advances in nanotechnology have resulted in novel materials and the ability to create novel surface topographies. This review article provides an overview of advances in the fabrication of antimicrobial nanomaterials that are derived from biological polymers or that rely on the incorporation of natural compounds with antimicrobial activity in nanofibers made from synthetic materials. Furthermore, the availability of thesemore » novel materials will contribute to ensuring that the current level of medical care can be maintained as more bacteria are expected to develop resistance against existing antibiotics.« less

  20. Antimicrobial Nanomaterials Derived from Natural Products—A Review

    PubMed Central

    Wang, Ji; Vermerris, Wilfred

    2016-01-01

    Modern medicine has relied heavily on the availability of effective antibiotics to manage infections and enable invasive surgery. With the emergence of antibiotic-resistant bacteria, novel approaches are necessary to prevent the formation of biofilms on sensitive surfaces such as medical implants. Advances in nanotechnology have resulted in novel materials and the ability to create novel surface topographies. This review article provides an overview of advances in the fabrication of antimicrobial nanomaterials that are derived from biological polymers or that rely on the incorporation of natural compounds with antimicrobial activity in nanofibers made from synthetic materials. The availability of these novel materials will contribute to ensuring that the current level of medical care can be maintained as more bacteria are expected to develop resistance against existing antibiotics. PMID:28773379

  1. Evaluating natural antimicrobials for food application, in natural antimicrobials for food safety and quality

    USDA-ARS?s Scientific Manuscript database

    The microflora of foods is of practical significance to producers, processors and consumers. Food manufacturers and distributors are responding to consumers’ demand for food products that are safe, fresher and convenient for use. In some cases foods may be improperly processed and/or contaminated wi...

  2. The synergism of natural compounds in the pursuit of safe and healthier food.

    PubMed

    Szczepaniak, S; Polanska, M; Van Assche, A; Moloney, R; Willems, K A

    2011-01-01

    Food producers apply modern processing techniques and use a variety of preservative additives to guarantee safe food and a longer shelflife. Regrettably many of these impact the sensory characteristics of the foodstuffs, such as colour, texture, and flavour, which can result in low consumer acceptance. Additionally, strategies used to reduce growth of spoilage and pathogenic bacteria are not selective enough and may inactivate also desired microbiota. Food is usually overdosed with antimicrobials that are supplemented 'just in case.' Consequently, food producers are searching for natural preservation methods that are not harmful to humans. Nature offers a wide spectrum of biologically active (phyto) chemicals that can be used as potential natural preservatives. Compounds with bacterial growth-limiting properties are detected in all parts of plants, including their leaves, flowers, fruits, roots, etc. These are mostly acids, alcohols, medium and long-chain organic acids, terpenic compounds, and their derivatives. This study focused on the effectiveness of plant extracts, i.e., synergism between terpenoids and medium chain fatty acids in cured cooked meat. Bacterial strains that were tested include typical members of the spoilage microflora in vacuum (Lactobacillus curvatus) and MA-packed meats (Brochothrix thermosphacta). These were isolated and identified in a separate study. L. curvatus was observed to be very resistant against either terpenoids or fatty acids when used separately, whereas its growth was strongly inhibited when both chemicals were combined. Growth of B. thermosphacta was significantly inhibited when antimicrobial compounds were solely applied, whereas a blend of terpenoids and fatty acids showed an almost bactericidal effect.

  3. Antioxidant and antimicrobial activity of natural phenolic extract from defatted soybean flour by-product for stone fruit postharvest application.

    PubMed

    Villalobos, María del Carmen; Serradilla, Manuel Joaquín; Martín, Alberto; Ordiales, Elena; Ruiz-Moyano, Santiago; Córdoba, María de Guía

    2016-04-01

    Fresh fruit is highly perishable during storage and transport, so there has been growing interest in finding safe and natural antimicrobial compounds as a control tool. Phenolic compounds are secondary metabolites naturally present in vegetable material and have been associated with antimicrobial and antioxidant properties. Therefore, the aim of this study was to investigate the antioxidant capacity and potential antimicrobial effect of phenolic extract obtained from defatted soybean flour against selected pathogenic bacteria and microorganisms responsible of fruit decay. Analysis of phenolic composition by HPLC-MS showed the presence of a wide range of compounds, with isoflavones and phenolic acids the main polyphenols identified. Furthermore, the phenolic extract had important antioxidant activity by two different assays. Related to antimicrobial activity, in vitro experiments demonstrated that phenolic extract displayed a high activity against the main foodborne pathogens, while a moderate inhibition was found against five spoilage yeasts and Monilia laxa and a scarce effect for Penicillium glabrum, Cladosporium uredinicola and Botrytis cinerea. Interestingly these compounds considerably inhibited the mycelial growth of Monilia laxa, in both in vitro and in vivo experiments. The results of the present study revealed that defatted soybean flour is an important source of phenolic compounds with remarkable antimicrobial and antioxidant activity, suggesting the possibility of using them as natural additives in postharvest treatments to extend the shelf life of fruit. © 2015 Society of Chemical Industry.

  4. In Search of a Safe Natural Sleep Aid.

    PubMed

    Rao, Theertham P; Ozeki, Motoko; Juneja, Lekh R

    2015-01-01

    Sleep deprivation is associated with an elevated risk of various diseases and leads to a poor quality of life and negative socioeconomic consequences. Sleep inducers such as drugs and herbal medicines may often lead to dependence and other side effects. L-Theanine (γ-glutamylethylamide), an amino acid naturally found abundant in tea leaves, has anxiolytic effects via the induction of α brain waves without additive and other side effects associated with conventional sleep inducers. Anxiolysis is required for the initiation of high-quality sleep. In this study, we review the mechanism(s), safety, and efficacy of L-theanine. Collectively, sleep studies based on an actigraph, the obstructive sleep apnea (OSA) sleep inventory questionnaire, wakeup after sleep onset (WASO) and automatic nervous system (ANS) assessment, sympathetic and parasympathetic nerve activities, and a pediatric sleep questionnaire (PSQ) suggest that the administration of 200 mg of L-theanine before bed may support improved sleep quality not by sedation but through anxiolysis. Because L-theanine does not induce daytime drowsiness, it may be useful at any time of the day. The no observable adverse effect level (NOAEL) for the oral administration of L-theanine was determined to be above 2000 mg/kg bw/day. KEY TEACHING POINTS: Sleep deprivation-associated morbidity is an increasing public health concern posing a substantial socioeconomic burden. Chronic sleep disorders may seriously affect quality of life and may be etiological factors in a number of chronic diseases such as depression, obesity, diabetes, and cardiovascular diseases. Most sleep inducers are sedatives and are often associated with addiction and other side effects. L-Theanine promotes relaxation without drowsiness. Unlike conventional sleep inducers, L-theanine is not a sedative but promotes good quality of sleep through anxiolysis. This review suggests that L-theanine is a safe natural sleep aid.

  5. Evaluation of linalool, a natural antimicrobial and insecticidal essential oil from basil: effects on poultry.

    PubMed

    Beier, Ross C; Byrd, J Allen; Kubena, Leon F; Hume, Michael E; McReynolds, Jackson L; Anderson, Robin C; Nisbet, David J

    2014-02-01

    Linalool is a natural plant-product used in perfumes, cosmetics, and flavoring agents. Linalool has proven antimicrobial and insect-repellent properties, which indicate it might be useful for control of enteropathogens or insect pests in poultry production. However, there are no published reports that linalool may be safely administered to or tolerated by chickens. Linalool was added to the diets of day-of-hatch chicks, and they were fed linalool-supplemented diets for 3 wk. We studied the effects of linalool on serum chemistry, gross pathology, feed conversion, and relative liver weights. Linalool had a dramatic negative dose-dependent effect on feed conversion at concentrations in the feed exceeding 2% linalool, but not on gross pathology. Liver weights were significantly increased in the 5% linalool-treated birds. There was a statistical effect on blood glucose, but this parameter remained below the cut-offs for elevated serum glucose, and the result is likely of no biological significance. Linalool caused serum aspartate aminotransferase (AST) levels to increase, but it did not increase serum gamma-glutamyl transferase levels. The linalool effect on AST was dose-dependent, but in linalool doses between 0.1 and 2% of the feed, AST was not elevated beyond normal parameters. Linalool at 2% or less may be safely added to chicken feed. We suggest future studies to evaluate the addition of linalool to the litter, where it may be used as an antimicrobial or an insect repellent or to produce a calming effect.

  6. Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review.

    PubMed

    Castro-Rosas, Javier; Ferreira-Grosso, Carlos Raimundo; Gómez-Aldapa, Carlos Alberto; Rangel-Vargas, Esmeralda; Rodríguez-Marín, María Luisa; Guzmán-Ortiz, Fabiola Araceli; Falfan-Cortes, Reyna Nallely

    2017-12-01

    Food safety and microbiological quality are major priorities in the food industry. In recent years, there has been an increasing interest in the use of natural antimicrobials in food products. An ongoing challenge with natural antimicrobials is their degradation during food storage and/or processing, which reduces their antimicrobial activity. This creates the necessity for treatments that maintain their stability and/or activity when applied to food. Microencapsulation of natural antimicrobial compounds is a promising alternative once this technique consists of producing microparticles, which protect the encapsulated active substances. In other words, the material to be protected is embedded inside another material or system known as wall material. There are few reports in the literature about microencapsulation of antimicrobial compounds. These published articles report evidence of increased antimicrobial stability and activity when the antimicrobials are microencapsulated when compared to unprotected ones during storage. This review focuses mainly on natural sources of antimicrobial compounds and the methodological approach for encapsulating these natural compounds. Current data on the microencapsulation of antimicrobial compounds and their incorporation into food suggests that 1) encapsulation increases compound stability during storage and 2) encapsulation of antimicrobial compounds reduces their interaction with food components, preventing their inactivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Natural antimicrobial peptides as promising anti-HIV candidates

    PubMed Central

    Wang, Guangshun

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection remains to be one of the major global health problems. It is thus necessary to identify novel therapeutic molecules to combat HIV-1. Natural antimicrobial peptides (AMPs) have been recognized as promising templates for developing topical microbicides. This review systematically discusses over 80 anti-HIV peptides annotated in the antimicrobial peptide database (http://aps.unmc.edu/AP). Such peptides have been discovered from bacteria, plants, and animals. Examples include gramicidin and bacteriocins from bacteria, cyclotides from plants, melittins and cecropins from insects, piscidins from fish, ascaphins, caerins, dermaseptins, esculentins, and maximins from amphibians, and cathelicidins and defensins from vertebrates. These peptides appear to work by different mechanisms and could block viral entry in multiple ways. As additional advantages, such anti-HIV peptides may possess other desired features such as antibacterial, antiparasital, spermicidal, and anticancer activity. With continued optimization of peptide stability, production, formulation and delivery methods, it is anticipated that some of these compounds may eventually become new anti-HIV drugs. PMID:26834391

  8. Antimicrobial activity of new porphyrins of synthetic and natural origin

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghazaryan, Robert K.; Paronyan, Marina H.; Ulikhanyan, Ghukas I.; Gyulkhandanyan, Aram G.; Sahakyan, Lida A.

    2012-03-01

    Antimicrobial photodynamic inactivation has been successfully used against Gram (+) microorganisms, but most of the photosensitizers (PSs) on Gram (-) bacteria acts weakly. PSs are the natural or synthetic origin dyes, mainly porphyrins. We have synthesized more than 100 new cationic porphyrins and metalloporphyrins with different functional groups (hydroxyethyl, butyl, allyl, methallyl) and metals (cobalt, iron, copper, zinc, silver and other); from the nettle have also been purified pheophytin (a+b) and pheophytin (a) and have synthesized their Ag-and Zn-metalloporphyrins. It was found that in the dark (cytotoxic) mode, the most highly efficiency against microorganisms showed Agmetalloporphyrins of both types of porphyrins (synthetic and natural). Metalloporphyrin of natural origin Ag-pheophytin (a + b) is a strong antibacterial agent and causes 100% death as the Gram (+) microorganisms (St. aureus and MRSA) and the Gram (-) microorganisms (E.coli and Salmonella). It is established that for the destruction of Gram (+) and Gram (-) microorganisms in photodynamic mode cationic water-soluble synthetic metalloporphyrins, especially Zn-TBut4PyP, many times more effective than pheophytins. In vivo conditions on mice established that the best therapeutic activity against various strains of the microorganism St. aureus has the synthetic metalloporphyrin Ag-TBut4PyP. It is significantly more efficient than known drug "Chlorophyllipt" (2.5-3 times) and leads the survival rate of animals up to 50-60%.

  9. Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents.

    PubMed

    Radošević, Kristina; Čanak, Iva; Panić, Manuela; Markov, Ksenija; Bubalo, Marina Cvjetko; Frece, Jadranka; Srček, Višnja Gaurina; Redovniković, Ivana Radojčić

    2018-03-09

    Natural deep eutectic solvents (NADES) are a new generation of green solvents. They are mixtures of two or three compounds such as choline chloride as a cationic salt and alcohols, acids, amides, amines or sugars as hydrogen-bond donors. Although the majority of NADES' components are of natural origin and therefore NADES are often presumed to be non-toxic, the evaluation of their toxicity and biodegradability must accompany the research on their synthesis and application. Therefore, the aim of this work was to investigate the effect of ten synthesised NADES towards bacteria (i.e., Escherichia coli, Proteus mirabilis, Salmonella typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus), yeast (i.e., Candida albicans) and human cell lines (i.e., HeLa, MCF-7 and HEK293T). In addition, oxygen radical absorbance capacity (ORAC) method was used to determine the antioxidative activity of the tested NADES. Differences in toxicity response between microorganisms and cell lines were observed, and only NADES that contained organic acid showed toxicity towards the test systems. Furthermore, the NADES containing compounds that possess antioxidative activity also showed antioxidative activity. However, research whose primary purpose is the synthesis and application of NADES must be followed by an evaluation of their biological properties (e.g., antimicrobial activity, toxicity towards animal cells and antioxidative or other biological activity) to find the solvent with the best profile for wider industrial applications.

  10. Antimicrobial activities of natural antimicrobial compounds against susceptible and antibiotic-resistant pathogens in the absence and presence of food

    USDA-ARS?s Scientific Manuscript database

    In an effort to improve microbial food safety, we are studying the antimicrobial activities of different classes of natural compounds including plant essential oils, apple, grape, olive, and tea extracts, bioactive components, and seashell-derived chitosans against multiple foodborne pathogens in cu...

  11. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food.

    PubMed

    Rai, Mahendra; Pandit, Raksha; Gaikwad, Swapnil; Kövics, György

    2016-09-01

    Antimicrobial peptides (AMPs) are diverse group of natural proteins present in animals, plants, insects and bacteria. These peptides are responsible for defense of host from pathogenic organisms. Chemical, enzymatic and recombinant techniques are used for the synthesis of antimicrobial peptides. These peptides have been found to be an alternative to the chemical preservatives. Currently, nisin is the only antimicrobial peptide, which is widely utilized in the preservation of food. Antimicrobial peptides can be used alone or in combination with other antimicrobial, essential oils and polymeric nanoparticles to enhance the shelf-life of food. This review presents an overview on different types of antimicrobial peptides, purification techniques, mode of action and application in food preservation.

  12. Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications.

    PubMed

    Shim, Kyudae; Abdellatif, Mohamed; Choi, Eunsoo; Kim, Dongkyun

    2017-04-01

    The safety and effectiveness of antimicrobial ZnO films must be established for general applications. In this study, the antimicrobial activity, skin irritation, elution behavior, and mechanical properties of nanostructured ZnO films on stainless steel were evaluated. ZnO nanoparticle (NP) and ZnO nanowall (NW) structures were prepared with different surface roughnesses, wettability, and concentrations using an RF magnetron sputtering system. The thicknesses of ZnO NP and ZnO NW were approximately 300 and 620 nm, respectively, and ZnO NW had two diffraction directions of [0002] and [01-10] based on high-resolution transmission electron microscopy. The ZnO NW structure demonstrated 99.9% antimicrobial inhibition against Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum, and no skin irritation was detected using experimental rabbits. Approximately 27.2 ± 3.0 μg L -1 Zn ions were eluted from the ZnO NW film at 100 °C for 24 h, which satisfies the WHO guidelines for drinking water quality. Furthermore, the Vickers hardness and fracture toughness of ZnO NW films on stainless steel were enhanced by 11 and 14% compared to those of the parent stainless steel. Based on these results, ZnO NW films on STS316L sheets are useful for household supplies, such as water pipes, faucets, and stainless steel containers.

  13. Antimicrobial Properties of Natural Phenols and Related Compounds

    PubMed Central

    Jurd, L.; King, A. D.; Mihara, K.; Stanley, W. L.

    1971-01-01

    Obtusastyrene (4-cinnamylphenol) displays effective antimicrobial activity in vitro against a variety of gram-positive bacteria, yeasts, and molds. The activity of obtusastyrene is not appreciably affected by pH, and its minimal inhibitory concentrations, 12 to 25 μg/ml for bacteria and 12 to 100 μg/ml for fungi, compare favorably with those of a number of synthetic, phenolic antimicrobial agents. PMID:5553287

  14. Antimicrobial susceptibility of foodborne pathogens in organic or natural production systems: an overview.

    PubMed

    Jacob, Megan E; Fox, James Trent; Reinstein, Shelby L; Nagaraja, T G

    2008-12-01

    Organic and natural food production systems are increasing in popularity, at least partially because consumers perceive that these niche markets provide healthier and safer food products. One major difference between these niche markets and conventional production systems is the use of antimicrobials. Because antimicrobial agents exert selective pressures for antimicrobial resistance, relating antimicrobial susceptibility of foodborne bacteria to niche market production systems is of interest. Other differences between production systems might also influence the susceptibility of foodborne pathogens. The objective of this review is to compare the impact of food animal production systems on the antimicrobial susceptibility of common foodborne bacterial pathogens. Studies comparing the susceptibility of such pathogens were diverse in terms of geographic location, procedures, species of bacteria, and antimicrobials evaluated; thus, it was difficult to draw conclusions. The literature is highly variable in terms of production type and practices and susceptibility associations, although few studies have compared truly organic and conventional practices. When statistical associations were found between production type and minimum inhibitory concentrations or percentage of isolates resistant for a particular pathogen, the isolates from conventionally reared animals/products were more commonly resistant than the comparison group (organic, antibiotic free, etc.). Therefore, further studies are needed to better assess public health consequences of antimicrobial resistance and food animal production systems, specifically organic or natural versus conventional.

  15. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods.

    PubMed

    Aminlari, Ladan; Hashemi, Marjan Mohammadi; Aminlari, Mahmoud

    2014-06-01

    In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which

  16. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials

    PubMed Central

    Choudhary, Alka; Naughton, Lynn M.; Montánchez, Itxaso

    2017-01-01

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012–2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds. PMID:28846659

  17. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials.

    PubMed

    Choudhary, Alka; Naughton, Lynn M; Montánchez, Itxaso; Dobson, Alan D W; Rai, Dilip K

    2017-08-28

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012-2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.

  18. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays.

    PubMed

    Martynková, Grazyna Simha; Valásková, Marta

    2014-01-01

    The review is focused on the recent research and development of antimicrobial nanocomposites based on selected carbon nanomaterials and natural nanoclay minerals. The nanocomposites comprised of two or several components, where at least one presents antimicrobial properties, are discussed. Yet the most popular agent remains silver as nanoparticle or in ionic form. Second, broadly studied group, are organics as additives or polymeric matrices. Both carbons and clays in certain forms possess antimicrobial properties. A lot of interest is put on to research graphene oxide. The low-environmental impact technologies-based on sustainable biopolymers have been studied. Testing of antimicrobial properties of nanomaterials is performed most frequently on E. coli and S. aureus bacterias.

  19. Status, Antimicrobial Mechanism, and Regulation of Natural Preservatives in Livestock Food Systems.

    PubMed

    Lee, Na-Kyoung; Paik, Hyun-Dong

    2016-01-01

    This review discusses the status, antimicrobial mechanisms, application, and regulation of natural preservatives in livestock food systems. Conventional preservatives are synthetic chemical substances including nitrates/nitrites, sulfites, sodium benzoate, propyl gallate, and potassium sorbate. The use of artificial preservatives is being reconsidered because of concerns relating to headache, allergies, and cancer. As the demand for biopreservation in food systems has increased, new natural antimicrobial compounds of various origins are being developed, including plant-derived products (polyphenolics, essential oils, plant antimicrobial peptides (pAMPs)), animal-derived products (lysozymes, lactoperoxidase, lactoferrin, ovotransferrin, antimicrobial peptide (AMP), chitosan and others), and microbial metabolites (nisin, natamycin, pullulan, ε-polylysine, organic acid, and others). These natural preservatives act by inhibiting microbial cell walls/membranes, DNA/RNA replication and transcription, protein synthesis, and metabolism. Natural preservatives have been recognized for their safety; however, these substances can influence color, smell, and toxicity in large amounts while being effective as a food preservative. Therefore, to evaluate the safety and toxicity of natural preservatives, various trials including combinations of other substances or different food preservation systems, and capsulation have been performed. Natamycin and nisin are currently the only natural preservatives being regulated, and other natural preservatives will have to be legally regulated before their widespread use.

  20. Status, Antimicrobial Mechanism, and Regulation of Natural Preservatives in Livestock Food Systems

    PubMed Central

    Lee, Na-Kyoung; Paik, Hyun-Dong

    2016-01-01

    This review discusses the status, antimicrobial mechanisms, application, and regulation of natural preservatives in livestock food systems. Conventional preservatives are synthetic chemical substances including nitrates/nitrites, sulfites, sodium benzoate, propyl gallate, and potassium sorbate. The use of artificial preservatives is being reconsidered because of concerns relating to headache, allergies, and cancer. As the demand for biopreservation in food systems has increased, new natural antimicrobial compounds of various origins are being developed, including plant-derived products (polyphenolics, essential oils, plant antimicrobial peptides (pAMPs)), animal-derived products (lysozymes, lactoperoxidase, lactoferrin, ovotransferrin, antimicrobial peptide (AMP), chitosan and others), and microbial metabolites (nisin, natamycin, pullulan, ε-polylysine, organic acid, and others). These natural preservatives act by inhibiting microbial cell walls/membranes, DNA/RNA replication and transcription, protein synthesis, and metabolism. Natural preservatives have been recognized for their safety; however, these substances can influence color, smell, and toxicity in large amounts while being effective as a food preservative. Therefore, to evaluate the safety and toxicity of natural preservatives, various trials including combinations of other substances or different food preservation systems, and capsulation have been performed. Natamycin and nisin are currently the only natural preservatives being regulated, and other natural preservatives will have to be legally regulated before their widespread use. PMID:27621697

  1. Inhibition of Listeria monocytogenes using natural antimicrobials in no-nitrate-or-nitrite-added ham.

    PubMed

    Sullivan, Gary A; Jackson-Davis, Armitra L; Niebuhr, Steven E; Xi, Yuan; Schrader, Kohl D; Sebranek, Joseph G; Dickson, James S

    2012-06-01

    Consumer demand for foods manufactured without the direct addition of chemical preservatives, such as sodium nitrite and organic acid salts, has resulted in a unique class of "naturally" cured meat products. Formulation with a natural nitrate source and nitrate-reducing bacteria results in naturally cured processed meats that possess traits similar to conventionally cured meats. However, previous research has shown that the naturally cured products are more susceptible to pathogen growth. This study evaluated Listeria monocytogenes growth on ham manufactured with natural curing methods and with commercially available clean-label antimicrobials (cultured sugar and vinegar blend; lemon, cherry, and vinegar powder blend) and assessed impacts on physicochemical characteristics of the product. Hams made with either of the antimicrobials supported L. monocytogenes growth similar to that in the traditionally cured control (P > 0.05). Hams made with prefermented celery juice powder had the lowest residual nitrite concentrations (P < 0.05), and when no antimicrobial was added, L. monocytogenes growth was similar to that of the uncured control (P > 0.05). Aside from residual nitrite and nitrate concentrations, few physicochemical differences were identified. These findings show that ham can be produced with natural curing methods and antimicrobials to provide similar L. monocytogenes inhibition and physicochemical traits as in traditionally cured ham.

  2. Physical and Antimicrobial Properties of Starch-PVA Blend Films as Affected by the Incorporation of Natural Antimicrobial Agents

    PubMed Central

    Cano, Amalia; Cháfer, Maite; Chiralt, Amparo; González-Martínez, Chelo

    2015-01-01

    In this work, active films based on starch and PVA (S:PVA ratio of 2:1) were developed by incorporating neem (NO) and oregano essential oils (OEO). First, a screening of the antifungal effectiveness of different natural extracts (echinacea, horsetail extract, liquid smoke and neem seed oil) against two fungus (P. expansum and A. niger) was carried out. The effect of NO and OEO incorporation on the films’ physical and antimicrobial properties was analyzed. Only composite films containing OEO exhibited antibacterial and antifungal activity. Antibacterial activity occurred at low OEO concentration (6.7%), while antifungal effect required higher doses of OEO in the films. Incorporation of oils did not notably affect the water sorption capacity and water vapor barrier properties of S-PVA films, but reduced their transparency and gloss, especially at the highest concentrations. The mechanical response of the S-PVA films was also negatively affected by oil incorporation but this was only relevant at the highest oil ratio (22%). S-PVA films with 6.7% of OEO exhibited the best physical properties, without significant differences with respect to the S-PVA matrix, while exhibiting antibacterial activity. Thus, the use of OEO as a natural antimicrobial incorporated into starch-PVA films represents a good and novel alternative in food packaging applications. PMID:28231098

  3. Screening of Natural Antimicrobials for Inhibition of E. coli O157:H7 in a Solidified Apple Juice Medium

    USDA-ARS?s Scientific Manuscript database

    Introduction: Naturally occurring antimicrobials such as plant extracts and essential oils have been used in the food industry for years. Due to increased consumer demand for minimally processed juices there has been increased interest in the use of novel antimicrobial compounds isolated from natur...

  4. Evaluation of linalool, a natural antimicrobial and insecticidal essential oil from basil: Effects on poultry

    USDA-ARS?s Scientific Manuscript database

    Linalool is a natural plant product used in perfumes, cosmetics, and flavoring agents. Linalool has proven antimicrobial and insect repellant properties which indicate it might be useful for control of enteropathogens or insect pests in poultry production. However, there are no published reports t...

  5. Strategies for target identification of antimicrobial natural products.

    PubMed

    Farha, Maya A; Brown, Eric D

    2016-05-04

    Covering: 2000 to 2015Despite a pervasive decline in natural product research at many pharmaceutical companies over the last two decades, natural products have undeniably been a prolific and unsurpassed source for new lead antibacterial compounds. Due to their inherent complexity, natural extracts face several hurdles in high-throughout discovery programs, including target identification. Target identification and validation is a crucial process for advancing hits through the discovery pipeline, but has remained a major bottleneck. In the case of natural products, extremely low yields and limited compound supply further impede the process. Here, we review the wealth of target identification strategies that have been proposed and implemented for the characterization of novel antibacterials. Traditionally, these have included genomic and biochemical-based approaches, which, in recent years, have been improved with modern-day technology and better honed for natural product discovery. Further, we discuss the more recent innovative approaches for uncovering the target of new antibacterial natural products, which have resulted from modern advances in chemical biology tools. Finally, we present unique screening platforms implemented to streamline the process of target identification. The different innovative methods to respond to the challenge of characterizing the mode of action for antibacterial natural products have cumulatively built useful frameworks that may advocate a renovated interest in natural product drug discovery programs.

  6. Reduction of microbiological risk in minced meat by a combination of natural antimicrobials.

    PubMed

    Klančnik, Anja; Piskernik, Saša; Bucar, Franz; Vučković, Darinka; Možina, Sonja Smole; Jeršek, Barbara

    2014-10-01

    Responsibility for food safety must be taken through the entire food-production chain, to avoid consumer cross-contamination. The antimicrobial activities of an Alpinia katsumadai seed extract and epigallocatechin gallate (EGCG), and their combination, were evaluated against individual food-borne pathogenic strains of Listeria monocytogenes, Escherichia coli and Campylobacter jejuni, individually and as a cocktail, in chicken-meat juice and sterile minced meat as food models, and in minced meat with the naturally present microflora, as an actual food sample. The antimicrobial combination of the A. katsumadai extract and EGCG was the most efficient for C. jejuni growth inhibition, followed by inhibition of L. monocytogenes, which was reduced more efficiently in the bacterial cocktail than as an individual strain. The antimicrobial combination added to minced meat at refrigeration temperatures used in the food chain (8 °C) revealed inhibition of these pathogens and inhibition of the naturally present bacteria after 5 days. The antibacterial efficiencies of the tested combinations are influenced by storage temperature. Food safety can be improved by using the appropriate combination of natural antimicrobials to reduce the microbiological risk of minced meat. © 2014 Society of Chemical Industry.

  7. Semisynthetic Phenol Derivatives Obtained from Natural Phenols: Antimicrobial Activity and Molecular Properties.

    PubMed

    Pinheiro, Patrícia Fontes; Menini, Luciana Alves Parreira; Bernardes, Patrícia Campos; Saraiva, Sérgio Henriques; Carneiro, José Walkimar Mesquita; Costa, Adilson Vidal; Arruda, Társila Rodrigues; Lage, Mateus Ribeiro; Gonçalves, Patrícia Martins; Bernardes, Carolina de Oliveira; Alvarenga, Elson Santiago; Menini, Luciano

    2018-01-10

    Semisynthetic phenol derivatives were obtained from the natural phenols: thymol, carvacrol, eugenol, and guaiacol through catalytic oxychlorination, Williamson synthesis, and aromatic Claisen rearrangement. The compounds characterization was carried out by 1 H NMR, 13 C NMR, and mass spectrometry. The natural phenols and their semisynthetic derivatives were tested for their antimicrobial activity against the bacteria: Staphylococcus aureus, Escherichia coli, Listeria innocua, Pseudomonas aeruginosa, Salmonella enterica Typhimurium, Salmonella enterica ssp. enterica, and Bacillus cereus. Minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values were determined using concentrations from 220 to 3.44 μg mL -1 . Most of the tested compounds presented MIC values ≤220 μg mL -1 for all the bacteria used in the assays. The molecular properties of the compounds were computed with the PM6 method. Through principle components analysis, the natural phenols and their semisynthetic derivatives with higher antimicrobial potential were grouped.

  8. PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging.

    PubMed

    Moustafa, Hesham; El Kissi, Nadia; Abou-Kandil, Ahmed I; Abdel-Aziz, Mohamed S; Dufresne, Alain

    2017-06-14

    The use of biodegradable polymers is of great importance nowadays in many applications. Some of the most commonly used biopolymers are polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) due to their superior properties and availability. In this manuscript, we use a facile and green modification method of organoclay (OC) by antimicrobial natural rosin which is considered as a toxicity-free reinforcing material, thus keeping the green character of the material. It increases the interlayer spacing between the clay platelets. This was proven by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and found to impart antimicrobial properties to PLA/PBAT blends. The morphology of the resulting blends was conducted using scanning and transmission electron microscopies (SEM and TEM), and evidence of exfoliation and intercalation was observed. The thermal properties of the blends were studied using differential scanning calorimetry (DSC), and a detailed study of the crystallization of both PLA and PBAT was reported showing cold crystallization behavior of PLA. The final effect on mechanical and antimicrobial properties was also investigated. The obtained results reveal excellent possibility of using expanded OC modified PLA/PBAT polymer blends by adding a green material, antimicrobial natural rosin, for food packaging and biomembranes applications.

  9. Antimicrobials Treatment

    NASA Astrophysics Data System (ADS)

    Drosinos, Eleftherios H.; Skandamis, Panagiotis N.; Mataragas, Marios

    The use of antimicrobials is a common practice for preservation of foods. Incorporation, in a food recipe, of chemical antimicrobials towards inhibition of spoilage and pathogenic micro-organisms results in the compositional modification of food. This treatment is nowadays undesirable for the consumer, who likes natural products. Scientific community reflecting consumers demand for natural antimicrobials has made efforts to investigate the possibility to use natural antimicrobials such us bacteriocins and essential oils of plant origin to inhibit microbial growth.

  10. Antimicrobial properties of natural substances in irradiated fresh poultry

    NASA Astrophysics Data System (ADS)

    Mahrour, A.; Lacroix, M.; Nketsa-Tabiri, J.; Calderon, N.; Gagnon, M.

    1998-06-01

    This study was undertaken to determine if a combined treatment (marinating in natural plant extracts or vacuum) with irradiation could have a synergetic effect, in order to reduce the dose required for complete elimination of Salmonella on fresh poultry. The effect of these combined treatments on the shelf-life extension was also evaluated. The fresh chicken legs were irradiated at 0, 3 and 5 kGy. The poultry underwent microbial analysis(mesophilic and Salmonella detection). For each treatment, the total microbial count decreased with increase of irradiation dose. The marinating treatment have a synergistic effect with irradiation treatment to reduce the total microbial count and controlling the proliferation during storage at 4°C. Irradiation of fresh chicken pieces with a dose of 3 kGy appears to be able to extend the microbial shelf-life by a factor of 2. When the chicken is marinating and irradiated at 3 kGy or when irradiated at 5 kGy without marinating, the microbial shelf-life is extended by a factor of 7 to 8. No Salmonella was found during all the experiment in the chicken in air and marinated. However, a presence of Salmonella was found in samples irradiated at 5 kGy under vacuum, in unirradiated samples and samples irradiated at 3kGy in air and under vacuum.

  11. Antimicrobial, Optical and Mechanical Properties of Chitosan-Starch Films with Natural Extracts.

    PubMed

    Lozano-Navarro, Jessica I; Díaz-Zavala, Nancy P; Velasco-Santos, Carlos; Martínez-Hernández, Ana L; Tijerina-Ramos, Beatriz I; García-Hernández, Margarita; Rivera-Armenta, José L; Páramo-García, Ulises; Reyes-de la Torre, Adriana I

    2017-05-05

    Natural extracts possess several kinds of antioxidants (anthocyanins, betalains, thymol, carvacrol, and resveratrol) that have also demonstrated antimicrobial properties. In order to study these properties, extracts from cranberry, blueberry, beetroot, pomegranate, oregano, pitaya, and resveratrol (from grapes) were obtained. Growth inhibition tests of mesophilic aerobes, coliforms, and fungi were conducted in films prepared from the extracts in accordance with Mexican Official Norms (NOM). Optical properties such as transparency and opacity, mechanical properties, and pH were also analyzed in these materials. The films with beetroot, cranberry, and blueberry extracts demonstrated the best antimicrobial activity against various bacteria and fungi in comparison with unmodified chitosan-starch film. This study shows that the addition of antioxidants improved the antimicrobial performance of these films. It was also found that antimicrobial properties are inherent to the films. These polymers combined with the extracts effectively inhibit or reduce microorganism growth from human and environmental contact; therefore, previous sterilization could be unnecessary in comparison with traditional plastics. The presence of extracts decreased transmittance percentages at 280 and 400 nm, as well as the transparency values, while increasing their opacity values, providing better UV-VIS light barrier properties. Despite diminished glass transition temperatures ( T g), the values obtained are still adequate for food packaging applications.

  12. Antimicrobial, Optical and Mechanical Properties of Chitosan–Starch Films with Natural Extracts

    PubMed Central

    Lozano-Navarro, Jessica I.; Díaz-Zavala, Nancy P.; Velasco-Santos, Carlos; Martínez-Hernández, Ana L.; Tijerina-Ramos, Beatriz I.; García-Hernández, Margarita; Rivera-Armenta, José L.; Páramo-García, Ulises; Reyes-de la Torre, Adriana I.

    2017-01-01

    Natural extracts possess several kinds of antioxidants (anthocyanins, betalains, thymol, carvacrol, and resveratrol) that have also demonstrated antimicrobial properties. In order to study these properties, extracts from cranberry, blueberry, beetroot, pomegranate, oregano, pitaya, and resveratrol (from grapes) were obtained. Growth inhibition tests of mesophilic aerobes, coliforms, and fungi were conducted in films prepared from the extracts in accordance with Mexican Official Norms (NOM). Optical properties such as transparency and opacity, mechanical properties, and pH were also analyzed in these materials. The films with beetroot, cranberry, and blueberry extracts demonstrated the best antimicrobial activity against various bacteria and fungi in comparison with unmodified chitosan–starch film. This study shows that the addition of antioxidants improved the antimicrobial performance of these films. It was also found that antimicrobial properties are inherent to the films. These polymers combined with the extracts effectively inhibit or reduce microorganism growth from human and environmental contact; therefore, previous sterilization could be unnecessary in comparison with traditional plastics. The presence of extracts decreased transmittance percentages at 280 and 400 nm, as well as the transparency values, while increasing their opacity values, providing better UV–VIS light barrier properties. Despite diminished glass transition temperatures (Tg), the values obtained are still adequate for food packaging applications. PMID:28475151

  13. Antimicrobial activity of natural products against Clostridium difficile in vitro.

    PubMed

    Roshan, N; Riley, T V; Hammer, K A

    2017-05-10

    To investigate the antimicrobial activity of various natural products against Clostridium difficile in vitro. The antibacterial activity of 20 natural products was determined by the agar well diffusion and broth microdilution assays against four C. difficile strains, three comparator organisms and four gastrointestinal commensal organisms. Of the raw natural products, garlic juice had the highest activity. The most active processed products were peppermint oil and the four pure compounds trans-cinnamaldehyde, allicin, menthol and zingerone. Furthermore, Bacteroides species had similar susceptibility to C. difficile to most natural products; however, Lactobacillus casei was less susceptible. The combined effect of natural products with vancomycin or metronidazole was determined using the conventional checkerboard titration method and the fractional inhibitory concentration index was calculated. The results showed a possible synergism between trans-cinnamaldehyde and vancomycin and partial synergy between trans-cinnamaldehyde and metronidazole. The study indicates a range of antimicrobial activity of natural products against C. difficile and suggests that they may be useful as alternative or complementary treatments for C. difficile infection (CDI), particularly as most are able to be given orally. This study encourages further investigation of natural products for treatment of CDI. © 2017 The Society for Applied Microbiology.

  14. High-Level Antimicrobial Efficacy of Representative Mediterranean Natural Plant Extracts against Oral Microorganisms

    PubMed Central

    Cecere, Manuel; Skaltsounis, Alexios Leandros; Argyropoulou, Aikaterini; Hellwig, Elmar; Aligiannis, Nektarios

    2014-01-01

    Nature is an unexplored reservoir of novel phytopharmaceuticals. Since biofilm-related oral diseases often correlate with antibiotic resistance, plant-derived antimicrobial agents could enhance existing treatment options. Therefore, the rationale of the present report was to examine the antimicrobial impact of Mediterranean natural extracts on oral microorganisms. Five different extracts from Olea europaea, mastic gum, and Inula viscosa were tested against ten bacteria and one Candida albicans strain. The extraction protocols were conducted according to established experimental procedures. Two antimicrobial assays—the minimum inhibitory concentration (MIC) assay and the minimum bactericidal concentration (MBC) assay—were applied. The screened extracts were found to be active against each of the tested microorganisms. O. europaea presented MIC and MBC ranges of 0.07–10.00 mg mL−1 and 0.60–10.00 mg mL−1, respectively. The mean MBC values for mastic gum and I. viscosa were 0.07–10.00 mg mL−1 and 0.15–10.00 mg mL−1, respectively. Extracts were less effective against C. albicans and exerted bactericidal effects at a concentration range of 0.07–5.00 mg mL−1 on strict anaerobic bacteria (Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Parvimonas micra). Ethyl acetate I. viscosa extract and total mastic extract showed considerable antimicrobial activity against oral microorganisms and could therefore be considered as alternative natural anti-infectious agents. PMID:25054150

  15. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria.

    PubMed

    Palaniappan, Kavitha; Holley, Richard A

    2010-06-15

    Plant-derived antibacterial compounds may be of value as a novel means for controlling antibiotic resistant zoonotic pathogens which contaminate food animals and their products. Individual activity of natural antimicrobials (eugenol, thymol, carvacrol, cinnamaldehyde, allyl isothiocyanate (AIT)) and activity when paired with an antibiotic was studied using broth microdilution and checkerboard methods. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interactions between the inhibitors. Bacteria tested were chosen because of their resistance to at least one antibiotic which had a known genetic basis. Substantial susceptibility of these bacteria toward the natural antimicrobials and a considerable reduction in the minimum inhibitory concentrations (MIC's) of the antibiotics were noted when paired combinations of antimicrobial and antibiotic were used. In the interaction study, thymol and carvacrol were found to be highly effective in reducing the resistance of Salmonella Typhimurium SGI 1 (tet A) to ampicillin, tetracycline, penicillin, bacitracin, erythromycin and novobiocin (FIC<0.4) and resistance of Streptococcus pyogenes ermB to erythromycin (FIC<0.5). With Escherichia coli N00 666, thymol and cinnamaldehyde were found to have a similar effect (FIC<0.4) in reducing the MIC's of ampicillin, tetracycline, penicillin, erythromycin and novobiocin. Carvacrol, thymol (FIC<0.3) and cinnamaldehyde (FIC<0.4) were effective against Staphylococcus aureus blaZ and in reducing the MIC's of ampicillin, penicillin and bacitracin. Allyl isothiocyanate (AIT) was effective in reducing the MIC of erythromycin (FIC<0.3) when tested against S. pyogenes. Fewer combinations were found to be synergistic when the decrease in viable population (log DP) was calculated. Together, fractional inhibitory concentrations < or = 0.5 and log DP<-1 indicated synergistic action between four natural antimicrobials and as many as three antibiotics

  16. Antimicrobial activity of natural products from the flora of Northern Ontario, Canada.

    PubMed

    Vandal, Janique; Abou-Zaid, Mamdouh M; Ferroni, Garry; Leduc, Leo G

    2015-06-01

    The number of multidrug resistant (MDR) microorganisms is increasing and the antimicrobial resistance expressed by these pathogens is generating a rising global health crisis. In fact, there are only a few antimicrobial agents left that can be used against MDR bacteria and fungi. In this study, the antimicrobial activities of selected natural products from the flora of Northern Ontario against selected microorganisms are reported. Plants were collected from Sault Ste. Marie, Ontario, Canada, and ethanol extracts were prepared using EtOH:H2O (1:1, v/v). Fungal cultures used in this study were Candida albicans ATCC 10231 and Schizosaccharomyces octosporus. Bacterial cultures employed included Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Mycobacterium phlei ATCC 11758, and Streptococcus lactis ATCC 19435. The microplate resazurin assay was used to screen for antimicrobial activity. Extracts of four plant species Chimaphila umbellata L. (Pyrolaceae), Betula papyrifera Marshall (Betulaceae), Rhus typhina L. (Anacardiaceae), and Fraxinus pennsylvanica Marshall (Oleaceae), and six compounds (gallic acid, ethyl gallate, caffeic acid, sinapic acid, gentisic acid, and chlorogenic acid) demonstrated antibacterial or antifungal activities with MICs ranging from 62.5 to 1000 µg/mL, respectively, for a chemical fraction of an extract from Betula papyrifera against the bacterium S. aureus. The present study has shown that certain plant extracts and select fractions and standard chemical compounds exhibit antimicrobial effects. Prince's Pine, Chimaphila umbellate, White Birch, Betula papyrifera, Staghorn Sumac, Rhus typhina, and Green Ash, Fraxinus pennsylvanica were the principal extracts exhibiting notable antibacterial and/or antifungal activities; while gallic acid, ethyl gallate, and caffeic acid demonstrated antibacterial activities and sinapic acid, gentisic acid, and chlorogenic acid demonstrated antifungal activities.

  17. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms.

    PubMed

    Zacchino, Susana A; Butassi, Estefanía; Cordisco, Estefanía; Svetaz, Laura A

    2017-12-15

    Biofilms contribute to the pathogenesis of many chronic and difficult-to eradicate infections whose treatment is complicated due to the intrinsic resistance to conventional antibiotics. As a consequence, there is an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections. The combination therapy comprising an antimicrobial drug with a low molecular weight (MW) natural product and an antimicrobial drug (antifungal or antibacterial) appeared as a good alternative to eradicate biofilms. The aims of this review were to perform a literature search on the different natural products that have showed the ability of potentiating the antibiofilm capacity of antimicrobial drugs, to analyze which are the antimicrobial drugs most used in combination, and to have a look on the microbial species most used to prepare biofilms. Seventeen papers, nine on combinations against antifungal biofilms and eight against antibacterial biofilms were collected. Within the text, the following topics have been developed: breaf history of the discovery of biofilms; stages in the development of a biofilm; the most used methodologies to assess antibiofilm-activity; the natural products with capacity of eradicating biofilms when acting alone; the combinations of low MW natural products with antibiotics or antifungal drugs as a strategy for eradicating microbial biofilms and a list of the low MW natural products that potentiate the inhibition capacity of antifungal and antibacterial drugs against biofilms. Regarding combinations against antifungal biofilms, eight over the nine collected works were carried out with in vitro studies while only one was performed with in vivo assays by using Caenorhabditis elegans nematode. All studies use biofilms of the Candida genus. A 67% of the potentiators were monoterpenes and sesquiterpenes and six over the nine works used FCZ as the antifungal drug. The activity of AmpB and Caspo was enhanced in one and two

  18. Application of Quercus infectoria extract as a natural antimicrobial agent for chicken egg decontamination.

    PubMed

    Tayel, Ahmed A; El-Sedfy, Mahmoud A; Ibrahim, Ahmed I; Moussa, Shaaban H

    2018-04-21

    Egg contamination with microbial pathogens is an enduring worldwide concern. Natural products are frequently recommended as ideal alternatives to substitute synthetic and chemical antimicrobials. Oak galls (Quercus infectoria) are aberrant growths on oak trees that have many medicinal and pharmaceutical applications. Q. infectoria extract (QIE) antimicrobial action was assessed against many microbial species, and used for eggshell decontamination. QIE antimicrobial activity was evidenced against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium and Candida albicans, using different assay methods. Disinfection of eggshell microbial contamination, by immersion in 1% QIE solution, sharply reduced total colony count, yeasts and molds, Enterobacteriaceae. E. coli and S. aureus were completely inhibited after 60min of immersion in QIE. QIE biochemical analysis revealed elevated contents of phenolic and flavonoid compounds. The captured micrographs of S. aureus cells treated with QIE showed strong alterations in cell morphology; cells were entirely lysed and ruptured after 6h of treatment. QIE can be recommended as an effective and natural disinfectant for decontaminating eggshells from pathogenic microorganisms. Copyright © 2018 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. New perspectives for natural antimicrobial peptides: application as antinflammatory drugs in a murine model.

    PubMed

    Capparelli, Rosanna; De Chiara, Francesco; Nocerino, Nunzia; Montella, Rosa Chiara; Iannaccone, Marco; Fulgione, Andrea; Romanelli, Alessandra; Avitabile, Concetta; Blaiotta, Giuseppe; Capuano, Federico

    2012-11-17

    Antimicrobial peptides (AMPs) are an ancient group of defense molecules. AMPs are widely distributed in nature (being present in mammals, birds, amphibians, insects, plants, and microorganisms). They display bactericidal as well as immunomodulatory properties. The aim of this study was to investigate the antimicrobial and anti-inflammatory activities of a combination of two AMPs (temporin B and the royal jellein I) against Staphylococcus epidermidis. The temporin B (TB-KK) and the royal jelleins I, II, III chemically modified at the C terminal (RJI-C, RJII-C, RJIII-C), were tested for their activity against 10 different Staphylococcus epidermidis strains, alone and in combination. Of the three royal jelleins, RJI-C showed the highest activity. Moreover, the combination of RJI-C and TB-KK (MIX) displayed synergistic activity. In vitro, the MIX displayed low hemolytic activity, no NO2- production and the ability to curb the synthesis of the pro-inflammatory cytokines TNF-α and IFN-γ to the same extent as acetylsalicylic acid. In vivo, the MIX sterilized mice infected with Staphylococcus epidermidis in eleven days and inhibited the expression of genes encoding the prostaglandin-endoperoxide synthase 2 (COX-2) and CD64, two important parameters of inflammation. The study shows that the MIX - a combination of two naturally occurring peptides - displays both antimicrobial and anti-inflammatory activities.

  20. Effect of natural ageing on surface of silver loaded TPE and its influence in antimicrobial efficacy

    NASA Astrophysics Data System (ADS)

    Tomacheski, Daiane; Pittol, Michele; Simões, Douglas Naue; Ribeiro, Vanda Ferreira; Santana, Ruth Marlene Campomanes

    2017-05-01

    The aim of this study is to characterize the modifications in silver loaded TPE surfaces exposed to weathering and their relation to susceptibility to microbial attack. Silver loaded TPE materials were exposed to natural ageing for nine months and modifications in antimicrobial properties and surface characteristics were evaluated. Chemical changes were investigated by using the infrared spectra. The average surface roughness and topography were determined by atomic force microscopy. Contact angle was measured to verify wettability conditions and surface free energy (SFE). After nine months of exposure, a decrease in the antimicrobial properties of loaded TPE compounds was observed. A reduction in surface roughness and improvement in wettability and high values of polar component of SFE were verified. The best antibacterial action was noticed in the sample with high Lewis acid force, lower roughness and lower carbonyl index.

  1. Myrcia ovata Cambessedes essential oils: A proposal for a novel natural antimicrobial against foodborne bacteria.

    PubMed

    de Jesus, Isabela Cristina; Santos Frazão, Gladslene Góes; Blank, Arie Fitzgerald; de Aquino Santana, Luciana Cristina Lins

    2016-10-01

    This paper reports the innovative antibacterial activity of essential oils (EOs) from nine Myrcia ovata Cambessedes plants against eight foodborne bacteria. Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Enterococcus faecalis and Pseudomonas aeruginosa were the most susceptible bacteria to EOs. In particular, the P. aeruginosa, which is usually resistant to antimicrobials agents, was extremely sensitive to some EOs. The gram-positive and gram-negative bacteria were inhibited and eliminated with minimum EOs concentrations ranging from 0.78 to 25 μL/mL. The Serratia marcensces and Escherichia coli were less susceptible to EOs alone. Consequently, some EOs combinations were investigated by checkerboard method against these bacteria and a synergistic effect was obtained. Myrcia ovata Cambessedes EOs showed high inhibitory and bactericidal effects against foodborne bacteria might be an interesting alternative for future applications as natural antimicrobials in food systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Smart Dressings Based on Nanostructured Fibers Containing Natural Origin Antimicrobial, Anti-Inflammatory, and Regenerative Compounds

    PubMed Central

    Andreu, Vanesa; Mendoza, Gracia; Arruebo, Manuel; Irusta, Silvia

    2015-01-01

    A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients’ quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies). The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory properties together with nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about the beneficial or

  3. In vitro antimicrobial activity of natural toxins and animal venoms tested against Burkholderia pseudomallei

    PubMed Central

    Perumal Samy, R; Pachiappan, A; Gopalakrishnakone, P; Thwin, Maung M; Hian, Yap E; Chow, Vincent TK; Bow, Ho; Weng, Joseph T

    2006-01-01

    Background Burkholderia pseudomallei are the causative agent of melioidosis. Increasing resistance of the disease to antibiotics is a severe problem in treatment regime and has led to intensification of the search for new drugs. Antimicrobial peptides are the most ubiquitous in nature as part of the innate immune system and host defense mechanism. Methods Here, we investigated a group of venoms (snakes, scorpions and honey bee venoms) for antimicrobial properties against two strains of Gram-negative bacteria Burkholderia pseudomallei by using disc-diffusion assay for in vitro susceptibility testing. The antibacterial activities of the venoms were compared with that of the isolated L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2s) enzymes. MICs were determined using broth dilution method. Bacterial growth was assessed by measurement of optical density at the lowest dilutions (MIC 0.25 mg/ml). The cell viability was measured using tetrazolium salts (XTT) based cytotoxic assay. Results The studied venoms showed high antimicrobial activity. The venoms of C. adamanteus, Daboia russelli russelli, A. halys, P. australis, B. candidus and P. guttata were equally as effective as Chloramphenicol and Ceftazidime (30 μg/disc). Among those tested, phospholipase A2 enzymes (crotoxin B and daboiatoxin) showed the most potent antibacterial activity against Gram-negative (TES) bacteria. Naturally occurring venom peptides and phospholipase A2 proved to possess highly potent antimicrobial activity against Burkholderia pseudomallei. The XTT-assay results showed that the cell survival decreased with increasing concentrations (0.05–10 mg/mL) of Crotalus adamanteus venom, with no effect on the cell viability evident at 0.5 mg/mL. Conclusion This antibacterial profile of snake venoms reported herein will be useful in the search for potential antibacterial agents against drug resistant microorganisms like B. pseudomallei. PMID:16784542

  4. Evaluation of natural antimicrobials on typical meat spoilage bacteria in vitro and in vacuum-packed pork meat.

    PubMed

    Schirmer, Bjørn Christian; Langsrud, Solveig

    2010-03-01

    The aim of this study was to investigate the inhibitory effect of natural antimicrobials on the growth of typical spoilage bacteria from marinated pork. Minimum inhibitory concentrations (MIC) of thymol, cinnamaldehyde, allyl isothiocyanate, citric acid, ascorbic acid, a rosemary extract, and a grapefruit seed extract against Lactobacillus algidus, Leuconostoc mesenteroides, Leuconostoc carnosum, Carnobacterium maltaromaticum, Carnobacterium divergens, Brochothrix thermosphacta, and Serratia proteamaculans were determined in a microplate assay. Combinations of antimicrobials were tested and several combinations showed synergistic effects in inhibiting bacterial growth. Single and combined antimicrobials were added to vacuum-packed pork meat to evaluate preserving effects. Antimicrobial concentrations of up to 10 times the MIC values showed no effect on total bacterial growth in vacuum packed pork meaning that although most antimicrobials inhibited the growth of spoilage bacteria in vitro, results from the microplate assay could not be transferred to the meat system. Most natural antimicrobials possess strong odor and flavor that limit their use as a food preservative. In conclusion, this study showed that the use of natural antimicrobials in meat products is limited and that bacterial quality and shelf life was not enhanced under the chosen conditions.

  5. Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity.

    PubMed

    Đolić, Maja B; Rajaković-Ognjanović, Vladana N; Štrbac, Svetlana B; Dimitrijević, Suzana I; Mitrić, Miodrag N; Onjia, Antonije E; Rajaković, Ljubinka V

    2017-10-25

    The objective of this study was to investigate the modification of materials used in wastewater treatment for possible antimicrobial application(s). Granulated activated carbon (GAC) and natural clinoptilolite (CLI) were activated using Cu 2+ - and Zn 2+ - ions and the disinfection ability of the resulting materials was tested. Studies of the sorption and desorption kinetics were performed in order to determine and clarify the antimicrobial activity of the metal-activated sorbents. The exact sorption capacities of the selected sorbents, GAC and CLI, activated through use of Cu 2+ - ions, were 15.90 and 3.60mg/g, respectively, while for the materials activated by Zn 2+ - ions, the corresponding capacities were 14.00 and 4.72mg/g,. The desorption rates were 2 and 3 orders of magnitude lower than their sorption efficacy for the Cu 2+ -, and Zn 2+ -activated sorbents, respectively. The intermediate sorption capacity and low desorption rate indicated that the overall antimicrobial activity of the metal-modified sorbents was a result of metal ions immobilized onto surface sites. The effect of antimicrobial activity of free ions desorbed from the metal-activated surface may thus be disregarded. The antimicrobial activities of Cu/GAC, Zn/GAC, Cu/CLI and Zn/CLI were also tested against Escherichia coli, Staphylococcus aureus, and Candida albicans. After 15min exposure, the highest levels of cell inactivation were obtained through the Cu/CLI and the Cu/GAC against E. coli, 100.0 and 98.24%, respectively. However, for S. aureus and yeast cell inactivation, all Cu 2+ - and Zn 2+ -activated sorbents proved to be unsatisfactory. A characterization of the sorbents was performed by X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). A concentration of the adsorbed and released ions was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS). The results

  6. Synergy between antibiotics and natural agents results in increased antimicrobial activity against Staphylococcus epidermidis.

    PubMed

    Abidi, Syed Hani; Ahmed, Khalid; Sherwani, Sikander Khan; Kazmi, Shahana Urooj

    2015-09-27

    Staphylococcus epidermidis is one of the most frequent causes of biofilm-associated infections on indwelling medical devices. With the emergence of methicillin-resistant S. epidermidis (MRSE), there is an urgent need to discover novel active agents against a range of Gram-positive pathogens. We screened the clinical isolates of S. epidermidis for susceptibility/resistance against commonly prescribed antibiotics. Furthermore, we tested some natural agents alone and in combination with antibiotics to find possible synergistic antimicrobial effects. S. epidermidis clinical isolates were screened for susceptibility/resistance against vancomycin, erythromycin, tetracycline, chloramphenicol, ampicillin, ofloxacin, cephalexin, and gentamicin using the Kirby-Bauer disk diffusion method. The antimicrobial potential of Camellia sinensis, Juglans regia, and Hippophae rhamnoides alone and in combination with antibiotics were examined using the disk diffusion method, where the antimicrobial potential activity was measured in terms of formation of zones of inhibition. Most S. epidermidis isolates were found to be resistant to one or more antibiotics. Gentamycin and ofloxacin were found to be the most effective antibiotics against S. epidermidis isolates. Extracts of Hippophae rhamnoides, Juglans regia, and Camellia sinensis were found to be equally effective against S. epidermidis isolates. In combination with antibiotics, these extracts exhibited appreciable synergistic activity; the highest synergistic activity was observed with erythromycin and cephalexin. In the case of cephalexin, a reversion in resistance was observed. The plant extracts used in the study exhibited additive and synergistic antibacterial activity against S. epidermidis, hence providing an effective alternative to deal with the problem of multidrug resistance.

  7. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria

    PubMed Central

    Falanga, Annarita; Lombardi, Lucia; Franci, Gianluigi; Vitiello, Mariateresa; Iovene, Maria Rosaria; Morelli, Giancarlo; Galdiero, Massimiliano; Galdiero, Stefania

    2016-01-01

    The discovery of antibiotics for the treatment of bacterial infections brought the idea that bacteria would no longer endanger human health. However, bacterial diseases still represent a worldwide treat. The ability of microorganisms to develop resistance, together with the indiscriminate use of antibiotics, is mainly responsible for this situation; thus, resistance has compelled the scientific community to search for novel therapeutics. In this scenario, antimicrobial peptides (AMPs) provide a promising strategy against a wide array of pathogenic microorganisms, being able to act directly as antimicrobial agents but also being important regulators of the innate immune system. This review is an attempt to explore marine AMPs as a rich source of molecules with antimicrobial activity. In fact, the sea is poorly explored in terms of AMPs, but it represents a resource with plentiful antibacterial agents performing their role in a harsh environment. For the application of AMPs in the medical field limitations correlated to their peptide nature, their inactivation by environmental pH, presence of salts, proteases, or other components have to be solved. Thus, these peptides may act as templates for the design of more potent and less toxic compounds. PMID:27213366

  8. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria.

    PubMed

    Falanga, Annarita; Lombardi, Lucia; Franci, Gianluigi; Vitiello, Mariateresa; Iovene, Maria Rosaria; Morelli, Giancarlo; Galdiero, Massimiliano; Galdiero, Stefania

    2016-05-21

    The discovery of antibiotics for the treatment of bacterial infections brought the idea that bacteria would no longer endanger human health. However, bacterial diseases still represent a worldwide treat. The ability of microorganisms to develop resistance, together with the indiscriminate use of antibiotics, is mainly responsible for this situation; thus, resistance has compelled the scientific community to search for novel therapeutics. In this scenario, antimicrobial peptides (AMPs) provide a promising strategy against a wide array of pathogenic microorganisms, being able to act directly as antimicrobial agents but also being important regulators of the innate immune system. This review is an attempt to explore marine AMPs as a rich source of molecules with antimicrobial activity. In fact, the sea is poorly explored in terms of AMPs, but it represents a resource with plentiful antibacterial agents performing their role in a harsh environment. For the application of AMPs in the medical field limitations correlated to their peptide nature, their inactivation by environmental pH, presence of salts, proteases, or other components have to be solved. Thus, these peptides may act as templates for the design of more potent and less toxic compounds.

  9. Natural isothiocyanates express antimicrobial activity against developing and mature biofilms of Pseudomonas aeruginosa.

    PubMed

    Kaiser, Stefan J; Mutters, Nico T; Blessing, Brigitte; Günther, Frank

    2017-06-01

    The antimicrobial properties of natural isothiocyanates (ITCs) found in plants such as nasturtium (Tropaeolum majus) and horseradish (Armoracia rusticana), and the need of new chemotherapeutic options for treatment of infections caused by multidrug-resistant and biofilm-forming Gram-negative bacteria such as Pseudomonas aeruginosa (Pa), led us to evaluate the effects of three major ITCs, allylisothiocyanate (AITC), benzylisothiocyanate (BITC), and phenylethyl-isothiocyanate (PEITC), and a mixture (ITCM) adapted to the ITC composition after release of active components out of natural sources. Out of 105Pa isolates 27 isolates with increased biofilm formation were selected for testing. The effects of ITCs on Pa were evaluated regarding (1) planktonic bacterial proliferation, (2) biofilm formation, (3) metabolic activity in mature biofilms, and (4) synergism of ITCs and antibiotics. (1) Each ITC had anti-Pa activity. Mean minimum inhibitory concentrations (MICs) were (μg/ml, mean±standard deviation): AITC 103±6.9; BITC, 2145±249; PEITC 29,423±1652; and ITCM, 140±5. (2) Treating bacteria with PEITC and ITCM in concentrations below the MIC significantly inhibited biofilm formation. Particularly, ITCM reduced biofilm mass and bacterial proliferation. (3) ITCs significantly inhibited metabolic activity in mature biofilms. (4) Combining ITCs with meropenem synergistically increased antimicrobial efficacy on Pa biofilms. ITCs represent a promising group of natural anti-infective compounds with activity against Pa biofilms. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Impact of Clean-Label Antimicrobials and Nitrite Derived from Natural Sources on the Outgrowth of Clostridium perfringens during Cooling of Deli-Style Turkey Breast.

    PubMed

    King, Amanda M; Glass, Kathleen A; Milkowski, Andrew L; Sindelar, Jeffrey J

    2015-05-01

    Organic acids and sodium nitrite have long been shown to provide antimicrobial activity during chilling of cured meat products. However, neither purified organic acids nor NaNO2 is permitted in products labeled natural and both are generally avoided in clean-label formulations; efficacy of their replacement is not well understood. Natural and clean-label antimicrobial alternatives were evaluated in both uncured and in alternative cured (a process that uses natural sources of nitrite) deli-style turkey breast to determine inhibition of Clostridium perfringens outgrowth during 15 h of chilling. Ten treatments of ground turkey breast (76% moisture, 1.2% salt) included a control and four antimicrobials: 1.0% tropical fruit extract, 0.7% dried vinegar, 1.0% cultured sugar-vinegar blend, and 2.0% lemon-vinegar blend. Each treatment was formulated without (uncured) and with nitrite (PCN; 50 ppm of NaNO2 from cultured celery juice powder). Treatments were inoculated with C. perfringens spores (three-strain mixture) to yield 2.5 log CFU/g. Individual 50-g portions were vacuum packaged, cooked to 71.1°C, and chilled from 54.4 to 26.7°C in 5 h and from 26.7 to 7.2°C in an additional 10 h. Triplicate samples were assayed for growth of C. perfringens at predetermined intervals by plating on tryptose-sulfite-cycloserine agar. Uncured control and PCN-only treatments allowed for 4.6- and 4.2-log increases at 15 h, respectively, and although all antimicrobial treatments allowed less outgrowth than uncured and PCN, the degree of inhibition varied. The 1.0% fruit extract and 1.0% cultured sugar-vinegar blend were effective at controlling populations at or below initial levels, whether or not PCN was included. Without PCN, 0.7% dried vinegar and 2.0% lemon-vinegar blend allowed for 2.0- and 2.5-log increases, respectively, and ∼1.5-log increases with PCN. Results suggest using clean-label antimicrobials can provide for safe cooling following the study parameters, and greater

  11. Reduced Dental Plaque Formation in Dogs Drinking a Solution Containing Natural Antimicrobial Herbal Enzymes and Organic Matcha Green Tea

    PubMed Central

    2016-01-01

    The results of an exploratory, multicenter clinical study confirmed the hypothesis that a novel, natural, and safe oral care product (OCP) reduced the rate of plaque formation on teeth of dogs consuming the OCP (antimicrobial plant-derived enzymes, organic matcha green tea, cultured dextrose, sodium bicarbonate, and ascorbic acid) compared to controls. Healthy dogs without periodontitis, of varying breeds, sex, and age, were recruited and enrolled, using nonrandomized stratification methods, into a control and treatment groups. Treatment group dogs drank only water into which OCP was suspended, for 28 days. Control group dogs drank their normal household water. On day 0 all teeth were cleaned by a veterinarian and gingivitis was assessed. On days 14, 21, and 28 plaque index, plaque thickness, gingivitis, freshness of breath, and general health were assessed. Over the 28 days of study, dogs on the OCP had significant reduction in plaque index and plaque thickness compared to controls. By day 14 OCP reduced plaque formation by 37%; the 28-day reduction in plaque index and coverage averaged 22% with no measurable gingivitis or calculus. Conclusion. Using the OCP attenuated dental plaque formation when consumed as normal drinking water and in the absence of other modes of oral care. PMID:27867678

  12. Reduced Dental Plaque Formation in Dogs Drinking a Solution Containing Natural Antimicrobial Herbal Enzymes and Organic Matcha Green Tea.

    PubMed

    Lindinger, Michael I

    2016-01-01

    The results of an exploratory, multicenter clinical study confirmed the hypothesis that a novel, natural, and safe oral care product (OCP) reduced the rate of plaque formation on teeth of dogs consuming the OCP (antimicrobial plant-derived enzymes, organic matcha green tea, cultured dextrose, sodium bicarbonate, and ascorbic acid) compared to controls. Healthy dogs without periodontitis, of varying breeds, sex, and age, were recruited and enrolled, using nonrandomized stratification methods, into a control and treatment groups. Treatment group dogs drank only water into which OCP was suspended, for 28 days. Control group dogs drank their normal household water. On day 0 all teeth were cleaned by a veterinarian and gingivitis was assessed. On days 14, 21, and 28 plaque index, plaque thickness, gingivitis, freshness of breath, and general health were assessed. Over the 28 days of study, dogs on the OCP had significant reduction in plaque index and plaque thickness compared to controls. By day 14 OCP reduced plaque formation by 37%; the 28-day reduction in plaque index and coverage averaged 22% with no measurable gingivitis or calculus. Conclusion . Using the OCP attenuated dental plaque formation when consumed as normal drinking water and in the absence of other modes of oral care.

  13. Functionality of liquid smoke as an all-natural antimicrobial in food preservation.

    PubMed

    Lingbeck, Jody M; Cordero, Paola; O'Bryan, Corliss A; Johnson, Michael G; Ricke, Steven C; Crandall, Philip G

    2014-06-01

    The smoking of foods, especially meats, has been used as a preservation technique for centuries. Today, smoking methods often involve the use of wood smoke condensates, commonly known as liquid smoke. Liquid smoke is produced by condensing wood smoke created by the pyrolysis of sawdust or wood chips followed by removal of the carcinogenic polyaromatic hydrocarbons. The main products of wood pyrolysis are phenols, carbonyls and organic acids which are responsible for the flavor, color and antimicrobial properties of liquid smoke. Several common food-borne pathogens such as Listeria monocytogenes, Salmonella, pathogenic Escherichia coli and Staphylococcus have shown sensitivity to liquid smoke in vitro and in food systems. Therefore liquid smoke has potential for use as an all-natural antimicrobial in commercial applications where smoke flavor is desired. This review will cover the application and effectiveness of liquid smoke and fractions of liquid smoke as an all-natural food preservative. This review will be valuable for the industrial and research communities in the food science and technology areas. Copyright © 2014. Published by Elsevier Ltd.

  14. Use of Natural Antimicrobial Peptides and Bacterial Biopolymers for Cultured Pearl Production

    PubMed Central

    Simon-Colin, Christelle; Gueguen, Yannick; Bachere, Evelyne; Kouzayha, Achraf; Saulnier, Denis; Gayet, Nicolas; Guezennec, Jean

    2015-01-01

    Cultured pearls are the product of grafting and rearing of Pinctada margaritifera pearl oysters in their natural environment. Nucleus rejections and oyster mortality appear to result from bacterial infections or from an inappropriate grafting practice. To reduce the impact of bacterial infections, synthetic antibiotics have been applied during the grafting practice. However, the use of such antibiotics presents a number of problems associated with their incomplete biodegradability, limited efficacy in some cases, and an increased risk of selecting for antimicrobial resistant bacteria. We investigated the application of a marine antimicrobial peptide, tachyplesin, which is present in the Japanese horseshoe crab Tachypleus tridentatus, in combination with two marine bacterial exopolymers as alternative treatment agents. In field studies, the combination treatment resulted in a significant reduction in graft failures vs. untreated controls. The combination of tachyplesin (73 mg/L) with two bacterial exopolysaccharides (0.5% w/w) acting as filming agents, reduces graft-associated bacterial contamination. The survival data were similar to that reported for antibiotic treatments. These data suggest that non-antibiotic treatments of pearl oysters may provide an effective means of improving oyster survival following grafting procedures. PMID:26110895

  15. New Biofunctional Loading of Natural Antimicrobial Agent in Biodegradable Polymeric Films for Biomedical Applications

    PubMed Central

    Ghafoor, Bakhtawar; Ansari, Umar; Bhatti, Muhammad Faraz; Akhtar, Hafsah; Darakhshan, Fatima

    2016-01-01

    The study focuses on the development of novel Aloe vera based polymeric composite films and antimicrobial suture coatings. Polyvinyl alcohol (PVA), a synthetic biocompatible and biodegradable polymer, was combined with Aloe vera, a natural herb used for soothing burning effects and cosmetic purposes. The properties of these two materials were combined together to get additional benefits such as wound healing and prevention of surgical site infections. PVA and Aloe vera were mixed in a fixed quantity to produce polymer based films. The films were screened for antibacterial and antifungal activity against bacterial (E. coli, P. aeruginosa) and fungal strains (Aspergillus flavus and Aspergillus tubingensis) screened. Aloe vera based PVA films showed antimicrobial activity against all the strains; the lowest Aloe vera concentration (5%) showed the highest activity against all the strains. In vitro degradation and release profile of these films was also evaluated. The coating for sutures was prepared, in vitro antibacterial tests of these coated sutures were carried out, and later on in vivo studies of these coated sutures were also performed. The results showed that sutures coated with Aloe vera/PVA coating solution have antibacterial effects and thus have the potential to be used in the prevention of surgical site infections and Aloe vera/PVA based films have the potential to be used for wound healing purposes. PMID:27965710

  16. On safe configurations of a natural-artificial space tether system

    NASA Astrophysics Data System (ADS)

    Rodnikov, A. V.

    2018-05-01

    We study the dynamics of a particle moving under gravitation of precessing dynamically symmetric rigid body if the particle motion is restricted by two unilateral (flexible) constraints realized by two weightless unstretchable tethers with ends fixed at body poles, formed as the intersection of the body surface with the axis of its dynamical symmetry. The system under consideration is a simple model of an original natural-artificial space construction consisting of an asteroid and a space station tethered to each other via two cables. We note that the problem is integrable for the system safe configurations, i.e. for motions along the constraints common boundary (both tethers are tensed) if the body gravitational potential is invariant with respect to rotation about the axis of dynamical symmetry. We study these motions depicting phase portraits for possible values of system parameters. We also deduce conditions for the particle coming off the boundary of constraint(s) (if the tether(s) are slackened) and analyze these conditions, eliminating corresponding areas from phase portraits. We also formulate some statements, concerning the particle safety.

  17. Antimicrobial activity of Olea europaea Linné extracts and their applicability as natural food preservative agents.

    PubMed

    Thielmann, J; Kohnen, S; Hauser, C

    2017-06-19

    The antimicrobial activity of phenolic compounds from Olea (O.) europaea Linné (L.) is part of the scientific discussion regarding the use of natural plant extracts as alternative food preservative agents. Although, the basic knowledge on the antimicrobial potential of certain molecules such as oleuropein, hydroxytyrosol or elenolic acid derivatives is given, there is still little information regarding their applicability for food preservation. This might be primarily due to the lack of information regarding the full antimicrobial spectrum of the compounds, their synergisms in natural or artificial combinations and their interaction with food ingredients. The present review accumulates available literature from the past 40 years, investigating the antimicrobial activity of O. europaea L. derived extracts and compounds in vitro and in food matrices, in order to evaluate their food applicability. In summary, defined extracts from olive fruit or leaves, containing the strongest antimicrobial compounds hydroxytyrosol, oleacein or oleacanthal in considerable concentrations, appear to be suitable for food preservation. Nonetheless there is still need for consequent research on the compounds activity in food matrices, their effect on the natural microbiota of certain foods and their influence on the sensorial properties of the targeted products. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Combining a synthetic spermicide with a natural trichomonacide for safe, prophylactic contraception.

    PubMed

    Jain, Ashish; Kumar, Lokesh; Kushwaha, Bhavana; Sharma, Monika; Pandey, Aastha; Verma, Vikas; Sharma, Vikas; Singh, Vishal; Rawat, Tara; Sharma, Vishnu L; Maikhuri, Jagdamba P; Gupta, Gopal

    2014-02-01

    Can a specifically acting synthetic spermicide (DSE-37) be combined with a natural microbicide (saponins) for safe, prophylactic contraception? A 1:1 (w/w) combination of DSE-37 and Sapindus saponins can target sperm and Trichomonas vaginalis precisely without any noticeable off-target effects on somatic cells at effective concentrations. Broad-spectrum vaginal agents like nonoxynol-9 (N-9) and cellulose sulfate have failed clinically as microbicides due to non-specific off-target effects, whereas agents that specifically target retroviruses have shown promise in clinical trials. DSE-37 and Sapindus saponins, respectively, specifically target human sperm and T. vaginalis in vitro. A comprehensive study of efficacy and safety was undertaken using in vitro (human cells) and in vivo (rabbit) models. The 1:1 combination of DSE-37 and Sapindus saponins was based on the in vitro spermicidal and anti-Trichomonal activities of the two components. N-9, the spermicide in clinical use, served as reference control. Free sperm thiols were fluorescently glinted to reveal differences in the targets of the test agents. On/off-target effects were evaluated in vitro against human sperm, T. vaginalis, HeLa, Vk2/E6E7, End1/E6E7 and Lactobacillus jensenii, using standard assays of drug susceptibility, cell viability, flow cytometric assessment of cell apoptosis and qPCR for expression of pro-inflammatory cytokine mRNAs. The spermicidal effect was also recorded live and free thiols on sperm were fluorescently visualized using a commercial kit. In vivo contraceptive efficacy (pregnancy/fertility rates) and safety (vaginal histopathology and in situ immune-labeling of inflammation markers VCAM-1, E-selectin and NFkB) were evaluated in rabbits. A 0.003% drug 'combination' containing 0.0015% each of DSE-37 and Sapindus saponins in physiological saline irreversibly immobilized 100% human sperm in ∼30 s and eliminated 100% T. vaginalis in 24 h, without causing any detectable toxicity to

  19. "From safe source to safe sink" development of colorimetric assay for gabapentin in bulk drug and capsules using naturally derived genipin.

    PubMed

    Winotapun, Weerapath; Kongpakwattana, Khachen; Dejpittayanunt, Sirirat; Pathomcharoensukchai, Suwaparp; Suksaran, Udomluck; Nuntharatanapong, Nopparat; Rojanarata, Theerasak

    2012-09-15

    A novel colorimetric assay for gabapentin in bulk drug and capsules has been developed via a safety-and-sustainability concerning concept. The method relied on the reaction of primary amino group of drug with non-toxic and eco-friendly genipin in totally aqueous medium to form the blue product which was subsequently measured by visible spectrophotometry at 590 nm. Under the optimized conditions, Beer's law was obeyed in the concentration range of 0.15-0.50 mM (r(2)=0.9998). It was accurate, precise and insensitive to the interferences from all related compounds specified in the United States Pharmacopeia as well as commonly used excipients. Furthermore, it gave the assay results in agreement with the pharmacopeial chromatographic method. Owing to the environmental concern and responsibility, a fast and facile method was also proposed for the treatment of waste generated from the assay based on the decoloration by using gypsum as a cheap and commonly available adsorbent. After the treatment, more than 95% of the initial blue product was removed from the waste solution and the treated waste was proven to be safe for aquatic organisms, as studied in brine shrimp and guppy fishes. Therefore, this work not only reports for the first time the application of naturally derived genipin to drug analysis, but also presents a new and contemporary paradigm that illustrates the fully benign-by-design development of the analytical methodologies in the era of Green Chemistry, starting from the safe source of reagents toward the safe sink when waste is released into the environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review.

    PubMed

    Aziz, Marya; Karboune, Salwa

    2018-02-11

    Synthetic preservatives are widely used by the food industry to control the growth of spoilage and pathogenic microorganisms and to inhibit the process of lipid oxidation extending the shelf-life, quality and safety of food products. However, consumer's preference for natural food additives and concern regarding the safety of synthetic preservatives prompted the food industry to look for natural alternatives. Natural antimicrobials, including plant extracts and their essential oils, enzymes, peptides, bacteriocins, bacteriophages, and fermented ingredients have all been shown to have the potential for use as alternatives to chemical antimicrobials. Some spices, herbs and other plant extracts were also reported to be strong antioxidants. The antimicrobial/antioxidant activities of some plant extracts and/or their essential oils are mainly due to the presence of some major bioactive compounds, including phenolic acids, terpenes, aldehydes, and flavonoids. The proposed mechanisms of action of these natural preservatives are reported. An overview of the research done on the direct incorporation of natural preservatives agents into meat and poultry products as well as fruit and vegetables to extend their shelf-life is presented. The development of edible packaging materials containing natural preservatives is growing and their applications in selected food products are also presented in this review.

  1. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents.

    PubMed

    Conlon, J Michael; Al-Ghaferi, Nadia; Abraham, Bency; Leprince, Jérôme

    2007-08-01

    The emergence of strains of pathogenic microorganisms with resistance to commonly used antibiotics has necessitated a search for novel types of antimicrobial agents. Many frog species produce amphipathic alpha-helical peptides with broad spectrum antimicrobial activity in the skin but their therapeutic potential is limited by varying degrees of cytolytic activity towards eukaryotic cells. Methods for development of such peptides into anti-infective drugs are illustrated by the example of temporin-1DRa (HFLGTLVNLAK KIL.NH(2)). Studies with model alpha-helical peptides have shown that increase in cationicity promotes antimicrobial activity whereas increases in hydrophobicity, helicity and amphipathicity promote hemolytic activity and loss of selectivity for microorganisms. Analogs of temporin-1DRa in which each amino acid is replaced by L-lysine and D-lysine were synthesized and their cytolytic activities tested against a range of microorganisms and human erythrocytes. Small changes in structure produced marked changes in conformation, as determined by retention time on reversed-phase HPLC, and in biological activity. However, peptides containing the substitutions (Val(7) -->L-Lys), (Thr(5)-->D-Lys) and (Asn(8)-->D-Lys) retained the high solubility and potent, broad spectrum antimicrobial activity of the naturally occurring peptide but were appreciably (up to 10-fold) less hemolytic. In contrast, analogs in which Leu(9) and Ile(13) were replaced by the more hydrophobic cyclohexylglycine residue showed slightly increased antimicrobial potencies (up to 2-fold) but a 4-fold increase in hemolytic activity. The data suggest a strategy of selective increases in cationicity concomitant with decreases in helicity and hydrophobicity in the transformation of naturally-occurring antimicrobial peptides into non-toxic therapeutic agents.

  2. Antimicrobial effect of 7-O-butylnaringenin, a novel flavonoid, and various natural flavonoids against Helicobacter pylori strains.

    PubMed

    Moon, Sun Hee; Lee, Jae Hoon; Kim, Kee-Tae; Park, Yong-Sun; Nah, Seung-Yeol; Ahn, Dong Uk; Paik, Hyun-Dong

    2013-10-28

    The antimicrobial effect of a novel flavonoid (7-O-butylnaringenin) on Helicobacter pylori 26695, 51, and SS1 strains and its inhibitory effect on the urease activity of the strains were evaluated and compared with those of several natural flavonoids. First, various flavonoids were screened for antimicrobial activities using the paper disc diffusion method. Hesperetin and naringenin showed the strongest antimicrobial effects among the natural flavonoids tested, and thus hesperetin and naringenin were selected for comparison with 7-O-butylnaringenin. The antimicrobial effect of 7-O-butylnaringenin was greater than that of the hesperetin and naringenin. H. pylori 51 was more sensitive to 7-O-butylnaringenin (2 log reduction of colony forming units, p < 0.05) than the other two strains at 200 μM. 7-O-Butylnaringenin also showed the highest inhibitory effect against urease activity of H. pylori. Morphological changes of H. pylori 26695 treated with these flavonoids indicated that both hesperetin and 7-O-butylnaringenin at 200 μM damaged the cell membranes.

  3. Antimicrobial Effect of 7-O-Butylnaringenin, a Novel Flavonoid, and Various Natural Flavonoids against Helicobacter pylori Strains

    PubMed Central

    Moon, Sun Hee; Lee, Jae Hoon; Kim, Kee-Tae; Park, Yong-Sun; Nah, Seung-Yeol; Ahn, Dong Uk; Paik, Hyun-Dong

    2013-01-01

    The antimicrobial effect of a novel flavonoid (7-O-butylnaringenin) on Helicobacter pylori 26695, 51, and SS1 strains and its inhibitory effect on the urease activity of the strains were evaluated and compared with those of several natural flavonoids. First, various flavonoids were screened for antimicrobial activities using the paper disc diffusion method. Hesperetin and naringenin showed the strongest antimicrobial effects among the natural flavonoids tested, and thus hesperetin and naringenin were selected for comparison with 7-O-butylnaringenin. The antimicrobial effect of 7-O-butylnaringenin was greater than that of the hesperetin and naringenin. H. pylori 51 was more sensitive to 7-O-butylnaringenin (2 log reduction of colony forming units, p < 0.05) than the other two strains at 200 μM. 7-O-Butylnaringenin also showed the highest inhibitory effect against urease activity of H. pylori. Morphological changes of H. pylori 26695 treated with these flavonoids indicated that both hesperetin and 7-O-butylnaringenin at 200 μM damaged the cell membranes. PMID:24169409

  4. Screening of commercial and pecan shell-extracted liquid smoke agents as natural antimicrobials against foodborne pathogens.

    PubMed

    Van Loo, Ellen J; Babu, D; Crandall, Philip G; Ricke, Steven C

    2012-06-01

    Liquid smoke extracts have traditionally been used as flavoring agents, are known to possess antioxidant properties, and serve as natural alternatives to conventional antimicrobials. The antimicrobial efficacies of commercial liquid smoke samples may vary depending on their source and composition and the methods used to extract and concentrate the smoke. We investigated the MICs of eight commercial liquid smoke samples against Salmonella Enteritidis, Staphylococcus aureus, and Escherichia coli . The commercial liquid smoke samples purchased were supplied by the manufacturer as water-based or concentrated extracts of smoke from different wood sources. The MICs of the commercial smokes to inhibit the growth of foodborne pathogens ranged from 0.5 to 6.0% for E. coli, 0.5 to 8.0% for Salmonella, and 0.38 to 6% for S. aureus. The MIC for each liquid smoke sample was similar in its effect on both E. coli and Salmonella. Solvent-extracted antimicrobials prepared using pecan shells displayed significant differences between their inhibitory concentrations depending on the type of solvent used for extraction. The results indicated that the liquid smoke samples tested in this study could serve as effective natural antimicrobials and that their inhibitory effects depended more on the solvents used for extraction than the wood source.

  5. Polydiacetylene nanovesicles as carriers of natural phenylpropanoids for creating antimicrobial food-contact surfaces.

    PubMed

    Dogra, Navneet; Choudhary, Ruplal; Kohli, Punit; Haddock, John D; Makwana, Sanjaysinh; Horev, Batia; Vinokur, Yakov; Droby, Samir; Rodov, Victor

    2015-03-11

    The ultimate goal of this study was developing antimicrobial food-contact materials based on natural phenolic compounds using nanotechnological approaches. Among the methyl-β-cyclodextrin-encapsulated phenolics tested, curcumin showed by far the highest activity toward Escherichia coli with a minimum inhibitory concentration of 0.4 mM. Curcumin was enclosed in liposome-type polydiacetylene/phosholipid nanovesicles supplemented with N-hydroxysuccinimide and glucose. The fluorescence spectrum of the nanovesicles suggested that curcumin was located in their bilayer region. Free-suspended nanovesicles tended to bind to the bacterial surface and demonstrated bactericidal activity toward Gram-negative (E. coli) and vegetative cells of Gram-positive (Bacillus cereus) bacteria reducing their counts from 5 log CFU mL(-1) to an undetectable level within 8 h. The nanovesicles were covalently bound to silanized glass. Incubation of E. coli and B. cereus with nanovesicle-coated glass resulted in a 2.5 log reduction in their counts. After optimization this approach can be used for controlling microbial growth, cross-contamination, and biofilm formation on food-contacting surfaces.

  6. Shelf-life evaluation of natural antimicrobials for Concord and Niagara grape juices.

    PubMed

    Siricururatana, P; Iyer, M M; Manns, D C; Churey, J J; Worobo, R W; Padilla-Zakour, O I

    2013-01-01

    This study was conducted to evaluate the effectiveness of natural antimicrobials for shelf-life extension of cold-filled still and carbonated Concord and Niagara grape juices, which have traditionally been preserved with chemical preservatives. Commercial juices were inoculated with a spoilage yeast cocktail of Dekkera, Kluveromyces, Brettanomyces, and Zygosaccharomyces at 10(2) and 10(4) CFU/ml. The following agents were added to still juices: no preservative (negative control), 0.05% potassium sorbate plus 0.05% sodium benzoate (positive control), 0.1 or 0.2% cultured dextrose, 250 ppm of dimethyldicarbonate (DMDC), 10 or 20 ppm of natamycin, and 250 ppm of DMDC plus 5 or 10 ppm of natamycin. Carbonated juice was treated with the negative control, positive control, and 250 ppm of DMDC plus 10 ppm of natamycin. Microbial stability of samples was assessed every 2 weeks during 6 months of storage at 21°C by yeast enumeration and measurement of turbidity, pH, and °Brix. Juices were deemed spoiled when yeast counts exceeded 10(6) CFU/ml. Cultured dextrose was not effective at levels tested in both types of juice. The most promising results were obtained with DMDC and natamycin combination treatments in still Niagara juice and in carbonated Concord and Niagara juices. In these treatments, shelf-life extension similar to that of the positive control (153 to 161 days) was achieved while maintaining similar turbidity, pH, and °Brix. Spoiled juices had lower pH and °Brix values and higher turbidity due to microbial activity and increased in microbial levels.

  7. A Comparative Study of Natural Antimicrobial Delivery Systems for Microbial Safety and Quality of Fresh-Cut Lettuce.

    PubMed

    Hill, Laura E; Oliveira, Daniela A; Hills, Katherine; Giacobassi, Cassie; Johnson, Jecori; Summerlin, Harvey; Taylor, T Matthew; Gomes, Carmen L

    2017-05-01

    Nanoencapsulation can provide a means to effectively deliver antimicrobial compounds and enhance the safety of fresh produce. However, to date there are no studies which directly compares how different nanoencapsulation systems affect fresh produce safety and quality. This study compared the effects on quality and safety of fresh-cut lettuce treated with free and nanoencapsulated natural antimicrobial, cinnamon bark extract (CBE). A challenge study compared antimicrobial efficacy of 3 different nanoencapsulated CBE systems. The most effective antimicrobial treatment against Listeria monocytogenes was chitosan-co-poly-N-isopropylacrylamide (chitosan-PNIPAAM) encapsulated CBE, with a reduction on bacterial load up to 2 log 10 CFU/g (P < 0.05) compared to the other encapsulation systems when fresh-cut lettuce was stored at 5 °C and 10 °C for 15 d. Subsequently, chitosan-PNIPAAM-CBE nanoparticles (20, 40, and 80 mg/mL) were compared to a control and free CBE (400, 800, and 1600 μg/mL) for its effects on fresh-cut lettuce quality over 15 d at 5 °C. By the 10th day, the most effective antimicrobial concentration was 80 mg/mL for chitosan-PNIPAAM-CBE, up to 2 log 10 CFU/g reduction (P < 0.05), compared with the other treatments. There was no significant difference between control and treated samples up to day 10 for the quality attributes evaluated. Chitosan-PNIPAAM-CBE nanoparticles effectively inhibited spoilage microorganisms' growth and extended fresh-cut lettuce shelf-life. Overall, nanoencapsulation provided a method to effectively deliver essential oil and enhanced produce safety, while creating little to no detrimental quality changes on the fresh-cut lettuce. © 2017 Institute of Food Technologists®.

  8. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    SciTech Connect

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meantmore » to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.« less

  9. The Discovery of a Potential Antimicrobial Agent: the Novel Compound Natural Medicinal Plant Fermentation Extracts against Candida albicans

    NASA Astrophysics Data System (ADS)

    Song, Mingzhu; Wang, Xirui; Mao, Canquan; Yao, Wei

    2018-01-01

    Natural medicinal plants and their extracts are important sources of antimicrobial drug development. In this study, we reported an ancient formula of Chinese folk medicine, the compound natural medicinal plant fermentation extracts (CNMPFE) for its antimicrobial effects. The effects and mechanisms of CNMPFE on C. albicans were studied by cell damage experiments including antimicrobial kinetics, fungal growth curve, alkaline phosphatase (AKP) activity, ultraviolet absorption, electric conductivity and the evaluation of cellular ultra microstructure. The results showed that the minimal inhibitory concentration and minimum fungicidal concentration of CNMPFE against C. albicans were 75% (vol/vol) and 80% (vol/vol) respectively. The inhibition of CNMPFE for C. albicans was dose and time dependent, based on increasing of the AKP activities and the ultraviolet absorptions and the electric conductivities of the fungal solutions, it may exert its antifungal properties by disrupting the structure of cell wall and the cell membrane integrity and their permeability, subsequently resulting in cell death. Taken together, these findings suggest that CNMPFE may be a promising drug candidate for the treatment of fungal infections skin diseases.

  10. 76 FR 37309 - Parts and Accessories Necessary for Safe Operation; Application for Exemption From the Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... self-addressed, stamped envelope or postcard or print the acknowledgement page that appears after... vehicle fuel systems using compressed natural gas, and applies to passenger cars, multipurpose passenger... vehicle fuel containers, and applies to each passenger car, multipurpose passenger vehicle, truck, and bus...

  11. Food Antimicrobials Nanocarriers

    PubMed Central

    Blanco-Padilla, Adriana; Soto, Karen M.; Hernández Iturriaga, Montserrat

    2014-01-01

    Natural food antimicrobials are bioactive compounds that inhibit the growth of microorganisms involved in food spoilage or food-borne illness. However, stability issues result in degradation and loss of antimicrobial activity. Nanoencapsulation allows protection of antimicrobial food agents from unfavorable environmental conditions and incompatibilities. Encapsulation of food antimicrobials control delivery increasing the concentration of the antimicrobials in specific areas and the improvement of passive cellular absorption mechanisms resulted in higher antimicrobial activity. This paper reviews the present state of the art of the nanostructures used as food antimicrobial carriers including nanoemulsions, nanoliposomes, nanoparticles, and nanofibers. PMID:24995363

  12. Antimicrobial food packaging: potential and pitfalls

    PubMed Central

    Malhotra, Bhanu; Keshwani, Anu; Kharkwal, Harsha

    2015-01-01

    Nowadays food preservation, quality maintenance, and safety are major growing concerns of the food industry. It is evident that over time consumers’ demand for natural and safe food products with stringent regulations to prevent food-borne infectious diseases. Antimicrobial packaging which is thought to be a subset of active packaging and controlled release packaging is one such promising technology which effectively impregnates the antimicrobial into the food packaging film material and subsequently delivers it over the stipulated period of time to kill the pathogenic microorganisms affecting food products thereby increasing the shelf life to severe folds. This paper presents a picture of the recent research on antimicrobial agents that are aimed at enhancing and improving food quality and safety by reduction of pathogen growth and extension of shelf life, in a form of a comprehensive review. Examination of the available antimicrobial packaging technologies is also presented along with their significant impact on food safety. This article entails various antimicrobial agents for commercial applications, as well as the difference between the use of antimicrobials under laboratory scale and real time applications. Development of resistance amongst microorganisms is considered as a future implication of antimicrobials with an aim to come up with actual efficacies in extension of shelf life as well as reduction in bacterial growth through the upcoming and promising use of antimicrobials in food packaging for the forthcoming research down the line. PMID:26136740

  13. Curcuma longa extract - Haldi: A safe, eco-friendly natural cytoplasmic stain.

    PubMed

    Suryawanshi, Hema; Naik, Rupali; Kumar, Pramod; Gupta, Rolly

    2017-01-01

    Eosin is most widely used synthetic dye belonging to the xanthene group. These dyes are efficient but are hazardous to human and animal health. With the increasing awareness of a green earth, it is advisable to use more of eco-friendly and biodegradable material which can be effectively achieved by the use of natural dyes obtained from plants and other natural sources. Turmeric, available as Curcuma longa (domestic), has long been in use in the subcontinent as a spice and flavoring agent in most food preparations. Its health benefit as a natural antibiotic and anti-inflammatory has been successfully established by several researchers. The intense yellow color imparted by turmeric inspired us to explore its efficacy as a potential alternative for eosin in routine histopathological procedures. The aim of this was to explore the efficacy of turmeric extract as a stand-alone counterstain for hematoxylin and its comparative assessment with routine H and E staining. The rhizomes of C. longa were cut into small pieces, dried and milled. This powder was dissolved into alcohol and centrifuged using a centrifugal machine. The supernatant was then collected with the help of micropipette. This supernatant was used as a counterstain for hematoxylin. The data were analyzed using Mann-Whitney U test with Statistical Package for the Social Sciences version 15.0 (SPSS Inc.,). The P value obtained was statistically insignificant ( P > 0.05). Although eosin is the most efficient counterstain for hematoxylin, turmeric can also be used as an alternative for eosin.

  14. Antimicrobial sensitivity--A natural resource to be protected by a Pigouvian tax?

    PubMed

    Vågsholm, Ivar; Höjgård, Sören

    2010-08-01

    Since their discovery more than 70 years ago antibiotic drugs have been efficient tools for treating bacterial infections, and their use has reduced the number of fatalities and the suffering from bacterial diseases. However, the use of antibiotics may lead to resistance to the same or other antibiotics. The risk of resistance appears to be larger in veterinary medicine, since antibiotics have been given as feed-additives in animal production, the amounts given are larger, and the risk of selecting the wrong antibiotic is higher due to lack of diagnostic facilities. Historically, as resistance developed, new classes of antibiotics were developed, but today however, the flow of new substances has slowed. The resistance that arises from antibiotic use is a negative externality or a cost that is not included in the price of antibiotics since it affects the public good of antibiotic sensitivity. The negative externality implies that antibiotic consumption becomes too high. Antibiotic use can be restricted by e.g., prohibiting the use in animal feeding stuffs, prescription only use, or banning the use for animals or by using economic incentives, but restrictions on antibiotic use could have negative effects on the development of new antimicrobials since restrictions might reduce the profitability of such efforts to the pharmaceutical industry. It is therefore of interest to see what economic theory can contribute towards a solution. The objective of this study is to examine if a Pigouvian tax is an option for balancing the externalities and incentives for veterinary drug use. However, as a practical solution, it is suggested to use the costs of developing new antibiotics for determining the tax. The magnitude the tax based on European Union numbers ranges between 29 and 287euro per kilogram active substance or between 9 and 86% of the average price of commonly used antibiotics depending on the foreseen period in years (1-10 years) between the development of a new

  15. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    SciTech Connect

    Ishii, Mamoru

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of

  16. Curcuma longa extract – Haldi: A safe, eco-friendly natural cytoplasmic stain

    PubMed Central

    Suryawanshi, Hema; Naik, Rupali; Kumar, Pramod; Gupta, Rolly

    2017-01-01

    Background: Eosin is most widely used synthetic dye belonging to the xanthene group. These dyes are efficient but are hazardous to human and animal health. With the increasing awareness of a green earth, it is advisable to use more of eco-friendly and biodegradable material which can be effectively achieved by the use of natural dyes obtained from plants and other natural sources. Turmeric, available as Curcuma longa (domestic), has long been in use in the subcontinent as a spice and flavoring agent in most food preparations. Its health benefit as a natural antibiotic and anti-inflammatory has been successfully established by several researchers. The intense yellow color imparted by turmeric inspired us to explore its efficacy as a potential alternative for eosin in routine histopathological procedures. Aim: The aim of this was to explore the efficacy of turmeric extract as a stand-alone counterstain for hematoxylin and its comparative assessment with routine H and E staining. Materials and Methods: The rhizomes of C. longa were cut into small pieces, dried and milled. This powder was dissolved into alcohol and centrifuged using a centrifugal machine. The supernatant was then collected with the help of micropipette. This supernatant was used as a counterstain for hematoxylin. Results: The data were analyzed using Mann–Whitney U test with Statistical Package for the Social Sciences version 15.0 (SPSS Inc.,). The P value obtained was statistically insignificant (P > 0.05). Conclusion: Although eosin is the most efficient counterstain for hematoxylin, turmeric can also be used as an alternative for eosin. PMID:29391705

  17. Jasmine rice panicle: A safe and efficient natural ingredient for skin aging treatments.

    PubMed

    Kanlayavattanakul, Mayuree; Lourith, Nattaya; Chaikul, Puxvadee

    2016-12-04

    While rice is one of the most important global staple food sources its extracts have found many uses as the bases of herbal remedies. Rice extracts contain high levels of phenolic compounds which are known to be bioactive, some of which show cutaneous benefits and activity towards skin disorders. This study highlights an assessment of the cellular activity and clinical efficacy of rice panicle extract, providing necessary information relevant to the development of new cosmetic products. Jasmine rice panicle extract was standardized, and the level of phenolics present was determined. In vitro anti-aging, and extract activity towards melanogenesis was conducted in B16F10 melanoma cells, and antioxidant activity was assessed in human skin fibroblast cell cultures. Topical product creams containing the extract were developed, and skin irritation testing using a single application closed patch test method was done using 20 Thai volunteers. Randomized double-blind, placebo-controlled efficacy evaluation was undertaken in 24 volunteers over an 84d period, with the results monitored by Corneometer ® CM 825, Cutometer ® MPA 580, Mexameter ® MX 18 and Visioscan ® VC 98. Jasmine rice panicle extract was shown to have a high content of p-coumaric, ferulic and caffeic acids, and was not cytotoxic to the cell lines used in this study. Cells treated with extract suppressed melanogenesis via tyrosinase and TRP-2 inhibitory effects, which protect the cell from oxidative stress at doses of 0.1mg/ml or lower. The jasmine rice panicle preparations (0.1-0.2%) were safe (MII=0), and significantly (p<0.05) increased skin hydration levels relative to baseline. Skin lightening, and anti-wrinkle effects related to skin firmness and smoothness were observed, in addition to a reduction in skin wrinkling. Improvements in skin biophysics of both 0.1% and 0.2% extracts were showed to be comparable (p>0.05). Jasmine rice panicle extract having high levels of phenolics shows cutaneous benefits

  18. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal

  19. Safe Haven.

    ERIC Educational Resources Information Center

    Bush, Gail

    2003-01-01

    Discusses school libraries as safe havens for teenagers and considers elements that foster that atmosphere, including the physical environment, lack of judgments, familiarity, leisure, and a welcoming nature. Focuses on the importance of relationships, and taking the time to listen to teens and encourage them. (LRW)

  20. Indole diterpenoids from the endophytic fungus Drechmeria sp. as natural antimicrobial agents.

    PubMed

    Zhao, Jian-Chao; Wang, Ya-Li; Zhang, Tian-Yuan; Chen, Zhong-Jian; Yang, Tian-Mei; Wu, Ying-Ying; Sun, Cheng-Peng; Ma, Xiao-Chi; Zhang, Yi-Xuan

    2018-04-01

    A fungal strain, Drechmeria sp., was isolated from the root of Panax notoginseng. Totally, seven new indole diterpenoids, drechmerins A-G (1-7), were isolated from the fermentation broth of Drechmeria sp. together with four known analogues (8-11). Their structures were determined on the basis of 1D and 2D NMR and electronic circular dichroism (ECD) spectroscopic analyses as well as theoretical calculations. All the isolated compounds were evaluated for their antimicrobial activities against Candida albicans, Staphylococcus aureus, Bacillus cereus, B. subtillis, Pseudomonas aeruginosa, and Klebsiella pneumonia, respectively. Drechmerin B (2) displayed antimicrobial activity against C. albicans with an MIC value of 12.5 μg/mL. Molecular docking was used to investigate interactions of peptide deformylase with compounds 1-3, 5-7, 9, and 10. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Novel aqueous oil-in-water emulsions containing extracts of natural coniferous resins are strongly antimicrobial against enterobacteria, staphylococci and yeasts, as well as on bacterial biofilms.

    PubMed

    Haapakorva, E; Holmbom, T; von Wright, A

    2018-01-01

    The aim of this study was to examine the antimicrobial properties of novel aqueous natural rapeseed oil/saline emulsions containing different soluble components of spruce resin. The composition of aqueous resin emulsions was analysed by GC-MS and their antimicrobial properties were studied with challenge tests and with turbidometric assays. The emulsions were strongly antimicrobial against common Gram-positive and Gram-negative bacteria (including MRSA) as well as common yeasts. Furthermore, they inhibited the biofilm formation and eradicated the microbial biofilms on tested microbes. Characteristic for the emulsions was the presence of oxidized resin acids. Other main components present in emulsions, such as lignans and coumaric acids, were not antimicrobial, when tested separately. The results indicated that the oxidized resin acids were the antimicrobial components in the emulsions. Also, there appears to be a stoichiometric relationship between the number of resin acid molecules and the number microbe cells in the antimicrobial action. The fact that these solutions do not contain abietic acid, which is the main allergenic compound in resins, suggests that these solutions would be suitable, well-tolerated antimicrobials for various medical applications. The aqueous formulation will also allow the expansion of the use of these emulsions in from medical applications to the food preservatives and disinfectants. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of the Society for Applied Microbiology.

  2. The antimicrobial activity of probiotic bacteria Escherichia coli isolated from different natural sources against hemorrhagic E. coli O157:H7.

    PubMed

    Karimi, Sahar; Azizi, Fatemeh; Nayeb-Aghaee, Mohammad; Mahmoodnia, Leila

    2018-03-01

    Diarrheal diseases have been seen in all geographical areas throughout the world. Therefore, considering treatment, could be deemed a necessary action. The aim of this study was to determine the antimicrobial effect of probiotic bacterial strains isolated from different natural sources against 2 pathotypes of pathogenic E. coli. This cross-sectional study of Martyr Chamran University of Ahvaz was carried out from December 2013 to July 2014. A total of 13 probiotic colonies isolated from 20 samples of traditional dairy products including (yogurt, cheese, milk) and 20 samples of vegetables including carrots and cabbages (red and white) of which 5 isolates were selected to evaluate the antimicrobial effect against 2 Escherichia coli pathotypes, randomly. Antimicrobial effect was evaluated using two methods: disk diffusion and well diffusion tests and measuring growth inhibition zones of probiotics against 2 pathotypes of pathogenic E. coli. Obtained results showed growth inhibition effects of all 5 probiotic strains against Escherichia coli pathotypes in both used methods. All selected strains showed considerable antimicrobial effect on Escherichia coli O157:H7 strain, but had no inhibitory effect against Enterohemorrhagic Escherichia coli. This study demonstrated considerable antimicrobial effect against E. coli O157:H7 strain. Due to this, characteristic and similar antimicrobial effects of probiotics bacteria, increasing use of the probiotics as a natural and modern method for prevention of different diseases is recommended.

  3. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms.

    PubMed

    Karygianni, Lamprini; Al-Ahmad, Ali; Argyropoulou, Aikaterini; Hellwig, Elmar; Anderson, Annette C; Skaltsounis, Alexios L

    2015-01-01

    Oral diseases such as caries and periodontitis are mainly caused by microbial biofilms. Antibiotic therapy has reached its limits with regard to antimicrobial resistance, and new therapeutic measures utilizing natural phytochemicals are currently a focus of research. Hence, this systematic review provides a critical presentation of the antimicrobial effects of various medicinal herbs against in vitro, ex vivo, and in situ formed multispecies oral biofilms. Searches were performed in three English databases (PubMed, EMBASE, CAMbase) and the electronic archives of five German journals from the times of their establishment until October 10th, 2014, with the search terms "(plant extracts OR herbal extracts OR plant OR herb) AND (oral biofilm OR dental biofilm OR dental plaque OR oral disease OR dental disease)." The pooled data were assessed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA). Initially, 1848 articles were identified, out of which 585 full-text articles were screened, 149 articles were reevaluated for eligibility and finally, 14 articles met all inclusion criteria. The data of 14 reports disclosed enhanced antiadhesive and antibiofilm activity by the plant extracts obtained from Vitis vinifera, Pinus spp., Coffea canephora, Camellia sinensis, Vaccinium macrocarpon, Galla chinensis, Caesalpinia ferrea Martius, Psidium cattleianum, representative Brazilian plants and manuka honey. Overall, a positive correlation was revealed between herb-based therapies and elimination rates of all types of multispecies oral biofilms. In that context, integrating or even replacing conventional dental therapy protocols with herbal-inspired treatments can allow effective antimicrobial control of oral biofilms and thus, dental diseases.

  4. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms

    PubMed Central

    Karygianni, Lamprini; Al-Ahmad, Ali; Argyropoulou, Aikaterini; Hellwig, Elmar; Anderson, Annette C.; Skaltsounis, Alexios L.

    2016-01-01

    Oral diseases such as caries and periodontitis are mainly caused by microbial biofilms. Antibiotic therapy has reached its limits with regard to antimicrobial resistance, and new therapeutic measures utilizing natural phytochemicals are currently a focus of research. Hence, this systematic review provides a critical presentation of the antimicrobial effects of various medicinal herbs against in vitro, ex vivo, and in situ formed multispecies oral biofilms. Searches were performed in three English databases (PubMed, EMBASE, CAMbase) and the electronic archives of five German journals from the times of their establishment until October 10th, 2014, with the search terms “(plant extracts OR herbal extracts OR plant OR herb) AND (oral biofilm OR dental biofilm OR dental plaque OR oral disease OR dental disease).” The pooled data were assessed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA). Initially, 1848 articles were identified, out of which 585 full-text articles were screened, 149 articles were reevaluated for eligibility and finally, 14 articles met all inclusion criteria. The data of 14 reports disclosed enhanced antiadhesive and antibiofilm activity by the plant extracts obtained from Vitis vinifera, Pinus spp., Coffea canephora, Camellia sinensis, Vaccinium macrocarpon, Galla chinensis, Caesalpinia ferrea Martius, Psidium cattleianum, representative Brazilian plants and manuka honey. Overall, a positive correlation was revealed between herb-based therapies and elimination rates of all types of multispecies oral biofilms. In that context, integrating or even replacing conventional dental therapy protocols with herbal-inspired treatments can allow effective antimicrobial control of oral biofilms and thus, dental diseases. PMID:26834707

  5. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides.

    PubMed

    Pirtskhalava, Malak; Gabrielian, Andrei; Cruz, Phillip; Griggs, Hannah L; Squires, R Burke; Hurt, Darrell E; Grigolava, Maia; Chubinidze, Mindia; Gogoladze, George; Vishnepolsky, Boris; Alekseyev, Vsevolod; Rosenthal, Alex; Tartakovsky, Michael

    2016-01-04

    Antimicrobial peptides (AMPs) are anti-infectives that may represent a novel and untapped class of biotherapeutics. Increasing interest in AMPs means that new peptides (natural and synthetic) are discovered faster than ever before. We describe herein a new version of the Database of Antimicrobial Activity and Structure of Peptides (DBAASPv.2, which is freely accessible at http://dbaasp.org). This iteration of the database reports chemical structures and empirically-determined activities (MICs, IC50, etc.) against more than 4200 specific target microbes for more than 2000 ribosomal, 80 non-ribosomal and 5700 synthetic peptides. Of these, the vast majority are monomeric, but nearly 200 of these peptides are found as homo- or heterodimers. More than 6100 of the peptides are linear, but about 515 are cyclic and more than 1300 have other intra-chain covalent bonds. More than half of the entries in the database were added after the resource was initially described, which reflects the recent sharp uptick of interest in AMPs. New features of DBAASPv.2 include: (i) user-friendly utilities and reporting functions, (ii) a 'Ranking Search' function to query the database by target species and return a ranked list of peptides with activity against that target and (iii) structural descriptions of the peptides derived from empirical data or calculated by molecular dynamics (MD) simulations. The three-dimensional structural data are critical components for understanding structure-activity relationships and for design of new antimicrobial drugs. We created more than 300 high-throughput MD simulations specifically for inclusion in DBAASP. The resulting structures are described in the database by novel trajectory analysis plots and movies. Another 200+ DBAASP entries have links to the Protein DataBank. All of the structures are easily visualized directly in the web browser. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides

    PubMed Central

    Pirtskhalava, Malak; Gabrielian, Andrei; Cruz, Phillip; Griggs, Hannah L.; Squires, R. Burke; Hurt, Darrell E.; Grigolava, Maia; Chubinidze, Mindia; Gogoladze, George; Vishnepolsky, Boris; Alekseev, Vsevolod; Rosenthal, Alex; Tartakovsky, Michael

    2016-01-01

    Antimicrobial peptides (AMPs) are anti-infectives that may represent a novel and untapped class of biotherapeutics. Increasing interest in AMPs means that new peptides (natural and synthetic) are discovered faster than ever before. We describe herein a new version of the Database of Antimicrobial Activity and Structure of Peptides (DBAASPv.2, which is freely accessible at http://dbaasp.org). This iteration of the database reports chemical structures and empirically-determined activities (MICs, IC50, etc.) against more than 4200 specific target microbes for more than 2000 ribosomal, 80 non-ribosomal and 5700 synthetic peptides. Of these, the vast majority are monomeric, but nearly 200 of these peptides are found as homo- or heterodimers. More than 6100 of the peptides are linear, but about 515 are cyclic and more than 1300 have other intra-chain covalent bonds. More than half of the entries in the database were added after the resource was initially described, which reflects the recent sharp uptick of interest in AMPs. New features of DBAASPv.2 include: (i) user-friendly utilities and reporting functions, (ii) a ‘Ranking Search’ function to query the database by target species and return a ranked list of peptides with activity against that target and (iii) structural descriptions of the peptides derived from empirical data or calculated by molecular dynamics (MD) simulations. The three-dimensional structural data are critical components for understanding structure–activity relationships and for design of new antimicrobial drugs. We created more than 300 high-throughput MD simulations specifically for inclusion in DBAASP. The resulting structures are described in the database by novel trajectory analysis plots and movies. Another 200+ DBAASP entries have links to the Protein DataBank. All of the structures are easily visualized directly in the web browser. PMID:26578581

  7. Safe sex

    MedlinePlus

    ... sex; Sexually transmitted - safe sex; GC - safe sex; Gonorrhea - safe sex; Herpes - safe sex; HIV - safe sex; ... contact. STIs include: Chlamydia Genital herpes Genital warts Gonorrhea Hepatitis HIV HPV Syphilis STIs are also called ...

  8. Phyllanthus wightianus Müll. Arg.: A Potential Source for Natural Antimicrobial Agents

    PubMed Central

    Natarajan, D.; Srinivasan, R.; Shivakumar, M. S.

    2014-01-01

    Phyllanthus wightianus belongs to Euphorbiaceae family having ethnobotanical importance. The present study deals with validating the antimicrobial potential of solvent leaf extracts of P. wightianus. 11 human bacterial pathogens (Bacillus subtilis, Streptococcus pneumoniae, Staphylococcus epidermidis, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium, Escherichia coli, Shigella flexneri, Proteus vulgaris, and Serratia marcescens) and 4 fungal pathogens (Candida albicans, Cryptococcus neoformans, Mucor racemosus, and Aspergillus niger) were also challenged with solvent leaf extracts usingagar well and disc diffusion methods. Further, identification of the active component present in the bioactive extract was done using GC-MS analysis. Results show that all extracts exhibited broad spectrum (6–29 mm) of antibacterial activity on most of the tested organisms. The results highlight the fact that the well in agar method was more effective than disc diffusion method. Significant antimicrobial activity was detected in methanol extract against S. pneumoniae (29 mm) with MIC and MBC values of 15.62 μg/mL. GC-MS analysis revealed that 29 bioactive constituents were present in methanolic extract of P. wightianus, of which 9,12-octadecaenioic acid (peak area 22.82%; RT-23.97) and N-hexadecanoic acid (peak area 21.55% RT-21.796) are the major compounds. The findings of this study show that P. wightianus extracts may be used as an anti-infective agent in folklore medicine. PMID:24883301

  9. Innovative material containing the natural product curcumin, with enhanced antimicrobial properties for active packaging.

    PubMed

    Papadimitriou, A; Ketikidis, I; Stathopoulou, M-E K; Banti, C N; Papachristodoulou, C; Zoumpoulakis, L; Agathopoulos, S; Vagenas, G V; Hadjikakou, S K

    2018-03-01

    Curcumin (Curc) reacts with zinc di‑iodine (ZnI 2 ) in 2:1molar ratio in the presence of an excess of a base triethylamine ((CH 3 CH 2 ) 3 N) in methanol (CH 3 OH) solution towards the amorphous solid material of formula [ZnI 2 (Curc) 2 ] (1). The complex was characterized by melting point (m.p.), Fourier Transform-Infra Red (FT-IR) and Nuclear Magnetic Resonance of hydrogen nucleus ( 1 H NMR) spectroscopy. The formula of 1 was determined by X-ray fluorescence (XRF) analysis. The retention of the structure in solution was confirmed by 1 H NMR spectroscopy. The antimicrobial activity of the complex has been studied against the bacteria Pseudomonas aeruginosa (PAO1). The Minimum Inhibitory Concentrations (MIC) of the compounds 1 and Curc against P. aeruginosa (PAO1) are: 71.3μΜ (75.3μg/mL) for [ZnI 2 (Curc) 2 ] and 339μM (125μg/mL) for Curc, respectively. Moreover, the antimicrobial activity of the new material which was diffused in polystyrene against biofilm formed by PAO1 was also calculated. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Exploring the use of natural antimicrobial agents and pulsed electric fields to control spoilage bacteria during a beer production process.

    PubMed

    Galvagno, M A; Gil, G R; Iannone, L J; Cerrutti, P

    2007-01-01

    Different natural antimicrobials affected viability of bacterial contaminants isolated at critical steps during a beer production process. In the presence of 1 mg/ml chitosan and 0.3 mg/ml hops, the viability of Escherichia coli in an all malt barley extract wort could be reduced to 0.7 and 0.1% respectively after 2 hour- incubation at 4 degrees C. The addition of 0.0002 mg/ml nisin, 0.1 mg/ml chitosan or 0.3 mg/ml hops, selectively inhibited growth of Pediococcus sp. in more than 10,000 times with respect to brewing yeast in a mixed culture. In the presence of 0.1 mg ml chitosan in beer, no viable cells of the thermoresistant strain Bacillus megaterium were detected. Nisin, chitosan and hops increased microbiological stability during storage of a local commercial beer inoculated with Lactobacillus plantarum or Pediococcus sp. isolated from wort. Pulsed Electric Field (PEF) (8 kV/cm, 3 pulses) application enhanced antibacterial activity of nisin and hops but not that of chitosan. The results herein obtained suggest that the use of these antimicrobial compounds in isolation or in combination with PEF would be effective to control bacterial contamination during beer production and storage.

  11. Bioactivity of Natural and Engineered Antimicrobial Peptides from Venom of the Scorpions Urodacus yaschenkoi and U. manicatus.

    PubMed

    Luna-Ramirez, Karen; Tonk, Miray; Rahnamaeian, Mohammad; Vilcinskas, Andreas

    2017-01-06

    The spread of multidrug-resistant human pathogens has drawn attention towards antimicrobial peptides (AMPs), which are major players in the innate immune systems of many organisms, including vertebrates, invertebrates, plants and microbes. Scorpion venom is an abundant source of novel and potent AMPs. Here, we investigated natural and engineered AMPs from the scorpions Urodacus yaschenkoi and U. manicatus to determine their antimicrobial spectra as well as their hemolytic/cytotoxic activity. None of the AMPs were active against fungi, but many of them were active at low concentrations (0.25-30 µM) against seven different bacteria. Hemolytic and cytotoxic activities were determined using pig erythrocytes and baby hamster kidney cells, respectively. The amino acid substitutions in the engineered AMPs did not inhibit cytotoxicity, but reduced hemolysis and therefore increased the therapeutic indices. The phylogenetic analysis of scorpion AMPs revealed they are closely related and the GXK motif is highly conserved. The engineered scorpion AMPs offer a promising alternative for the treatment of multidrug-resistant bacterial infections and could be modified further to reduce their hemolytic/cytotoxic activity.

  12. In Vitro Antimicrobial and Modulatory Activity of the Natural Products Silymarin and Silibinin

    PubMed Central

    Rakelly de Oliveira, Dayanne; Relison Tintino, Saulo; Morais Braga, Maria Flaviana Bezerra; Boligon, Aline Augusti; Linde Athayde, Margareth; Douglas Melo Coutinho, Henrique; de Menezes, Irwin Rose Alencar; Fachinetto, Roselei

    2015-01-01

    Silymarin is a standardized extract from the dried seeds of the milk thistle (Silybum marianum L. Gaertn.) clinically used as an antihepatotoxic agent. The aim of this study was to investigate the antibacterial and antifungal activity of silymarin and its major constituent (silibinin) against different microbial strains and their modulatory effect on drugs utilized in clinical practice. Silymarin demonstrated antimicrobial activity of little significance against the bacterial strains tested, with MIC (minimum inhibitory concentration) values of 512 µg/mL. Meanwhile, silibinin showed significant activity against Escherichia coli with a MIC of 64 µg/mL. The results for the antifungal activity of silymarin and silibinin demonstrated a MIC of 1024 µg/mL for all strains. Silymarin and silibinin appear to have promising potential, showing synergistic properties when combined with antibacterial drugs, which should prompt further studies along this line. PMID:25866771

  13. Lyme Borreliosis: is there a preexisting (natural) variation in antimicrobial susceptibility among Borrelia burgdorferi strains?

    PubMed Central

    Hodzic, Emir

    2015-01-01

    The development of antibiotics changed the world of medicine and has saved countless human and animal lives. Bacterial resistance/tolerance to antibiotics have spread silently across the world and has emerged as a major public health concern. The recent emergence of pan-resistant bacteria can overcome virtually any antibiotic and poses a major problem for their successful control. Selection for antibiotic resistance may take place where an antibiotic is present in the skin, gut, and other tissues of humans and animals and in the environment. Borrelia burgdorferi, the etiological agents of Lyme borreliosis, evades host immunity and establishes persistent infections in its mammalian hosts. The persistent infection poses a challenge to the effective antibiotic treatment, as demonstrated in various animal models. An increasingly heterogeneous subpopulation of replicatively attenuated spirochetes arises following treatment, and these persistent antimicrobial tolerant/resistant spirochetes are non-cultivable. The non-cultivable spirochetes resurge in multiple tissues at 12 months after treatment, with B. burgdorferi-specific DNA copy levels nearly equivalent to those found in shame-treated experimental animals. These attenuated spirochetes remain viable, but divide slowly, thereby being tolerant to antibiotics. Despite the continued non-cultivable state, RNA transcription of multiple B. burgdorferi genes was detected in host tissues, spirochetes were acquired by xenodiagnostic ticks, and spirochetal forms could be visualized within ticks and mouse tissues. A number of host cytokines were up- or down-regulated in tissues of both shame- and antibiotic-treated mice in the absence of histopathology, indicating a lack of host response to the presence of antimicrobial tolerant/resistant spirochetes. PMID:26295288

  14. Lyme Borreliosis: Is there a preexisting (natural) variation in antimicrobial susceptibility among Borrelia burgdorferi strains?

    PubMed

    Hodzic, Emir

    2015-07-08

    The development of antibiotics changed the world of medicine and has saved countless human and animal lives. Bacterial resistance/tolerance to antibiotics have spread silently across the world and has emerged as a major public health concern. The recent emergence of pan-resistant bacteria can overcome virtually any antibiotic and poses a major problem for their successful control. Selection for antibiotic resistance may take place where an antibiotic is present: in the skin, gut, and other tissues of humans and animals and in the environment. Borrelia burgdorferi, the etiological agents of Lyme borreliosis, evades host immunity and establishes persistent infections in its mammalian hosts. The persistent infection poses a challenge to the effective antibiotic treatment, as demonstrated in various animal models. An increasingly heterogeneous subpopulation of replicatively attenuated spirochetes arises following treatment, and these persistent antimicrobial tolerant/resistant spirochetes are non-cultivable. The non-cultivable spirochetes resurge in multiple tissues at 12 months after treatment, with B. burgdorferi-specific DNA copy levels nearly equivalent to those found in shame-treated experimental animals. These attenuated spirochetes remain viable, but divide slowly, thereby being tolerant to antibiotics. Despite the continued non-cultivable state, RNA transcription of multiple B. burgdorferi genes was detected in host tissues, spirochetes were acquired by xenodiagnostic ticks, and spirochetal forms could be visualized within ticks and mouse tissues. A number of host cytokines were up- or down-regulated in tissues of both shame- and antibiotic-treated mice in the absence of histopathology, indicating a lack of host response to the presence of antimicrobial tolerant/resistant spirochetes.

  15. Safe Schools, Safe Communities.

    ERIC Educational Resources Information Center

    Lewis, Julie E.; Pickett, Dean; Pulliam, Janet L.; Schwartz, Richard A.; St. Germaine, Anne-Marie; Underwood, Julie; Worona, Jay

    Schools must work together with agencies, groups, and individuals to eliminate the forces leading children to violence. Chapter 1, "School Safety: Working Together to Keep Schools Safe," stresses the importance of community collaboration in violence prevention. Effective prevention requires sharing information about students, consistent…

  16. Towards the Development of Synthetic Antibiotics: Designs Inspired by Natural Antimicrobial Peptides.

    PubMed

    Azmi, Fazren; Skwarczynski, Mariusz; Toth, Istvan

    2016-01-01

    Virtually every living organism produces gene-encoded antimicrobial peptides (AMPs) that provide an immediate defence against pathogen invasion. Many AMPs have been isolated and used as antibiotics that are effective against multidrug-resistant bacteria. Although encouraging, AMPs have such poor drug-like properties that their application for clinical use is restricted. In turn, this has diverted research to the development of synthetic molecules that retain the therapeutic efficacy of AMPs but are endowed with greater biological stability and safety profiles. Most of the synthetic molecules, either based on a peptidic or non-peptidic scaffold, have been designed to mimic the amphiphilic properties of native AMPs, which are widely believed to be the key determinant of their antibacterial activity. In this review, the structural, chemical and biophysical features that govern the biological activities of various synthetic designs are discussed extensively. Recent innovative approaches from the literature that exhibit novel concepts towards the development of new synthetic antibacterial agents, including the engineered delivery platform incorporated with AMP mimetics, are also emphasised.

  17. Comparative evaluation of antimicrobial efficacy of an alternative natural agent for disinfection of toothbrushes.

    PubMed

    Vignesh, R; Rekha, C Vishnu; Baghkomeh, Parisa Norouzi; Annamalai, Sankar; Sharmin, Ditto

    2017-01-01

    The aim of this study was to assess the antimicrobial potency of aqueous extract of Psidium guajava leaves in two different concentrations as a toothbrush disinfectant against three oral bacterial species. Aqueous extracts of P. guajava leaves were prepared at 20% and 30% concentrations and 0.2% chlorhexidine was used as control. The toothbrushes were equally divided into 9 groups with 10 toothbrushes per disinfectant, which were contaminated with Streptococcus mutans , Lactobacillus acidophilus , and Enterococcus faecalis . Microbial culture was done after 5 min and 3 h of decontamination. Group Ia and Ib showed that the presence of E. faecalis was observed in 8 (40%) of 20 toothbrushes. Group IIa and IIb showed a significant reduction in colony forming unit/toothbrush during 3 h evaluation. Group IIIa and IIIb showed nil growth during 3 h evaluation. Nil growth was observed with the control group for all three organisms. Statistically significant values were obtained for 5 min ( P < 0.001) and 3 h ( P < 0.001) disinfection period against L. acidophilus at two different concentrations. Aqueous extracts of guava leaves can be used as an alternative organic product for disinfection of toothbrushes.

  18. Synthesis of novel antimicrobial aryl himachalene derivatives from naturally occurring himachalenes

    PubMed Central

    Chaudhary, Abha; Sood, Swati; Das, Pralay; Kaur, Pushpinder; Mahajan, Isha; Gulati, Arvind; Singh, Bikram

    2014-01-01

    Five new 2,9,9-trimethyl-6,7,8,9-tetrahydro-benzocyclohepten-5-ylidene-amine derivatives (16a-16e) were synthesized from α-dehydro-ar-himachalene (11) that was originally prepared from an isomeric mixture of α, β and γ himachalenes (10), the abundant sesquiterpenes of Cedrus deodara essential oil. In addition, different aryl himachalenes derivatives (9, 12, 14 and 15) were also formed from 11. The structures of the synthesized compounds were confirmed on the basis of their NMR, IR and mass spectral data. The prepared compounds were tested against a group of sixteen organisms including gram positive and gram negative bacterial and fungal strains. The introduction of a series of substituted imine groups into aryl himachalenes at 5th position (16a-16e) enhanced antimicrobial activity as compared to the aromatized derivatives (9, 12, 14 and 15) against gram-positive bacteria Bacillus subtilis, Micrococcus luteus and Staphylococcus aureus, and mycotoxigenic fungi Aspergillus parasiticus, A. ochraceous and A. sydowii. graphical Abstract, Figure 1(Fig. 1) PMID:26417335

  19. Usnic Acid, a Natural Antimicrobial Agent Able To Inhibit Bacterial Biofilm Formation on Polymer Surfaces

    PubMed Central

    Francolini, I.; Norris, P.; Piozzi, A.; Donelli, G.; Stoodley, P.

    2004-01-01

    In modern medicine, artificial devices are used for repair or replacement of damaged parts of the body, delivery of drugs, and monitoring the status of critically ill patients. However, artificial surfaces are often susceptible to colonization by bacteria and fungi. Once microorganisms have adhered to the surface, they can form biofilms, resulting in highly resistant local or systemic infections. At this time, the evidence suggests that (+)-usnic acid, a secondary lichen metabolite, possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium. Since lichens are surface-attached communities that produce antibiotics, including usnic acid, to protect themselves from colonization by other bacteria, we hypothesized that the mode of action of usnic acid may be utilized in the control of medical biofilms. We loaded (+)-usnic acid into modified polyurethane and quantitatively assessed the capacity of (+)-usnic acid to control biofilm formation by either S. aureus or Pseudomonas aeruginosa under laminar flow conditions by using image analysis. (+)-Usnic acid-loaded polymers did not inhibit the initial attachment of S. aureus cells, but killing the attached cells resulted in the inhibition of biofilm. Interestingly, although P. aeruginosa biofilms did form on the surface of (+)-usnic acid-loaded polymer, the morphology of the biofilm was altered, possibly indicating that (+)-usnic acid interfered with signaling pathways. PMID:15504865

  20. In vitro antimicrobial activity of auxiliary chemical substances and natural extracts on Candida albicans and Enterococcus faecalis in root canals

    PubMed Central

    VALERA, Marcia Carneiro; MAEKAWA, Lilian Eiko; de OLIVEIRA, Luciane Dias; JORGE, Antonio Olavo Cardoso; SHYGEI, Érika; CARVALHO, Cláudio Antonio Talge

    2013-01-01

    Objective: The aim of this study was to evaluate the antimicrobial activity of auxiliary chemical substances and natural extracts on Candida albicans and Enterococcus faecalis inoculated in root canals. Material and Methods: Seventy-two human tooth roots were contaminated with C. albicans and E. faecalis for 21 days. The groups were divided according to the auxiliary chemical substance into: G1) 2.5% sodium hypochlorite (NaOCl), G2) 2% chlorhexidine gel (CHX), G3) castor oil, G4) glycolic Aloe vera extract, G5) glycolic ginger extract, and G6) sterile saline (control). The samples of the root canal were collected at different intervals: confirmation collection, at 21 days after contamination; 1st collection, after instrumentation; and 2nd collection, seven days after instrumentation. Microbiological samples were grown in culture medium and incubated at 37º C for 48 hours. Results: The results were submitted to the Kruskal-Wallis and Dunn (5%) statistical tests. NaOCl and CHX completely eliminated the microorganisms of the root canals. Castor oil and ginger significantly reduced the number of CFU of the tested bacteria. Reduction of CFU/mL at the 1st and 2nd collections for groups G1, G2, G3 and G4 was greater in comparison to groups G5 and G6. Conclusion: It was concluded that 2.5% sodium hypochlorite and 2% chlorhexidine gel were more effective in eliminating C. albicans and E. faecalis, followed by the castor oil and glycolic ginger extract. The Aloe vera extract showed no antimicrobial activity. PMID:23739849

  1. In vitro antimicrobial activity of auxiliary chemical substances and natural extracts on Candida albicans and Enterococcus faecalis in root canals.

    PubMed

    Valera, Marcia Carneiro; Maekawa, Lilian Eiko; de Oliveira, Luciane Dias; Jorge, Antonio Olavo Cardoso; Shygei, Érika; Carvalho, Cláudio Antonio Talge

    2013-01-01

    The aim of this study was to evaluate the antimicrobial activity of auxiliary chemical substances and natural extracts on Candida albicans and Enterococcus faecalis inoculated in root canals. Seventy-two human tooth roots were contaminated with C. albicans and E. faecalis for 21 days. The groups were divided according to the auxiliary chemical substance into: G1) 2.5% sodium hypochlorite (NaOCl), G2) 2% chlorhexidine gel (CHX), G3) castor oil, G4) glycolic Aloe vera extract, G5) glycolic ginger extract, and G6) sterile saline (control). The samples of the root canal were collected at different intervals: confirmation collection, at 21 days after contamination; 1st collection, after instrumentation; and 2nd collection, seven days after instrumentation. Microbiological samples were grown in culture medium and incubated at 37°C for 48 hours. The results were submitted to the Kruskal-Wallis and Dunn (5%) statistical tests. NaOCl and CHX completely eliminated the microorganisms of the root canals. Castor oil and ginger significantly reduced the number of CFU of the tested bacteria. Reduction of CFU/mL at the 1st and 2nd collections for groups G1, G2, G3 and G4 was greater in comparison to groups G5 and G6. It was concluded that 2.5% sodium hypochlorite and 2% chlorhexidine gel were more effective in eliminating C. albicans and E. faecalis, followed by the castor oil and glycolic ginger extract. The Aloe vera extract showed no antimicrobial activity.

  2. Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots

    PubMed Central

    Gordya, Natalia; Yakovlev, Andrey; Kruglikova, Anastasia; Tulin, Dmitry; Potolitsina, Evdokia; Suborova, Tatyana; Bordo, Domenico; Rosano, Camillo; Chernysh, Sergey

    2017-01-01

    Biofilms, sedimented microbial communities embedded in a biopolymer matrix cause vast majority of human bacterial infections and many severe complications such as chronic inflammatory diseases and cancer. Biofilms’ resistance to the host immunity and antibiotics makes this kind of infection particularly intractable. Antimicrobial peptides (AMPs) are a ubiquitous facet of innate immunity in animals. However, AMPs activity was studied mainly on planktonic bacteria and little is known about their effects on biofilms. We studied structure and anti-biofilm activity of AMP complex produced by the maggots of blowfly Calliphora vicina living in environments extremely contaminated by biofilm-forming germs. The complex exhibits strong cell killing and matrix destroying activity against human pathogenic antibiotic resistant Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii biofilms as well as non-toxicity to human immune cells. The complex was found to contain AMPs from defensin, cecropin, diptericin and proline-rich peptide families simultaneously expressed in response to bacterial infection and encoded by hundreds mRNA isoforms. All the families combine cell killing and matrix destruction mechanisms, but the ratio of these effects and antibacterial activity spectrum are specific to each family. These molecules dramatically extend the list of known anti-biofilm AMPs. However, pharmacological development of the complex as a whole can provide significant advantages compared with a conventional one-component approach. In particular, a similar level of activity against biofilm and planktonic bacteria (MBEC/MIC ratio) provides the complex advantage over conventional antibiotics. Available methods of the complex in situ and in vitro biosynthesis make this idea practicable. PMID:28278280

  3. Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots.

    PubMed

    Gordya, Natalia; Yakovlev, Andrey; Kruglikova, Anastasia; Tulin, Dmitry; Potolitsina, Evdokia; Suborova, Tatyana; Bordo, Domenico; Rosano, Camillo; Chernysh, Sergey

    2017-01-01

    Biofilms, sedimented microbial communities embedded in a biopolymer matrix cause vast majority of human bacterial infections and many severe complications such as chronic inflammatory diseases and cancer. Biofilms' resistance to the host immunity and antibiotics makes this kind of infection particularly intractable. Antimicrobial peptides (AMPs) are a ubiquitous facet of innate immunity in animals. However, AMPs activity was studied mainly on planktonic bacteria and little is known about their effects on biofilms. We studied structure and anti-biofilm activity of AMP complex produced by the maggots of blowfly Calliphora vicina living in environments extremely contaminated by biofilm-forming germs. The complex exhibits strong cell killing and matrix destroying activity against human pathogenic antibiotic resistant Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii biofilms as well as non-toxicity to human immune cells. The complex was found to contain AMPs from defensin, cecropin, diptericin and proline-rich peptide families simultaneously expressed in response to bacterial infection and encoded by hundreds mRNA isoforms. All the families combine cell killing and matrix destruction mechanisms, but the ratio of these effects and antibacterial activity spectrum are specific to each family. These molecules dramatically extend the list of known anti-biofilm AMPs. However, pharmacological development of the complex as a whole can provide significant advantages compared with a conventional one-component approach. In particular, a similar level of activity against biofilm and planktonic bacteria (MBEC/MIC ratio) provides the complex advantage over conventional antibiotics. Available methods of the complex in situ and in vitro biosynthesis make this idea practicable.

  4. Microencapsulated jabuticaba (Myrciaria cauliflora) extract added to fresh sausage as natural dye with antioxidant and antimicrobial activity.

    PubMed

    Baldin, Juliana Cristina; Michelin, Euder Cesar; Polizer, Yana Jorge; Rodrigues, Isabela; de Godoy, Silvia Helena Seraphin; Fregonesi, Raul Pereira; Pires, Manoela Alves; Carvalho, Larissa Tátero; Fávaro-Trindade, Carmen Silvia; de Lima, César Gonçalves; Fernandes, Andrezza Maria; Trindade, Marco Antonio

    2016-08-01

    The aim was to evaluate the addition of microencapsulated jabuticaba extract (MJE) to fresh sausage as natural dye with antioxidant and antimicrobial activity. Fresh sausages without dye, with cochineal carmine and with addition of 2% and 4% MJE were evaluated for chemical, microbiological and sensory properties during 15days of refrigerated storage. TBARS values were lower (P<0.05) throughout the storage period in sausages with 2% and 4% MJE (below 0.1mg of malondialdehyde/kg sample) than in control and carmine treatments (from 0.3 to 0.6mg of malondialdehyde/kg sample). T2% and T4% also showed lower microbial counts on storage days 4 and 15 for APCs. The addition of 4% MJE negatively influenced (P<0.05) sensory color, texture and overall acceptance attributes. On the other hand, T2% presented similar (P>0.05) sensory acceptance to control and carmine treatments in most of the attributes evaluated except for a decrease in color. Thus, addition of 2% MJE to fresh sausage can be considered as a natural pigment ingredient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Immobilization of cationic antimicrobial peptides and natural cashew gum in nanosheet systems for the investigation of anti-leishmanial activity.

    PubMed

    Bittencourt, Clicia Ramos; de Oliveira Farias, Emanuel Airton; Bezerra, Karla Costa; Véras, Leiz Maria Costa; Silva, Vladimir Costa; Costa, Carlos Henrique Nery; Bemquerer, Marcelo P; Silva, Luciano Paulino; Souza de Almeida Leite, José Roberto de; Eiras, Carla

    2016-02-01

    This report details the development of thin films containing an antimicrobial peptide, specifically, dermaseptin 01 (GLWSTIKQKGKEAAIAAA-KAAGQAALGAL-NH2, [DRS 01]), and a natural polysaccharide, for a novel application in detecting the presence of Leishmania cells and maintaining anti-leishmanial activity. The peptide DRS 01 was immobilized in conjunction with natural cashew gum (CG) onto an indium tin oxide (ITO) substrate using the Layer-by-Layer (LbL) deposition technique. The LbL film ITO/CG/DRS 01, containing DRS 01 as the outer layer, was capable of detecting the presence of Leishmania cells and acting as an anti-leishmanial system. Detection was performed using cyclic voltammetry (CV) in phosphate buffer (pH7.2) in the presence of promastigote cells (0-10(7)cells/mL). The results showed a linear and inversely proportional relation between the concentration of Leishmania infantum protozoan cells and the measured current values obtained for the films, which was attributed to the effect of peptide-induced lysis of the cell membrane, and resulted in freed residues that were adsorbed on the electrode surface. With this, the paper shows a method using thin films with this new material to demonstrate the anti-leishmanial activity in vitro models of carpet-like mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Oregano essential oil-based natural antimicrobial packaging film to inactivate Salmonella enterica and yeasts/molds in the atmosphere surrounding cherry tomatoes.

    PubMed

    Kwon, Sang-Jo; Chang, Yoonjee; Han, Jaejoon

    2017-08-01

    This study investigated the effectiveness of a polyvinyl alcohol (PVA) film containing the natural antimicrobial oregano essential oil (OEO) as an active packaging application for decreasing the microbial growth. The film exerted an antimicrobial effect via the atmosphere surrounding the food rather than direct contact, thereby preserving the quality of cherry tomatoes. A packaging film containing microencapsulated OEO was developed. The loading content increased gradually (104.29-234.29 μg OEO/mg film) with the amount of OEO incorporated (1%, 2%, and 3%), where the PVA films containing 2% OEO had the highest loading efficiency (91.64%), followed by 1% OEO (90.96%) and 3% OEO (88.38%). The antimicrobial activities of the films were evaluated by applying it to fresh cherry tomatoes at 4 °C and 22 °C for 7 days. The large 2% OEO film as well as both the small and large 3% OEO films had strong antimicrobial effects against Salmonella enterica, molds and yeasts, and mesophilic aerobic bacteria. The changes in the hardness, weight, and color of the cherry tomatoes during storage did not differ significantly. The films could be utilized as a packaging material for fresh produce with antimicrobial effects because of the controlled atmosphere surrounding the food rather than by direct contact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Antimicrobial activity of pomegranate peel extracts as affected by cultivar.

    PubMed

    Rosas-Burgos, Ema C; Burgos-Hernández, Armando; Noguera-Artiaga, Luis; Kačániová, Miroslava; Hernández-García, Francisca; Cárdenas-López, José L; Carbonell-Barrachina, Ángel A

    2017-02-01

    Some studies have reported that different parts of the pomegranate fruit, especially the peel, may act as potential antimicrobial agents and thus might be proposed as a safe natural alternative to synthetic antimicrobial agents. The high tannin content, especially punicalagin, found in pomegranate extracts, has been reported as the main compound responsible for such antimicrobial activity. Because the pomegranate peel chemical composition may vary with the type of cultivar (sweet, sour-sweet and sour), pomegranates may also differ with respect to their antimicrobial capacity. The extract from PTO8 pomegranate cultivar peel had the highest antimicrobial activity, as well as the highest punicalagins (α and β) and ellagic acid concentrations. In the results obtained from both antibacterial and antifungal activity studies, the sour-sweet pomegranate cultivar PTO8 showed the best antimicrobial activity, and the highest ellagic acid concentrations. The results of the present study suggest that ellagic acid content has a significant influence on the antimicrobial activity of the pomegranate extracts investigated. The pomegranate peel of the PTO8 cultivar is a good source of antifungal and antibacterial compounds, and may represent an alternative to antimicrobial agents of synthetic origin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Identification of Natural Antimicrobial Substances in Red Muscadine Juice against Enterobacter sakazakii

    USDA-ARS?s Scientific Manuscript database

    Red muscadine (Vitis rotundifolia Michx.) juices with natural organic, phenolic acids and polyphenol compounds were tested against Cronobacter sakazakii. The concentration of total phenolic compounds of commercial baby juices ranged from 176.7 to 347.7 mg/mL. Commercial baby juices showed poor antim...

  9. Natural and experimental Helicobacter mustelae reinfection following successful antimicrobial eradication in ferrets.

    PubMed

    Batchelder, M; Fox, J G; Hayward, A; Yan, L; Shames, B; Murphy, J C; Palley, L

    1996-03-01

    Recrudescence or reinfection may occur after eradication of Helicobacter pylori in humans. We used the ferret Helicobacter mustelae model to investigate the effect of prior infection and eradication on reinfection by experimental and natural routes. Two groups of ferrets with naturally acquired H. mustelae infection were treated with an eradication protocol using amoxicillin, metronidazole, and bismuth subsalicylate. The ferrets were monitored for recrudescence by repeated cultures of endoscopic gastric mucosal biopsies. The ferrets were challenged at 17 months (group I) and 6 months (group II) after eradication with a strain of H. mustelae having a distinctive restriction endonuclease analysis pattern. The eradication protocol was repeated to eliminate the infection produced by experimental challenge. The ferrets were then cohoused intermittently with naturally infected ferrets. The original H. mustelae infection was successfully eliminated by the eradication protocol. No recrudescence was observed in group I for 12 months nor for 3 months in group II after eradication. All ferrets became persistently reinfected with the challenge strain. The infection from the challenge strain was eradicated successfully. No ferrets in group I and all ferrets in group II became infected through cohousing. These results suggest that though prior infection with H. mustelae may confer some protection against reinfection, such protection is not universal in all circumstances; that susceptibility to reinfection by contact with infected animals varies between individuals; and that age may be a factor in this individual variability. These results are applicable to studies of reinfection after eradication of H. pylori in humans.

  10. Computer-aided discovery in antimicrobial research: In silico model for virtual screening of potent and safe anti-pseudomonas agents.

    PubMed

    Speck-Planche, Alejandro; Cordeiro, Maria N D S

    2015-01-01

    Resistance of bacteria to current antibiotics is an alarming health problem. In this sense, Pseudomonas represents a genus of Gram-negative pathogens, which has emerged as one of the most dangerous species causing nosocomial infections. Despite the effort of the scientific community, drug resistant strains of bacteria belonging to Pseudomonas spp. prevail. The high costs associated to drug discovery and the urgent need for more efficient antimicrobial chemotherapies envisage the fact that computeraided methods can rationalize several stages involved in the development of a new drug. In this work, we introduce a chemoinformatic methodology devoted to the construction of a multitasking model for quantitative-structure biological effect relationships (mtk-QSBER). The purpose of this model was to perform simultaneous predictions of anti-Pseudomonas activities and ADMET (absorption, distribution, metabolism, elimination, and toxicity) properties of organic compounds. The mtk-QSBER model was created from a large and heterogeneous dataset (more than 54000 cases) and displayed accuracies higher than 90% in both training and prediction sets. In order to demonstrate the applicability of our mtk-QSBER model, we used the investigational antibacterial drug delafloxacin as a case of study, for which experimental results were recently reported. The predictions performed for many biological effects of this drug exhibited a remarkable convergence with the experimental assays, confirming that our model can serve as useful tool for virtual screening of potent and safer anti-Pseudomonas agents.

  11. [Preparation and antimicrobial effect of aromatic, natural and bacteriostatic foot wash with skin care].

    PubMed

    Gao, Su-Hua; Zhao, Guo-Xiang; Yang, Xiao-Dong; Xu, Ling-Ling

    2013-06-01

    To prepare the aromatic, natural and bacteriostatic foot wash with skin care and research the inhibition effect on the different bacteria and pathogenic fungus which cause dermatophytosis. It was prepared by using Sophoraflavescens and Dictamnus dasycarpus as materials with the addition of Aloe extract, essential oil, surfactant, etc. The antifungal and antibacterial activity was researched by the levitation liquid quantitative method. The foot wash smelled faintly scent. The use of this product can produce a rich foam. The inhibitory rate were all more than 90%. The preparation process of the foot wash was simple. It has obviously bacteriostatic and fungistatic effect.

  12. Variation in polyphenolic profiles, antioxidant and antimicrobial activity of different Achillea species as natural sources of antiglycative compounds.

    PubMed

    Afshari, Mahvash; Rahimmalek, Mehdi; Miroliaei, Mehran

    2018-05-19

    A comparative study was carried out on the methanolic extracts from six Achillea species and the examined polyphenols from these plants on the formation of advanced glycation end-products (AGE) in vitro. A. pachycephala which was richer in flavonoids (15 mg quercetin/g W) and phenolics (111.10 mg tannic acid/g DW) with substantial antioxidant activity (IC 50 = 365.5 μg/ml) presented strong anti-AGE properties. Chlorogenic acid, luteolin, quercetin and caffeic acid were identified as the major polyphenols in the extracts by HPLC. In general, polyphenolic content follows the order A. pachycephalla > A. nobilis > A. filipendulina > A. santolina > A. aucheri > A. millefolium. Most extracts exhibited marked anti-AGE ability in the bovine serum albumin (BSA)/methylglyoxal (MG) system, though A. pachycephala showed the highest potential. The formation of AGEs was assessed by monitoring the production of fluorescent products and Circular dichroism (CD) spectroscopy. Diminution in free radical production (assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays) is discussed as potential mechanism for delay or reduced AGE. The results demonstrate the antiglycative, antioxidant and antimicrobial potential of Achillea species which can be attribute to polyphenols content and the effectiveness on generation of AGEs, thus Achillea species can be considered as natural sources for slowing down glycation related diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Identification of a Pantoea Biosynthetic Cluster That Directs the Synthesis of an Antimicrobial Natural Product

    PubMed Central

    Walterson, Alyssa M.; Smith, Derek D. N.; Stavrinides, John

    2014-01-01

    Fire Blight is a destructive disease of apple and pear caused by the enteric bacterial pathogen, Erwinia amylovora. E. amylovora initiates infection by colonizing the stigmata of apple and pear trees, and entering the plants through natural openings. Epiphytic populations of the related enteric bacterium, Pantoea, reduce the incidence of disease through competition and antibiotic production. In this study, we identify an antibiotic from Pantoea ananatis BRT175, which is effective against E. amylovora and select species of Pantoea. We used transposon mutagenesis to create a mutant library, screened approximately 5,000 mutants for loss of antibiotic production, and recovered 29 mutants. Sequencing of the transposon insertion sites of these mutants revealed multiple independent disruptions of an 8.2 kb cluster consisting of seven genes, which appear to be coregulated. An analysis of the distribution of this cluster revealed that it was not present in any other of our 115 Pantoea isolates, or in any of the fully sequenced Pantoea genomes, and is most closely related to antibiotic biosynthetic clusters found in three different species of Pseudomonas. This identification of this biosynthetic cluster highlights the diversity of natural products produced by Pantoea. PMID:24796857

  14. Controlling Vibrio vulnificus and spoilage bacteria in fresh shucked oysters using natural antimicrobials.

    PubMed

    Mahmoud, B S M

    2014-01-01

    This study evaluated the efficacy of grape seed extract (GE), citric acid (CA) and lactic acid (LA) on the inactivation of Vibrio vulnificus and inherent microflora in fresh shucked oysters. The minimum inhibitory concentration (MIC) of GE, CA or LA against V. vulnificus was determined. Furthermore, the shucked oysters were artificially inoculated with V. vulnificus. The inoculated shucked oysters (25 g) were then dipped in 250 ml GE, CA or LA solutions for 10 min. The population of V. vulnificus in shucked oysters was determined. The effects of the treatments with GE, CA or LA solutions on the inherent microbiota in fresh shucked oysters during storage at 5°C for 20 days were also studied. The MICs of GE, CA or LA against V. vulnificus were 10.0, 5.0 or 1.0 mg ml(-1), respectively. The concentrations of 500, 300 or 150 mg ml(-1) GE, CA or LA solutions were needed to reduce the population of V. vulnificus to below the detection level (1.0 log g(-1)). Treatment with 500, 300, 150 mg ml(-1) GE, CA or LA significantly reduced the initial inherent microbiota in fresh shucked oysters, and inherent levels were significantly (P < 0.05) lower than the control sample throughout refrigerated storage for 20 days. Oysters filter large volume of seawater during their feeding activities that concentrate bacteria such as Vibrio vulnificus in their body. The presence of V. vulnificus in oysters has a serious impact on public health and international trade. There is increasing concern over the use of chemical preservatives. Furthermore, the food industry is looking for new natural preservation methods. This study indicated that lactic acid and citric acid wash solutions could offer an inexpensive, natural and strong approach to control V. vulnificus and spoilage bacteria in fresh shucked for the oyster industry. © 2013 The Society for Applied Microbiology.

  15. The Natural Antimicrobial Enzyme Lysozyme is Up-Regulated in Gastrointestinal Inflammatory Conditions

    PubMed Central

    Rubio, Carlos A.

    2014-01-01

    The cells that line the mucosa of the human gastrointestinal tract (GI, that is, oral cavity, oesophagus, stomach, small intestine, large intestine, and rectum) are constantly challenged by adverse micro-environmental factors, such as different pH, enzymes, and bacterial flora. With exception of the oral cavity, these microenvironments also contain remnant cocktails of secreted enzymes and bacteria from upper organs along the tract. The density of the GI bacteria varies, from 103/mL near the gastric outlet, to 1010/mL at the ileocecal valve, to 1011 to 1012/mL in the colon. The total microbial population (ca. 1014) exceeds the total number of cells in the tract. It is, therefore, remarkable that despite the prima facie inauspicious mixture of harmful secretions and bacteria, the normal GI mucosa retains a healthy state of cell renewal. To counteract the hostile microenvironment, the GI epithelia react by speeding cell exfoliation (the GI mucosa has a turnover time of two to three days), by increasing peristalsis, by eliminating bacteria through secretion of plasma cell-immunoglobulins and by increasing production of natural antibacterial compounds, such as defensin-5 and lysozyme. Only recently, lysozyme was found up-regulated in Barrett’s oesophagitis, chronic gastritis, gluten-induced atrophic duodenitis (coeliac disease), collagenous colitis, lymphocytic colitis, and Crohn’s colitis. This up-regulation is a response directed to the special types of bacteria recently detected in these diseases. The aim of lysozyme up-regulation is to protect individual mucosal segments to chronic inflammation. The molecular mechanisms connected to the crosstalk between the intraluminal bacterial flora and the production of lysozyme released by the GI mucosae, are discussed. Bacterial resistance continues to exhaust our supply of commercial antibiotics. The potential use of lysozyme to treat infectious diseases is receiving much attention. PMID:25437608

  16. Investigating the control of Listeria monocytogenes on a ready-to-eat ham product using natural antimicrobial ingredients and postlethality interventions.

    PubMed

    Lavieri, Nicolas A; Sebranek, Joseph G; Brehm-Stecher, Byron F; Cordray, Joseph C; Dickson, James S; Horsch, Ashley M; Jung, Stephanie; Larson, Elaine M; Manu, David K; Mendonça, Aubrey F

    2014-06-01

    Ready-to-eat (RTE) meat and poultry products manufactured with natural or organic methods are at greater risk for Listeria monocytogenes growth, if contaminated, than their conventional counterparts due to the required absence of preservatives and antimicrobials. Thus, the objective of this study was to investigate the use of commercially available natural antimicrobials and postlethality interventions in the control of L. monocytogenes growth and recovery on a RTE ham product. Antimicrobials evaluated were cranberry powder (90MX), vinegar (DV), and vinegar/lemon juice concentrate (LV1X). Postlethality interventions studied were high hydrostatic pressure at 400 (HHP400) or 600 (HHP600) MPa, lauric arginate (LAE), octanoic acid (OA), and postpackaging thermal treatment (PPTT). Parameters evaluated through 98 days of storage at 4±1°C were residual nitrite concentrations, pH, a(w), and viable L. monocytogenes on modified Oxford (MOX) media. On day 1, OA, 90MX, DV, and LV1X yielded lower residual nitrite concentrations than the control, whereas HHP400, HHP600, and LAE did not. LAE, HHP400, and OA reduced L. monocytogenes population compared to the control after 1 day of storage by 2.38, 2.21, and 1.73 log10 colony-forming units per gram, respectively. PPTT did not achieve a significant reduction in L. monocytogenes populations. L. monocytogenes recovered and grew in all postlethality intervention treatments except HHP600. 90MX did not inhibit the growth of L. monocytogenes, while DV and LV1X did. Results of this study demonstrate the bactericidal properties of HHP, OA, and LAE and the bacteriostatic potential of natural antimicrobial ingredients such as DV and LV1X against L. monocytogenes.

  17. Effects of natural antimicrobials with modified atmosphere packaging on the growth kinetics of Listeria monocytogenes in ravioli at various temperatures

    PubMed Central

    Ro, Eun Young; Kim, Geun Su; Kwon, Do Young; Park, Young Min; Cho, Sang Woo; Lee, Sang Yun; Yeo, Ik Hyun

    2017-01-01

    Abstract The objective of this study was to investigate the antimicrobial effects of cultured sugar/vinegar (CSV) blend and nisin to control the risk of Listeria monocytogenes in ready to cook (RTC) ravioli. Ravioli dough was prepared with 0.1, 0.3, 0.5, 1% CSV blend and 0.1, 0.2, and 0.3% nisin. Inoculated spinach or artichoke raviolis with 2.0 ± 0.5 log cfu/g of L. monocytogenes were packed aerobically or using modified atmosphere packaging (MAP), and then stored at 4, 10, 17, and 24 °C for 60 days. Growth kinetic parameters of the observed data fit well to the Baranyi equation. Ravioli with spinach filling materials yielded a higher risk than that with artichoke. L. monocytogenes was able to survive in ravioli with artichoke, but did not grow. The addition of 1% CSV blend or 0.3% nisin in spinach ravioli with the combination of MAP effectively controlled the growth of L. monocytogenes at the temperature below 10 °C. The organoleptic quality of spinach ravioli was not also affected by the application of 1% CSV blend. Therefore, the CSV blend can be recommended to improve the microbial safety and quality of natural RTC ravioli at retail market. Practical applications The risk of ravioli was affected by the filling materials of ravioli at retail market. Addition of 1% cultured sugar/vinegar blend in dough substantially contributes to the extension of shelf‐life of MAP spinach raviolis. classification and regression tree analysis results indicate that refrigeration temperature is the main control factor to affect lag time and growth rate, while packaging method is critical for maximum population density. PMID:29456276

  18. Antimicrobial resistance and phylogenetic groups in isolates of Escherichia coli from seagulls at the Berlengas nature reserve.

    PubMed

    Radhouani, H; Poeta, P; Igrejas, G; Gonçalves, A; Vinué, L; Torres, C

    2009-08-01

    Fifty-three faecal samples from yellow-legged gulls (Larus cachinnans) at the Berlengas nature reserve in Portugal were cultured on Levine agar plates not supplemented with antimicrobial agents, and one Escherichia coli colony was isolated and identified from each sample. The percentages of resistant isolates for each of the drugs were ampicillin (43.4 per cent), tetracycline (39.6 per cent), nalidixic acid (34.0 per cent), streptomycin (32.1 per cent), trimethoprim-sulfamethoxazole (SXT) (26.4 per cent), ciprofloxacin (18.9 per cent), chloramphenicol (18.9 per cent), gentamicin (7.5 per cent), tobramycin (7.5 per cent) amikacin (5.7 per cent) and amoxicillin-clavulanic acid (1.9 per cent). All the isolates were susceptible to cefoxitin, ceftazidime, cefotaxime, aztreonam and imipenem. The following resistance genes were detected: bla(TEM) (17 of 23 ampicillin-resistant isolates), tet(A) and/or tet(B) (18 of 21 tetracycline-resistant isolates), aadA (12 of 17 streptomycin-resistant isolates), cmlA (all chloramphenicol-resistant isolates), aac(3)-II with or without aac(3)-IV (all four gentamicin-resistant isolates), and sul1 and/or sul2 and/or sul3 (all 14 SXT-resistant isolates). The intI1 gene was detected in 10 of 14 SXT-resistant isolates, and three of them also contained class 2 integrons; four different gene cassette arrangements were identified among class 1 integrons (aadA, dfrA1+aadA1, dfrA12+orfF+aadA2 and sat+psp+aadA2) and one among the class 2 integrons (dfrA1+sat+aadA1). Ninety per cent of the isolates were included in the A or B1 phylogenetic groups.

  19. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries.

    PubMed

    Desbois, Andrew P

    2012-08-01

    The antimicrobial effects of free fatty acids are well recognised and these compounds can prevent the growth of or directly kill bacteria, fungi and other microbes by affecting multiple cellular targets, including the cell membrane and components found therein. Moreover, fatty acids exert detrimental effects on microbial pathogens by interfering with mechanisms of virulence, such as preventing biofilm formation and inhibiting the production of toxins and enzymes. The antimicrobial properties of free fatty acids can be exploited for the preservation of perishable products, such as food and cosmetics, and for the prevention and treatment of infections. These safe natural products are particularly useful in circumstances where antimicrobial activity is required but where the use of conventional antibiotics is undesirable or forbidden. This review focuses on the most promising prospects for exploiting the antimicrobial properties of free fatty acids for applications in various industries. The benefits of using fatty acids as antimicrobial agents are discussed and relevant recent patents are highlighted.

  20. The in vitro antimicrobial activity of natural infant fluoride-free toothpastes on oral micro-organisms.

    PubMed

    Carvalho, Fabíola G; Negrini, Thais De Cássia; Sacramento, Luis Victor S; Hebling, Josimeri; Spolidorio, Denise M P; Duque, Cristiane

    2011-01-01

    The objective of this study was to evaluate the antimicrobial activity of six toothpastes for infants: 3 fluoride-free experimental toothpastes--cashew-based, mango-based and without plant extract and fluoride compared with 2 commercially fluoride-free toothpastes and 1 fluoridated toothpastes. Six toothpastes for infants were evaluated in this study: (1) experimental cashew-based toothpaste; (2) experimental mango-based toothpaste; (3) experimental toothpaste without plant extract and fluoride (negative control); (4) First Teeth brand toothpaste; (5) Weleda brand toothpaste; and (6) Tandy brand toothpaste (positive control). The antimicrobial activity was recorded against Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, and Candida albicans using the agar plate diffusion test. First Teeth, Weleda, mango-based toothpaste, and toothpaste without plant extract presented no antimicrobial effect against any of the tested micro-organisms. Cashew toothpaste had antimicrobial activity against S mutans, S sobrinus, and L acidophilus, but it showed no antimicrobial activity against C albicans. There was no statistical difference between the inhibition halo of cashew and Tandy toothpastes against S mutans and L acidophilus. Cashew fluoride-free toothpaste had inhibitory activity against Streptococcus mutans and Lactobacillus acidophilus, and these results were similar to those obtained for fluoridated toothpaste.

  1. Antimicrobial resistance in generic Escherichia coli isolates from wild small mammals living in swine farm, residential, landfill, and natural environments in southern Ontario, Canada.

    PubMed

    Allen, Samantha E; Boerlin, Patrick; Janecko, Nicol; Lumsden, John S; Barker, Ian K; Pearl, David L; Reid-Smith, Richard J; Jardine, Claire

    2011-02-01

    To assess the impacts of different types of human activity on the development of resistant bacteria in the feces of wild small mammals, we compared the prevalences and patterns of antimicrobial resistance and resistance genes in generic Escherichia coli and Salmonella enterica isolates from fecal samples collected from wild small mammals living in four environments: swine farms, residential areas, landfills, and natural habitats. Resistance to antimicrobials was observed in E. coli isolates from animals in all environments: 25/52 (48%) animals trapped at swine farms, 6/69 (9%) animals trapped in residential areas, 3/20 (15%) animals trapped at landfills, and 1/22 (5%) animals trapped in natural habitats. Animals trapped on farms were significantly more likely to carry E. coli isolates with resistance to tetracycline, ampicillin, sulfisoxazole, and streptomycin than animals trapped in residential areas. The resistance genes sul2, aadA, and tet(A) were significantly more likely to be detected in E. coli isolates from animals trapped on farms than from those trapped in residential areas. Three S. enterica serotypes (Give, Typhimurium, and Newport) were recovered from the feces of 4/302 (1%) wild small mammals. All Salmonella isolates were pansusceptible. Our results show that swine farm origin is significantly associated with the presence of resistant bacteria and resistance genes in wild small mammals in southern Ontario, Canada. However, resistant fecal bacteria were found in small mammals living in all environments studied, indicating that environmental exposure to antimicrobials, antimicrobial residues, resistant bacteria, or resistance genes is widespread.

  2. Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus.

    PubMed

    Rothan, Hussin A; Bahrani, Hirbod; Rahman, Noorsaadah Abd; Yusof, Rohana

    2014-05-31

    Although there have been considerable advances in the study of dengue virus, no vaccines or anti-dengue drugs are currently available for humans. Therefore, new approaches are necessary for the development of potent anti-dengue drugs. Natural antimicrobial peptides (AMPs) with potent antiviral activities are potential hits-to-leads for antiviral drug discovery. We performed this study to identify and characterise the inhibitory potential of the latarcin peptide (Ltc 1, SMWSGMWRRKLKKLRNALKKKLKGE) against dengue virus replication in infected cells. The Ltc 1 peptide showed a significantly inhibitory effect against the dengue protease NS2B-NS3pro at 37°C, a physiological human temperature, (IC50, 12.68 ± 3.2 μM), and greater inhibitory effect was observed at 40°C, a temperature similar to a high fever (IC50, 6.58 ± 4.1 μM). A greater reduction in viral load (p.f.u./ml) was observed at simultaneous (0.7 ± 0.3 vs. 7.2 ± 0.5 control) and post-treatment (1.8 ± 0.7 vs. 6.8 ± 0.6 control) compared to the pre-treatment (4.5 ± 0.6 vs. 6.9 ± 0.5 control). Treatment with the Ltc 1 peptide reduced the viral RNA in a dose-dependent manner with EC50 values of 8.3 ± 1.2, 7.6 ± 2.7 and 6.8 ± 2.5 μM at 24, 48 and 72 h, respectively. The Ltc 1 peptide exhibited significant inhibitory effects against dengue NS2B-NS3pro and virus replication in the infected cells. Therefore, further investigation is necessary to develop the Ltc 1 peptide as a new anti-dengue therapeutic.

  3. Noncatalytic oxypyrolysis of C{sub 2+}-hydrocarbons from natural gas to ethylene and propylene in a most energy-efficient and safe manner

    SciTech Connect

    Choudhary, V.R.; Mulla, S.A.R.; Rajput, A.M.

    1997-06-01

    Noncatalytic oxypyrolysis of C{sub 2+}-hydrocarbons from natural gas at 700--850 C in the presence of steam and limited oxygen yields ethylene and propylene with appreciable conversion and high selectivity but with almost no coke or tarlike product formation. In this process, the exothermic oxidative hydrocarbon conversion reactions are coupled directly with the endothermic cracking of C{sub 2+}-hydrocarbons by their simultaneous occurrence. Hence, the process operates in a most energy-efficient and safe (or nonhazardous) manner and also can be made almost thermoneutral or mildly endothermic/exothermic, thus requiring little or no external energy for the hydrocarbon conversion reactions.

  4. Investigation of environmental drivers of antimicrobial resistance in foodborne bacterial pathogens in antibiotic-free, all natural, pastured poultry flocks.

    USDA-ARS?s Scientific Manuscript database

    Question: In the absence of antibiotic use within pastured poultry production, what are potential environmental variables that drive the antimicrobial sensitivity patterns of bacterial foodborne pathogens isolated from these flocks? Purpose: The objective of this study is to examine environmental f...

  5. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: a potential application in food stuffs as a natural preservative.

    PubMed

    Mokarizadeh, Manijeh; Kafil, Hossein Samadi; Ghanbarzadeh, Saeed; Alizadeh, Ainaz; Hamishehkar, Hamed

    2017-10-01

    At the present time, utilization of essential oils in food preservation to prevent bacterial and fungal growth and improve shelf life and safety of the food products has notably gained increased interest. The aim of the present study was to improve the antimicrobial efficacy of citral as a natural preservative using nanostructured lipid carriers (NLCs). Formulations of NLCs were characterized using particle size analysis and scanning electron microscopy methods. Possible citral-carrier interaction and citral encapsulation efficiency percent (EE%) were assessed by Fourier transform infrared (FTIR) spectroscopy and gas chromatography techniques, respectively. Antimicrobial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of citral-loaded NLCs were evaluated and compared with the conventional citral emulsion against various gram-positive bacteria ( Staphylococcus aureus , Bacillus cereus ), gram-negative bacteria ( Escherichia coli ), and fungi ( Candida albicans ). Citral-loaded NLCs were spherically shaped nanosized (74.8 nm) particles with narrow size distribution, high EE% (99.84%), and appropriate physical stability during 90 days of storage period. FTIR spectra indicated the interaction between citral and formulation ingredients, which justified the obtained high EE% value. The MIC and MBC values of citral-loaded NLCs were lower than those of citral emulsion for all microorganisms. NLCs formulation showed remarkable capability of encapsulating essential oil and increasing antimicrobial properties to offer effective preservation in food industry.

  6. Safe biodegradable fluorescent particles

    DOEpatents

    Martin, Sue I [Berkeley, CA; Fergenson, David P [Alamo, CA; Srivastava, Abneesh [Santa Clara, CA; Bogan, Michael J [Dublin, CA; Riot, Vincent J [Oakland, CA; Frank, Matthias [Oakland, CA

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  7. Animal venoms as antimicrobial agents.

    PubMed

    Perumal Samy, Ramar; Stiles, Bradley G; Franco, Octavio L; Sethi, Gautam; Lim, Lina H K

    2017-06-15

    Hospitals are breeding grounds for many life-threatening bacteria worldwide. Clinically associated gram-positive bacteria such as Staphylococcus aureus/methicillin-resistant S. aureus and many others increase the risk of severe mortality and morbidity. The failure of antibiotics to kill various pathogens due to bacterial resistance highlights the urgent need to develop novel, potent, and less toxic agents from natural sources against various infectious agents. Currently, several promising classes of natural molecules from snake (terrestrial and sea), scorpion, spider, honey bee and wasp venoms hold promise as rich sources of chemotherapeutics against infectious pathogens. Interestingly, snake venom-derived synthetic peptide/snake cathelicidin not only has potent antimicrobial and wound-repair activity but is highly stable and safe. Such molecules are promising candidates for novel venom-based drugs against S. aureus infections. The structure of animal venom proteins/peptides (cysteine rich) consists of hydrophobic α-helices or β-sheets that produce lethal pores and membrane-damaging effects on bacteria. All these antimicrobial peptides are under early experimental or pre-clinical stages of development. It is therefore important to employ novel tools for the design and the development of new antibiotics from the untapped animal venoms of snake, scorpion, and spider for treating resistant pathogens. To date, snail venom toxins have shown little antibiotic potency against human pathogens. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Bio-activity of natural polymers from the genus Pistacia: a validated model for their antimicrobial action.

    PubMed

    Sharifi, Mohammad Sharif; Ebrahimi, Diako; Hibbert, David Brynn; Hook, James; Hazell, Stuart Loyd

    2011-12-29

    The polymers from mastic gum of Pistacia lentiscose and subspecies of Pistacia atlantica, (sp. kurdica, mutica and cabolica) have been isolated and characterised by gel permeation chromatography (GPC) and 13C NMR spectroscopy as cis-1,4-poly-?-myrcenes. They were screened against Helicobacter pylori and other Gram-negative and Gram-positive bacteria to evaluate their antimicrobial action. In order to further test their hypothesised mode of action, two polymer types were synthesized: one from myrcene, and four from polyvinyl alcohols of different molecular weights, derivatised with p-hydroxybenzoate. The anti-microbial activity of these polymers, evaluated through their 'kill' kinetics, was found to be related to their functional groups, their molecular weight and their solubility.

  9. Bio-Activity of Natural Polymers from the Genus Pistacia: A Validated Model for Their Antimicrobial Action

    PubMed Central

    Sharifi, Mohammad Sharif; Ebrahimi, Diako; Hibbert, David Brynn; Hook, James; Hazell, Stuart Loyd

    2012-01-01

    The polymers from mastic gum of Pistacia lentiscose and subspecies of Pistacia atlantica, (sp. kurdica, mutica and cabolica) have been isolated and characterised by gel permeation chromatography (GPC) and 13C NMR spectroscopy as cis-1,4-poly-β-myrcenes. They were screened against Helicobacter pylori and other Gram-negative and Gram-positive bacteria to evaluate their antimicrobial action. In order to further test their hypothesised mode of action, two polymer types were synthesized: one from myrcene, and four from polyvinyl alcohols of different molecular weights, derivatised with p-hydroxybenzoate. The anti-microbial activity of these polymers, evaluated through their ‘kill’ kinetics, was found to be related to their functional groups, their molecular weight and their solubility. PMID:22980106

  10. The Potential Use of Natural and Structural Analogues of Antimicrobial Peptides in the Fight against Neglected Tropical Diseases.

    PubMed

    Lewies, Angélique; Wentzel, Johannes F; Jacobs, Garmi; Du Plessis, Lissinda H; Angélique, Lewies; Frederik, Wentzel Johannes; Garmi, Jacobs; Hester, Du Plessis Lissinda

    2015-08-24

    Recently, research into the development of new antimicrobial agents has been driven by the increase in resistance to traditional antibiotics and Emerging Infectious Diseases. Antimicrobial peptides (AMPs) are promising candidates as alternatives to current antibiotics in the treatment and prevention of microbial infections. AMPs are produced by all known living species, displaying direct antimicrobial killing activity and playing an important role in innate immunity. To date, more than 2000 AMPs have been discovered and many of these exhibit broad-spectrum antibacterial, antiviral and anti-parasitic activity. Neglected tropical diseases (NTDs) are caused by a variety of pathogens and are particularly wide-spread in low-income and developing regions of the world. Alternative, cost effective treatments are desperately needed to effectively battle these medically diverse diseases. AMPs have been shown to be effective against a variety of NTDs, including African trypanosomes, leishmaniosis and Chagas disease, trachoma and leprosy. In this review, the potential of selected AMPs to successfully treat a variety of NTD infections will be critically evaluated.

  11. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.

    2016-06-01

    The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  12. Synergistic effect of high hydrostatic pressure and natural antimicrobials on inactivation kinetics of Bacillus cereus in a liquid whole egg and skim milk mixed beverage.

    PubMed

    Pina-Pérez, Maria Consuelo; Silva-Angulo, Angela B; Muguerza-Marquínez, Begoña; Aliaga, D Rodrigo; López, Antonio Martínez

    2009-01-01

    An in-depth study was conducted in order to extend the storage life of a liquid whole egg-skim milk (LWE-SM) mixed beverage to enhance its safety and the safety of related beverages. Bacillus cereus vegetative cells (1 x 10(8) colony-forming units [CFU]/mL) were inoculated in LWE-SM beverages with or without natural antimicrobial supplements: flavonol rich-cocoa powder (cocoanOX 12%, CCX) (700 ppm), vanillin (700 ppm), anise (700 ppm), and cinnamon (700 ppm). B. cereus cells were maintained at 10 degrees C for 10 days in the different beverages to test the bacteriostatic or inhibitory effect of the aforementioned ingredients. Beverages were treated with high hydrostatic pressure (HHP) technology and stored at 10 degrees C for 15 days after treatment. All natural antimicrobials reduced the micro(max) values and increased the lag phase time of B. cereus, and Gompertz growth curves showed different inhibitory effects depending on the substance. The maximum inhibitory effect (1.330 log cycle reduction) was achieved in LWE-SM-cinnamon-supplemented beverage. The maximum inactivation achieved by HHP in LWE-SM beverage was a reduction of around 3.89 +/- 0.25 log cycles at 300 MPa for 12 minutes. When supplemented beverages were treated under the same conditions, enhanced inactivation levels were achieved. This increased inactivation can be attributed to a synergistic effect when the LWE-SM was supplemented with flavonol-rich cocoa powder, cinnamon, and vanillin. The maximum synergistic effect was observed in LWE-SM-CCX-supplemented beverage. During the refrigerated storage of B. cereus HHP-treated cells in beverages to which antimicrobials had been added, the inhibitory effect was dependent on the previously applied pressure level.

  13. Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: biochemical and functional characterization of natural peptides and a single site-substituted analog.

    PubMed

    Almaaytah, Ammar; Zhou, Mei; Wang, Lei; Chen, Tianbao; Walker, Brian; Shaw, Chris

    2012-06-01

    The venoms of scorpions are complex cocktails of polypeptide toxins that fall into two structural categories: those that contain cysteinyl residues with associated disulfide bridges and those that do not. As the majority of lethal toxins acting upon ion channels fall into the first category, most research has been focused there. Here we report the identification and structural characterization of two novel 18-mer antimicrobial peptides from the venom of the North African scorpion, Androctonus amoreuxi. Named AamAP1 and AamAP2, both peptides are C-terminally amidated and differ in primary structure at just two sites: Leu-->Pro at position 2 and Phe-->Ile at position 17. Synthetic replicates of both peptides exhibited a broad-spectrum of antimicrobial activity against a Gram-positive bacterium (Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli) and a yeast (Candida albicans), at concentrations ranging between 20 μM and 150 μM. In this concentration range, both peptides produced significant degrees of hemolysis. A synthetic replicate of AamAP1 containing a single substitution (His-->Lys) at position 8, generated a peptide (AamAP-S1) with enhanced antimicrobial potency (3-5 μM) against the three test organisms and within this concentration range, hemolytic effects were negligible. In addition, this His-->Lys variant exhibited potent growth inhibitory activity (ID(50) 25-40 μm) against several human cancer cell lines and endothelial cells that was absent in both natural peptides. Natural bioactive peptide libraries, such as those that occur in scorpion venoms, thus constitute a unique source of novel lead compounds with drug development potential whose biological properties can be readily manipulated by simple synthetic chemical means. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus.

    PubMed

    Dean, Scott N; Bishop, Barney M; van Hoek, Monique L

    2011-05-23

    Chronic, infected wounds typically contain multiple genera of bacteria, including Staphylococcus aureus, many of which are strong biofilm formers. Bacterial biofilms are thought to be a direct impediment to wound healing. New therapies that focus on a biofilm approach may improve the recovery and healing rate for infected wounds. In this study, cathelicidins and related short, synthetic peptides were tested for their anti-microbial effectiveness as well as their ability to inhibit the ability of S. aureus to form biofilms. The helical human cathelicidin LL-37 was tested against S. aureus, and was found to exhibit effective anti-microbial, anti-attachment as well as anti-biofilm activity at concentrations in the low μg/ml range. The effect of peptide chirality and associated protease-resistance was explored through the use of an all-D amino acid peptide, D-LL-37, and in turn compared to scrambled LL-37. Helical cathelicidins have been identified in other animals such as the Chinese cobra, Naja atra (NA-CATH). We previously identified an 11-residue imperfectly repeated pattern (ATRA motif) within the sequence of NA-CATH. A series of short peptides (ATRA-1, -2, -1A), as well as a synthetic peptide, NA-CATH:ATRA1-ATRA1, were designed to explore the significance of the conserved residues within the ATRA motif for anti-microbial activity. The CD spectrum of NA-CATH and NA-CATH:ATRA1-ATRA1 revealed the structural properties of these peptides and suggested that helicity may factor into their anti-microbial and anti-biofilm activities. The NA-CATH:ATRA1-ATRA1 peptide inhibits the production of biofilm by S. aureus in the presence of salt, exhibiting anti-biofilm activity at lower peptide concentrations than NA-CATH, LL-37 and D-LL-37; and demonstrates low cytoxicity against host cells but does not affect bacterial attachment. The peptides utilized in this anti-biofilm approach may provide templates for a new group of anti-microbials and potential future topical

  15. Lactic acid bacteria and natural antimicrobials to improve the safety and shelf-life of minimally processed sliced apples and lamb's lettuce.

    PubMed

    Siroli, Lorenzo; Patrignani, Francesca; Serrazanetti, Diana I; Tabanelli, Giulia; Montanari, Chiara; Gardini, Fausto; Lanciotti, Rosalba

    2015-05-01

    Outbreaks of food-borne disease associated with the consumption of fresh and minimally processed fruits and vegetables have increased dramatically over the last few years. Traditional chemical sanitizers are unable to completely eradicate or kill the microorganisms on fresh produce. These conditions have stimulated research to alternative methods for increasing food safety. The use of protective cultures, particularly lactic acid bacteria (LAB), has been proposed for minimally processed products. However, the application of bioprotective cultures has been limited at the industrial level. From this perspective, the main aims of this study were to select LAB from minimally processed fruits and vegetables to be used as biocontrol agents and then to evaluate the effects of the selected strains, alone or in combination with natural antimicrobials (2-(E)-hexenal/hexanal, 2-(E)-hexenal/citral for apples and thyme for lamb's lettuce), on the shelf-life and safety characteristics of minimally processed apples and lamb's lettuce. The results indicated that applying the Lactobacillus plantarum strains CIT3 and V7B3 to apples and lettuce, respectively, increased both the safety and shelf-life. Moreover, combining the selected strains with natural antimicrobials produced a further increase in the shelf-life of these products without detrimental effects on the organoleptic qualities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. [Safe school].

    PubMed

    Liberal, Edson Ferreira; Aires, Roberto Tschoepke; Aires, Mariana Tschoepke; Osório, Ana Carla de Albuquerque

    2005-11-01

    To review the strategies to make school a safe environment. The paper first addresses the social context of accidents and violence in the school environment, and makes recommendations, based on the literature data, for the implementation of safe schools. Articles published between 1993 and 2005 in the MEDLINE database. Brazilian epidemiological and literature data have also been searched. There is growing evidence that intervention has multiple components, focusing on health education practices, with the participation of the whole community. The aim of those interventions is to help students and community members to adopt healthy and safe behaviors. Schools are taking on an increasing role in health promotion, disease prevention, and injury prevention. In the context of prevention of external causes of morbidity and mortality, it is important to recognize a risky environment, places, and risk behaviors as favorable to injury and violence, as well as the concept of accident as something one can avoid. Implementation of safe schools represents a promising new direction for school-based preventive work. It is important to note that a safe school should intervene not only in its physical structure, but it should also make it as safe as possible by gathering the school community through health education, and mainly encouraging healthy behavior.

  17. The US national antimicrobial resistance monitoring system.

    PubMed

    Gilbert, Jeffrey M; White, David G; McDermott, Patrick F

    2007-10-01

    The use of antimicrobial agents in food animals can select for resistant bacterial pathogens that may be transmitted to humans via the commercial meat supply. In the USA, the FDA's Center for Veterinary Medicine regulatory duties require a determination that antimicrobial drugs are safe and effective for use in food animals. In addition, a qualitative assessment of risks to human health from antimicrobial resistance requires development. This risk assessment process is supported by data generated by the FDA's National Antimicrobial Resistance Monitoring System (NARMS) for enteric bacteria. NARMS data on antimicrobial susceptibility among Salmonella, Campylobacter, Escherichia coli and Enterococcus is collected. Research activities defining the genetic bases of resistance helps to understand the potential public health risks posed by the spread of antimicrobial resistance from food animal antimicrobial use. These activities help insure that antimicrobials are used judiciously to promote human and animal health.

  18. Linking Antimicrobial Potential of Natural Products Derived from Aquatic Organisms and Microbes Involved in Alzheimer's Disease - A Review.

    PubMed

    Stojkovic, Dejan; Kostic, Marina; Smiljkovic, Marija; Aleksic, Milena; Vasiljevic, Perica; Nikolic, Milos; Sokovic, Marina

    2018-03-08

    The following review is oriented towards microbes linked to Alzheimer's disease (AD) and antimicrobial effect of compounds and extracts derived from aquatic organisms against specific bacteria, fungi and viruses which were found previously in patients suffering from AD. Major group of microbes linked to AD include bacteria: Chlamydia pneumoniae, Helicobacter pylori, Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia, Actinomyces naeslundii, spirochete group; fungi: Candida sp., Cryptococcus sp., Saccharomyces sp., Malassezia sp., Botrytis sp., and viruses: herpes simplex virus type 1 (HSV-1), Human cytomegalovirus (CMV), hepatitis C virus (HCV). In the light of that fact, this review is the first to link antimicrobial potential of aquatic organisms against these sorts of microbes. This literature review might serve as a starting platform to develop novel supportive therapy for patients suffering from AD and to possibly prevent escalation of the disease in patients already having high risk factors for AD occurrence. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Multifactorial antimicrobial wood protectants

    Treesearch

    Robert D. Coleman; Carol A. Clausen

    2008-01-01

    It is unlikely that a single antimicrobial compound, whether synthetic or natural, will provide the ‘magic bullet’ for eliminating multiple biological agents affecting wood products. Development of synergistic combinations of selected compounds, especially those derived from natural sources, is recognized as a promising approach to improved wood protection. Recent...

  20. Converting a Natural Protein Compartment into a Nanofactory for the Size-Constrained Synthesis of Antimicrobial Silver Nanoparticles.

    PubMed

    Giessen, Tobias W; Silver, Pamela A

    2016-12-16

    Engineered biological systems are used extensively for the production of high value and commodity organics. On the other hand, most inorganic nanomaterials are still synthesized via chemical routes. By engineering cellular compartments, functional nanoarchitectures can be produced under environmentally sustainable conditions. Encapsulins are a new class of microbial nanocompartments with promising applications in nanobiotechnology. Here, we engineer the Thermotoga maritima encapsulin EncTm to yield a designed compartment for the size-constrained synthesis of silver nanoparticles (Ag NPs). These Ag NPs exhibit uniform shape and size distributions as well as long-term stability. Ambient aqueous conditions can be used for Ag NP synthesis, while no reducing agents or solvents need to be added. The antimicrobial activity of the synthesized protein-coated or shell-free Ag NPs is superior to that of silver nitrate and citrate-capped Ag NPs. This study establishes encapsulins as an engineerable platform for the synthesis of biogenic functional nanomaterials.

  1. Safe Grid

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote

  2. Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities

    PubMed Central

    Griffin, Sharoon; Tittikpina, Nassifatou Koko; Al-marby, Adel; Alkhayer, Reem; Denezhkin, Polina; Witek, Karolina; Gbogbo, Koffi Apeti; Batawila, Komlan; Duval, Raphaël Emmanuel; Nasim, Muhammad Jawad; Awadh-Ali, Nasser A.; Kirsch, Gilbert; Chaimbault, Patrick; Schäfer, Karl-Herbert; Keck, Cornelia M.; Handzlik, Jadwiga; Jacob, Claus

    2016-01-01

    Numerous plants are known to exhibit considerable biological activities in the fields of medicine and agriculture, yet access to their active ingredients is often complicated, cumbersome and expensive. As a consequence, many plants harbouring potential drugs or green phyto-protectants go largely unnoticed, especially in poorer countries which, at the same time, are in desperate need of antimicrobial agents. As in the case of plants such as the Jericho tomato, Solanum incanum, and the common African tree Pterocarpus erinaceus, nanosizing of original plant materials may provide an interesting alternative to extensive extraction and isolation procedures. Indeed, it is straightforward to obtain considerable amounts of such common, often weed-like plants, and to mill the dried material to more or less uniform particles of microscopic and nanoscopic size. These particles exhibit activity against Steinernema feltiae or Escherichia coli, which is comparable to the ones seen for processed extracts of the same, respective plants. As S. feltiae is used as a model nematode indicative of possible phyto-protective uses in the agricultural arena, these findings also showcase the potential of nanosizing of crude “waste” plant materials for specific practical applications, especially—but not exclusively—in developing countries lacking a more sophisticated industrial infrastructure. PMID:27104554

  3. Effects of structure on the interactions between five natural antimicrobial compounds and phospholipids of bacterial cell membrane on model monolayers

    USDA-ARS?s Scientific Manuscript database

    Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of naturally occurring phenolic compounds 2,5-dihydroxybenzaldehyde, 2-hydroxy-5-methoxybenzaldehyde and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be...

  4. The Natural Antimicrobial Carvacrol Inhibits Quorum Sensing in Chromobacterium violaceum and Reduces Bacterial Biofilm Formation at Sub-Lethal Concentrations

    PubMed Central

    Burt, Sara A.; Ojo-Fakunle, Victoria T. A.; Woertman, Jenifer; Veldhuizen, Edwin J. A.

    2014-01-01

    The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms. Assays were carried out in polystyrene microplates to observe (a) the effect of 0–0.8 mM carvacrol on the formation of biofilms by selected bacterial pathogens over 24 h and (b) the effect of 0–8 mM carvacrol on the stability of pre-formed biofilms. Carvacrol was able to inhibit the formation of biofilms of Chromobacterium violaceum ATCC 12472, Salmonella enterica subsp. Typhimurium DT104, and Staphylococcus aureus 0074, while it showed no effect on formation of Pseudomonas aeruginosa (field isolate) biofilms. This inhibitory effect of carvacrol was observed at sub-lethal concentrations (<0.5 mM) where no effect was seen on total bacterial numbers, indicating that carvacrol's bactericidal effect was not causing the observed inhibition of biofilm formation. In contrast, carvacrol had (up to 8 mM) very little or no activity against existing biofilms of the bacteria described, showing that formation of the biofilm also confers protection against this compound. Since quorum sensing is an essential part of biofilm formation, the effect of carvacrol on quorum sensing of C. violaceum was also studied. Sub-MIC concentrations of carvacrol reduced expression of cviI (a gene coding for the N-acyl-L-homoserine lactone synthase), production of violacein (pigmentation) and chitinase activity (both regulated by quorum sensing) at concentrations coinciding with carvacrol's inhibiting effect on biofilm formation. These results indicate that carvacrol's activity in inhibition of biofilm formation may be related to the disruption of quorum sensing. PMID:24691035

  5. Safe Lock

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Model 1150 electronic spring latch, which provides controlled and timed access to a safe, was developed by Burnett Electronics Lab, Inc., San Diego, CA, and is marketed by KeyOne, Inc. also of San Diego. The Model 1150 is a spinoff from a spinoff. The original spinoff, the acoustic pinger, is an underwater transmitting device developed by Langley Research Center and the Navy for location and recovery of sounding rocket research payloads from the ocean. Long functioning life is a vital requirement for both the acoustic pinger and the Model 1150. The electronic spring latch employs the pinger power management technology to get long life out of the battery power source.

  6. Antimicrobial stewardship

    PubMed Central

    Chung, Gladys W.; Wu, Jia En; Yeo, Chay Leng; Chan, Douglas; Hsu, Li Yang

    2013-01-01

    Antimicrobial stewardship is an emerging field currently defined by a series of strategies and interventions aimed toward improving appropriate prescription of antibiotics in humans in all healthcare settings. The ultimate goal is the preservation of current and future antibiotics against the threat of antimicrobial resistance, although improving patient safety and reducing healthcare costs are important concurrent aims. Prospective audit and feedback interventions are probably the most widely practiced of all antimicrobial stewardship strategies. Although labor-intensive, they are more easily accepted by physicians compared with formulary restriction and preauthorization strategies and have a higher potential for educational opportunities. Objective evaluation of antimicrobial stewardship is critical for determining the success of such programs. Nonetheless, there is controversy over which outcomes to measure and there is a pressing need for novel study designs that can objectively assess antimicrobial stewardship interventions despite the limitations inherent in the structure of most such programs. PMID:23302793

  7. How to translate a bioassay into a screening assay for natural products: general considerations and implementation of antimicrobial screens.

    PubMed

    Fallarero, Adyary; Hanski, Leena; Vuorela, Pia

    2014-09-01

    Natural product sources have been a valuable provider of molecular diversity in many drug discovery programs and several therapeutically important drugs have been isolated from these. However, the screening of such materials can be very complicated due to the fact that they contain a complex mixture of secondary metabolites, but also the purified natural compounds exert a challenge for bioactivity screening. Success in identifying new therapeutics using in vitro bioassays is largely dependent upon the proper design, validation, and implementation of the screening assay. In this review, we discuss some aspects which are of significant concern when screening natural products in a microtiter plate-based format, being partly applicable to other assay formats as well, such as validation parameters, layouts for assay protocols, and common interferences caused by natural products samples, as well as various troubleshooting strategies. Examples from the field of natural product drug discovery of antibacterial compounds are discussed, and contributions from the realm of academic screenings are highlighted. Georg Thieme Verlag KG Stuttgart · New York.

  8. Use of natural antimicrobials to improve the control of Listeria monocytogenes in a cured cooked meat model system.

    PubMed

    Xi, Y; Sullivan, G A; Jackson, A L; Zhou, G H; Sebranek, J G

    2011-07-01

    Concern about nitrite in processed meats has increased consumer demand for natural products manufactured without nitrite or nitrate. Studies on commercial meat products labeled as "Uncured" and "No-Nitrite-or-Nitrate-Added" have shown less control of nitrite in these products and greater potential growth of bacterial pathogens. To improve the safety of the "naturally cured" meats, several natural ingredients were studied in a cured cooked meat model system (80:20 pork, 10% water, 2% salt, and 150 or 50 ppm ingoing sodium nitrite) that closely resembled commercial frankfurters to determine their inhibitory effect on Listeria monocytogenes. Results showed that cranberry powder at 1%, 2% and 3% resulted in 2-4 log cfu/g less growth of L. monocytogenes compared to the control with nitrite alone (P<0.05). Other natural compounds, such as cherry powder, lime powder and grape seed extract, also provided measureable inhibition to L. monocytogenes when combined with cranberry powder (P<0.05). Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Improvement of the overall quality of table grapes stored under modified atmosphere packaging in combination with natural antimicrobial compounds.

    PubMed

    Guillén, F; Zapata, P J; Martínez-Romero, D; Castillo, S; Serrano, M; Valero, D

    2007-04-01

    Consumers demand new means of preservation with absence of chemicals. In this work a package was developed (thermosealed baskets) with grapes wrapped with 2 distinct films (M and P) with different permeability (medium and high, respectively) without or with the addition of a mixture of eugenol, thymol, and carvacrol. Table grapes stored on air (control) lost their quality attributes very rapidly, manifested by accelerated weight loss, color changes, softening, and increase in soluble solids concentration and titratable acidity ratio (SSC/TA). The use of modified atmosphere packaging (MAP) alone retarded these changes, the effects being significantly greater when essential oils were added (especially for M film), although atmospheric composition was not affected by incorporating essential oils. In addition, microbial counts (molds and yeasts and mesophilic aerobics) were drastically decreased and accompanied by lower occurrence of berry decay. Although slight odor was detected after opening the packages, absence of the typical flavor of these compounds was found by trained panelists after tasting the berries. Thus, with this safe, simple, and innovative technology, the overall quality (sensory and safety) could be improved and considered as a toll alternative to the use of synthetic fungicides.

  10. Antimicrobial Resistance in Indicator Escherichia coli Isolates from Free-Ranging Livestock and Sympatric Wild Ungulates in a Natural Environment (Northeastern Spain)

    PubMed Central

    Porrero, M. C.; Mentaberre, G.; Serrano, E.; Mateos, A.; Domínguez, L.; Lavín, S.

    2013-01-01

    Antimicrobial resistance was assessed in indicator Escherichia coli isolates from free-ranging livestock and sympatric wild boar (Sus scrofa) and Iberian ibex (Capra pyrenaica) in a National Game Reserve in northeastern Spain. The frequency of antimicrobial resistance was low (0% to 7.9%). However, resistance to an extended-spectrum cephalosporin and fluoroquinolones was detected. PMID:23892753

  11. Comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain and aloe vera (all in gel formulation), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis: An in vitro study.

    PubMed

    Bhardwaj, Anuj; Ballal, Suma; Velmurugan, Natanasabapathy

    2012-07-01

    A comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain, and aloe vera (all in gel formulations), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis-an in vitro study. The antimicrobial efficacy was assessed in vitro using dentin shavings collected at 2 depths of 200 and 400 μm. The total colony forming units at the end of 1, 3, and 5 days were assessed. The overall percentage inhibition of bacterial growth (200 and 400 μm depth) was 100% with chlorhexidine gel. This was followed by M. citrifolia gel (86.02%), which showed better antimicrobial efficacy as compared with aloe vera gel (78.9%), papain gel (67.3%), and calcium hydroxide (64.3%). There was no statistical difference between data at 200 and 400 μm depth. Chlorhexidine gel showed the maximum antimicrobial activity against E. faecalis, whereas calcium hydroxide showed the least. Among the natural intracanal medicaments, M. citrifolia gel consistently exhibited good inhibition up to the 5(th) day followed by aloe vera gel and papain gel.

  12. Comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain and aloe vera (all in gel formulation), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis: An in vitro study

    PubMed Central

    Bhardwaj, Anuj; Ballal, Suma; Velmurugan, Natanasabapathy

    2012-01-01

    Aim: A comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain, and aloe vera (all in gel formulations), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis—an in vitro study. Materials and Methods: The antimicrobial efficacy was assessed in vitro using dentin shavings collected at 2 depths of 200 and 400 μm. The total colony forming units at the end of 1, 3, and 5 days were assessed. Results: The overall percentage inhibition of bacterial growth (200 and 400 μm depth) was 100% with chlorhexidine gel. This was followed by M. citrifolia gel (86.02%), which showed better antimicrobial efficacy as compared with aloe vera gel (78.9%), papain gel (67.3%), and calcium hydroxide (64.3%). There was no statistical difference between data at 200 and 400 μm depth. Conclusion: Chlorhexidine gel showed the maximum antimicrobial activity against E. faecalis, whereas calcium hydroxide showed the least. Among the natural intracanal medicaments, M. citrifolia gel consistently exhibited good inhibition up to the 5th day followed by aloe vera gel and papain gel. PMID:22876022

  13. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  14. In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities.

    PubMed

    Maharjan, Bikendra; Joshi, Mahesh Kumar; Tiwari, Arjun Prasad; Park, Chan Hee; Kim, Cheol Sang

    2017-01-01

    Silver nanoparticles embedded within a nanofibrous polymer matrix have significant attention in recent years as an antimicrobial wound dressing materials. Herein, we have fabricated a novel Ag-polyurethane-zein hybrid nanofibrous scaffold for wound dressing applications. AgNPs were synthesized in-situ via reduction of silver nitrate in electrospinning solution. Varying mass composition of the components showed the pronounced effect on the morphology and physicochemical properties of the composite fibers. Field-Emission Scanning Electron Microscopy (FESEM) images revealed that PU and zein with mass ratio 2:1 produced the bead-free continuous and uniformly distributed nanofibers. Fourier-transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and Thermogravimetric Analysis (TGA) confirmed the well interaction between component polymers. Compared to the pristine PU nanofibers, composite fibers showed enhanced tensile strength, young׳s modulus and surface wettability. The antibacterial capacity of the nanofibrous membrane was evaluated against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacterial strains via a zone of inhibition test, and the results showed high antibacterial performance for Ag incorporated composite mat. Experimental results of cell viability assay and microscopic imaging revealed that as-fabricated scaffolds have an excellent ability for fibroblast cell adhesion, proliferation and growth. Overall, as-fabricated antibacterial natural/synthetic composite scaffold can be a promising substrate for repairing skin defects. Copyright © 2016. Published by Elsevier Ltd.

  15. Antimicrobial Pesticides

    MedlinePlus

    ... requires special tests to ensure efficacy of public health pesticides when the pests are invisible disease-causing microbes, rather than insects or rodents that may be harboring disease organisms. Determining human and ecological risks from exposure to antimicrobial pesticides ...

  16. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  17. Isolation of a New Natural Product and Cytotoxic and Antimicrobial Activities of Extracts from Fungi of Indonesian Marine Habitats

    PubMed Central

    Tarman, Kustiariyah; Lindequist, Ulrike; Wende, Kristian; Porzel, Andrea; Arnold, Norbert; Wessjohann, Ludger A.

    2011-01-01

    In the search for bioactive compounds, 11 fungal strains were isolated from Indonesian marine habitats. Ethyl acetate extracts of their culture broth were tested for cytotoxic activity against a urinary bladder carcinoma cell line and for antifungal and antibacterial activities against fish and human pathogenic bacteria as well as against plant and human pathogenic fungi. The crude extract of a sterile algicolous fungus (KT31), isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex P.C. Silva exhibited potent cytotoxic activity with an IC50 value of 1.5 μg/mL. Another fungal strain (KT29) displayed fungicidal properties against the plant pathogenic fungus Cladosporium cucumerinum Ell. et Arth. at 50 μg/spot. 2-Carboxy-8-methoxy-naphthalene-1-ol (1) could be isolated as a new natural product. PMID:21556160

  18. Zinc-Substituted Myoglobin Is a Naturally Occurring Photo-antimicrobial Agent with Potential Applications in Food Decontamination.

    PubMed

    Delcanale, Pietro; Montali, Chiara; Rodríguez-Amigo, Beatriz; Abbruzzetti, Stefania; Bruno, Stefano; Bianchini, Paolo; Diaspro, Alberto; Agut, Montserrat; Nonell, Santi; Viappiani, Cristiano

    2016-11-16

    Zinc-substituted myoglobin (ZnMb) is a naturally occurring photosensitizer that generates singlet oxygen with a high quantum yield. Using a combination of photophysical and fluorescence imaging techniques, we demonstrate the interaction of ZnMb with Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. An efficient antibacterial action against S. aureus was observed, with a reduction up to 99.9999% in the number of colony-forming units, whereas no sizable effect was detected against E. coli. Because ZnMb is known to form during the maturation of additive-free not-cooked cured ham, the use of this protein as a built-in photodynamic agent may constitute a viable method for the decontamination of these food products from Gram-positive bacteria.

  19. From strange bedfellows to natural allies: the shifting allegiance of fire service organisations in the push for federal fire-safe cigarette legislation

    PubMed Central

    Barbeau, E; Kelder, G; Ahmed, S; Mantuefel, V; Balbach, E

    2005-01-01

    Background: Cigarettes are the leading cause of fatal fires in the USA and are associated with one in four fire deaths. Although the technology needed to make fire-safe cigarettes has been available for many years, progress has been slow on legislative and regulatory fronts to require the tobacco industry to manufacture fire-safe cigarettes. Method and results: We conducted a case study, drawing on data from tobacco industry documents, archives, and key informant interviews to investigate tobacco industry strategies for thwarting fire-safe cigarette legislation in the US Congress. We apply a theoretical framework that posits that policymaking is the product of three sets of forces: interests, institutions, and ideas, to examine tobacco industry behaviour, with a special focus on their and others' attempts to court fire service organisations, including firefighters' unions as allies. We discuss the implications of our findings for future policy efforts related to fire-safe cigarettes and other tobacco control issues. Conclusions: Tobacco control advocates ought to: continue efforts to align key interest groups, including the firefighters unions; contest tobacco industry "diversionary" science tactics; and pursue a state based legislative strategy for fire-safe cigarettes, building towards national legislation. PMID:16183985

  20. Antimicrobial activity of Nigerian medicinal plants

    PubMed Central

    Anyanwu, Madubuike Umunna; Okoye, Rosemary Chinazam

    2017-01-01

    Antimicrobial resistance (AMR) is currently one of the major threats facing mankind. The emergence and rapid spread of multi- and pan-drug-resistant organisms (such as vancomycin-, methicillin-, extended-spectrum β-lactam-, carbapenem- and colistin-resistant organisms) has put the world in a dilemma. The health and economic burden associated with AMR on a global scale are dreadful. Available antimicrobials have been misused and are almost ineffective with some of these drugs associated with dangerous side effects in some individuals. Development of new, effective, and safe antimicrobials is one of the ways by which AMR burden can be reduced. The rate at which microorganisms develop AMR mechanisms outpaces the rate at which new antimicrobials are being developed. Medicinal plants are potential sources of new antimicrobial molecules. There is renewed interest in antimicrobial activities of phytochemicals. Nigeria boasts of a huge heritage of medicinal plants and there is avalanche of researches that have been undertaken to screen antimicrobial activities of these plants. Scientific compilation of these studies could provide useful information on the antimicrobial properties of the plants. This information can be useful in the development of new antimicrobial drugs. This paper reviews antimicrobial researches that have been undertaken on Nigerian medicinal plants. PMID:28512606

  1. Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China.

    PubMed

    Jiang, Zhong-Ke; Tuo, Li; Huang, Da-Lin; Osterman, Ilya A; Tyurin, Anton P; Liu, Shao-Wei; Lukyanov, Dmitry A; Sergiev, Petr V; Dontsova, Olga A; Korshun, Vladimir A; Li, Fei-Na; Sun, Cheng-Hang

    2018-01-01

    Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza , and Thespesia populnea , were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter , and Verrucosispora . Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola , and Mycobacterium . Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola . A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one "ESKAPE" resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein

  2. Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China

    PubMed Central

    Jiang, Zhong-ke; Tuo, Li; Huang, Da-lin; Osterman, Ilya A.; Tyurin, Anton P.; Liu, Shao-wei; Lukyanov, Dmitry A.; Sergiev, Petr V.; Dontsova, Olga A.; Korshun, Vladimir A.; Li, Fei-na; Sun, Cheng-hang

    2018-01-01

    Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza, and Thespesia populnea, were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter, and Verrucosispora. Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola, and Mycobacterium. Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola. A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one “ESKAPE” resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein

  3. The Potential of Antimicrobial Peptides as Biocides

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2011-01-01

    Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections. PMID:22072905

  4. Natural Childbirth

    MedlinePlus

    ... Safe Videos for Educators Search English Español Natural Childbirth KidsHealth / For Parents / Natural Childbirth What's in this ... the pain, extremely empowering and rewarding. About Natural Childbirth Natural childbirth is a "low-tech" way of ...

  5. Antimicrobial Stewardship

    PubMed Central

    King, Sarah; Exley, Josephine; Taylor, Jirka; Kruithof, Kristy; Larkin, Jody; Pardal, Mafalda

    2016-01-01

    Abstract RAND Europe undertook a systematic review of the evidence of effectiveness and cost effectiveness on changing the public's risk related behaviour pertaining to antimicrobial use to inform the development of a NICE public health guideline aimed at delaying antimicrobial resistance (AMR). The review considered educational interventions targeting individuals, communities or the general public delivered via any mode. Specifically, it aimed to address: 1. Which educational interventions are effective and cost-effective in changing the public's behaviour to ensure they only ask for antimicrobials when appropriate and use them correctly? 2. Which educational interventions are effective and cost-effective in changing the public's behaviour to prevent infection and reduce the spread of antimicrobial resistance? Overall, 60 studies met the inclusion criteria; 29 related to research question 1, and 36 related to research question 2 (five studies were applicable to both). The key findings are summarised in “Evidence Statements” in accordance with NICE guidelines. Evidence Statements provide a high level overview of the key features of the evidence including: the number of studies, the quality of evidence, and the direction of the estimated effect followed by a brief summary of each of the supporting studies. Studies are grouped into Evidence Statements by setting and intervention. PMID:28083399

  6. Antimicrobial polymers.

    PubMed

    Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid

    2014-12-01

    Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Use of a chitosan based natural coating materials to reduce spoilage and pathogenic bacteria on poultry products

    USDA-ARS?s Scientific Manuscript database

    Chitosan is a natural compound with proven antimicrobial activity having GRAS status (generally recognized as safe) as determined by the United States Food and Drug Administration (Smith et al., 2014). Efforts are underway to develop and improve the use of chitosan based films as packaging material...

  8. Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds.

    PubMed

    Elena, Poverenov; Miri, Klein

    2018-05-16

    Different synthetic strategies for the formation of contact active antimicrobial materials utilizing covalent linkage of quaternary ammonium compounds (QACs) were reviewed. There is a demand to find methods that will prevent bacterial fouling without the release of antimicrobial agents, because biocides cause environment pollution and promote the development of bacteria resistance mechanisms. The contact active antimicrobial surfaces may provide a useful tool for this purpose. The covalent surface grafting of QACs seems to be a feasible and promising approach for the formation of safe and effective antimicrobial materials that could be utilized for medical devices, food industry, water treatment systems and other applications. This manuscript reviews covalent attachment of QACs to form contact active antimicrobial materials based on glass, metals, synthetic and natural polymers. The review emphasizes the description of different synthetic methods that are used for the covalent linkage. Direct covalent linkage of QACs to the material surfaces, a linkage via auxiliary nanoparticles (NPs), or spacers, controlled radical polymerization techniques and a linkage to pre-activated surfaces are discussed. The physico-chemical properties and biological activity of the modified surfaces are also described. This review does not cover non-covalent grafting of QACs and incorporation of QACs into a bulk material. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine as Exemplified by the Swine Pathogen Streptococcus suis.

    PubMed

    Seitz, Maren; Valentin-Weigand, Peter; Willenborg, Jörg

    2016-01-01

    Use of antimicrobial agents in veterinary medicine is essential to control infectious diseases, thereby keeping animals healthy and animal products safe for the consumer. On the other hand, development and spread of antimicrobial resistance is of major concern for public health. Streptococcus (S.) suis reflects a typical bacterial pathogen in modern swine production due to its facultative pathogenic nature and wide spread in the pig population. Thus, in the present review we focus on certain current aspects and problems related to antimicrobial use and resistance in S. suis as a paradigm for a bacterial pathogen affecting swine husbandry worldwide. The review includes (i) general aspects of antimicrobial use and resistance in veterinary medicine with emphasis on swine, (ii) genetic resistance mechanisms of S. suis known to contribute to bacterial survival under antibiotic selection pressure, and (iii) possible other factors which may contribute to problems in antimicrobial therapy of S. suis infections, such as bacterial persister cell formation, biofilm production, and co-infections. The latter shows that we hardly understand the complexity of factors affecting the success of antimicrobial treatment of (porcine) infectious diseases and underlines the need for further research in this field.

  10. Essential Oils: Sources of Antimicrobials and Food Preservatives

    PubMed Central

    Pandey, Abhay K.; Kumar, Pradeep; Singh, Pooja; Tripathi, Nijendra N.; Bajpai, Vivek K.

    2017-01-01

    Aromatic and medicinal plants produce essential oils in the form of secondary metabolites. These essential oils can be used in diverse applications in food, perfume, and cosmetic industries. The use of essential oils as antimicrobials and food preservative agents is of concern because of several reported side effects of synthetic oils. Essential oils have the potential to be used as a food preservative for cereals, grains, pulses, fruits, and vegetables. In this review, we briefly describe the results in relevant literature and summarize the uses of essential oils with special emphasis on their antibacterial, bactericidal, antifungal, fungicidal, and food preservative properties. Essential oils have pronounced antimicrobial and food preservative properties because they consist of a variety of active constituents (e.g., terpenes, terpenoids, carotenoids, coumarins, curcumins) that have great significance in the food industry. Thus, the various properties of essential oils offer the possibility of using natural, safe, eco-friendly, cost-effective, renewable, and easily biodegradable antimicrobials for food commodity preservation in the near future. PMID:28138324

  11. Investigating the potential of under-utilised plants from the Asteraceae family as a source of natural antimicrobial and antioxidant extracts.

    PubMed

    Kenny, O; Smyth, T J; Walsh, D; Kelleher, C T; Hewage, C M; Brunton, N P

    2014-10-15

    Antimicrobial properties of ethanol and water extracts from eight Asteraceae species were investigated against three Gram positive (Staphylococcus aureus, MRSA and Bacillus cereus) and two Gram negative (Escherichia coli and Salmonella typhimurium) bacterial strains. Ethanol extracts from Centaurea scabiosa, Arctium minus, Taraxacum officinale, Centaurea nigra and Cirsium palustre demonstrated antimicrobial activity against strains of S. aureus, MRSA and B. cereus (MIC=187.5-365μg/ml). Ethanol extracts also had higher antioxidant activities and phenolic content demonstrating a link between these compounds and the bioactivity of these extracts. Further investigation into the phenolic content of ethanol extracts using UPLC-MS/MS lead to the identification and quantification of numerous phenolic compounds in all species including; 18 from Cirsium arvense, 16 from Cirsium vulgare, 19 from C. palustre, 15 from C. nigra, 17 from C. scabiosa, 14 from Sonchus asper, 17 from A. minus and 11 from T. officinale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Type Safe Extensible Programming

    NASA Astrophysics Data System (ADS)

    Chae, Wonseok

    2009-10-01

    Software products evolve over time. Sometimes they evolve by adding new features, and sometimes by either fixing bugs or replacing outdated implementations with new ones. When software engineers fail to anticipate such evolution during development, they will eventually be forced to re-architect or re-build from scratch. Therefore, it has been common practice to prepare for changes so that software products are extensible over their lifetimes. However, making software extensible is challenging because it is difficult to anticipate successive changes and to provide adequate abstraction mechanisms over potential changes. Such extensibility mechanisms, furthermore, should not compromise any existing functionality during extension. Software engineers would benefit from a tool that provides a way to add extensions in a reliable way. It is natural to expect programming languages to serve this role. Extensible programming is one effort to address these issues. In this thesis, we present type safe extensible programming using the MLPolyR language. MLPolyR is an ML-like functional language whose type system provides type-safe extensibility mechanisms at several levels. After presenting the language, we will show how these extensibility mechanisms can be put to good use in the context of product line engineering. Product line engineering is an emerging software engineering paradigm that aims to manage variations, which originate from successive changes in software.

  13. How Safe Are Our Teachers?

    ERIC Educational Resources Information Center

    Younghusband, Lynda

    2009-01-01

    In this article, the author discusses a study she conducted in Newfoundland to determine the level of abuse and/or violence experienced by teachers, the nature of that abuse/violence, its personal impact, and whether Newfoundland teachers feel safe in their workplaces. The experiences presented are those of a focus group of eight teachers,…

  14. Marine sediment-derived Streptomyces bacteria from British Columbia, Canada are a promising microbiota resource for the discovery of antimicrobial natural products.

    PubMed

    Dalisay, Doralyn S; Williams, David E; Wang, Xiao Ling; Centko, Ryan; Chen, Jessie; Andersen, Raymond J

    2013-01-01

    Representatives of the genus Streptomyces from terrestrial sources have been the focus of intensive research for the last four decades because of their prolific production of chemically diverse and biologically important compounds. However, metabolite research from this ecological niche had declined significantly in the past years because of the rediscovery of the same bioactive compounds and redundancy of the sample strains. More recently, a new picture has begun to emerge in which marine-derived Streptomyces bacteria have become the latest hot spot as new source for unique and biologically active compounds. Here, we investigated the marine sediments collected in the temperate cold waters from British Columbia, Canada as a valuable source for new groups of marine-derived Streptomyces with antimicrobial activities. We performed culture dependent isolation from 49 marine sediments samples and obtained 186 Streptomyces isolates, 47 of which exhibited antimicrobial activities. Phylogenetic analyses of the active isolates resulted in the identification of four different clusters of bioactive Streptomyces including a cluster with isolates that appear to represent novel species. Moreover, we explored whether these marine-derived Streptomyces produce new secondary metabolites with antimicrobial properties. Chemical analyses revealed structurally diverse secondary metabolites, including four new antibacterial novobiocin analogues. We conducted structure-activity relationships (SAR) studies of these novobiocin analogues against methicillin-resistant Staphylococcus aureus (MRSA). In this study, we revealed the importance of carbamoyl and OMe moieties at positions 3" and 4" of novobiose as well as the hydrogen substituent at position 5 of hydroxybenzoate ring for the anti-MRSA activity. Changes in the substituents at these positions dramatically impede or completely eliminate the inhibitory activity of novobiocins against MRSA.

  15. Synthetic biology of antimicrobial discovery

    PubMed Central

    Zakeri, Bijan; Lu, Timothy K.

    2012-01-01

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore, used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery. PMID:23654251

  16. Synthetic biology of antimicrobial discovery.

    PubMed

    Zakeri, Bijan; Lu, Timothy K

    2013-07-19

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.

  17. Use Medicines Safely

    MedlinePlus

    ... Medicines Safely Print This Topic En español Use Medicines Safely Browse Sections The Basics Overview Prescription Medicines ... Medicines 1 of 7 sections The Basics: Prescription Medicines There are different types of medicine. The 2 ...

  18. Picture Me Safe

    ERIC Educational Resources Information Center

    Irvin, Daniel W.

    1977-01-01

    The validity of well-written articles can be destroyed by poor illustration, especially when the pictures show unsafe practices. The responsibility lies with the author to provide clear printable pictures showing safe working environments and safe practices. (Editor)

  19. Buying & Using Medicine Safely

    MedlinePlus

    ... Generic Drugs - Patient Education Resources Patient and Prescriber materials: Videos, PSAs, factsheets and more. Spotlight Drugs@FDA Index to Drug-Specific Information Protecting Yourself Safe Disposal of Medicines Generic Medicines – safe, effective and ...

  20. Combating Pathogenic Microorganisms Using Plant-Derived Antimicrobials: A Minireview of the Mechanistic Basis

    PubMed Central

    Upadhyaya, Indu; Kollanoor-Johny, Anup

    2014-01-01

    The emergence of antibiotic resistance in pathogenic bacteria has led to renewed interest in exploring the potential of plant-derived antimicrobials (PDAs) as an alternative therapeutic strategy to combat microbial infections. Historically, plant extracts have been used as a safe, effective, and natural remedy for ailments and diseases in traditional medicine. Extensive research in the last two decades has identified a plethora of PDAs with a wide spectrum of activity against a variety of fungal and bacterial pathogens causing infections in humans and animals. Active components of many plant extracts have been characterized and are commercially available; however, research delineating the mechanistic basis of their antimicrobial action is scanty. This review highlights the potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted by plant compounds on various virulence factors that are critical for pathogenicity inside the host. In addition, the potential effect of PDAs on gut microbiota is discussed. PMID:25298964

  1. Induction of antimicrobial 3-deoxyflavonoids in pome fruit trees controls fire blight.

    PubMed

    Halbwirth, Heidrun; Fischer, Thilo C; Roemmelt, Susanne; Spinelli, Francesco; Schlangen, Karin; Peterek, Silke; Sabatini, Emidio; Messina, Christian; Speakman, John-Bryan; Andreotti, Carlo; Rademacher, Wilhelm; Bazzi, Carlo; Costa, Guglielmo; Treutter, Dieter; Forkmann, Gert; Stich, Karl

    2003-01-01

    Fire blight, a devastating bacterial disease in pome fruits, causes severe economic losses worldwide. Hitherto, an effective control could only be achieved by using antibiotics, but this implies potential risks for human health, livestock and environment. A new approach allows transient inhibition of a step in the flavonoid pathway, thereby inducing the formation of a novel antimicrobial 3-deoxyflavonoid controlling fire blight in apple and pear leaves. This compound is closely related to natural phytoalexins in sorghum. The approach does not only provide a safe method to control fire blight: Resistance against different pathogens is also induced in other crop plants.

  2. Molecular target of synthetic antimicrobial oligomer in bacterial membranes

    NASA Astrophysics Data System (ADS)

    Yang, Lihua; Gordon, Vernita; Som, Abhigyan; Cronan, John; Tew, Gregory; Wong, Gerard

    2008-03-01

    Antimicrobial peptides comprises a key component of innate immunity for a wide range of multicellular organisms. It has been shown that natural antimicrobial peptides and their synthetic analogs have demonstrated broad-spectrum antimicrobial activity via permeating bacterial membranes selectively. Synthetic antimicrobials with tunable structure and toxicological profiles are ideal for investigations of selectivity mechanisms. We investigate interactions and self-assembly using a prototypical family of antimicrobials based on phenylene ethynylene. Results from synchrotron small angle x-ray scattering (SAXS) results and in vitro microbicidal assays on genetically modified `knock-out' bacteria will be presented.

  3. Technologies for safe births.

    PubMed

    1984-01-01

    The basic elements of a safe birth are proper prenatal care, adequate preparation of the mother, health worker, and site, awareness of the progress of labor and safe delivery, recognition of danger signs, and appropriate follow-up care. Technologies are differentiated by determining 1) the needs of rural birth attendants, 2) the nature of delivery kits, 3) proper cleanliness of the hands and equipment, and appropriate use of 5) disinfecting equipment, 6) drugs and medications, 7) the vertical position, 8) specialized instruments, and 9) records and support materials. Alternatives for measuring time are indicated. Customized kits available from UNICEF are described; some of the problems with these kits are reported. The logistics, referral procedures, and training and supervision needed for appropriate program managements are discussed. Adapting technologies to the local environment requires assessing the practices of traditional birth attendants (TBAs), the provision of kits (cost, ease of use and maintenance, replacement, durability, availability), the training required for proper use of equipment, the logistics of kit use, side effects of technologies, community attitudes, and evaluation. The advantages and disadvantages of including or not including particular supplies in the kit are discussed, i.e., the container for boiling water would either be a local pot or the aluminum carrying case. In lieu of a fingernail brush, a twig may be used for nail cleaning. Hand washing where water shortages exist might entail using a tin with a hole plugged with a stick to let water trickle as needed. Antiseptic solutions such a Dettol or Savlon can be used where a severe shortage exists. Basic equipment includes: soap and water, a container for boiling, other sterile containers, a protective cover of delivery area, towels, swabs, an optional apron, cord ties, a cutting instrument, gauze, a receiving blanket, records, and a carrying case.

  4. Cultivated strains of Agaricus bisporus and A. brasiliensis: chemical characterization and evaluation of antioxidant and antimicrobial properties for the final healthy product--natural preservatives in yoghurt.

    PubMed

    Stojković, Dejan; Reis, Filipa S; Glamočlija, Jasmina; Ćirić, Ana; Barros, Lillian; Van Griensven, Leo J L D; Ferreira, Isabel C F R; Soković, Marina

    2014-07-25

    Agaricus bisporus (J. E. Lange) Emil J. Imbach and Agaricus brasiliensis Wasser, M. Didukh, Amazonas & Stamets are edible mushrooms. We chemically characterized these mushrooms for nutritional value, hydrophilic and lipophilic compounds. The antioxidant and antimicrobial activities of methanolic and ethanolic extracts were assessed. Hepatotoxicity was also evaluated. The ethanolic extract of both species was tested for inhibition of Listeria monocytogenes growth in yoghurt. Both species proved to be a good source of bioactive compounds. A. brasiliensis was richer in polyunsaturated fatty acids and revealed the highest concentration of phenolic acids, and tocopherols. A. bisporus showed the highest monounsaturated fatty acids and ergosterol contents. A. brasiliensis revealed the highest antioxidant potential, and its ethanolic extract displayed the highest antibacterial potential; the methanolic extract of A. bisporus revealed the highest antifungal activity. A. brasiliensis possessed better preserving properties in yoghurt.

  5. Cationic antimicrobial polymers and their assemblies.

    PubMed

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-05-10

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  6. Cationic Antimicrobial Polymers and Their Assemblies

    PubMed Central

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  7. Use and misuse of antimicrobial drugs in poultry and livestock: Mechanisms of antimicrobial resistance

    USDA-ARS?s Scientific Manuscript database

    Food safety begins on the farm with management practices that contribute to an abundant, safe, and affordable food supply. To attain this goal, antimicrobials have been used in all stages of food animal production in the United States and elsewhere around the world at one time or another. Among fo...

  8. Antimicrobial Treatments and Efficacy

    EPA Science Inventory

    To limit exposure to indoor biological contamination a risk-management approach which employs various antimicrobial treatments can effectively control contaminants and reduce exposure. Antimicrobial treatment of biological contaminants, especially mold in buildings, it is often n...

  9. Antimicrobial Peptides: An Introduction.

    PubMed

    Haney, Evan F; Mansour, Sarah C; Hancock, Robert E W

    2017-01-01

    The "golden era" of antibiotic discovery has long passed, but the need for new antibiotics has never been greater due to the emerging threat of antibiotic resistance. This urgency to develop new antibiotics has motivated researchers to find new methods to combat pathogenic microorganisms resulting in a surge of research focused around antimicrobial peptides (AMPs; also termed host defense peptides) and their potential as therapeutics. During the past few decades, more than 2000 AMPs have been identified from a diverse range of organisms (animals, fungi, plants, and bacteria). While these AMPs share a number of common features and a limited number of structural motifs; their sequences, activities, and targets differ considerably. In addition to their antimicrobial effects, AMPs can also exhibit immunomodulatory, anti-biofilm, and anticancer activities. These diverse functions have spurred tremendous interest in research aimed at understanding the activity of AMPs, and various protocols have been described to assess different aspects of AMP function including screening and evaluating the activities of natural and synthetic AMPs, measuring interactions with membranes, optimizing peptide function, and scaling up peptide production. Here, we provide a general overview of AMPs and introduce some of the methodologies that have been used to advance AMP research.

  10. OPINION: Safe exponential manufacturing

    NASA Astrophysics Data System (ADS)

    Phoenix, Chris; Drexler, Eric

    2004-08-01

    In 1959, Richard Feynman pointed out that nanometre-scale machines could be built and operated, and that the precision inherent in molecular construction would make it easy to build multiple identical copies. This raised the possibility of exponential manufacturing, in which production systems could rapidly and cheaply increase their productive capacity, which in turn suggested the possibility of destructive runaway self-replication. Early proposals for artificial nanomachinery focused on small self-replicating machines, discussing their potential productivity and their potential destructiveness if abused. In the light of controversy regarding scenarios based on runaway replication (so-called 'grey goo'), a review of current thinking regarding nanotechnology-based manufacturing is in order. Nanotechnology-based fabrication can be thoroughly non-biological and inherently safe: such systems need have no ability to move about, use natural resources, or undergo incremental mutation. Moreover, self-replication is unnecessary: the development and use of highly productive systems of nanomachinery (nanofactories) need not involve the construction of autonomous self-replicating nanomachines. Accordingly, the construction of anything resembling a dangerous self-replicating nanomachine can and should be prohibited. Although advanced nanotechnologies could (with great difficulty and little incentive) be used to build such devices, other concerns present greater problems. Since weapon systems will be both easier to build and more likely to draw investment, the potential for dangerous systems is best considered in the context of military competition and arms control.

  11. Use of natural antimicrobials to improve the quality characteristics of fresh "Phyllo" - A dough-based wheat product - Shelf life assessment.

    PubMed

    Tsiraki, Maria I; Karam, Layal; Abiad, Mohamad G; Yehia, Hany M; Savvaidis, Ioannis N

    2017-04-01

    This study explores the effects of chitosan and natamycin on the quality of fresh "Phyllo" - a dough-based wheat product, by monitoring the microbiological, physicochemical and sensory parameters. Four different lots of phyllo samples stored under aerobic packaging conditions, in the absence or presence of the aforementioned antimicrobials, were prepared and stored at 4 °C. Microbiological data suggested that, the combination of chitosan and natamycin resulted in significant reductions (1-3 log cfu/g) of the microbial species examined (mesophilic total viable counts; TVC), yeasts/molds, psychrotrophic and lactic acid bacteria (LAB), Enterobacteriaceae and coliforms) by day 10. The pH values of treated phyllo samples were lower on final day 10, as compared to the untreated phyllo, and of the Hunter color parameters (L*, b* and a*) that were evaluated, mostly the combined treatment of chitosan and natamycin maintained the original lightness (L*) and color (yellowness) stability (b*) of phyllo product during the storage period. Sensory data, based on overall acceptability (mean values of appearance and odor) scores confirmed the superiority of combined treatment of chitosan and natamycin, resulting in almost a doubling of the shelf-life of fresh phyllo, while retaining excellent sensorial characteristics (appearance and odor) even on final storage day (10). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Variation of the chemical composition and antimicrobial activity of the essential oils of natural populations of Tunisian Daucus carota L. (Apiaceae).

    PubMed

    Rokbeni, Nesrine; M'rabet, Yassine; Dziri, Salma; Chaabane, Hedia; Jemli, Marwa; Fernandez, Xavier; Boulila, Abdennacer

    2013-12-01

    The essential oils of Daucus carota L. (Apiaceae) seeds sampled from ten wild populations spread over northern Tunisia were characterized by GC-FID and GC/MS analyses. In total, 36 compounds were identified in the D. carota seed essential oils, with a predominance of sesquiterpene hydrocarbons in most samples (22.63-89.93% of the total oil composition). The main volatile compounds identified were β-bisabolene (mean content of 39.33%), sabinene (8.53%), geranyl acetate (7.12%), and elemicin (6.26%). The volatile composition varied significantly across the populations, even for oils of populations harvested in similar areas. The chemometric principal component analysis and the hierarchical clustering identified four groups, each corresponding to a composition-specific chemotype. The in vitro antimicrobial activity of the isolated essential oils was preliminarily evaluated, using the disk-diffusion method, against one Gram-positive (Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), as well as against a pathogenic yeast (Candida albicans). All tested essential oils exhibited interesting antibacterial and antifungal activities against the assayed microorganisms. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  13. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions

    PubMed Central

    Watts, Joy E. M.; Schreier, Harold J.; Lanska, Lauma; Hale, Michelle S.

    2017-01-01

    As the human population increases there is an increasing reliance on aquaculture to supply a safe, reliable, and economic supply of food. Although food production is essential for a healthy population, an increasing threat to global human health is antimicrobial resistance. Extensive antibiotic resistant strains are now being detected; the spread of these strains could greatly reduce medical treatment options available and increase deaths from previously curable infections. Antibiotic resistance is widespread due in part to clinical overuse and misuse; however, the natural processes of horizontal gene transfer and mutation events that allow genetic exchange within microbial populations have been ongoing since ancient times. By their nature, aquaculture systems contain high numbers of diverse bacteria, which exist in combination with the current and past use of antibiotics, probiotics, prebiotics, and other treatment regimens—singularly or in combination. These systems have been designated as “genetic hotspots” for gene transfer. As our reliance on aquaculture grows, it is essential that we identify the sources and sinks of antimicrobial resistance, and monitor and analyse the transfer of antimicrobial resistance between the microbial community, the environment, and the farmed product, in order to better understand the implications to human and environmental health. PMID:28587172

  14. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions.

    PubMed

    Watts, Joy E M; Schreier, Harold J; Lanska, Lauma; Hale, Michelle S

    2017-06-01

    As the human population increases there is an increasing reliance on aquaculture to supply a safe, reliable, and economic supply of food. Although food production is essential for a healthy population, an increasing threat to global human health is antimicrobial resistance. Extensive antibiotic resistant strains are now being detected; the spread of these strains could greatly reduce medical treatment options available and increase deaths from previously curable infections. Antibiotic resistance is widespread due in part to clinical overuse and misuse; however, the natural processes of horizontal gene transfer and mutation events that allow genetic exchange within microbial populations have been ongoing since ancient times. By their nature, aquaculture systems contain high numbers of diverse bacteria, which exist in combination with the current and past use of antibiotics, probiotics, prebiotics, and other treatment regimens-singularly or in combination. These systems have been designated as "genetic hotspots" for gene transfer. As our reliance on aquaculture grows, it is essential that we identify the sources and sinks of antimicrobial resistance, and monitor and analyse the transfer of antimicrobial resistance between the microbial community, the environment, and the farmed product, in order to better understand the implications to human and environmental health.

  15. Nature

    NASA Astrophysics Data System (ADS)

    Heinhorst, Sabine; Cannon, Gordon

    1997-01-01

    The fact that two of the original articles by this year's Nobel laureates were published in Nature bears witness to the pivotal role of this journal in documenting pioneering discoveries in all areas of science. The prize for Physiology or Medicine was awarded to immunologists Peter C. Doherty (University of Tennessee) and Rolf M. Zinkernagel (University of Zurich, Switzerland), honoring work that, in the 1970s, laid the foundation for our current understanding of the way in which our immune system differentiates between healthy cells and virus-infected ones that are targeted for destruction (p 465 in the October 10 issue of vol. 383). Three researchers share the Chemistry award for their discovery of C60 buckminsterfullerenes. The work by Robert Curl, Richard Smalley (both at Rice University), and Harry Kroto (University of Sussex, UK) has led to a burst of new approaches to materials development and in carbon chemistry (p 561 of the October 17 issue of vol. 383). This year's Nobel prize in physics went to three U.S. researchers, Douglas Osheroff (Stanford University) and David M. Lee and Robert C. Richardson (Cornell University), who were honored for their work on superfluidity, a frictionless liquid state, of supercooled 3He (p 562 of the October 17 issue of vol. 383).

  16. Effect of Antimicrobial Peptide KSL-W on Human Gingival Tissue and C. albicans Growth, Transition and Secreted Aspartyl Proteinase (SAPS) 2, 4, 5 and 6 Expressions

    DTIC Science & Technology

    2013-04-01

    1 AWARD NUMBER: W81XWH-12-2-0025 TITLE: Effect of Antimicrobial Peptide KSL-W on Human Gingival Tissue and C. albicans Growth, Transition...drugs using various synthetic and naturally occurring antimicrobial molecules. Natural antimicrobial peptides , such as defensins produced by...These antimicrobial peptides generally exhibit selective toxicity for microorganisms and show fewer propensities to induce microbial resistance

  17. Phytotherapy as an alternative to conventional antimicrobials: combating microbial resistance.

    PubMed

    Enioutina, Elena Yu; Teng, Lida; Fateeva, Tatyana V; Brown, Jessica C S; Job, Kathleen M; Bortnikova, Valentina V; Krepkova, Lubov V; Gubarev, Michael I; Sherwin, Catherine M T

    2017-11-01

    In the modern antimicrobial era, the rapid spread of resistance to antibiotics and introduction of new and mutating viruses is a global concern. Combating antimicrobial resistant microbes (AMR) requires coordinated international efforts that incorporate new conventional antibiotic development as well as development of alternative drugs with antimicrobial activity, management of existing antimicrobials, and rapid detection of AMR pathogens. Areas covered: This manuscript discusses some conventional strategies to control microbial resistance. The main purpose of the manuscript is to present information on specific herbal medicines that may serve as good treatment alternatives to conventional antimicrobials for infections sensitive to conventional as well as resistant strains of microorganisms. Expert commentary: Identification of potential new antimicrobials is challenging; however, one source for potential structurally diverse and complex antimicrobials are natural products. Natural products may have advantages over other post-germ theory antimicrobials. Many antimicrobial herbal medicines possess simultaneous antibacterial, antifungal, antiprotozoal and/or antiviral properties. Herbal products have the potential to boost host resistance to infections, particularly in immunocompromised patients. Antimicrobial broad-spectrum activity in conjunction with immunostimulatory properties may help to prevent microbial resistance to herbal medicine. As part of the efforts to broaden use of herbal medicines to treat microbial infections, pre-clinical and clinical testing guidelines of these compounds as a whole should be implemented to ensure consistency in formulation, efficacy and safety.

  18. Spectrum of antimicrobial activity associated with ionic colloidal silver.

    PubMed

    Morrill, Kira; May, Kathleen; Leek, Daniel; Langland, Nicole; Jeane, La Deana; Ventura, Jose; Skubisz, Corey; Scherer, Sean; Lopez, Eric; Crocker, Ephraim; Peters, Rachel; Oertle, John; Nguyen, Krystine; Just, Scott; Orian, Michael; Humphrey, Meaghan; Payne, David; Jacobs, Bertram; Waters, Robert; Langland, Jeffrey

    2013-03-01

    Silver has historically and extensively been used as a broad-spectrum antimicrobial agent. However, the Food and Drug Administration currently does not recognize colloidal silver as a safe and effective antimicrobial agent. The goal of this study was to further evaluate the antimicrobial efficacy of colloidal silver. Several strains of bacteria, fungi, and viruses were grown under multicycle growth conditions in the presence or absence of ionic colloidal silver in order to assess the antimicrobial activity. For bacteria grown under aerobic or anaerobic conditions, significant growth inhibition was observed, although multiple treatments were typically required. For fungal cultures, the effects of ionic colloidal silver varied significantly between different genera. No viral growth inhibition was observed with any strains tested. The study data support ionic colloidal silver as a broad-spectrum antimicrobial agent against aerobic and anaerobic bacteria, while having a more limited and specific spectrum of activity against fungi.

  19. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.

    PubMed

    Zhao, Jun; Zhao, Chao; Liang, Guizhao; Zhang, Mingzhen; Zheng, Jie

    2013-12-23

    The rapid rise of antibiotic resistance in pathogens becomes a serious and growing threat to medicine and public health. Naturally occurring antimicrobial peptides (AMPs) are an important line of defense in the immune system against invading bacteria and microbial infection. In this work, we present a combined computational and experimental study of the biological activity and membrane interaction of the computationally designed Bac2A-based peptide library. We used the MARTINI coarse-grained molecular dynamics with adaptive biasing force method and the umbrella sampling technique to investigate the translocation of a total of 91 peptides with different amino acid substitutions through a mixed anionic POPE/POPG (3:1) bilayer and a neutral POPC bilayer, which mimic the bacterial inner membrane and the human red blood cell (hRBC) membrane, respectively. Potential of mean force (PMF, free energy profile) was obtained to measure the free energy barrier required to transfer the peptides from the bulk water phase to the water-membrane interface and to the bilayer interior. Different PMF profiles can indeed identify different membrane insertion scenarios by mapping out peptide-lipid energy landscapes, which are correlated with antimicrobial activity and hemolytic activity. Computationally designed peptides were further tested experimentally for their antimicrobial and hemolytic activities using bacteria growth inhibition assay and hemolysis assay. Comparison of PMF data with cell assay results reveals a good correlation of the peptides between predictive transmembrane activity and antimicrobial/hemolytic activity. Moreover, the most active mutants with the balanced substitutions of positively charged Arg and hydrophobic Trp residues at specific positions were discovered to achieve the improved antimicrobial activity while minimizing red blood cell lysis. Such substitutions provide more effective and cooperative interactions to distinguish the peptide interaction with

  20. Behavior of Listeria monocytogenes on Mortadella Formulated Using a Natural, Clean-Label Antimicrobial Agent during Extended Storage at 4 or 12°C.

    PubMed

    Porto-Fett, Anna C S; Campano, Stephen G; Rieker, Marcus; Stahler, Laura J; McGEARY, Lianna; Shane, Laura E; Shoyer, Bradley A; Osoria, Manuela; Luchansky, John B

    2018-05-01

    All-pork mortadella, an Italian-style deli meat, was produced by a local artisanal meat producer with or without 1.0 or 1.5% liquid buffered vinegar (LBV), 0.4, 0.6, or 1.0% dry buffered vinegar (DBV), or a 2.5% blend of potassium lactate and sodium diacetate (KLac). In each of three trials, mortadella was sliced (ca. 1.5 cm thick, ca. 30 g) and surface inoculated with 250 μL per side of a five-strain mixture of Listeria monocytogenes (ca. 3.8 log CFU per slice). The packages were vacuum sealed and then stored at 4 or 12°C. In the absence of antimicrobials, L. monocytogenes levels increased by ca. 2.6 and 6.0 log CFU per slice after up to 120 or 28 days at 4 or 12°C, respectively. With inclusion of 1.0 or 1.5% LBV, 1.0% DBV, or 2.5% KLac as ingredients, pathogen levels decreased by ca. 0.3 to 0.7 log CFU per slice after 120 days at 4°C, whereas with inclusion of 0.4 or 0.6% DBV, L. monocytogenes levels increased by ca. 1.2 and 0.8 log CFU per slice, respectively. After 28 days at 12°C, inclusion of 2.5% KLac, 1.0 or 1.5% LBV, or 0.4 or 0.6% DBV resulted in a ca. 1.4- to 5.7-log increase in L. monocytogenes levels. When 1.0% DBV was included in the formulation, pathogen levels remained unchanged after 28 days at 12°C. However, product quality was lessened at this abusive storage temperature (12°C) for all treatments by the end of storage. Thus, inclusion of LBV or DBV, as clean-label ingredients, in mortadella is equally effective as KLac for controlling L. monocytogenes during storage at 4°C without adversely affecting product quality.

  1. Environmentally safe fluid extractor

    DOEpatents

    Sungaila, Zenon F.

    1993-01-01

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  2. Using Medications Safely

    MedlinePlus

    ... health systems play an important role in preventing medication errors. To make sure you use medicines safely and effectively, ASHP recommends that you: Keep a list of all medications that you take (prescribed drugs, nonprescription medicines, herbal ...

  3. Removing Hair Safely

    MedlinePlus

    ... For Consumers Home For Consumers Consumer Updates Removing Hair Safely Share Tweet Linkedin Pin it More sharing ... related to common methods of hair removal. Laser Hair Removal In this method, a laser destroys hair ...

  4. Safe Hazmat Storage Tips.

    ERIC Educational Resources Information Center

    Neville, Angela

    1996-01-01

    Provides a list of recommendations for safely managing hazardous waste containers. Encourages training of employees on the hazards of the wastes they handle and the correct procedures for managing containers. (DDR)

  5. Safe Sleep for Babies

    MedlinePlus

    ... Every year, there are thousands of sleep-related deaths among babies. View large image and text description ... 2AZh9Bn Supporting research to better understand sleep-related deaths and strategies to improve safe sleep practices. Healthcare ...

  6. Karate: Keep It Safe.

    ERIC Educational Resources Information Center

    Jordan, David

    1981-01-01

    Safety guidelines for each phase of a karate practice session are presented to provide an accident-free and safe environment for teaching karate in a physical education or traditional karate training program. (JMF)

  7. Taking multiple medicines safely

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000883.htm Taking multiple medicines safely To use the sharing features on this ... directed. Why You May Need More Than One Medicine You may take more than one medicine to ...

  8. Environmentally safe fluid extractor

    DOEpatents

    Sungaila, Zenon F.

    1993-07-06

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  9. Introduction: the goals of antimicrobial therapy.

    PubMed

    Song, Jae-Hoon

    2003-03-01

    Antimicrobial agents are generally evaluated in preclinical studies assessing in vitro activity, animal models demonstrating in vivo bacteriologic efficacy, and clinical trials primarily investigating safety and clinical efficacy. However, large sample sizes are required to detect any differences in outcomes between antimicrobials in clinical trials, and, generally, studies are powered to show only clinical equivalence. In addition, diagnosis is often based on clinical symptoms, rather than microbiological evidence of bacterial infection, and the patients most likely to have resistant pathogens are often excluded. Clinical efficacy can be achieved in some bacterial infections in which antimicrobials are suboptimal or even not prescribed. However, bacterial eradication maximizes clinical efficacy and may also reduce the development and spread of resistant organisms. The goal of antimicrobial therapy is, therefore, to eradicate bacteria at the site of infection. Bacterial eradication is not usually assessed as a primary endpoint within the limits of currently recommended clinical trial design. However, pharmacokinetic (PK) (serum concentration profiles, penetration to site of infection) and pharmacodynamic (PD) (susceptibility, concentration- versus time-dependent killing, post-antimicrobial effects) criteria can be used to predict bacteriologic efficacy. PK/PD predictions should be confirmed during all phases of antimicrobial development and throughout clinical use in response to changing patterns of resistance. A clear rationale for dose recommendations can be determined preclinically based on PK/PD parameters, and correlated with efficacy, safety and resistance endpoints in clinical trials. The duration of treatment and dose should be the shortest that will reliably eradicate the pathogen(s), and that is safe and well tolerated. Currently available agents vary significantly in their ability to achieve PK/PD parameters necessary for bacteriologic eradication

  10. DroidSafe

    DTIC Science & Technology

    2016-12-01

    branches of our work . 3.1 Understanding Sensitive API Call and API Information Usage Android applications are written in a type- safe language (Java...directly invoke resolved targets. Because DroidSafe works with a comprehensive model of the Android environment , it supports precise resolution of...STATEMENT. FOR THE CHIEF ENGINEER: / S / / S / MARK K. WILLIAMS WARREN H. DEBANY, JR. Work Unit Manager

  11. Antimicrobial Peptides from Marine Proteobacteria

    PubMed Central

    Desriac, Florie; Jégou, Camille; Balnois, Eric; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick

    2013-01-01

    After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs. PMID:24084784

  12. Antimicrobial properties of essential oils against Salmonella in organic soil

    USDA-ARS?s Scientific Manuscript database

    Soil is one of the important sources of preharvest contamination of produce with pathogens. Demand for natural pesticides such as essential oils for organic farming practices has increased. Antimicrobial activity of essential oils in vitro has been documented. The antimicrobial activity of essential...

  13. Guidelines for antimicrobial prophylaxis.

    PubMed

    Nahata, M C

    1996-08-01

    Antimicrobials are frequently used to prevent infections. Principles of prophylaxis, and antimicrobial prophylaxis in surgery, tuberculosis, acquired immunodeficiency syndrome, influenza A, traveller's diarrhoea, malaria, recurrent otitis media, Haemophilus influenzae type b infection, pertussis, rheumatic fever, and urinary tract infection are described. Various strategies to improve the prophylactic use of antibiotics are discussed. Collaborative efforts among health care disciplines are needed to assure optimal antimicrobial prophylaxis. This should maximize efficacy and minimize adverse effects, the development of bacterial resistance and associated costs.

  14. Strategies for safe injections.

    PubMed Central

    Battersby, A.; Feilden, R.; Stoeckel, P.; Da Silva, A.; Nelson, C.; Bass, A.

    1999-01-01

    In 1998, faced with growing international concern, WHO set out an approach for achieving injection safety that encompassed all elements from patients' expectations and doctors' prescribing habits to waste disposal. This article follows that lead and describes the implications of the approach for two injection technologies: sterilizable and disposable. It argues that focusing on any single technology diverts attention from the more fundamental need for health services to develop their own comprehensive strategies for safe injections. National health authorities will only be able to ensure that injections are administered safely if they take an approach that encompasses the whole system, and choose injection technologies that fit their circumstances. PMID:10680247

  15. Plant Products as Antimicrobial Agents

    PubMed Central

    Cowan, Marjorie Murphy

    1999-01-01

    The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists, and natural-products chemists are combing the Earth for phytochemicals and “leads” which could be developed for treatment of infectious diseases. While 25 to 50% of current pharmaceuticals are derived from plants, none are used as antimicrobials. Traditional healers have long used plants to prevent or cure infectious conditions; Western medicine is trying to duplicate their successes. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found in vitro to have antimicrobial properties. This review attempts to summarize the current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity. The structure and antimicrobial properties of phytochemicals are also addressed. Since many of these compounds are currently available as unregulated botanical preparations and their use by the public is increasing rapidly, clinicians need to consider the consequences of patients self-medicating with these preparations. PMID:10515903

  16. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  17. Antimicrobial use: Alternatives

    USDA-ARS?s Scientific Manuscript database

    For over fifty years, antimicrobials have been used in food animal production to maintain animal health and to increase productivity. The resulting increase in antimicrobial resistance among enteric bacteria has created two principal concerns: 1) the prevalence of drug-resistant pathogens leaves th...

  18. Safe Entry, Easy Exit

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2008-01-01

    After violent episodes too numerous to list and too terrible to forget, schools and universities have been focused for several years on enhancing security in their facilities. Doors are among the most critical points of concern for school personnel responsible for keeping buildings safe. Education institutions want doors that let the right people…

  19. Keeping Campuses Safe.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    1999-01-01

    Describes how colleges and universities are using technology, as well as traditional methods, to keep campuses safe and reduce crime. Topics include using free pizza in a successful contest to teach students about campus safety, installing security cameras, using access-control cards, providing adequate lighting, and creating a bicycle patrol…

  20. Medications: Using Them Safely

    MedlinePlus

    ... Giving kids medicine safely can be complicated. And many parents feel the pressure when a young child needs certain medications, knowing that giving too much or too little could cause serious side effects. But with a little knowledge and a lot of double-checking, you can ...

  1. Safe Manual Jettison

    NASA Technical Reports Server (NTRS)

    Barton, Jay

    2008-01-01

    In space, the controlled release of certain cargoes is no less useful than the maritime jettisons from which they take their name but is also much more dangerous. Experience has shown that jettisons can be performed safely, but the process is complicated with the path to performing a jettison taking months or even years. In the background, time is also required to write procedures, train the crew, configure the vehicle, and many other activities. This paper outlines the current process used by the National Aeronautics and Space Administration (NASA) for manual jettisons, detailing the methods used to assure that the jettisons and the jettisoned objects are as safe as achievable and that the crew is adequately trained to be able to affect the safe jettison. The goal of this paper is not only to capture what it takes to perform safe jettisons in the near Earth environment but to extrapolate this knowledge to future space exploration scenarios that will likely have Extravehicular Activity (EVA) and International Partner (IP) interfaces.

  2. Ethanol Extracts from Mistletoe (Viscum album L.) Act as Natural Antioxidants and Antimicrobial Agents in Uncooked Pork Patties during Refrigerated Storage

    PubMed Central

    Kang, Suk-Nam

    2016-01-01

    The antioxidant potential of mistletoe (Viscum album L. var. coloratum Ohwi; VAL) extract in uncooked pork patties was evaluated. Three concentrations of VAL extract (0.1 [T1], 0.5% [T2] and 1.0% [T3]) along with 0.02% ascorbic acid as a positive control (V) were added to ground pork and pork patties were prepared. Incorporation of VAL extract decreased (p<0.05) the pH of the pork patties throughout the storage time and reduced (p<0.01) the thiobarbituric acid reactive substance values after day 14 of storage. Total plate counts of the VAL extract-treated samples and V-treated samples were also significantly lower (p<0.01) than that of the control (C) throughout the storage period. In addition, odor scores of the VAL extract-treated patties were lower than those of the C- or V-treated samples on 3rd day of the storage period. These results demonstrated that the VAL extract acts as a natural antioxidant in uncooked pork products. PMID:26732334

  3. In vitro and in vivo antimicrobial efficacy of natural plant-derived compounds against Vibrio cholerae of O1 El Tor Inaba serotype.

    PubMed

    Kim, Hyung-Ip; Kim, Ji-Ae; Choi, Eun-Jin; Harris, Jason B; Jeong, Seong-Yeop; Son, Seok-Jun; Kim, Younghoon; Shin, Ok Sarah

    2015-01-01

    In this study, we investigated antibacterial activities of 20 plant-derived natural compounds against Gram-negative enteric pathogens. We found that both flavonoids and non-flavonoids, including honokiol and magnolol, possess specific antibacterial activities against V. cholerae, but not against other species of Gram-negative bacterium which we tested. Using various antibacterial assays, we determined that there was a dose-dependent bactericidal and biofilm inhibitory activity of honokiol and magnolol against Vibrio cholerae. In addition to antibacterial activities, these molecules also induced an attenuating effect on reactive oxygen species (ROS) production and pro-inflammatory responses generated by macrophages in response to lipopolysaccharides (LPS). Additionally, Caenorhabditis elegans lethality assay revealed that honokiol and magnolol have an ability to extend a lifespan of V. cholerae-infected worms, contributing to prolonged survival of worms after lethal infection. Altogether, our data show for the first time that honokiol and magnolol may be considered as attractive protective or preventive food adjuncts for cholera.

  4. The safe home project.

    PubMed

    Arphorn, Sara; Jiraniratisai, Sopaphan; Rungtakul, Rungsri; Phutta, Nikom

    2011-12-01

    The Thai Health Promotion Foundation supported the Improvement of Quality of Life of Informal Workers project in Ban Luang District, Amphur Photaram, Ratchaburi Province. There were many informal workers in Ban Luang District. Sweet-crispy fish producers in Ban Luang were the largest group among the sweet-crispy fish producers in Thailand. This project was aimed at improving living and working conditions of informal workers, with a focus on the sweet-crispy fish group. Good practices of improved living and working conditions were used to help informal workers build safe, healthy and productive work environments. These informal workers often worked in substandard conditions and were exposed to various hazards in the working area. These hazards included risk of exposure to hot work environment, ergonomics-related injuries, chemical hazards, electrical hazards etc. Ergonomics problems were commonly in the sweet-crispy fish group. Unnatural postures such as prolonged sitting were performed dominantly. One hundred and fifty informal workers participated in this project. Occupational health volunteers were selected to encourage occupational health and safety in four groups of informal workers in 2009. The occupational health volunteers trained in 2008 were farmers, beauty salon workers and doll makers. The occupational health and safety knowledge is extended to a new informal worker group: sweet-crispy fish producer, in 2009. The occupational health and safety training for sweet-crispy fish group is conducted by occupational health volunteers. The occupational health volunteers increased their skills and knowledge assist in to make safe home and safe community through participatory oriented training. The improvement of living and working condition is conducted by using a modified WISH, Work Improvement for Safe Home, checklist. The plans of improvement were recorded. The informal workers showed improvement mostly on material handling and storage. The safe uses and safe

  5. Antimicrobial Prophylaxis in Adults

    PubMed Central

    Enzler, Mark J.; Berbari, Elie; Osmon, Douglas R.

    2011-01-01

    Antimicrobial prophylaxis is commonly used by clinicians for the prevention of numerous infectious diseases, including herpes simplex infection, rheumatic fever, recurrent cellulitis, meningococcal disease, recurrent uncomplicated urinary tract infections in women, spontaneous bacterial peritonitis in patients with cirrhosis, influenza, infective endocarditis, pertussis, and acute necrotizing pancreatitis, as well as infections associated with open fractures, recent prosthetic joint placement, and bite wounds. Perioperative antimicrobial prophylaxis is recommended for various surgical procedures to prevent surgical site infections. Optimal antimicrobial agents for prophylaxis should be bactericidal, nontoxic, inexpensive, and active against the typical pathogens that can cause surgical site infection postoperatively. To maximize its effectiveness, intravenous perioperative prophylaxis should be administered within 30 to 60 minutes before the surgical incision. Antimicrobial prophylaxis should be of short duration to decrease toxicity and antimicrobial resistance and to reduce cost. PMID:21719623

  6. Design of novel analogues of short antimicrobial peptide anoplin with improved antimicrobial activity.

    PubMed

    Wang, Yang; Chen, Jianbo; Zheng, Xin; Yang, Xiaoli; Ma, Panpan; Cai, Ying; Zhang, Bangzhi; Chen, Yuan

    2014-12-01

    Currently, novel antibiotics are urgently required to combat the emergence of drug-resistant bacteria. Antimicrobial peptides with membrane-lytic mechanism of action have attracted considerable interest. Anoplin, a natural α-helical amphiphilic antimicrobial peptide, is an ideal research template because of its short sequence. In this study, we designed and synthesized a group of analogues of anoplin. Among these analogues, anoplin-4 composed of D-amino acids displayed the highest antimicrobial activity due to increased charge, hydrophobicity and amphiphilicity. Gratifyingly, anoplin-4 showed low toxicity to host cells, indicating high bacterial selectivity. Furthermore, the mortality rate of mice infected with Escherichia coli was significantly reduced by anoplin-4 treatment relative to anoplin. In conclusion, anoplin-4 is a novel anoplin analogue with high antimicrobial activity and enzymatic stability, which may represent a potent agent for the treatment of infection. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  7. Antimicrobial Evaluation of Mangiferin Analogues

    PubMed Central

    Singh, S. K.; Kumar, Y.; Kumar, S. Sadish; Sharma, V. K.; Dua, K.; Samad, A.

    2009-01-01

    The naturally occurring xanthone glycoside mangiferin has been isolated by column chromatography from the ethanol extract of stem bark of Mangifera indica. Mangiferin was further converted to 5-(N-phenylaminomethyleno)mangiferin, 5-(N-p-chlorophenylaminomethyleno) mangiferin, 5-(N-2-methylphenylaminomethyleno) mangiferin, 5-(N-p-methoxyphenylaminomethyleno) mangiferin, 5-(N, N-diphenylaminomethyleno) mangiferin, 5-(N--napthylaminomethyleno) mangiferin and 5-(N-4-methylphenylaminomethyleno) mangiferin. Mangiferin and its analogues were characterized by melting point and Rf value determination and through spectral technique like UV, IR, and NMR spectral analysis. The synthesized compounds were screened for antimicrobial activity. PMID:20490307

  8. Approaching Suspicious Substances Safely

    NASA Technical Reports Server (NTRS)

    2004-01-01

    A mineral identification tool that was developed for NASA's Mars Rover Technology Development program is now serving as a powerful tool for U.S. law enforcement agencies and military personnel to identify suspicious liquid and solid substances. The tool can measure unknown substances through glass and plastic packaging materials with the RamanProbe(TradeMark) focused fiber-optic probe. The probe length can be extended up to 200 meters to enable users to analyze potentially dangerous substances at a safe distance. In many cases, the spectrometer and personnel are kept in a safe zone while the probe is positioned next to the sample being analyzed. Being able to identify chemicals in remote locations also saves users time and labor, since otherwise the samples would need to be collected, transported, and prepared prior to measurement in the laboratory.

  9. Microelectromechanical safe arm device

    DOEpatents

    Roesler, Alexander W [Tijeras, NM

    2012-06-05

    Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.

  10. Managing drugs safely.

    PubMed

    van den Anker, John N

    2005-02-01

    There is hard data to show that newborn infants are more likely than adults to experience adverse reactions to drugs. Paradoxically, drug-related legislation to ensure safe and effective drug use in humans neglected neonates until 2002, when the Best Pharmaceuticals Act for Children was signed into law in the USA. The situation for neonates should now catch up with that for adults and neonates will be prescribed more licensed drugs in the near future. If we are to be able to analyze the underlying system errors to improve the safe use of drugs in the studied patient population, reporting of adverse drug events and reactions needs to happen in a blame free environment. In addition, computerized physician order entry will certainly further improve the current situation by preventing errors in ordering, transcribing, verifying, and transmitting medication orders.

  11. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  12. Fast Disinfecting Antimicrobial Surfaces

    PubMed Central

    Madkour, Ahmad E.; Dabkowski, Jeffery M.; Nüsslein, Klaus; Tew, Gregory N.

    2013-01-01

    Silicon wafers and glass surfaces were functionalized with facially amphiphilic antimicrobial copolymers using the “grafting from” technique. Surface initiated atom transfer radical polymerization (ATRP) was used to grow poly(butylmethacrylate)-co-poly(Boc-aminoethyl methacrylate) from the surfaces. Upon Boc-deprotection, these surfaces became highly antimicrobial and killed S. aureus and E. coli 100% in less than 5 min. The molecular weight and grafting density of the polymer were controlled by varying the polymerization time and initiator surface density. Antimicrobial studies showed that the killing efficiency of these surfaces was independent of polymer layer thickness or grafting density within the range of surfaces studied. PMID:19177651

  13. Antimicrobials in beekeeping.

    PubMed

    Reybroeck, Wim; Daeseleire, Els; De Brabander, Hubert F; Herman, Lieve

    2012-07-06

    The bee diseases American and European foulbrood and nosemosis can be treated with anti-infectious agents. However, in the EU and the USA the use of these agents in beekeeping is strictly regulated due to the lack of tolerance (e.g. Maximum Residue Limit) for residues of antibiotics and chemotherapeutics in honey. This article reviews the literature dealing with antimicrobials of interest in apiculture, stability of these antimicrobials in honey, and disposition of the antimicrobials in honeybee hives. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Deep Learning Improves Antimicrobial Peptide Recognition.

    PubMed

    Veltri, Daniel; Kamath, Uday; Shehu, Amarda

    2018-03-24

    Bacterial resistance to antibiotics is a growing concern. Antimicrobial peptides (AMPs), natural components of innate immunity, are popular targets for developing new drugs. Machine learning methods are now commonly adopted by wet-laboratory researchers to screen for promising candidates. In this work we utilize deep learning to recognize antimicrobial activity. We propose a neural network model with convolutional and recurrent layers that leverage primary sequence composition. Results show that the proposed model outperforms state-of-the-art classification models on a comprehensive data set. By utilizing the embedding weights, we also present a reduced-alphabet representation and show that reasonable AMP recognition can be maintained using nine amino-acid types. Models and data sets are made freely available through the Antimicrobial Peptide Scanner vr.2 web server at: www.ampscanner.com. amarda@gmu.edu for general inquiries and dan.veltri@gmail.com for web server information. Supplementary data are available at Bioinformatics online.

  15. Hydrocarbon-stapled lipopeptides exhibit selective antimicrobial activity.

    PubMed

    Jenner, Zachary B; Crittenden, Christopher M; Gonzalez, Martín; Brodbelt, Jennifer S; Bruns, Kerry A

    2017-05-01

    Antimicrobial peptides (AMPs) occur widely in nature and have been studied for their therapeutic potential. AMPs are of interest due to the large number of possible chemical structural combinations using natural and unnatural amino acids, with varying effects on their biological activities. Using physicochemical properties from known naturally occurring amphipathic cationic AMPs, several hydrocarbon-stapled lipopeptides (HSLPs) were designed, synthesized, and tested for antimicrobial properties. Peptides were chemically modified by N-terminal acylation, C-terminal amidation, and some were hydrocarbon stapled by intramolecular olefin metathesis. The effects of peptide length, amphipathic character, and stapling on antimicrobial activity were tested against Escherichia coli, three species of Gram-positive bacteria (Staphylococcus aureus, Bacillus megaterium, and Enterococcus faecalis), and two strains of Candida albicans. Peptides were shown to disrupt liposomes of different phospholipid composition, as measured by leakage of a fluorescent compound from vesicles. Peptides with (S)-2-(4'-pentenyl)-alanine substituted for l-alanine in a reference peptide showed a marked increase in antimicrobial activity, hemolysis, and membrane disruption. Stapled peptides exhibited slightly higher antimicrobial potency; those with greatest hydrophobic character showed the greatest hemolysis and liposome leakage, but lower antimicrobial activity. The results support a model of HSLPs as membrane-disruptive AMPs with potent antimicrobial activity and relatively low hemolytic potential at biologically active peptide concentrations. © 2017 Wiley Periodicals, Inc.

  16. Antimicrobial hydrogels: promising materials for medical application

    PubMed Central

    Yang, Kerong; Han, Qing; Chen, Bingpeng; Zheng, Yuhao; Zhang, Kesong; Li, Qiang; Wang, Jincheng

    2018-01-01

    The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Local application of antibiotics might be a solution. In local application, materials need to act as the drug delivery system. The drug delivery system should be biodegradable and prolonged antibacterial effect should be provided to satisfy clinical demand. Hydrogel is a promising material for local antibacterial application. Hydrogel refers to a kind of biomaterial synthesized by a water-soluble natural polymer or a synthesized polymer, which turns into gel according to the change in different signals such as temperature, ionic strength, pH, ultraviolet exposure etc. Because of its high hydrophilicity, unique three-dimensional network, fine biocompatibility and cell adhesion, hydrogel is one of the suitable biomaterials for drug delivery in antimicrobial areas. In this review, studies from the past 5 years were reviewed, and several types of antimicrobial hydrogels according to different ingredients, different preparations, different antimicrobial mechanisms, different antimicrobial agents they contained and different applications, were summarized. The hydrogels loaded with metal nanoparticles as a potential method to solve antibiotic resistance were highlighted. Finally, future prospects of development and application of antimicrobial hydrogels are suggested. PMID:29695904

  17. Antimicrobial Potential of Benzimidazole Derived Molecules.

    PubMed

    Bansal, Yogita; Kaur, Manjinder; Bansal, Gulshan

    2017-10-31

    Structural resemblance of benzimidazole nucleus with purine nucleus in nucleotides makes benzimidazole derivatives attractive ligands to interact with biopolymers of a living system. The most prominent benzimidazole compound in nature is N-ribosyldimethylbenzimidazole, which serves as an axial ligand for cobalt in vitamin B12. This structural similarity prompted medicinal chemists across the globe to synthesize a variety of benzimidazole derivatives and to screen those for various biological activities, such as anticancer, hormone antagonist, antiviral, anti-HIV, anthelmintic, antiprotozoal, antimicrobial, antihypertensive, anti-inflammatory, analgesic, anxiolytic, antiallergic, coagulant, anticoagulant, antioxidant and antidiabetic activities. Hence, benzimidazole nucleus is considered as a privileged structure in drug discovery, and it is exploited by many research groups to develop numerous compounds that are purported to be antimicrobial. Despite a large volume of research in this area, no novel benzimidazole derived compound has emerged as clinically effective antimicrobial drug. In the present review, we have compiled various reports on benzimidazole derived antimicrobials, classified as monosubstituted, disubstituted, trisubstituted and tetrasubstituted benzimidazoles, bis-benzimidazoles, fused-benzimidazoles, and benzimidazole derivative-metal complexes. The purpose is to collate these research reports, and to generate a generalised outlay of benzimidazole derived molecules that can assist the medicinal chemists in selecting appropriate combination of substituents around the nucleus for designing potent antimicrobials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Antimicrobial use and antimicrobial resistance in food animals.

    PubMed

    Xiong, Wenguang; Sun, Yongxue; Zeng, Zhenling

    2018-05-25

    Antimicrobials have been widely used in food animals for growth promotion since the 1950s. Antimicrobial resistance emerges in animal production settings and frequently spreads to humans through the food chain and direct contact. There have been international efforts to restrict or ban antimicrobials used for both humans and animals. Denmark has taken positive strides in the development of a comprehensive database DANMAP to track antimicrobial usage and resistance. Although food animals are sources of antimicrobial resistance, there is little evidence that antimicrobial resistance originates from food animals. This review comprehensively introduces the history and trends of antimicrobial use, the emergence and spread of antimicrobial resistance in food animals provides suggestions to tackle the problems of the spread of antimicrobial resistance.

  19. Using genomics to identify novel antimicrobials.

    PubMed

    Kim, W H; Lillehoj, H S; Gay, C G

    2016-04-01

    There is a critical need in animal agriculture to develop novel antimicrobials and alternative strategies that will help to reduce the use of antibiotics and address the challenges of antimicrobial resistance. High-throughput gene expression analysis is providing new tools that are enabling the discovery of host-derived antimicrobial peptides. Examples of gene-encoded natural antibiotics that have gained attention include antimicrobial peptides such as human granulysin and its multi-species homolog, namely NK-lysin, which provide a protective response against a broad range of microbes and are a principal component of innate immunity in vertebrates. Both granulysin and NK-lysin are localised in cytolytic granules in natural killer and cytotoxic T lymphocytes. Host-derived NK-lysins that were first described in mammals are also found in avian species, and they have been shown to have antimicrobial activities that could potentially be used to control important poultry pathogens. Morphological alterations observed following chicken NK-lysin binding to Eimeria sporozoites and Escherichia coli membranes indicate damage and disruption of cell membranes, suggesting that NK-lysin kills pathogenic protozoans and bacteria by direct interaction. Genotype analysis revealed that chicken NK-lysin peptides derived from certain alleles were more effective at killing pathogens than those derived from others, which could potentially affect susceptibility to diseases. Although the host-derived antimicrobial peptides described in this paper may not, by themselves, be able to replace the antibiotics currently used in animal production, their use as specific treatments based on their known mechanisms of action is showing promising results.

  20. What are Antimicrobial Pesticides?

    EPA Pesticide Factsheets

    Antimicrobial pesticides are substances or mixtures of substances used to destroy or suppress the growth of harmful microorganisms such as bacteria, viruses, or fungi on inanimate objects and surfaces.

  1. Pharmacogenomics of antimicrobial agents

    PubMed Central

    Aung, Ar Kar; Haas, David W; Hulgan, Todd; Phillips, Elizabeth J

    2015-01-01

    Antimicrobial efficacy and toxicity varies between individuals owing to multiple factors. Genetic variants that affect drug-metabolizing enzymes may influence antimicrobial pharmacokinetics and pharmacodynamics, thereby determining efficacy and/or toxicity. In addition, many severe immune-mediated reactions have been associated with HLA class I and class II genes. In the last two decades, understanding of pharmacogenomic factors that influence antimicrobial efficacy and toxicity has rapidly evolved, leading to translational success such as the routine use of HLA-B*57:01 screening to prevent abacavir hypersensitivity reactions. This article examines recent advances in the field of antimicrobial pharmacogenomics that potentially affect treatment efficacy and toxicity, and challenges that exist between pharmacogenomic discovery and translation into clinical use. PMID:25495412

  2. Archetypal tryptophan-rich antimicrobial peptides: properties and applications.

    PubMed

    Shagaghi, Nadin; Palombo, Enzo A; Clayton, Andrew H A; Bhave, Mrinal

    2016-02-01

    Drug-resistant microorganisms ('superbugs') present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications.

  3. Novel antimicrobial textiles

    NASA Astrophysics Data System (ADS)

    Cho, Unchin

    2003-10-01

    Many microorganisms can survive, and perhaps proliferate on textiles, generating adverse effects such as: disease transmission, odor generation, pH changes, staining, discoloration and loss of performance. These adverse effects may threaten users' health, deteriorate textile properties and degrade service quality. It may, therefore, be desirable to incorporate antimicrobials on textiles for controlling the growth of microorganisms. This dissertation focuses on the development of antimicrobial fibers and fabrics by integration of antimicrobials with these textiles. The applications of hydantoin-based halamines were mainly investigated in the research. The typical process is that hydantoin containing compounds are grafted onto textiles and transformed to halamine by chlorination. Hydantoin-based halamines are usually chloramines that release chlorine (Cl+) via cleavage of the -NCl functional group which attacks and kills microbes. The antimicrobial behavior is rechargeable many times by rinsing the fiber or fabric with chlorine-containing solution. Some quaternary ammonium type antimicrobials were also investigated in this research. The choice of integrating techniques is dependant on both the textile and antimicrobial compounds. In this dissertation, the nine approaches were studied for incorporating antimicrobial with various textiles: (1) co-extrusion of fibers with halamine precursor additive; (2) grafting of the quaternary ammonium compounds onto ethylene-co-acrylic acid fiber for creating quaternary ammonium type antimicrobial fiber; (3) entrapment of the additives in thermally bonded bicomponent nonwoven fabrics; (4) attaching antimicrobial additives to surfaces with latex adhesive coating; (5) grafting of antimicrobial compounds onto rubber latex via UV exposure; (6) reaction of halamine with needle-punched melamine formaldehyde nonwoven fabric and laminates; (7) coating melamine resin onto tent fabrics and laminates; (8) synthesis of super absorbent polymer

  4. Antimicrobial compounds in tears.

    PubMed

    McDermott, Alison M

    2013-12-01

    The tear film coats the cornea and conjunctiva and serves several important functions. It provides lubrication, prevents drying of the ocular surface epithelia, helps provide a smooth surface for refracting light, supplies oxygen and is an important component of the innate defense system of the eye providing protection against a range of potential pathogens. This review describes both classic antimicrobial compounds found in tears such as lysozyme and some more recently identified such as members of the cationic antimicrobial peptide family and surfactant protein-D as well as potential new candidate molecules that may contribute to antimicrobial protection. As is readily evident from the literature review herein, tears, like all mucosal fluids, contain a plethora of molecules with known antimicrobial effects. That all of these are active in vivo is debatable as many are present in low concentrations, may be influenced by other tear components such as the ionic environment, and antimicrobial action may be only one of several activities ascribed to the molecule. However, there are many studies showing synergistic/additive interactions between several of the tear antimicrobials and it is highly likely that cooperativity between molecules is the primary way tears are able to afford significant antimicrobial protection to the ocular surface in vivo. In addition to effects on pathogen growth and survival some tear components prevent epithelial cell invasion and promote the epithelial expression of innate defense molecules. Given the protective role of tears a number of scenarios can be envisaged that may affect the amount and/or activity of tear antimicrobials and hence compromise tear immunity. Two such situations, dry eye disease and contact lens wear, are discussed here. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Antimicrobial Compounds in Tears

    PubMed Central

    McDermott, Alison M.

    2013-01-01

    The tear film coats the cornea and conjunctiva and serves several important functions. It provides lubrication, prevents drying of the ocular surface epithelia, helps provide a smooth surface for refracting light, supplies oxygen and is an important component of the innate defense system of the eye providing protection against a range of potential pathogens. This review describes both classic antimicrobial compounds found in tears such as lysozyme and some more recently identified such as members of the cationic antimicrobial peptide family and surfactant protein-D as well as potential new candidate molecules that may contribute to antimicrobial protection. As is readily evident from the literature review herein, tears, like all mucosal fluids, contain a plethora of molecules with known antimicrobial effects. That all of these are active in vivo is debatable as many are present in low concentrations, may be influenced by other tear components such as the ionic environment, and antimicrobial action may be only one of several activities ascribed to the molecule. However, there are many studies showing synergistic/additive interactions between several of the tear antimicrobials and it is highly likely that cooperativity between molecules is the primary way tears are able to afford significant antimicrobial protection to the ocular surface in vivo. In addition to effects on pathogen growth and survival some tear components prevent epithelial cell invasion and promote the epithelial expression of innate defense molecules. Given the protective role of tears a number of scenarios can be envisaged that may affect the amount and/or activity of tear antimicrobials and hence compromise tear immunity. Two such situations, dry eye disease and contact lens wear, are discussed here. PMID:23880529

  6. Antimicrobial Effects of Antipyretics.

    PubMed

    Zimmermann, Petra; Curtis, Nigel

    2017-04-01

    Antipyretics are some of the most commonly used drugs. Since they are often coadministered with antimicrobial therapy, it is important to understand the interactions between these two classes of drugs. Our review is the first to summarize the antimicrobial effects of antipyretic drugs and the underlying mechanisms involved. Antipyretics can inhibit virus replication, inhibit or promote bacterial or fungal growth, alter the expression of virulence factors, change the surface hydrophobicity of microbes, influence biofilm production, affect the motility, adherence, and metabolism of pathogens, interact with the transport and release of antibiotics by leukocytes, modify the susceptibility of bacteria to antibiotics, and induce or reduce the frequency of mutations leading to antimicrobial resistance. While antipyretics may compromise the efficacy of antimicrobial therapy, they can also be beneficial, for example, in the management of biofilm-associated infections, in reducing virulence factors, in therapy of resistant pathogens, and in inducing synergistic effects. In an era where it is becoming increasingly difficult to find new antimicrobial drugs, targeting virulence factors, enhancing the efficacy of antimicrobial therapy, and reducing resistance may be important strategies. Copyright © 2017 American Society for Microbiology.

  7. Complete genome sequence of Lactobacillus plantarum LZ206, a potential probiotic strain with antimicrobial activity against food-borne pathogenic microorganisms.

    PubMed

    Li, Ping; Gu, Qing; Zhou, Qingqing

    2016-11-20

    Lactobacilli strains have been considered as important candidates for manufacturing "natural food", due to their antimicrobial properties and generally regarded as safe (GRAS) status. Lactobacillus plantarum LZ206 is a potential probiotic strain isolated from raw cow milk, with antimicrobial activity against various pathogens, including Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes), Gram-negtive bacteria (Escherichia coli and Salmonella enterica), and fungus Candida albicans. To better understand molecular base for its antimicrobial activity, entire genome of LZ206 was sequenced. It was revealed that genome of LZ206 contained a circular 3,212,951-bp chromosome, two circular plasmids and one predicted linear plasmid. A plantaricin gene cluster, which is responsible for bacteriocins biosynthesis and could be associated with its broad-spectrum antimicrobial activity, was identified based on comparative genomic analysis. Whole genome sequencing of L. plantarum LZ206 might facilitate its applications to protect food products from pathogens' contamination in the dairy industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Vitamins, Are They Safe?

    PubMed Central

    Hamishehkar, Hadi; Ranjdoost, Farhad; Asgharian, Parina; Mahmoodpoor, Ata; Sanaie, Sarvin

    2016-01-01

    The consumption of a daily multivitamin among people all over the world is dramatically increasing in recent years. Most of the people believe that if vitamins are not effective, at least they are safe. However, the long term health consequences of vitamins consumption are unknown. This study aimed to assess the side effects and possible harmful and detrimental properties of vitamins and to discuss whether vitamins can be used as safe health products or dietary supplements. We performed a MEDLINE/PubMed, EMBASE, Scopus and Google Scholar search and assessed reference lists of the included studies which were published from 1993 through 2015. The studies, with an emphasis on RCTs (randomized controlled clinical trials), were reviewed. As some vitamins such as fat-soluble vitamins (vitamin A, vitamin D, vitamin E), and also some of the water-soluble vitamins like folic acid may cause adverse events and some like vitamin C is widely taken assuming that it has so many benefits and no harm, we included relevant studies with negative or undesired results regarding the effect of these vitamins on health. Our recommendation is that taking high-dose supplements of vitamins A, E, D, C, and folic acid is not always effective for prevention of disease, and it can even be harmful to the health. PMID:28101454

  9. Antimicrobial durability of air filters coated with airborne Sophora flavescens nanoparticles.

    PubMed

    Chong, Eui-Seok; Hwang, Gi Byoung; Nho, Chu Won; Kwon, Bo Mi; Lee, Jung Eun; Seo, Sungchul; Bae, Gwi-Nam; Jung, Jae Hee

    2013-02-01

    Airborne biological particles containing viruses, bacteria, and/or fungi can be toxic and cause infections and allergy symptoms. Recently, natural materials such as tea tree oil and Sophora flavescens have shown promising antimicrobial activity when applied as air filter media. Although many of these studies demonstrated excellent antimicrobial efficacy, only a few of them considered external environmental effects such as the surrounding humidity, temperature, and natural degradation of chemicals, all of which can affect the antimicrobial performance of these natural materials. In this study, we investigated the antimicrobial durability of air filters containing airborne nanoparticles from S. flavescens for 5 months. Antimicrobial tests and quantitative chemical analyses were performed every 30 days. Morphological changes in the nanoparticles were also evaluated by scanning electron microscopy. The major antimicrobial compounds remained stable and active for ~90 days at room temperature. After about 90 days, the quantities of major antimicrobial compounds decreased noticeably with a consequent decrease in antimicrobial activity. These results are promising for the implementation of new technologies using natural antimicrobial products and provide useful information regarding the average life expectancy of antimicrobial filters using nanoparticles of S. flavescens. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Antimicrobial Peptide Production and Purification.

    PubMed

    Suda, Srinivas; Field, Des; Barron, Niall

    2017-01-01

    Antimicrobial peptides (AMPs) are natural defense compounds which are synthesized as ribosomal gene-encoded pre-peptides and produced by all living organisms. AMPs are small peptides, usually cationic and typically have hydrophobic residues which interact with cell membranes and have either a narrow or broad spectrum of biological activity. AMPs are isolated from the natural host or heterologously expressed in other hosts such as Escherichia coli. The proto-typical lantibiotic Nisin is a widely used AMP that is produced by the food-grade organism Lactococcus lactis. Although AMP production and purification procedures require optimization for individual AMPs, the Nisin production and purification protocol outlined in this chapter can be easily applied with minor modifications for the production and purification of other lantibiotics or AMPs. While Nisin is produced and secreted into the supernatant, steps to recover Nisin from both cell-free supernatant and cell pellet are outlined in detail.

  11. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.

    PubMed

    Nuti, Ramya; Goud, Nerella S; Saraswati, A Prasanth; Alvala, Ravi; Alvala, Mallika

    2017-01-01

    Antimicrobial resistance (AMR) has posed a serious threat to global public health and it requires immediate action, preferably long term. Current drug therapies have failed to curb this menace due to the ability of microbes to circumvent the mechanisms through which the drugs act. From the drug discovery point of view, the majority of drugs currently employed for antimicrobial therapy are small molecules. Recent trends reveal a surge in the use of peptides as drug candidates as they offer remarkable advantages over small molecules. Newer synthetic strategies like organometalic complexes, Peptide-polymer conjugates, solid phase, liquid phase and recombinant DNA technology encouraging the use of peptides as therapeutic agents with a host of chemical functions, and tailored for specific applications. In the last decade, many peptide based drugs have been successfully approved by the Food and Drug Administration (FDA). This success can be attributed to their high specificity, selectivity and efficacy, high penetrability into the tissues, less immunogenicity and less tissue accumulation. Considering the enormity of AMR, the use of Antimicrobial Peptides (AMPs) can be a viable alternative to current therapeutics strategies. AMPs are naturally abundant allowing synthetic chemists to develop semi-synthetics peptide molecules. AMPs have a broad spectrum of activity towards microbes and they possess the ability to bypass the resistance induction mechanisms of microbes. The present review focuses on the potential applications of AMPs against various microbial disorders and their future prospects. Several resistance mechanisms and their strategies have also been discussed to highlight the importance in the current scenario. Breakthroughs in AMP designing, peptide synthesis and biotechnology have shown promise in tackling this challenge and has revived the interest of using AMPs as an important weapon in fighting AMR. Copyright© Bentham Science Publishers; For any queries

  12. Cool and Safe: Multiplicity in Safe Innovation at Unilever

    ERIC Educational Resources Information Center

    Penders, Bart

    2011-01-01

    This article presents the making of a safe innovation: the application of ice structuring protein (ISP) in edible ices. It argues that safety is not the absence of risk but is an active accomplishment; innovations are not "made safe afterward" but "safe innovations are made". Furthermore, there are multiple safeties to be accomplished in the…

  13. Using Opioids Safely After Surgery

    MedlinePlus

    ... Adult , Geriatric Using Opioids Safely After Surgery Using Opioids Safely After Surgery Stick to the lowest dose ... need opioid pain medicine. If your doctor says opioids aren’t necessary. If your doctor thinks you ...

  14. How to Safely Give Acetaminophen

    MedlinePlus

    ... Educators Search English Español How to Safely Give Acetaminophen KidsHealth / For Parents / How to Safely Give Acetaminophen ... without getting a doctor's OK first. What Is Acetaminophen Also Called? Acetaminophen is the generic name of ...

  15. Safe pill-dispensing.

    PubMed

    Testa, Massimiliano; Pollard, John

    2007-01-01

    Each patient is supplied with a smart-card containing a Radio Frequency IDentification (RFID) chip storing a unique identification code. The patient places the Smart-card on a pill-dispenser unit containing an RFID reader. The RFID chip is read and the code sent to a Base-station via a wireless Bluetooth link. A database containing both patient details and treatment information is queried at the Base-station using the RFID as the search key. The patient's treatment data (i.e., drug names, quantities, time, etc.) are retrieved and sent back to the pill-dispenser unit via Bluetooth. Appropriate quantities of the required medications are automatically dispensed, unless the patient has already taken his/her daily dose. Safe, confidential communication and operation is ensured.

  16. [Consensus for antimicrobial susceptibility testing for Enterobacteriaceae. Subcommittee on Antimicrobials, SADEBAC (Argentinian Society of Clinical Bacteriology), Argentinian Association of Microbiology].

    PubMed

    Famiglietti, A; Quinteros, M; Vázquez, M; Marín, M; Nicola, F; Radice, M; Galas, M; Pasterán, F; Bantar, C; Casellas, J M; Kovensky Pupko, J; Couto, E; Goldberg, M; Lopardo, H; Gutkind, G; Soloaga, R

    2005-01-01

    Taking into account previous recommendations from the National Committee for Clinical Laboratory Standards (NCCLS), the Antimicrobial Committee, Sociedad Argentina de Bacteriología Clínica (SADEBAC), Asociación Argentina de Microbiología (AAM), and the experience from its members and some invited microbiologists, a consensus was obtained for antimicrobial susceptibility testing and interpretation in most frequent enterobacterial species isolated from clinical samples in our region. This document describes the natural antimicrobial resistance of some Enterobacteriaceae family members, including the resistance profiles due to their own chromosomal encoded beta-lactamases. A list of the antimicrobial agents that should be tested, their position on the agar plates, in order to detect the most frequent antimicrobial resistance mechanisms, and considerations on which antimicrobial agents should be reported regarding to the infection site and patient characteristics are included. Also, a description on appropriate phenotypic screening and confirmatory test for detection of prevalent extended spectrum beta-lactamases in our region are presented. Finally, a summary on frequent antimicrobial susceptibility profiles and their probably associated resistance mechanisms, and some infrequent antimicrobial resistance profiles that deserve confirmation are outlined.

  17. Poor neighborhoods: safe playgrounds.

    PubMed

    Powell, Elizabeth C; Ambardekar, Erin J; Sheehan, Karen M

    2005-09-01

    Although unstructured physical play is helpful to child development and physical activity is important to obesity prevention, up-to-date information about playgrounds and playground hazards in urban areas is limited. Local data are needed to identify problems and target interventions. The aim of this study was to describe the hazards in playgrounds located in low-income (median dollars 28,728-38,915) and very low-income (median dollars 18,266-18,955) Chicago neighborhoods. Using a standardized on-site survey (National Program for Playground Safety), two investigators reviewed seventy-eight public playgrounds for hazards related to playground design, safe surfaces, supervision, and equipment design and maintenance. The design of 56 playgrounds (72%) posed no hazards. One playground lacked protection from motor vehicles, and 21 had minor flaws. One playground had an asphalt surface; all others had protective surfaces, usually wood chips. The chips were too thin in many places, and in 15 playgrounds (19%), at least one concrete footing was exposed. Trash was a common surface hazard (68%). Although most equipment was safe (swings of soft materials and appropriate platform barriers), many pieces needed repairs. Equipment maintenance hazards included gaps (44%) and missing (38%) or broken parts (35%). In 13 of 39 playgrounds (33%) where children were observed playing, one or more were unsupervised. Playgrounds in very low-income neighborhoods more often had trash in the fall zone and exposed footings (P<.01 for each); there were no differences between low and very low-income neighborhoods in playground design or equipment maintenance. We conclude that playgrounds in low-income Chicago neighborhoods are of good design and have appropriate surfaces. Needed improvements include attention to wood chip depth, the removal of trash from the fall zone, and equipment repairs. Greater adult supervision is warranted.

  18. Strategies for safe motherhood.

    PubMed

    Chatterjee, A

    1995-02-01

    The Safe Motherhood Initiative was launched in 1988 as a global effort to halve maternal mortality and morbidity by the year 2000. The program uses a combination of health and nonhealth strategies to emphasize the need for maternal health services, extend family planning services, and improve the status of women. The maternal mortality rate (per 100,000 live births) is 390 for the world, 20-30 for developed countries, 450 for developing countries, and 420 for Asia. This translates into 308,000 maternal deaths in Asia, of which 100,000 occur in India. The direct causes of maternal mortality include sepsis, hemorrhage, eclampsia, and ruptured uterus. Indirect causes occur when associated medical conditions, such as anemia and jaundice, are exacerbated by pregnancy. Underlying causes are ineffective health services, inadequate obstetric care, unregulated fertility, infections, illiteracy, early marriage, poverty, malnutrition, and ignorance. India's Child Survival and Safe Motherhood Program seeks to achieve immediate improvements by improving health care. Longterm improvements will occur as nutrition, income, education, and the status of women improve. Improvements in health care will occur in through the provision of 1) essential obstetric care for all women (which will be essentially designed for low-risk women), 2) early detection of complications during pregnancy and labor, and 3) emergency services. Services will be provided to pregnant women at their door by field staff, at a first referral hospital, perhaps at maternity villages where high risk cases can be housed in the latter part of their pregnancies, and through the continual accessibility of government vehicles. In addition, family planning services will be improved so that fertility regulation can have its expected beneficial effect on the maternal mortality rate. The professional health organizations in India will also play a vital role in the success of this effort to reduce maternal mortality.

  19. Antimicrobial use in the veterinary cancer patient.

    PubMed

    Boudreaux, Bonnie

    2014-09-01

    This article discusses the clinically relevant uses of antimicrobials in small animal cancer patients. The article focuses on general considerations of antimicrobial use, antimicrobials in the neutropenic patient, prophylactic antimicrobial usage, antimicrobials in radiation therapy, and antimicrobials in metronomic chemotherapy protocols. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. General Principles of Antimicrobial Therapy

    PubMed Central

    Leekha, Surbhi; Terrell, Christine L.; Edson, Randall S.

    2011-01-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community. PMID:21282489

  1. General principles of antimicrobial therapy.

    PubMed

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  2. Antimicrobial effectiveness of bioactive packaging materials from edible chitosan and casein polymers: assessment on carrot, cheese, and salami.

    PubMed

    Moreira, Maria del Rosario; Pereda, Mariana; Marcovich, Norma E; Roura, Sara I

    2011-01-01

    Antimicrobial packaging is one of the most promising active packaging systems for controlling spoilage and pathogenic microorganisms. In this work, the intrinsic antimicrobial properties of chitosan (CH) were combined with the excellent thermoplastic and film-forming properties of sodium caseinate (SC) to prepare SC/CH film-forming solutions and films. The antimicrobial effectiveness of SC, CH, and SC/CH coatings on the native microfloras of cheese, salami, and carrots was evaluated. In vitro assays through the test tube assay indicated that the most significant antimicrobial effect was achieved by CH and SC/CH solutions on carrot and cheese native microfloras. SC film-forming solutions did not exert antimicrobial activity on any of the native microflora studied. SC, CH, and SC/CH films stored in controlled environments showed that the retention of the antimicrobial action was observed until 5-d storage, at 65% relative humidity in both temperatures (10 °C and 20 °C). In vivo assays were also performed with SC, CH, and SC/CH applied as coatings or wrappers on the 3 food substrates. CH and SC/CH applied at both immersion and wrapper exerted a significant bactericidal action on mesophilic, psychrotrophic, and yeasts and molds counts, showing the 3 microbial populations analyzed a significant reduction (2.0 to 4.5 log CFU/g). An improvement of the bactericidal properties of the CH/SC blend respect to those of the neat CH film is reported. The ionic interaction between both macromolecules enhances its antimicrobial properties. Practical Application: The continuous consumer interest in high quality and food safety, combined with environmental concerns has stimulated the development and study of biodegradable coatings that avoid the use of synthetic materials. Among them, edible coatings, obtained from generally recognized as safe (GRAS) materials, have the potential to reduce weight loss, respiration rate, and improve food appearance and integrity. They can be used in

  3. Antimicrobial activity of spices.

    PubMed

    Arora, D S; Kaur, J

    1999-08-01

    Spices have been shown to possess medicinal value, in particular, antimicrobial activity. This study compares the sensitivity of some human pathogenic bacteria and yeasts to various spice extracts and commonly employed chemotherapeutic substances. Of the different spices tested only garlic and clove were found to possess antimicrobial activity. The bactericidal effect of garlic extract was apparent within 1 h of incubation and 93% killing of Staphylococcus epidermidis and Salmonella typhi was achieved within 3 h. Yeasts were totally killed in 1 h by garlic extract but in 5 h with clove. Some bacteria showing resistance to certain antibiotics were sensitive to extracts of both garlic and clove. Greater anti-candidal activity was shown by garlic than by nystatin. Spices might have a great potential to be used as antimicrobial agents.

  4. Hypoglycemia and safe driving

    PubMed Central

    Ahmed, Almoutaz A.

    2010-01-01

    The lack of awareness of the effects of hypoglycemia on safe driving is a real issue for diabetic patients and a challenge for health care providers. Taking the form of questions and answers, this review addresses the issue of road traffic accidents and drivers with type 1 diabetes mellitus. While there is little evidence showing higher accident rates among diabetic drivers, there is research indicating that hypoglycemia compromises driving performance, resulting in slower response times and reduced cognitive function. Unawareness of an early fall in plasma glucose is another important issue that affects some diabetic drivers. The driver with type 1 diabetes is obliged to check their blood glucose before driving. The physician’s duty is to familiarize the patient with the risk of hypoglycemia. If hypoglycemic unawareness is present, the physician should advise the patient to stop driving until the condition is reversed. The doctor should consider informing authorities if he concludes there is a risk and the driver cannot be persuaded to stop driving. PMID:21060159

  5. Hypoglycemia and safe driving.

    PubMed

    Ahmed, Almoutaz A

    2010-01-01

    The lack of awareness of the effects of hypoglycemia on safe driving is a real issue for diabetic patients and a challenge for health care providers. Taking the form of questions and answers, this review addresses the issue of road traffic accidents and drivers with type 1 diabetes mellitus. While there is little evidence showing higher accident rates among diabetic drivers, there is research indicating that hypoglycemia compromises driving performance, resulting in slower response times and reduced cognitive function. Unawareness of an early fall in plasma glucose is another important issue that affects some diabetic drivers. The driver with type 1 diabetes is obliged to check their blood glucose before driving. The physician's duty is to familiarize the patient with the risk of hypoglycemia. If hypoglycemic unawareness is present, the physician should advise the patient to stop driving until the condition is reversed. The doctor should consider informing authorities if he concludes there is a risk and the driver cannot be persuaded to stop driving.

  6. Safe percutaneous suprapubic catheterisation

    PubMed Central

    Goyal, NK; Goel, A; Sankhwar, SN

    2012-01-01

    INTRODUCTION We describe our technique of percutaneous suprapubic catheter insertion with special reference to steps that help to avoid common complications of haematuria and catheter misplacement. METHODS The procedure is performed using a stainless steel reusable trocar under local infiltrative anaesthesia, usually at the bedside. After clinical confirmation of a full bladder, the trocar is advanced into the bladder through a skin incision. Once the bladder is entered, the obturator is removed and the assistant inserts a Foley catheter followed by rapid balloon inflation. Slight traction is applied to the catheter for about five minutes. Patients with previous lower abdominal surgery, an inadequately distended bladder or acute pelvic trauma do not undergo suprapubic catheterisation using this method. RESULTS The procedure was performed in 72 men (mean age: 42.4 years, range: 18–78 years) with urinary retention with a palpable bladder. The average duration of the procedure was less than five minutes. No complications were noted in any of the patients. CONCLUSIONS Trocar suprapubic catheter insertion is a safe and effective bedside procedure for emergency bladder drainage and can be performed by resident surgeons. The common complications associated with the procedure can be avoided with a few careful steps. PMID:23131233

  7. Safe percutaneous suprapubic catheterisation.

    PubMed

    Goyal, N K; Goel, A; Sankhwar, S N

    2012-11-01

    We describe our technique of percutaneous suprapubic catheter insertion with special reference to steps that help to avoid common complications of haematuria and catheter misplacement. The procedure is performed using a stainless steel reusable trocar under local infiltrative anaesthesia, usually at the bedside. After clinical confirmation of a full bladder, the trocar is advanced into the bladder through a skin incision. Once the bladder is entered, the obturator is removed and the assistant inserts a Foley catheter followed by rapid balloon inflation. Slight traction is applied to the catheter for about five minutes. Patients with previous lower abdominal surgery, an inadequately distended bladder or acute pelvic trauma do not undergo suprapubic catheterisation using this method. The procedure was performed in 72 men (mean age: 42.4 years, range: 18-78 years) with urinary retention with a palpable bladder. The average duration of the procedure was less than five minutes. No complications were noted in any of the patients. Trocar suprapubic catheter insertion is a safe and effective bedside procedure for emergency bladder drainage and can be performed by resident surgeons. The common complications associated with the procedure can be avoided with a few careful steps.

  8. Update on antimicrobial resistance.

    PubMed

    Weber, Carol J

    2005-02-01

    WHO experts believe that antimicrobial resistance is potentially containable, but the window of opportunity to control and eventually eliminate the most dangerous infectious diseases is closing. If we miss our opportunity, it may become very difficult and expensive--and in some cases impossible--to treat infectious diseases. WHO's global strategy to contain antimicrobial resistance requires a massive effort and an alliance among countries, governments, international organizations, drug manufacturers, and private and public health care sectors. If infectious diseases are fought wisely and widely by the international community, drug resistance can be controlled and lives saved.

  9. Effect of Antimicrobial Peptide KSL-W on Human Gingival Tissue and C. albicans Growth, Transition and Secreted Aspartyl Proteinase (SAPS) 2, 4, 5 and 6 Expressions

    DTIC Science & Technology

    2015-04-01

    AWARD NUMBER: W81XWH-12-2-0025 TITLE: Effect of Antimicrobial Peptide KSL-W on Human Gingival Tissue and C. albicans Growth, Transition and...REPORT TYPE Annual 3. DATES COVERED 1 Apr 2014 - 31 Mar 2015 4. TITLE AND SUBTITLE Effect of Antimicrobial Peptide KSL-W on Human Gingival Tissue...of new antifungal drugs using various synthetic and naturally occurring antimicrobial molecules. Natural antimicrobial peptides , such as defensins

  10. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Antimicrobial Lactoferrin Peptides: The Hidden Players in the Protective Function of a Multifunctional Protein

    PubMed Central

    Sinha, Mau; Kaushik, Sanket; Kaur, Punit; Singh, Tej P.

    2013-01-01

    Lactoferrin is a multifunctional, iron-binding glycoprotein which displays a wide array of modes of action to execute its primary antimicrobial function. It contains various antimicrobial peptides which are released upon its hydrolysis by proteases. These peptides display a similarity with the antimicrobial cationic peptides found in nature. In the current scenario of increasing resistance to antibiotics, there is a need for the discovery of novel antimicrobial drugs. In this context, the structural and functional perspectives on some of the antimicrobial peptides found in N-lobe of lactoferrin have been reviewed. This paper provides the comparison of lactoferrin peptides with other antimicrobial peptides found in nature as well as interspecies comparison of the structural properties of these peptides within the native lactoferrin. PMID:23554820

  12. New natural product -an efficient antimicrobial applications of new newly synthesized pyrimidine derivatives by the electrochemical oxidation of hydroxyl phenol in the presence of 2-mercapto-6-(trifluoromethyl) pyrimidine-4-ol as nucleophile.

    PubMed

    Khan, Zia Ul Haq; Khan, Amjad; Wan, Pingyu; Khan, Arif Ullah; Tahir, Kamran; Muhammad, Nawshad; Khan, Faheem Ullah; Shah, Hidayat Ullah; Khan, Zia Ullah

    2018-05-01

    Some new pyrimidine derivatives have been synthesised by electrochemical oxidation of catechol (1a) in the existence of 2-mercapto-6-(trifluoromethyl) pyrimidine-4-ol (3) as a nucleophile in aqueous solution using Cyclic Voltammetric and Controlled Potential Coulometry. The catechol has been oxidised to o-quinone through electrochemical method and participative in Michael addition reaction, leading to the development of some new pyrimidine derivatives. The products were achieved in good yield with high pureness. The mechanism of the reaction has been conformed from the Cyclic Voltammetric data and Controlled Potential Coulometry. After purification, the compounds were characterised using modern techniques. The synthesised materials were screened for antimicrobial actions using Gram positive and Gram negative strain of bacteria. These new synthesised pyrimidine derivatives showed very good antimicrobial activity.

  13. Topical Antimicrobials for Burn Wound Infections

    PubMed Central

    Dai, Tianhong; Huang, Ying-Ying; Sharma, Sulbha K.; Hashmi, Javad T.; Kurup, Divya B.; Hamblin, Michael R.

    2010-01-01

    Throughout most of history, serious burns occupying a large percentage of body surface area were an almost certain death sentence because of subsequent infection. A number of factors such as disruption of the skin barrier, ready availability of bacterial nutrients in the burn milieu, destruction of the vascular supply to the burned skin, and systemic disturbances lead to immunosuppression combined together to make burns particularly susceptible to infection. In the 20th century the introduction of antibiotic and antifungal drugs, the use of topical antimicrobials that could be applied to burns, and widespread adoption of early excision and grafting all helped to dramatically increase survival. However the relentless increase in microbial resistance to antibiotics and other antimicrobials has led to a renewed search for alternative approaches to prevent and combat burn infections. This review will cover patented strategies that have been issued or filed with regard to new topical agents, preparations, and methods of combating burn infections. Animal models that are used in preclinical studies are discussed. Various silver preparations (nanocrystalline and slow release) are the mainstay of many approaches but antimicrobial peptides, topical photodynamic therapy, chitosan preparations, new iodine delivery formulations, phage therapy and natural products such as honey and essential oils have all been tested. This active area of research will continue to provide new topical antimicrobials for burns that will battle against growing multi-drug resistance. PMID:20429870

  14. Efflux pumps as antimicrobial resistance mechanisms.

    PubMed

    Poole, Keith

    2007-01-01

    Antibiotic resistance continues to hamper antimicrobial chemotherapy of infectious disease, and while biocide resistance outside of the laboratory is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are not uncommon. Efflux mechanisms, both drug-specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials in important human pathogens. Multidrug efflux mechanisms are generally chromosome-encoded, with their expression typically resultant from mutations in regulatory genes, while drug-specific efflux mechanisms are encoded by mobile genetic elements whose acquisition is sufficient for resistance. While it has been suggested that drug-specific efflux systems originated from efflux determinants of self-protection in antibiotic-producing Actinomycetes, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, are appreciated as having an intended housekeeping function unrelated to drug export and resistance. Thus, it will be important to elucidate the intended natural function of these efflux mechanisms in order, for example, to anticipate environmental conditions or circumstances that might promote their expression and, so, compromise antimicrobial chemotherapy. Given the clinical significance of antimicrobial exporters, it is clear that efflux must be considered in formulating strategies for treatment of drug-resistant infections, both in the development of new agents, for example, less impacted by efflux or in targeting efflux directly with efflux inhibitors.

  15. [Research on the marketing status of antimicrobial products and the use of antimicrobial agents indicated on product labels from 1991 through 2005].

    PubMed

    Nakashima, Harunobu; Miyano, Naoko; Matsunaga, Ichiro; Nakashima, Naomi; Kaniwa, Masa-aki

    2007-05-01

    To clarify the marketing status of antimicrobial products, descriptions on the labels of commercially available antimicrobial products were investigated from 1991 through 2005, and the results were analyzed using a database system on antimicrobial deodorant agents. A classification table of household antimicrobial products was prepared and revised, based on which target products were reviewed for any changes in the product type. The number of antimicrobial products markedly increased over 3 years starting from 1996, among which there were many products apparently not requiring antimicrobial processing. More recently, in the 2002 and 2004 surveys, while sales of kitchenware and daily necessities decreased, chemical products, baby articles, and articles for pets increased; this poses new problems. To clarify the use of antimicrobial agents in the target products, a 3-step (large, intermediate, small) classification table of antimicrobial agents was also prepared, based on which antimicrobial agents indicated on the product labels were checked. The rate of identifying the agents increased. However, this is because of the increase of chemical products and baby articles, both of which more frequently indicated the ingredient agents on the labels, and the decrease of kitchenware and daily necessities, which less frequently indicated them on the labels. Therefore there has been little change in the actual identification rate. The agents used are characterized by product types: quaternary ammonium salts, metal salts, and organic antimicrobials are commonly used in textiles, plastics, and chemical products, respectively. Since the use of natural organic agents has recently increased, the safety of these agents should be evaluated.

  16. Antimicrobial combinations: Bliss independence and Loewe additivity derived from mechanistic multi-hit models

    PubMed Central

    Yu, Guozhi; Hozé, Nathanaël; Rolff, Jens

    2016-01-01

    Antimicrobial peptides (AMPs) and antibiotics reduce the net growth rate of bacterial populations they target. It is relevant to understand if effects of multiple antimicrobials are synergistic or antagonistic, in particular for AMP responses, because naturally occurring responses involve multiple AMPs. There are several competing proposals describing how multiple types of antimicrobials add up when applied in combination, such as Loewe additivity or Bliss independence. These additivity terms are defined ad hoc from abstract principles explaining the supposed interaction between the antimicrobials. Here, we link these ad hoc combination terms to a mathematical model that represents the dynamics of antimicrobial molecules hitting targets on bacterial cells. In this multi-hit model, bacteria are killed when a certain number of targets are hit by antimicrobials. Using this bottom-up approach reveals that Bliss independence should be the model of choice if no interaction between antimicrobial molecules is expected. Loewe additivity, on the other hand, describes scenarios in which antimicrobials affect the same components of the cell, i.e. are not acting independently. While our approach idealizes the dynamics of antimicrobials, it provides a conceptual underpinning of the additivity terms. The choice of the additivity term is essential to determine synergy or antagonism of antimicrobials. This article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160596

  17. Antimicrobial Tolerance in Biofilms

    PubMed Central

    Stewart, Philip S.

    2015-01-01

    The tolerance of microorganisms in biofilms to antimicrobial agents is examined through a meta-analysis of literature data. A numerical tolerance factor comparing the rates of killing in the planktonic and biofilm states is defined to provide a quantitative basis for the analysis. Tolerance factors for biocides and antibiotics range over three orders of magnitude. This variation is not explained by taking into account the molecular weight of the agent, the chemistry of the agent, the substratum material, or the speciation of the microorganisms. Tolerance factors do depend on the areal cell density of the biofilm at the time of treatment and on the age of the biofilm as grown in a particular experimental system. This suggests that there is something that happens during biofilm maturation, either physical or physiological, that is essential for full biofilm tolerance. Experimental measurements of antimicrobial penetration times in biofilms range over orders of magnitude, with slower penetration (>12 min) observed for reactive oxidants and cationic molecules. These agents are retarded through the interaction of reaction, sorption, and diffusion. The specific physiological status of microbial cells in a biofilm contributes to antimicrobial tolerance. A conceptual framework for categorizing physiological cell states is discussed in the context of antimicrobial susceptibility. It is likely that biofilms harbor cells in multiple states simultaneously (e.g., growing, stress-adapted, dormant, inactive) and that this physiological heterogeneity is an important factor in the tolerance of the biofilm state. PMID:26185072

  18. Microbioassay of Antimicrobial Agents

    PubMed Central

    Simon, Harold J.; Yin, E. Jong

    1970-01-01

    A previously described agar-diffusion technique for microbioassay of antimicrobial agents has been modified to increase sensitivity of the technique and to extend the range of antimicrobial agents to which it is applicable. This microtechnique requires only 0.02 ml of an unknown test sample for assay, and is capable of measuring minute concentrations of antibiotics in buffer, serum, and urine. In some cases, up to a 20-fold increase in sensitivity is gained relative to other published standardized methods and the error of this method is less than ±5%. Buffer standard curves have been established for this technique, concurrently with serum standard curves, yielding information on antimicrobial serum-binding and demonstrating linearity of the data points compared to the estimated regression line for the microconcentration ranges covered by this technique. This microassay technique is particularly well suited for pediatric research and for other investigations where sample volumes are small and quantitative accuracy is desired. Dilution of clinical samples to attain concentrations falling with the range of this assay makes the technique readily adaptable and suitable for general clinical pharmacological studies. The microassay technique has been standardized in buffer solutions and in normal human serum pools for the following antimicrobials: ampicillin, methicillin, penicillin G, oxacillin, cloxacillin, dicloxacillin, cephaloglycin, cephalexin, cephaloridine, cephalothin, erythromycin, rifamycin amino methyl piperazine, kanamycin, neomycin, streptomycin, colistin, polymyxin B, doxycycline, minocycline, oxytetracycline, tetracycline, and chloramphenicol. PMID:4986725

  19. Antimicrobial properties of honey.

    PubMed

    Israili, Zafar H

    2014-01-01

    Honey has been widely accepted as food and medicine by all generations, traditions, and civilizations, both ancient and modern. For at least 2700 years, honey has been used by humans to treat a variety of ailments through topical application, but only recently have the antiseptic and antimicrobial properties of honey been discovered. Honey has been reported to be effective in a number of human pathologies. Clinical studies have demonstrated that application of honey to severely infected cutaneous wounds rapidly clears infection from the wound and improves tissue healing. A large number of in vitro and limited clinical studies have confirmed the broad-spectrum antimicrobial (antibacterial, antifungal, antiviral, and antimycobacterial) properties of honey, which may be attributed to the acidity (low pH), osmotic effect, high sugar concentration, presence of bacteriostatic and bactericidal factors (hydrogen peroxide, antioxidants, lysozyme, polyphenols, phenolic acids, flavonoids, methylglyoxal, and bee peptides), and increase in cytokine release, and to immune modulating and anti-inflammatory properties of honey; the antimicrobial action involves several mechanisms. Despite a large amount of data confirming the antimicrobial activity of honey, there are no studies that support the systemic use of honey as an antibacterial agent.

  20. A Safe Ride to School; A Safe Ride Home.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, Springfield.

    Text and illustrations are used to teach safe school bus riding practices. The guide begins with instructions to parents or guardians to set a good example of safe behavior, and to help children learn safety rules and be on time. Instructions to children concern obeying the bus driver, boarding the bus, riding the bus, crossing the road, and using…

  1. Safe Zones: Creating LGBT Safe Space Ally Programs

    ERIC Educational Resources Information Center

    Poynter, Kerry John; Tubbs, Nancy Jean

    2008-01-01

    This article discusses model LGBT Safe Space Ally programs. These programs, often called "Safe Zones," include self selected students, faculty, and employees who publicly show support by displaying stickers, signs, and other identifiable items. Issues covered in the article include history, development, training, membership, assessment, and…

  2. Triclosan antimicrobial polymers

    PubMed Central

    Petersen, Richard C.

    2016-01-01

    Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling

  3. Serotype and Antimicrobial Resistance of Escherichia coli Isolated from Feces of Wild Giant Pandas ( Ailuropoda melanoleuca) in Sichuan Province, China.

    PubMed

    Chen, Danyu; Zou, Wencheng; Xie, Shengze; Kong, Linghan; Chen, Yanpeng; Zhang, Xiuzhong; Li, Jianan; Wang, Hongning; Cheng, Guangyang; Qin, Yue; Mu, Xingyu; Yang, Xin

    2018-05-09

    Escherichia coli is a major pathogen leading to systemic and enteric illnesses in wild giant pandas ( Ailuropoda melanoleuca). To investigate the characteristics and distribution of E. coli in wild giant pandas across four different nature reserves in Sichuan, Republic of China, we researched serotypes, phylogenetic groups, antimicrobial resistance, and resistance genes of E. coli not previously reported for wild giant pandas. A total of 82 E. coli isolates were identified from 40 fecal samples in August 2016 to May 2017. The most-prevalent serogroups were O15 (4%, 3/82), O28 (2%, 2/82), and O44 (2%, 2/82). Antimicrobial resistance was highest for streptomycin (61%, 50/82) followed by amikacin (30%, 25/82). Among the four nature reserves, the proportion of streptomycin (86%, 12/14) and amikacin (57%, 8/14) was highest in Liziping. The frequencies of resistant genes aph(3')-IIa, ant(3″)-Ia, aac(3)-IIa, aadA1, and StrB were 28%, 23%, 5%, 21%, and 32%, respectively, while none of the strains had the tetracycline gene. In Qianfoshan, the phylogenetic group B2 was the most common, comprising the highest percentage of isolates compared with the other seven phylogenetic groups. Furthermore, many variables such as phylogenetic groups, antimicrobial susceptibility, and resistance genes differed significantly ( P<0.05) among the four nature reserves. In facilitating the safe discharge of captive giant pandas into the wild, as well as to support existing wild populations, the data from this research will prove invaluable to scientists and ecologists in their endeavors.

  4. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids.

    PubMed

    Oliveira, Daniela A; Salvador, Ana Augusta; Smânia, Artur; Smânia, Elza F A; Maraschin, Marcelo; Ferreira, Sandra R S

    2013-04-10

    The possibility of increasing the aggregated value of the huge amount of residues generated by wineries around the world foment studies using the grape pomace - the residue from the wine production, composed by seed, skin and stems - to obtain functional ingredients. Nowadays, consumers in general prefer natural and safe products mainly for food and cosmetic fields, where the supercritical fluid extraction is of great importance due to the purity of the extracts provided. Therefore, the objective of this work is to evaluate the global extraction yield, the antimicrobial activity and the composition profile of Merlot and Syrah grape pomace extracts obtained by supercritical CO2 (SC-CO2) and CO2 added with co-solvent at pressures up to 300 bar and temperatures of 50 and 60 °C. The results were compared with the ones obtained by Soxhlet and by ultrasound-assisted leaching extraction methods. The main components from the extracts, identified by HPLC, were gallic acid, p-OH-benzoic acid, vanillic acid and epicatechin. The antibacterial and antifungal activities of the extracts were evaluated using four strains of bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa) and three fungi strains (Candida albicans, Candida parapsilosis, Candida krusei). Despite lower extraction yield results, the supercritical fluid extracts presented the highest antimicrobial effectiveness compared to the other grape pomace extracts due to the presence of antimicrobial active compounds. Syrah extracts were less efficient against the microorganisms tested and Merlot extracts were more active against Gram-positive bacteria. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications.

    PubMed

    González-Henríquez, Carmen M; Sarabia-Vallejos, Mauricio A; Rodriguez-Hernandez, Juan

    2017-02-26

    This review describes, in an organized manner, the recent developments in the elaboration of hydrogels that possess antimicrobial activity. The fabrication of antibacterial hydrogels for biomedical applications that permits cell adhesion and proliferation still remains as an interesting challenge, in particular for tissue engineering applications. In this context, a large number of studies has been carried out in the design of hydrogels that serve as support for antimicrobial agents (nanoparticles, antibiotics, etc.). Another interesting approach is to use polymers with inherent antimicrobial activity provided by functional groups contained in their structures, such as quaternary ammonium salt or hydrogels fabricated from antimicrobial peptides (AMPs) or natural polymers, such as chitosan. A summary of the different alternatives employed for this purpose is described in this review, considering their advantages and disadvantages. Finally, more recent methodologies that lead to more sophisticated hydrogels that are able to react to external stimuli are equally depicted in this review.

  6. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications

    PubMed Central

    González-Henríquez, Carmen M.; Sarabia-Vallejos, Mauricio A.; Rodriguez-Hernandez, Juan

    2017-01-01

    This review describes, in an organized manner, the recent developments in the elaboration of hydrogels that possess antimicrobial activity. The fabrication of antibacterial hydrogels for biomedical applications that permits cell adhesion and proliferation still remains as an interesting challenge, in particular for tissue engineering applications. In this context, a large number of studies has been carried out in the design of hydrogels that serve as support for antimicrobial agents (nanoparticles, antibiotics, etc.). Another interesting approach is to use polymers with inherent antimicrobial activity provided by functional groups contained in their structures, such as quaternary ammonium salt or hydrogels fabricated from antimicrobial peptides (AMPs) or natural polymers, such as chitosan. A summary of the different alternatives employed for this purpose is described in this review, considering their advantages and disadvantages. Finally, more recent methodologies that lead to more sophisticated hydrogels that are able to react to external stimuli are equally depicted in this review. PMID:28772591

  7. New approaches to antimicrobial discovery.

    PubMed

    Lewis, Kim

    2017-06-15

    The spread of resistant organisms is producing a human health crisis, as we are witnessing the emergence of pathogens resistant to all available antibiotics. An increase in chronic infections presents an additional challenge - these diseases are difficult to treat due to antibiotic-tolerant persister cells. Overmining of soil Actinomycetes ended the golden era of antibiotic discovery in the 60s, and efforts to replace this source by screening synthetic compound libraries was not successful. Bacteria have an efficient permeability barrier, preventing penetration of most synthetic compounds. Empirically establishing rules of penetration for antimicrobials will form the knowledge base to produce libraries tailored to antibiotic discovery, and will revive rational drug design. Two untapped sources of natural products hold the promise of reviving natural product discovery. Most bacterial species, over 99%, are uncultured, and methods to grow these organisms have been developed, and the first promising compounds are in development. Genome sequencing shows that known producers harbor many more operons coding for secondary metabolites than we can account for, providing an additional rich source of antibiotics. Revival of natural product discovery will require high-throughput identification of novel compounds within a large background of known substances. This could be achieved by rapid acquisition of transcription profiles from active extracts that will point to potentially novel compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Safe Use Practices for Pesticides

    Science.gov Websites

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Ingredients Low-Risk Pesticides Organic Pesticide Ingredients Pesticide Incidents Human Exposure Pet Exposure Home Page Pesticide Health and Safety Information Safe Use Practices for Pesticides Related Topics

  9. Is Prevent a Safe Space?

    ERIC Educational Resources Information Center

    Ramsay, Peter

    2017-01-01

    In this article, I test the claims of the UK government and universities that the Prevent programme aims to create a safe space for the discussion of "extremist" ideas in universities. I do this by comparing the main elements of the Prevent duty that has been imposed on universities with those of safe spaces as imagined by student…

  10. More than a Safe Space

    ERIC Educational Resources Information Center

    Sadowski, Michael

    2016-01-01

    Over the past three decades, much of the conversation about LGBTQ students in schools has centered on safety--anti-bullying policies, the "safe space" of gay-straight alliances, and "safe zones" marked by rainbow-colored stickers on classroom doors. In this article, Michael Sadowski argues that it's time to move beyond safety…

  11. Cyclization improves membrane permeation by antimicrobial peptoids

    DOE PAGES

    Andreev, Konstantin; Martynowycz, Michael W.; Ivankin, Andrey; ...

    2016-10-28

    The peptidomimetic approach has emerged as a powerful tool for overcoming the inherent limitations of natural antimicrobial peptides, where the therapeutic potential can be improved by increasing the selectivity and bioavailability. Restraining the conformational flexibility of a molecule may reduce the entropy loss upon its binding to the membrane. Experimental findings demonstrate that the cyclization of linear antimicrobial peptoids increases their bactericidal activity against Staphylococcus aureus while maintaining high hemolytic concentrations. Surface X-ray scattering shows that macrocyclic peptoids intercalate into Langmuir monolayers of anionic lipids with greater efficacy than for their linear analogues. Lastly, it is suggested that cyclization maymore » increase peptoid activity by allowing the macrocycle to better penetrate the bacterial cell membrane.« less

  12. Cyclization improves membrane permeation by antimicrobial peptoids

    SciTech Connect

    Andreev, Konstantin; Martynowycz, Michael W.; Ivankin, Andrey

    The peptidomimetic approach has emerged as a powerful tool for overcoming the inherent limitations of natural antimicrobial peptides, where the therapeutic potential can be improved by increasing the selectivity and bioavailability. Restraining the conformational flexibility of a molecule may reduce the entropy loss upon its binding to the membrane. Experimental findings demonstrate that the cyclization of linear antimicrobial peptoids increases their bactericidal activity against Staphylococcus aureus while maintaining high hemolytic concentrations. Surface X-ray scattering shows that macrocyclic peptoids intercalate into Langmuir monolayers of anionic lipids with greater efficacy than for their linear analogues. Lastly, it is suggested that cyclization maymore » increase peptoid activity by allowing the macrocycle to better penetrate the bacterial cell membrane.« less

  13. Properties of Artificial Gaseous Mixtures for their Safe Use and Support the Natural Gas Supply Networks / Własności Sztucznych Mieszanin Gazowych do Bezpiecznego ich Użytkowania i Wspomagania Zasilania Sieci Gazu Ziemnego

    NASA Astrophysics Data System (ADS)

    Łaciak, Mariusz

    2012-11-01

    The increase in natural gas consumption by the general public and industry development, in particular the petrochemical and chemical industries, has made increasing the world interest in using gas replacement for natural gas, both as mixtures of flammable gases and gas mixtures as LPG with air (SNG - Synthetic Natural Gas). Economic analysis in many cases prove that to ensure interchangeability of gas would cost less than the increase in pipeline capacity to deliver the same quantity of natural gas. In addition, SNG systems and installations, could be considered as investments to improve security and flexibility of gas supply. Known existing methods for determining the interchangeability of gases in gas gear based on Wobbe index, which determines the heat input and the burning rate tide, which in turn is related to flame stability. Exceeding the Wobbe index of a value increases the amount of carbon monoxide in the exhaust than the permissible concentration. Methods of determining the interchangeability of gases is characterized by a gas in relation to the above-described phenomena by means of quantitative indicators, or using diagrams interchangeability, where the gas is characterized by the position of a point in a coordinate system. The best known method for determining the interchangeability of gases is Delbourg method, in which the gas is characterized by the revised (expanded) Wobbe Index (Wr), the combustion potential, rate of soot formation (Ic) and the ratio of the formation of yellow ends (I). Universal way to determine the interchangeability of gas is also Weaver accounting method. It does not require determination of the reference gas. It is designed for utensils for household gas and gas pressure p = 1.25 kPa. The criteria and definition of gas interchangeability volatility in practice to the combustion in a gas gear. In the case of gas exchange in industrial furnaces, interchangeability criteria are usually not very useful because of other conditions

  14. Antimicrobial activity of lemongrass oil against Salmonella enterica on organic leafy greens

    USDA-ARS?s Scientific Manuscript database

    In an effort to discover new and natural antimicrobial treatments against Salmonella Newport on organic produce, we evaluated the antimicrobial effect of lemongrass essential oil on four different types of organic leafy greens inoculated with S. Newport. The effects of lemongrass treatment exposure...

  15. Antimicrobial Resistance in Agriculture

    PubMed Central

    Thanner, Sophie; Drissner, David

    2016-01-01

    ABSTRACT In this article, the current knowledge and knowledge gaps in the emergence and spread of antimicrobial resistance (AMR) in livestock and plants and importance in terms of animal and human health are discussed. Some recommendations are provided for generation of the data required in order to develop risk assessments for AMR within agriculture and for risks through the food chain to animals and humans. PMID:27094336

  16. Molecular Design, Structures, and Activity of Antimicrobial Peptide-Mimetic Polymers

    PubMed Central

    Takahashi, Haruko; Palermo, Edmund F.; Yasuhara, Kazuma; Caputo, Gregory A.

    2014-01-01

    There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications. PMID:23832766

  17. Substandard/Counterfeit Antimicrobial Drugs

    PubMed Central

    Kelesidis, Theodoros

    2015-01-01

    SUMMARY Substandard/counterfeit antimicrobial drugs are a growing global problem. The most common substandard/counterfeit antimicrobials include beta-lactams (among antibiotics) and chloroquine and artemisin derivatives (among antimalarials). The most common type of substandard/counterfeit antimicrobial drugs have a reduced amount of the active drug, and the majority of them are manufactured in Southeast Asia and Africa. Counterfeit antimicrobial drugs may cause increased mortality and morbidity and pose a danger to patients. Here we review the literature with regard to the issue of substandard/counterfeit antimicrobials and describe the prevalence of this problem, the different types of substandard/counterfeit antimicrobial drugs, and the consequences for the individuals and global public health. Local, national, and international initiatives are required to combat this very important public health issue. PMID:25788516

  18. Substandard/counterfeit antimicrobial drugs.

    PubMed

    Kelesidis, Theodoros; Falagas, Matthew E

    2015-04-01

    Substandard/counterfeit antimicrobial drugs are a growing global problem. The most common substandard/counterfeit antimicrobials include beta-lactams (among antibiotics) and chloroquine and artemisin derivatives (among antimalarials). The most common type of substandard/counterfeit antimicrobial drugs have a reduced amount of the active drug, and the majority of them are manufactured in Southeast Asia and Africa. Counterfeit antimicrobial drugs may cause increased mortality and morbidity and pose a danger to patients. Here we review the literature with regard to the issue of substandard/counterfeit antimicrobials and describe the prevalence of this problem, the different types of substandard/counterfeit antimicrobial drugs, and the consequences for the individuals and global public health. Local, national, and international initiatives are required to combat this very important public health issue. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Safe delivery of optical power from space.

    PubMed

    Smith, M; Fork, R L; Cole, S

    2001-05-07

    More than a billion gigawatts of sunlight pass through the area extending from Earth out to geostationary orbit. A small fraction of this clean renewable power appears more than adequate to satisfy the projected needs of Earth, and of human exploration and development of space far into the future. Recent studies suggest safe and efficient access to this power can be achieved within 10 to 40 years. Light, enhanced in spatial and temporal coherence, as compared to natural sunlight, offers a means, and probably the only practical means, of usefully transmitting this power to Earth. We describe safety standards for satellite constellations and Earth based sites designed, respectively, to transmit, and receive this power. The spectral properties, number of satellites, and angle subtended at Earth that are required for safe delivery are identified and discussed.

  20. Aqueous extracts of yerba mate (Ilex paraguariensis) as a natural antimicrobial against Escherichia coli O157:H7 in a microbiological medium and pH 6.0 apple juice.

    PubMed

    Burris, Kellie P; Davidson, P M; Stewart, C Neal; Zivanovic, S; Harte, F M

    2012-04-01

    Ilex paraguariensis is popularly used in the preparation of a tea infusion (yerba mate), most commonly produced and consumed in the South American countries of Uruguay, Paraguay, Argentina, and Brazil. In this study, aqueous extracts of commercial tea, derived from the holly plant species I. paraguariensis were evaluated for their ability to inhibit or inactivate Escherichia coli O157:H7 in a microbiological medium and modified apple juice. Dialyzed, lyophilized aqueous extracts were screened for antimicrobial activity against E. coli O157:H7 strains ATCC 43894 and 'Cider' in tryptic soy broth (TSB) and apple juice (adjusted to pH 6.0 to allow for growth of the bacterium). A mixture of the two strains was used as the inoculum when apple juice was used as the medium. MBCs were determined to be ca. 5 and 10 mg/ml for ATCC 43894 and 'Cider', respectively, in TSB. Higher concentrations of the extract were required to inactivate E. coli O157:H7 in pH-adjusted apple juice. An approximate 4.5-log reduction was observed for E. coli O157:H7 treated with 40 mg/ml extract. It was concluded that aqueous extracts from commercial yerba mate have potential to be used as antimicrobials in foods and beverages against pathogenic E. coli O157:H7.

  1. How Safe Is Control Software

    NASA Technical Reports Server (NTRS)

    Dunn, William R.; Corliss, Lloyd D.

    1991-01-01

    Paper examines issue of software safety. Presents four case histories of software-safety analysis. Concludes that, to be safe, software, for all practical purposes, must be free of errors. Backup systems still needed to prevent catastrophic software failures.

  2. Safely Use Rodent Bait Products

    EPA Pesticide Factsheets

    Rat and mouse poison products, if misused, can potentially harm you, your children, or your pets. Always read the product label and follow all directions. Choose safe rodenticide products, store pesticides properly, and use bait stations appropriately.

  3. Safe drinking during cancer treatment

    MedlinePlus

    ... words: Reverse osmosis filtration Distillation or distilled Water Filters Tap water should be safe when it comes ... small local well, even if you have a filter. Many sink filters, filters in refrigerators, pitchers that ...

  4. Safe handling of antineoplastic drugs.

    PubMed

    Harrison, B R

    1994-07-01

    Managers should be aware of the hazardous properties of antineoplastic drugs and of the procedures and equipment commonly recommended to provide a safe working environment for employees, patients, and visitors. Compliance with the many published guidelines should help ensure passage of the inevitable Occupational Safety and Health Administration (OSHA) or Joint Commission inspection. Acute and chronic toxicities of the antineoplastic drugs, the potential for exposure in the workplace, and the basic guidelines for safe handling of these agents are reviewed.

  5. Asymptotically safe standard model extensions?

    NASA Astrophysics Data System (ADS)

    Pelaggi, Giulio Maria; Plascencia, Alexis D.; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro

    2018-05-01

    We consider theories with a large number NF of charged fermions and compute the renormalization group equations for the gauge, Yukawa and quartic couplings resummed at leading order in 1 /NF. We construct extensions of the standard model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.

  6. Antimicrobial Approaches for Textiles: From Research to Market

    PubMed Central

    Morais, Diana Santos; Guedes, Rui Miranda; Lopes, Maria Ascensão

    2016-01-01

    The large surface area and ability to retain moisture of textile structures enable microorganisms’ growth, which causes a range of undesirable effects, not only on the textile itself, but also on the user. Due to the public health awareness of the pathogenic effects on personal hygiene and associated health risks, over the last few years, intensive research has been promoted in order to minimize microbes’ growth on textiles. Therefore, to impart an antimicrobial ability to textiles, different approaches have been studied, being mainly divided into the inclusion of antimicrobial agents in the textile polymeric fibers or their grafting onto the polymer surface. Regarding the antimicrobial agents, different types have been used, such as quaternary ammonium compounds, triclosan, metal salts, polybiguanides or even natural polymers. Any antimicrobial treatment performed on a textile, besides being efficient against microorganisms, must be non-toxic to the consumer and to the environment. This review mainly intends to provide an overview of antimicrobial agents and treatments that can be performed to produce antimicrobial textiles, using chemical or physical approaches, which are under development or already commercially available in the form of isolated agents or textile fibers or fabrics. PMID:28773619

  7. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases

    PubMed Central

    Orchard, Ané

    2017-01-01

    Essential oils are one of the most notorious natural products used for medical purposes. Combined with their popular use in dermatology, their availability, and the development of antimicrobial resistance, commercial essential oils are often an option for therapy. At least 90 essential oils can be identified as being recommended for dermatological use, with at least 1500 combinations. This review explores the fundamental knowledge available on the antimicrobial properties against pathogens responsible for dermatological infections and compares the scientific evidence to what is recommended for use in common layman's literature. Also included is a review of combinations with other essential oils and antimicrobials. The minimum inhibitory concentration dilution method is the preferred means of determining antimicrobial activity. While dermatological skin pathogens such as Staphylococcus aureus have been well studied, other pathogens such as Streptococcus pyogenes, Propionibacterium acnes, Haemophilus influenzae, and Brevibacterium species have been sorely neglected. Combination studies incorporating oil blends, as well as interactions with conventional antimicrobials, have shown that mostly synergy is reported. Very few viral studies of relevance to the skin have been made. Encouragement is made for further research into essential oil combinations with other essential oils, antimicrobials, and carrier oils. PMID:28546822

  8. [Antimicrobial activity of Laetiporus sulphureus strains grown in submerged culture].

    PubMed

    Ershova, E Iu; Tikhonova, O V; Lur'e, L M; Efremenkova, O V; Kamzolkina, O V; Dudnik, Iu V

    2003-01-01

    Cultural conditions for growth and fruit body formation were elaborated to four strains of Laetiporus sulphureus isolated from nature. All strains demonstrated antimicrobial activity against a wide spectrum of gram-positive and gram-negative bacteria during agar and submerged cultivation including methicillin-resistant strain of Staphylococcus aureus (MRSA) and glycopeptide-resistant strain of Leuconostoc mesenteroides. Antifungal activity was not found. The level of antimicrobial activity during submerged cultivation reached maximum after seven days of growth on specific medium with soybean meal and corn liquid; the next four weeks its increasing was not so manifested. Antimicrobial activity correlated with orange pigment secretion and cultural liquid acidification to pH 2.0-2.8 that indicates on acid nature of synthesized products.

  9. Antimicrobial Peptides in Biomedical Device Manufacturing.

    PubMed

    Riool, Martijn; de Breij, Anna; Drijfhout, Jan W; Nibbering, Peter H; Zaat, Sebastian A J

    2017-01-01

    Over the past decades the use of medical devices, such as catheters, artificial heart valves, prosthetic joints, and other implants, has grown significantly. Despite continuous improvements in device design, surgical procedures, and wound care, biomaterial-associated infections (BAI) are still a major problem in modern medicine. Conventional antibiotic treatment often fails due to the low levels of antibiotic at the site of infection. The presence of biofilms on the biomaterial and/or the multidrug-resistant phenotype of the bacteria further impair the efficacy of antibiotic treatment. Removal of the biomaterial is then the last option to control the infection. Clearly, there is a pressing need for alternative strategies to prevent and treat BAI. Synthetic antimicrobial peptides (AMPs) are considered promising candidates as they are active against a broad spectrum of (antibiotic-resistant) planktonic bacteria and biofilms. Moreover, bacteria are less likely to develop resistance to these rapidly-acting peptides. In this review we highlight the four main strategies, three of which applying AMPs, in biomedical device manufacturing to prevent BAI. The first involves modification of the physicochemical characteristics of the surface of implants. Immobilization of AMPs on surfaces of medical devices with a variety of chemical techniques is essential in the second strategy. The main disadvantage of these two strategies relates to the limited antibacterial effect in the tissue surrounding the implant. This limitation is addressed by the third strategy that releases AMPs from a coating in a controlled fashion. Lastly, AMPs can be integrated in the design and manufacturing of additively manufactured/3D-printed implants, owing to the physicochemical characteristics of the implant material and the versatile manufacturing technologies compatible with antimicrobials incorporation. These novel technologies utilizing AMPs will contribute to development of novel and safe

  10. Antimicrobial Peptides in Biomedical Device Manufacturing

    NASA Astrophysics Data System (ADS)

    Riool, Martijn; de Breij, Anna; Drijfhout, Jan W.; Nibbering, Peter H.; Zaat, Sebastian A. J.

    2017-08-01

    Over the past decades the use of medical devices, such as catheters, artificial heart valves, prosthetic joints and other implants, has grown significantly. Despite continuous improvements in device design, surgical procedures and wound care, biomaterial-associated infections (BAI) are still a major problem in modern medicine. Conventional antibiotic treatment often fails due to the low levels of antibiotic at the site of infection. The presence of biofilms on the biomaterial and/or the multidrug-resistant phenotype of the bacteria further impair the efficacy of antibiotic treatment. Removal of the biomaterial is then the last option to control the infection. Clearly, there is a pressing need for alternative strategies to prevent and treat BAI. Synthetic antimicrobial peptides (AMPs) are considered promising candidates as they are active against a broad spectrum of (antibiotic-resistant) planktonic bacteria and biofilms. Moreover, bacteria are less likely to develop resistance to these rapidly-acting peptides. In this review we highlight the four main strategies, three of which applying AMPs, in biomedical device manufacturing to prevent BAI. The first involves modification of the physicochemical characteristics of the surface of implants. Immobilization of AMPs on surfaces of medical devices with a variety of chemical techniques is essential in the second strategy. The main disadvantage of these two strategies relates to the limited antibacterial effect in the tissue surrounding the implant. This limitation is addressed by the third strategy that releases AMPs from a coating in a controlled fashion. Lastly, AMPs can be integrated in the design and manufacturing of additively manufactured / 3D-printed implants, owing to the physicochemical characteristics of the implant material and the versatile manufacturing technologies compatible with antimicrobials incorporation. These novel technologies utilizing AMPs will contribute to development of novel and safe

  11. New Paenibacillus strain produces a family of linear and cyclic antimicrobial lipopeptides: cyclization is not essential for their antimicrobial activity.

    PubMed

    Huang, En; Yang, Xu; Zhang, Liwen; Moon, Sun Hee; Yousef, Ahmed E

    2017-04-01

    A new bacterial isolate, Paenibacillus sp. OSY-N, showed potent antimicrobial activity against Gram-negative and Gram-positive bacteria. Antimicrobials produced by this strain were purified by reverse-phase high-performance liquid chromatography. Structural analysis, using mass spectrometry, of a single active HPLC fraction revealed two known cyclic lipopeptides (BMY-28160 and permetin A), a new cyclic lipopeptide, and the linear counterparts of these cyclic compounds. The latter were designated as paenipeptins A, B and C, respectively. The paenipeptins have not been reported before as naturally occurring products. Paenipeptins B and C differ at the acyl side chain; paenipeptin C contains a C8-, instead of C7-fatty acyl side chain. To demonstrate unequivocally the antimicrobial activity of the linear forms of this family of cyclic lipopeptides, analogs of the paenipeptins were synthesized chemically and their antimicrobial activity was tested individually. The synthetic linear lipopeptide with an octanoic acid side chain (designated as paenipeptin C΄) showed potent antimicrobial activity with minimum inhibitory concentrations of 0.5-4.0 μg/mL for Gram-negative and 0.5-32 μg/mL for Gram-positive bacteria. Findings demonstrated that peptide cyclization in this lipopeptide family is not essential for their antimicrobial activity. Most importantly, linear lipopeptides are more accessible than their cyclic counterparts through chemical synthesis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Top 1% of Inpatients Administered Antimicrobial Agents Comprising 50% of Expenditures: A Descriptive Study and Opportunities for Stewardship Intervention.

    PubMed

    Dela-Pena, Jennifer; Kerstenetzky, Luiza; Schulz, Lucas; Kendall, Ron; Lepak, Alexander; Fox, Barry

    2017-03-01

    OBJECTIVE To characterize the top 1% of inpatients who contributed to the 6-month antimicrobial budget in a tertiary, academic medical center and identify cost-effective intervention opportunities targeting high-cost antimicrobial utilization. DESIGN Retrospective cohort study. PATIENTS Top 1% of the antimicrobial budget from July 1 through December 31, 2014. METHODS Patients were identified through a pharmacy billing database. Baseline characteristics were collected through a retrospective medical chart review. Patients were presented to the antimicrobial stewardship team to determine appropriate utilization of high-cost antimicrobials and potential intervention opportunities. Appropriate use was defined as antimicrobial therapy that was effective, safe, and most cost-effective compared with alternative agents. RESULTS A total of 10,460 patients received antimicrobials in 6 months; 106 patients accounted for $889,543 (47.2%) of the antimicrobial budget with an antimicrobial cost per day of $219±$192 and antimicrobial cost per admission of $4,733±$7,614. Most patients were immunocompromised (75%) and were followed by the infectious disease consult service (80%). The most commonly prescribed antimicrobials for treatment were daptomycin, micafungin, liposomal amphotericin B, and meropenem. Posaconazole and valganciclovir accounted for most of the prophylactic therapy. Cost-effective opportunities (n=71) were present in 57 (54%) of 106 patients, which included dose optimization, de-escalation, dosage form conversion, and improvement in transitions of care. CONCLUSION Antimicrobial stewardship oversight is important in implementing cost-effective strategies, especially in complex and immunocompromised patients who require the use of high-cost antimicrobials. Infect Control Hosp Epidemiol 2017;38:259-265.

  13. Toxicology of antimicrobial nanoparticles for prosthetic devices

    PubMed Central

    Nuñez-Anita, Rosa Elvira; Acosta-Torres, Laura Susana; Vilar-Pineda, Jorge; Martínez-Espinosa, Juan Carlos; de la Fuente-Hernández, Javier; Castaño, Víctor Manuel

    2014-01-01

    Advances in nanotechnology are producing an accelerated proliferation of new nanomaterial composites that are likely to become an important source of engineered health-related products. Nanoparticles with antifungal effects are of great interest in the formulation of microbicidal materials. Fungi are found as innocuous commensals and colonize various habitats in and on humans, especially the skin and mucosa. As growth on surfaces is a natural part of the Candida spp. lifestyle, one can expect that Candida organisms colonize prosthetic devices, such as dentures. Macromolecular systems, due to their properties, allow efficient use of these materials in various fields, including the creation of reinforced nanoparticle polymers with antimicrobial activity. This review briefly summarizes the results of studies conducted during the past decade and especially in the last few years focused on the toxicity of different antimicrobial polymers and factors influencing their activities, as well as the main applications of antimicrobial polymers in dentistry. The present study addresses aspects that are often overlooked in nanotoxicology studies, such as careful time-dependent characterization of agglomeration and ion release. PMID:25187703

  14. Antimicrobial and biocompatible properties of nanomaterials.

    PubMed

    Ul-Islam, M; Shehzad, A; Khan, S; Khattak, W A; Ullah, M W; Park, J K

    2014-01-01

    The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are currently proving to be the most capable therapeutic agents to cope with such hazards. The exceptional physiochemical properties and impressive antimicrobial capabilities of nanoparticles have provoked their utilization in biomedical fields. Nanomaterials of both organic and inorganic nature have shown the capabilities of disrupting microbial cells through different mechanisms. Along with the direct influence on the microbial cell membrane, DNA and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components and viruses. Currently, a serious hazard associated with these antimicrobial nanomaterials is their toxicity to human and animal cells. Extensive studies have reported the dose, time, and cell-dependent toxicology of various nanomaterials, and some have shown excellent biocompatible properties. Nevertheless, there is still debate regarding the use of nanomaterials for medical applications. Therefore, in this review, the antimicrobial activities of various nanomaterials with details of their acting mechanisms were compiled. The relative toxic and biocompatible behavior of nanomaterials emphasized in this study provides information pertaining to their practical applicability in medical fields.

  15. Absorbent silver (I) antimicrobial fabrics

    USDA-ARS?s Scientific Manuscript database

    In recent years, silver in form of silver ions, has been gaining importance in the wound management as an effective broad-spectrum antimicrobial agent. Silver has a long history as an antimicrobial agent, especially in the treatment of wounds. Alginates and carboxymethyl (CM) cotton contain carboxyl...

  16. Engineering Antimicrobials Refractory to Resistance

    USDA-ARS?s Scientific Manuscript database

    Multi-drug resistant superbugs are a persistent problem in modern health care, demonstrating the need for a new class of antimicrobials that can address this concern. Triple-acting peptidoglycan hydrolase fusions are a novel class of antimicrobials which have qualities well suited to avoiding resis...

  17. Mushrooms as possible antioxidant and antimicrobial agents.

    PubMed

    Kosanić, Marijana; Ranković, Branislav; Dašić, Marko

    2012-01-01

    The aim of the study is to examine in-vitro antioxidant and antimicrobial activity of the acetonic and methanolic extracts of the mushrooms Boletus aestivalis, Boletus edulis and Leccinum carpini. Antioxidant activity was evaluated by using free radical scavenging activity and reducing power. In addition, total content of phenol and flavonoid in extracts were determined as pyrocatechol equivalent, and as rutin equivalent, respectively. As a result of the study acetonic extracts from Boletus edulis was more powerful antioxidant activity with IC50 value of 4.72 μg/mL which was similar or greater than the standard antioxidants, ascorbic acid (IC50 = 4.22 μg/mL), BHA (IC50 = 6.42 μg/mL) and α-tocopherol (IC50 = 62.43 μg/mL). Moreover, the tested extracts had effective reducing power. A significant relationship between total phenolic and flavonoid contents and their antioxidative activities was significantly observed. The antimicrobial activity of each extract was estimated by determination of the minimum inhibitory concentration by using microdilution plate method against five species of bacteria and five species of fungi. Generally, the tested mushroom extracts had relatively strong antimicrobial activity against the tested microorganisms. The minimum inhibitory concentration for both extracts related to the tested bacteria and fungi were 1.25 - 10 mg/ mL. The present study shows that tested mushroom species demonstrated a strong antioxidant and antimicrobial activity. It suggests that mushroom may be used as good sources of natural antioxidants and for pharmaceutical purposes in treating of various deseases.

  18. Mushrooms as Possible Antioxidant and Antimicrobial Agents

    PubMed Central

    Kosanić, Marijana; Ranković, Branislav; Dašić, Marko

    2012-01-01

    The aim of the study is to examine in-vitro antioxidant and antimicrobial activity of the acetonic and methanolic extracts of the mushrooms Boletus aestivalis, Boletus edulis and Leccinum carpini. Antioxidant activity was evaluated by using free radical scavenging activity and reducing power. In addition, total content of phenol and flavonoid in extracts were determined as pyrocatechol equivalent, and as rutin equivalent, respectively. As a result of the study acetonic extracts from Boletus edulis was more powerful antioxidant activity with IC50 value of 4.72 μg/mL which was similar or greater than the standard antioxidants, ascorbic acid (IC50 = 4.22 μg/mL), BHA (IC50 = 6.42 μg/mL) and α-tocopherol (IC50 = 62.43 μg/mL). Moreover, the tested extracts had effective reducing power. A significant relationship between total phenolic and flavonoid contents and their antioxidative activities was significantly observed. The antimicrobial activity of each extract was estimated by determination of the minimum inhibitory concentration by using microdilution plate method against five species of bacteria and five species of fungi. Generally, the tested mushroom extracts had relatively strong antimicrobial activity against the tested microorganisms. The minimum inhibitory concentration for both extracts related to the tested bacteria and fungi were 1.25 - 10 mg/ mL. The present study shows that tested mushroom species demonstrated a strong antioxidant and antimicrobial activity. It suggests that mushroom may be used as good sources of natural antioxidants and for pharmaceutical purposes in treating of various deseases. PMID:24250542

  19. Rapid Screening of Natural Plant Extracts with Calcium Diacetate for Differential Effects Against Foodborne Pathogens and a Probiotic Bacterium.

    PubMed

    Colonna, William; Brehm-Stecher, Byron; Shetty, Kalidas; Pometto, Anthony

    2017-12-01

    This study focused on advancing a rapid turbidimetric bioassay to screen antimicrobials using specific cocktails of targeted foodborne bacterial pathogens. Specifically, to show the relevance of this rapid screening tool, the antimicrobial potential of generally recognized as safe calcium diacetate (DAX) and blends with cranberry (NC) and oregano (OX) natural extracts was evaluated. Furthermore, the same extracts were evaluated against beneficial lactic acid bacteria. The targeted foodborne pathogens evaluated were Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus using optimized initial cocktails (∼10 8 colony-forming unit/mL) containing strains isolated from human food outbreaks. Of all extracts evaluated, 0.51% (w/v) DAX in ethanol was the most effective against all four pathogens. However, DAX when reduced to 0.26% and with added blends from ethanol extractions consisting of DAX:OX (3:1), slightly outperformed or was equal to same levels of DAX alone. Subculture of wells in which no growth occurred after 1 week indicated that all water and ethanol extracts were bacteriostatic against the pathogens tested. All the targeted antimicrobials had no effect on the probiotic organism Lactobacillus plantarum. The use of such rapid screening methods combined with the use of multistrain cocktails of targeted foodborne pathogens from outbreaks will allow rapid large-scale screening of antimicrobials and enable further detailed studies in targeted model food systems.

  20. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health Through Integrated Surveillance of Antimicrobial Resistance

    PubMed Central

    Tate, Heather; Plumblee, Jodie R.; Dessai, Uday; Whichard, Jean M.; Thacker, Eileen L.; Hale, Kis Robertson; Wilson, Wanda; Friedman, Cindy R.; Griffin, Patricia M.; McDermott, Patrick F.

    2017-01-01

    Abstract Drug-resistant bacterial infections pose a serious and growing public health threat globally. In this review, we describe the role of the National Antimicrobial Resistance Monitoring System (NARMS) in providing data that help address the resistance problem and show how such a program can have broad positive impacts on public health. NARMS was formed two decades ago to help assess the consequences to human health arising from the use of antimicrobial drugs in food animal production in the United States. A collaboration among the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration, the United States Department of Agriculture, and state and local health departments, NARMS uses an integrated “One Health” approach to monitor antimicrobial resistance in enteric bacteria from humans, retail meat, and food animals. NARMS has adapted to changing needs and threats by expanding surveillance catchment areas, examining new isolate sources, adding bacteria, adjusting sampling schemes, and modifying antimicrobial agents tested. NARMS data are not only essential for ensuring that antimicrobial drugs approved for food animals are used in ways that are safe for human health but they also help address broader food safety priorities. NARMS surveillance, applied research studies, and outbreak isolate testing provide data on the emergence of drug-resistant enteric bacteria; genetic mechanisms underlying resistance; movement of bacterial populations among humans, food, and food animals; and sources and outcomes of resistant and susceptible infections. These data can be used to guide and evaluate the impact of science-based policies, regulatory actions, antimicrobial stewardship initiatives, and other public health efforts aimed at preserving drug effectiveness, improving patient outcomes, and preventing infections. Many improvements have been made to NARMS over time and the program will continue to adapt to address emerging resistance threats

  1. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health Through Integrated Surveillance of Antimicrobial Resistance.

    PubMed

    Karp, Beth E; Tate, Heather; Plumblee, Jodie R; Dessai, Uday; Whichard, Jean M; Thacker, Eileen L; Hale, Kis Robertson; Wilson, Wanda; Friedman, Cindy R; Griffin, Patricia M; McDermott, Patrick F

    2017-10-01

    Drug-resistant bacterial infections pose a serious and growing public health threat globally. In this review, we describe the role of the National Antimicrobial Resistance Monitoring System (NARMS) in providing data that help address the resistance problem and show how such a program can have broad positive impacts on public health. NARMS was formed two decades ago to help assess the consequences to human health arising from the use of antimicrobial drugs in food animal production in the United States. A collaboration among the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration, the United States Department of Agriculture, and state and local health departments, NARMS uses an integrated "One Health" approach to monitor antimicrobial resistance in enteric bacteria from humans, retail meat, and food animals. NARMS has adapted to changing needs and threats by expanding surveillance catchment areas, examining new isolate sources, adding bacteria, adjusting sampling schemes, and modifying antimicrobial agents tested. NARMS data are not only essential for ensuring that antimicrobial drugs approved for food animals are used in ways that are safe for human health but they also help address broader food safety priorities. NARMS surveillance, applied research studies, and outbreak isolate testing provide data on the emergence of drug-resistant enteric bacteria; genetic mechanisms underlying resistance; movement of bacterial populations among humans, food, and food animals; and sources and outcomes of resistant and susceptible infections. These data can be used to guide and evaluate the impact of science-based policies, regulatory actions, antimicrobial stewardship initiatives, and other public health efforts aimed at preserving drug effectiveness, improving patient outcomes, and preventing infections. Many improvements have been made to NARMS over time and the program will continue to adapt to address emerging resistance threats, changes in

  2. How Safe Are Kid-Safe Search Engines?

    ERIC Educational Resources Information Center

    Masterson-Krum, Hope

    2001-01-01

    Examines search tools available to elementary and secondary school students, both human-compiled and crawler-based, to help direct them to age-appropriate Web sites; analyzes the procedures of search engines labeled family-friendly or kid safe that use filters; and tests the effectiveness of these services to students in school libraries. (LRW)

  3. Antimicrobial prenylated dihydrochalcones from Eriosema glomerata.

    PubMed

    Awouafack, Maurice D; Kouam, Simeon F; Hussain, Hidayat; Ngamga, Dieudonne; Tane, Pierre; Schulz, Barbara; Green, Ivan R; Krohn, Karsten

    2008-01-01

    Two new natural dihydrochalcones exhibiting antimicrobial properties together with six known compounds were isolated from the Cameroonian medicinal plant Eriosema glomerata. The structures of the new dihydrochalcones were elucidated as 2',4'-dihydroxy-4-methoxy-3'-( gamma, gamma-dimethylallyl)dihydrochalcone and 2',4'-dihydroxy-3'-( gamma, gamma-dimethylallyl)dihydrochalcone by detailed spectroscopic analysis. The two new dihydrochalcones, named erioschalcones A ( 1) and B ( 2), demonstrated significant inhibitory activity against the microbial strains Bacillus megaterium, Escherichia coli, Chlorella fusca and Microbotryum violaceum.

  4. Antimicrobial Packaging for Extending the Shelf Life of Bread-A Review.

    PubMed

    Jideani, V A; Vogt, K

    2016-06-10

    Antimicrobial packaging is an important form of active packaging that can release antimicrobial substances for enhancing the quality and safety of food during extended storage. It is in response to consumers demand for preservative-free food as well as more natural, disposable, biodegradable, and recyclable food-packaging materials. The potential of a combination of allyl isothiocyanate and potassium sorbate incorporated into polymers in providing the needed natural antimicrobial protection for bread products is discussed. The role of double extrusion process as a means for obtaining a homogeneous mix of the sorbate into the polymer (polyethylene or ethylenevinyalcohol), is highlighted.

  5. Breastfeeding FAQs: Safely Storing Breast Milk

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Breastfeeding FAQs: Safely Storing Breast Milk KidsHealth / For Parents / Breastfeeding FAQs: Safely Storing Breast Milk What's in this ...

  6. The therapeutic applications of antimicrobial peptides (AMPs): a patent review.

    PubMed

    Kang, Hee-Kyoung; Kim, Cheolmin; Seo, Chang Ho; Park, Yoonkyung

    2017-01-01

    Antimicrobial peptides (AMPs) are small molecules with a broad spectrum of antibiotic activities against bacteria, yeasts, fungi, and viruses and cytotoxic activity on cancer cells, in addition to anti-inflammatory and immunomodulatory activities. Therefore, AMPs have garnered interest as novel therapeutic agents. Because of the rapid increase in drug-resistant pathogenic microorganisms, AMPs from synthetic and natural sources have been developed using alternative antimicrobial strategies. This article presents a broad analysis of patents referring to the therapeutic applications of AMPs since 2009. The review focuses on the universal trends in the effective design, mechanism, and biological evolution of AMPs.

  7. [Research progress in fusion expression of antimicrobial peptides].

    PubMed

    Ma, Qingshan; Yu, Zhanqiao; Han, Bing; Zhang, Rijun

    2011-10-01

    Antimicrobial peptides (AMPs) are of great significance in the field of food, feed and medicine due to their wide spectrum of antimicrobial activity and new mechanism of action different from conventional antibiotics. AMPs production from natural sources is usually limited, and chemical synthesis is not economically practical, especially for the production of long peptides. Therefore, heterologous expression of AMPs has been widely studied as an alternative, and fusion expression plays an important role in increasing production. The present review mainly focuses on the types and bioactivities of AMPs. In addition, the recent strategies to the most commonly used carrier proteins for fusion expression of AMPs and prospects for future research were also discussed.

  8. Antimicrobial and anticancer efficacy of antineoplastic agent capped gold nanoparticles.

    PubMed

    Selvaraj, V; Grace, A Nirmala; Alagar, M; Hamerton, I

    2010-04-01

    Synthesis of thioguanine (TG)-capped Au nanoparticles (Au@TG) and their enhanced in vitro antimicrobial and anticancer efficacy against Micrococcus luteus, Staphylococcus aureus, Pseudomonas aeruginosa, E. coli, Aspergillus fumigatus, Aspergillus niger and Hep2 cancer cell (Human epidermiod cell) have been reported. The nature of binding between 6-TG and the gold nanoparticles via complexation is investigated using ultraviolet-visible spectrum, cyclic voltammetry, transmission electron microscopy, fluorescence and Fourier transform infrared (FT-IR) spectroscopy. The present experimental studies suggests that Au@TG are more potential than TG towards antimicrobial and anticancer activities. Hence, gold nanoparticles have the potential to be used as effective carriers for anticancer drug.

  9. Baby Sling: Is It Safe?

    MedlinePlus

    Healthy Lifestyle Infant and toddler health Is it safe to hold a baby in a baby sling? Answers from Jay L. Hoecker, M.D. A baby sling — a one-shouldered baby ... sling's weight minimum before placing your newborn in it. Keep your baby's airways unobstructed. Make sure your ...

  10. How Safe Are Our Libraries?

    ERIC Educational Resources Information Center

    St. Lifer, Evan

    1994-01-01

    Addresses issues of safety and security in libraries. Topics discussed include keeping library collections safe; patron behavioral problems; factoring loss into the budget; staff theft; access versus security; apathy regarding library crime; a need for a unified security apparatus; preventive measures; staff and patron safety; and a…

  11. Legal Issues Surrounding Safe Schools.

    ERIC Educational Resources Information Center

    Day, Reed B.

    This handbook provides an overview of legal issues pertaining to the safety of public schools. Following the introduction, chapter 2 describes the governance model and philosophy on which American education is based. Court decisions and federal and state legislation that mandate the right to a safe school are discussed in chapter 3. The fourth…

  12. How Safe Are Our Schools?

    ERIC Educational Resources Information Center

    Mayer, Matthew J.; Furlong, Michael J.

    2010-01-01

    Schools are basically safe places for children. School violence and disruption, although in decline through the mid- to late 1990s, remains a concern. National surveys that inform research, policy, and practice have been designed for different purposes and can present conflicting findings. Common standards of risk and harm that could advance…

  13. Planning Safe Routes to School.

    ERIC Educational Resources Information Center

    Appleyard, Bruce S.

    2003-01-01

    Describes "Safe Routes to School" efforts in the United States and other countries to make walking and biking to school the transportation of choice. Offers a plan of action for formulating and carrying out such a program and information on funding sources. (EV)

  14. Driving safely while aging gracefully

    DOT National Transportation Integrated Search

    2000-08-01

    This booklet, developed by the USAA Educational Foundation, AARP, and the National Highway Traffic Safety Administration, outlines the physical effects of aging, as well as tips on coping with them so that you remain a safe driver as long as you can.

  15. Planning and Designing Safe Facilities

    ERIC Educational Resources Information Center

    Seidler, Todd

    2006-01-01

    Those who manage physical education, athletic, and recreation programs have a number of legal duties that they are expected to carry out. Among these are an obligation to take reasonable precautions to ensure safe programs and facilities for all participants, spectators, and staff. Physical education and sports facilities that are poorly planned,…

  16. Novel formulations for antimicrobial peptides.

    PubMed

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2014-10-09

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  17. Novel Formulations for Antimicrobial Peptides

    PubMed Central

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  18. How Safe Is Safe Enough for Self-Driving Vehicles?

    PubMed

    Liu, Peng; Yang, Run; Xu, Zhigang

    2018-05-21

    Self-driving vehicles (SDVs) promise to considerably reduce traffic crashes. One pressing concern facing the public, automakers, and governments is "How safe is safe enough for SDVs?" To answer this question, a new expressed-preference approach was proposed for the first time to determine the socially acceptable risk of SDVs. In our between-subject survey (N = 499), we determined the respondents' risk-acceptance rate of scenarios with varying traffic-risk frequencies to examine the logarithmic relationships between the traffic-risk frequency and risk-acceptance rate. Logarithmic regression models of SDVs were compared to those of human-driven vehicles (HDVs); the results showed that SDVs were required to be safer than HDVs. Given the same traffic-risk-acceptance rates for SDVs and HDVs, their associated acceptable risk frequencies of SDVs and HDVs were predicted and compared. Two risk-acceptance criteria emerged: the tolerable risk criterion, which indicates that SDVs should be four to five times as safe as HDVs, and the broadly acceptable risk criterion, which suggests that half of the respondents hoped that the traffic risk of SDVs would be two orders of magnitude lower than the current estimated traffic risk. The approach and these results could provide insights for government regulatory authorities for establishing clear safety requirements for SDVs. © 2018 Society for Risk Analysis.

  19. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    PubMed Central

    Shalavi, S; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial. PMID:23323217

  20. Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application

    NASA Astrophysics Data System (ADS)

    Xia, Yijie; Jiang, Xiaoyu; Zhang, Jing; Lin, Ming; Tang, Xiaosheng; Zhang, Jie; Liu, Hongjun

    2017-02-01

    Nanotechnology for water disinfection application gains increasing attention. Diatomite is one kind of safe natural material, which has been widely used as absorbent, filtration agents, mineral fillers, especially in water treatment industry. Nanosilver/diatomite nanocomposites were developed in this publication with a facile, effective in-situ reduction method. The as-prepared nanosilver/diatomite nanocomposites demonstrated amazing antibacterial properties to gram-positive and gram-negative bacteria. The corresponding property has been characterized by UV-vis absorbance, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy (XPS). Moreover, the detailed bacteria killing experiments further displayed that 0.5 g of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. And the silver leaching test demonstrated that the concentrations of silver in the filtered water under varies pH environment were below the limit for silver level of WHO standard. Considering the low price of natural diatomite, it is believed that the nanosilver/diatomite nanocomposites have potential application in water purification industry due to its excellent antimicrobial property.

  1. Antimicrobial and physical characteristics of orthodontic primers containing antimicrobial agents.

    PubMed

    Chung, Shin-Hye; Cho, Soha; Kim, Kyungsun; Lim, Bum-Soon; Ahn, Sug-Joon

    2017-03-01

    To compare the antimicrobial and physical properties of experimental primers containing chlorhexidine (CHX) or ursolic acid (UA) with a commercial primer. Two antibacterial agents, 3 mg each of CHX and UA were incorporated respectively into 1 ml of Transbond XT primer (TX) to form antibacterial primers, TX-CHX and TX-UA. The antimicrobial activity of the three primers (TX, TX-CHX, and TX-UA) against Streptococcus mutans in both planktonic and biofilm phases was analyzed by determining minimum inhibitory and bactericidal concentrations and by performing growth and biofilm assays. Growth and biofilm assays were performed in both the absence and presence of thermocycling in a water tank to analyze the effects of water aging on the antimicrobial activities of primers. After bonding brackets onto bovine incisors using the primers, shear bond strength and mode of fracture were analyzed to compare physical properties. TX-CHX had stronger antimicrobial activity against S. mutans in the planktonic and biofilm phases than did TX or TX-UA. When applied, TX-CHX completely inhibited the growth and biofilm formation of S. mutans . In addition, the antimicrobial activity of TX-CHX was maintained after thermocycling. However, TX-UA did not show significant antimicrobial activity compared with TX. There was no significant difference in either shear bond strength or bond failure interface among the primers. Incorporation of CHX into an orthodontic primer may help prevent enamel demineralization around surfaces without compromising its physical properties.

  2. Efficacy of antimicrobials extracted from organic pecan shell for inhibiting the growth of Listeria spp.

    PubMed

    Babu, Dinesh; Crandall, Philip G; Johnson, Casey L; O'Bryan, Corliss A; Ricke, Steven C

    2013-12-01

    Growers and processors of USDA certified organic foods are in need of suitable organic antimicrobials. The purpose of the research reported here was to develop and test natural antimicrobials derived from an all-natural by-product, organic pecan shells. Unroasted and roasted organic pecan shells were subjected to solvent free extraction to produce antimicrobials that were tested against Listeria spp. and L. monocytogenes serotypes to determine the minimum inhibitory concentrations (MIC) of antimicrobials. The effectiveness of pecan shell extracts were further tested using a poultry skin model system and the growth inhibition of the Listeria cells adhered onto the skin model were quantified. The solvent free extracts of pecan shells inhibited Listeria strains at MICs as low as 0.38%. The antimicrobial effectiveness tests on a poultry skin model exhibited nearly a 2 log reduction of the inoculated cocktail mix of Listeria strains when extracts of pecan shell powder were used. The extracts also produced greater than a 4 log reduction of the indigenous spoilage bacteria on the chicken skin. Thus, the pecan shell extracts may prove to be very effective alternative antimicrobials against food pathogens and supplement the demand for effective natural antimicrobials for use in organic meat processing. © 2013 Institute of Food Technologists®

  3. Hoopoes color their eggs with antimicrobial uropygial secretions

    NASA Astrophysics Data System (ADS)

    Soler, Juan J.; Martín-Vivaldi, M.; Peralta-Sánchez, J. M.; Arco, L.; Juárez-García-Pelayo, N.

    2014-09-01

    Uropygial gland secretions are used as cosmetics by some species of birds to color and enhance properties of feathers and teguments, which may signal individual quality. Uropygial secretions also reach eggshells during incubation and, therefore, may influence the coloration of birds' eggs, a trait that has attracted the attention of evolutionary biologists for more than one century. The color of hoopoe eggs typically changes along incubation, from bluish-gray to greenish-brown. Here, we test experimentally the hypothesis that dark uropygial secretion of females is responsible for such drastic color change. Moreover, since uropygial secretion of hoopoes has antimicrobial properties, we also explore the association between color and antimicrobial activity of the uropygial secretion of females. We found that eggs stayed bluish-gray in nests where female access to the uropygial secretion was experimentally blocked. Furthermore, experimental eggs that were maintained in incubators and manually smeared with uropygial secretion experienced similar color changes that naturally incubated eggs did, while control eggs that were not in contact with the secretions did not experience such color changes. All these results strongly support the hypothesis that female hoopoes use their uropygial gland secretion to color the eggs. Moreover, saturation of the uropygial secretion was associated with antimicrobial activity against Bacillus licheniformis. Given the known antimicrobial potential of uropygial secretions of birds, this finding opens the possibility that in scenarios of sexual selection, hoopoes in particular and birds in general signal antimicrobial properties of their uropygial secretion by mean of changes in egg coloration along incubation.

  4. Probing Protein Sequences as Sources for Encrypted Antimicrobial Peptides

    PubMed Central

    Brand, Guilherme D.; Magalhães, Mariana T. Q.; Tinoco, Maria L. P.; Aragão, Francisco J. L.; Nicoli, Jacques; Kelly, Sharon M.; Cooper, Alan; Bloch, Carlos

    2012-01-01

    Starting from the premise that a wealth of potentially biologically active peptides may lurk within proteins, we describe here a methodology to identify putative antimicrobial peptides encrypted in protein sequences. Candidate peptides were identified using a new screening procedure based on physicochemical criteria to reveal matching peptides within protein databases. Fifteen such peptides, along with a range of natural antimicrobial peptides, were examined using DSC and CD to characterize their interaction with phospholipid membranes. Principal component analysis of DSC data shows that the investigated peptides group according to their effects on the main phase transition of phospholipid vesicles, and that these effects correlate both to antimicrobial activity and to the changes in peptide secondary structure. Consequently, we have been able to identify novel antimicrobial peptides from larger proteins not hitherto associated with such activity, mimicking endogenous and/or exogenous microorganism enzymatic processing of parent proteins to smaller bioactive molecules. A biotechnological application for this methodology is explored. Soybean (Glycine max) plants, transformed to include a putative antimicrobial protein fragment encoded in its own genome were tested for tolerance against Phakopsora pachyrhizi, the causative agent of the Asian soybean rust. This procedure may represent an inventive alternative to the transgenic technology, since the genetic material to be used belongs to the host organism and not to exogenous sources. PMID:23029273

  5. Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties

    PubMed Central

    Liakos, Ioannis L.; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D’Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia

    2016-01-01

    Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid—lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization. PMID:27399724

  6. Optimization and high-throughput screening of antimicrobial peptides.

    PubMed

    Blondelle, Sylvie E; Lohner, Karl

    2010-01-01

    While a well-established process for lead compound discovery in for-profit companies, high-throughput screening is becoming more popular in basic and applied research settings in academia. The development of combinatorial libraries combined with easy and less expensive access to new technologies have greatly contributed to the implementation of high-throughput screening in academic laboratories. While such techniques were earlier applied to simple assays involving single targets or based on binding affinity, they have now been extended to more complex systems such as whole cell-based assays. In particular, the urgent need for new antimicrobial compounds that would overcome the rapid rise of drug-resistant microorganisms, where multiple target assays or cell-based assays are often required, has forced scientists to focus onto high-throughput technologies. Based on their existence in natural host defense systems and their different mode of action relative to commercial antibiotics, antimicrobial peptides represent a new hope in discovering novel antibiotics against multi-resistant bacteria. The ease of generating peptide libraries in different formats has allowed a rapid adaptation of high-throughput assays to the search for novel antimicrobial peptides. Similarly, the availability nowadays of high-quantity and high-quality antimicrobial peptide data has permitted the development of predictive algorithms to facilitate the optimization process. This review summarizes the various library formats that lead to de novo antimicrobial peptide sequences as well as the latest structural knowledge and optimization processes aimed at improving the peptides selectivity.

  7. Development of antimicrobial films for microbiological control of packaged salad.

    PubMed

    Muriel-Galet, Virginia; Cerisuelo, Josep P; López-Carballo, Gracia; Lara, Marta; Gavara, Rafael; Hernández-Muñoz, Pilar

    2012-07-02

    The aim of the present work was to characterize the antimicrobial efficiency of films consisting of PP/EVOH structures with oregano essential oil and citral. Both substances are known for their antimicrobial activity based on their interaction with the cell membrane. The films developed were used to pack minimally processed salads, combining modified atmosphere technology to extend shelf-life and active packaging technology to reduce possible microbiological risks. The antimicrobial activity of the films against the pathogenic microorganisms Escherichia coli, Salmonella enterica and Listeria monocytogenes and natural microflora was investigated "in vitro" and also on the food itself. The effect of release of the antimicrobial agent on the sensory characteristics of the salad was also studied. The results showed that antimicrobial activity reduced spoilage flora on the salad as well as inhibited the growth of pathogens in contaminated salads. This effect was greater against Gram-negative bacteria. Sensory studies showed that the package that was most effective and most accepted by customers was the one containing 5% oregano essential oil. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Polylactic Acid-Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties.

    PubMed

    Liakos, Ioannis L; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D'Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia

    2016-07-07

    Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid-lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization.

  9. Antimicrobial resistance in the 21st century: a multifaceted challenge.

    PubMed

    Nolte, O

    2014-04-01

    Antimicrobial resistance, the ability of (pathogenic) bacteria to withstand the action of antibiotic drugs, has recently been rated of having an impact on humans similar to that of global climate change. Indeed, during the last years medicine has faced the development of highly resistant bacterial strains, which were, as a consequence of worldwide travel activity, dispersed all over the globe. This is even more astonishing if taking into account that antibiotics were introduced into human medicine not even hundred years ago. Resistance covers different principle aspects, natural resistance, acquired resistance and clinical resistance. In the modern microbiology laboratory, antimicrobial resistance is determined by measuring the susceptibility of micro-organisms in vitro in the presence of antimicrobials. However, since the efficacy of an antibiotic depends on its pharmacokinetic and pharmacodynamics properties, breakpoints are provided to translate minimal inhibitory concentration to categorical efficacy (i.e. susceptible or resistant). Resistance in one microorganism against one particular drug may drive treatment decisions of clinicians, thereby fostering selection pressure to resistance development against another antibiotic. Thereby, bacteria may acquire more and more resistance traits, ending up with multi-resistance. To this end, antimicrobial resistance becomes a public health concern, not only in terms of limited treatment options but also due to its economic burden. The current paper provides a summary of the main topics associated with antimicrobial resistance as an introduction to this special issue.

  10. Antimicrobial Pesticide Use Site Index

    EPA Pesticide Factsheets

    This Use Site Index provides guidance to assist applicants for antimicrobial pesticide registration by helping them identify the data requirements necessary to register a pesticide or support their product registrations.

  11. Isolation and characterization of antimicrobial food components.

    PubMed

    Papetti, Adele

    2012-04-01

    Nowadays there is an evident growing interest in natural antimicrobial compounds isolated from food matrices. According to the type of matrix, different isolation and purification steps are needed and as these active compounds belong to different chemical classes, also different chromatographic and electrophoretic methods coupled with various detectors (the most used diode array detector and mass spectrometer) have to be performed. This review covers recent steps made in the fundamental understanding of sample preparation methods as well as of analytical tools useful for the complete characterization of bioactive food compounds. The most commonly used methods for extraction of natural antimicrobial compounds are the conventional liquid-liquid or solid-liquid extraction and the modern techniques such as pressurized liquid extraction, microwave-assisted extraction, ultrasound-assisted extraction, solid-phase micro-extraction, supercritical fluid extraction, and matrix solid phase dispersion. The complete characterization of the compounds is achieved using both monodimensional chromatographic processes (LC, nano-LC, GC, and CE coupled with different type of detectors) and, recently, using comprehensive two-dimensional systems (LC×LC and GC×GC). Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Antimicrobial and Efflux Inhibitor Activity of Usnic Acid Against Mycobacterium abscessus.

    PubMed

    Ramis, Ivy B; Vianna, Júlia S; Reis, Ana Júlia; von Groll, Andrea; Ramos, Daniela F; Viveiros, Miguel; da Silva, Pedro E Almeida

    2018-06-18

    New drugs are needed to treat infections with antimicrobial-resistant Mycobacterium abscessus ; therefore, we evaluated usnic acid as an antimicrobial agent and efflux inhibitor (EI) against M. abscessus . Usnic acid showed antimicrobial activity, and synergistically, the EI verapamil increased this activity. In addition, when we evaluated the interaction of antimicrobials with usnic acid, the increase of their activity was observed. Finally, usnic acid showed an efflux inhibitory effect between the classical EIs verapamil and carbonyl cyanide m-chlorophenylhydrazine. In conclusion, usnic acid showed both antimicrobial and EI activity, indicating that this natural compound may be a promising scaffold for new drugs against this difficult-to-treat microorganism. Georg Thieme Verlag KG Stuttgart · New York.

  13. Semi-synthesis of dihydrochalcone derivatives and their in vitro antimicrobial activities.

    PubMed

    Awouafack, Maurice D; Kusari, Souvik; Lamshöft, Marc; Ngamga, Dieudonne; Tane, Pierre; Spiteller, Michael

    2010-04-01

    We describe the semi-synthesis of dihydrochalcone derivatives and their IN VITRO antimicrobial activities. These compounds were prepared by modifying two naturally occurring antimicrobial dihydrochalcones, erioschalcones A and B, reported by us earlier. The structures of the compounds were assigned on the basis of spectroscopic evidence and by comparing their physical and spectroscopic data with those reported in the literature. All the compounds were subjected to IN VITRO antimicrobial assays against a panel of pathogenic microorganisms, including gram-positive and gram-negative bacteria, and fungi. The antimicrobial efficacies of this class of compounds were established by correlating the activity profile of each compound with its structure and by comparing the activities of all the compounds with each other based on their structure. This should enable the development of other derivatives of the dihydrochalcone family that would serve as more potent antimicrobial agents against specific pathogens. Georg Thieme Verlag KG Stuttgart.New York.

  14. Cultivating the Art of Safe Space

    ERIC Educational Resources Information Center

    Hunter, Mary Ann

    2008-01-01

    Performance-making and peace-building are processes predicated on the production of safe space. But what is "safe space"? In performance-making, what is it that makes space safe without losing the creative potential of tension? What role is there for risk? And, once achieved, how does safe space become meaningful beyond its immediate…

  15. Safe Minimum Internal Temperature Chart

    MedlinePlus

    ... Administrative Forms Standard Forms Skip Navigation Z7_0Q0619C0JGR010IFST1G5B10H1 Web Content Viewer (JSR 286) Actions ${title} Loading... / Topics / ... Chart / Safe Minimum Internal Temperature Chart Z7_0Q0619C0JGR010IFST1G5B10H3 Web Content Viewer (JSR 286) Actions ${title} Loading... Z7_ ...

  16. Safe-haven locking device

    DOEpatents

    Williams, J.V.

    1984-04-26

    Disclosed is a locking device for eliminating external control of a secured space formed by fixed and movable barriers. The locking device uses externally and internally controlled locksets and a movable strike, operable from the secured side of the movable barrier, to selectively engage either lockset. A disengagement device, for preventing forces from being applied to the lock bolts is also disclosed. In this manner, a secured space can be controlled from the secured side as a safe-haven. 4 figures.

  17. Ensuring a Safe Technological Revolution

    DTIC Science & Technology

    2016-12-01

    Defense AT&L: November-December 2016 14 Ensuring a Safe Technological Revolution William E. Frazier, Ph.D. n Elizabeth L. McMichael n Jennifer...for 5 years, working on nonferrous welding and AM and has an M.S. in Mechanical Engineering from the University of Maryland, Baltimore County. I n...has acceptable proper- ties. A “certified” part can perform properly in its operating environment . The conventional qualification/certification

  18. The Antimicrobial Mechanism of Action of Epsilon-Poly-l-Lysine

    PubMed Central

    Hyldgaard, Morten; Mygind, Tina; Vad, Brian S.; Stenvang, Marcel; Otzen, Daniel E.

    2014-01-01

    Epsilon-poly-l-lysine (ε-PL) is a natural antimicrobial cationic peptide which is generally regarded as safe (GRAS) as a food preservative. Although its antimicrobial activity is well documented, its mechanism of action is only vaguely described. The aim of this study was to clarify ε-PL's mechanism of action using Escherichia coli and Listeria innocua as model organisms. We examined ε-PL's effect on cell morphology and membrane integrity and used an array of E. coli deletion mutants to study how specific outer membrane components affected the action of ε-PL. We furthermore studied its interaction with lipid bilayers using membrane models. In vitro cell studies indicated that divalent cations and the heptose I and II phosphate groups in the lipopolysaccharide layer of E. coli are critical for ε-PL's binding efficiency. ε-PL removed the lipopolysaccharide layer and affected cell morphology of E. coli, while L. innocua underwent minor morphological changes. Propidium iodide staining showed that ε-PL permeabilized the cytoplasmic membrane in both species, indicating the membrane as the site of attack. We compared the interaction with neutral or negatively charged membrane systems and showed that the interaction with ε-PL relied on negative charges on the membrane. Suspended membrane vesicles were disrupted by ε-PL, and a detergent-like disruption of E. coli membrane was confirmed by atomic force microscopy imaging of supported lipid bilayers. We hypothesize that ε-PL destabilizes membranes in a carpet-like mechanism by interacting with negatively charged phospholipid head groups, which displace divalent cations and enforce a negative curvature folding on membranes that leads to formation of vesicles/micelles. PMID:25304506

  19. The antimicrobial mechanism of action of epsilon-poly-l-lysine.

    PubMed

    Hyldgaard, Morten; Mygind, Tina; Vad, Brian S; Stenvang, Marcel; Otzen, Daniel E; Meyer, Rikke L

    2014-12-01

    Epsilon-poly-l-lysine (ε-PL) is a natural antimicrobial cationic peptide which is generally regarded as safe (GRAS) as a food preservative. Although its antimicrobial activity is well documented, its mechanism of action is only vaguely described. The aim of this study was to clarify ε-PL's mechanism of action using Escherichia coli and Listeria innocua as model organisms. We examined ε-PL's effect on cell morphology and membrane integrity and used an array of E. coli deletion mutants to study how specific outer membrane components affected the action of ε-PL. We furthermore studied its interaction with lipid bilayers using membrane models. In vitro cell studies indicated that divalent cations and the heptose I and II phosphate groups in the lipopolysaccharide layer of E. coli are critical for ε-PL's binding efficiency. ε-PL removed the lipopolysaccharide layer and affected cell morphology of E. coli, while L. innocua underwent minor morphological changes. Propidium iodide staining showed that ε-PL permeabilized the cytoplasmic membrane in both species, indicating the membrane as the site of attack. We compared the interaction with neutral or negatively charged membrane systems and showed that the interaction with ε-PL relied on negative charges on the membrane. Suspended membrane vesicles were disrupted by ε-PL, and a detergent-like disruption of E. coli membrane was confirmed by atomic force microscopy imaging of supported lipid bilayers. We hypothesize that ε-PL destabilizes membranes in a carpet-like mechanism by interacting with negatively charged phospholipid head groups, which displace divalent cations and enforce a negative curvature folding on membranes that leads to formation of vesicles/micelles. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Antimicrobial stewardship in a Gastroenterology Department: Impact on antimicrobial consumption, antimicrobial resistance and clinical outcome.

    PubMed

    Bedini, Andrea; De Maria, Nicola; Del Buono, Mariagrazia; Bianchini, Marcello; Mancini, Mauro; Binda, Cecilia; Brasacchio, Andrea; Orlando, Gabriella; Franceschini, Erica; Meschiari, Marianna; Sartini, Alessandro; Zona, Stefano; Paioli, Serena; Villa, Erica; Gyssens, Inge C; Mussini, Cristina

    2016-10-01

    A major cause of the increase in antimicrobial resistance is the inappropriate use of antimicrobials. To evaluate the impact on antimicrobial consumption and clinical outcome of an antimicrobial stewardship program in an Italian Gastroenterology Department. Between October 2014 and September 2015 (period B), a specialist in infectious diseases (ID) controlled all antimicrobial prescriptions and decided about the therapy in agreement with gastroenterologists. The defined daily doses of antimicrobials (DDDs), incidence of MDR-infections, mean length of stay and overall in-hospital mortality rate were compared with those of the same period in the previous 12-months (period A). During period B, the ID specialist performed 304 consultations: antimicrobials were continued in 44.4% of the cases, discontinued in 13.8%, not recommended in 12.1%, de-escalated 9.9%, escalated in 7.9%, and started in 4.0%. Comparing the 2 periods, we observed a decreased of antibiotics consumption (from 109.81 to 78.45 DDDs/100 patient-days, p=0.0005), antifungals (from 41.28 to 24.75 DDDs/100pd, p=0.0004), carbapenems (from 15.99 to 6.80 DDDsx100pd, p=0.0032), quinolones (from 35.79 to 17.82 DDDsx100pd, p=0.0079). No differences were observed in incidence of MDR-infections, length of hospital stay (LOS), and mortality rate. ASP program had a positive impact on reducing the consumption of antimicrobials, without an increase in LOS and mortality. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  1. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    PubMed

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Learning from agriculture: understanding low-dose antimicrobials as drivers of resistome expansion

    PubMed Central

    You, Yaqi; Silbergeld, Ellen K.

    2014-01-01

    Antimicrobial resistance is a growing public health challenge worldwide, with agricultural use of antimicrobials being one major contributor to the emergence and dissemination of antimicrobial resistance (AMR). Globally, most antimicrobials are used in industrial food animal production, a major context for microbiomes encountering low-doses or subtherapeutic-levels of antimicrobial agents from all mechanistic classes. This modern practice exerts broad eco-evolutionary effects on the gut microbiome of food animals, which is subsequently transferred to animal waste. This waste contains complex constituents that are challenging to treat, including AMR determinants and low-dose antimicrobials. Unconfined storage or land deposition of a large volume of animal waste causes its wide contact with the environment and drives the expansion of the environmental resistome through mobilome facilitated horizontal genet transfer. The expanded environmental resistome, which encompasses both natural constituents and anthropogenic inputs, can persist under multiple stressors from agriculture and may re-enter humans, thus posing a public health risk to humans. For these reasons, this review focuses on agricultural antimicrobial use as a laboratory for understanding low-dose antimicrobials as drivers of resistome expansion, briefly summarizes current knowledge on this topic, highlights the importance of research specifically on environmental microbial ecosystems considering AMR as environmental pollution, and calls attention to the needs for longitudinal studies at the systems level. PMID:24959164

  3. Learning from agriculture: understanding low-dose antimicrobials as drivers of resistome expansion.

    PubMed

    You, Yaqi; Silbergeld, Ellen K

    2014-01-01

    Antimicrobial resistance is a growing public health challenge worldwide, with agricultural use of antimicrobials being one major contributor to the emergence and dissemination of antimicrobial resistance (AMR). Globally, most antimicrobials are used in industrial food animal production, a major context for microbiomes encountering low-doses or subtherapeutic-levels of antimicrobial agents from all mechanistic classes. This modern practice exerts broad eco-evolutionary effects on the gut microbiome of food animals, which is subsequently transferred to animal waste. This waste contains complex constituents that are challenging to treat, including AMR determinants and low-dose antimicrobials. Unconfined storage or land deposition of a large volume of animal waste causes its wide contact with the environment and drives the expansion of the environmental resistome through mobilome facilitated horizontal genet transfer. The expanded environmental resistome, which encompasses both natural constituents and anthropogenic inputs, can persist under multiple stressors from agriculture and may re-enter humans, thus posing a public health risk to humans. For these reasons, this review focuses on agricultural antimicrobial use as a laboratory for understanding low-dose antimicrobials as drivers of resistome expansion, briefly summarizes current knowledge on this topic, highlights the importance of research specifically on environmental microbial ecosystems considering AMR as environmental pollution, and calls attention to the needs for longitudinal studies at the systems level.

  4. Human antimicrobial peptides and cancer.

    PubMed

    Jin, Ge; Weinberg, Aaron

    2018-05-30

    Antimicrobial peptides (AMPs) have long been a topic of interest for entomologists, biologists, immunologists and clinicians because of these agents' intriguing origins in insects, their ubiquitous expression in many life forms, their capacity to kill a wide range of bacteria, fungi and viruses, their role in innate immunity as microbicidal and immunoregulatory agents that orchestrate cross-talk with the adaptive immune system, and, most recently, their association with cancer. We and others have theorized that surveillance through epithelial cell-derived AMPs functions to keep the natural flora of microorganisms in a steady state in different niches such as the skin, the intestines, and the mouth. More recently, findings related to specific activation pathways of some of these AMPs have led investigators to associate them with pro-tumoral activity; i.e., contributing to a tumorigenic microenvironment. This area is still in its infancy as there are intriguing yet contradictory findings demonstrating that while some AMPs have anti-tumoral activity and are under-expressed in solid tumors, others are overexpressed and pro-tumorigenic. This review will introduce a new paradigm in cancer biology as it relates to AMP activity in neoplasia to address the following questions: Is there evidence that AMPs contribute to tumor promoting microenvironments? Can an anti-AMP strategy be of use in cancer therapy? Do AMPs, expressed in and released from tumors, contribute to compositional shifting of bacteria in cancerous lesions? Can specific AMP expression characteristics be used one day as early warning signs for solid tumors? Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Chitosan-based nanosystems and their exploited antimicrobial activity.

    PubMed

    Perinelli, Diego Romano; Fagioli, Laura; Campana, Raffaella; Lam, Jenny K W; Baffone, Wally; Palmieri, Giovanni Filippo; Casettari, Luca; Bonacucina, Giulia

    2018-05-30

    Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of pharmaceutics, biomedical, chemical, cosmetics, textile and food industry. One of the most interesting characteristics of chitosan is its antibacterial and antifungal activity, and together with its excellent safety profile in human, it has attracted considerable attention in various research disciplines. The antimicrobial activity of chitosan is dependent on a number of factors, including its molecular weight, degree of deacetylation, degree of substitution, physical form, as well as structural properties of the cell wall of the target microorganisms. While the sole use of chitosan may not be sufficient to produce an adequate antimicrobial effect to fulfil different purposes, the incorporation of this biopolymer with other active substances such as drugs, metals and natural compounds in nanosystems is a commonly employed strategy to enhance its antimicrobial potential. In this review, we aim to provide an overview on the different approaches that exploit the antimicrobial activity of chitosan-based nanosystems and their applications, and highlight the latest advances in this field. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Antimicrobial Effects of 7,8-Dihydroxy-6-Methoxycoumarin and 7-Hydroxy-6-Methoxycoumarin Analogues against Foodborne Pathogens and the Antimicrobial Mechanisms Associated with Membrane Permeability.

    PubMed

    Yang, Ji-Yeon; Park, Jun-Hwan; Lee, Myung-Ji; Lee, Ji-Hoon; Lee, Hoi-Seon

    2017-10-03

    The antimicrobial effects of 7,8-dihydroxy-6-methoxycoumarin and 7-hydroxy-6-methoxycoumarin isolated from Fraxinus rhynchophylla bark and of their structural analogues were determined in an attempt to develop natural antimicrobial agents against the foodborne pathogens Escherichia coli, Bacillus cereus, Staphylococcus intermedius, and Listeria monocytogenes. To elucidate the relationship between structure and antimicrobial activity for the coumarin analogues, isolated constituents and their structural analogues were evaluated against foodborne pathogens. Based on the culture plate inhibition zones and MICs, 6,7-dimethoxycoumarin, 7,8-dihydroxy-6-methoxycoumarin, 7-hydroxy-6-methoxycoumarin, and 7-methoxycoumarin, containing a methoxy functional group on the coumarin skeleton, had the notable antimicrobial activity against foodborne pathogens. However, 7-hydroxycoumarin and 6,7-dihydroxycoumarin, which contained a hydroxyl functional group on the coumarin skeleton, had no antimicrobial activity against these pathogens. An increase in cell membrane permeability was confirmed by electron microscopy observations, and release of extracellular ATP and cell constituents followed treatment with the ethyl acetate fraction of F. rhynchophylla extract. These findings indicate that F. rhynchophylla extract and coumarin analogues have potential for use as antimicrobial agents against foodborne pathogens and that the antimicrobial mechanisms are associated with the loss of cell membrane integrity.

  7. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  8. Characterisation of antimicrobial extracts from dandelion root (Taraxacum officinale) using LC-SPE-NMR.

    PubMed

    Kenny, O; Brunton, N P; Walsh, D; Hewage, C M; McLoughlin, P; Smyth, T J

    2015-04-01

    Plant extracts have traditionally been used as sources of natural antimicrobial compounds, although in many cases, the compounds responsible for their antimicrobial efficacy have not been identified. In this study, crude and dialysed extracts from dandelion root (Taraxacum officinale) were evaluated for their antimicrobial properties against Gram positive and Gram negative bacterial strains. The methanol hydrophobic crude extract (DRE3) demonstrated the strongest inhibition of microbial growth against Staphylococcus aureus, methicillin-resistant S. aureus and Bacillus cereus strains. Normal phase (NP) fractionation of DRE3 resulted in two fractions (NPF4 and NPF5) with enhanced antimicrobial activity. Further NP fractionation of NPF4 resulted in two fractions (NPF403 and NPF406) with increased antimicrobial activity. Further isolation and characterisation of compounds in NPF406 using liquid chromatography solid phase extraction nuclear magnetic resonance LC-SPE-NMR resulted in the identification of 9-hydroxyoctadecatrienoic acid and 9-hydroxyoctadecadienoic acid, while the phenolic compounds vanillin, coniferaldehyde and p-methoxyphenylglyoxylic acid were also identified respectively. The molecular mass of these compounds was confirmed by LC mass spectroscopy (MS)/MS. In summary, the antimicrobial efficacy of dandelion root extracts demonstrated in this study support the use of dandelion root as a source of natural antimicrobial compounds. Copyright © 2015 John Wiley & Sons, Ltd.

  9. The Safe Yield and Climatic Variability: Implications for Groundwater Management.

    PubMed

    Loáiciga, Hugo A

    2017-05-01

    Methods for calculating the safe yield are evaluated in this paper using a high-quality and long historical data set of groundwater recharge, discharge, extraction, and precipitation in a karst aquifer. Consideration is given to the role that climatic variability has on the determination of a climatically representative period with which to evaluate the safe yield. The methods employed to estimate the safe yield are consistent with its definition as a long-term average extraction rate that avoids adverse impacts on groundwater. The safe yield is a useful baseline for groundwater planning; yet, it is herein shown that it is not an operational rule that works well under all climatic conditions. This paper shows that due to the nature of dynamic groundwater processes it may be most appropriate to use an adaptive groundwater management strategy that links groundwater extraction rates to groundwater discharge rates, thus achieving a safe yield that represents an estimated long-term sustainable yield. An example of the calculation of the safe yield of the Edwards Aquifer (Texas) demonstrates that it is about one-half of the average annual recharge. © 2016, National Ground Water Association.

  10. Safe Landings in Extreme Terrain

    NASA Technical Reports Server (NTRS)

    Rivellini, Tom; Ortiz, Gary; Steltzner, Adam

    2000-01-01

    Following the failure of the Mars Polar Lander and the re-evaluation of the Mars Sample Return mission status, a Safe Landing Tiger team was established on January 7, 2000. The charter of the team was to re-evaluate large scale (1000-2000 Kg) Mars lander designs with the principal objective being the assurance of safe landing in hazardous terrain. The tiger team developed a number of concepts, two of the most notable and promising concepts, are both based on a Mobile Lander paradigm. Unlike the Pathfinder and Surveyor class landers, this paradigm groups all of the landed equipment into one of two categories: (1) EDL only equipment (i.e., not used after touchdown) and (2) multi-use equipment, those used during and or after touchdown. The objective is to maximize the use of all equipment being brought to the surface by placing the bulk of the avionics and mechanical systems onto a much larger 'rover' and leaving only the bare essentials on a 'dead-on-arrival' landing system. All of the hardware that the surface roving mission needs is enlisted into performing the EDL tasks. Any EDL specific avionics not used after touchdown are placed on the landing system.

  11. Antimicrobial resistance mechanisms among Campylobacter.

    PubMed

    Wieczorek, Kinga; Osek, Jacek

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are recognized as the most common causative agents of bacterial gastroenteritis in the world. Humans most often become infected by ingesting contaminated food, especially undercooked chicken, but also other sources of bacteria have been described. Campylobacteriosis is normally a self-limiting disease. Antimicrobial treatment is needed only in patients with more severe disease and in those who are immunologically compromised. The most common antimicrobial agents used in the treatment of Campylobacter infections are macrolides, such as erythromycin, and fluoroquinolones, such as ciprofloxacin. Tetracyclines have been suggested as an alternative choice in the treatment of clinical campylobacteriosis but in practice are not often used. However, during the past few decades an increasing number of resistant Campylobacter isolates have developed resistance to fluoroquinolones and other antimicrobials such as macrolides, aminoglycosides, and beta-lactams. Trends in antimicrobial resistance have shown a clear correlation between use of antibiotics in the veterinary medicine and animal production and resistant isolates of Campylobacter in humans. In this review, the patterns of emerging resistance to the antimicrobial agents useful in treatment of the disease are presented and the mechanisms of resistance to these drugs in Campylobacter are discussed.

  12. Neuropsychiatric Effects of Antimicrobial Agents.

    PubMed

    Zareifopoulos, Nicholas; Panayiotakopoulos, George

    2017-05-01

    Antimicrobial drugs used in clinical practice are selected on the basis of their selective toxicity against bacterial cells. However, all exhibit multiple offsite interactions with eukaryotic cell structures, resulting in adverse reactions during antimicrobial pharmacotherapy. A multitude of these side effects involve the nervous system as antimicrobials at clinically relevant concentrations seem to interact with many of the same molecules usually implicated in the action of psychotropic drugs. The importance of such events cannot be overstated, as the misdiagnosis of an adverse drug reaction as a symptom of a primary psychiatric or neurological disorder entails great suffering for the patient affected as well as significant costs for the healthcare system. The neuropsychiatric effects of antimicrobial drugs are extensively documented in the literature. A number of antimicrobial drugs have the potential to exert CNS effects and many are associated with stimulant, psychotomimetic and epileptogenic properties, mediated by GABA antagonism (beta-lactams, quinolones and clarithromycin), NMDA agonism (D-cycloserine, aminoglycosides, and perhaps quinolones), MAO inhibition (linezolid, metronidazole and isoniazid weakly) as well as more exotic mechanisms, as in the case of trimethoprim, isoniazid, ethambutol, rifampicin and the tetracyclines. While those effects are generally undesirable, they may also under certain circumstances be beneficial, and further research is warranted in that direction.

  13. Peptides with Dual Antimicrobial and Anticancer Activities

    NASA Astrophysics Data System (ADS)

    Felício, Mário R.; Silva, Osmar N.; Gonçalves, Sônia; Santos, Nuno C.; Franco, Octávio L.

    2017-02-01

    In recent years, the number of people suffering from cancer and multi-resistant infections has increased, such that both diseases are already seen as current and future major causes of death. Moreover, chronic infections are one of the main causes of cancer, due to the instability in the immune system that allows cancer cells to proliferate. Likewise, the physical debility associated with cancer or with anticancer therapy itself often paves the way for opportunistic infections. It is urgent to develop new therapeutic methods, with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found in the innate immune system of a wide range of organisms. Identified as the most promising alternative to conventional molecules used nowadays against infections, some of them have been shown to have dual activity, both as antimicrobial and anticancer peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy against both conditions, with the number of nature-driven or synthetically designed peptides increasing year by year. With similar properties, AMPs that can also act as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low propensity to resistance, which started this paradigm in the pharmaceutical market. These peptides have already been described as molecules presenting killing mechanisms at the membrane level, but also acting towards intracellular targets, which increases their success comparatively to specific one-target drugs. This review will approach the desirable characteristics of small peptides that demonstrated dual activity against microbial infections and cancer, as well as the peptides engaged in clinical trials.

  14. Prospective Source of Antimicrobial Compounds From Pigment Produced by Bacteria associated with Brown Alga ( Phaeophyceae ) Isolated from Karimunjawa island, Indonesia

    NASA Astrophysics Data System (ADS)

    Lunggani, A. T.; Darmanto, Y. S.; Radjasa, O. K.; Sabdono, A.

    2018-02-01

    Brown algae or Phaeophyceae characterized by their natural pigments that differ from other important algal classes. Several publications proves that brown algae - associated bacteria have great potential in developing marine pharmaceutical industry since they are capable to synthesized numerous bioactive metabolite compounds. However the potency of marine pigmented microbes associated with brown alga to produce natural pigments and antimicrobials has been less studied. Marine pigmented bacteria associated with brown algae collected from Karimunjawa Island were successfully isolated and screened for antimicrobial activity. The aim of this research was evaluated of the antimicrobial activity of pigments extracted from culturable marine pigmented bacteria on some pathogenic bacteria and yeast. The results showed that all isolates had antimicrobial activity and could be prospectively developed as antimicrobial agent producing pigments. The 6 marine pigmented bacteria was identified to genus level as Pseudoalteromonas, Sphingomonas, Serratia, Paracoccus, Vibrio.

  15. Staying Healthy and Safe at Work

    MedlinePlus

    ... The Prematurity Campaign About us Annual report Our work Community impact Global programs Research Need help? Frequently ... safe at work Staying healthy and safe at work E-mail to a friend Please fill in ...

  16. Taking Medicines Safely: At Your Doctor's Office

    MedlinePlus

    ... on. Feature: Taking Medicines Safely At Your Doctor's Office Past Issues / Summer 2013 Table of Contents Download ... Articles Medicines: Use Them Safely / At Your Doctor's Office / Ask Your Pharmacist / Now, It's Your Turn: How ...

  17. Petroleum Jelly: Safe for a Dry Nose?

    MedlinePlus

    ... dryness. Is this safe? Answers from Lawrence E. Gibson, M.D. Petroleum jelly is generally safe to ... several hours of lying down. With Lawrence E. Gibson, M.D. Marchiori E, et al. Exogenous lipoid ...

  18. Safe mobility for older people notebook

    DOT National Transportation Integrated Search

    1999-04-01

    The Safe Mobility for Older People Notebook is a research product of the "Model Driver Screening and Evaluation Program" project sponsored by NHTSA, and is intended as a resource to support program initiatives promoting the safe mobility of older per...

  19. Penicillin skin testing: potential implications for antimicrobial stewardship.

    PubMed

    Unger, Nathan R; Gauthier, Timothy P; Cheung, Linda W

    2013-08-01

    As the progression of multidrug-resistant organisms and lack of novel antibiotics move us closer toward a potential postantibiotic era, it is paramount to preserve the longevity of current therapeutic agents. Moreover, novel interventions for antimicrobial stewardship programs are integral to combating antimicrobial resistance worldwide. One unique method that may decrease the use of second-line antibiotics (e.g., fluoroquinolones, vancomycin) while facilitating access to a preferred β-lactam regimen in numerous health care settings is a penicillin skin test. Provided that up to 10% of patients have a reported penicillin allergy, of whom ~10% have true IgE-mediated hypersensitivity, significant potential exists to utilize a penicillin skin test to safely identify those who may receive penicillin or a β-lactam antibiotic. In this article, we provide information on the background, associated costs, currently available literature, pharmacists' role, antimicrobial stewardship implications, potential barriers, and misconceptions, as well as future directions associated with the penicillin skin test. © 2013 Pharmacotherapy Publications, Inc.

  20. Antimicrobial impact of the components of essential oil of Litsea cubeba from Taiwan and antimicrobial activity of the oil in food systems.

    PubMed

    Liu, Tai-Ti; Yang, Tsung-Shi

    2012-05-01

    Using natural additives to preserve foods has become popular due to consumer demands for nature and safety. Antimicrobial activity is one of the most important properties in many plant essential oils (EOs). The antimicrobial activity of the essential oil of Litsea cubeba (LC-EO) from Taiwan and the antimicrobial impact of individual volatile components in the oil on pathogens or spoilage microorganisms: Vibrio parahaemolyticus, Listeria monocytogenes, Lactobacillus plantarum, and Hansenula anomala in vitro, and the antimicrobial activity of the LC-EO against these organisms in food systems were studied. The "antimicrobial impact" (AI) is a new term that combines the effects of minimal microbicidal concentration (MMC) and quantity of an antimicrobial substance. The AI can quantitatively reflect the relative importance of individual components of the EO on the entire antimicrobial activity of the EO. The MMCs of the LC-EO against V. parahaemolyticus, L. monocytogenes, L. plantarum, and H. anomala were determined as 750, 750, 1500, and 375 μg/g, respectively in vitro. The MMCs of the LC-EO were 3000, 6000, and 12,000 μg/g for L. monocytogenes in tofu stored at 4 °C, 25 °C, and 37 °C, respectively. The temperature affected the bacterial growth which consequently influenced the MMCs of the LC-EO. The MMCs of the LC-EO were 3000, 6000, and 375 μg/g for Vibrio spp. in oysters, L. plantarum in orange-milk beverage, and H. anomala in soy sauce, respectively. Except for soy sauce, the food systems exhibited marked matrix effects on diminishing the antimicrobial activity of the LC-EO. Averagely, citral accounted for ca 70% of the total AI value for all the tested organisms, and the rest of the AI value of the LC-EO was determined by all the tested compounds (ca 4%) and the unidentified compounds (ca 26%). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter.

    PubMed

    Barlow, Robert S; McMillan, Kate E; Duffy, Lesley L; Fegan, Narelle; Jordan, David; Mellor, Glen E

    2017-01-01

    Antimicrobial agents are used in cattle production systems for the prevention and control of bacterial associated diseases. A consequence of their use is the potential development of antimicrobial resistance (AMR). Enterococcus faecium and Enterococcus faecalis that are resistant to antimicrobials are of increased concern to public health officials throughout the world as they may compromise the ability of various treatment regimens to control disease and infection in human medicine. Australia is a major exporter of beef; however it does not have an ongoing surveillance system for AMR in cattle or foods derived from these animals. This study examined 910 beef cattle, 290 dairy cattle and 300 veal calf faecal samples collected at slaughter for the presence of enterococci. Enterococcus were isolated from 805 (88.5%) beef cattle faeces, 244 (84.1%) dairy cattle faeces and 247 (82.3%) veal calf faeces with a total of 800 enterococci subsequently selected for AMR testing. The results of AMR testing identified high levels of resistance to antimicrobials that are not critically or highly important to human medicine with resistance to flavomycin (80.2%) and lincomycin (85.4-94.2%) routinely observed. Conversely, resistance to antibiotics considered critically or highly important to human medicine such as tigecycline, daptomycin, vancomycin and linezolid was not present in this study. There is minimal evidence that Australian cattle production practices are responsible for disproportionate contributions to AMR development and in general resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of antimicrobial resistance in Enterococcus from Australian cattle is likely to result from comprehensive controls around the use of antimicrobials in food-production animals in Australia. Nevertheless, continued monitoring of the effects of all antimicrobial use is required to support Australia's reputation

  2. Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter

    PubMed Central

    McMillan, Kate E.; Duffy, Lesley L.; Fegan, Narelle; Jordan, David; Mellor, Glen E.

    2017-01-01

    Antimicrobial agents are used in cattle production systems for the prevention and control of bacterial associated diseases. A consequence of their use is the potential development of antimicrobial resistance (AMR). Enterococcus faecium and Enterococcus faecalis that are resistant to antimicrobials are of increased concern to public health officials throughout the world as they may compromise the ability of various treatment regimens to control disease and infection in human medicine. Australia is a major exporter of beef; however it does not have an ongoing surveillance system for AMR in cattle or foods derived from these animals. This study examined 910 beef cattle, 290 dairy cattle and 300 veal calf faecal samples collected at slaughter for the presence of enterococci. Enterococcus were isolated from 805 (88.5%) beef cattle faeces, 244 (84.1%) dairy cattle faeces and 247 (82.3%) veal calf faeces with a total of 800 enterococci subsequently selected for AMR testing. The results of AMR testing identified high levels of resistance to antimicrobials that are not critically or highly important to human medicine with resistance to flavomycin (80.2%) and lincomycin (85.4–94.2%) routinely observed. Conversely, resistance to antibiotics considered critically or highly important to human medicine such as tigecycline, daptomycin, vancomycin and linezolid was not present in this study. There is minimal evidence that Australian cattle production practices are responsible for disproportionate contributions to AMR development and in general resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of antimicrobial resistance in Enterococcus from Australian cattle is likely to result from comprehensive controls around the use of antimicrobials in food-production animals in Australia. Nevertheless, continued monitoring of the effects of all antimicrobial use is required to support Australia

  3. Inappropriate use of antibiotics in hospitals: the complex relationship between antibiotic use and antimicrobial resistance.

    PubMed

    Cantón, Rafael; Horcajada, Juan Pablo; Oliver, Antonio; Garbajosa, Patricia Ruiz; Vila, Jordi

    2013-09-01

    Hospitals are considered an excellent compartment for the selection of resistant and multi-drug resistant (MDR) bacteria. The overuse and misuse of antimicrobial agents are considered key points fuelling this situation. Antimicrobial stewardship programs have been designed for better use of these compounds to prevent the emergence of resistant microorganisms and to diminish the upward trend in resistance. Nevertheless, the relationship between antibiotic use and antimicrobial resistance is complex, and the desired objectives are difficult to reach. Various factors affecting this relationship have been advocated including, among others, antibiotic exposure and mutant selection windows, antimicrobial pharmacodynamics, the nature of the resistance (natural or acquired, including mutational and that associated with horizontal gene transfer) and the definition of resistance. Moreover, antimicrobial policies to promote better use of these drugs should be implemented not only in the hospital setting coupled with infection control programs, but also in the community, which should also include animal and environmental compartments. Within hospitals, the restriction of antimicrobials, cycling and mixing strategies and the use of combination therapies have been used to avoid resistance. Nevertheless, the results have not always been favorable and resistant bacteria have persisted despite the theoretical benefits of these strategies. Mathematical models as well as microbiological knowledge can explain this failure, which is mainly related to the current scenario involving MDR bacteria and overcoming the fitness associated with resistance. New antimicrobials, rapid diagnostic and antimicrobial susceptibility testing and biomarkers will be useful for future antimicrobial stewardship interventions. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  4. In Vitro Antimicrobial Potential of the Lichen Parmotrema sp. Extracts against Various Pathogens.

    PubMed

    Chauhan, Ritika; Abraham, Jayanthi

    2013-07-01

    The ongoing increasing antibiotic resistance is one of the biggest challenges faced by global public health. The perennial need for new antimicrobials against a background of increasing antibiotic resistance in pathogenic and opportunistic microorganisms obliges the scientific community to constantly develop new drugs and antimicrobial agents. Lichens are known prolific sources of natural antimicrobial drugs and biologically active natural products. This study was aimed to explore in vitro antimicrobial activity of lichen Parmotrema sp. The methanol and aqueous extracts of lichen Parmotrema sp. was extracted using Soxhlet extractor. Antibiotic assessment of methanol and aqueous extracts was done against eight bacterial (Escherichia coli, Staphylococcus aureus, Proteus mirabilis, Salmonella sp., Shigella sp., Enterococci faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae,) clinical pathogens and five plant pathogenic fungal strains (Aspergillus terreus strain JAS1, Scedosporium sp. JAS1, Ganoderma sp. JAS4, Candida tropicalis and Fusarium sp.) by Kirby-Bauer method. The methanol lichen Parmotrema sp. extract inhibited all the test organisms. The highest antibacterial activity was found against Pseudomonas aeruginosa and Staphylococcus aureus. The weakest activity was manifested in Salmonella sp. and Scedosporium sp. JAS1. Strong antifungal effect was found against Ganoderma sp. JAS4 and Fusarium sp. The aqueous lichen Parmotrema sp. extract revealed neither antibacterial nor antifungal activity. The present study shows that tested lichen Parmotrema sp. extracts demonstrated a strong antimicrobial effect. That suggests the active components from methanol extracts of the investigated lichen Parmotrema sp. can be used as natural antimicrobial agent against pathogens.

  5. Uses of antimicrobial genes from microbial genome

    DOEpatents

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  6. Host Defense Antimicrobial Peptides as Antibiotics: Design and Application Strategies

    PubMed Central

    Mishra, Biswajit; Reiling, Scott; Zarena, D.; Wang, Guangshun

    2017-01-01

    This review deals with the design and application strategies of new antibiotics based on naturally occurring antimicrobial peptides (AMPs). The initial candidate can be designed based on three-dimensional structure or selected from a library of peptides from natural or laboratory sources followed by optimization via structure-activity relationship studies. There are also advanced application strategies such as induction of AMP expression from host cells by various factors (e.g., metals, amino acids, vitamin D and sunlight), the use of engineered probiotic bacteria to deliver peptides, the design of prodrug and peptide conjugates to improve specific targeting. In addition, combined uses of newly developed AMPs with existing antimicrobial agents may provide a practical avenue for effective management of antibiotic-resistant bacteria (superbugs, including biofilm). Finally, we highlight AMPs already in use or under clinical trials. PMID:28399505

  7. Safe motherhood: when to begin.

    PubMed

    Verma, M; Chhatwal, J; Mathew, E

    1994-08-01

    Two thousand five hundred college girls were assessed for their knowledge and attitudes regarding sex, pregnancy and child rearing with the help of a pretested questionnaire. The site of menstruation was known to only 35.3% of the girls. The knowledge about the time and site of conception was 25.3% and 58.2%, respectively. Only 16.3% of the respondents knew the normal route of delivery although the duration of normal pregnancy was known to majority (87.7%). The girls were aware of the ideal timing of abortion (67.5%) but the safe method and legality were poorly known facts. Only 5% of the girls believed in pre-marital sex. More than half (54.9%) of the girls knew about some form of contraceptive, Copper-T being the best known. Nearly one fifth of the girls were either undecided or wished family members to decide about antenatal check-ups. The need for better diet and injections during pregnancy was well known although few (15.2%) were aware of the injections being tetanus toxoid. Only about 10% wanted a home delivery but one fourth felt that a Dai or a relative was suitable for conducting the delivery. An overwhelming majority of the students stated that knowledge about above facts was important and they would like to learn about them preferably during college education. It is recommended that 'Family life education' be provided during pre-adolescent and adolescent years to ensure a safe motherhood and a healthy child.

  8. SOME PROBLEMS OF "SAFE DOSE" ESTIMATION

    EPA Science Inventory

    In environmental carcinogenic risk assessment, the usually defined "safe doses" appear subjective in some sense. n this paper a method of standardizing "safe doses" based on some objective parameters is introduced and a procedure of estimating safe doses under the competing risks...

  9. Developing Safe Schools Partnerships with Law Enforcement

    ERIC Educational Resources Information Center

    Rosiak, John

    2009-01-01

    Safe schools are the concern of communities throughout the world. If a school is safe, and if children feel safe, students "are better able to learn. But what are the steps to make" this happen? First, it is important to understand the problem: What are the threats to school safety? These include crime-related behaviors that find their way to…

  10. Strategies for Countering Terrorist Safe Havens

    DTIC Science & Technology

    2014-02-20

    within safe havens, tactical containment, pseudo operations, and surrogate security forces. The thesis draws from four historical case studies to...leadership targeting within safe havens, tactical containment, pseudo operations, and surrogate security forces. The thesis draws from four historical case ...surrogate forces and pseudo operations—provide viable potential options for USSOF to counter the complex problem of safe havens. Overall, the case

  11. Prudent Use of Antimicrobials in Exotic Animal Medicine.

    PubMed

    Broens, Els M; van Geijlswijk, Ingeborg M

    2018-05-01

    Reduction of antimicrobial use can result in reduction of resistance in commensal bacteria. In exotic animals, information on use of antimicrobials and resistance in commensals and pathogens is scarce. However, use of antimicrobials listed as critically important antimicrobials for human medicine seems high in exotic animals. Ideally, the selection of a therapy should be based on an accurate diagnosis and antimicrobial susceptibility testing. When prescribing antimicrobials based on empiricism, knowledge of the most common pathogens causing specific infections and the antimicrobial spectrum of antimicrobial agents is indispensable. Implementing antimicrobial stewardship promotes the prudent use of antimicrobials in exotic animals. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Antimicrobial peptides: a new class of antimalarial drugs?

    PubMed Central

    Vale, Nuno; Aguiar, Luísa; Gomes, Paula

    2014-01-01

    A range of antimicrobial peptides (AMP) exhibit activity on malaria parasites, Plasmodium spp., in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity, and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs. PMID:25566072

  13. Fluoroquinolone antimicrobial agents.

    PubMed Central

    Wolfson, J S; Hooper, D C

    1989-01-01

    The fluoroquinolones, a new class of potent orally absorbed antimicrobial agents, are reviewed, considering structure, mechanisms of action and resistance, spectrum, variables affecting activity in vitro, pharmacokinetic properties, clinical efficacy, emergence of resistance, and tolerability. The primary bacterial target is the enzyme deoxyribonucleic acid gyrase. Bacterial resistance occurs by chromosomal mutations altering deoxyribonucleic acid gyrase and decreasing drug permeation. The drugs are bactericidal and potent in vitro against members of the family Enterobacteriaceae, Haemophilus spp., and Neisseria spp., have good activity against Pseudomonas aeruginosa and staphylococci, and (with several exceptions) are less potent against streptococci and have fair to poor activity against anaerobic species. Potency in vitro decreases in the presence of low pH, magnesium ions, or urine but is little affected by different media, increased inoculum, or serum. The effects of the drugs in combination with a beta-lactam or aminoglycoside are often additive, occasionally synergistic, and rarely antagonistic. The agents are orally absorbed, require at most twice-daily dosing, and achieve high concentrations in urine, feces, and kidney and good concentrations in lung, bone, prostate, and other tissues. The drugs are efficacious in treatment of a variety of bacterial infections, including uncomplicated and complicated urinary tract infections, bacterial gastroenteritis, and gonorrhea, and show promise for therapy of prostatitis, respiratory tract infections, osteomyelitis, and cutaneous infections, particularly when caused by aerobic gram-negative bacilli. Fluoroquinolones have also proved to be efficacious for prophylaxis against travelers' diarrhea and infection with gram-negative bacilli in neutropenic patients. The drugs are effective in eliminating carriage of Neisseria meningitidis. Patient tolerability appears acceptable, with gastrointestinal or central nervous

  14. Safe use of chemicals for sterilization in healthcare.

    PubMed

    Warburton, P Richard

    2012-01-01

    Chemical sterilization is necessary for temperature sensitive items that cannot be sterilized with steam. These chemical sterilants are by their nature hazardous; otherwise, they would not function well. Modern sterilizers and associated equipment are designed so that these chemicals can be used safely. Whether through mechanical failure, wear and tear, or user error, leaks do sometimes occur. The maximum chemical exposure is determined by OSHA permissible exposure limits, if available, and if not available, employers should use recognized standards. Employers have a duty to ensure safe work environment and take appropriate action to mitigate potential risks. Employers should therefore assess the hazards of the chemicals used, the potential modes for leakage, means for identifying leaks and the risk of exposure of employees. Ideally, work practices should be developed by healthcare facilities so that sterile processing employees know what to do in case of a chemical leak or spill, and how to safely use these chemicals to ensure their own, and patient safety.

  15. Antimicrobial drugs for treating cholera.

    PubMed

    Leibovici-Weissman, Ya'ara; Neuberger, Ami; Bitterman, Roni; Sinclair, David; Salam, Mohammed Abdus; Paul, Mical

    2014-06-19

    Cholera is an acute watery diarrhoea caused by infection with the bacterium Vibrio cholerae, which if severe can cause rapid dehydration and death. Effective management requires early diagnosis and rehydration using oral rehydration salts or intravenous fluids. In this review, we evaluate the additional benefits of treating cholera with antimicrobial drugs. To quantify the benefit of antimicrobial treatment for patients with cholera, and determine whether there are differences between classes of antimicrobials or dosing schedules. We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; African Index Medicus; LILACS; Science Citation Index; metaRegister of Controlled Trials; WHO International Clinical Trials Registry Platform; conference proceedings; and reference lists to March 2014. Randomized and quasi-randomized controlled clinical trials in adults and children with cholera that compared: 1) any antimicrobial treatment with placebo or no treatment; 2) different antimicrobials head-to-head; or 3) different dosing schedules or different durations of treatment with the same antimicrobial. Two reviewers independently applied inclusion and exclusion criteria, and extracted data from included trials. Diarrhoea duration and stool volume were defined as primary outcomes. We calculated mean difference (MD) or ratio of means (ROM) for continuous outcomes, with 95% confidence intervals (CI), and pooled data using a random-effects meta-analysis. The quality of evidence was assessed using the GRADE approach. Thirty-nine trials were included in this review with 4623 participants. Antimicrobials versus placebo or no treatment Overall, antimicrobial therapy shortened the mean duration of diarrhoea by about a day and a half compared to placebo or no treatment (MD -36.77 hours, 95% CI -43.51 to -30.03, 19 trials, 1013 participants, moderate quality evidence). Antimicrobial therapy also

  16. Safe Handover : Safe Patients - The Electronic Handover System.

    PubMed

    Till, Alex; Sall, Hanish; Wilkinson, Jonathan

    2014-01-01

    Failure of effective handover is a major preventable cause of patient harm. We aimed to promote accurate recording of high-quality clinical information using an Electronic Handover System (EHS) that would contribute to a sustainable improvement in effective patient care and safety. Within our hospital the human factors associated with poor communication were compromising patient care and unnecessarily increasing the workload of staff due to the poor quality of handovers. Only half of handovers were understood by the doctors expected to complete them, and more than half of our medical staff felt it posed a risk to patient safety. We created a standardised proforma for handovers that contained specific sub-headings, re-classified patient risk assessments, and aided escalation of care by adding prompts for verbal handover. Sources of miscommunication were removed, accountability for handovers provided, and tasks were re-organised to reduce the workload of staff. Long-term, three-month data showed that each sub-heading achieved at least 80% compliance (an average improvement of approximately 40% for the overall quality of handovers). This translated into 91% of handovers being subjectively clear to junior doctors. 87% of medical staff felt we had reduced a risk to patient safety and 80% felt it increased continuity of care. Without guidance, doctors omit key information required for effective handover. All organisations should consider implementing an electronic handover system as a viable, sustainable and safe solution to handover of care that allows patient safety to remain at the heart of the NHS.

  17. Antimicrobial peptides extend lifespan in Drosophila

    PubMed Central

    Mori, Tetsushi; Carrera, Pilar; Schroer, Jonas; Takeyama, Haruko

    2017-01-01

    Antimicrobial peptides (AMPs) are important defense molecules of the innate immune system. High levels of AMPs are induced in response to infections to fight pathogens, whereas moderate levels induced by metabolic stress are thought to shape commensal microbial communities at barrier tissues. We expressed single AMPs in adult flies either ubiquitously or in the gut by using the inducible GeneSwitch system to tightly regulate AMP expression. We found that activation of single AMPs, including Drosocin, resulted in a significant extension of Drosophila lifespan. These animals showed reduced activity of immune pathways over lifetime, less intestinal regenerative processes, reduced stress response and a delayed loss of gut barrier integrity. Furthermore, intestinal Drosocin induction protected the animals against infections with the natural Drosophila pathogen Pseudomonas entomophila, whereas a germ-reduced environment prevented the lifespan extending effect of Drosocin. Our study provides new insights into the crosstalk of innate immunity, intestinal homeostasis and ageing. PMID:28520752

  18. Antimicrobial peptides extend lifespan in Drosophila.

    PubMed

    Loch, Gerrit; Zinke, Ingo; Mori, Tetsushi; Carrera, Pilar; Schroer, Jonas; Takeyama, Haruko; Hoch, Michael

    2017-01-01

    Antimicrobial peptides (AMPs) are important defense molecules of the innate immune system. High levels of AMPs are induced in response to infections to fight pathogens, whereas moderate levels induced by metabolic stress are thought to shape commensal microbial communities at barrier tissues. We expressed single AMPs in adult flies either ubiquitously or in the gut by using the inducible GeneSwitch system to tightly regulate AMP expression. We found that activation of single AMPs, including Drosocin, resulted in a significant extension of Drosophila lifespan. These animals showed reduced activity of immune pathways over lifetime, less intestinal regenerative processes, reduced stress response and a delayed loss of gut barrier integrity. Furthermore, intestinal Drosocin induction protected the animals against infections with the natural Drosophila pathogen Pseudomonas entomophila, whereas a germ-reduced environment prevented the lifespan extending effect of Drosocin. Our study provides new insights into the crosstalk of innate immunity, intestinal homeostasis and ageing.

  19. Using CRISPR-Cas systems as antimicrobials.

    PubMed

    Bikard, David; Barrangou, Rodolphe

    2017-06-01

    Although CRISPR-Cas systems naturally evolved to provide adaptive immunity in bacteria and archaea, Cas nucleases can be co-opted to target chromosomal sequences rather than invasive genetic elements. Although genome editing is the primary outcome of self-targeting using CRISPR-based technologies in eukaryotes, self-targeting by CRISPR is typically lethal in bacteria. Here, we discuss how DNA damage introduced by Cas nucleases in bacteria can efficiently and specifically lead to plasmid curing or drive cell death. Specifically, we discuss how various CRISPR-Cas systems can be engineered and delivered using phages or phagemids as vectors. These principles establish CRISPR-Cas systems as potent and programmable antimicrobials, and open new avenues for the development of CRISPR-based tools for selective removal of bacterial pathogens and precise microbiome composition alteration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs.

    PubMed

    Molchanova, Natalia; Hansen, Paul R; Franzyk, Henrik

    2017-08-29

    The rapid emergence of multidrug-resistant pathogens has evolved into a global health problem as current treatment options are failing for infections caused by pan-resistant bacteria. Hence, novel antibiotics are in high demand, and for this reason antimicrobial peptides (AMPs) have attracted considerable interest, since they often show broad-spectrum activity, fast killing and high cell selectivity. However, the therapeutic potential of natural AMPs is limited by their short plasma half-life. Antimicrobial peptidomimetics mimic the structure and biological activity of AMPs, but display extended stability in the presence of biological matrices. In the present review, focus is on the developments reported in the last decade with respect to their design, synthesis, antimicrobial activity, cytotoxic side effects as well as their potential applications as anti-infective agents. Specifically, only peptidomimetics with a modular structure of residues connected via amide linkages will be discussed. These comprise the classes of α-peptoids ( N -alkylated glycine oligomers), β-peptoids ( N -alkylated β-alanine oligomers), β³-peptides, α/β³-peptides, α-peptide/β-peptoid hybrids, α/γ N -acylated N -aminoethylpeptides (AApeptides), and oligoacyllysines (OAKs). Such peptidomimetics are of particular interest due to their potent antimicrobial activity, versatile design, and convenient optimization via assembly by standard solid-phase procedures.

  1. An enhancer peptide for membrane-disrupting antimicrobial peptides

    PubMed Central

    2010-01-01

    Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4) by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn). Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin) killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus), whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin) were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane. PMID:20152058

  2. Antimicrobial activity of jasmine oil against oral microorganisms

    NASA Astrophysics Data System (ADS)

    Thaweboon, S.; Thaweboon, B.; Kaypetch, R.

    2018-02-01

    Jasmine sambac is a species of jasmine indigenous to the tropical and warm temperature regions in particular West and Southeast Asia. Essential oil extracted from the flowers of J. sambac has been shown to have anti-oxidant activity. However, very little information regarding antimicrobial activity especially oral microorganisms exists. Objective: To investigate antimicrobial effect of essential oil extracted from flowers of J. sambac against various oral microorganisms. Materials and Methods: Oral microbial strains used in the study were Streptococcus mutans KPSK2, Staphylococcus aureus ATCC 5638, Lactobacillus casei ATCC 6363, Klebsiella pneumoniae (clinical isolate), Escherichia coli ATCC 25922, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida tropicalis (clinical isolate), Candida glabrata ATCC 90030, Candida pseudotropicalis (clinical isolate) and Candida stellatoidia (clinical isolate). The potential of microbial growth inhibition of the oil was firstly screened by Kirby-Bauer disk diffusion method and then the minimum inhibitory concentration (MIC) was determined by agar dilution method. Results: Jasmine oil showed antimicrobial activities against S. mutans, L. casei, E. coli and all strains of Candida species with the zones of inhibition ranging from 9 to 26 mm and MIC values of 0.19-1.56 %v/v. Conclusion: Results from the present study are scientific evidence to demonstrate that jasmine oil could be employed as a natural antimicrobial agent against oral microorganisms.

  3. Risk Assessment of Growth Hormones and Antimicrobial Residues in Meat

    PubMed Central

    Jeong, Sang-Hee; Kang, Daejin; Lim, Myung-Woon; Kang, Chang Soo

    2010-01-01

    Growth promoters including hormonal substances and antibiotics are used legally and illegally in food producing animals for the growth promotion of livestock animals. Hormonal substances still under debate in terms of their human health impacts are estradiol-17β, progesterone, testosterone, zeranol, trenbolone, and melengestrol acetate (MGA) . Many of the risk assessment results of natural steroid hormones have presented negligible impacts when they are used under good veterinary practices. For synthetic hormonelike substances, ADIs and MRLs have been established for food safety along with the approval of animal treatment. Small amounts of antibiotics added to feedstuff present growth promotion effects via the prevention of infectious diseases at doses lower than therapeutic dose. The induction of antimicrobial resistant bacteria and the disruption of normal human intestinal flora are major concerns in terms of human health impact. Regulatory guidance such as ADIs and MRLs fully reflect the impact on human gastrointestinal microflora. However, before deciding on any risk management options, risk assessments of antimicrobial resistance require large-scale evidence regarding the relationship between antimicrobial use in food-producing animals and the occurrence of antimicrobial resistance in human pathogens. In this article, the risk profiles of hormonal and antibacterial growth promoters are provided based on recent toxicity and human exposure information, and recommendations for risk management to prevent human health impacts by the use of growth promoters are also presented. PMID:24278538

  4. Recombinant production of antimicrobial peptides in Escherichia coli: a review.

    PubMed

    Li, Yifeng

    2011-12-01

    Antimicrobial peptides are of great interest due to their potential application as novel antibiotics. Large quantities of highly purified peptides are required to meet the needs of basic research and clinical trials. Compared with isolation from natural sources and chemical synthesis, recombinant approach offers the most cost-effective means for large-scale peptide manufacture. Among the systems available for heterologous protein production, Escherichia coli has been the most widely used host. Antimicrobial peptides produced in E. coli are often expressed as fusion proteins, a strategy necessary to mask these peptides' lethal effect towards the host and protect them from proteolytic degradation. The present article reviews commonly used fusion partners (e.g., solubility-enhancing, aggregation-promoting and self-cleavable carriers, etc.), cleavage methods and optimization options for antimicrobial peptides production in E. coli. In addition, the various approaches developed to generate recombinant human antimicrobial peptide LL-37, which offer excellent examples demonstrating effective production strategies, were briefly discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Antimicrobial resistance: A global emerging threat to public health systems.

    PubMed

    Ferri, Maurizio; Ranucci, Elena; Romagnoli, Paola; Giaccone, Valerio

    2017-09-02

    Antimicrobial resistance (AMR) became in the last two decades a global threat to public health systems in the world. Since the antibiotic era, with the discovery of the first antibiotics that provided consistent health benefits to human medicine, the misuse and abuse of antimicrobials in veterinary and human medicine have accelerated the growing worldwide phenomenon of AMR. This article presents an extensive overview of the epidemiology of AMR, with a focus on the link between food producing-animals and humans and on the legal framework and policies currently implemented at the EU level and globally. The ways of responding to the AMR challenges foresee an array of measures that include: designing more effective preventive measures at farm level to reduce the use of antimicrobials; development of novel antimicrobials; strengthening of AMR surveillance system in animal and human populations; better knowledge of the ecology of resistant bacteria and resistant genes; increased awareness of stakeholders on the prudent use of antibiotics in animal productions and clinical arena; and the public health and environmental consequences of AMR. Based on the global nature of AMR and considering that bacterial resistance does not recognize barriers and can spread to people and the environment, the article ends with specific recommendations structured around a holistic approach and targeted to different stakeholders.

  6. Control of the development and prevalence of antimicrobial resistance in bacteria of food animal origin in Japan: a new approach for risk management of antimicrobial veterinary medicinal products in Japan.

    PubMed

    Asai, Tetsuo; Hiki, Mototaka; Ozawa, Manao; Koike, Ryoji; Eguchi, Kaoru; Kawanishi, Michiko; Kojima, Akemi; Endoh, Yuuko S; Hamamoto, Shuichi; Sakai, Masato; Sekiya, Tatsuro

    2014-03-01

    Antimicrobial agents are essential for controlling bacterial disease in food-producing animals and contribute to the stable production of safe animal products. The use of antimicrobial agents in these animals affects the emergence and prevalence of antimicrobial resistance in bacteria isolated from animals and animal products. As disease-causing bacteria are often transferred from food-producing animals to humans, the food chain is considered a route of transmission for the resistant bacteria and/or resistance genes. The Food Safety Commission of Japan (FSC) has been assessing the risk posed to human health by the transmission of antimicrobial-resistant bacteria from livestock products via the food chain. In addition to the FSC's risk assessments, the Japanese Ministry of Agriculture, Forestry and Fisheries has developed risk-management guidelines to determine feasible risk-management options for the use of antimicrobial veterinary medicinal products during farming practices. This report includes information on risk assessment and novel approaches for risk management of antimicrobial veterinary medicinal products for mitigating the risk of development and prevalence of antimicrobial resistance in bacteria originating from food-producing animals in Japan.

  7. Green and biodegradable composite films with novel antimicrobial performance based on cellulose.

    PubMed

    Wu, Yuehan; Luo, Xiaogang; Li, Wei; Song, Rong; Li, Jing; Li, Yan; Li, Bin; Liu, Shilin

    2016-04-15

    In order to obtain a safe and biodegradable material with antimicrobial properties from cellulose for food packaging, we presented a facile way to graft chitosan onto the oxidized cellulose films. The obtained films had a high transparent property of above 80% transmittance, excellent barrier properties against oxygen and antimicrobial properties against Escherichia coli and Staphylococcus aureus. The antimicrobial properties, mechanical properties, and water vapor permeability of composites are essential characteristics in determining their applicability as food-packaging materials. Moreover, using a sausage model, it was shown that the composites exhibited better performance than traditional polyethylene packaging material and demonstrated good potential as food packaging materials. The results presented a new insight into the development of green materials for food packaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. [Analysis on the antimicrobial resistance of lactic acid bacteria isolated from the yogurt sold in China].

    PubMed

    Fan, Qin; Liu, Shuliang; Li, Juan; Huang, Tingting

    2012-05-01

    To analyze the antimicrobial susceptibility of lactic acid bacteria (LAB) from yogurt, and to provide references for evaluating the safety of LAB and screening safe strains. The sensitivity of 43 LAB strains, including 14 strains of Streptococcus thermophilus, 12 strains of Lactobacillus acidophilus, 9 strains of Lactobacillus bulgaricus and 8 strains of Bifidobacterium, to 22 antibiotics were tested by agar plate dilution method. All 43 LAB strains were resistant to trimethoprim, nalidixic acid, ciprofloxacin, lomefloxacin, danofloxacin and polymyxin E. Their resistances to kanamycin, tetracycline, clindamycin, doxycycline and cephalothin were varied. The sensitivity to other antibiotics were sensitive or moderate. All isolates were multidrug-resistant. The antimicrobial resistance of tested LAB strains was comparatively serious, and continuously monitoring their antimicrobial resistance and evaluating their safety should be strengthened.

  9. Preliminary phytochemical screening and antimicrobial evaluation of three medicinal plants used in Nigeria.

    PubMed

    Baba, Haruna; Onanuga, Adebola

    2011-01-01

    Methanol extract of three Nigerian medicinal plants were screened for antimicrobial activity using modified Kirby-Bauer disc diffusion and agar dilution techniques to determine the diameters of zone of inhibition and minimum inhibitory concentrations (MIC) of the extracts respectively. The extract of each of the plants were tested against five clinical bacterial isolates comprising of two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and three Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumonia) organisms. All the extracts exhibited moderate to high level of antimicrobial activities against these microorganisms. Phytochemical screening of powdered plant material revealed the presence of some secondary metabolites such as alkaloids, saponins, tannins, anthraquinones and flavonoids. These Nigerian medicinal plants could be developed into cheap, safe and culturally acceptable standardized herbal products and may serve as a source of new molecules for broad-spectrum antimicrobial agents.

  10. Coloristic and antimicrobial behaviour of polymeric substrates using bioactive substances

    NASA Astrophysics Data System (ADS)

    Coman, D.; Vrînceanu, N.; Oancea, S.; Rîmbu, C.

    2016-08-01

    A major concern in reducing microbial contamination of healthcare and hygiene products motivated us to seek viable alternatives in order to create such barriers. The antimicrobial and anti-oxidant effects of natural extracts are well-known, their application onto polymeric supports is still challenging in terms of investigation. To our knowledge, the method of natural dyeing of different polymeric substrates using bioactive substances derived from black currant and green walnut shells, in conjunction with biomordants, and their long term effects have not been very consistently reported. The main objective of the study is based on the comparative study of different polymeric fibrous substrates dyed by means of laboratory scaled classic methodology with extracts from black currant fruits and green walnut shells, with the assistance of conventional and biomordants (copper sulphate, citric and tannic acids). The assistance of biomordant in the dyeing process seems to conduct to improved synergetic colouring and antibacterial performances. The main results demonstrated that the extract of green walnut shells reinforced by the biomordants solutions expressed the best antimicrobial behaviour. The present research is a milestone in the identification of potential technological alternatives applied in dyeing of synthetic and natural textile supports, quantified and controlled by antimicrobial response correlated with colorimetric features.

  11. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles

    PubMed Central

    Dakal, Tikam Chand; Kumar, Anu; Majumdar, Rita S.; Yadav, Vinod

    2016-01-01

    Multidrug resistance of the pathogenic microorganisms to the antimicrobial drugs has become a major impediment toward successful diagnosis and management of infectious diseases. Recent advancements in nanotechnology-based medicines have opened new horizons for combating multidrug resistance in microorganisms. In particular, the use of silver nanoparticles (AgNPs) as a potent antibacterial agent has received much attention. The most critical physico-chemical parameters that affect the antimicrobial potential of AgNPs include size, shape, surface charge, concentration and colloidal state. AgNPs exhibits their antimicrobial potential through multifaceted mechanisms. AgNPs adhesion to microbial cells, penetration inside the cells, ROS and free radical generation, and modulation of microbial signal transduction pathways have been recognized as the most prominent modes of antimicrobial action. On the other side, AgNPs exposure to human cells induces cytotoxicity, genotoxicity, and inflammatory response in human cells in a cell-type dependent manner. This has raised concerns regarding use of AgNPs in therapeutics and drug delivery. We have summarized the emerging endeavors that address current challenges in relation to safe use of AgNPs in therapeutics and drug delivery platforms. Based on research done so far, we believe that AgNPs can be engineered so as to increase their efficacy, stability, specificity, biosafety and biocompatibility. In this regard, three perspectives research directions have been suggested that include (1) synthesizing AgNPs with controlled physico-chemical properties, (2) examining microbial development of resistance toward AgNPs, and (3) ascertaining the susceptibility of cytoxicity, genotoxicity, and inflammatory response to human cells upon AgNPs exposure. PMID:27899918

  12. Recent updates of marine antimicrobial peptides.

    PubMed

    Semreen, Mohammad H; El-Gamal, Mohammed I; Abdin, Shifaa; Alkhazraji, Hajar; Kamal, Leena; Hammad, Saba; El-Awady, Faten; Waleed, Dima; Kourbaj, Layal

    2018-03-01

    Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.

  13. Use of antimicrobial films and edible coatings incorporating chemical and biological preservatives to control growth of Listeria monocytogenes on cold smoked salmon.

    PubMed

    Neetoo, Hudaa; Mahomoodally, Fawzi

    2014-01-01

    The relatively high incidence of Listeria monocytogenes in cold smoked salmon (CSS) is of concern as it is a refrigerated processed food of extended durability (REPFED). The objectives of this study were to compare and optimize the antimicrobial effectiveness of films and coatings incorporating nisin (Nis) and sodium lactate (SL), sodium diacetate (SD), potassium sorbate (PS), and/or sodium benzoate (SB) in binary or ternary combinations on CSS. Surface treatments incorporating Nis (25000 IU/mL) in combination with PS (0.3%) and SB (0.1%) had the highest inhibitory activity, reducing the population of L. monocytogenes by a maximum of 3.3 log CFU/cm(2) (films) and 2.9 log CFU/cm(2) (coatings) relative to control samples after 10 days of storage at 21°C. During refrigerated storage, coatings were more effective in inhibiting growth of L. monocytogenes than their film counterparts. Cellulose-based coatings incorporating Nis, PS, and SB reduced the population of L. monocytogenes, and anaerobic and aerobic spoilage flora by a maximum of 4.2, 4.8, and 4.9 log CFU/cm(2), respectively, after 4 weeks of refrigerated storage. This study highlights the effectiveness of cellulose-based edible coatings incorporating generally regarded as safe (GRAS) natural and chemical antimicrobials to inhibit the development of L. monocytogenes and spoilage microflora thus enhancing the safety and quality of CSS.

  14. Use of Antimicrobial Films and Edible Coatings Incorporating Chemical and Biological Preservatives to Control Growth of Listeria monocytogenes on Cold Smoked Salmon

    PubMed Central

    Mahomoodally, Fawzi

    2014-01-01

    The relatively high incidence of Listeria monocytogenes in cold smoked salmon (CSS) is of concern as it is a refrigerated processed food of extended durability (REPFED). The objectives of this study were to compare and optimize the antimicrobial effectiveness of films and coatings incorporating nisin (Nis) and sodium lactate (SL), sodium diacetate (SD), potassium sorbate (PS), and/or sodium benzoate (SB) in binary or ternary combinations on CSS. Surface treatments incorporating Nis (25000 IU/mL) in combination with PS (0.3%) and SB (0.1%) had the highest inhibitory activity, reducing the population of L. monocytogenes by a maximum of 3.3 log CFU/cm2 (films) and 2.9 log CFU/cm2 (coatings) relative to control samples after 10 days of storage at 21°C. During refrigerated storage, coatings were more effective in inhibiting growth of L. monocytogenes than their film counterparts. Cellulose-based coatings incorporating Nis, PS, and SB reduced the population of L. monocytogenes, and anaerobic and aerobic spoilage flora by a maximum of 4.2, 4.8, and 4.9 log CFU/cm2, respectively, after 4 weeks of refrigerated storage. This study highlights the effectiveness of cellulose-based edible coatings incorporating generally regarded as safe (GRAS) natural and chemical antimicrobials to inhibit the development of L. monocytogenes and spoilage microflora thus enhancing the safety and quality of CSS. PMID:25089272

  15. Antimicrobial Resistance in Neisseria gonorrhoeae in the 21st Century: Past, Evolution, and Future

    PubMed Central

    Unemo, Magnus

    2014-01-01

    SUMMARY Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection. PMID:24982323

  16. Antimicrobial property and microstructure of micro-emulsion edible composite films against Listeria.

    PubMed

    Guo, Mingming; Jin, Tony Z; Yadav, Madhav P; Yang, Ruijin

    2015-09-02

    Edible antimicrobial composite films from micro-emulsions containing all natural compounds were developed and their antimicrobial properties and microstructures were investigated. Chitosan, allyl isothiocyanate (AIT), barley straw arabinoxylan (BSAX), and organic acids (acetic, lactic and levulinic acids) were used as film-forming agent, antimicrobial agent, emulsifier, and solvent, respectively. Micro-emulsions were obtained using high pressure homogenization (HPH) processing at 138MPa for 3cycles. The composite films made from the micro-emulsions significantly (p<0.05) inactivated Listeria innocua in tryptic soy broth (TSB) and on the surface of ready-to-eat (RTE) meat samples, achieving microbial reductions of over 4logCFU/ml in TSB after 2days at 22°C and on meat samples after 35days at 10°C. AIT was a major contributor to the antimicrobial property of the films and HPH processing further enhanced its antimicrobial efficacy, while the increase of chitosan from 1.5% to 3%, or addition of acetic acid to the formulations didn't result in additional antimicrobial effects. This study demonstrated an effective approach to developing new edible antimicrobial films and coatings used for food applications. Published by Elsevier B.V.

  17. Effect of Encapsulation on Antimicrobial Activity of
Herbal Extracts with Lysozyme

    PubMed Central

    Matouskova, Petra; Bokrova, Jitka; Benesova, Pavla

    2016-01-01

    Summary Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin) on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch). Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus) and two Gram-negative (Escherichia coli and Serratia marcescens) bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries. PMID:27956862

  18. Investigational Antimicrobial Agents of 2013

    PubMed Central

    Pucci, Michael J.

    2013-01-01

    SUMMARY New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  19. Molecular Detection of Antimicrobial Resistance

    PubMed Central

    Fluit, Ad C.; Visser, Maarten R.; Schmitz, Franz-Josef

    2001-01-01

    The determination of antimicrobial susceptibility of a clinical isolate, especially with increasing resistance, is often crucial for the optimal antimicrobial therapy of infected patients. Nucleic acid-based assays for the detection of resistance may offer advantages over phenotypic assays. Examples are the detection of the methicillin resistance-encoding mecA gene in staphylococci, rifampin resistance in Mycobacterium tuberculosis, and the spread of resistance determinants across the globe. However, molecular assays for the detection of resistance have a number of limitations. New resistance mechanisms may be missed, and in some cases the number of different genes makes generating an assay too costly to compete with phenotypic assays. In addition, proper quality control for molecular assays poses a problem for many laboratories, and this results in questionable results at best. The development of new molecular techniques, e.g., PCR using molecular beacons and DNA chips, expands the possibilities for monitoring resistance. Although molecular techniques for the detection of antimicrobial resistance clearly are winning a place in routine diagnostics, phenotypic assays are still the method of choice for most resistance determinations. In this review, we describe the applications of molecular techniques for the detection of antimicrobial resistance and the current state of the art. PMID:11585788

  20. Antimicrobial Polymers with Metal Nanoparticles

    PubMed Central

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  1. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    SciTech Connect

    Li, Yaqiong; Wu, Haifan; Teng, Peng

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, aremore » more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.« less

  2. Antimicrobial activity of Bryum argenteum.

    PubMed

    Sabovljevic, Aneta; Sokovic, Marina; Sabovljevic, Marko; Grubisic, Dragoljub

    2006-02-01

    The antimicrobial activity of Bryum argenteum ethanol extracts was evaluated by microdilution method against four bacterial (Escherichia coli, Bacillus subtilis, Micrococcus luteus and Staphilococcus aureus) and four fungal species (Aspergillus niger, Penicillium ochrochloron, Candida albicans and Trichophyton mentagrophyes). All the investigated ethanol extracts have been proved to be active against all bacteria and fungi tested.

  3. ANTIMICROBIAL EFFECT OF INTRACANAL SUBSTANCES

    PubMed Central

    Carreira, Cláudia de Moura; dos Santos, Silvana Soléo Ferreira; Jorge, Antônio Olavo Cardoso; Lage-Marques, José Luiz

    2007-01-01

    In some situations, endodontic infections do not respond to therapeutic protocol. In these cases, it is suggested the administration of an alternative intracanal medication that presents a wide spectrum of action and has an in-depth effect on the root canal system. The purpose of this study was to assess the antimicrobial action of ciprofloxacin, metronidazole and polyethylene glycol and natrosol vehicles with different associations and concentrations. The minimum inhibitory concentration (MIC) was determined by using the agar dilution method. The culture media (Müller-Hinton agar) were prepared containing antimicrobial agents at multiple two-fold dilutions of 0.25 to 16 µg/mL, and with the vehicles at the concentrations of 50, 45, 40, 35, 30 and 25%. Twenty-three microbial strains were selected for the study. Metronidazole was not capable of eliminating any of the tested microorganisms. The association of ciprofloxacin with metronidazole resulted in a reduction of the MIC. The vehicle polyethylene glycol inhibited the growth of 100% of the tested strains, while natrosol inhibited 18% of the strains. Ciprofloxacin formulations with polyethylene glycol presented better effects than those of formulations to which metronidazole was added. It was possible to conclude that ciprofloxacin presented antimicrobial action against all tested bacterial strains, and its association with metronidazole was synergic. The vehicle polyethylene glycol showed antimicrobial effect and the ciprofloxacin/polyethylene glycol association was the most effective combination for reducing the tested bacteria and yeasts. PMID:19089178

  4. Safe Handover : Safe Patients – The Electronic Handover System

    PubMed Central

    Till, Alex; Sall, Hanish; Wilkinson, Jonathan

    2014-01-01

    Failure of effective handover is a major preventable cause of patient harm. We aimed to promote accurate recording of high-quality clinical information using an Electronic Handover System (EHS) that would contribute to a sustainable improvement in effective patient care and safety. Within our hospital the human factors associated with poor communication were compromising patient care and unnecessarily increasing the workload of staff due to the poor quality of handovers. Only half of handovers were understood by the doctors expected to complete them, and more than half of our medical staff felt it posed a risk to patient safety. We created a standardised proforma for handovers that contained specific sub-headings, re-classified patient risk assessments, and aided escalation of care by adding prompts for verbal handover. Sources of miscommunication were removed, accountability for handovers provided, and tasks were re-organised to reduce the workload of staff. Long-term, three-month data showed that each sub-heading achieved at least 80% compliance (an average improvement of approximately 40% for the overall quality of handovers). This translated into 91% of handovers being subjectively clear to junior doctors. 87% of medical staff felt we had reduced a risk to patient safety and 80% felt it increased continuity of care. Without guidance, doctors omit key information required for effective handover. All organisations should consider implementing an electronic handover system as a viable, sustainable and safe solution to handover of care that allows patient safety to remain at the heart of the NHS. PMID:26734244

  5. Bacterial meningitis - principles of antimicrobial treatment.

    PubMed

    Jawień, Miroslaw; Garlicki, Aleksander M

    2013-01-01

    Bacterial meningitis is associated with significant morbidity and mortality despite the availability of effective antimicrobial therapy. The management approach to patients with suspected or proven bacterial meningitis includes emergent cerebrospinal fluid analysis and initiation of appropriate antimicrobial and adjunctive therapies. The choice of empirical antimicrobial therapy is based on the patient's age and underlying disease status; once the infecting pathogen is isolated, antimicrobial therapy can be modified for optimal treatment. Successful treatment of bacterial meningitis requires the knowledge on epidemiology including prevalence of antimicrobial resistant pathogens, pathogenesis of meningitis, pharmacokinetics and pharmacodynamics of antimicrobial agents. The emergence of antibiotic-resistant bacterial strains in recent years has necessitated the development of new strategies for empiric antimicrobial therapy for bacterial meningitis.

  6. SAFE Testing Nuclear Rockets Economically

    NASA Astrophysics Data System (ADS)

    Howe, Steven D.; Travis, Bryan; Zerkle, David K.

    2003-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.

  7. Use of natural ingredients to control growth of Clostridium perfringens in naturally cured frankfurters and hams.

    PubMed

    Jackson, Armitra L; Kulchaiyawat, Charlwit; Sullivan, Gary A; Sebranek, Joseph G; Dickson, James S

    2011-03-01

    A major concern for processed meats marketed as natural/organic is that they do not contain nitrite in concentrations known to be most effective for inhibiting foodborne pathogens. Supplemental treatments to increase the level and consistency of antimicrobial protection in these products may be important to provide consumers with the degree of safety that they have come to expect from conventionally cured meats. Therefore, the objective of this study was to identify and test ingredients that might improve processed meat product safety without altering their natural/organic status. Eight treatments of hams and frankfurters were prepared: (A) uncured control (typical ingredients except nitrite and nitrate); (B) conventionally cured control (erythorbate, nitrite, and a lactate-diacetate blend); (C) natural nitrate cure (including starter culture containing Staphylococcus carnosus); (D) natural nitrate cure (culture and natural antimicrobial A containing a vinegar, lemon, and cherry powder blend); (E) natural nitrate cure (culture and antimicrobial B containing a cultured sugar and vinegar blend); (F) natural nitrite cure without additional antimicrobials; (G) natural nitrite cure with natural antimicrobial A; and (H) natural nitrite cure with antimicrobial B. For the hams, treatments C, D, E, and H impacted growth of Clostridium perfringens to the same extent (P < 0.05) as the conventionally cured control (approximately 2 log less growth over time than uncured control). For frankfurters, treatments D, G, and H had an effect (approximately 1 log) on growth equivalent to that of the conventionally cured control (P < 0.05). These results suggest that natural/organic cured meats have more potential for pathogen growth than conventionally cured products, but supplemental natural ingredients offer safety improvement.

  8. Application of Artificial Intelligence to the Prediction of the Antimicrobial Activity of Essential Oils.

    PubMed

    Daynac, Mathieu; Cortes-Cabrera, Alvaro; Prieto, Jose M

    2015-01-01

    Essential oils (EOs) are vastly used as natural antibiotics in Complementary and Alternative Medicine (CAM). Their intrinsic chemical variability and synergisms/antagonisms between its components make difficult to ensure consistent effects through different batches. Our aim is to evaluate the use of artificial neural networks (ANNs) for the prediction of their antimicrobial activity. Methods. The chemical composition and antimicrobial activity of 49 EOs, extracts, and/or fractions was extracted from NCCLS compliant works. The fast artificial neural networks (FANN) software was used and the output data reflected the antimicrobial activity of these EOs against four common pathogens: Staphylococcus aureus, Escherichia coli, Candida albicans, and Clostridium perfringens as measured by standardised disk diffusion assays. Results. ANNs were able to predict >70% of the antimicrobial activities within a 10 mm maximum error range. Similarly, ANNs were able to predict 2 or 3 different bioactivities at the same time. The accuracy of the prediction was only limited by the inherent errors of the popular antimicrobial disk susceptibility test and the nature of the pathogens. Conclusions. ANNs can be reliable, fast, and cheap tools for the prediction of the antimicrobial activity of EOs thus improving their use in CAM.

  9. Application of Artificial Intelligence to the Prediction of the Antimicrobial Activity of Essential Oils

    PubMed Central

    Daynac, Mathieu; Cortes-Cabrera, Alvaro; Prieto, Jose M.

    2015-01-01

    Essential oils (EOs) are vastly used as natural antibiotics in Complementary and Alternative Medicine (CAM). Their intrinsic chemical variability and synergisms/antagonisms between its components make difficult to ensure consistent effects through different batches. Our aim is to evaluate the use of artificial neural networks (ANNs) for the prediction of their antimicrobial activity. Methods. The chemical composition and antimicrobial activity of 49 EOs, extracts, and/or fractions was extracted from NCCLS compliant works. The fast artificial neural networks (FANN) software was used and the output data reflected the antimicrobial activity of these EOs against four common pathogens: Staphylococcus aureus, Escherichia coli, Candida albicans, and Clostridium perfringens as measured by standardised disk diffusion assays. Results. ANNs were able to predict >70% of the antimicrobial activities within a 10 mm maximum error range. Similarly, ANNs were able to predict 2 or 3 different bioactivities at the same time. The accuracy of the prediction was only limited by the inherent errors of the popular antimicrobial disk susceptibility test and the nature of the pathogens. Conclusions. ANNs can be reliable, fast, and cheap tools for the prediction of the antimicrobial activity of EOs thus improving their use in CAM. PMID:26457111

  10. Artificial sweeteners: safe or unsafe?

    PubMed

    Qurrat-ul-Ain; Khan, Sohaib Ahmed

    2015-02-01

    Artificial sweeteners or intense sweeteners are sugar substitutes that are used as an alternative to table sugar. They are many times sweeter than natural sugar and as they contain no calories, they may be used to control weight and obesity. Extensive scientific research has demonstrated the safety of the six low-calorie sweeteners currently approved for use in foods in the U.S. and Europe (stevia, acesulfame-K, aspartame, neotame, saccharin and sucralose), if taken in acceptable quantities daily. There is some ongoing debate over whether artificial sweetener usage poses a health threat .This review article aims to cover thehealth benefits, and risks, of consuming artificial sweeteners, and discusses natural sweeteners which can be used as alternatives.

  11. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry.

    PubMed

    Wang, Shuai; Zeng, Xiangfang; Yang, Qing; Qiao, Shiyan

    2016-05-03

    Over the last decade, the rapid emergence of multidrug-resistant pathogens has become a global concern, which has prompted the search for alternative antibacterial agents for use in food animals. Antimicrobial peptides (AMPs), produced by bacteria, insects, amphibians and mammals, as well as by chemical synthesis, are possible candidates for the design of new antimicrobial agents because of their natural antimicrobial properties and a low propensity for development of resistance by microorganisms. This manuscript reviews the current knowledge of the basic biology of AMPs and their applications in non-ruminant nutrition. Antimicrobial peptides not only have broad-spectrum activity against bacteria, fungi, and viruses but also have the ability to bypass the common resistance mechanisms that are placing standard antibiotics in jeopardy. In addition, AMPs have beneficial effects on growth performance, nutrient digestibility, intestinal morphology and gut microbiota in pigs and broilers. Therefore, AMPs have good potential as suitable alternatives to conventional antibiotics used in swine and poultry industries.

  12. A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs

    PubMed Central

    Gordon, Y. Jerold; Romanowski, Eric G.; McDermott, Alison M.

    2006-01-01

    Purpose. Antimicrobial peptides (AMPs) are an essential part of innate immunity that evolved in most living organisms over 2.6 billion years to combat microbial challenge. These small cationic peptides are multifunctional as effectors of innate immunity on skin and mucosal surfaces and have demonstrated direct antimicrobial activity against various bacteria, viruses, fungi, and parasites. This review summarizes their progress to date as commercial antimicrobial drugs for topical and systemic indications. Methods. Literature review. Results. Despite numerous clinical trials, no modified AMP has obtained Food & Drug Administration approval yet for any topical or systemic medical indications. Conclusions. While AMPs are recognized as essential components of natural host innate immunity against microbial challenge, their usefulness as a new class of antimicrobial drugs still remains to be proven. PMID:16020284

  13. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs.

    PubMed

    Gordon, Y Jerold; Romanowski, Eric G; McDermott, Alison M

    2005-07-01

    Antimicrobial peptides (AMPs) are an essential part of innate immunity that evolved in most living organisms over 2.6 billion years to combat microbial challenge. These small cationic peptides are multifunctional as effectors of innate immunity on skin and mucosal surfaces and have demonstrated direct antimicrobial activity against various bacteria, viruses, fungi, and parasites. This review summarizes their progress to date as commercial antimicrobial drugs for topical and systemic indications. Literature review. Despite numerous clinical trials, no modified AMP has obtained Food & Drug Administration approval yet for any topical or systemic medical indications. While AMPs are recognized as essential components of natural host innate immunity against microbial challenge, their usefulness as a new class of antimicrobial drugs still remains to be proven.

  14. Emerging role of phenolic compounds as natural food additives in fish and fish products.

    PubMed

    Maqsood, Sajid; Benjakul, Soottawat; Shahidi, Fereidoon

    2013-01-01

    Chemical and microbiological deteriorations are principal causes of quality loss of fish and fish products during handling, processing, and storage. Development of rancid odor and unpleasant flavor, changes of color and texture as well as lowering nutritional value in fish can be prevented by appropriate use of additives. Due to the potential health hazards of synthetic additives, natural products, especially antioxidants and antimicrobial agents, have been intensively examined as safe alternatives to synthetic compounds. Polyphenols (PP) are the natural antioxidants prevalent in fruits, vegetables, beverages (tea, wine, juices), plants, seaweeds, and some herbs and show antioxidative and antimicrobial activities in different fish and fish products. The use of phenolic compounds also appears to be a good alternative for sulphiting agent for retarding melanosis in crustaceans. Phenolic compounds have also been successfully employed as the processing aid for texture modification of fish mince and surimi. Thus, plant polyphenolic compounds can serve as potential additives for preventing quality deterioration or to retain the quality of fish and fish products.

  15. Safe prescribing: a titanic challenge

    PubMed Central

    Routledge, Philip A

    2012-01-01

    The challenge to achieve safe prescribing merits the adjective ‘titanic’. The organisational and human errors leading to poor prescribing (e.g. underprescribing, overprescribing, misprescribing or medication errors) have parallels in the organisational and human errors that led to the loss of the Titanic 100 years ago this year. Prescribing can be adversely affected by communication failures, critical conditions, complacency, corner cutting, callowness and a lack of courage of conviction, all of which were also factors leading to the Titanic tragedy. These issues need to be addressed by a commitment to excellence, the final component of the ‘Seven C's’. Optimal prescribing is dependent upon close communication and collaborative working between highly trained health professionals, whose role is to ensure maximum clinical effectiveness, whilst also protecting their patients from avoidable harm. Since humans are prone to error, and the environments in which they work are imperfect, it is not surprising that medication errors are common, occurring more often during the prescribing stage than during dispensing or administration. A commitment to excellence in prescribing includes a continued focus on lifelong learning (including interprofessional learning) in pharmacology and therapeutics. This should be accompanied by improvements in the clinical working environment of prescribers, and the encouragement of a strong safety culture (including reporting of adverse incidents as well as suspected adverse drug reactions whenever appropriate). Finally, members of the clinical team must be prepared to challenge each other, when necessary, to ensure that prescribing combines the highest likelihood of benefit with the lowest potential for harm. PMID:22738396

  16. Safe prescribing: a titanic challenge.

    PubMed

    Routledge, Philip A

    2012-10-01

    The challenge to achieve safe prescribing merits the adjective 'titanic'. The organisational and human errors leading to poor prescribing (e.g. underprescribing, overprescribing, misprescribing or medication errors) have parallels in the organisational and human errors that led to the loss of the Titanic 100 years ago this year. Prescribing can be adversely affected by communication failures, critical conditions, complacency, corner cutting, callowness and a lack of courage of conviction, all of which were also factors leading to the Titanic tragedy. These issues need to be addressed by a commitment to excellence, the final component of the 'Seven C's'. Optimal prescribing is dependent upon close communication and collaborative working between highly trained health professionals, whose role is to ensure maximum clinical effectiveness, whilst also protecting their patients from avoidable harm. Since humans are prone to error, and the environments in which they work are imperfect, it is not surprising that medication errors are common, occurring more often during the prescribing stage than during dispensing or administration. A commitment to excellence in prescribing includes a continued focus on lifelong learning (including interprofessional learning) in pharmacology and therapeutics. This should be accompanied by improvements in the clinical working environment of prescribers, and the encouragement of a strong safety culture (including reporting of adverse incidents as well as suspected adverse drug reactions whenever appropriate). Finally, members of the clinical team must be prepared to challenge each other, when necessary, to ensure that prescribing combines the highest likelihood of benefit with the lowest potential for harm. © 2012 The Author. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  17. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria

    PubMed Central

    Horta, André; Pinteus, Susete; Alves, Celso; Fino, Nádia; Silva, Joana; Fernandez, Sara; Rodrigues, Américo; Pedrosa, Rui

    2014-01-01

    Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1) extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%), Alteromonas sp. (12.82%), Shewanella sp. (12.26%), Serratia sp. (2.56%), Citricoccus sp. (2.56%), Cellulophaga sp. (2.56%), Ruegeria sp. (2.56%) and Staphylococcus sp. (2.56%). Six (15.38%) of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST) match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis) was exhibited by strain 16 (Shewanella sp.). Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds. PMID:24663118

  18. Topical Antimicrobials for Burn Infections – An Update

    PubMed Central

    Sevgi, Mert; Toklu, Ani; Vecchio, Daniela; Hamblin, Michael R

    2014-01-01

    The relentless rise in antibiotic resistance among pathogenic bacteria and fungi, coupled with the high susceptibility of burn wounds to infection, and the difficulty of systemically administered antibiotics to reach damaged tissue, taken together have made the development of novel topical antimicrobials for burn infections a fertile area of innovation for researchers and companies. We previously covered the existing patent literature in this area in 2010, but the notable progress made since then, has highlighted the need for an update to bring the reader up to date on recent developments. New patents in the areas of topically applied antibiotics and agents that can potentiate the action of existing antibiotics may extend their useful lifetime. Developments have also been made in biofilm-disrupting agents. Antimicrobial peptides are nature’s way for many life forms to defend themselves against attack by pathogens. Silver has long been known to be a highly active antimicrobial but new inorganic metal derivatives based on bismuth, copper and gallium have emerged. Halogens such as chlorine and iodine can be delivered by novel technologies. A variety of topically applied antimicrobials include chitosan preparations, usnic acid, ceragenins and XF porphyrins. Natural product derived antimicrobials such as tannins and essential oils have also been studied. Novel techniques to deliver reactive oxygen species and nitric oxide in situ have been developed. Light-mediated techniques include photodynamic therapy, ultraviolet irradiation, blue light, low-level laser therapy and titania photocatalysis. Passive immunotherapy employs antibodies against pathogens and their virulence factors. Finally an interesting new area uses therapeutic microorganisms such as phages, probiotic bacteria and protozoa to combat infections. PMID:24215506

  19. Chemical Composition and Antimicrobial Activities of Iranian Propolis

    PubMed Central

    Afrouzan, Houshang; Tahghighi, Azar; Zakeri, Sedigheh; Es-haghi, Ali

    2018-01-01

    Background: With considering the importance of natural products for their remedial and therapeutic value, this research was aimed to analyze the chemical compositions and antimicrobial activity of four propolis samples from different areas of Iran (Chenaran, Taleghan, Morad Beyg, and Kalaleh) with various climates and flora. Methods: Ethanolic (70% EtOH) and dichlromethane (DCM) extracts of Iranian propolis were analyzed by gas chromatography-mass spectrometry (GC-MS) methods, and antimicrobial activity was evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus using disk diffusion antimicrobial method. Results: The results of GC-MS analysis showed the presence of fatty acids, flavonoids, terpenes, aromatic-aliphatic acids, and their related esters. The total flavonoids in DCM extract of Chenaran, Taleghan, Morad Beyg, and Kalaleh propolis were pinocembrin and pinostrobin chalcone. The common phenolic and terpene compounds detected in all four tested EtOH extracts were P-cumaric acid and dimethyl -1,3,5,6-tetramethyl-[1,3-(13C2)] bicycloce [5.5.0] dodeca-1,3,5,6,8,10-hexaene-9,10-dicarboxylate, respectively. The highest inhibitory diameter zone of the Iranian propolis against C. albicans, E. coli, and S. aureus was for DCM extract of Kalaleh propolis (13.33 mm), Morad Beyg propolis (12 mm), and Kalaleh (11.67 mm), respectively. Conclusion: Iranian propolis showed antimicrobial activities against C. albicans, E. coli, and S. aurous, perhaps due to the presence of flavonoids, phenolic acids, and terpenes as active components that can be used alone or in combination with the selected antibiotics to synergize antibiotic effect, as well as to prevent microbial resistance to available antimicrobial drugs. PMID:28558440

  20. Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria.

    PubMed

    Horta, André; Pinteus, Susete; Alves, Celso; Fino, Nádia; Silva, Joana; Fernandez, Sara; Rodrigues, Américo; Pedrosa, Rui

    2014-03-24

    Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1) extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%), Alteromonas sp. (12.82%), Shewanella sp. (12.26%), Serratia sp. (2.56%), Citricoccus sp. (2.56%), Cellulophaga sp. (2.56%), Ruegeria sp. (2.56%) and Staphylococcus sp. (2.56%). Six (15.38%) of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST) match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis) was exhibited by strain 16 (Shewanella sp.). Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.

  1. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract.

    PubMed

    Awad El-Gied, Amgad A; Abdelkareem, Abdelkareem M; Hamedelniel, Elnazeer I

    2015-01-01

    Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L.) is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L.) The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity.

  2. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract

    PubMed Central

    Awad El-Gied, Amgad A.; Abdelkareem, Abdelkareem M.; Hamedelniel, Elnazeer I.

    2015-01-01

    Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L.) is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L.) The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity. PMID:25878974

  3. Antimicrobial Stewardship and Urinary Tract Infections

    PubMed Central

    Abbo, Lilian M.; Hooton, Thomas M.

    2014-01-01

    Urinary tract infections are the most common bacterial infections encountered in ambulatory and long-term care settings in the United States. Urine samples are the largest single category of specimens received by most microbiology laboratories and many such cultures are collected from patients who have no or questionable urinary symptoms. Unfortunately, antimicrobials are often prescribed inappropriately in such patients. Antimicrobial use, whether appropriate or inappropriate, is associated with the selection for antimicrobial-resistant organisms colonizing or infecting the urinary tract. Infections caused by antimicrobial-resistant organisms are associated with higher rates of treatment failures, prolonged hospitalizations, increased costs and mortality. Antimicrobial stewardship consists of avoidance of antimicrobials when appropriate and, when antimicrobials are indicated, use of strategies to optimize the selection, dosing, route of administration, duration and timing of antimicrobial therapy to maximize clinical cure while limiting the unintended consequences of antimicrobial use, including toxicity and selection of resistant microorganisms. This article reviews successful antimicrobial stewardship strategies in the diagnosis and treatment of urinary tract infections. PMID:27025743

  4. Antimicrobial Use and Antimicrobial Resistance: A Population Perspective

    PubMed Central

    Samore, Matthew H.

    2002-01-01

    The need to stem the growing problem of antimicrobial resistance has prompted multiple, sometimes conflicting, calls for changes in the use of antimicrobial agents. One source of disagreement concerns the major mechanisms by which antibiotics select resistant strains. For infections like tuberculosis, in which resistance can emerge in treated hosts through mutation, prevention of antimicrobial resistance in individual hosts is a primary method of preventing the spread of resistant organisms in the community. By contrast, for many other important resistant pathogens, such as penicillin-resistant Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium resistance is mediated by the acquisition of genes or gene fragments by horizontal transfer; resistance in the treated host is a relatively rare event. For these organisms, indirect, population-level mechanisms of selection account for the increase in the prevalence of resistance. These mechanisms can operate even when treatment has a modest, or even negative, effect on an individual host’s colonization with resistant organisms. PMID:11971765

  5. An evaluation of the association between an antimicrobial stewardship score and antimicrobial usage

    PubMed Central

    Pakyz, Amy L.; Moczygemba, Leticia R.; Wang, Hui; Stevens, Michael P.; Edmond, Michael B.

    2015-01-01

    Objectives To determine whether an antimicrobial stewardship ‘intensity’ score predicts hospital antimicrobial usage. Methods An antimicrobial stewardship score for 44 academic medical centres was developed that comprised two main categories: resources (antimicrobial stewardship programme personnel and automated surveillance software) and strategies (preauthorization, audit with intervention and feedback, education, guidelines and clinical pathways, parenteral to oral therapy programmes, de-escalation of therapy, antimicrobial order forms and dose optimization). Multiple regression analyses were used to assess whether the composite score and also the categories were associated with either total or antimicrobial stewardship programme-target antimicrobial use as measured in days of therapy. Results The mean antimicrobial stewardship programme score was 55 (SD 21); the total composite score was not significantly associated with total or target antimicrobial use [estimate –0.49 (95% CI –2.30 to 0.89)], while the category strategies was significantly and negatively associated with target antimicrobial use [–5.91 (95% CI –9.51 to –2.31)]. Conclusions The strategy component of a score developed to measure the intensity of antimicrobial stewardship was associated with the amount of antimicrobials used. Thus, the number and types of strategies employed by antimicrobial stewardship programmes may be of particular importance in programme effectiveness. PMID:25614043

  6. Killer clays! Natural antibacterial clay minerals

    USGS Publications Warehouse

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  7. When are Oral Antibiotics a Safe and Effective Choice for Bacterial Bloodstream Infections? An Evidence-Based Narrative Review.

    PubMed

    Hale, Andrew J; Snyder, Graham M; Ahern, John W; Eliopoulos, George; Ricotta, Daniel; Alston, W Kemper

    2018-05-01

    Bacterial bloodstream infections (BSIs) are a major cause of morbidity and mortality in the United States. Traditionally, BSIs have been managed with intravenous antimicrobials. However, whether intravenous antimicrobials are necessary for the entirety of the treatment course in BSIs, especially for uncomplicated episodes, is a more controversial matter. Patients that are clinically stable, without signs of shock, or have been stabilized after an initial septic presentation, may be appropriate candidates for treatment of BSIs with oral antimicrobials. There are risks and costs associated with extended courses of intravenous agents, such as the necessity for long-term intravenous catheters, which entail risks for procedural complications, secondary infections, and thrombosis. Oral antimicrobial therapy for bacterial BSIs offers several potential benefits. When selected appropriately, oral antibiotics offer lower cost, fewer side effects, promote antimicrobial stewardship, and are easier for patients. The decision to use oral versus intravenous antibiotics must consider the characteristics of the pathogen, the patient, and the drug. In this narrative review, the authors highlight areas where oral therapy is a safe and effective choice to treat bloodstream infection, and offer guidance and cautions to clinicians managing patients experiencing BSI. © 2018 Society of Hospital Medicine.

  8. Development of a standardized and safe airborne antibacterial assay, and its evaluation on antibacterial biomimetic model surfaces.

    PubMed

    Al-Ahmad, Ali; Zou, Peng; Solarte, Diana Lorena Guevara; Hellwig, Elmar; Steinberg, Thorsten; Lienkamp, Karen

    2014-01-01

    Bacterial infection of biomaterials is a major concern in medicine, and different kinds of antimicrobial biomaterial have been developed to deal with this problem. To test the antimicrobial performance of these biomaterials, the airborne bacterial assay is used, which involves the formation of biohazardous bacterial aerosols. We here describe a new experimental set-up which allows safe handling of such pathogenic aerosols, and standardizes critical parameters of this otherwise intractable and strongly user-dependent assay. With this new method, reproducible, thorough antimicrobial data (number of colony forming units and live-dead-stain) was obtained. Poly(oxonorbornene)-based Synthetic Mimics of Antimicrobial Peptides (SMAMPs) were used as antimicrobial test samples. The assay was able to differentiate even between subtle sample differences, such as different sample thicknesses. With this new set-up, the airborne bacterial assay was thus established as a useful, reliable, and realistic experimental method to simulate the contamination of biomaterials with bacteria, for example in an intraoperative setting.

  9. In Vitro Antimicrobial and Antiproliferative Activity of Amphipterygium adstringens

    PubMed Central

    Rodriguez-Garcia, A.; Peixoto, I. T. A.; Verde-Star, M. J.; De la Torre-Zavala, S.; Aviles-Arnaut, H.; Ruiz, A. L. T. G.

    2015-01-01

    Amphipterygium adstringens is a plant widely used in Mexican traditional medicine for its known anti-inflammatory and antiulcer properties. In this work, we evaluated the in vitro antimicrobial and antiproliferative activities of the methanolic extract of A. adstringens against oral pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Candida albicans, and Candida dubliniensis, using microdilution (MIC) and agar diffusion methods (MBC), and the antiproliferative activity evaluating total growth inhibition (TGI) by staining the protein content with sulforhodamine B (SRB), using nine human cancer cell lines. Crude extract (CE) of A. adstringens showed some degree of activity against one or more of the strains with a MIC from 0.125 mg/mL to 63 mg/mL and MBC from 1.6 to 6.3 mg/mL and cytotoxic activity, particularly against NCI-ADR/RES, an ovarian cell line expressing multiple resistance drugs phenotype. The CE is a complex mixture of possible multitarget metabolites that could be responsible for both antimicrobial and antiproliferative activities, and further investigation is required to elucidate the identity of active compounds. Nevertheless the CE itself is useful in the development of new antimicrobial treatment based on natural products to prevent oral diseases and as alternative natural source for cancer treatment and prevention. PMID:26451151

  10. Antimicrobial Stewardship in Inpatient Settings in the Asia Pacific Region: A Systematic Review and Meta-analysis.

    PubMed

    Honda, Hitoshi; Ohmagari, Norio; Tokuda, Yasuharu; Mattar, Caline; Warren, David K

    2017-05-15

    An antimicrobial stewardship program (ASP) is one of the core elements needed to optimize antimicrobial use. Although collaboration at the national level to address the importance of ASPs and antimicrobial resistance has occurred in the Asia Pacific region, hospital-level ASP implementation in this region has not been comprehensively evaluated. We conducted a systematic review and meta-analysis to assess the efficacy of ASPs in inpatient settings in the Asia Pacific region from January 2005 through March 2016. The impact of ASPs on various outcomes, including patient clinical outcomes, antimicrobial prescription outcomes, microbiological outcomes, and expenditure were assessed. Forty-six studies were included for a systematic review and meta-analysis. The pooled risk ratio for mortality from ASP before-after trials and 2-group comparative studies were 1.03 (95% confidence interval [CI], .88-1.19) and 0.69 (95% CI, .56-.86), respectively. The pooled effect size for change in overall antimicrobial and carbapenem consumption (% difference) was -9.74% (95% CI, -18.93% to -.99%) and -10.56% (95% CI, -19.99% to -3.03%), respectively. Trends toward decreases in the incidence of multidrug-resistant organisms and antimicrobial expenditure (range, 9.7%-58.1% reduction in cost in the intervention period/arm) were also observed. ASPs in inpatient settings in the Asia Pacific region appear to be safe and effective to reduce antimicrobial consumption and improve outcomes. However, given the significant variations in assessing the efficacy of ASPs, high-quality studies using standardized surveillance methodology for antimicrobial consumption and similar metrics for outcome measurement are needed to further promote antimicrobial stewardship in this region. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  11. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review.

    PubMed

    Soleimani, Vahid; Sahebkar, Amirhossein; Hosseinzadeh, Hossein

    2018-06-01

    Curcumin is the major constituent of turmeric (Curcuma longa). Turmeric has been widely used as a spice in foods and for therapeutic applications such as anti-inflammatory, antihyperlipidemic, and antimicrobial activities. Turmeric and curcumin are nonmutagenic and nongenotoxic. Oral use of turmeric and curcumin did not have reproductive toxicity in animals at certain doses. Studies on human did not show toxic effects, and curcumin was safe at the dose of 6 g/day orally for 4-7 weeks. However, some adverse effects such as gastrointestinal upsets may occur. Moreover, oral bioavailable formulations of curcumin were safe for human at the dose of 500 mg two times in a day for 30 days, but there are still few trials and more studies are needed specially on nanoformulations and it should be discussed in a separate article. In addition, curcumin is known as a generally recognized as safe substance. This review discusses the safety and toxicity of turmeric and curcumin in medicine. Turmeric and curcumin are nontoxic for human especially in oral administration. Turmeric and curcumin are also safe in animals. They are nonmutagenic and are safe in pregnancy in animals but more studies in human are needed. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Antimicrobial peptides interact with peptidoglycan

    NASA Astrophysics Data System (ADS)

    Neelay, Om P.; Peterson, Christian A.; Snavely, Mary E.; Brown, Taylor C.; TecleMariam, Ariam F.; Campbell, Jennifer A.; Blake, Allison M.; Schneider, Sydney C.; Cremeens, Matthew E.

    2017-10-01

    Traditional therapeutics are losing effectiveness as bacterial resistance increases, and antimicrobial peptides (AMPs) can serve as an alternative source for antimicrobial agents. Their mode of action is commonly hypothesized to involve pore formation in the lipid membrane, thereby leading to cell death. However, bacterial cell walls are much more complex than just the lipid membrane. A large portion of the wall is comprised of peptidoglycan, yet we did not find any report of AMP-peptidoglycan interactions. Consequently, this work evaluated AMP-peptidoglycan and AMP-phospholipid (multilamellar vesicles) interactions through tryptophan fluorescence. Given that peptidoglycan is insoluble and vesicles are large particles, we took advantage of the unique properties of Trp-fluorescence to use one technique for two very different systems. Interestingly, melittin and cecropin A interacted with peptidoglycan to a degree similar to vancomycin, a positive control. Whether these AMP-peptidoglycan interactions relate to a killing mode of action requires further study.

  13. Antimicrobial resistance in Saudi Arabia

    PubMed Central

    Zowawi, Hosam M.

    2016-01-01

    Antimicrobial resistance (AMR) is increasingly being highlighted as an urgent public and animal health issue worldwide. This issue is well demonstrated in bacteria that are resistant to last-line antibiotics, suggesting a future with untreatable infections. International agencies have suggested combating strategies against AMR. Saudi Arabia has several challenges that can stimulate the emergence and spread of multidrug-resistant bacteria. Tackling these challenges need efforts from multiple sectors to successfully control the spread and emergence of AMR in the country. Actions should include active surveillance to monitor the emergence and spread of AMR. Infection prevention and control precautions should also be optimized to limit further spread. Raising awareness is essential to limit inappropriate antibiotics use, and the antibiotic stewardship programs in hospital settings, outpatients, and community pharmacies, should regulate the ongoing use of antimicrobials. PMID:27570847

  14. Bacteriophage endolysins as novel antimicrobials

    PubMed Central

    Schmelcher, Mathias; Donovan, David M; Loessner, Martin J

    2013-01-01

    Endolysins are enzymes used by bacteriophages at the end of their replication cycle to degrade the peptidoglycan of the bacterial host from within, resulting in cell lysis and release of progeny virions. Due to the absence of an outer membrane in the Gram-positive bacterial cell wall, endolysins can access the peptidoglycan and destroy these organisms when applied externally, making them interesting antimicrobial candidates, particularly in light of increasing bacterial drug resistance. This article reviews the modular structure of these enzymes, in which cell wall binding and catalytic functions are separated, as well as their mechanism of action, lytic activity and potential as antimicrobials. It particularly focuses on molecular engineering as a means of optimizing endolysins for specific applications, highlights new developments that may render these proteins active against Gram-negative and intracellular pathogens and summarizes the most recent applications of endolysins in the fields of medicine, food safety, agriculture and biotechnology. PMID:23030422

  15. Antimicrobial resistance of mastitis pathogens.

    PubMed

    Oliver, Stephen P; Murinda, Shelton E

    2012-07-01

    Antibiotics are used extensively in the dairy industry to combat disease and to improve animal performance. Antibiotics such as penicillin, cephalosporin, streptomycin, and tetracycline are used for the treatment and prevention of diseases affecting dairy cows caused by a variety of gram-positive and gram-negative bacteria. Antibiotics are often administrated routinely to entire herds to prevent mastitis during the dry period. An increase in the incidence of disease in a herd generally results in increased use of antimicrobials, which in turn increases the potential for antibiotic residues in milk and the potential for increased bacterial resistance to antimicrobials. Continued use of antibiotics in the treatment and prevention of diseases of dairy cows will continue to be scrutinized. It is clear that strategies employing the prudent use of antimicrobials are needed. This clearly illustrates the importance of effective herd disease prevention and control programs. Based on studies published to date, scientific evidence does not support widespread, emerging resistance among mastitis pathogens to antibacterial drugs even though many of these antibiotics have been used in the dairy industry for treatment and prevention of disease for several decades. However, it is clear that use of antibiotics in dairy cows can contribute to increased antimicrobial resistance. While antimicrobial resistance does occur, we are of the opinion that the advantages of using antibiotics for the treatment of mastitis far outweigh the disadvantages. The clinical consequences of antimicrobial resistance of dairy pathogens affecting humans appear small. Antimicrobial resistance among dairy pathogens, particularly those found in milk, is likely not a human health concern as long as the milk is pasteurized. However, there are an increasing number of people who choose to consume raw milk. Transmission of an antimicrobial-resistant mastitis pathogen and/or foodborne pathogen to humans could occur

  16. Isolation of antimicrobial producing Actinobacteria from soil samples.

    PubMed

    Elbendary, Afaf Ahmed; Hessain, Ashgan Mohamed; El-Hariri, Mahmoud Darderi; Seida, Ahmed Adel; Moussa, Ihab Mohamed; Mubarak, Ayman Salem; Kabli, Saleh A; Hemeg, Hassan A; El Jakee, Jakeen Kamal

    2018-01-01

    Emergence of multidrug resistant bacteria has made the search for novel bioactive compounds from natural and unexplored habitats a necessity. Actinobacteria have important bioactive substances. The present study investigated antimicrobial activity of Actinobacteria isolated from soil samples of Egypt. One hundred samples were collected from agricultural farming soil of different governorates. Twelve isolates have produced activity against the tested microorganisms ( S. aureus , Bacillus cereus , E. coli , K. pneumoniae , P. aeruginosa , S. Typhi, C. albicans , A. niger and A. flavus ). By VITEK 2 system version: 07.01 the 12 isolates were identified as Kocuria kristinae , Kocuria rosea , Streptomyces griseus , Streptomyces flaveolus and Actinobacteria . Using ethyl acetate extraction method the isolates culture's supernatants were tested by diffusion method against indicator microorganisms. These results indicate that Actinobacteria isolated from Egypt farms could be sources of antimicrobial bioactive substances.

  17. The Use of Plant Antimicrobial Compounds for Food Preservation

    PubMed Central

    Hintz, Tana; Matthews, Karl K.

    2015-01-01

    Foodborne disease is a global issue with significant impact on human health. With the growing consumer demand for natural preservatives to replace chemical compounds, plant antimicrobial compounds must be thoroughly investigated for their potential to serve as biopreservatives. This review paper will focus on the plant-derived products as antimicrobial agents for use in food preservation and to control foodborne pathogens in foods. Structure, modes of action, stability, and resistance to these plant compounds will be discussed as well as their application in food industries and possible technologies by which they can be delivered. Benefits as well as challenges, such as the need for further research for implementation and governmental regulation, will be highlighted. PMID:26539472

  18. Powerful workhorses for antimicrobial peptide expression and characterization.

    PubMed

    Li, Chun; Blencke, Hans-Matti; Paulsen, Victoria; Haug, Tor; Stensvåg, Klara

    2010-01-01

    Discovery of antimicrobial peptides (AMP) is to a large extent based on screening of fractions of natural samples in bacterial growth inhibition assays. However, the use of bacteria is not limited to screening for antimicrobial substances. In later steps, bioengineered "bugs" can be applied to both production and characterization of AMPs. Here we describe the idea to use genetically modified Escherichia coli strains for both these purposes. This approach allowed us to investigate SpStrongylocins 1 and 2 from the purple sea urchin Strongylocentrotus purpuratus only based on sequence information from a cDNA library and without previous direct isolation or chemical synthesis of these peptides. The recombinant peptides are proved active against all bacterial strains tested. An assay based on a recombinant E. coli sensor strain expressing insect luciferase, revealed that SpStrongylocins are not interfering with membrane integrity and are therefore likely to have intracellular targets. © 2010 Landes Bioscience

  19. Impact of antimicrobial use during beef production on fecal occurrence of antimicrobial resistance

    USDA-ARS?s Scientific Manuscript database

    Objective: To determine the impact of typical antimicrobial use during cattle production on fecal occurrence of antimicrobial resistance by culture, quantitative PCR, and metagenomic sequencing. Experimental Design & Analysis: Feces were recovered from colons of 36 lots of "conventional" (CONV) ca...

  20. Antimicrobial Wound Dressing. Phase 1

    DTIC Science & Technology

    1987-06-11

    12 a. Antimicrobial Sensitivity Tests 12 b. Anin.il Model 13 5. Preparatiua of Microcapsules 14 B. Results 15 1. AIn Vit Diffusion 15 a. PVA... Microcapsules 35 Table 5 Tetracycline Hydrochloride Cellulose 36 Triacetate Microcapsules Table 6 Polyethylene Oxide Hydrogels 37 Table 7 Swelling of...Water and Crosslinking Effect Figure 24 In Vi trq Chlorhexidine Release 70 Polyacrylamide Hydrogel - Microcapsules Figure 25 In _Vitro Tetracycline

  1. Antimicrobials & cholera: are we stranded?

    PubMed Central

    Ghosh, Amit; Ramamurthy, T.

    2011-01-01

    Antimicrobial resistance poses a major threat in the treatment of infectious diseases. Though significant progress in the management of diarrhoeal diseases has been achieved by improved hygiene, development of new antimicrobials and vaccines, the burden remains the same, especially in children below 5 yr of age. In the case of cholera, though oral rehydration treatment is the mainstay, antimicrobial therapy is mandatory at times to reduce the volume of stool and shorten the duration of the disease. Though for many pathogens, antimicrobial resistance emerged soon after the introduction of antibiotics, Vibrio cholerae remained sensitive to most of the antibiotics for quite a long period. However, the scenario changed over the years and today, V. cholerae strains isolated world over are resistant to multiple antibiotics. A myriad number of mechanisms underlie this phenomenon. These include production of extended-spectrum beta-lactamases, enhanced multi-drug efflux pump activity, plasmid-mediated quinolone and fluoroquinolone resistance, and chromosomal mutations. Horizontal transfer of resistance determinants with mobile genetic elements like integrons and the integrating conjugative elements (ICEs), SXTs help in the dissemination of drug resistance. Though all strains isolated are not resistant to all antibiotics and we are not as yet “stranded”, expanding spectrum of drug resistance is a definite cause for concern. Pipelines of discovery of new antibiotics are drying up as major pharmaceutical companies are losing interest in investing money in this endeavour, mainly due to the short shelf-life of the antibiotics and also due to the fast emergence of drug resistance. To address this issue, attempts are now being made to discover drugs which are pathogen specific and target their “virulence mechanisms”. It is expected that development of resistance against such antibiotics would take much longer. This review briefly focuses on all these issues. PMID:21415499

  2. Antimicrobials & cholera: are we stranded?

    PubMed

    Ghosh, Amit; Ramamurthy, T

    2011-02-01

    Antimicrobial resistance poses a major threat in the treatment of infectious diseases. Though significant progress in the management of diarrhoeal diseases has been achieved by improved hygiene, development of new antimicrobials and vaccines, the burden remains the same, especially in children below 5 yr of age. In the case of cholera, though oral rehydration treatment is the mainstay, antimicrobial therapy is mandatory at times to reduce the volume of stool and shorten the duration of the disease. Though for many pathogens, antimicrobial resistance emerged soon after the introduction of antibiotics, Vibrio cholerae remained sensitive to most of the antibiotics for quite a long period. However, the scenario changed over the years and today, V. cholerae strains isolated world over are resistant to multiple antibiotics. A myriad number of mechanisms underlie this phenomenon. These include production of extended-spectrum beta-lactamases, enhanced multi-drug efflux pump activity, plasmid-mediated quinolone and fluoroquinolone resistance, and chromosomal mutations. Horizontal transfer of resistance determinants with mobile genetic elements like integrons and the integrating conjugative elements (ICEs), SXTs help in the dissemination of drug resistance. Though all strains isolated are not resistant to all antibiotics and we are not as yet "stranded", expanding spectrum of drug resistance is a definite cause for concern. Pipelines of discovery of new antibiotics are drying up as major pharmaceutical companies are losing interest in investing money in this endeavour, mainly due to the short shelf-life of the antibiotics and also due to the fast emergence of drug resistance. To address this issue, attempts are now being made to discover drugs which are pathogen specific and target their "virulence mechanisms". It is expected that development of resistance against such antibiotics would take much longer. This review briefly focuses on all these issues.

  3. Antimicrobial Drug Use and Resistance in Europe

    PubMed Central

    van de Sande-Bruinsma, Nienke; Verloo, Didier; Tiemersma, Edine; Monen, Jos; Goossens, Herman; Ferech, Matus

    2008-01-01

    Our study confronts the use of antimicrobial agents in ambulatory care with the resistance trends of 2 major pathogens, Streptococcus pneumoniae and Escherichia coli, in 21 European countries in 2000–2005 and explores whether the notion that antimicrobial drug use determines resistance can be supported by surveillance data at national aggregation levels. The data obtained from the European Surveillance of Antimicrobial Consumption and the European Antimicrobial Resistance Surveillance System suggest that variation of consumption coincides with the occurrence of resistance at the country level. Linear regression analysis showed that the association between antimicrobial drug use and resistance was specific and robust for 2 of 3 compound pathogen combinations, stable over time, but not sensitive enough to explain all of the observed variations. Ecologic studies based on routine surveillance data indicate a relation between use and resistance and support interventions designed to reduce antimicrobial drug consumption at a national level in Europe. PMID:18976555

  4. Antimicrobial compounds of porcine mucosa

    NASA Astrophysics Data System (ADS)

    Kotenkova, E. A.; Lukinova, E. A.; Fedulova, L. V.

    2017-09-01

    The aim of the study was to investigate porcine oral cavity mucosa (OCM), nasal cavity mucosa (NCM), rectal mucosa (RM) and tongue mucosa (TM) as sources of antimicrobial compounds. Ultrafiltrates with MW >30 kDa, MW 5-30 kDa and MW <5 kDa were obtained. All ultrafiltrates had antimicrobial activity against Escherichia coli and Proteus vulgaris. NCM ultrafiltrates revealed the highest antibacterial activity in respect to negative control: for the fraction with MW >30 kDa, the zone of microbial growth inhibition was 7.5 mm, for the MW<5 kDa fraction, it was 7 mm, and for MW 5-30 kDa fraction, it was 4.5 mm. No significant differences were found in high molecular weight proteomic profile, while qualitative and quantitative differences were observed in the medium and low molecular weight areas, especially in OCM and NCM. HPLC showed 221 tissue-specific peptides in OCM, 156 in NCM, 225 in RM, but only 5 in TM. The results observed confirmed porcine mucous tissues as a good source of antimicrobial compounds, which could be an actual alternative for reduction of microbial spoilage of foods.

  5. Salivary antimicrobial defensins in pregnancy.

    PubMed

    Gürsoy, Mervi; Gürsoy, Ulvi K; Liukkonen, Anna; Kauko, Tommi; Penkkala, Saara; Könönen, Eija

    2016-10-01

    Susceptibility to and severity of gingival inflammation are enhanced during pregnancy; however, regulation of oral innate immune response, including antimicrobial peptides, during pregnancy is still unknown. We analysed salivary levels of human beta-defensin (hBD)-1, -2, -3, and human neutrophil peptide (HNP)-1 in pregnant women, and related those to their periodontal status. In this cohort study, 30 generally healthy, non-smoking Caucasian women without periodontitis were followed at three time points during pregnancy and twice post-partum. The non-pregnant group consisted of 24 women, who were examined three times at the following months. At each visit, periodontal status was recorded and stimulated saliva samples were collected. Salivary estradiol, progesterone, and defensin concentrations were measured by ELISA assays. After adjusting for visible plaque and gingival bleeding, reduced salivary concentrations of hBD-1, hBD-2, and HNP-1 were found especially during the third trimester, whereas hBD-3 concentrations did not change during pregnancy and post-partum visits. Weak associations were observed between salivary defensin and hormone concentrations and clinical parameters. There seems to be an independent regulation cascade for each antimicrobial defensin in the oral cavity during pregnancy, despite of the similarities between these antimicrobial peptides. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Safe structures for future aircraft

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.

    1983-01-01

    The failure mechanisms, design lessons, and test equipment employed by NASA in establishing the airworthiness and crashworthiness of aircraft components for commercial applications are described. The composites test programs have progressed to medium primary structures such as stabilizers and a vertical fin. The failures encountered to date have been due to the nonyielding nature of composites, which do not diffuse loads like metals, and the presence of eccentricities, irregular shapes, stiffness changes, and discontinuities that cause tension and shear. Testing to failure, which always occurred in first tests before the design loads were reached, helped identify design changes and reinforcements that produced successful products. New materials and NDE techniques are identified, together with aircraft structural design changes that offer greater protection to the passengers, fuel antimisting agents, and landing gear systems.

  7. DEVELOPMENT OF A NEXT-GENERATION ANTIMICROBIAL WOUND DRESSING.

    PubMed

    Metcalf, Daniel; Parsons, David; Bowler, I Philip

    2016-03-01

    an average frequency of 36% to 21%. An average of 62% wound size reduction was achieved, with 90% of wounds reducing in size and 10 wounds healing completely. The new clinical evidence for this next-generation antimicrobial wound dressing suggests it is safe and effective at managing exudate, infection and biofilm, while it can shift established, stubborn wounds onto healing trajectories. The scientific rationale for this new dressing technology is supported by in vitro and in vivo evidence, so now further comparative, randomized and outcome-based clinical studies are required to fully understand the clinical and economic benefits this new dressing technology can bring.

  8. Nanocomposites: suitable alternatives as antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Matharu, Rupy Kaur; Ciric, Lena; Edirisinghe, Mohan

    2018-07-01

    The exploration of nanocomposites has gained a strong research following over the last decade. These materials have been heavily exploited in several fields, with applications ranging from biosensors to biomedicine. Among these applications, great advances have been made in the field of microbiology, specifically as antimicrobial agents. This review aims to provide a comprehensive account of various nanocomposites that elucidate promising antimicrobial activity. The composition, physical and chemical properties, as well as the antimicrobial performance of these nanocomposites, are discussed in detail.

  9. Creating Safe Spaces for Music Learning

    ERIC Educational Resources Information Center

    Hendricks, Karin S.; Smith, Tawnya D.; Stanuch, Jennifer

    2014-01-01

    This article offers a practical model for fostering emotionally safe learning environments that instill in music students a positive sense of self-belief, freedom, and purpose. The authors examine the implications for music educators of creating effective learning environments and present recommendations for creating a safe space for learning,…

  10. Safe Haven Laws and School Social Work

    ERIC Educational Resources Information Center

    Kopels, Sandra

    2012-01-01

    "Safe haven" laws are designed to protect infants from being killed or otherwise harmed. This article examines the safe haven laws from the states that comprise the Midwest School Social Work Council and the variations between these laws regarding the age of the infant, where the infant can be left, who is allowed to leave the infant, whether…

  11. Virus Alert: Ten Steps to Safe Computing.

    ERIC Educational Resources Information Center

    Gunter, Glenda A.

    1997-01-01

    Discusses computer viruses and explains how to detect them; discusses virus protection and the need to update antivirus software; and offers 10 safe computing tips, including scanning floppy disks and commercial software, how to safely download files from the Internet, avoiding pirated software copies, and backing up files. (LRW)

  12. A fail-safe CMOS logic gate

    NASA Technical Reports Server (NTRS)

    Bobin, V.; Whitaker, S.

    1990-01-01

    This paper reports a design technique to make Complex CMOS Gates fail-safe for a class of faults. Two classes of faults are defined. The fail-safe design presented has limited fault-tolerance capability. Multiple faults are also covered.

  13. Beth Reis and the Safe Schools Coalition

    ERIC Educational Resources Information Center

    Vaught, Sabina E.

    2007-01-01

    This article chronicles the formation and organization of the Safe Schools Coalition (SCC) through the experiences of Beth Reis, co-founder and co-Chair. The article suggests ways in which the SCC can serve as a model for both collective and individual work in promoting safe schools.

  14. Review of "Successful, Safe, and Healthy Students"

    ERIC Educational Resources Information Center

    Glass, Gene V.; Barnett, Steven; Welner, Kevin G.

    2010-01-01

    The research summary "Successful, Safe, and Healthy Students" presents the research background for the Obama administration's proposals for comprehensive, community-wide services in high-poverty neighborhoods, extended learning time, family engagement and safe schools. While these policies have broad and common-sense appeal, the research…

  15. Safe Haven Laws as "Crime Control Theater"

    ERIC Educational Resources Information Center

    Hammond, Michelle; Miller, Monica K.; Griffin, Timothy

    2010-01-01

    Objectives: This article examines safe haven laws, which allow parents to legally abandon their infants. The main objective is to determine whether safe haven laws fit the criteria of "crime control theater", a term used to describe public policies that produce the appearance, but not the effect, of crime control, and as such are essentially…

  16. Short-term effect of humid airflow on antimicrobial air filters using Sophora flavescens nanoparticles.

    PubMed

    Hwang, Gi Byoung; Lee, Jung Eun; Nho, Chu Won; Lee, Byung Uk; Lee, Seung Jae; Jung, Jae Hee; Bae, Gwi-Nam

    2012-04-01

    Bioaerosols have received social and scientific attention because they can be hazardous to human health. Recently, antimicrobial treatments using natural products have been used to improve indoor air quality (IAQ) since they are typically less toxic to humans compared to other antimicrobial substances such as silver, carbon nanotubes, and metal oxides. Few studies, however, have examined how environmental conditions such as the relative humidity (RH), surrounding temperature, and retention time of bacteria on filters affect the filtration and antimicrobial characteristics of a filter treated with such natural products. In this study, we investigated changes in the morphology of the natural nanoparticles, pressure drop, filtration efficiency, and the inactivation rate caused by the short-term effect of humid airflow on antimicrobial fiber filters. Nanoparticles of Sophora flavescens were deposited on the filter media surface using an aerosol process. We observed coalescence and morphological changes of the nanoparticles on fiber filters under humid conditions of an RH >50%. The level of coalescence in these nanoparticles increased with increasing RH. Filters exposed to an RH of 25% have a higher pressure drop than those exposed to an RH >50%. In an inactivation test against Staphylococcus epidermidis bacterial aerosol, the inactivation efficiency at an RH of 25% was higher than that at an RH of 57% or 82%. To effectively apply antimicrobial filters using natural products in the environment, one must characterize the filters under various environmental conditions. Thus, this study provides important information on the use of antimicrobial filters made of natural products. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Antimicrobial activity of Gymnema sylvestre leaf extract.

    PubMed

    Satdive, R K; Abhilash, P; Fulzele, Devanand P

    2003-12-01

    The ethanolic extract of Gymnema sylvestre leaves demonstrated antimicrobial activity against Bacillus pumilis, B. subtilis, Pseudomonas aeruginosa and Staphylococcus aureus and inactivity against Proteus vulgaris and Escherichia coli.

  18. Antimicrobial use in food and companion animals.

    PubMed

    Prescott, John F

    2008-12-01

    The vast literature on antimicrobial drug use in animals has expanded considerably recently as the antimicrobial resistance (AMR) crisis in human medicine leads to questions about all usage of antimicrobial drugs, including long-term usage in intensively managed food animals for growth promotion and disease prevention. Attention is also increasingly focusing on antimicrobial use and on bacterial resistance in companion animals, which are in intimate contact with the human population. They may share resistant bacteria with their owners, amplify resistant bacteria acquired from their owners, and act as a reservoir for human infection. Considerable effort is being made to describe the basis of AMR in bacterial pathogens of animals. Documentation of many aspects of use of antimicrobials in animals is, however, generally less developed and only a few countries can describe quantities of drugs used in animals to kg levels annually. In recent years, many national veterinary associations have produced 'prudent use guidelines' to try to improve antimicrobial drug use and decrease resistance, but the impact of guidelines is unknown. Within the evolving global movement for 'antimicrobial stewardship', there is considerable scope to improve many aspects of antimicrobial use in animals, including infection control and reduction of use, with a view to reducing resistance and its spread, and to preserving antimicrobial drugs for the future.

  19. Toxins and antimicrobial peptides: interactions with membranes

    NASA Astrophysics Data System (ADS)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of <200-nm bilayer vesicles composed of anionic and neutral lipids as well as cholesterol. Vesicle disruption, or peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  20. Antimicrobial drugs for treating cholera

    PubMed Central

    Leibovici-Weissman, Ya'ara; Neuberger, Ami; Bitterman, Roni; Sinclair, David; Salam, Mohammed Abdus; Paul, Mical

    2014-01-01

    Background Cholera is an acute watery diarrhoea caused by infection with the bacterium Vibrio cholerae, which if severe can cause rapid dehydration and death. Effective management requires early diagnosis and rehydration using oral rehydration salts or intravenous fluids. In this review, we evaluate the additional benefits of treating cholera with antimicrobial drugs. Objectives To quantify the benefit of antimicrobial treatment for patients with cholera, and determine whether there are differences between classes of antimicrobials or dosing schedules. Search methods We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; African Index Medicus; LILACS; Science Citation Index; metaRegister of Controlled Trials; WHO International Clinical Trials Registry Platform; conference proceedings; and reference lists to March 2014. Selection criteria Randomized and quasi-randomized controlled clinical trials in adults and children with cholera that compared: 1) any antimicrobial treatment with placebo or no treatment; 2) different antimicrobials head-to-head; or 3) different dosing schedules or different durations of treatment with the same antimicrobial. Data collection and analysis Two reviewers independently applied inclusion and exclusion criteria, and extracted data from included trials. Diarrhoea duration and stool volume were defined as primary outcomes. We calculated mean difference (MD) or ratio of means (ROM) for continuous outcomes, with 95% confidence intervals (CI), and pooled data using a random-effects meta-analysis. The quality of evidence was assessed using the GRADE approach. Main results Thirty-nine trials were included in this review with 4623 participants. Antimicrobials versus placebo or no treatment Overall, antimicrobial therapy shortened the mean duration of diarrhoea by about a day and a half compared to placebo or no treatment (MD -36.77 hours, 95% CI -43