Sample records for safe juvenile fish

  1. Effects of parasites on larval and juvenile stages of the coral reef fish Pomacentrus moluccensis

    NASA Astrophysics Data System (ADS)

    Grutter, A. S.; Cribb, T. H.; McCallum, H.; Pickering, J. L.; McCormick, M. I.

    2010-03-01

    The ecological role of parasites in the early life-history stages of coral reef fish is far from clear. Parasitism in larval, recently settled and juvenile stages of a coral reef fish damselfish (Pomacentridae) was therefore investigated by quantifying the ontogenetic change in parasite load and comparing the growth rates of parasitized juvenile fish to those of unparasitized ones. Parasite prevalence in two lunar pulses of Pomacentrus moluccensis was 4 and 0% for larval stage fish, 34 and 56% for recently settled fish and 42 and 49% for juveniles. A significant increase in parasite prevalence with age group was found; the most marked increase occurred immediately after larval fish had settled. Standard length did not model prevalence well; as length is a proxy for age, this indicates that the higher prevalence in recently settled and juvenile fish compared with larvae was not a simple result of parasites accumulating with age. In one of three cohorts, there was some evidence that parasitism affected the growth rate of juveniles, as measured by otolith width. The study suggests that settling on the reef exposes young fish to potentially harmful parasites. This supports the idea that the pelagic phase may have the effect of reducing the exposure of young fish to the debilitating effects of parasites.

  2. Strong homing does not predict high site fidelity in juvenile reef fishes

    NASA Astrophysics Data System (ADS)

    Streit, Robert P.; Bellwood, David R.

    2018-03-01

    After being displaced, juvenile reef fishes are able to return home over large distances. This strong homing behaviour is extraordinary and may allow insights into the longer-term spatial ecology of fish communities. For example, it appears intuitive that strong homing behaviour should be indicative of long-term site fidelity. However, this connection has rarely been tested. We quantified the site fidelity of juvenile fishes of four species after returning home following displacement. Two species, parrotfishes and Pomacentrus moluccensis, showed significantly reduced site fidelity after returning home. On average, they disappeared from their home sites almost 3 d earlier than expected. Mortality or competitive exclusion does not seem to be the main reasons for their disappearance. Rather, we suggest an increased propensity to relocate after encountering alternative reef locations while homing. It appears that some juvenile fishes may have a higher innate spatial flexibility than their strict homing drive suggests.

  3. Influence of food availability on the spatial distribution of juvenile fish within soft sediment nursery habitats

    NASA Astrophysics Data System (ADS)

    Tableau, A.; Brind'Amour, A.; Woillez, M.; Le Bris, H.

    2016-05-01

    Soft sediments in coastal shallow waters constitute nursery habitats for juveniles of several flatfishes. The quality of a nursery is defined by its capacity to optimize the growth and the survival of juvenile fish. The influence of biotic factors, such as food availability, is poorly studied at the scale of a nursery ground. Whether food availability limits juvenile survival is still uncertain. A spatial approach is used to understand the influence of food availability on the distribution of juvenile fish of various benthic and demersal species in the Bay of Vilaine (France), a productive nursery ground. We quantified the spatial overlap between benthic macro-invertebrates and their predators (juvenile fish) to assess if the latter were spatially covering the most productive areas of the Bay. Three scenarios describing the shapes of the predator-prey spatial relationship were tested to quantify the strength of the relationship and consequently the importance of food availability in determining fish distribution. Our results underline that both food availability and fish densities vary greatly over the nursery ground. When considering small organisational levels (e.g., a single fish species), the predator-prey spatial relationship was not clear, likely because of additional environmental effects not identified here; but at larger organisational level (the whole juvenile fish community), a strong overlap between the fish predators and their prey was identified. The evidence that fish concentrate in sectors with high food availability suggests that either food is the limiting factor in that nursery or/and fish display behavioural responses by optimising their energetic expenditures associated with foraging. Further investigations are needed to test the two hypotheses and to assess the impact of benthic and demersal juvenile fish in the food web of coastal nurseries.

  4. Do management actions to restore rare habitat benefit native fish conservation? Distribution of juvenile native fish among shoreline habitats of the Colorado River

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Gerig, Brandon; Pine, William E.; Korman, Josh; Finch, Colton

    2015-01-01

    Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi-species hierarchical models to estimate habitat-specific abundances and densities of juvenile humpback chub, bluehead suckerCatostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River. 

  5. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat.

    PubMed

    Cheminée, Adrien; Rider, Mary; Lenfant, Philippe; Zawadzki, Audrey; Mercière, Alexandre; Crec'hriou, Romain; Mercader, Manon; Saragoni, Gilles; Neveu, Reda; Ternon, Quentin; Pastor, Jérémy

    2017-06-15

    Coastal nursery habitats are essential for the renewal of adult fish populations. We quantified the availability of a coastal nursery habitat (shallow heterogeneous rocky bottoms) and the spatial variability of its juvenile fish populations along 250km of the Catalan coastline (France and Spain). Nurseries were present in 27% of the coastline, but only 2% of them benefited from strict protection status. For nine taxa characteristic of this habitat, total juvenile densities varied significantly between nursery sites along the coastline, with the highest densities being found on the northern sites. Recruitment level (i.e. a proxy of nursery value) was not explained by protection level, but it was moderately and positively correlated with an anthropization index. Patterns of spatial variations were taxa-specific. Exceptional observations of four juveniles of the protected grouper Epinephelus marginatus were recorded. Our data on habitat availability and recruitment levels provides important informations which help to focus MPA management efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mangrove Habitat Use by Juvenile Reef Fish: Meta-Analysis Reveals that Tidal Regime Matters More than Biogeographic Region

    PubMed Central

    Igulu, Mathias M.; Nagelkerken, Ivan; Dorenbosch, Martijn; Grol, Monique G. G.; Harborne, Alastair R.; Kimirei, Ismael A.; Mumby, Peter J.; Olds, Andrew D.; Mgaya, Yunus D.

    2014-01-01

    Identification of critical life-stage habitats is key to successful conservation efforts. Juveniles of some species show great flexibility in habitat use while other species rely heavily on a restricted number of juvenile habitats for protection and food. Considering the rapid degradation of coastal marine habitats worldwide, it is important to evaluate which species are more susceptible to loss of juvenile nursery habitats and how this differs across large biogeographic regions. Here we used a meta-analysis approach to investigate habitat use by juvenile reef fish species in tropical coastal ecosystems across the globe. Densities of juvenile fish species were compared among mangrove, seagrass and coral reef habitats. In the Caribbean, the majority of species showed significantly higher juvenile densities in mangroves as compared to seagrass beds and coral reefs, while for the Indo-Pacific region seagrass beds harbored the highest overall densities. Further analysis indicated that differences in tidal amplitude, irrespective of biogeographic region, appeared to be the major driver for this phenomenon. In addition, juvenile reef fish use of mangroves increased with increasing water salinity. In the Caribbean, species of specific families (e.g. Lutjanidae, Haemulidae) showed a higher reliance on mangroves or seagrass beds as juvenile habitats than other species, whereas in the Indo-Pacific family-specific trends of juvenile habitat utilization were less apparent. The findings of this study highlight the importance of incorporating region-specific tidal inundation regimes into marine spatial conservation planning and ecosystem based management. Furthermore, the significant role of water salinity and tidal access as drivers of mangrove fish habitat use implies that changes in seawater level and rainfall due to climate change may have important effects on how juvenile reef fish use nearshore seascapes in the future. PMID:25551761

  7. Mangrove habitat use by juvenile reef fish: meta-analysis reveals that tidal regime matters more than biogeographic region.

    PubMed

    Igulu, Mathias M; Nagelkerken, Ivan; Dorenbosch, Martijn; Grol, Monique G G; Harborne, Alastair R; Kimirei, Ismael A; Mumby, Peter J; Olds, Andrew D; Mgaya, Yunus D

    2014-01-01

    Identification of critical life-stage habitats is key to successful conservation efforts. Juveniles of some species show great flexibility in habitat use while other species rely heavily on a restricted number of juvenile habitats for protection and food. Considering the rapid degradation of coastal marine habitats worldwide, it is important to evaluate which species are more susceptible to loss of juvenile nursery habitats and how this differs across large biogeographic regions. Here we used a meta-analysis approach to investigate habitat use by juvenile reef fish species in tropical coastal ecosystems across the globe. Densities of juvenile fish species were compared among mangrove, seagrass and coral reef habitats. In the Caribbean, the majority of species showed significantly higher juvenile densities in mangroves as compared to seagrass beds and coral reefs, while for the Indo-Pacific region seagrass beds harbored the highest overall densities. Further analysis indicated that differences in tidal amplitude, irrespective of biogeographic region, appeared to be the major driver for this phenomenon. In addition, juvenile reef fish use of mangroves increased with increasing water salinity. In the Caribbean, species of specific families (e.g. Lutjanidae, Haemulidae) showed a higher reliance on mangroves or seagrass beds as juvenile habitats than other species, whereas in the Indo-Pacific family-specific trends of juvenile habitat utilization were less apparent. The findings of this study highlight the importance of incorporating region-specific tidal inundation regimes into marine spatial conservation planning and ecosystem based management. Furthermore, the significant role of water salinity and tidal access as drivers of mangrove fish habitat use implies that changes in seawater level and rainfall due to climate change may have important effects on how juvenile reef fish use nearshore seascapes in the future.

  8. The release rate of environmental DNA from juvenile and adult fish.

    PubMed

    Maruyama, Atsushi; Nakamura, Keisuke; Yamanaka, Hiroki; Kondoh, Michio; Minamoto, Toshifumi

    2014-01-01

    The environmental DNA (eDNA) technique is expected to become a powerful, non-invasive tool for estimating the distribution and biomass of organisms. This technique was recently shown to be applicable to aquatic vertebrates by collecting extraorganismal DNA floating in the water or absorbed onto suspended particles. However, basic information on eDNA release rate is lacking, despite it being essential for practical applications. In this series of experiments with bluegill sunfish (Lepomis macrochirus), we examined the effect of fish developmental stage on eDNA release rate. eDNA concentration reached equilibrium 3 days after the individual fish were introduced into the separate containers, enabling calculation of the eDNA release rate (copies h-1) from individual fish on the assumption that the number of eDNA released from the fish per unit time equals total degradation in the container (copies h-1). The eDNA release rate was 3-4 times higher in the adult (body weight: 30-75 g) than in the juvenile group (0.5-2.0 g). Such positive relationship between fish size and eDNA release rate support the possibility of biomass rather than density estimation using eDNA techniques. However, the eDNA release rate per fish body weight (copies h-1 g-1) was slightly higher in the juvenile than the adult group, which is likely because of the ontogenetic reduction in metabolic activity. Therefore, quantitative eDNA data should be carefully interpreted to avoid overestimating biomass when the population is dominated by juveniles, because the age structure of the focal population is often variable and unseen in the field. eDNA degradation rates (copies l-1 h-1), calculated by curve fitting of time-dependent changes in eDNA concentrations after fish removal, were 5.1-15.9% per hour (half-life: 6.3 h). This suggests that quantitative eDNA data should be corrected using a degradation curve attained in the target field.

  9. Altered juvenile fish communities associated with invasive Halophila stipulacea seagrass habitats in the U.S. Virgin Islands.

    PubMed

    Olinger, Lauren K; Heidmann, Sarah L; Durdall, Allie N; Howe, Colin; Ramseyer, Tanya; Thomas, Sara G; Lasseigne, Danielle N; Brown, Elizabeth J; Cassell, John S; Donihe, Michele M; Duffing Romero, Mareike D; Duke, Mara A; Green, Damon; Hillbrand, Paul; Wilson Grimes, Kristin R; Nemeth, Richard S; Smith, Tyler B; Brandt, Marilyn

    2017-01-01

    Caribbean seagrass habitats provide food and protection for reef-associated juvenile fish. The invasive seagrass Halophila stipulacea is rapidly altering these seascapes. Since its arrival in the Caribbean in 2002, H. stipulacea has colonized and displaced native seagrasses, but the function of this invasive seagrass as a juvenile fish habitat remains unknown. To compare diversity, community structure, and abundance of juvenile fish between H. stipulacea and native seagrass beds, fish traps were deployed in four nearshore bays around St. Thomas, U.S. Virgin Islands. Traps were deployed in Frenchman, Lindbergh, and Sprat Bays for 24 h intervals in patches of bare sand, patches of H. stipulacea and patches of the native Caribbean seagrasses Thalassia testudinum and Syringodium filiforme. Traps were then deployed in Brewers Bay for 12 h intervals in stands of H. stipulacea and S. filiforme. Relative and total abundances of juvenile fish, identified at least to family, were compared across treatment habitats for each trap deployment period. The catch from H. stipulacea, compared to native seagrasses, comprised a greater abundance of nocturnal carnivores Lutjanus synagris (family Lutjanidae) and Haemulon flavolineatum (family Haemulidae). Additionally, the herbivore species Sparisoma aurofrenatum (family Labridae) and Acanthurus bahianus (family Acanthuridae) and the diurnal carnivore species Pseudopeneus maculatus (family Mullidae) were relatively scarce in H. stipulacea. The catch from sand was much smaller, compared to vegetated habitats, and comprised only L. synagris, H. flavolineatum, and H. aurolineatum. These results provide evidence of reduced family diversity and altered juvenile fish assemblages in H. stipulacea, driven by an abundance of some nocturnal carnivores and scarcity of herbivores and diurnal carnivores. The findings from the present work underpin the need for further investigation and mitigation of this invasion, particularly where H. stipulacea is

  10. Altered juvenile fish communities associated with invasive Halophila stipulacea seagrass habitats in the U.S. Virgin Islands

    PubMed Central

    Brown, Elizabeth J.; Cassell, John S.; Donihe, Michele M.; Duffing Romero, Mareike D.; Duke, Mara A.; Green, Damon; Hillbrand, Paul; Wilson Grimes, Kristin R.; Nemeth, Richard S.; Smith, Tyler B.; Brandt, Marilyn

    2017-01-01

    Caribbean seagrass habitats provide food and protection for reef-associated juvenile fish. The invasive seagrass Halophila stipulacea is rapidly altering these seascapes. Since its arrival in the Caribbean in 2002, H. stipulacea has colonized and displaced native seagrasses, but the function of this invasive seagrass as a juvenile fish habitat remains unknown. To compare diversity, community structure, and abundance of juvenile fish between H. stipulacea and native seagrass beds, fish traps were deployed in four nearshore bays around St. Thomas, U.S. Virgin Islands. Traps were deployed in Frenchman, Lindbergh, and Sprat Bays for 24 h intervals in patches of bare sand, patches of H. stipulacea and patches of the native Caribbean seagrasses Thalassia testudinum and Syringodium filiforme. Traps were then deployed in Brewers Bay for 12 h intervals in stands of H. stipulacea and S. filiforme. Relative and total abundances of juvenile fish, identified at least to family, were compared across treatment habitats for each trap deployment period. The catch from H. stipulacea, compared to native seagrasses, comprised a greater abundance of nocturnal carnivores Lutjanus synagris (family Lutjanidae) and Haemulon flavolineatum (family Haemulidae). Additionally, the herbivore species Sparisoma aurofrenatum (family Labridae) and Acanthurus bahianus (family Acanthuridae) and the diurnal carnivore species Pseudopeneus maculatus (family Mullidae) were relatively scarce in H. stipulacea. The catch from sand was much smaller, compared to vegetated habitats, and comprised only L. synagris, H. flavolineatum, and H. aurolineatum. These results provide evidence of reduced family diversity and altered juvenile fish assemblages in H. stipulacea, driven by an abundance of some nocturnal carnivores and scarcity of herbivores and diurnal carnivores. The findings from the present work underpin the need for further investigation and mitigation of this invasion, particularly where H. stipulacea is

  11. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    NASA Astrophysics Data System (ADS)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  12. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix C: Anadromous Fish and Juvenile Fish Transportation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Columbia River System Operation Review

    1995-11-01

    This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings.

  13. High prevalence of homing behaviour among juvenile coral-reef fishes and the role of body size

    NASA Astrophysics Data System (ADS)

    Streit, Robert P.; Bellwood, David R.

    2017-12-01

    Adult coral-reef fishes display a remarkable ability to return home after being displaced. However, we know very little about homing behaviour in juvenile fishes. Homing behaviour in juvenile fishes is of interest because it will shape subsequent spatial distributions of adult fish communities. Comparing multiple species, families and functional groups allows us to distinguish between species-specific traits and more generalised, species-independent traits that may drive homing behaviour. Using displacement experiments of up to 150 m, we quantified homing behaviour of juvenile, newly recruited reef fishes of seven species in three families, including herbivorous parrotfishes and rabbitfishes, carnivorous wrasse and planktivorous damselfishes. All species showed the ability to home successfully, but success rates differed among species. Juvenile parrotfishes were the most successful (67% returning home), while return rates in the other species ranged from 10.5% ( Siganus doliatus) to 28.9% ( Coris batuensis). However, across all species body size appeared to be the main driver of homing success, rather than species-specific traits. With every cm increase in body size, odds of returning home almost tripled (170% increase) across all species. Interestingly, the probability of getting lost was not related to body size, which suggests that mortality was not a major driver of unsuccessful homing. Homing probability halved beyond displacement distances of 10 m and then remained stable. Higher likelihood of homing over short distances may suggest that different sensory cues are used to navigate. Overall, our results suggest that homing ability is a widespread trait among juvenile reef fishes. A `sense of home' and site attachment appear to develop early during ontogeny, especially above taxon-specific size thresholds. Hence, spatial flexibility exists only in a brief window after settlement, with direct implications for subsequent patterns of connectivity and ecosystem

  14. Hypoxia, Blackwater and Fish Kills: Experimental Lethal Oxygen Thresholds in Juvenile Predatory Lowland River Fishes

    PubMed Central

    Small, Kade; Kopf, R. Keller; Watts, Robyn J.; Howitt, Julia

    2014-01-01

    Hypoxia represents a growing threat to biodiversity in freshwater ecosystems. Here, aquatic surface respiration (ASR) and oxygen thresholds required for survival in freshwater and simulated blackwater are evaluated for four lowland river fishes native to the Murray-Darling Basin (MDB), Australia. Juvenile stages of predatory species including golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, Murray cod Maccullochella peelii, and eel-tailed catfish Tandanus tandanus were exposed to experimental conditions of nitrogen-induced hypoxia in freshwater and hypoxic blackwater simulations using dried river red gum Eucalyptus camaldulensis leaf litter. Australia's largest freshwater fish, M. peelii, was the most sensitive to hypoxia but given that we evaluated tolerances of juveniles (0.99±0.04 g; mean mass ±SE), the low tolerance of this species could not be attributed to its large maximum attainable body mass (>100,000 g). Concentrations of dissolved oxygen causing 50% mortality (LC50) in freshwater ranged from 0.25±0.06 mg l−1 in T. tandanus to 1.58±0.01 mg l−1 in M. peelii over 48 h at 25–26°C. Logistic models predicted that first mortalities may start at oxygen concentrations ranging from 2.4 mg l−1 to 3.1 mg l−1 in T. tandanus and M. peelii respectively within blackwater simulations. Aquatic surface respiration preceded mortality and this behaviour is documented here for the first time in juveniles of all four species. Despite the natural occurrence of hypoxia and blackwater events in lowland rivers of the MDB, juvenile stages of these large-bodied predators are vulnerable to mortality induced by low oxygen concentration and water chemistry changes associated with the decomposition of organic material. Given the extent of natural flow regime alteration and climate change predictions of rising temperatures and more severe drought and flooding, acute episodes of hypoxia may represent an underappreciated risk to riverine fish communities. PMID

  15. Hypoxia, blackwater and fish kills: experimental lethal oxygen thresholds in juvenile predatory lowland river fishes.

    PubMed

    Small, Kade; Kopf, R Keller; Watts, Robyn J; Howitt, Julia

    2014-01-01

    Hypoxia represents a growing threat to biodiversity in freshwater ecosystems. Here, aquatic surface respiration (ASR) and oxygen thresholds required for survival in freshwater and simulated blackwater are evaluated for four lowland river fishes native to the Murray-Darling Basin (MDB), Australia. Juvenile stages of predatory species including golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, Murray cod Maccullochella peelii, and eel-tailed catfish Tandanus tandanus were exposed to experimental conditions of nitrogen-induced hypoxia in freshwater and hypoxic blackwater simulations using dried river red gum Eucalyptus camaldulensis leaf litter. Australia's largest freshwater fish, M. peelii, was the most sensitive to hypoxia but given that we evaluated tolerances of juveniles (0.99 ± 0.04 g; mean mass ±SE), the low tolerance of this species could not be attributed to its large maximum attainable body mass (>100,000 g). Concentrations of dissolved oxygen causing 50% mortality (LC50) in freshwater ranged from 0.25 ± 0.06 mg l(-1) in T. tandanus to 1.58 ± 0.01 mg l(-1) in M. peelii over 48 h at 25-26 °C. Logistic models predicted that first mortalities may start at oxygen concentrations ranging from 2.4 mg l(-1) to 3.1 mg l(-1) in T. tandanus and M. peelii respectively within blackwater simulations. Aquatic surface respiration preceded mortality and this behaviour is documented here for the first time in juveniles of all four species. Despite the natural occurrence of hypoxia and blackwater events in lowland rivers of the MDB, juvenile stages of these large-bodied predators are vulnerable to mortality induced by low oxygen concentration and water chemistry changes associated with the decomposition of organic material. Given the extent of natural flow regime alteration and climate change predictions of rising temperatures and more severe drought and flooding, acute episodes of hypoxia may represent an underappreciated risk to riverine fish communities.

  16. LINKING JUVENILE FISH AND THEIR HABITATS: AN EXAMPLE FROM NARRAGANSETT BAY ,RHODE ISLAND

    EPA Science Inventory

    We used two methods and existing field survey data to link juvenile fish and their habitats. The first method used seine survey data collected monthly from July to October 1988-1996 at fixed stations in Narragansett Bay, Rhode Island. Thirteen fish species making up 1% or more of...

  17. Recruitment of fish larvae and juveniles into two estuarine nursery areas with evidence of ebb tide use

    NASA Astrophysics Data System (ADS)

    Pattrick, Paula; Strydom, Nadine

    2014-08-01

    Recruitment of larvae and early juveniles, against the ebb tide in the shallower, slower-flowing marginal areas of two permanently open estuaries in the Eastern Cape, South Africa was observed. To determine tidal, diel and seasonal variations of larval and juvenile fish recruitment, fyke nets were used during a 24-hour cycle over two years from December 2010 to October 2012. On either side of each estuary bank, two fyke nets with mouth openings facing opposite directions (i.e. one net facing the incoming or outgoing tide and the other facing the opposing direction) were used to sample fishes. The aims of this study were to determine if 1) on the flood tide, were the nets facing the incoming tide collecting more larvae and early juveniles recruiting into the estuarine nursery area, than the nets facing the opposing direction and 2) on the ebb tide, were the nets facing the sea, and hence the opposing direction of the outgoing ebb tide, collecting more fishes recruiting into the nursery against the ebb tide, than the nets facing the outgoing ebb tide? Larval and juvenile fish CPUE, species diversity and richness varied seasonally between estuarine systems and between diel and tidal conditions. Highest catches were recorded on the flood tide, which coincided with sunrise in the Swartkops Estuary. Greatest catches of larvae and early juveniles were observed during the ebb tide at night in the Sundays Estuary. On the ebb tide, higher catches of several dominant species and several commercially important fishery species, occurred in the fyke nets which faced the sea, indicating the early developmental stages of these fish species are not necessarily being lost from the nursery. These larvae and juveniles are actively swimming against the ebb tide in the shallower, slower-flowing marginal areas facilitating recruitment against ebb flow.

  18. Anesthesia of juvenile Pacific Lampreys with MS-222, BENZOAK, AQUI-S 20E, and Aquacalm

    USGS Publications Warehouse

    Christiansen, Helena E.; Gee, Lisa P.; Mesa, Matthew G.

    2013-01-01

    Effective anesthetics are a critical component of safe and humane fish handling procedures. We tested three concentrations each of four anesthetics—Finquel (tricaine methanesulfonate, herein referred to as MS-222), BENZOAK (20% benzocaine), AQUI-S 20E (10% eugenol), and Aquacalm (metomidate hydrochloride)—for efficacy and safety in metamorphosed, outmigrating juvenile Pacific Lampreys Entosphenus tridentatus. The anesthetics MS-222 (100 mg/L) and BENZOAK (60 mg/L) were the most effective for anesthetizing juvenile Pacific Lampreys to a handleable state with minimal irritation to the fish. Fish anesthetized with BENZOAK also had lower rates of fungal infection than those exposed to MS-222, AQUI-S 20E, or no anesthetic. Exposure to AQUI-S 20E irritated juvenile Pacific Lampreys, causing them to leap or climb out of the anesthetic solution, and Aquacalm anesthetized fish to a handleable state too slowly and incompletely for effective use with routine handling procedures. Our results indicate that MS-222 and BENZOAK are effective anesthetics for juvenile Pacific Lampreys, but field studies are needed to determine whether exposure to MS-222 increases risk of fungal infection in juvenile Pacific Lampreys released to the wild.

  19. Simulated effects of host fish distribution on juvenile unionid mussel dispersal in a large river

    USGS Publications Warehouse

    Daraio, J.A.; Weber, L.J.; Zigler, S.J.; Newton, T.J.; Nestler, J.M.

    2012-01-01

    Larval mussels (Family Unionidae) are obligate parasites on fish, and after excystment from their host, as juveniles, they are transported with flow. We know relatively little about the mechanisms that affect dispersal and subsequent settlement of juvenile mussels in large rivers. We used a three-dimensional hydrodynamic model of a reach of the Upper Mississippi River with stochastic Lagrangian particle tracking to simulate juvenile dispersal. Sensitivity analyses were used to determine the importance of excystment location in two-dimensional space (lateral and longitudinal) and to assess the effects of vertical location (depth in the water column) on dispersal distances and juvenile settling distributions. In our simulations, greater than 50% of juveniles mussels settled on the river bottom within 500 m of their point of excystment, regardless of the vertical location of the fish in the water column. Dispersal distances were most variable in environments with higher velocity and high gradients in velocity, such as along channel margins, near the channel bed, or where effects of river bed morphology caused large changes in hydraulics. Dispersal distance was greater and variance was greater when juvenile excystment occurred in areas where vertical velocity (w) was positive (indicating an upward velocity) than when w was negative. Juvenile dispersal distance is likely to be more variable for mussels species whose hosts inhabit areas with steeper velocity gradients (e.g. channel margins) than a host that generally inhabits low-flow environments (e.g. impounded areas).

  20. Seasonal dynamics of the juvenile fish community structure in the Maowei Sea mangroves

    PubMed Central

    Zou, Qi; Chang, Tao; Zhang, Dong; Huang, Liang-Liang

    2018-01-01

    More than 50% of Chinese mangroves were lost between 1950 and 2000 to habitat destruction, prompting an urge for conservation. To assess the importance of the protected Maowei Gulf mangrove estuary for fish population assemblage in the Beibu Gulf (China), we studied species composition and abundance of juvenile fish (including larvae) from July 2012 to June 2013. A total of 11 691 specimens were collected, which belonged to 24 species and 15 families. Six perciform species constituted 93% of the total sample. Pseudogobius javanicus (53.29%) was the dominant species from August to November, Omobranchus elegans (28.49%) from April to July, non-identified species in December and January, and Liza carinata in February and March. A number of commercially important fish species were also identified. Abundance was the highest in summer/early autumn (max 162.4 in Sep), and lowest in winter/early spring (Mar = 4.5). Diversity (H’) and richness (Dma) indices (both max. in May: 1.67 and 1.95 respectively) were generally positively correlated with tide and temperature, and negatively with salinity. Seasonal variations play a more important role in the fish assemblage structure than tidal rhythm, with differences particularly pronounced between colder and warmer months. Despite the prominent seasonal differences in abiotic factors, this study indicates that Maowei mangroves provide habitat and food for juvenile fish throughout the year and thus are indispensable for the fish diversity in the Beibu Gulf. PMID:29438434

  1. Feeding of predaceous fishes on out-migrating juvenile-salmonids in John Day Reservoir, Columbia River

    USGS Publications Warehouse

    Poe, Thomas P.; Hansel, Hal C.; Vigg, S.; Palmer, D.E.; Prendergast, L.A.

    1991-01-01

    Diets of northern squawfish Ptychocheilus oregonensis, smallmouth bass Micropterus dolomieu, walleye Stizostedion vitreum, and channel catfish Ictalurus punctatus from John Day Reservoir were examined to determine the extent of predation on juvenile salmonids during seaward migrations of the salmonids during April–August 1983–1986. Juvenile Pacific salmon Oncorhynchus spp. and steelhead O. mykiss were the most important food group (by weight) of northern squawfish – about 67% – but made up smaller proportions of the food of the other predators: channel catfish, 33%; walleyes, 14%; smallmouth bass, 4%. Seasonal changes in diets indicated that northern squawfish preferred juvenile salmonids in May and August (generally the peak period of salmonid out-migration), and switched to prickly sculpin Cottus asper when numbers of juvenile salmonids declined; walleyes and smallmouth bass showed a preference only for prickly sculpin among the prey fishes analyzed. As judged by dietary composition and prey selectivity, the northern squawfish was the major fish predator on juvenile salmonids in the reservoir; channel catfish also were important predators in the upper reservoir in spring. Walleyes and smallmouth bass were much less important predators on salmonids, and appeared to select subyearling chinook salmon only in August when the distribution of this prey overlapped with that of the predators. Size-selective predation by northern squawfish may also play an important role in reducing survival of the smaller individuals within each run of out-migrating juvenile salmonids.

  2. Selective predation for low body condition at the larval-juvenile transition of a coral reef fish.

    PubMed

    Hoey, Andrew S; McCormick, Mark I

    2004-03-01

    Mortality is known to be high during the transition from larval to juvenile life stages in organisms that have complex life histories. We are only just beginning to understand the processes that influence which individuals survive this period of high mortality, and which traits may be beneficial. Here we document a field experiment that examines the selectivity of predation immediately following settlement to the juvenile population in a common tropical fish, Pomacentrus amboinensis (Pomacentridae). Newly metamorphosed fish were tagged and randomly placed onto replicated patches of natural habitat cleared of resident fishes. After exposure to transient predators for 3 days, fish were recollected and the attributes of survivors from patch reefs that sustained high mortality were compared to individuals from patch reefs that experienced low mortality. Seven characteristics of individuals, which were indicative of previous and present body condition, were compared between groups. Predation was found to be selective for fish that grew slowly in the latter third of their larval phase, were low in total lipids, and had a high standardized weight (Fulton's K). Traits developed in the larval phase can strongly influence the survival of individuals over this critical transition period for organisms with complex life cycles.

  3. Spatial analysis of the trophic interactions between two juvenile fish species and their preys along a coastal-estuarine gradient

    NASA Astrophysics Data System (ADS)

    Kopp, Dorothée; Le Bris, Hervé; Grimaud, Lucille; Nérot, Caroline; Brind'Amour, Anik

    2013-08-01

    Coastal and estuarine systems provide nursery grounds for many marine fish species. Their productivity has been correlated with terrigeneous inputs entering the coastal-estuarine benthic food web, thereby favouring the establishment of fish juveniles. Studies in these ecosystems often describe the nursery as a single large habitat without verifying nor considering the presence of contiguous habitats. Our study aimed at identifying different habitats based on macrozoobenthic communities and morpho-sedimentary characteristics and assessing the trophic interactions between fish juveniles and their benthic preys within these habitats. It included 43 sampling sites covering 5 habitats in which we described taxonomically and quantitatively the invertebrates and fish communities with stable isotopes and gut contents. It suggested that the benthic common sole Solea solea displayed feeding plasticity at the population level, separating the juveniles (G0) from the older fish (G1) into different "feeding sub-populations". Size-based feeding plasticity was also observable in the spatial occupancy of that species in the studied bay. The demersal pouting, Trisopterus luscus, equally used the different habitats but displayed low feeding plasticity across and inside each habitat. Stable isotopes proved to be powerful tools to study the spatial distribution of trophic interactions in complex ecosystems like the bay of Vilaine and to define optimal habitats for fish that use the coastal-estuarine ecosystem as nursery grounds.

  4. [Histology of gill, liver and kidney in juvenile fish Colossoma macropomum exposed to three temperatures].

    PubMed

    Rojas, Luz-Marina; Mata, Claunis; Oliveros, Aridays; Salazar-Lugo, Raquel

    2013-06-01

    Abstract: Histology of gill, liver and kidney in juvenile fish Colossoma macropomum exposed to three temperatures. Water temperature is an important factor that affects growth and antioxidant enzyme activities in fish, and when adverse, it may trigger diseases in fish populations. C. macropomum is a freshwater neotropical fish widely distributed in South America and abundant in river basins as the Amazon and Orinoco. It is highly used for intensive aquaculture development and is a very important product for the local riverside economy in Venezuela. The purpose of our study was to examine the water temperature effect on gills, liver and kidneys of juvenile fishes of C macropomum. Eighteen juveniles with biometrical index of 17.87 +/- 7.88 cm and 87.69 +/- 34.23 g were respectively exposed to three culture temperatures (T18, T29 and T35 degrees C) during a period of 21 days. Histological analyses on gills, liver and kidney were made according to standard methodologies. Our results showed that these tissues exhibited normal citoarchitecture at T29. On the contrary, T18-gills displayed brachiallipid droplets inside brachial epithelium; and disorganization in the brachial tissue was observed at T35. Furthermore, we observed two kinds of hepatocytes (dark and light) on T180 degrees C-liver. The T35-liver samples showed cytoplasmatic granulation and damages in cytoplasmatic membrane. Kidney samples from T18 observed alterations in the cellular distribution of the hematopoietic tissue; while, at T35, the most important feature observed was the disorganization of the glomerular structure. We concluded that T18 and T35 are respectively critical and severe temperatures to C. macropomum; besides, the most sensible tissues to changes induced by temperature in this species were the liver and gills.

  5. Do nursery habitats provide shelter from flow for juvenile fish?

    PubMed

    Parsons, Darren M; MacDonald, Iain; Buckthought, Dane; Middleton, Crispin

    2018-01-01

    Juvenile fish nurseries are an essential life stage requirement for the maintenance of many fish populations. With many inshore habitats globally in decline, optimising habitat management by increasing our understanding of the relationship between juvenile fish and nursery habitats may be a prudent approach. Previous research on post-settlement snapper (Chrysophrys auratus) has suggested that structure may provide a water flow refuge, allowing snapper to access high water flow sites that will also have a high flux of their pelagic prey. We investigated this hypothesis by describing how Artificial Seagrass Units (ASUs) modified water flow while also using a multi-camera set up to quantify snapper position in relation to this water flow environment. Horizontal water flow was reduced on the down-current side of ASUs, but only at the height of the seagrass canopy. While the highest abundance of snapper did occur down-current of the ASUs, many snapper also occupied other locations or were too high in the water column to receive any refuge from water flow. The proportion of snapper within the water column was potentially driven by strategy to access zooplankton prey, being higher on the up-current side of ASUs and on flood tides. It is possible that post-settlement snapper alternate position to provide opportunities for both feeding and flow refuging. An alternative explanation relates to an observed interaction between post-settlement snapper and a predator, which demonstrated that snapper can utilise habitat structure when threatened. The nature of this relationship, and its overall importance in determining the value of nursery habitats to post-settlement snapper remains an elusive next step.

  6. Influence of physico-chemical properties on the abundance of a few economically important juvenile fin-fishes of Vellar estuary.

    PubMed

    Brinda, S; Bragadeeswaran, S

    2005-01-01

    Studies on the economically important juvenile fin-fishes such as Elops machnata, Chanos chanos, Lates calcarifer, Epinephelus sp., Sillago sihama, Etroplus suratensis, Mugil cephalus, Liza parsia and Liza tade with relation to the hydrographical parameters as rainfall, temperature, salinity, dissolved oxygen and pH of Vellar estuary during September 2001 to August 2002. The simple correlation co-efficient showed positive significance against juvenile density with water temperature and dissolved oxygen. The influence of hydrographical parameters to the fin-fishes and its abundance is discussed.

  7. Survival and growth of juvenile Pacific lampreys tagged with passive integrated transponders (PIT) in freshwater and seawater

    USGS Publications Warehouse

    Mesa, Matthew G.; Copeland, Elizabeth S.; Christiansen, Helena E.; Gregg, Jacob L.; Roon, Sean R.; Hershberger, Paul K.

    2012-01-01

    Tagging methods are needed for both adult and juvenile life stages of Pacific lampreys Lampetra tridentata to better understand their biology and factors contributing to their decline. We developed a safe and efficient technique for tagging juvenile Pacific lampreys with passive integrated transponder (PIT) tags. We tested the short-term survival of PIT-tagged juvenile lampreys in freshwater at four temperatures (9, 12, 15, and 18°C) and their long-term growth and survival in seawater. For both experiments there was little to no tag loss, and juvenile lampreys in freshwater showed high survival at all temperatures at 7 d (95–100%) and 14 d (88–100%) posttagging. Prolonged holding (40 d) resulted in significantly lower survival (28–79%) at warmer temperatures (12–18°C). For juvenile lampreys tagged in freshwater and then transitioned to seawater, survival was 97% for tagged fish until day 94, and at the end of 6 months, survival was about 58% for both tagged and control fish. About half of the tagged and control fish that survived in seawater grew, but there was no difference in growth between the two groups. In freshwater, but not in seawater, most fish that died had an aquatic fungal infection. In both experiments, survival increased with increasing fish length at tagging. Our results indicate that tags similar in size to a 9-mm PIT tag are a feasible option for tagging metamorphosed juvenile lampreys migrating downstream and that when fungal infections are mitigated—as in seawater—long-term (at least 6 months) survival of tagged juvenile lampreys is high.

  8. Capture, swallowing, and egestion of microplastics by a planktivorous juvenile fish.

    PubMed

    Ory, Nicolas Christian; Gallardo, Camila; Lenz, Mark; Thiel, Martin

    2018-09-01

    Microplastics (<5 mm) have been found in many fish species, from most marine environments. However, the mechanisms underlying microplastic ingestion by fish are still unclear, although they are important to determine the pathway of microplastics along marine food webs. Here we conducted experiments in the laboratory to examine microplastic ingestion (capture and swallowing) and egestion by juveniles of the planktivorous palm ruff, Seriolella violacea (Centrolophidae). As expected, fish captured preferentially black microplastics, similar to food pellets, whereas microplastics of other colours (blue, translucent, and yellow) were mostly co-captured when floating close to food pellets. Microplastics captured without food were almost always spit out, and were only swallowed when they were mixed with food in the fish's mouth. Food probably produced a 'gustatory trap' that impeded the fish to discriminate and reject the microplastics. Most fish (93% of total) egested all the microplastics after 7 days, on average, and 49 days at most, substantially longer than food pellets (<2 days). No acute detrimental effects of microplastics on fish were observable, but potential sublethal effects of microplastics on the fish physiological and behavioural responses still need to be tested. This study highlights that visually-oriented planktivorous fish, many species of which are of commercial value and ecological importance within marine food webs, are susceptible to ingest microplastics resembling or floating close to their planktonic prey. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Abundance of host fish and frequency of glochidial parasitism in fish assessed in field and laboratory settings and frequency of juvenile mussels or glochidia recovered from hatchery-held fish, central and southeastern Texas, 2012-13

    USGS Publications Warehouse

    Braun, Christopher L.; Stevens, Charrish L.; Echo-Hawk, Patricia D.; Johnson, Nathan A.; Moring, James B.

    2014-01-01

    A total of 19 fish species collected at nine sites was submitted to the hatchery in 2013, and 14 of these species had juvenile mussels or glochidia that were recovered at the hatchery. The three most productive species, in terms of the average number of juvenile mussels or glochidia recovered, were longear sunfish, spotted bass, and largemouth bass, each of which averaged more than two juvenile mussels or glochidia recovered per individual.

  10. Fish oil improves lipid profile in juvenile rats with intrauterine growth retardation by altering the transcriptional expression of lipid-related hepatic genes.

    PubMed

    Chen, Lian-Hui; Liang, Li; Fang, Yan-Lan; Wang, Ying-Min; Zhu, Wei-Fen

    2016-10-01

    To determine whether maternal intrauterine undernutrition and post-weaning fish oil intake influence lipid profile in juvenile offspring, and explore the possible mechanisms at transcriptional levels. After weaning, 32 control offspring and 24 intrauterine growth retardation (IUGR) offspring were randomly allocated to standard chow or fish oil diet. At 10 weeks, fasting plasma glucose, triglycerides, total cholesterol and expressions of related hepatic genes were examined. IUGR offspring without catch-up growth tended to develop hyperglycemia, dyslipidemia and hepatic steatosis. Down-regulation of CPT-1 and LDLR at transcriptional levels were found in IUGR offspring. Early short-term fish oil intervention reversed these unfavorable changes in juvenile rats with IUGR. The mechanisms might be mediated by decreased expression of ACC-1, increased expression of CPT-1, LDLR and ABCG5. These data suggest that IUGR offspring already present lipid abnormality in juvenile stage, and early short-term fish oil consumption is beneficial to prevent these unfavorable changes.

  11. Investigation of culvert hydraulics related to juvenile fish passage. Final research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, M.E.; Downs, R.C.

    1996-01-01

    Culverts often create barriers to the upstream migration of juvenile fish. The objective of this study was to determine hydraulic characteristics of culverts with different flow conditions. Methods of predicting flow profiles were developed by both Chiu and Mountjoy. Two equations were compared to experimental results. An area of flow corresponding to a predetermined allowable velocity can be calculated using Mountjoy equation. This can then be used in the design of culverts as fish passage guidelines. The report contains a summary of background information, experimental methodology, the results of experimental tests, and an analysis of both the Chiu and Mountjoymore » equations.« less

  12. Epizootics of wild fish induced by farm fish.

    PubMed

    Krkosek, Martin; Lewis, Mark A; Morton, Alexandra; Frazer, L Neil; Volpe, John P

    2006-10-17

    The continuing decline of ocean fisheries and rise of global fish consumption has driven aquaculture growth by 10% annually over the last decade. The association of fish farms with disease emergence in sympatric wild fish stocks remains one of the most controversial and unresolved threats aquaculture poses to coastal ecosystems and fisheries. We report a comprehensive analysis of the spread and impact of farm-origin parasites on the survival of wild fish populations. We mathematically coupled extensive data sets of native parasitic sea lice (Lepeophtheirus salmonis) transmission and pathogenicity on migratory wild juvenile pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon. Farm-origin lice induced 9-95% mortality in several sympatric wild juvenile pink and chum salmon populations. The epizootics arise through a mechanism that is new to our understanding of emerging infectious diseases: fish farms undermine a functional role of host migration in protecting juvenile hosts from parasites associated with adult hosts. Although the migratory life cycles of Pacific salmon naturally separate adults from juveniles, fish farms provide L. salmonis novel access to juvenile hosts, in this case raising infection rates for at least the first approximately 2.5 months of the salmon's marine life (approximately 80 km of the migration route). Spatial segregation between juveniles and adults is common among temperate marine fishes, and as aquaculture continues its rapid growth, this disease mechanism may challenge the sustainability of coastal ecosystems and economies.

  13. Spatial variations in dietary organic matter sources modulate the size and condition of fish juveniles in temperate lagoon nursery sites

    NASA Astrophysics Data System (ADS)

    Escalas, Arthur; Ferraton, Franck; Paillon, Christelle; Vidy, Guy; Carcaillet, Frédérique; Salen-Picard, Chantal; Le Loc'h, François; Richard, Pierre; Darnaude, Audrey Michèle

    2015-01-01

    Effective conservation of marine fish stocks involves understanding the impact, on population dynamics, of intra-specific variation in nursery habitats use at the juvenile stage. In some regions, an important part of the catching effort is concentrated on a small number of marine species that colonize coastal lagoons during their first year of life. To determine the intra-specific variation in lagoon use by these fish and their potential demographic consequences, we studied diet spatiotemporal variations in the group 0 juveniles of a highly exploited sparid, the gilthead seabream (Sparus aurata L.), during their ∼6 months stay in a NW Mediterranean lagoon (N = 331, SL = 25-198 mm) and traced the origin of the organic matter in their food webs, at two lagoon sites with contrasted continental inputs. This showed that the origin (marine, lagoonal or continental) of the organic matter (OM) available in the water column and the sediment can vary substantially within the same lagoon, in line with local variations in the intensity of marine and continental inputs. The high trophic plasticity of S. aurata allows its juveniles to adapt to resulting differences in prey abundances at each site during their lagoon residency, thereby sustaining high growth irrespective of the area inhabited within the lagoon. However, continental POM incorporation by the juveniles through their diet (of 21-37% on average depending on the site) is proportional to its availability in the environment and could be responsible for the greater fish sizes (of 28 mm SL on average) and body weights (of 40.8 g on average) observed at the site under continental influence in the autumn, when the juveniles are ready to leave the lagoon. This suggests that continental inputs in particulate OM, when present, could significantly enhance fish growth within coastal lagoons, with important consequences on the local population dynamics of the fish species that use them as nurseries. As our results indicate that

  14. Effects of water temperature and fish size on predation vulnerability of juvenile humpback chub to rainbow trout and brown trout

    USGS Publications Warehouse

    Ward, David L.; Morton-Starner, Rylan

    2015-01-01

    Predation on juvenile native fish by introduced Rainbow Trout and Brown Trout is considered a significant threat to the persistence of endangered Humpback Chub Gila cypha in the Colorado River in the Grand Canyon. Diet studies of Rainbow Trout and Brown Trout in Glen and Grand canyons indicate that these species do eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable, depending on prey size, predator size, and the water temperatures under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile native fish changes in response to fish size and water temperature using captivity-reared Humpback Chub, Bonytail, and Roundtail Chub. Juvenile chub 45–90 mm total length (TL) were exposed to adult Rainbow and Brown trouts at 10, 15, and 20°C to measure predation vulnerability as a function of water temperature and fish size. A 1°C increase in water temperature decreased short-term predation vulnerability of Humpback Chub to Rainbow Trout by about 5%, although the relationship is not linear. Brown Trout were highly piscivorous in the laboratory at any size > 220 mm TL and at all water temperatures we tested. Understanding the effects of predation by trout on endangered Humpback Chub is critical in evaluating management options aimed at preserving native fishes in Grand Canyon National Park.

  15. Seasonal growth and mortality of juveniles of Lampsilis fasciola (Bivalvia: Unionidae) released to a fish hatchery raceway

    USGS Publications Warehouse

    Hanlon, Shane D.; Neves, Richard J.

    2006-01-01

    Recent efforts to restore remnant or extirpated populations of freshwater mussels have focused on artificial propagation as an effective and practical conservation strategy. Although artificially cultured juveniles have been produced and released to the wild at various times of the year, no study has investigated the best time of year to release these juveniles. Newly metamorphosed juveniles of the wavyrayed lampmussel (Lampsilis fasciola) were released into a stream-fed fish hatchery raceway during March, June, and September. Growth and survival rates were measured 32, 52, 72, and 92 days post-metamorphosis. Juveniles released in June experienced the greatest growth and survival rates. Juveniles released in September and March experienced high mortality within the first month of release and exhibited poor growth in the cool water conditions typical of those seasons. Overwinter survival exhibited a size-dependent relationship.

  16. Effects of dietary oxidized fish oil supplementation on oxidative stress and antioxidant defense system in juvenile rainbow trout (Oncorhynchus mykiss).

    PubMed

    Fontagné-Dicharry, Stéphanie; Larroquet, Laurence; Dias, Karine; Cluzeaud, Marianne; Heraud, Cécile; Corlay, Dominique

    2018-03-01

    The objective of the study was to characterize the response of the antioxidant defense system against dietary prooxidant conditions in rainbow trout juveniles. Fish (initial mean weight: 62 ± 1 g) were fed three fishmeal and plant-derived protein-based diets supplemented with 15% fresh fish oil (CTL diet), 15% fresh fish oil from tuna by-products (BYP diet) or 15% autooxidized fish oil (OX diet) over a 12-week growth trial at 17.5 ± 0.5 °C. No significant differences in growth performance were recorded between dietary groups. Muscle lipid content was reduced and n-6 PUFA levels were increased in rainbow trout fed diets BYP and OX compared to CTL. After 12 weeks of feeding, the level of lipid peroxidation products in muscle was not affected whereas the 8-isoprostane content in liver was increased in fish fed diet OX as well as plasma total and oxidized glutathione contents. The hepatic and muscle contents for α-tocopherol were decreased in fish fed BYP and OX. Hepatic antioxidant enzyme activities and mRNA levels were not affected after 12 weeks of feeding, except for catalase and glutathione peroxidase 1b2 mRNA levels that were decreased in trout fed diet OX. Fish fed diet OX and BYP displayed also reduced cytosolic Nrf2 and both cytosolic and nuclear NF-κB protein levels in liver. The present work indicates that feeding rainbow trout juveniles with fresh fish oil from by-products or moderately oxidized lipid appears not to be detrimental to the growth performance of fish. The mechanisms beyond the control of the antioxidant defense system by moderately oxidized lipid require further investigations in rainbow trout juveniles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Retention of elements absorbed by juvenile fish (Menidia menidia, Menidia Beryllina) from zooplankton prey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinfelder, J.R.; Fisher, N.S.

    1994-12-01

    Radiolabeled copepods (Acartia spp.) were fed to juvenile silversides (Menidia menidia and Menidia beryllina) to study element absorption in the fish. Copepods were reared from nauplii in the presence of different radiotracers ({sup 14}C,{sup 109}Cd,{sup 57}Co,{sup 32}P,{sup 35}S,{sup 75}Se, o;r {sup 65}Zn) and were analyzed for relative concentrations of these elements in their tissue fractions. Copepod exoskeletons contained nearly all of the trace metals (>97%), 60% of the Se, and less than half of the C,P, and S accumulated by the copepods. Within the nonexoskeleton tissues of the copepods, nonpolar (CHCl{sub 3} extractable) material contained 34 and 24% of themore » total C and P, but only 8 and 2% of the total S and Se. Absorption efficiencies of trace metals in juvenile silversides (2.7% for Cd, 2.1% for Co, 6.2% for Zn) were an order of magnitude lower than those for nonmetals (29% for Se, 50% for S and C, 60% for P). The absorption efficiencies in the juvenile silversides of all seven elements studied were directly related to the percent of each element in the nonexoskeleton fractions of the copepod prey, indicating that the fish absorbed the soft tissues of the copepods and egested the chitinous exoskeleton and its associated elements. 32 refs., 1 fig., 2 tabs.« less

  18. Understanding the influence of predation by introduced fishes on juvenile salmonids in the Columbia River Basin: Closing some knowledge gaps. Interim Report of Research 2010

    USGS Publications Warehouse

    Rose, Brien P.; Hansen, Gabriel S.; Mesa, Matthew G.

    2011-01-01

    In response to these recent concerns about the potential predatory impact of non-native piscivores on salmon survival, the Bonneville Power Administration (BPA) and the Columbia Basin Fish and Wildlife Authority (CBFWA) co-hosted a workshop to address predation on juvenile salmonids in the CRB by non-native fish (Halton 2008). The purpose of the workshop was to review, evaluate, and develop strategies to reduce predation by non-native fishes on juvenile salmonids. In the end, discussion at the workshop and at subsequent meetings considered two potential ideas to reduce predation by non-native fish on juvenile salmonids; (1) understanding the role of juvenile American shad Alosa sapidissima in the diet of non-native predators in the fall; and (2) the effects of localized, intense reductions of smallmouth bass in areas of particularly high salmonid predation. In this report, we describe initial efforts to understand the influence of juvenile American shad as a prey item for introduced predators in the middle Columbia River. Our first objective, addressed in Chapter 1, was to evaluate the efficacy of nonlethal methods to describe the physiological condition of smallmouth bass, walleye, and channel catfish from late summer through late fall. Such information will be used to understand the contribution of juvenile American shad to the energy reserves of predaceous fish prior to winter. In Chapter 2, we describe the results of some limited sampling to document the food habits of smallmouth bass, walleye, and channel catfish in three reservoirs of the middle Columbia River during late fall. Collectively, we hope to increase our understanding of the contribution of juvenile American shad to the diets of introduced predators and the contribution of this diet to their energy reserves, growth, and perhaps over-winter survival. Managers should be able to use this information for deciding whether to control the population of American shad in the CRB or for managing introduced

  19. Effects of Copper, Cadmium, Lead, and Arsenic in a Live Diet on Juvenile Fish Growth

    EPA Science Inventory

    The effects of dietborne copper, cadmium, lead, and arsenic on juvenile fish were evaluated using a live diet consisting of the oligochaete Lumbriculus variegatus. In 30-d exposures, no effects on growth and survival of rainbow trout, fathead minnow, and channel catfish were obs...

  20. Turbulence investigation and reproduction for assisting downstream migrating juvenile salmonids, Part II of II: Effects of induced turbulence on behavior of juvenile salmon, 2001-2005 final report

    USGS Publications Warehouse

    Perry, R.; Farley , M.; Hansen, G.; Morse , J.; Rondorf, D.

    2005-01-01

    Passage through dams is a major source of mortality of anadromous juvenile salmonids because some populations must negotiate up to eight dams in Columbia and Snake rivers. Dams cause direct mortality when fish pass through turbines, but dams may also cause indirect mortality by altering migration conditions in rivers. Forebays immediately upstream of dams have decreased the water velocity of rivers and may contribute substantially to the total migration delay of juvenile salmonids. Recently, Coutant (2001a) suggested that in addition to low water velocities, lack of natural turbulence may contribute to migration delay by causing fish to lose directional cues. Coutant (2001a) further hypothesized that restoring turbulence in dam forebays may reduce migration delay by providing directional cues that allow fish to find passage routes more quickly (Coutant 2001a). Although field experiments have yielded proof of the concept of using induced turbulence to guide fish to safe passage routes, little is known about mechanisms actually causing behavioral changes. To test hypotheses about how turbulence influences movement and behavior of migrating juvenile salmonids, we conducted two types of controlled experiments at Cowlitz Falls Dam, Washington. A common measure of migration delay is the elapsed time between arrival at, and passage through, a dam. Therefore, for the first set of experiments, we tested the effect of induced turbulence on the elapsed time needed for fish to traverse through a raceway and pass over a weir at its downstream end (time trial experiment). If turbulence helps guide fish to passage routes, then fish should pass through the raceway quicker in the presence of appropriately scaled and directed turbulent cues. Second, little is known about how the physical properties of water movement provide directional cues to migrating juvenile salmonids. To examine the feasibility of guiding fish with turbulence, we tested whether directed turbulence could guide

  1. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate.

    PubMed

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-06-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal.

  2. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate

    PubMed Central

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-01-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal. PMID:26078856

  3. Climate change may affect fish through an interaction of parental and juvenile environments

    NASA Astrophysics Data System (ADS)

    Donelson, J. M.; Munday, P. L.; McCormick, M. I.

    2012-09-01

    Changes to tropical sea surface temperature and plankton communities are expected to occur over the next 100 years due to climate change. There is a limited understanding of how these environmental changes are likely to impact coral reef fishes, especially in terms of population replenishment through the quality of progeny produced. The present study investigated the effect that elevated sea water temperature and changes to food availability may have on the production of offspring by the reef fish Acanthochromis polyacanthus (Pomacentridae), as well as the performance of progeny in environments of varying food availability. An orthogonal design of three water temperatures and two food availabilities (high and low ration) was used, with water temperatures being the current-day average for the collection location (28.5 °C), +1.5 °C (30.0 °C) and +3.0 °C (31.5 °C), representing likely temperatures by 2100. Generally, an increase in the water temperature for adults resulted in a reduction in the size, weight and amount of yolk possessed by newly hatched offspring. Offspring whose parents were maintained under elevated temperature (30.0 °C high ration) had lower survival than offspring produced by parents at the current-day temperature (28.5 °C high ration) at 15 days post-hatching, but only when juveniles were reared under conditions of low food availability. In contrast, by 30 days post-hatching, the growth and condition of these offspring produced by parents held under elevated temperature (30.0 °C high ration) were the best of all treatment groups in all levels of juvenile food availability. This result illustrates the potential for initial parental effects to be modified by compensatory growth early in life (within 1 month) and that parental effects are not necessarily long lasting. These findings suggest that the performance of juvenile reef fish in future ocean conditions may not only depend on initial parental effects, but the interaction between their

  4. Seaweed beds support more juvenile reef fish than seagrass beds in a south-western Atlantic tropical seascape

    NASA Astrophysics Data System (ADS)

    Eggertsen, L.; Ferreira, C. E. L.; Fontoura, L.; Kautsky, N.; Gullström, M.; Berkström, C.

    2017-09-01

    Seascape connectivity is regarded essential for healthy reef fish communities in tropical shallow systems. A number of reef fish species use separate adult and nursery habitats, and hence contribute to nutrient and energy transfer between habitats. Seagrass beds and mangroves often constitute important nursery habitats, with high structural complexity and protection from predation. Here, we investigated if reef fish assemblages in the tropical south-western Atlantic demonstrate ontogenetic habitat connectivity and identify possible nurseries on three reef systems along the eastern Brazilian coast. Fish were surveyed in fore reef, back reef, Halodule wrightii seagrass beds and seaweed beds. Seagrass beds contained lower abundances and species richness of fish than expected, while Sargassum-dominated seaweed beds contained significantly more juveniles than all other habitats (average juvenile fish densities: 32.6 per 40 m2 in Sargassum beds, 11.2 per 40 m2 in back reef, 10.1 per 40 m2 in fore reef, and 5.04 per 40 m2 in seagrass beds), including several species that are found in the reef habitats as adults. Species that in other regions worldwide (e.g. the Caribbean) utilise seagrass beds as nursery habitats were here instead observed in Sargassum beds or back reef habitats. Coral cover was not correlated to adult fish distribution patterns; instead, type of turf was an important variable. Connectivity, and thus pathways of nutrient transfer, seems to function differently in east Brazil compared to many tropical regions. Sargassum-dominated beds might be more important as nurseries for a larger number of fish species than seagrass beds. Due to the low abundance of structurally complex seagrass beds we suggest that seaweed beds might influence adult reef fish abundances, being essential for several keystone species of reef fish in the tropical south-western Atlantic.

  5. Accurate aging of juvenile salmonids using fork lengths

    USGS Publications Warehouse

    Sethi, Suresh; Gerken, Jonathon; Ashline, Joshua

    2017-01-01

    Juvenile salmon life history strategies, survival, and habitat interactions may vary by age cohort. However, aging individual juvenile fish using scale reading is time consuming and can be error prone. Fork length data are routinely measured while sampling juvenile salmonids. We explore the performance of aging juvenile fish based solely on fork length data, using finite Gaussian mixture models to describe multimodal size distributions and estimate optimal age-discriminating length thresholds. Fork length-based ages are compared against a validation set of juvenile coho salmon, Oncorynchus kisutch, aged by scales. Results for juvenile coho salmon indicate greater than 95% accuracy can be achieved by aging fish using length thresholds estimated from mixture models. Highest accuracy is achieved when aged fish are compared to length thresholds generated from samples from the same drainage, time of year, and habitat type (lentic versus lotic), although relatively high aging accuracy can still be achieved when thresholds are extrapolated to fish from populations in different years or drainages. Fork length-based aging thresholds are applicable for taxa for which multiple age cohorts coexist sympatrically. Where applicable, the method of aging individual fish is relatively quick to implement and can avoid ager interpretation bias common in scale-based aging.

  6. Juvenile exposure to predator cues induces a larger egg size in fish

    PubMed Central

    Segers, Francisca H. I. D.; Taborsky, Barbara

    2012-01-01

    When females anticipate a hazardous environment for their offspring, they can increase offspring survival by producing larger young. Early environmental experience determines egg size in different animal taxa. We predicted that a higher perceived predation risk by juveniles would cause an increase in the sizes of eggs that they produce as adults. To test this, we exposed juveniles of the mouthbrooding cichlid Eretmodus cyanostictus in a split-brood experiment either to cues of a natural predator or to a control situation. After maturation, females that had been confronted with predators produced heavier eggs, whereas clutch size itself was not affected by the treatment. This effect cannot be explained by a differential female body size because the predator treatment did not influence growth trajectories. The observed increase of egg mass is likely to be adaptive, as heavier eggs gave rise to larger young and in fish, juvenile predation risk drops sharply with increasing body size. This study provides the first evidence that predator cues perceived by females early in life positively affect egg mass, suggesting that these cues allow her to predict the predation risk for her offspring. PMID:21976689

  7. Plasma biomarkers in juvenile marine fish provide evidence for endocrine modulation potential of organotin compounds.

    PubMed

    Min, Byung Hwa; Kim, Bo-Mi; Kim, Moonkoo; Kang, Jung-Hoon; Jung, Jee-Hyun; Rhee, Jae-Sung

    2018-08-01

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used to control marine fouling. Here, we show that organotin stimulation reduces the hormone levels in the plasma of two economically important aquaculture fish. Blood plasma samples were collected from juvenile red seabream and black rockfish exposed to environmentally realistic concentrations of TBT and TPT for 14 days. The levels of two plasma biomarkers, namely the yolk protein precursor vitellogenin (VTG) and the sex steroid 17β-estradiol (E2), were measured to determine the endocrine disrupting potential of the organotin compounds. Both organotin compounds were dose-dependently accumulated in the blood of two fish. Exposure to waterborne TBT and TBT significantly decreased the plasma VTG levels in both the juvenile fish in a dose-dependent manner. In contrast, the treatment with E2, a well-known VTG inducer, significantly increased the plasma VTG levels in both the fish. In addition, the mRNA levels of vtg were also downregulated in the liver tissues of both the fish at 100 and/or 1000 ng L -1 of TBT or TPT exposure. The plasma E2 titers were significantly suppressed at 100 and/or 1000 ng L -1 of TBT or TPT exposure for 14 days compared to their titer in the control. Since estrogen directly regulates vtg gene expression and VTG synthesis, our results reveal the endocrine disrupting potential of organotin compounds, and subsequently the endocrine modulation at early stage of fish can trigger further fluctuations in sexual differentiation, maturation, sex ration or egg production. In addition, the results demonstrate their effects on non-target organisms, particularly on animals reared in aquaculture and fisheries. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated

    USGS Publications Warehouse

    Kock, Tobias J.; Tiffan, Kenneth F.; Connor, William P.

    2007-01-01

    During the winter of 2006-07, we radio and passive integrated transponder (PIT) tagged, and released 99 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. All fish were released 10 km upstream of Lower Granite Dam at Granite Point in early November, 2006. Fixed radio telemetry detection sites located in the forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental, Ice Harbor, Bonneville dams, and at Lyle, Washington were used to monitor fish movements and dam passage through early-May 2007. Of the 99 fish released during our study, 80 passed Lower Granite Dam and were detected at downstream detection sites, 37 passed Little Goose Dam, 41 passed Lower Monumental Dam, 31 passed Ice Harbor Dam, 18 passed Lyle, WA, and 13 passed Bonneville Dam. Of the fish that passed Lower Granite Dam in the fall, 63 fish did so during the extended bypass period from November 1 through December 16. Of these fish, 53 were also detected by the PIT-tag interrogation system. Fifteen of the fish that passed Lower Granite Dam in the fall continued to pass lower Snake River dams and exit the system by the end of January. The remaining fish either died, their tags failed, or they resided in Little Goose Reservoir until spring when relatively few continued their seaward migration. Passage of tagged fish past lower Snake River dams generally declined during the winter as temperatures decreased, but increased again in the spring as temperatures and flows increased. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 160 d), and varied by reservoir and time of year. We observed no diel trends in fish passage. Very few fish were detected at PIT-tag interrogation sites in the spring compared to detection by radio telemetry detection sites indicating that fish may have passed via spill. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more

  9. Insect Protein as a partial Replacement of Fishmeal in the Diets of Juvenile Fish and Crustaceans

    USDA-ARS?s Scientific Manuscript database

    This chapter represents a review of the published literature to determine if insect protein is an important supplement to - or even a replacement for - fishmeal in diets for juvenile fish and crustaceans. Fishmeal is becoming a finite resource. This chapter highlights areas of opportunity for produc...

  10. Insect protein as a partial replacement of fishmeal in the diets of juvenile fish and crustaceans

    USDA-ARS?s Scientific Manuscript database

    This chapter represents a review of the published literature to determine if insect protein is an important supplement to - or even a replacement for - fishmeal in diets for juvenile fish and crustaceans. Fishmeal is becoming a finite resource. This chapter highlights areas of opportunity for produc...

  11. Insect protein as a partical replacement of fishmeal in the diets of juvenile fish and crustaceans

    USDA-ARS?s Scientific Manuscript database

    This chapter represents a review of the published literature to determine if insect protein is an important supplement to - or even a replacement for - fishmeal in diets for juvenile fish and crustaceans. Fishmeal is becoming a finite resource. This chapter highlights areas of opportunity for prod...

  12. Reducing the Impacts of Hydroelectric Dams on Juvenile Anadromous Fishes: Bioengineering Evaluations Using Acoustic Imaging in the Columbia River, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Ploskey, Gene R.; Hedgepeth, J.

    2008-07-29

    Dams impact the survival of juvenile anadromous fishes by obstructing migration corridors, lowering water quality, delaying migrations, and entraining fish in turbine discharge. To reduce these impacts, structural and operational modifications to dams— such as voluntary spill discharge, turbine intake guidance screens, and surface flow outlets—are instituted. Over the last six years, we have used acoustic imaging technology to evaluate the effects of these modifications on fish behavior, passage rates, entrainment zones, and fish/flow relationships at hydroelectric projects on the Columbia River. The imaging technique has evolved from studies documenting simple movement patterns to automated tracking of images to mergingmore » and analysis with concurrent hydraulic data. This chapter chronicles this evolution and shows how the information gleaned from the scientific evaluations has been applied to improve passage conditions for juvenile salmonids. We present data from Bonneville and The Dalles dams that document fish behavior and entrainment zones at sluiceway outlets (14 to 142 m3/s), fish passage rates through a gap at a turbine intake screen, and the relationship between fish swimming effort and hydraulic conditions. Dam operators and fisheries managers have applied these data to support decisions on operational and structural changes to the dams for the benefit of anadromous fish populations in the Columbia River basin.« less

  13. Utilizing individual fish biomass and relative abundance models to map environmental niche associations of adult and juvenile targeted fishes.

    PubMed

    Galaiduk, Ronen; Radford, Ben T; Harvey, Euan S

    2018-06-21

    Many fishes undergo ontogenetic habitat shifts to meet their energy and resource needs as they grow. Habitat resource partitioning and patterns of habitat connectivity between conspecific fishes at different life-history stages is a significant knowledge gap. Species distribution models were used to examine patterns in the relative abundance, individual biomass estimates and environmental niche associations of different life stages of three iconic West Australian fishes. Continuous predictive maps describing the spatial distribution of abundance and individual biomass of the study species were created as well predictive hotspot maps that identify possible areas for aggregation of individuals of similar life stages of multiple species (i.e. spawning grounds, fisheries refugia or nursery areas). The models and maps indicate that processes driving the abundance patterns could be different from the body size associated demographic processes throughout an individual's life cycle. Incorporating life-history in the spatially explicit management plans can ensure that critical habitat of the vulnerable stages (e.g. juvenile fish, spawning stock) is included within proposed protected areas and can enhance connectivity between various functional areas (e.g. nursery areas and adult populations) which, in turn, can improve the abundance of targeted species as well as other fish species relying on healthy ecosystem functioning.

  14. Evaluation of plant and animal protein sources as partial or total replacement of fish meal in diets for juvenile Nile tilapia

    USDA-ARS?s Scientific Manuscript database

    A feeding trial was conducted in a closed system with Nile tilapia (Oreochromis niloticus) juveniles (mean weight, 2.84 g) to examine the effects of total replacement of fish meal (FM), with and without supplementation of DL-methionine (Met) and L-lysine (Lys), by plant protein sources. Fish were f...

  15. Larval traits show temporally consistent constraints, but are decoupled from post-settlement juvenile growth, in an intertidal fish.

    PubMed

    Thia, Joshua A; Riginos, Cynthia; Liggins, Libby; Figueira, Will F; McGuigan, Katrina

    2018-05-05

    1.Complex life-cycles may evolve to dissociate distinct developmental phases in an organism's lifetime. However, genetic or environmental factors may restrict trait independence across life stages, constraining ontogenetic trajectories. Quantifying covariance across life-stages and their temporal variability is fundamental in understanding life-history phenotypes and potential distributions and consequences for selection. 2.We studied developmental constraints in an intertidal fish (Bathygobius cocosensis: Gobiidae) with a discrete pelagic larval phase and benthic juvenile phase. We tested whether traits occurring earlier in life affected those expressed later, and whether larval traits were decoupled from post-settlement juvenile traits. Sampling distinct cohorts from three annual breeding seasons afforded tests of temporally variability in trait covariance. 3.From otoliths (fish ear stones), we measured hatch size, larval duration, pelagic growth (larval traits) and early post-settlement growth (juvenile trait) in 124 juvenile B. cocoensis. We used path analyses to model trait relationships with respect to their chronological expression, comparing models among seasons. We also modelled the effect of season and hatch date on each individual trait to quantify their inherent variability. 4.Our path analyses demonstrated a decoupling of larval traits on juvenile growth. Within the larval phase, longer larval durations resulted in greater pelagic growth, and larger size-at-settlement. There was also evidence that larger hatch size might reduce larval durations, but this effect was only marginally significant. Although pelagic and post-settlement growth were decoupled, pelagic growth had post-settlement consequences: individuals with high pelagic growth were among the largest fish at settlement, and remained among the largest early post-settlement. We observed no evidence that trait relationships varied among breeding seasons, but larval duration differed among

  16. Effects of changes in food supply at the time of sex differentiation on the gonadal transcriptome of juvenile fish. Implications for natural and farmed populations.

    PubMed

    Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Food supply is a major factor influencing growth rates in animals. This has important implications for both natural and farmed fish populations, since food restriction may difficult reproduction. However, a study on the effects of food supply on the development of juvenile gonads has never been transcriptionally described in fish. This study investigated the consequences of growth on gonadal transcriptome of European sea bass in: 1) 4-month-old sexually undifferentiated fish, comparing the gonads of fish with the highest vs. the lowest growth, to explore a possible link between transcriptome and future sex, and 2) testis from 11-month-old juveniles where growth had been manipulated through changes in food supply. The four groups used were: i) sustained fast growth, ii) sustained slow growth, iii) accelerated growth, iv) decelerated growth. The transcriptome of undifferentiated gonads was not drastically affected by initial natural differences in growth. Further, changes in the expression of genes associated with protein turnover were seen, favoring catabolism in slow-growing fish and anabolism in fast-growing fish. Moreover, while fast-growing fish took energy from glucose, as deduced from the pathways affected and the analysis of protein-protein interactions examined, in slow-growing fish lipid metabolism and gluconeogenesis was favored. Interestingly, the highest transcriptomic differences were found when forcing initially fast-growing fish to decelerate their growth, while accelerating growth of initially slow-growing fish resulted in full transcriptomic convergence with sustained fast-growing fish. Food availability during sex differentiation shapes the juvenile testis transcriptome, as evidenced by adaptations to different energy balances. Remarkably, this occurs in absence of major histological changes in the testis. Thus, fish are able to recover transcriptionally their testes if they are provided with enough food supply during sex differentiation; however

  17. Trophic behaviour of juvenile reef fishes inhabiting interlinked mangrove-seagrass habitats in offshore mangrove islets.

    PubMed

    Vaslet, A; Phillips, D L; France, C A M; Feller, I C; Baldwin, C C

    2015-08-01

    Stable isotope (δ(13)C and δ(15)N) and gut content analyses were used to investigate size-related feeding habits of four reef fishes (the beaugregory Stegastes leucostictus, the french grunt Haemulon flavolineatum, the schoolmaster snapper Lutjanus apodus and the yellowtail snapper Ocyurus chrysurus) inhabiting an offshore (non-estuarine) mangrove islet off Belize, Central America. Comparisons of isotopic niche space and Schoener diet similarity index suggested a low to moderate degree of niche overlap between fish size groups. The δ(13)C gradient between mangrove and seagrass prey as well as results of Bayesian mixing models revealed that sampled fishes relied mostly on seagrass prey items. Only small and large juveniles of the carnivorous species L. apodus derived a part of their diet from mangroves by targeting mangrove-associated Grapsidae crabs and fish prey, respectively. Isotopic niche shifts were particularly obvious for carnivorous fishes that ingested larger prey items (Xanthidae crabs and fishes) during their ontogeny. The utilization of mangrove food resources is less than expected and depends on the ecology and life history of the fish species considered. This research highlights that mangrove-derived carbon contributed relatively little to the diets of four fish taxa from an offshore mangrove islet. © 2015 The Fisheries Society of the British Isles.

  18. Are vegetated areas of mangroves attractive to juvenile and small fish? The case of Dongzhaigang Bay, Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Wang, Mao; Huang, Zhenyuan; Shi, Fushan; Wang, Wenqing

    2009-11-01

    Well-developed aerial roots of mangroves make it difficult to study how fish utilize the mangrove forest as a habitat. In the present study, we compared the differences in fish assemblages in three major types of habitats of mangrove estuary (vegetated area, treeless mudflat, and creek) of a mangrove bay in Hainan Island, China, at different seasons during two consecutive years. Three types of gears, centipede net, gill net and cast net, were used in the different habitats of mangrove estuary and sampling efficiencies among gears were evaluated. Centipede nets were used in all the three types of habitats and cast nets and gill nets in treeless mudflats and creeks. Fish assemblages were dependent on gears used. Centipede net could efficiently catch fish occurring both inside and outside of vegetated areas efficiently. A total of 115 fish species in 51 families were collected. In terms of numbers of species per family, Gobiidae was the most diverse (17 species), followed by Mugilidae (5 species). Almost all of the fish were juvenile or small fish and few predators were recorded, implying low predation pressure in the bay. ANOVA analysis showed that significant seasonal and spatial variation existed in species richness, abundance, and biomass, which were less in the vegetated areas than those of treeless mudflats and creeks. The attraction of vegetated areas to fish was less than that of creeks and mudflats. Many species were specific to a particular habitat type, 4 species occurring exclusively in the creeks, 45 species occurring exclusively in the treeless mudflats, and 5 species occurring exclusively in the vegetated areas. The results indicated that mangrove estuaries were potentially attractive habitats for juvenile and small fish, but this attraction was accomplished by a connection of vegetated areas, treeless mudflats and creeks, not only by vegetated areas.

  19. Evaluation of Head-of-Reservoir Conditions for Downstream Migration of Juvenile Chinook Salmon and Steelhead at Shasta Lake, California

    NASA Astrophysics Data System (ADS)

    Clancey, K. M.; Saito, L.; Svoboda, C.; Bender, M. D.; Hannon, J.; Hellmann, K. M.

    2015-12-01

    Since completion of Shasta Dam, migration of Chinook salmon and steelhead trout in the Sacramento River has been blocked, causing loss of spawning and rearing habitat. This has been a factor leading to population declines of these fish species over several decades. Winter-run Chinook salmon, spring-run Chinook salmon and steelhead trout are now listed under the Endangered Species Act. A habitat assessment of the tributaries upstream of Shasta Dam showed that the Sacramento and McCloud tributaries have suitable habitat for reintroduction of adult salmon and steelhead for spawning. Such reintroduction would require downstream passage of juvenile Chinook salmon and steelhead past Shasta Dam. To evaluate the possibility of collecting and transporting juvenile Chinook salmon and steelhead past Shasta Dam, a CE-QUAL-W2 model of Shasta Lake and the Sacramento River, McCloud River, Pit River and Squaw Creek tributaries was used to assess where and when conditions were favorable at head-of-reservoir locations upstream of proposed temperature curtains to collect juvenile fish. Head-of-reservoir is the zone of transition between the river and the upstream end of the reservoir. Criteria for evaluating locations suitable to collect these fish included water temperature and velocities in the Sacramento and McCloud tributaries. Model output was analyzed during months of downstream migration under dry, median and wet year conditions. Potential for proposed temperature curtains, anchored and floating, to improve conditions for fish migration was also evaluated with the CE-QUAL-W2 model. Use of temperature curtains to assist fish migration is a novel approach that to our knowledge has not previously been assessed for recovery of Chinook salmon and steelhead populations. Providing safe passage conditions is challenging, however the study findings may assist in formulation of a juvenile fish passage alternative that is suitable for Shasta Lake.

  20. Effects of introduced fishes on wild juvenile coho salmon in three shallow pacific northwest lakes

    USGS Publications Warehouse

    Bonar, Scott A.; Bolding, B.D.; Divens, M.; Meyer, W.

    2005-01-01

    Declines in Pacific salmon Oncorhynchus spp. have been blamed on hydropower, overfishing, ocean conditions, and land use practices; however, less is known about the impacts of introduced fish. Most of the hundreds of lakes and ponds in the Pacific Northwest contain introduced fishes, and many of these water bodies are also important for salmon production, especially of coho salmon O. kisutch. Over 2 years, we examined the predation impacts of 10 common introduced fishes (brown bullhead Ameiurus nebulosus, black crappie Pomoxis nigro-maculatus, bluegill Lepomis macrochirus, golden shiner Notemigonus crysoleucas, green sunfish L. cyanellus, largemouth bass Micropterus salmoides, pumpkinseed L. gibbosus, rainbow trout O. mykiss, warmouth L. gulosus, and yellow perch Perca flavescens) and two native fishes (cutthroat trout O. clarkii and prickly sculpin Cottus asper) on wild juvenile coho salmon in three shallow Pacific Northwest lakes, all located in different watersheds. Of these species, largemouth bass were responsible for an average of 98% of the predation on coho salmon in all lakes, but the total impact to each run varied among lakes and years. Very few coho salmon were eaten by black crappies, brown bullheads, cutthroat trout, prickly sculpin, or yellow perch, whereas other species were not observed to eat coho salmon. Juvenile coho salmon growth in all lakes was higher than in nearby streams. Therefore, food competition between coho salmon and introduced fishes in lakes was probably not limiting coho salmon populations. Largemouth bass are widespread and are present in 85% of lowland warmwater public-access lakes in Washington (n = 421), 84% of those in Oregon (n = 179), and 74% of those in the eight northwesternmost counties in California (n = 19). Future research would help to identify the impact of largemouth bass predation across the region and prioritize lakes where impacts are most severe. Nevertheless, attempts to transplant or increase largemouth bass

  1. Survival of juvenile chinook salmon and coho salmon in the Roza Dam fish bypass and in downstream reaches of the Yakima River, Washington, 2016

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Hansen, Amy C.

    2016-12-22

    Estimates of juvenile salmon survival are important data for fishery managers in the Yakima River Basin. Radiotelemetry studies during 2012–14 showed that tagged juvenile Chinook salmon (Oncorhynchus tshawytscha) that passed through the fish bypass at Roza Dam had lower survival than fish that passed through other routes at the dam. That study also identified flow-survival relationships in the reaches between the Roza Dam tailrace and Sunnyside Dam. During 2012–14, survival also was estimated through reaches downstream of Sunnyside Dam, but generally, sample sizes were low and the estimates were imprecise. In 2016, we conducted an evaluation using acoustic cameras and acoustic telemetry to build on information collected during the previous study. The goal of the 2016 research was to identify areas where mortality occurs in the fish bypass at Roza Dam, and to estimate reach-specific survival in reaches downstream of the dam. The 2016 study included juvenile Chinook salmon and coho salmon (O. kisutch).Three acoustic cameras were used to observe fish behavior (1) near the entrances to the fish bypass, (2) at a midway point in the fish bypass (convergence vault), and (3) at the bypass outfall. In total, 504 hours of acoustic camera footage was collected at these locations. We determined that smolt-sized fish (95–170 millimeters [mm]) were present in the highest proportions at each location, but predator-sized fish (greater than 250 mm) also were present at each site. Fish presence generally peaked during nighttime hours and crepuscular periods, and was low during daytime hours. In the convergence vault, smolt-sized fish exhibited holding behavior patterns, which may explain why some fish delayed while passing through the bypass.Some of the acoustic-tagged fish were delayed in the fish bypass following release, but there was no evidence to suggest that they experienced higher mortality than fish that were released at the bypass outfall or downstream of the dam

  2. Among-sibling differences in the phenotypes of juvenile fish depend on their location within the egg mass and maternal dominance rank

    PubMed Central

    Burton, Tim; Hoogenboom, M. O.; Beevers, N. D.; Armstrong, J. D.; Metcalfe, N. B.

    2013-01-01

    We investigated whether among-sibling differences in the phenotypes of juvenile fish were systematically related to the position in the egg mass where each individual developed during oogenesis. We sampled eggs from the front, middle and rear thirds of the egg mass in female brown trout of known dominance rank. In the resulting juveniles, we then measured traits that are related to individual fitness: body size, social status and standard metabolic rate (SMR). When controlling for differences among females in mean egg size, siblings from dominant mothers were initially larger (and had a lower mass-corrected SMR) if they developed from eggs at the rear of the egg mass. However, heterogeneity in the size of siblings from different positions in the egg mass diminished in lower-ranking females. Location of the egg within the egg mass also affected the social dominance of the resulting juvenile fish, although the direction of this effect varied with developmental age. This study provides the first evidence of a systematic basis for among-sibling differences in the phenotypes of offspring in a highly fecund organism. PMID:23193132

  3. Spatial and temporal distribution of bull trout (Salvelinus confluentus)-size fish near the floating surface collector in the North Fork Reservoir, Oregon, 2016

    USGS Publications Warehouse

    Adams, Noah S.; Smith, Collin D.

    2017-06-26

    Acoustic cameras were used to assess the behavior and abundance of bull trout (Salvelinus confluentus)-size fish at the entrance to the North Fork Reservoir juvenile fish floating surface collector (FSC). The purpose of the FSC is to collect downriver migrating juvenile salmonids at the North Fork Dam, and safely route them around the hydroelectric projects. The objective of the acoustic camera component of this study was to assess the behaviors of bull trout-size fish observed near the FSC, and to determine if the presence of bull trout-size fish influenced the collection or abundance of juvenile salmonids. Acoustic cameras were deployed near the surface and floor of the entrance to the FSC. The acoustic camera technology was an informative tool for assessing abundance and spatial and temporal behaviors of bull trout-size fish near the entrance of the FSC. Bull trout-size fish were regularly observed near the entrance, with greater abundances on the deep camera than on the shallow camera. Additionally, greater abundances were observed during the hours of sunlight than were observed during the night. Behavioral differences also were observed at the two depths, with surface fish traveling faster and straighter with more directed movement, and fish observed on the deep camera generally showing more milling behavior. Modeling potential predator-prey interactions and influences using collected passive integrated transponder (PIT) -tagged juvenile salmonids proved largely unpredictable, although these fish provided relevant timing and collection information. Overall, the results indicate that bull trout-size fish are present near the entrance of the FSC, concomitant with juvenile salmonids, and their abundances and behaviors indicate that they may be drawn to the entrance of the FSC because of the abundance of prey-sized fish.

  4. Effects of Changes in Food Supply at the Time of Sex Differentiation on the Gonadal Transcriptome of Juvenile Fish. Implications for Natural and Farmed Populations

    PubMed Central

    Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Background Food supply is a major factor influencing growth rates in animals. This has important implications for both natural and farmed fish populations, since food restriction may difficult reproduction. However, a study on the effects of food supply on the development of juvenile gonads has never been transcriptionally described in fish. Methods and Findings This study investigated the consequences of growth on gonadal transcriptome of European sea bass in: 1) 4-month-old sexually undifferentiated fish, comparing the gonads of fish with the highest vs. the lowest growth, to explore a possible link between transcriptome and future sex, and 2) testis from 11-month-old juveniles where growth had been manipulated through changes in food supply. The four groups used were: i) sustained fast growth, ii) sustained slow growth, iii) accelerated growth, iv) decelerated growth. The transcriptome of undifferentiated gonads was not drastically affected by initial natural differences in growth. Further, changes in the expression of genes associated with protein turnover were seen, favoring catabolism in slow-growing fish and anabolism in fast-growing fish. Moreover, while fast-growing fish took energy from glucose, as deduced from the pathways affected and the analysis of protein-protein interactions examined, in slow-growing fish lipid metabolism and gluconeogenesis was favored. Interestingly, the highest transcriptomic differences were found when forcing initially fast-growing fish to decelerate their growth, while accelerating growth of initially slow-growing fish resulted in full transcriptomic convergence with sustained fast-growing fish. Conclusions Food availability during sex differentiation shapes the juvenile testis transcriptome, as evidenced by adaptations to different energy balances. Remarkably, this occurs in absence of major histological changes in the testis. Thus, fish are able to recover transcriptionally their testes if they are provided with enough food

  5. A ‘Simple Anterior Fish Excluder’ (SAFE) for Mitigating Penaeid-Trawl Bycatch

    PubMed Central

    McHugh, Matthew J.; Broadhurst, Matt K.; Sterling, David J.; Millar, Russell B.

    2015-01-01

    Various plastic strips and sheets (termed ‘simple anterior fish excluders’−SAFEs) were positioned across the openings of penaeid trawls in attempts at reducing the unwanted bycatches of small teleosts. Initially, three SAFEs (a single wire without, and with small and large plastic panels) were compared against a control (no SAFE) on paired beam trawls. All SAFEs maintained targeted Metapenaeus macleayi catches, while the largest plastic SAFE significantly reduced total bycatch by 51% and the numbers of Pomatomus saltatrix, Mugil cephalus and Herklotsichthys castelnaui by up to 58%. A redesigned SAFE (‘continuous plastic’) was subsequently tested (against a control) on paired otter trawls, significantly reducing total bycatch by 28% and P. saltatrix and H. castelnaui by up to 42%. The continuous-plastic SAFE also significantly reduced M. macleayi catches by ~7%, but this was explained by ~5% less wing-end spread, and could be simply negated through otter-board refinement. Further work is required to refine the tested SAFEs, and to quantify species-specific escape mechanisms. Nevertheless, the SAFE concept might represent an effective approach for improving penaeid-trawl selectivity. PMID:25837892

  6. Evaluation of Fish Passage Sites in the Walla Walla River Basin, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamness, Mickie A.

    2008-08-29

    In 2008, Pacific Northwest National Laboratory evaluated the Hofer Dam fish screen and provided technical assistance at two other fish passage sites as requested by the Bonneville Power Administration, the Walla Walla Watershed Council, or the Confederated Tribes of the Umatilla Indian Reservation. Evaluation of new sites such as Hofer Dam focuses on their design, construction, operation, and maintenance to determine if they effectively provide juvenile salmonids with safe passage through irrigation diversions. There were two requests for technical assistance in 2008. In the first, the Confederated Tribes of the Umatilla Indian Reservation requested an evaluation of the Nursery Bridgemore » fish screens associated with the fish ladder on the east side of the Walla Walla River. One set of brushes that clean the screens was broken for an extended period. Underwater videography and water velocity measurements were used to determine there were no potential adverse effects on juvenile salmonids when the west set of screens was clean enough to pass water normally. A second request, received from the National Marine Fisheries Service and the Walla Walla Watershed Council, asked for evaluation of water velocities through relatively new head gates above and adjacent to the Eastside Ditch fish screens on the Walla Walla River. Water moving through the head gates and not taken for irrigation is diverted to provide water for the Nursery Bridge fish ladder on the east side of the river. Elevations used in the design of the head gates were incorrect, causing excessive flow through the head gates that closely approached or exceeded the maximum swimming burst speed of juvenile salmonids. Hofer Dam was evaluated in June 2008. PNNL researchers found that conditions at Hofer Dam will not cause impingement or entrainment of juvenile salmonids but may provide habitat for predators and lack strong sweeping flows to encourage juvenile salmonid passage downstream. Further evaluation of

  7. [Juvenile fish in a tidal pool, Térraba-Sierpe Forest Reserve, Puntarenas, Costa Rica].

    PubMed

    Chicas, F A

    2001-12-01

    Juvenile fish were sampled with a 10 m long net in a tide pool (17,000 m2) on the West margin of Boca Guarumal, Térraba-Sierpe Forest Reserve, Puntarenas, Costa Rica, from October 1992 through January 1994. Water temperature and surface salinity were recorded in each visit. The specimens were fixed in 5% formaldehyde and preserved in 70% ethanol. Abundance and size data were pooled based on precipitation, a main ecological influence in the Reserve. A total of 13,494 individuals from 18 species were captured. Eucinostomus currani, Gobionellus sagittula, Diapterus peruvianus, Agonostomus monticola and Atherinella sp. represented more than 97% of the captures. Although many species presented the tendency of concentrating during the dry season, significant differences in temporal abundance were found. The fish entered the estuary when their body length was between 20 and 60 mm.

  8. Diet of juvenile lake trout in southern Lake Ontario in relation to abundance and size of prey fishes, 1979-1987

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert

    1991-01-01

    We examined the diet of juvenile lake trout Salvelinus namaycush (<450 mm, total length) in Lake Ontario during four sampling periods (April–May, June, July–August, and October 1979–1987) in relation to changes in prey fish abundance in the depth zone where we caught the lake trout. Over all years combined, slimy sculpins Cottus cognatus contributed the most (39–52%) by wet weight to the diet, followed by alewives Alosa pseudoharengus(3–38%), rainbow smelt Osmerus mordax (17–43%), and johnny darters Etheostoma nigrum(2–10%). Over 90% of alewives eaten during April–May and June were age 1, and 98% of those eaten during October were age 0 (few alewives were eaten in July–August). Mean lengths of rainbow smelt and slimy sculpins in stomachs increased with size of lake trout. Juvenile lake trout generally fed opportunistically—seasonal and annual changes in diet usually reflected seasonal and annual changes in abundance of prey fishes near bottom where we captured the lake trout. Furthermore, diet within a given season varied with depth of capture of lake trout, and changes with depth in proportions of prey species in lake trout stomachs mirrored changes in proportions of the prey species in trawl catches at the same depth. Alewives (ages 0 and 1) were the only prey fish eaten in substantial quantities by both juvenile lake trout and other salmonines, and thus are a potential focus of competition between these predators.

  9. Parasites of fish larvae: do they follow metabolic energetic laws?

    PubMed

    Muñoz, Gabriela; Landaeta, Mauricio F; Palacios-Fuentes, Pamela; George-Nascimento, Mario

    2015-11-01

    Eumetazoan parasites in fish larvae normally exhibit large body sizes relative to their hosts. This observation raises a question about the potential effects that parasites might have on small fish. We indirectly evaluated this question using energetic metabolic laws based on body volume and the parasite densities. We compared the biovolume as well as the numeric and volumetric densities of parasites over the host body volume of larval and juvenile-adult fish and the average of these parasitological descriptors for castrator parasites and the parasites found in the fish studied here. We collected 5266 fish larvae using nearshore zooplankton sampling and 1556 juveniles and adult fish from intertidal rocky pools in central Chile. We considered only the parasitized hosts: 482 fish larvae and 629 juvenile-adult fish. We obtained 31 fish species; 14 species were in both plankton and intertidal zones. Fish larvae exhibited a significantly smaller biovolume but larger numeric and volumetric densities of parasites than juvenile-adult fish. Therefore, fish larvae showed a large proportion of parasite biovolume per unit of body host (cm(3)). However, the general scaling of parasitological descriptors and host body volume were similar between larvae and juvenile-adult fish. The ratio between the biovolume of parasites and the host body volume in fish larvae was similar to the proportion observed in castrator parasites. Furthermore, the ratios were different from those of juvenile-adult fish, which suggests that the presence of parasites implies a high energetic cost for fish larvae that would diminish the fitness of these small hosts.

  10. Assessing juvenile native fish demographic responses to a steady flow experiment in a large regulated river

    USGS Publications Warehouse

    Finch, Colton G.; Pine, William E.; Yackulic, Charles B.; Dodrill, Michael J.; Yard, Michael D.; Gerig, Brandon S.; Coggins,, Lewis G.; Korman, Josh

    2016-01-01

    The Colorado River below Glen Canyon Dam, Arizona, is part of an adaptive management programme which optimizes dam operations to improve various resources in the downstream ecosystem within Grand Canyon. Understanding how populations of federally endangered humpback chub Gila cypha respond to these dam operations is a high priority. Here, we test hypotheses concerning temporal variation in juvenile humpback chub apparent survival rates and abundance by comparing estimates between hydropeaking and steady discharge regimes over a 3-year period (July 2009–July 2012). The most supported model ignored flow type (steady vs hydropeaking) and estimated a declining trend in daily apparent survival rate across years (99.90%, 99.79% and 99.67% for 2009, 2010 and 2011, respectively). Corresponding abundance of juvenile humpback chub increased temporally; open population model estimates ranged from 615 to 2802 individuals/km, and closed model estimates ranged from 94 to 1515 individuals/km. These changes in apparent survival and abundance may reflect broader trends, or simply represent inter-annual variation. Important findings include (i) juvenile humpback chub are currently surviving and recruiting in the mainstem Colorado River with increasing abundance; (ii) apparent survival does not benefit from steady fall discharges from Glen Canyon Dam; and (iii) direct assessment of demographic parameters for juvenile endangered fish are possible and can rapidly inform management actions in regulated rivers.

  11. Influence of Green Tides in Coastal Nursery Grounds on the Habitat Selection and Individual Performance of Juvenile Fish

    PubMed Central

    Murillo, Laurence; Randon, Marine; Lebot, Clément

    2017-01-01

    Coastal ecosystems, which provide numerous essential ecological functions for fish, are threatened by the proliferation of green macroalgae that significantly modify habitat conditions in intertidal areas. Understanding the influence of green tides on the nursery function of these ecosystems is essential to determine their potential effects on fish recruitment success. In this study, the influence of green tides on juvenile fish was examined in an intertidal sandy beach area, the Bay of Saint-Brieuc (Northwestern France), during two annual cycles of green tides with varying levels of intensity. The responses of three nursery-dependent fish species, the pelagic Sprattus sprattus (L.), the demersal Dicentrarchus labrax (L.) and the benthic Pleuronectes platessa L., were analysed to determine the effects of green tides according to species-specific habitat niche and behaviour. The responses to this perturbation were investigated based on habitat selection and a comparison of individual performance between a control and an impacted site. Several indices on different integrative scales were examined to evaluate these responses (antioxidant defence capacity, muscle total lipid, morphometric condition and growth). Based on these analyses, green tides affect juvenile fish differently according to macroalgal density and species-specific tolerance, which is linked to their capacity to move and to their distribution in the water column. A decreasing gradient of sensitivity was observed from benthic to demersal and pelagic fish species. At low densities of green macroalgae, the three species stayed at the impacted site and the growth of plaice was reduced. At medium macroalgal densities, plaice disappeared from the impacted site and the growth of sea bass and the muscle total lipid content of sprat were reduced. Finally, when high macroalgal densities were reached, none of the studied species were captured at the impacted site. Hence, sites affected by green tides are less

  12. Influence of Green Tides in Coastal Nursery Grounds on the Habitat Selection and Individual Performance of Juvenile Fish.

    PubMed

    Le Luherne, Emilie; Le Pape, Olivier; Murillo, Laurence; Randon, Marine; Lebot, Clément; Réveillac, Elodie

    2017-01-01

    Coastal ecosystems, which provide numerous essential ecological functions for fish, are threatened by the proliferation of green macroalgae that significantly modify habitat conditions in intertidal areas. Understanding the influence of green tides on the nursery function of these ecosystems is essential to determine their potential effects on fish recruitment success. In this study, the influence of green tides on juvenile fish was examined in an intertidal sandy beach area, the Bay of Saint-Brieuc (Northwestern France), during two annual cycles of green tides with varying levels of intensity. The responses of three nursery-dependent fish species, the pelagic Sprattus sprattus (L.), the demersal Dicentrarchus labrax (L.) and the benthic Pleuronectes platessa L., were analysed to determine the effects of green tides according to species-specific habitat niche and behaviour. The responses to this perturbation were investigated based on habitat selection and a comparison of individual performance between a control and an impacted site. Several indices on different integrative scales were examined to evaluate these responses (antioxidant defence capacity, muscle total lipid, morphometric condition and growth). Based on these analyses, green tides affect juvenile fish differently according to macroalgal density and species-specific tolerance, which is linked to their capacity to move and to their distribution in the water column. A decreasing gradient of sensitivity was observed from benthic to demersal and pelagic fish species. At low densities of green macroalgae, the three species stayed at the impacted site and the growth of plaice was reduced. At medium macroalgal densities, plaice disappeared from the impacted site and the growth of sea bass and the muscle total lipid content of sprat were reduced. Finally, when high macroalgal densities were reached, none of the studied species were captured at the impacted site. Hence, sites affected by green tides are less

  13. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated. 2006 Annual Report

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.

    2007-01-01

    During the winter of 2005-06, we radio and PIT tagged and released 48 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. Fish were released at the upstream end of the Lower Granite Dam forebay in November and December 2005. Fixed radio telemetry detection sites located in forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental and Ice Harbor dams were used to monitor fish movements and dam passage through early-May 2006. Of the 48 fish released during our study, 39 (81 %) passed Lower Granite Dam and were detected at downstream detection sites, 29 (60%) passed Little Goose Dam, 25 (52%) passed Lower Monumental Dam, and 15 (31%) passed Ice Harbor Dam. Thirty-seven (95%), 23 (79%), 16 (64%), and 9 (60%) of the fish that passed Lower Granite, Little Goose, Lower Monumental, and Ice Harbor dams respectively, did so when the fish bypass system was not operated. Passage of tagged fish past lower Snake River dams generally declined during the winter, but increased again after bypass began in April. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 118 d), and varied by reservoir and time of year. We observed no diel passage trends. Only 15 of the 48 fish were subsequently detected at a PIT-tag interrogation site the following spring. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more to chance than directed downstream movement. Since the primary route of passage during the winter is through powerhouse turbines, the potential exists for increased mortality for over-wintering juvenile fall Chinook salmon in the Snake River. Our findings also have implications for transportation studies of subyearling fall Chinook salmon in the Snake River. Specifically, the finding that some fish can pass undetected during the winter may bias smolt-to-adult return rate calculations that are typically used to measure the

  14. Behavior and dam passage of juvenile Chinook salmon and juvenile steelhead at Detroit Reservoir and Dam, Oregon, March 2012-February 2013

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Evans, Scott D.; Haner, Philip V.; Hatton, Tyson W.; Kofoot, Eric E.; Sprando, Jamie M.; Smith, Collin D.

    2014-01-01

    The in-reservoir movements and dam passage of individual juvenile Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) were studied at Detroit Reservoir and Dam, near Detroit, Oregon, during 2012 and 2013. The goal of the study was to provide data to inform decisions about future downstream passage alternatives and factors affecting downstream passage rates with the existing dam configuration. In 2012, 468 juvenile Chinook salmon and 200 juvenile steelhead were tagged and released during a 3-month period in the spring, and another 514 juvenile Chinook salmon were tagged and released during a 3-month period in the fall. The fish were surgically implanted with a small acoustic transmitter with an expected life of about 3 months and a passive integrated transponder tag with an indefinite life, and were released into the two main tributaries several kilometers upstream of the reservoir. Juvenile Chinook salmon migrated from the release sites to the reservoir in a greater proportion than juvenile steelhead, but once in the reservoir, juvenile steelhead migrated to the forebay faster and had a higher dam passage rate than juvenile Chinook salmon. The routes available for passing water and fish varied throughout the year, with low reservoir elevations in winter and high reservoir elevations in summer in accordance with the flood-control purpose of the dam. Most dam passage was through the spillway during the spring and summer, when the reservoir elevation was high and the spillway and powerhouse were the most common routes in operation, and via the powerhouse during the fall and winter period, when the reservoir elevation was low and the regulating outlet and powerhouse were the most common routes in operation. Few tagged fish passed when the powerhouse was the only route in operation. Dam passage rates during the spring and summer were greatest at night, increased with dam discharge, and were greater when water was passed freely over the

  15. Predation by Resident Fish on Juvenile Salmonids in John Day Reservoir: Final Report, 1983-1986: Volume 1, Final Report of Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poe, Thomas P.; Rieman, Bruce E.

    1988-07-01

    In 1982 the NPPC included in its Fish and Wildlife Program a measure that called for studies ''... to investigate juvenile salmon and steelhead losses to predators while these fish are migrating through Columbia and Snake River reservoirs.'' In the same year the Bonneville Power Administration (BPA) funded ODFW and FWS to conduct collaborative studies to estimate the number of juvenile salmonids lost to predators in John Day Reservoir. Also included as study objectives were: (1) a description of the importance of predation losses relative to mortality at the dam and total reservoir mortality; (2) a description of how predationmore » losses might vary (spatially and temporally); and (3) recommendations of measures to control predation on smolts. We studied four species of predator: northern squawfish, walleye, smallmouth bass, and channel catfish. We selected John Day Reservoir as the study site because the following factors led us to believe if predation was a problem in any reservoir, it would be most obvious there because: (1) the reservoir is an important subyearling chinook rearing area; (2) passage and residualism of juvenile salmonids were considered a problem there; and (3) substantial populations of predators were known to reside in the reservoir. Individual reports were processed separately for the data base.« less

  16. Stable isotopes in juvenile marine fishes and their invertebrate prey from the Thames Estuary, UK, and adjacent coastal regions

    NASA Astrophysics Data System (ADS)

    Leakey, Chris D. B.; Attrill, Martin J.; Jennings, Simon; Fitzsimons, Mark F.

    2008-04-01

    Estuaries are regarded as valuable nursery habitats for many commercially important marine fishes, potentially providing a thermal resource, refuge from predators and a source of abundant prey. Stable isotope analysis may be used to assess relative resource use from isotopically distinct sources. This study comprised two major components: (1) development of a spatial map and discriminant function model of stable isotope variation in selected invertebrate groups inhabiting the Thames Estuary and adjacent coastal regions; and (2) analysis of stable isotope signatures of juvenile bass ( Dicentrarchus labrax), sole ( Solea solea) and whiting ( Merlangius merlangus) for assessment of resource use and feeding strategies. The data were also used to consider anthropogenic enrichment of the estuary and potential energetic benefits of feeding in estuarine nursery habitat. Analysis of carbon (δ 13C), nitrogen (δ 15N) and sulphur (δ 34S) isotope data identified significant differences in the 'baseline' isotopic signatures between estuarine and coastal invertebrates, and discriminant function analysis allowed samples to be re-classified to estuarine and coastal regions with 98.8% accuracy. Using invertebrate signatures as source indicators, stable isotope data classified juvenile fishes to the region in which they fed. Feeding signals appear to reflect physiological (freshwater tolerance) and functional (mobility) differences between species. Juvenile sole were found to exist as two isotopically-discrete sub-populations, with no evidence of mixing between the two. An apparent energetic benefit of estuarine feeding was only found for sole.

  17. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival.

    PubMed

    Li, Xinya; Deng, Zhiqun D; Brown, Richard S; Fu, Tao; Martinez, Jayson J; McMichael, Geoffrey A; Skalski, John R; Townsend, Richard L; Trumbo, Bradly A; Ahmann, Martin L; Renholds, Jon F

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival.

  18. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival

    PubMed Central

    Li, Xinya; Deng, Zhiqun D.; Brown, Richard S.; Fu, Tao; Martinez, Jayson J.; McMichael, Geoffrey A.; Skalski, John R.; Townsend, Richard L.; Trumbo, Bradly A.; Ahmann, Martin L.; Renholds, Jon F.

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival. PMID:27293685

  19. Susceptibility of cultured juveniles of several marine fish to the sevenband grouper nervous necrosis virus.

    PubMed

    Tanaka, S; Kuriyama, I; Nakai, T; Miyazaki, T

    2003-02-01

    Piscine nodaviruses (betanodaviruses) have been tentatively divided into four genotypes (SJNNV, RGNNV, TPNNV and BFNNV) and it is suggested that host specificity is different among these genotypes. In the present study, a betanodavirus [sevenband grouper nervous necrosis virus (SGNNV)] belonging to the redspotted grouper nervous necrosis virus (RGNNV) genotype, to which most betanodaviruses from warm water fish are identified, was evaluated for its pathogenicity to hatchery-reared juveniles of several marine fish species. When challenged with the virus by a bath method (10(5.1) TCID50 mL(-1)), sevenband grouper, Epinephelus septemfasciatus, Japanese flounder, Paralichthys olivaceus, and tiger puffer, Takifugu rubripes, displayed behavioural abnormalities and mortalities with distinct histopathological signs of viral nervous necrosis and heavily immunostained cells were observed in the central nervous tissues and retina. Bath-challenged rock fish, Sebastiscus marmoratus, and a hybrid of sevenband grouper and kelp grouper, E. moara, did not display any behavioural abnormality or mortality during the experimental period, although many fish showed slight signs of viral infection in nerve cells. Kelp grouper and red sea bream, Pagrus major, showed no behavioural abnormality, mortality or immunohistopathological changes after the virus challenge. These results are, in part, consistent with the natural host range of RGNNV, indicating the complexity in the host specificity of betanodaviruses.

  20. Lessons Learned from Safe Kids/Safe Streets. Juvenile Justice Bulletin

    ERIC Educational Resources Information Center

    Cronin, Roberta; Gragg, Frances; Schultz, Dana; Eisen, Karla

    2006-01-01

    This bulletin reports results from an evaluation of six sites of the Safe Kids/Safe Streets (SK/SS) program, which applies a comprehensive, collaborative approach to the child maltreatment field. The bulletin provides insights into collaboration building, systems reform, service options, and other strategies. Among the findings were that the SK/SS…

  1. Anthropogenic chemical cues can alter the swimming behaviour of juvenile stages of a temperate fish.

    PubMed

    Díaz-Gil, Carlos; Cotgrove, Lucy; Smee, Sarah Louise; Simón-Otegui, David; Hinz, Hilmar; Grau, Amalia; Palmer, Miquel; Catalán, Ignacio A

    2017-04-01

    Human pressure on coastal areas is affecting essential ecosystems including fish nursery habitats. Among these anthropogenic uses, the seasonal increment in the pressure due to leisure activities such as coastal tourism and yachting is an important environmental stressor in many coastal zones. These pressures may elicit understudied impacts due to, for example, sunscreens or other seasonal pollutants. The island of Majorca, northwest Mediterranean Sea, experiences one of the highest number of tourist visits per capita in the world, thus the surrounding coastal habitat is subject to high anthropogenic seasonal stress. Studies on early stages of fishes have observed responses to coastal chemical cues for the selection or avoidance of habitats. However, the potential interferences of human impacts on these signals are largely unknown. A choice chamber was used to determine water type preference and behaviour in naïve settled juvenile gilt-head sea bream (Sparus aurata), a temperate species of commercial interest. Fish were tested individually for behavioural changes with respect to water types from potential beneficial habitats, such as seawater with extract of the endemic seagrass Posidonia oceanica, anthropogenically influenced habitats such as water extracted from a commercial and recreational harbour and seawater mixed with sunscreen at concentrations observed in coastal waters. Using a Bayesian approach, we investigated a) water type preference; b) mean speed; and c) variance in the movement (as an indicator of burst swimming activity, or "sprint" behaviour) as behavioural descriptors with respect to water type. Fish spent similar percentage of time in treatment and control water types. However, movement descriptors showed that fish in sunscreen water moved slower (98.43% probability of being slower) and performed fewer sprints (90.1% probability of having less burst in speed) compared to control water. Less evident increases in sprints were observed in harbour

  2. Differential behavioural responses to venlafaxine exposure route, warming and acidification in juvenile fish (Argyrosomus regius).

    PubMed

    Maulvault, Ana Luísa; Santos, Lúcia H M L M; Paula, José Ricardo; Camacho, Carolina; Pissarra, Vasco; Fogaça, Fabiola; Barbosa, Vera; Alves, Ricardo; Ferreira, Pedro Pousão; Barceló, Damià; Rodriguez-Mozaz, Sara; Marques, António; Diniz, Mário; Rosa, Rui

    2018-09-01

    Antidepressants, such as venlafaxine (VFX), which are considered emerging environmental pollutants, are increasingly more present in the marine environment, and recent evidence suggest that they might have adverse effects on fish behaviour. Furthermore, altered environmental conditions associated to climate change (e.g. warming and acidification) can also have a determinant role on fish behaviour, fitness and survival. Yet, the underlying interactions between these environmental stressors (pharmaceuticals exposure and climate change) are still far from being fully understood. The aim of this study was to assess behavioural responses (in juvenile meagre (Argyrosomus regius) exposed to VFX via water ([VFX] ~20μgL -1 ) and via dietary sources ([VFX] ~160μgkg -1 dry weight), as well as to increased temperature (ΔT°C=+5°C) and high CO 2 levels (ΔpCO 2 ~1000μatm; equivalent to ΔpH=-0.4units). Overall, VFX bioaccumulation in fish plasma was enhanced under the combination of warming and acidification. VFX triggered fish exploration, whereas fish activity and shoal cohesion were reduced. Acidification alone decreased fish exploration and shoal cohesion, and reversed fish preference to turn leftwards compared to control conditions. Such alterations were further enhanced by VFX exposure. The combination of warming and acidification also reduced shoal cohesion and loss of lateralization, regardless of VFX exposure. The distinct behaviour observed when VFX contamination, acidification and warming acted alone or in combination highlighted the need to consider the likely interactive effects of seawater warming and acidification in future research regarding the toxicological aspects of chemical contaminants. Copyright © 2018. Published by Elsevier B.V.

  3. Distribution and Joint Fish-Tag Survival of Juvenile Chinook Salmon Migrating through the Sacramento-San Joaquin River Delta, California, 2008

    USGS Publications Warehouse

    Holbrook, Christopher M.; Perry, Russell W.; Adams, Noah S.

    2009-01-01

    Acoustic telemetry was used to obtain the movement histories of 915 juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) through the lower San Joaquin River and Sacramento-San Joaquin Delta, California, in 2008. Data were analyzed within a release-recapture framework to estimate survival, route distribution, and detection probabilities among three migration pathways through the Delta. The pathways included the primary route through the San Joaquin River and two less direct routes (Old River and Turner Cut). Strong inferences about survival were limited by premature tag failure, but estimates of fish distribution among migration routes should be unaffected by tag failure. Based on tag failure tests (N = 66 tags), we estimated that only 55-78 percent of the tags used in this study were still functioning when the last fish was detected exiting the study area 15 days after release. Due to premature tag failure, our 'survival' estimates represent the joint probability that both the tag and fish survived, not just survival of fish. Low estimates of fish-tag survival could have been caused by fish mortality or fish travel times that exceeded the life of the tag, but we were unable to differentiate between the two. Fish-tag survival through the Delta (from Durham Ferry to Chipps Island by all routes) ranged from 0.05 +or- 0.01 (SE) to 0.06 +or- 0.01 between the two weekly release groups. Among the three migration routes, fish that remained in the San Joaquin River exhibited the highest joint fish-tag survival (0.09 +or- 0.02) in both weeks, but only 22-33 percent of tagged fish used this route, depending on the week of release. Only 4-10 percent (depending on week) of tagged fish traveled through Turner Cut, but no tagged fish that used this route were detected exiting the Delta. Most fish (63-68 percent, depending on week of release) migrated through Old River, but fish-tag survival through this route (0.05 +or- 0.01) was only about one-half that of fish that

  4. Towards Sustainable Aquafeeds: Complete Substitution of Fish Oil with Marine Microalga Schizochytrium sp. Improves Growth and Fatty Acid Deposition in Juvenile Nile Tilapia (Oreochromis niloticus).

    PubMed

    Sarker, Pallab K; Kapuscinski, Anne R; Lanois, Alison J; Livesey, Erin D; Bernhard, Katie P; Coley, Mariah L

    2016-01-01

    We conducted a 84-day nutritional feeding experiment with dried whole cells of DHA-rich marine microalga Schizochytrium sp. (Sc) to determine the optimum level of fish-oil substitution (partial or complete) for maximum growth of Nile tilapia. When we fully replaced fish oil with Schizochytrium (Sc100 diet), we found significantly higher weight gain and protein efficiency ratio (PER), and lower (improved) feed conversion ratio (FCR) and feed intake compared to a control diet containing fish oil (Sc0); and no significant change in SGR and survival rate among all diets. The Sc100 diet had the highest contents of 22:6n3 DHA, led to the highest DHA content in fillets, and consequently led to the highest DHA:EPA ratios in tilapia fillets. Schizochytrium sp. is a high quality candidate for complete substitution of fish oil in juvenile Nile tilapia feeds, providing an innovative means to formulate and optimize the composition of tilapia juvenile feed while simultaneously raising feed efficiency of tilapia aquaculture and to further develop environmentally and socially sustainable aquafeeds. Results show that replacing fish oil with DHA-rich marine Sc improves the deposition of n3 LC PUFA levels in tilapia fillet. These results support further studies to lower Schizochytrium production costs and to combine different marine microalgae to replace fish oil and fishmeal into aquafeeds.

  5. Towards Sustainable Aquafeeds: Complete Substitution of Fish Oil with Marine Microalga Schizochytrium sp. Improves Growth and Fatty Acid Deposition in Juvenile Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Sarker, Pallab K.; Kapuscinski, Anne R.; Lanois, Alison J.; Livesey, Erin D.; Bernhard, Katie P.; Coley, Mariah L.

    2016-01-01

    We conducted a 84-day nutritional feeding experiment with dried whole cells of DHA-rich marine microalga Schizochytrium sp. (Sc) to determine the optimum level of fish-oil substitution (partial or complete) for maximum growth of Nile tilapia. When we fully replaced fish oil with Schizochytrium (Sc100 diet), we found significantly higher weight gain and protein efficiency ratio (PER), and lower (improved) feed conversion ratio (FCR) and feed intake compared to a control diet containing fish oil (Sc0); and no significant change in SGR and survival rate among all diets. The Sc100 diet had the highest contents of 22:6n3 DHA, led to the highest DHA content in fillets, and consequently led to the highest DHA:EPA ratios in tilapia fillets. Schizochytrium sp. is a high quality candidate for complete substitution of fish oil in juvenile Nile tilapia feeds, providing an innovative means to formulate and optimize the composition of tilapia juvenile feed while simultaneously raising feed efficiency of tilapia aquaculture and to further develop environmentally and socially sustainable aquafeeds. Results show that replacing fish oil with DHA-rich marine Sc improves the deposition of n3 LC PUFA levels in tilapia fillet. These results support further studies to lower Schizochytrium production costs and to combine different marine microalgae to replace fish oil and fishmeal into aquafeeds. PMID:27258552

  6. Exposure of juvenile Danio rerio to aged TiO₂ nanomaterial from sunscreen.

    PubMed

    Fouqueray, Manuela; Noury, Patrice; Dherret, Lysiane; Chaurand, Perrine; Abbaci, Khedidja; Labille, Jerome; Rose, Jerome; Garric, Jeanne

    2013-05-01

    The toxicity of dietary exposure to artificially aged TiO₂ nanomaterial (T-Lite) used in sunscreen cream was studied on Danio rerio. Embryolarval assays were conducted to assess the effects of TiO₂ residues of nanomaterial (RNM) on fish early life stages. Juvenile fishes were exposed by the trophic route in two experiments. During the first experiment, juvenile fishes were exposed to TiO₂ RNM for 14 days by adding RNM to commercial fish food. The second one consisted in producing a trophic food chain. Pseudokirchneriella subcapitata algae, previously contaminated with TiO₂ RNM in growth medium, was used to feed Daphnia magna neonates over a 48-h period. Daphnia were used next to feed juvenile fishes for 7 days. Accumulation of Ti, life traits (survival and growth) and biochemical parameters such as energy reserves, digestive (trypsin, esterase, cellulose and amylase) and antioxidant (superoxide dismutase and catalase) enzyme activity were measured at the end of exposures. As expected in the receiving aquatic system, TiO2 RNM at low concentrations caused a low impact on juvenile zebrafish. A slight impact on the early life stage of zebrafish with premature hatching was observed, and this effect appeared mainly indirect, due to possible embryo hypoxia. When juvenile fish are exposed to contaminated food, digestive enzyme activity indicated a negative effect of TiO₂ RNM. Digestive physiology was altered after 14 days of exposure and seemed to be an indirect target of TiO₂ RNM when provided by food.

  7. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Batten, G.; Cushing, Aaron W.

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2011. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon usingmore » a virtual release, paired reference release survival model. This study supports the U.S. Army Corps of Engineers’ continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  8. Distributions of larval and juvenile/adult stages of the Antarctic myctophid fish, Electrona antarctica, off Wilkes Land in East Antarctica

    NASA Astrophysics Data System (ADS)

    Moteki, Masato; Fujii, Kentaro; Amakasu, Kazuo; Shimada, Keishi; Tanimura, Atsushi; Odate, Tsuneo

    2017-06-01

    Myctophid fish are an important component of the Southern Ocean food web because of their very high biomass. This study investigated the spatial distributions of larval and juvenile/adult stages of the Antarctic myctophid Electrona antarctica. Fish were sampled in January 2011 and 2012 on a transect along 140°E and in January 2013 along 110°E using two different opening/closing net systems. In total, 1075 specimens of E. antarctica were collected: 948 larvae, 127 juveniles/adults, and 2 in the transformation stage. Most larvae were collected at 5-200 m depth, with diel vertical migration (DVM) not apparent. Larvae were mainly distributed in the Modified Circumpolar Deep Water (-1.5 °C-2.0 °C). By contrast, an analysis of the echogram at 38 kHz and discrete depth samples implied that juveniles/adults undertook DVM except in the continental slope area (65.5°S). As the distribution of krill is limited to the cold water mass (<-1.5 °C) along the continental slope, E. antarctica and krill populations are spatially separated off Wilkes Land during summer. According to the previously estimated larval period of 30-47 days, E. antarctica may spawn in late November to December in the marginal ice zone or near the sea ice edge. This study suggests that the environment related to sea ice provides a nursery ground for early stage larvae of E. antarctica.

  9. Juvenile and resident salmonid movement and passage through culverts

    DOT National Transportation Integrated Search

    1998-07-01

    An outcome of the Washington State Department of Transportation's Juvenile Fish Passage Workshop on September 24, 1997, was agreement that a literature review was necessary to determine the state of knowledge about juvenile salmonid movement and pass...

  10. Phototaxis of larval and juvenile northern pike

    USGS Publications Warehouse

    Zigler, S.J.; Dewey, M.R.

    1995-01-01

    Age- Phi northern pike Esox lucius prefer vegetated habitats that are difficult to sample with standard towed gears. Light traps can be effective for sampling larval fishes in dense vegetation, given positive phototaxis of fish. We evaluated the phototactic response of young northern pike by comparing the catches of larvae and juveniles obtained with plexiglass traps deployed with a chemical light stick versus traps deployed without a light source (controls) in a laboratory raceway and in a vegetated pond. In the laboratory tests, catches of protolarvae and mesolarvae in lighted traps were 11-35 times greater than catches in control traps. The catches of juvenile northern pike in field and laboratory experiments were 3-15 times greater in lighted traps than in control traps, even though the maximum body width of the larger juveniles was similar to the width of the entrance slots of the traps (5 mm). Larval and juvenile northern pike were photopositive; thus, light traps should effectively sample age-0 northern pike for at least 6 weeks after hatching.

  11. Spatial match-mismatch between juvenile fish and prey provides a mechanism for recruitment variability across contrasting climate conditions in the eastern Bering Sea.

    PubMed

    Siddon, Elizabeth Calvert; Kristiansen, Trond; Mueter, Franz J; Holsman, Kirstin K; Heintz, Ron A; Farley, Edward V

    2013-01-01

    Understanding mechanisms behind variability in early life survival of marine fishes through modeling efforts can improve predictive capabilities for recruitment success under changing climate conditions. Walleye pollock (Theragra chalcogramma) support the largest single-species commercial fishery in the United States and represent an ecologically important component of the Bering Sea ecosystem. Variability in walleye pollock growth and survival is structured in part by climate-driven bottom-up control of zooplankton composition. We used two modeling approaches, informed by observations, to understand the roles of prey quality, prey composition, and water temperature on juvenile walleye pollock growth: (1) a bioenergetics model that included local predator and prey energy densities, and (2) an individual-based model that included a mechanistic feeding component dependent on larval development and behavior, local prey densities and size, and physical oceanographic conditions. Prey composition in late-summer shifted from predominantly smaller copepod species in the warmer 2005 season to larger species in the cooler 2010 season, reflecting differences in zooplankton composition between years. In 2010, the main prey of juvenile walleye pollock were more abundant, had greater biomass, and higher mean energy density, resulting in better growth conditions. Moreover, spatial patterns in prey composition and water temperature lead to areas of enhanced growth, or growth 'hot spots', for juvenile walleye pollock and survival may be enhanced when fish overlap with these areas. This study provides evidence that a spatial mismatch between juvenile walleye pollock and growth 'hot spots' in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. Our results indicate that climate-driven changes in prey quality and composition can impact growth of juvenile walleye pollock, potentially severely affecting recruitment variability.

  12. Juvenile Radio-Tag Study: Lower Granite Dam, 1985 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuehrenberg, Lowell C.

    The concept of using mass releases of juvenile radio tags represents a new and potentially powerful research tool that could be effectively applied to juvenile salmonid passage problems at dams on the Columbia and Snake Rivers. A system of detector antennas, strategically located, would automatically detect and record individually tagged juvenile salmonids as they pass through the spillway, powerhouse, bypass system, or tailrace areas below the dam. Accurate measurements of spill effectiveness, fish guiding efficiency (FGE), collection efficiency (CE), spillway survival, powerhouse survival, and bypass survival would be possible without handling large numbers of unmarked fish. A prototype juvenile radio-tagmore » system was developed and tested by the National Marine Fisheries Service (NMFS) and Bonneville Power Administration (BPA) at John Day Dam and at Lower Granite Dam. This report summarizes research to: (1) evaluate the effectiveness of the prototype juvenile radio-tag system in a field situation and (2) to test the basic assumptions inherent in using the juvenile radio tag as a research tool.« less

  13. Behavior and movement of formerly landlocked juvenile coho salmon after release into the free-flowing Cowlitz River, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Henning, Julie A.; Liedtke, Theresa L.; Royer, Ida M.; Ekstrom, Brian K.; Rondorf, Dennis W.

    2011-01-01

    Formerly landlocked Coho Salmon (Oncorhynchus kisutch) juveniles (age 2) were monitored following release into the free-flowing Cowlitz River to determine if they remained in the river or resumed seaward migration. Juvenile Coho Salmon were tagged with a radio transmitter (30 fish) or Floy tag (1050 fish) and their behavior was monitored in the lower Cowlitz River. We found that 97% of the radio-tagged fish remained in the Cowlitz River beyond the juvenile outmigration period, and the number of fish dispersing downstream decreased with increasing distance from the release site. None of the tagged fish returned as spawning adults in the 2 y following release. We suspect that fish in our study failed to migrate because they exceeded a threshold in size, age, or physiological status. Tagged fish in our study primarily remained in the Cowlitz River, thus it is possible that these fish presented challenges to juvenile salmon migrating through the system either directly by predation or indirectly by competition for food or habitat. Given these findings, returning formerly landlocked Coho Salmon juveniles to the free-flowing river apparently provided no benefit to the anadromous population. These findings have management implications in locations where landlocked salmon have the potential to interact with anadromous species of concern.

  14. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.

    This report presents the results of an evaluation of juvenile Chinook salmonid (Oncorhynchus tshawytscha) behavior in the immediate forebay of the Water Temperature Control (WTC) tower at Cougar Dam in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers. The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the WTC tower for fisheries resource managers to use to make decisions on bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imagingmore » (Dual-Frequency Identification Sonar; DIDSON) data from February 1, 2010 through January 31, 2011 to evaluate juvenile salmonid behavior year-round in the immediate forebay surface layer of the WTC tower (within 20 m, depth 0-5 m). From October 28, 2010 through January 31, 2011 a BlueView acoustic camera was also deployed in an attempt to determine its usefulness for future studies as well as augment the DIDSON data. For the DIDSON data, we processed a total of 35 separate 24-h periods systematically covering every other week in the 12-month study. Two different 24-hour periods were processed for the BlueView data for the feasibility study. Juvenile salmonids were present in the immediate forebay of the WTC tower throughout 2010. The juvenile salmonid abundance index was low in the spring (<200 fish per sample-day), began increasing in late April and peaked in mid-May. Fish abundance index began decreasing in early June and remained low in the summer months. Fish abundance increased again in the fall, starting in October, and peaked on November 8-9. A second peak occurred on December 22. Afterwards, abundance was low for the rest of the study (through January 2011). Average fish length for juvenile salmonids during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early

  15. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System taggedmore » smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  16. Control of predacious flatworms Macrostomum sp. in culturing juvenile freshwater mussels

    USGS Publications Warehouse

    Zimmerman, L.L.; Neves, R.J.; Smith, D.G.

    2003-01-01

    Flatworms of the genus Macrostomum are voracious predators on newly metamorphosed juvenile freshwater mussels (Unionidae), which require a fish host to transform mussel larvae into free-living juveniles. Toxicity tests were performed with formalin (paracide-F, 37% formaldehyde) to determine the appropriate levels of treatment for eradicating these flatworms from host fish tanks without adversely affecting the culture of juvenile mussels. Results indicate that a 1-h shock treatment of 250 mg/L formalin or a 3-d continuous exposure to 20 mg/L of formalin kills adult Macrostomum but not fish. Observations indicate that a single treatment is insufficient to kill Macrostomum eggs, so a second treatment after 3 d is necessary to kill newly hatched flatworms. Newly metamorphosed freshwater mussels exposed to similar shock and continuous treatments of formalin were also killed. Thus, all host fish introduced for the purpose of mussel production should be quarantined and treated prophylactically to avoid the infestation of mussel culture systems with predacious flatworms.

  17. Adaptation of the fish juvenile growth test (OECD TG 215, 2000) to the marine species Dicentrarchus labrax.

    PubMed

    Tornambè, A; Manfra, L; Canepa, S; Oteri, F; Martuccio, G; Cicero, A M; Magaletti, E

    2018-02-01

    The OECD TG 215 method (2000) (C.14 method of EC Regulation 440/2008) was developed on the rainbow trout (Oncorynchus mykiss) to assess chronic toxicity (28d) of chemicals on fish juveniles. It contemplates to use other well documented species identifying suitable conditions to evaluate their growth. OECD proposes the European sea bass (Dicentrarchus labrax, L. 1758) as Mediterranean species among vertebrates recommended in the OECD guidelines for the toxicity testing of chemicals. In this context, our study is aimed to proposing the adaptation of the growth test (OECD TG 215, 2000) to D. labrax. For this purpose toxicity tests were performed with sodium dodecyl sulfate, a reference toxicant commonly used in fish toxicity assays. The main aspects of the testing procedure were reviewed: fish size (weight), environmental conditions, dilution water type, experimental design, loading rate and stocking density, feeding (food type and ration), test validity criteria. The experience gained from growth tests with the sea bass allows to promote its inclusion among the species to be used for the C.14 method. Copyright © 2016. Published by Elsevier Inc.

  18. Response of slimy sculpins to predation by juvenile lake trout in southern Lake Ontario

    USGS Publications Warehouse

    Owens, Randall W.; Bergstedt, Roger A.

    1994-01-01

    Abundance and biomass of slimy sculpin Cottus cognatus declined in Lake Ontario at depths most frequently occupied by juvenile lake trout Salvelinus namaycush (<70 m), but not at greater depths, during 1980–1987. The abundance of juvenile lake trout increased at depths less than 70 m between 1980 and 1987, and slimy sculpin abundance was negatively correlated with lake trout abundance. The size of slimy sculpins caught at depths less than 70 m decreased between 1980 and 1987, fish 50–99 mm becoming less common and fish 100 mm or longer becoming rare. The size of slimy sculpins at depths greater than 70 m did not change, Because slimy sculpins are the principal fish eaten by juvenile lake trout, and because juvenile lake trout were most abundant at depths where the greatest changes in the slimy sculpin population took place, we conclude that juvenile lake trout in Lake Ontario altered the slimy sculpin population. No significant negative correlations were found between abundance of slimy sculpins and those of the two most abundant fishes in Lake Ontario: Alewife Alosa pseudoharengus and rainbow smeltOsmerus mordax.

  19. The effects of diets containing standard soybean oil, soybean oil enhanced with conjugated linoleic acids, menhaden fish oil, or an algal docosahexaenoic acid supplement on juvenile channel catfish performance, hematology

    USDA-ARS?s Scientific Manuscript database

    Current commercial diets for Channel Catfish contain little or no marine fish oil to reduce diet cost and address environmental concerns. However, there is conflicting data on the effects of fish oil and other lipid sources in juvenile Channel Catfish, and some novel lipids have not been tested agai...

  20. Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of Sub-Antarctic Notothenioid fish Eleginops maclovinus acclimated at different salinities.

    PubMed

    Vargas-Chacoff, L; Saavedra, E; Oyarzún, R; Martínez-Montaño, E; Pontigo, J P; Yáñez, A; Ruiz-Jarabo, I; Mancera, J M; Ortiz, E; Bertrán, C

    2015-12-01

    In this study we assessed the influence of three different environmental salinities (5, 15 and 31 psu during 90 days) on growth, osmoregulation, energy metabolism and digestive capacity in juveniles of the Notothenioid fish Eleginops maclovinus. At the end of experimental time samples of plasma, liver, gill, intestine, kidney, skeletal muscle, stomach and pyloric caeca were obtained. Growth, weight gain, hepatosomatic index and specific growth rate increased at 15 and 31 psu and were lower at 5 psu salinity. Gill Na(+), K(+)-ATPase (NKA) activity presented a "U-shaped" relationship respect to salinity, with its minimum rates at 15 psu, while this activity correlated negatively with salinity at both anterior and posterior intestinal portions. No significant changes in NKA activity were observed in kidney or mid intestine. Large changes in plasma, metabolite levels and enzymatic activities related to energy metabolism in liver, gill, intestine, kidney and muscle were generally found in the groups exposed to 5 and 31 psu compared to the 15 psu group. Only the pepsin activity (digestive enzymes) assessed enhanced with environmental salinity, while pyloric caeca trypsin/chymotrypsin ratio decreased. This study suggests that juvenile of E. maclovinus presents greater growth near its iso-osmotic point (15 psu) and hyperosmotic environment (31 psu). Acclimation to low salinity increased the osmoregulatory expenditure as seen by the gill and anterior intestine results, while at high salinity, branchial osmoregulatory activity was also enhanced. This requires the mobilization of lipid stores and amino acids, thereby holding the growth of fish back. The subsequent reallocation of energy sources was not sufficient to maintain the growth rate of fish exposed to 5 psu. Thus, E. maclovinus juveniles present better growth efficiencies in salinities above the iso-osmotic point and hyperosmotic environment of this species, showing their best performance at 15 psu as seen by the main

  1. Juvenile groundfish habitat in Kachemak Bay, Alaska, during late summer

    USGS Publications Warehouse

    Abookire, Alisa A.; Piatt, John F.; Norcross, Brenda L.

    2001-01-01

    We investigated the habitat of juvenile groundfishes in relation to depth, water temperature, and salinity in Kachemak Bay, Alaska. Stations ranging in depth from 10 to 70 m and with sand or mud-sand substrates were sampled with a small-meshed beam trawl in August-September of 1994 to 1999. A total of 8,201 fishes were captured, comprising at least 52 species. Most fishes (91%) had a total length 5% of the total catch) were flathead sole Hippoglossoides elassodon, slim sculpin Radulinus asprellus, Pacific halibut Hippoglossus stenolepis, and arrowtooth flounder Atheresthes stomias. Depth accounted for most of the spatial variability in juvenile groundfish abundance, and neither temperature nor salinity was correlated with fish abundance. Juvenile groundfishes concentrated in either shallow (less than or equal to 20 m) or deep (50-70 m) water, with co-occurrence of some species between 30-40 m. Shallow fishes were the rock soles, Pacific halibut, and great sculpin Myoxocephalus polyacanthocephalus. Deep species were flathead sole, slim sculpin, spinycheek starsnout Bathyagonus infraspinatus, rex sole Glyptocephalus zachirus, tadpole sculpin Psychrolutes paradoxus, and whitebarred prickleback Poroclinus rothrocki. This 6-year study provides baseline data on relative abundance and distribution of juvenile groundfishes in Kachemak Bay and may provide a useful tool for predicting the presence of species in similar habitats in other areas of Alaska.

  2. Predictability of littoral-zone fish communities through ontogeny in Lake Texoma, Oklahoma-Texas, USA

    USGS Publications Warehouse

    Eggleton, M.A.; Ramirez, R.; Hargrave, C.W.; Gido, K.B.; Masoner, J.R.; Schnell, G.D.; Matthews, W.J.

    2005-01-01

    We sampled larval, juvenile and adult fishes from littoral-zone areas of a large reservoir (Lake Texoma, Oklahoma-Texas) (1) to characterize environmental factors that influenced fish community structure, (2) to examine how consistent fish-environment relationships were through ontogeny (i.e., larval vs. juvenile and adult), and (3) to measure the concordance of larval communities sampled during spring to juvenile and adult communities sampled at the same sites later in the year. Larval, juvenile and adult fish communities were dominated by Atherinidae (mainly inland silverside, Menidia beryllina) and Moronidae (mainly juvenile striped bass, Morone saxatilis) and were consistently structured along a gradient of site exposure to prevailing winds and waves. Larval, juvenile and adult communities along this gradient varied from atherinids and moronids at highly exposed sites to mostly centrarchids (primarily Lepomis and Micropterus spp.) at protected sites. Secondarily, zooplankton densities, water clarity, and land-use characteristics were related to fish community structure. Rank correlation analyses and Mantel tests indicated that the spatial consistency and predictability of fish communities was high as larval fishes sampled during spring were concordant with juvenile and adult fishes sampled at the same sites during summer and fall in terms of abundance, richness, and community structure. We propose that the high predictability and spatial consistency of littoral-zone fishes in Lake Texoma was a function of relatively simple communities (dominated by 1-2 species) that were structured by factors, such as site exposure to winds and waves, that varied little through time. ?? Springer 2005.

  3. Replacement of fish oil with soybean oil in diets for juvenile Chinese sucker (Myxocyprinus asiaticus): effects on liver lipid peroxidation and biochemical composition.

    PubMed

    Yu, Deng-Hang; Chang, Jia-Zhi; Dong, Gui-Fang; Liu, Jun

    2017-10-01

    This study was designed to evaluate the effect of the replacement of fish oil (FO) by soybean oil (SO) on growth performance, liver lipid peroxidation, and biochemical composition in juvenile Chinese sucker, Myxocyprinus asiaticus. Fish (13.7 ± 0.2 g) in triplicate were fed five experimental diets in which 0% (FO as control), 40% (SO40), 60% (SO60), 80% (SO40), and 100% (SO100) FO were replaced by SO. The body weight gain of fish fed SO40, SO60, or SO80 diet was similar to FO group, but diets that have 100% soybean oil as dietary lipid significantly reduced fish growth (P < 0.05). Although the level of SO resulted in increasing crude lipid content of the liver, the level of SO did not significantly alter the hepatosomatic index (HSI). Indicators of peroxidation, such as vitamin E (V E ) and thiobarbituric acid-reactive substance (TBARS) contents, were changed as increasing dietary SO. It was shown that the inclusion of SO in the diets increased V E concentrations, but reduced TBARS in the liver and total cholesterol (T-CHO) in the plasma. Linoleic acid (LA) and linolenic acid (LNA) significantly increased in fish liver fed diets that contained SO, but eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and the ratio n-3/n-6 were significantly reduced by the inclusion of dietary SO (P < 0.05). Our results indicated that the inclusion of SO increased the hepatic V E content and reduced lipid peroxidation in fish. However, diet containing 100% SO as dietary lipid could reduce growth performance. Thus, we recommended that 40-80% SO can be used as dietary lipid to replace FO for juvenile Chinese sucker.

  4. Shifts in stable-isotope signatures confirm parasitic relationship of freshwater mussel glochidia attached to host fish

    USGS Publications Warehouse

    Fritts, Mark W.; Fritts, Andrea K.; Carleton, Scott A.; Bringolf, Robert B.

    2013-01-01

    The parasitic nature of the association between glochidia of unionoidean bivalves and their host fish (i.e. the role of fish hosts in providing nutritional resources to the developing glochidia) is still uncertain. While previous work has provided descriptions of development of glochidia on fish hosts, earlier studies have not explicitly documented the flow of nutrition from the host fish to the juvenile mussel. Therefore, our objective was to use stable isotope analysis to quantitatively document nutrient flow between fish and glochidia. Glochidia were collected from nine adult Lampsilis cardium and used to inoculate Micropterus salmoides(n = 27; three fish per maternal mussel) that produced juvenile mussels for the experiment. Adult mussel tissue samples, glochidia, transformed juvenile mussels and fish gill tissues were analysed for δ15N and δ13C isotope ratios. We used a linear mixing model to estimate the fraction of juvenile mussel tissue derived from the host fish's tissue during attachment. Our analyses indicate a distinct shift in both C and N isotopic ratios from the glochidial stage to the juvenile stage during mussel attachment and development. Linear mixing model analysis indicated that 57.4% of the δ15N in juvenile tissues were obtained from the host fish. This work provides novel evidence that larval unionoideans are true parasites that derive nutrition from host fish during their metamorphosis into the juvenile stage.

  5. Distribution and abundance of juvenile demersal fishes in relation to summer hypoxia and other environmental variables in coastal Oregon, USA

    NASA Astrophysics Data System (ADS)

    Sobocinski, Kathryn L.; Ciannelli, Lorenzo; Wakefield, W. Waldo; Yergey, Matthew E.; Johnson-Colegrove, Angela

    2018-05-01

    The juvenile demersal fish assemblage along the Pacific Northwest coast has received little attention relative to adult life history stages since pioneering work in the 1970s. Increasing severity of hypoxia along the Oregon coast in recent years has prompted investigations into the response of biota in this region. We used summer data (2008-2013) from a beam trawl survey targeting juvenile demersal fishes in soft-bottom habitats along the Oregon coast to describe patterns of distribution and abundance at fixed sampling stations (from 30 m to 100 m depth). We relate the assemblage and abundance of the common species to environmental variables and analyze condition of recently settled fish (<50 mm SL). Most of the captured fishes were young-of-the-year flatfishes, dominated by Butter Sole (Isopsetta isolepis), English Sole (Parophrys vetulus), Speckled Sanddab (Citharichthys stigmaeus), and Pacific Sanddab (Citharichthys sordidus). Community analysis of the full dataset showed some variation in species richness among years and high evenness across all sampling sites and years. Depth was a structuring variable for the community, indicated by multivariate nonmetric multidimensional scaling analysis. Generalized additive models for common flatfish species abundances during the summer months indicated depth preferences, with Butter Sole, English Sole, and Speckled Sanddab at shallower locations and Pacific Sanddab occurring at deeper locations farther offshore. Additionally, while most common species were collected in high abundances in hypoxic conditions, dissolved oxygen was a significant factor in determining flatfish abundance. Condition factor was weakly negatively impacted by low dissolved oxygen for the species assessed, but the strength of the relationship varied by species. Increased sampling frequency and spatial coverage would improve our understanding of this community, especially in light of changing environmental drivers such as decreasing pH, warming water

  6. 2014 and 2015 anomalies in temperature and the epipelagic fish community in the eastern Gulf of Alaska and implications for juvenile fish.

    NASA Astrophysics Data System (ADS)

    Rhea-Fournier, W.

    2016-02-01

    Summer eastern Gulf of Alaska fisheries oceanography surveys of the epipelagic in 2014 and 2015 indicated elevated near surface temperatures, changes in the fish community, and variability in prey quality. The Alaska Fisheries Science Center deployed CTDs to observe temperature profiles, surface trawls to collect fish, and plankton nets to collect zooplankton from 2010 to 2015 along the coast and offshore of Baranof and Chichagof Island . Average near surface temperature for 2014 and 2015 were significantly higher than previous years with an increase of over 3.5 degrees relative to 2012. Young of the year groundfish that occupy the epipelagic in the summer prior to pelagic and demersal migration experienced changes in relative abundance that included a decrease in pollock, Pacific cod, and arrowtooth flounder and an increase in sablefish. The warmer temperatures allowed Elasmobranchs from tropical regions to migrate north including blue sharks and Thresher sharks which represented a northern range extension. Other anomalous fish catches in the nearshore in 2014 and 2015 included multiple ocean sunfish, Mola mola, and the abundance of Pacific pomfret, a piscivorous species usually found in offshore waters. Zooplankton collections analyzed for caloric content and lipid allocation indicated interannual variability with an increase of condition in 2014 and a significant decrease in 2015. While the elevated temperatures of 2014 and 2015 may have provided suitable habitat and range extensions for lower latitude and offshore species, the combination of accelerated metabolism due to higher thermal experience, depleted energetic input from prey, and increase in predators has the potential to decrease survival of juvenile fish in the epipelagic.

  7. The safe home project.

    PubMed

    Arphorn, Sara; Jiraniratisai, Sopaphan; Rungtakul, Rungsri; Phutta, Nikom

    2011-12-01

    The Thai Health Promotion Foundation supported the Improvement of Quality of Life of Informal Workers project in Ban Luang District, Amphur Photaram, Ratchaburi Province. There were many informal workers in Ban Luang District. Sweet-crispy fish producers in Ban Luang were the largest group among the sweet-crispy fish producers in Thailand. This project was aimed at improving living and working conditions of informal workers, with a focus on the sweet-crispy fish group. Good practices of improved living and working conditions were used to help informal workers build safe, healthy and productive work environments. These informal workers often worked in substandard conditions and were exposed to various hazards in the working area. These hazards included risk of exposure to hot work environment, ergonomics-related injuries, chemical hazards, electrical hazards etc. Ergonomics problems were commonly in the sweet-crispy fish group. Unnatural postures such as prolonged sitting were performed dominantly. One hundred and fifty informal workers participated in this project. Occupational health volunteers were selected to encourage occupational health and safety in four groups of informal workers in 2009. The occupational health volunteers trained in 2008 were farmers, beauty salon workers and doll makers. The occupational health and safety knowledge is extended to a new informal worker group: sweet-crispy fish producer, in 2009. The occupational health and safety training for sweet-crispy fish group is conducted by occupational health volunteers. The occupational health volunteers increased their skills and knowledge assist in to make safe home and safe community through participatory oriented training. The improvement of living and working condition is conducted by using a modified WISH, Work Improvement for Safe Home, checklist. The plans of improvement were recorded. The informal workers showed improvement mostly on material handling and storage. The safe uses and safe

  8. Preferred temperatures of juvenile lake whitefish

    USGS Publications Warehouse

    Edsall, Thomas A.

    1999-01-01

    Lake whitefish (Coregonus clupeaformis) supported valuable commercial fisheries in all of the Great Lakes until the 1950s to 1960s when their populations collapsed due to overfishing, pollution, and predation by the exotic sea lamprey (Petromyzon marinus). Reduction of these population stresses has permitted significant recovery of the lake whitefish in the upper three Great Lakes since the 1980s, and limited but encouraging recovery is now apparent in Lakes Erie and Ontario. In the present study the thermal preferences of age-0 and age-1 lake whitefish were measured in the laboratory to provide a basis for determining thermal habitat use by juvenile lake whitefish and thermal niche overlap with exotic fishes that might prey on them. Final thermal preferenda of young lake whitefish varied inversely with fish size ranging from 16.8°C for fish averaging 1.9 g to 15.6°C for age-1 fish averaging 3.9 g. Final thermal preferenda were in agreement with the limited published information on temperature selection of juvenile lake whitefish in the laboratory and on thermal habitat use by wild, free-ranging populations in the Great Lakes.

  9. Evaluation of a recirculating pond system for rearing juvenile freshwater mussels at White Sulphur Springs National Fish Hatchery, West Virginia, U.S.A.

    USGS Publications Warehouse

    Mummert, A.; Newcomb, T.J.; Neves, R.J.; Parker, B.

    2006-01-01

    A recirculating double-pond system at White Sulphur Springs National Fish Hatchery in West Virginia, U.S.A., was evaluated for suitability for culturing juvenile freshwater mussels. Newly metamorphosed juveniles of Villosa iris and Lampsilis fasciola were placed in the system, and their growth and survival were evaluated for 94 days. Throughout the study, parameters of water quality remained within ranges suitable for mussel survival. Planktonic algal densities in the pond system ranged from 2850 to 6892 cells/ml. Thirty-seven algal taxa were identified, primarily green algae (Chlorophyta), diatoms (Bacillariophyceae), and blue-green algae (Cyanoprokaryota). Over the culture period, juveniles of L. fasciola experienced significantly lower (p < 0.001) survival (6.3% ?? 4.5) than those of V. iris (49.8% ?? 14.5). The very low survival rate of L. fasciola may indicate a failure of the flow-through pond environment to meet its habitat requirements or that variable microhabitat conditions within culture containers existed. Growth did not differ significantly between the species (p = 0.13). Survival of V. iris and growth of both species were similar to previous trials to culture juvenile mussels. Survival rates as high as 66.4% at 93 days for V. iris suggest that juveniles of some riverine species can be successfully cultured in a recirculating pond environment.

  10. Passage and behaviour of cultured Lake Sturgeon in a prototype side-baffle fish ladder: I. Ladder hydraulics and fish ascent

    USGS Publications Warehouse

    Kynard, B.; Pugh, D.; Parker, T.

    2011-01-01

    Research and development of a fish ladder for sturgeons requires understanding ladder hydraulics and sturgeon behaviour in the ladder to insure the ladder is safe and provides effective passage. After years of research and development, we designed and constructed a full-scale prototype side-baffle ladder inside a spiral flume (38.3m long??1m wide??1m high) on a 6% (1:16.5) slope with a 1.92-m rise in elevation (bottom to top) to test use by sturgeons. Twenty-eight triangular side baffles, each extending part way across the flume, alternated from inside wall to outside wall down the ladder creating two major flow habitats: a continuous, sinusoidal flow down the ladder through the vertical openings of side-baffles and an eddy below each side baffle. Ascent and behaviour was observed on 22 cultured Lake Sturgeon=LS (Acipenser fulvescens) repeatedly tested in groups as juveniles (as small as 105.1cm TL, mean) or as adults (mean TL, 118cm) during four periods (fall 2002 and 2003; spring 2003 and 2007). Percent of juveniles entering the ladder that ascended to the top was greater in spring (72.7%) than in fall (40.9-45.5%) and 90.9% of 11 adults, which ascended as juveniles, ascended to the top. Six LS (27.3%) never swam to the top and seven (31.8%) swam to the top in all tests, indicating great variability among individuals for ascent drive. Some LS swam directly to the top in <1min, but most rested in an eddy during ascent. Juveniles swimming through outside wall baffle slots (mean velocity, 1.2ms-1) swam at 1.8-2.2body lengthss-1 and 3.2-3.3tail beatss-1, either at or approaching prolonged swimming speed. The side-baffle ladder was stream-like and provided key factors for a sturgeon ladder: a continuous flow and no full cross-channel walls, abundant eddies for resting, an acceptable water depth, and a water velocity fish could ascend swimming 2bls-1. A side-baffle ladder passes LS and other moderate-swimming fishes. ?? 2011 Blackwell Verlag, Berlin.

  11. Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Carlson, Thomas J.; Gingerich, Andrew J.

    A proportion of juvenile Chinook salmon and other salmonids travel through one or more turbines during seaward migration in the Columbia and Snake River every year. Despite this understanding, limited information exists on how these fish respond to hydraulic pressures found during turbine passage events. In this study we exposed juvenile Chinook salmon to varied acclimation pressures and subsequent exposure pressures (nadir) to mimic the hydraulic pressures of large Kaplan turbines (ratio of pressure change). Additionally, we varied abiotic (total dissolved gas, rate of pressure change) and biotic (condition factor, fish length, fish weight) factors that may contribute to themore » incidence of mortal injury associated with fish passing through hydro-turbines. We determined that the main factor associated with mortal injury of juvenile Chinook salmon during simulated turbine passage was the ratio between acclimation and nadir pressures. Condition factor, total dissolved gas, and the rate of pressure change were found to only slightly increase the predictive power of equations relating probability of mortal injury to conditions of exposure or characteristics of test fish during simulated turbine passage. This research will assist engineers and fisheries managers in operating and improving hydroelectric facility efficiency while minimizing mortality and injury of turbine-passed juvenile Chinook salmon. The results are discussed in the context of turbine development and the necessity of understanding how different species of fish will respond to the hydraulic pressures of turbine passage.« less

  12. Characterization of Fish Passage Conditions through a Francis Turbine, Spillway, and Regulating Outlet at Detroit Dam, Oregon, Using Sensor Fish, 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Joanne P.; Carlson, Thomas J.

    2011-05-06

    Fish passage conditions through two spillways, a Francis turbine, and a regulating outlet (RO) at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions, identifying potential fish injury regions within the routes. The study was performed in July, October, and December 2009 concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimate 1) exposure conditions, particularly exposure to severe strike,more » collision, and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates. Comparison of the three passage routes evaluated at Detroit Dam indicates that the RO passage route through the 5-ft gate opening was relatively the safest route for fish passage under the operating conditions tested; turbine passage was the most deleterious. These observations were supported also by the survival and malady estimates obtained from live-fish testing. Injury rates were highest for turbine and spillway passage. However, none of the passage routes tested is safe for juvenile salmonid passage.« less

  13. Diet of juvenile and adult American Shad in the Columbia River

    USGS Publications Warehouse

    Sauter, Sally T.; Blubaugh, J; Parsley, Michael J.

    2011-01-01

    The diet of juvenile and adult American shad Alosa sapidissima captured from various locations in the Columbia River was investigated during 2007 and 2008. Collection efforts in 2007 were restricted to fish collected from existing adult and juvenile fish collection facilities located at Bonneville Dam and to adult shad captured by angling downstream from Bonneville Dam. In 2008, we used gillnets, electrofishing, beach seining, or cast nets to collect juvenile and adult shad from the saline estuary near Astoria (approximately river km 24) to just upstream from McNary Dam (approximately river km 472). We examined the stomach contents of 436 American shad captured in 2007 and 1,272 captured in 2008. Fish caught within the river were much more likely to contain food items than fish removed from fish collection facilities.


    The diet of age-0 American shad varied spatially and temporally, but was comprised primarily of crustaceans and insects. Prey diversity of age-0 American shad, as assessed by the Shannon Diversity Index, increased with decreasing distance to the estuary. Pre- and partial-spawn American shad primarily consumed Corophium spp. throughout the Columbia River; however, post-spawn adults primarily consumed gastropods upstream of McNary Dam

  14. Abundance, stock origin, and length of marked and unmarked juvenile Chinook salmon in the surface waters of greater Puget Sound

    USGS Publications Warehouse

    Rice, C.A.; Greene, C.M.; Moran, P.; Teel, D.J.; Kuligowski, D.R.; Reisenbichler, R.R.; Beamer, E.M.; Karr, J.R.; Fresh, K.L.

    2011-01-01

    This study focuses on the use by juvenile Chinook salmon Oncorhynchus tshawytscha of the rarely studied neritic environment (surface waters overlaying the sublittoral zone) in greater Puget Sound. Juvenile Chinook salmon inhabit the sound from their late estuarine residence and early marine transition to their first year at sea. We measured the density, origin, and size of marked (known hatchery) and unmarked (majority naturally spawned) juveniles by means of monthly surface trawls at six river mouth estuaries in Puget Sound and the areas in between. Juvenile Chinook salmon were present in all months sampled (April-November). Unmarked fish in the northern portion of the study area showed broader seasonal distributions of density than did either marked fish in all areas or unmarked fish in the central and southern portions of the sound. Despite these temporal differences, the densities of marked fish appeared to drive most of the total density estimates across space and time. Genetic analysis and coded wire tag data provided us with documented individuals from at least 16 source populations and indicated that movement patterns and apparent residence time were, in part, a function of natal location and time passed since the release of these fish from hatcheries. Unmarked fish tended to be smaller than marked fish and had broader length frequency distributions. The lengths of unmarked fish were negatively related to the density of both marked and unmarked Chinook salmon, but those of marked fish were not. These results indicate more extensive use of estuarine environments by wild than by hatchery juvenile Chinook salmon as well as differential use (e.g., rearing and migration) of various geographic regions of greater Puget Sound by juvenile Chinook salmon in general. In addition, the results for hatchery-generated timing, density, and length differences have implications for the biological interactions between hatchery and wild fish throughout Puget Sound. ?? American

  15. Field-based evaluations of horizontal flat-plate fish screens, II: Testing of a unique off-stream channel device - The Farmers Screen

    USGS Publications Warehouse

    Mesa, Matthew G.; Rose, Brien P.; Copeland, Elizabeth S.

    2012-01-01

    Screens are installed at water diversion sites to reduce entrainment of fish. Recently, the Farmers Irrigation District (Oregon) developed a unique flat-plate screen (the “Farmers Screen”) that operates passively and may offer reduced installation and operating costs. To evaluate the effectiveness of this screen on fish, we conducted two separate field experiments. First, juvenile coho salmon Oncorhynchus kisutch were released over a working version of this screen under a range of inflows (0.02–0.42 m3/s) and diversion flows (0.02–0.34 m3/s) at different water depths. Mean approach velocities ranged from 0 to 5 cm/s and sweeping velocities ranged from 36 to 178 cm/s. Water depths over the screen surface ranged from 1 to 25 cm and were directly related to inflow. Passage of fish over the screen under these conditions did not severely injure them or cause delayed mortality, and no fish were observed becoming impinged on the screen surface. Second, juvenile coho salmon and steelhead O. mykiss were released at the upstream end of a 34-m flume and allowed to volitionally move downstream and pass over a 3.5-m section of the Farmers Screen to determine whether fish would refuse to pass over the screen after encountering its leading edge. For coho salmon, 75–95% of the fish passed over the screen within 5 min and 82–98% passed within 20 min, depending on hydraulic conditions. For steelhead, 47–90% of the fish passed over the screen within 5 min and 79–95% passed within 20 min. Our results indicate that when operated within its design criteria, the Farmers Screen provides safe and efficient downstream passage of juvenile salmonids under a variety of hydraulic conditions.

  16. A sampler for capturing larval and juvenile Atlantic menhaden

    USGS Publications Warehouse

    Hedrick, J.D.; Hedrick, L.R.; Margraf, F.J.

    2005-01-01

    Interest in capturing larval and juvenile Atlantic menhaden Brevoortia tyrannus for use in laboratory studies required the design and construction of a sampling device that would allow us to make collections of live fish from open-water areas. Our device for capturing 1-2.5-in larval-juvenile fish was constructed of a stainless steel frame that supported a 9.84-ft-long (3-m-long)5 cone plankton net with a 3.28-ft-diameter (1-m-diameter) opening and a 0.04-in (1-mm) mesh size. Although the plankton net was similar to that used during typical larval fish collections, the cod end was constructed of Plexiglas and was nearly watertight; this prevented impingement and injury to larval fish and provided a calm-water environment. The cod end was designed for quick release from the plankton net, and the entire cod end could be submerged into a 75-gal onboard holding tank. This design and technique obviated the netting or emerging of fish from the water until they were returned to the laboratory. ?? Copyright by the American Fisheries Society 2005.

  17. The effects of chronological age and size on toxicity of zinc to juvenile brown trout.

    PubMed

    Diedrich, Daniel J; Sofield, Ruth M; Ranville, James F; Hoff, Dale J; Wall, V Dan; Brinkman, Stephen F

    2015-07-01

    A series of toxicity tests were conducted to investigate the role of chronological age on zinc tolerance in juvenile brown trout (Salmo trutta). Four different incubation temperatures were used to control the maturation of the juveniles before zinc exposures. These 96-h exposures used flow-through conditions and four chronological ages of fish with weights ranging from 0.148 to 1.432 g. Time-to-death (TTD) data were collected throughout the exposure along with the final mortality. The results indicate that chronological age does not play a predictable role in zinc tolerance for juvenile brown trout. However, a relationship between zinc tolerance and fish size was observed in all chronological age populations, which prompted us to conduct additional exploratory data analysis to quantify how much of an effect size had during this stage of development. The smallest fish (0.148-0.423 g) were shown to be less sensitive than the largest fish (0.639-1.432 g) with LC50 values of 868 and 354 µg Zn/L, respectively. The Kaplan-Meier product estimation method was used to determine survival functions from the TTD data and supports the LC50 results with a greater median TTD for smaller fish than larger juvenile fish. These results indicate that fish size or a related characteristic may be a significant determinant of susceptibility and should be considered in acute zinc toxicity tests with specific attention paid to the expected exposure scenario in the field.

  18. Fish navigation of large dams emerges from their modulation of flow field experience

    PubMed Central

    Goodwin, R. Andrew; Politano, Marcela; Garvin, Justin W.; Nestler, John M.; Hay, Duncan; Anderson, James J.; Weber, Larry J.; Dimperio, Eric; Smith, David L.; Timko, Mark

    2014-01-01

    Navigating obstacles is innate to fish in rivers, but fragmentation of the world’s rivers by more than 50,000 large dams threatens many of the fish migrations these waterways support. One limitation to mitigating the impacts of dams on fish is that we have a poor understanding of why some fish enter routes engineered for their safe travel around the dam but others pass through more dangerous routes. To understand fish movement through hydropower dam environments, we combine a computational fluid dynamics model of the flow field at a dam and a behavioral model in which simulated fish adjust swim orientation and speed to modulate their experience to water acceleration and pressure (depth). We fit the model to data on the passage of juvenile Pacific salmonids (Oncorhynchus spp.) at seven dams in the Columbia/Snake River system. Our findings from reproducing observed fish movement and passage patterns across 47 flow field conditions sampled over 14 y emphasize the role of experience and perception in the decision making of animals that can inform opportunities and limitations in living resources management and engineering design. PMID:24706826

  19. Contrasting environmental drivers of adult and juvenile growth in a marine fish: implications for the effects of climate change

    PubMed Central

    Ong, Joyce Jia Lin; Nicholas Rountrey, Adam; Jane Meeuwig, Jessica; John Newman, Stephen; Zinke, Jens; Gregory Meekan, Mark

    2015-01-01

    Many marine fishes have life history strategies that involve ontogenetic changes in the use of coastal habitats. Such ontogenetic shifts may place these species at particular risk from climate change, because the successive environments they inhabit can differ in the type, frequency and severity of changes related to global warming. We used a dendrochronology approach to examine the physical and biological drivers of growth of adult and juvenile mangrove jack (Lutjanus argentimaculatus) from tropical north-western Australia. Juveniles of this species inhabit estuarine environments and adults reside on coastal reefs. The Niño-4 index, a measure of the status of the El Niño-Southern Oscillation (ENSO) had the highest correlation with adult growth chronologies, with La Niña years (characterised by warmer temperatures and lower salinities) having positive impacts on growth. Atmospheric and oceanographic phenomena operating at ocean-basin scales seem to be important correlates of the processes driving growth in local coastal habitats. Conversely, terrestrial factors influencing precipitation and river runoff were positively correlated with the growth of juveniles in estuaries. Our results show that the impacts of climate change on these two life history stages are likely to be different, with implications for resilience and management of populations. PMID:26052896

  20. Contrasting environmental drivers of adult and juvenile growth in a marine fish: implications for the effects of climate change.

    PubMed

    Ong, Joyce Jia Lin; Rountrey, Adam Nicholas; Meeuwig, Jessica Jane; Newman, Stephen John; Zinke, Jens; Meekan, Mark Gregory

    2015-06-08

    Many marine fishes have life history strategies that involve ontogenetic changes in the use of coastal habitats. Such ontogenetic shifts may place these species at particular risk from climate change, because the successive environments they inhabit can differ in the type, frequency and severity of changes related to global warming. We used a dendrochronology approach to examine the physical and biological drivers of growth of adult and juvenile mangrove jack (Lutjanus argentimaculatus) from tropical north-western Australia. Juveniles of this species inhabit estuarine environments and adults reside on coastal reefs. The Niño-4 index, a measure of the status of the El Niño-Southern Oscillation (ENSO) had the highest correlation with adult growth chronologies, with La Niña years (characterised by warmer temperatures and lower salinities) having positive impacts on growth. Atmospheric and oceanographic phenomena operating at ocean-basin scales seem to be important correlates of the processes driving growth in local coastal habitats. Conversely, terrestrial factors influencing precipitation and river runoff were positively correlated with the growth of juveniles in estuaries. Our results show that the impacts of climate change on these two life history stages are likely to be different, with implications for resilience and management of populations.

  1. Walla Walla River Basin Fish Screen Evaluations, 2003: Nursery Bridge Fishway and Garden City-Lowden II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vucelick, Jessica A.; McMichael, Geoffrey A.

    2003-11-01

    The Pacific Northwest National Laboratory (PNNL) evaluated the fish screens at the Nursery Bridge Fishway and at the newly constructed Garden City-Lowden II site west of Walla Walla, Washington in the Walla Walla River Basin during the spring and summer of 2003. Both fish screen facilities were examined to determine if they were being effectively operated and maintained to provide for safe fish passage. At the Nursery Bridge Fishway, the screens were evaluated specifically to determine whether the louvers that aid in controlling water flow from behind the screens could be adjusted so that the screens would meet fish protectionmore » criteria. Data were collected to determine whether velocities in front of the screens and in the bypasses met current National Oceanic and Atmospheric Administration Fisheries ((NOAA Fisheries), formerly National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage before and after changing the louver settings. Rock weirs downstream of the dam were also evaluated to determine whether they might impede upstream migration of juvenile salmonids during low flow conditions. At the Garden City-Lowden II site, data were collected to establish a baseline for operating conditions and to determine whether any changes in the baffle settings were needed. Based on the results of our studies in 2003, we concluded: Nursery Bridge Site: (1) 68% of the initial velocity measurements on the west screen exceeded the NOAA Fisheries criteria of 0.4 ft/s for approach velocity; (2) A simple adjustment of the existing louvers was not sufficient to fix the problem; (3) The sediment and debris load in the river upstream of the screens exceeded the design criteria for the site, which had frequent breakdowns in the screen cleaning systems; and (4) The rock weirs downstream of the dam would not be expected to impede upstream movement of juvenile fish during low flow conditions. Garden City-Lowden II: (1) The flat inclined-plate screen

  2. Impact of micropredatory gnathiid isopods on young coral reef fishes

    NASA Astrophysics Data System (ADS)

    Grutter, A. S.; Pickering, J. L.; McCallum, H.; McCormick, M. I.

    2008-09-01

    The ecological role of parasites in the early life-history stages of coral reef fish, and whether this varies between fish with and without a pelagic phase, was investigated. The susceptibility to, and effect of reef-based micropredatory gnathiid isopods on larval, recently settled, and juvenile fishes was tested using two damselfishes (Pomacentridae): Neopomacentrus azysron, which has pelagic larvae, and Acanthochromis polyacanthus, which does not. When larval and recently settled stages of N. azysron and very young A. polyacanthus juveniles (smaller than larval N. azysron) were exposed to one or three gnathiids, the proportion of infections did not vary significantly among the three host types or between the number of gnathiids to which the fish were exposed. The overall infection was 35%. Mortality, however, differed among the three gnathiid-exposed host types with most deaths occurring in larval N. azysron; no mortalities occurred for recently settled N. azysron exposed to one or three gnathiids, and A. polyacanthus exposed to one gnathiid. Mortality did not differ significantly between larval N. azysron and A. polyacanthus juveniles, failing to provide support for the hypothesis that reef-based A. polyacanthus juveniles are better adapted to gnathiid attack than fish with a pelagic phase. The study suggests that settling on the reef exposes young fish to potentially deadly micropredators. This supports the idea that the pelagic phase may allow young fish to avoid reef-based parasites.

  3. High rate of prey consumption in a small predatory fish on coral reefs

    NASA Astrophysics Data System (ADS)

    Feeney, W. E.; Lönnstedt, O. M.; Bosiger, Y.; Martin, J.; Jones, G. P.; Rowe, R. J.; McCormick, M. I.

    2012-09-01

    Small piscivores are regarded as important regulators of the composition of coral reef fish communities, but few studies have investigated their predatory ecology or impact on assemblages of juvenile fishes. This study investigated the foraging ecology of a common coral reef predator, the dottyback Pseudochromis fuscus, using underwater focal animal observations. Observations were conducted at two times of year: the summer, when recruit fishes were an available food item and winter, when remaining juveniles had outgrown vulnerability to P. fuscus. During the summer, P. fuscus directed 76% of its strikes at invertebrates and 24% at recruiting juvenile fishes. When striking at fishes, P. fuscus exhibited two distinct feeding modes: an ambush (26% successful) and a pursuit mode (5% successful). Predator activity in the field peaked at midday, averaging 2.5 captures h-1 of juvenile fishes. Monitoring of activity and foraging in the laboratory over 24-h periods found that P. fuscus was a diurnal predator and was active for 13 h d-1 during the summer. The number of hours during which foraging was recorded differed greatly among individuals ( n = 10), ranging from 4 to 13 h. The number of predatory strikes did not increase with standard length, but the success rate and consumption rate of juvenile fishes did increase with size. Estimated hourly mortality on juvenile fish ranged from 0.49 fish h-1 in small P. fuscus individuals (30-39 mm standard length, SL; equating to 6.3 per 13 h day) to 2.4 fish h-1 in large P. fuscus individuals (55-65 mm SL; 30.6 per 13 h day). During the winter, P. fuscus struck at invertebrates with a similar rate to the summer period. These observations of the predatory ecology of P. fuscus support the hypothesis that in coral reef systems, small piscivores, because of their high metabolism and activity, are probably important regulators of coral reef fish community composition.

  4. Survival and Passage of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead at McNary Dam, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, James S.; Weiland, Mark A.; Woodley, Christa M.

    The study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead at McNary Dam as stipulated by the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. This study supports the USACE’s continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  5. Feeding ecology of pelagic fish larvae and juveniles in slope waters of the Gulf of Mexico.

    PubMed

    Wells, R J D; Rooker, J R

    2009-11-01

    Stable isotope ratios of carbon (delta13C) and nitrogen (delta15N) were used to investigate feeding patterns of larval and early juvenile pelagic fishes in slope waters of the Gulf of Mexico. Contribution of organic matter supplied to fishes and trophic position within this pelagic food web was estimated in 2007 and 2008 by comparing dietary signatures of the two main producers in this ecosystem: phytoplankton [based on particulate organic matter (POM)] and Sargassum spp. Stable isotope ratios of POM and pelagic Sargassum spp. were significantly different from one another with delta13C values of POM depleted by 3-6 per thousand and delta15N values enriched by 2 relative to Sargassum spp. Stable isotope ratios were significantly different among the five pelagic fishes examined: blue marlin Makaira nigricans, dolphinfish Coryphaena hippurus, pompano dolphinfish Coryphaena equiselis, sailfish Istiophorus platypterus and swordfish Xiphias gladius. Mean delta13C values ranged almost 2 among fishes and were most depleted in I. platypterus. In addition, mean delta15N values ranged 4-5 with highest mean values found for both C. hippurus and C. equiselis and the lowest mean value for M. nigricans during both years. Increasing delta13C or delta15N with standard length suggested that shifts in trophic position and diet occurred during early life for several species examined. Results of a two-source mixing model suggest approximately an equal contribution of organic matter by both sources (POM=55%; pelagic Sargassum spp.=45%) to the early life stages of pelagic fishes examined. Contribution of organic matter, however, varied among species, and sensitivity analyses indicated that organic source estimates changed from 2 to 13% for a delta(13)C fractionation change of +/-0.25 per thousand or a delta15N fractionation change of +/-1.0 per thousand relative to original fractionation values.

  6. Walla Walla River Basin Fish Screen Evaluations; Nursery Bridge Fishway and Garden City/Lowden II Sites, 2005-2006 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamness, Mickie

    2006-06-01

    Pacific Northwest National Laboratory (PNNL) evaluated two fish screen facilities in the Walla Walla River basin in 2005 and early 2006. The Garden City/Lowden screen site was evaluated in April and June 2005 to determine whether the fish screens met National Marine Fisheries Service criteria to provide safe passage for juvenile salmonids. Louvers behind the screens at the Nursery Bridge Fishway were modified in fall 2005 in an attempt to minimize high approach velocities. PNNL evaluated the effects of those modifications in March 2006. Results of the Garden City/Lowden evaluations indicate the site performs well at varying river levels andmore » canal flows. Approach velocities did not exceed 0.4 feet per second (fps) at any time. Sweep velocities increased toward the fish ladder in March but not in June. The air-burst mechanism appears to keep large debris off the screens, although it does not prevent algae and periphyton from growing on the screen face, especially near the bottom of the screens. At Nursery Bridge, results indicate all the approach velocities were below 0.4 fps under the moderate river levels and operational conditions encountered on March 7, 2006. Sweep did not consistently increase toward the fish ladder, but the site generally met the criteria for safe passage of juvenile salmonids. Modifications to the louvers seem to allow more control over the amount of water moving through the screens. We will measure approach velocities when river levels are higher to determine whether the louver modifications can help correct excessive approach velocities under a range of river levels and auxiliary water supply flows.« less

  7. Evaluation of the Efficacy of Fermented By-product of Mushroom, Pleurotus ostreatus, as a Fish Meal Replacer in Juvenile Amur Catfish, Silurus asotus: Effects on Growth, Serological Characteristics and Immune Responses

    PubMed Central

    Katya, Kumar; Yun, Yong-hyun; Park, Gunhyun; Lee, Jeong-Yeol; Yoo, Gwangyeol; Bai, Sungchul C.

    2014-01-01

    The present experiment was conducted to evaluate the efficacy of dietary fermented by-product of mushroom, Pleurotus ostreatus, (FBPM) as a fish meal (FM) replacer in juvenile Amur catfish, Silurus asotus. A total number of 225 fish averaging 5.7±0.1 g (mean±standard deviation) were fed one of the five experimental diets formulated to replace FM with FBPM at 0%, 5%, 10%, 20%, and 30% (FBPM0, FBPM5, FBPM10, FBPM20, and FBPM30, respectively). At the end of eight weeks of the experiment, average weight gain (WG) of fish fed FBPM0 or FBPM5 were significantly higher than those of fish fed FBPM20 or FBPM30 diets (p<0.05). However, there was no significant differences in WG among the fish fed FBPM0, FBPM5 or FBPM10, and between fish fed FBPM10 or FBPM20, and also between those fed FBPM20 or FBPM30 diets. Lysozyme activity of fish fed FBPM0 or FBPM5 were significantly higher than those of fish fed FBPM10, FBPM20 or FBPM30 diets (p<0.05). The chemiluminescent response of fish fed FBPM5 was significantly higher than those of fish fed FBPM0, FBPM20 or FBPM30 diets (p<0.05). Broken line regression analysis of WG suggested that the maximal dietary inclusion level for FBPM as a FM replacer could be 6.3% without any adverse effects on whole body composition and on serological characteristics. Therefore, these results may indicate that the maximal dietary inclusion level of FBPM as a FM replacer could be 6.3% in juvenile Amur catfish. PMID:25178300

  8. Rates of consumption of juvenile salmonids and alternative pray fish by northern squawfish, walleyes, smallmouth bass, and channel catfish in John Day Reservoir, Columbia River

    USGS Publications Warehouse

    Vigg, Steven; Poe, Thomas P.; Prendergast , Linda A.; Hansel, Hal C.

    1991-01-01

    Adult northern squawfish Ptychocheilus oregonensis, walleyes Stizostedion vitreum, smallmouth bass Micropterus dolomieu, and channel catfish Ictalurus punctatus were sampled from four regions of John Day Reservoir from April to August 1983–1986 to quantify their consumption of 13 species of prey fish, particularly seaward-migrating juvenile Pacific salmon and steelhead (Oncorhynchus spp.). Consumption rates were estimated from field data on stomach contents and digestion rate relations determined in previous investigations. For each predator, consumption rates varied by reservoir area, month, time of day, and predator size or age. The greatest daily consumption of salmonids by northern squawfish and channel catfish (0.7 and 0.5 prey/predator) occurred in the upper end of the reservoir below McNary Dam. Greatest daily predation by walleyes (0.2 prey/predator) and smallmouth bass (0.04) occurred in the middle and lower reservoir. Consumption rates of all predators were highest in July, concurrent with maximum temperature and abundance of juvenile salmonids. Feeding by the predators tended to peak after dawn (0600–1200 hours) and near midnight (2000–2400). Northern squawfish below McNary Dam exhibited this pattern, but fed mainly in the morning hours down-reservoir. The daily ration of total prey fish was highest for northern squawfish over 451 mm fork length (> 13.2 mg/g predator), for walleyes 201–250 mm (42.5 mg/g), for smallmouth bass 176–200 mm (30.4 mg/g), and for channel catfish 401–450 mm (17.1 mg/g). Averaged over all predator sizes and sampling months (April–August), the total daily ration (fish plus other prey) of smallmouth bass (28.7 mg/ g) was about twice that of channel catfish (12.6), northern squawfish (14.1), and walleyes (14.2). However, northern squawfish was clearly the major predator on juvenile salmonids.

  9. Evaluation of juvenile salmonid behavior near a prototype weir box at Cowlitz Falls Dam, Washington, 2013

    USGS Publications Warehouse

    Kock, Tobias J.; Liedtke, Theresa L.; Ekstrom, Brian K.; Tomka, Ryan G.; Rondorf, Dennis W.

    2014-01-01

    Collection of juvenile salmonids at Cowlitz Falls Dam is a critical part of the effort to restore salmon in the upper Cowlitz River because the majority of fish that are not collected at the dam pass downstream and enter a large reservoir where they become landlocked and lost to the anadromous fish population. However, the juvenile fish collection system at Cowlitz Falls Dam has failed to achieve annual collection goals since it first began operating in 1996. Since that time, numerous modifications to the fish collection system have been made and several prototype collection structures have been developed and tested, but these efforts have not substantially increased juvenile fish collection. Studies have shown that juvenile steelhead (Oncorhynchus mykiss), coho salmon (Oncorhynchus kisutch), and Chinook salmon (Oncorhynchus tshawytscha) tend to locate the collection entrances effectively, but many of these fish are not collected and eventually pass the dam through turbines or spillways. Tacoma Power developed a prototype weir box in 2009 to increase capture rates of juvenile salmonids at the collection entrances, and this device proved to be successful at retaining those fish that entered the weir. However, because of safety concerns at the dam, the weir box could not be deployed near a spillway gate where the prototype was tested, so the device was altered and re-deployed at a different location, where it was evaluated during 2013. The U.S. Geological Survey conducted an evaluation using radiotelemetry to monitor fish behavior near the weir box and collection flumes. The evaluation was conducted during April–June 2013. Juvenile steelhead and coho salmon (45 per species) were tagged with a radio transmitter and passive integrated transponder (PIT) tag, and released upstream of the dam. All tagged fish moved downstream and entered the forebay of Cowlitz Falls Dam. Median travel times from the release site to the forebay were 0.8 d for steelhead and 1.2 d for coho

  10. Walla Walla River Basin Fish Screen Evaluations; Nursery Bridge Fishway and Garden City/Lowden II Sites, 2003 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vucelick, J.; McMichael, G.

    2003-11-01

    Pacific Northwest National Laboratory evaluated the fish screens at the Nursery Bridge Fishway and the newly constructed Garden City/Lowden II site west of Walla Walla, Washington, in the Walla Walla River Basin during spring and summer 2003. Both fish screen facilities were examined to determine if they were being effectively operated and maintained to provide for safe fish passage. At the Nursery Bridge Fishway, the screens were evaluated specifically to determine whether the louvers that aid in controlling water flow from behind the screens could be adjusted so that the screens would meet fish protection criteria. Data were collected tomore » determine whether velocities in front of the screens and in the bypasses met current National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries) (formerly National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage before and after changing the louver settings. Rock weirs downstream of the dam were also evaluated to determine whether they might impede upstream migration of juvenile salmonids during low flow conditions. At the Garden City/Lowden II site, data were collected to establish a baseline for operating conditions and to determine whether any changes in the baffle settings were needed.« less

  11. Diel variations in the assemblage structure and foraging ecology of larval and 0+ year juvenile fishes in a man-made floodplain waterbody.

    PubMed

    Tewson, L H; Cowx, I G; Nunn, A D

    2016-04-01

    This study investigated diel variations in zooplankton composition and abundance, and the species composition, density, size structure, feeding activity, diet composition and prey selection of larval and 0+ year juvenile fishes in the littoral of a man-made floodplain waterbody over five 24 h periods within a 57 day period. There was a significant difference in the species composition of diurnal and nocturnal catches, with most species consistently peaking in abundance either during daylight or at night, reflecting their main activity period. There were no consistent diel patterns in assemblage structure or the abundance of some species, however, most likely, respectively, due to the phenology of fish hatching and ontogenetic shifts in diel behaviour or habitat use. There were few clear diel patterns in the diet composition or prey selection of larval and 0+ year juvenile roach Rutilus rutilus and perch Perca fluviatilis, with most taxa consistently selected or avoided irrespective of the time of day or night, and no obvious shift between planktonic and benthic food sources, but dietary overlap suggested that interspecific interactions were probably strongest at night. It is essential that sampling programmes account for the diel ecology of the target species, as diurnal surveys alone could produce inaccurate assessments of resource use. The relative lack of consistent diel patterns in this study suggests that multiple 24 h surveys are required in late spring and early summer to provide accurate assessments of 0+ year fish assemblage structure and foraging ecology. © 2016 The Fisheries Society of the British Isles.

  12. Prevention and control of fish-borne zoonotic trematodes in fish nurseries, Vietnam.

    PubMed

    Hedegaard Clausen, Jesper; Madsen, Henry; Murrell, K Darwin; Van, Phan Thi; Thu, Ha Nguyen Thi; Do, Dung Trung; Nguyen Thi, Lan Anh; Nguyen Manh, Hung; Dalsgaard, Anders

    2012-09-01

    Worldwide, >18 million persons were infected with fish-borne zoonotic trematodes in 2002. To evaluate the effectiveness of interventions for reducing prevalence and intensity of fish-borne zoonotic trematode infections in juvenile fish, we compared transmission rates at nurseries in the Red River Delta, northern Vietnam. Rates were significantly lower for nurseries that reduced snail populations and trematode egg contamination in ponds than for nurseries that did not. These interventions can be used in the development of programs for sustained control of zoonotic trematodes in farmed fish.

  13. Newly documented host fishes for the eastern elliptio mussel (Elliptio complanata)

    USGS Publications Warehouse

    Galbraith, Heather S.

    2013-01-01

    The eastern elliptio (Elliptio complanata) is a common, abundant and ecologically important freshwater mussel that occurs throughout the Atlantic Slope drainage in the United States and Canada. Previous research has shown E. complanata glochidia to be host fish generalists, parasitizing yellow perch (Perca flavescens), banded killifish (Fundulus diaphanus), banded sculpin (Cottus carolinae), and seven centrarchid species. Past laboratory studies have been conducted in the Midwest and glochidia sources typically included lakes the Great Lakes basin or were unreported. The objective of this study was to identify host fishes for E. complanata from streams in the Mid-Atlantic region. We used artificial laboratory infections to test host suitability of 38 fish and two amphibian species with E. complanata glochidia from the Chesapeake Bay drainage. Glochidia successfully metamorphosed into juvenile mussels on five fish species: American eel (Anguilla rostrata), brook trout (Salvelinus fontinalis), lake trout (S. namaycush), mottled sculpin (C. bairdii), and slimy sculpin (C. cognatus). American eel was the most effective host, yielding the highest overall metamorphosis success (percentage of attached glochidia that transformed into juvenile mussels;{greater than or equal to}0.90) and producing 13.2 juveniles per fish overall. No juvenile E. complanata metamorphosed on other fish species tested, including many previously identified host fishes reported in the literature. Reasons for discrepancies in published host fish could include geographic variation in host use across the species' range, differences in host use between lentic and lotic populations, or poorly resolved taxonomy within the genus Elliptio.

  14. Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2012-03-01

    is concern that small, fragile fish early life stages may be unable to avoid being struck by the blades of hydrokinetic turbines, we found no empirical data in the published literature that document survival of earliest life-stage fish in passage by rotor blades. In addition to blade strike, research on passage of fish through conventional hydropower turbines suggested that fish mortalities from passage through the rotor swept area could also occur due to shear stresses and pressure chances in the water column (Cada et al. 1997, Turnpenny 1998). However, for most of the proposed HK turbine designs the rotors are projected to operate a lower RPM (revolutions per minute) than observed from conventional reaction turbines; the associated shear stress and pressure changes are expected to be lower and pose a smaller threat to fish survival (DOE 2009). Only a limited number of studies have been conducted to examine the risk of blade strike from hydrokinetic technologies to fish (Turnpenny et al. 1992, Normandeau et al. 2009, Seitz et al. 2011, EPRI 2011); the survival of drifting or weakly swimming fish (especially early life stages) that encounter rotor blades from hydrokinetic (HK) devices is currently unknown. Our study addressed this knowledge gap by testing how fish larvae and juveniles encountered different blade profiles of hydrokinetic devices and how such encounters influenced survivorship. We carried out a laboratory study designed to improve our understanding of how fish larvae and juvenile fish may be affected by encounters with rotor blades from HK turbines in the water column of river and ocean currents. (For convenience, these early life stages will be referred to as young of the year, YOY). The experiments developed information needed to quantify the risk (both probability and consequences) of rotor-blade strike to YOY fish. In particular, this study attempted to determine whether YOY drifting in a high-velocity flow directly in the path of the blade leading

  15. Proximate composition and energy density of some North Pacific forage fishes

    USGS Publications Warehouse

    van Pelt, Thomas I.; Piatt, John F.; Lance, Brian K.; Roby, Daniel D.

    1997-01-01

    Mature pelagic forage fish species (capelin, sand lance, squid) had greater lipid concentrations than juvenile age-classes of large demersal and pelagic fish species (walleye pollock, Pacific cod, Atka mackerel, greenling, prowfish, rockfish, sablefish). Myctophids preyed on by puffins have at least twice as much lipid per gram compared to mature capelin, sand lance and squid, and an order of magnitude greater lipid concentrations than juvenile forage fish. Energy density of forage fishes was positively correlated with lipid content, and negatively correlated with water, ash-free lean dry mass (mostly protein), and ash contents.

  16. Tag loss and short-term mortality associated with passive integrated transponder tagging of juvenile Lost River suckers

    USGS Publications Warehouse

    Burdick, Summer M.

    2011-01-01

    Passive integrated transponder (PIT) tags are commonly used to mark small catostomids, but tag loss and the effect of tagging on mortality have not been assessed for juveniles of the endangered Lost River sucker Deltistes luxatus. I evaluated tag loss and short-term (34-d) mortality associated with the PIT tagging of juvenile Lost River suckers in the laboratory by using a completely randomized design and three treatment groups (PIT tagged, positive control, and control). An empty needle was inserted into each positive control fish, whereas control fish were handled but not tagged. Only one fish expelled its PIT tag. Mortality rate averaged 9.8 ± 3.4% (mean ± SD) for tagged fish; mortality was 0% for control and positive control fish. All tagging mortalities occurred in fish with standard lengths of 71 mm or less, and most of the mortalities occurred within 48 h of tagging. My results indicate that 12.45- × 2.02-mm PIT tags provide a viable method of marking juvenile Lost River suckers that are 72 mm or larger.

  17. A key phase in the recruitment dynamics of coral reef fishes: post-settlement transition

    USGS Publications Warehouse

    Kaufman, L.; Ebersole, J.L.; Beets, Jim; McIvor, Carole

    1992-01-01

    Recent studies of recruitment dynamics in demersal fishes have placed major emphasis on presettlement mortality, and little on events bridging late larval and early juvenile periods. Observations on 68 taxa of Caribbean coral reef fishes before and during settlement revealed the existence of a distinct post-settlement life phase called the transition juvenile, associated with the act of recruitment. Transition juveniles were found as solitary individuals, in conspecific groups, or in heterospecific groups. The groups were either uniform or heterogenous in appearance. The complexity of the transition phase and its apparently widespread occurrence in coral reef fishes suggests that important aspects of population structure may be determined between settlement and first appearance as a full-fledged juvenile.

  18. Characterization of Fish Passage Conditions through a Francis Turbine and Regulating Outlet at Cougar Dam, Oregon, Using Sensor Fish, 2009–2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Joanne P.

    2011-05-23

    Fish passage conditions through a Francis turbine and a regulating outlet (RO) at Cougar Dam on the south fork of the McKenzie River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions, identifying potential fish injury regions encountered during passage via specific routes. The RO investigation was performed in December 2009 and the turbine evaluation in January 2010, concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimatemore » 1) exposure conditions, particularly exposure to severe collision, strike, and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates. Comparison of the three passage routes evaluated at Cougar Dam indicates that the RO passage route through the 3.7-ft gate opening was relatively the safest route for fish passage under the operating conditions tested; turbine passage was the most deleterious. These observations were supported also by the survival and malady estimates obtained from live-fish testing. Injury rates were highest for turbine passage. Compared to mainstem Columbia River passage routes, none of the Cougar Dam passage routes as tested are safe for juvenile salmonid passage.« less

  19. Persistence of identifiable remains of white sturgeon juveniles in digestive tracts of northern pikeminnow

    USGS Publications Warehouse

    Gadomski, D.M.; Frost, C.N.

    2004-01-01

    Juvenile white sturgeon, Acipenser transmontanus, have not been commonly identified as prey items in digestive tracts of fishes collected in the wild. In particular, the diet of northern pikeminnow, Ptychocheilus oregonensis, an abundant Pacific Northwest freshwater predator which has been widely studied, has not included juvenile white sturgeon. To aid in interpreting these results and help in planning future feeding studies, we determined the persistence of identifiable remains of white sturgeon juveniles in this predator's digestive tract. Northern pikeminnow (mean total length = 476 mm), were force-fed meals of 2 or 3 juvenile white sturgeon (mean total length = 91 mm). After digestive periods of 4, 8, 16, 24, 28, and 32h at a water temperature of about 17 ??C, fish were sacrificed, digestive tracts removed, and contents examined. Our results indicate that juvenile white sturgeon would be readily discernable in digestive tracts of northern pikeminnow at least a day after feeding, with scutes remaining undigested and identifiable for 28 h.

  20. Prevention and Control of Fish-borne Zoonotic Trematodes in Fish Nurseries, Vietnam

    PubMed Central

    Madsen, Henry; Murrell, K. Darwin; Van, Phan Thi; Thu, Ha Nguyen Thi; Do, Dung Trung; Thi, Lan Anh Nguyen; Manh, Hung Nguyen; Dalsgaard, Anders

    2012-01-01

    Worldwide, >18 million persons were infected with fish-borne zoonotic trematodes in 2002. To evaluate the effectiveness of interventions for reducing prevalence and intensity of fish-borne zoonotic trematode infections in juvenile fish, we compared transmission rates at nurseries in the Red River Delta, northern Vietnam. Rates were significantly lower for nurseries that reduced snail populations and trematode egg contamination in ponds than for nurseries that did not. These interventions can be used in the development of programs for sustained control of zoonotic trematodes in farmed fish. PMID:22932069

  1. Washington Phase II Fish Diversion Screen Evaluations in the Yakima and Touchet River Basins, 2005-2006 Annual Reports.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamness, Mickie; Abernethy, C.; Tunnicliffe, Cherylyn

    2006-02-01

    In 2005, Pacific Northwest National Laboratory (PNNL) researchers evaluated 25 Phase II fish screen sites in the Yakima and Touchet river basins. Pacific Northwest National Laboratory performs these evaluations for Bonneville Power Administration (BPA) to determine whether the fish screening devices meet National Marine Fisheries Service (NMFS) criteria to promote safe and timely fish passage. Evaluations consist of measuring velocities in front of the screens, using an underwater camera to look at the condition and environment in front of the screens, and noting the general condition and operation of the sites. Results of the evaluations in 2005 include the following:more » (1) Most approach velocities met the NMFS criterion of less than or equal to 0.4 fps. Less than 13% of all approach measurements exceeded the criterion, and these occurred at 10 of the sites. Flat-plate screens had more problems than drum screens with high approach velocities. (2) Bypass velocities generally were greater than sweep velocities, but sweep velocities often did not increase toward the bypass. The latter condition could slow migration of fish through the facility. (3) Screen and seal materials generally were in good condition. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well-greased and operative. (5) Washington Department of Fish and Wildlife (WDFW) and U.S. Bureau of Reclamation (USBR) generally operate and maintain fish screen facilities in a way that provides safe passage for juvenile fish. (6) In some instances, irrigators responsible for specific maintenance at their sites (e.g., debris removal) are not performing their tasks in a way that provides optimum operation of the fish screen facility. New ways need to be found to encourage them to maintain their facilities properly. (7) We recommend placing datasheets providing up-to-date operating criteria and design flows in each sites logbox. The datasheet should

  2. Freshwater Aquaculture Nurseries and Infection of Fish with Zoonotic Trematodes, Vietnam

    PubMed Central

    Ersbøll, Annette Kjær; Nguyen, Thanh Thi; Nguyen, Khue Viet; Nguyen, Ha Thi; Murrell, Darwin; Dalsgaard, Anders

    2010-01-01

    Residents of the Red River Delta region of northern Vietnam have a long tradition of eating raw fish. Fish-borne zoonotic trematodes (FZTs) are estimated to infect ≈1 million persons in Vietnam. It remains uncertain at what stages in the aquaculture production cycle fish become infected with FZTs. Newly hatched fish (fry) from 8 hatcheries and juveniles from 27 nurseries were therefore examined for FZT infection. No FZTs were found in fry from hatcheries. In nurseries, FZT prevalence in juveniles was 14.1%, 48.6%, and 57.8% after 1 week, 4 weeks, and when overwintered in ponds, respectively. FZT prevalence was higher in grass carp (p<0.001) than in other carp species. Results show that nurseries are hot spots for FZT infections in fish. Thus, sustainable FZT prevention strategies must address aquaculture management practices, particularly in nurseries, to minimize the risk of distributing infected juveniles to grow-out ponds and, subsequently, to markets for human consumption. PMID:21122220

  3. Injury and mortality of juvenile salmon entrained in a submerged jet entering still water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.

    Juvenile salmon can be injured and killed when they pass through hydroelectric turbines and other downstream passage alternatives. The hydraulic conditions in these complex environments that pose a risk to the health of fish include turbulent shear flows, collisions with hydraulic structures, cavitation, and rapid change of pressure. Improvements in the understating of the biological responses of juvenile salmon in turbulent shear flows can reduce salmon injury and mortality. In a series of studies, juvenile fall Chinook salmon (Oncorhynchus tshawythscha) were exposed to turbulent shear flows in two mechanisms: 1) the slow-fish-to-fast-water mechanism, where test fish were introduced into amore » turbulent jet from slow-moving water through an introduction tube placed just outside the edge of the jet; 2) the fast-fish-to-slow-water mechanism, where test fish were carried by the fast-moving water of a submerged turbulent jet into the slow-moving water of a flume. All fish exposures to the water jet were recorded by two high-speed, high-resolution cameras. Motion-tracking analysis was then performed on the digital videos to quantify associated kinematic and dynamic parameters. The main results for the slow-fish-to-fast-water mechanism were described in Deng et al (2005). This chapter will discuss the test results of the fast-fish-to-slow-water mechanism and compare the results of the two mechanisms.« less

  4. Biological Evaluations of an Off-Stream Channel, Horizontal Flat-Plate Fish Screen-The Farmers Screen

    USGS Publications Warehouse

    Mesa, Matthew G.; Rose, Brien P.; Copeland, Elizabeth S.

    2010-01-01

    Screens are commonly installed at water diversion sites to reduce entrainment of fish. Recently, the Farmers Irrigation District in Hood River, Oregon, developed a new flat-plate screen design that offers passive operation and may result in reduced operation and installation costs to irrigators. To evaluate the performance (its biological effect on fish) of this type of screen, two size classes of juvenile coho salmon (Oncorhynchus kistuch) were released over a small version of this screen in the field-the Herman Creek screen. The performance of the screen was evaluated over a range of inflow [0.02 to 0.42 m3/s (cubic meters per second)] and diversion flows (0.02 to 0.34 m3/s) at different weir wall heights. The mean approach velocities for the screen ranged from 0 to 5 cm/s (centimeters per second) and mean sweeping velocities ranged from 36 to 178 cm/s. Water depths over the screen surface ranged from 1 to 25 centimeters and were directly related to weir wall height and inflow. Passage of juvenile coho salmon over the screen under a variety of hydraulic conditions did not severely injure them or cause delayed mortality. For all fish, the mean percentage of body surface area that was injured after passage over the screen ranged from about 0.4 to 3.0%. This occurred even though many fish contacted the screen surface during passage. No fish were observed becoming impinged on the screen surface (greater than 1 second contact with the screen). When operated within its design criteria (diversion flows of about 0.28 m3/s), the screen provided safe and effective downstream passage of juvenile salmonids under a variety of hydraulic conditions. However, we do not recommend operating the screen at inflows less than 0.14 m3/s (5 ft3/s) because water depth can get quite shallow and the screen can completely dewater, particularly at very low flows.

  5. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonidmore » Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7

  6. Relationship between snail population density and infection status of snails and fish with zoonotic trematodes in Vietnamese carp nurseries.

    PubMed

    Clausen, Jesper Hedegaard; Madsen, Henry; Murrell, K Darwin; Phan Thi, Van; Nguyen Manh, Hung; Viet, Khue Nguyen; Dalsgaard, Anders

    2012-01-01

    Fish-borne zoonotic trematodes (FZT) are a food safety and health concern in Vietnam. Humans and other final hosts acquire these parasites from eating raw or under-cooked fish with FZT metacercariae. Fish raised in ponds are exposed to cercariae shed by snail hosts that are common in fish farm ponds. Previous risk assessment on FZT transmission in the Red River Delta of Vietnam identified carp nursery ponds as major sites of transmission. In this study, we analyzed the association between snail population density and heterophyid trematode infection in snails with the rate of FZT transmission to juvenile fish raised in carp nurseries. Snail population density and prevalence of trematode (Heterophyidae) infections were determined in 48 carp nurseries producing Rohu juveniles, (Labeo rohita) in the Red River Delta area. Fish samples were examined at 3, 6 and 9 weeks after the juvenile fish were introduced into the ponds. There was a significant positive correlation between prevalence of FZT metacercariae in juvenile fish and density of infected snails. Thus, the odds of infection in juvenile fish were 4.36 and 11.32 times higher for ponds with medium and high density of snails, respectively, compared to ponds where no infected snails were found. Further, the intensity of fish FZT infections increased with the density of infected snails. Interestingly, however, some ponds with no or few infected snails were collected also had high prevalence and intensity of FZT in juvenile fish. This may be due to immigration of cercariae into the pond from external water sources. The total number and density of potential host snails and density of host snails infected with heterophyid trematodes in the aquaculture pond is a useful predictor for infections in juvenile fish, although infection levels in juvenile fish can occur despite low density or absence infected snails. This suggests that intervention programs to control FZT infection of fish should include not only intra

  7. Guiding out-migrating juvenile sea lamprey (Petromyzon marinus) with pulsed direct current

    USGS Publications Warehouse

    Johnson, Nicholas S.; Miehls, Scott M.

    2014-01-01

    Non-physical stimuli can deter or guide fish without affecting water flow or navigation and therefore have been investigated to improve fish passage at anthropogenic barriers and to control movement of invasive fish. Upstream fish migration can be blocked or guided without physical structure by electrifying the water, but directional downstream fish guidance with electricity has received little attention. We tested two non-uniform pulsed direct current electric systems, each having different electrode orientations (vertical versus horizontal), to determine their ability to guide out-migrating juvenile sea lamprey (Petromyzon marinus) and rainbow trout (Oncorhynchus mykiss). Both systems guided significantly more juvenile sea lamprey to a specific location in our experimental raceway when activated than when deactivated, but guidance efficiency decreased at the highest water velocities tested. At the electric field setting that effectively guided sea lamprey, rainbow trout were guided by the vertical electrode system, but most were blocked by the horizontal electrode system. Additional research should characterize the response of other species to non-uniform fields of pulsed DC and develop electrode configurations that guide fish over a range of water velocity.

  8. Modelling the Influence of Long-Term Hydraulic Conditions on Juvenile Salmon Habitats in AN Upland Scotish River

    NASA Astrophysics Data System (ADS)

    Fabris, L.; Malcolm, I.; Millidine, K. J.; Buddendorf, B.; Tetzlaff, D.; Soulsby, C.

    2015-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream

  9. Survival and migration behavior of juvenile salmonids at McNary Dam, 2004, Final report of research

    USGS Publications Warehouse

    Perry, Russell W.; Braatz, Amy C.; Fielding, Scott D.; Lucchesi, Joel N.; Plumb, John M.; Adams, Noah S.; Rondorf, Dennis W.

    2005-01-01

    During 2004, the USGS Columbia River Research Laboratory conducted a study at McNary Dam using radio telemetry to estimate passage and survival parameters of juvenile salmonids. Our primary objective was to estimate these parameters under ambient environmental and operational conditions, and thus project-wide treatments were not implemented. The primary dam operation consisted of “biop” spill, where spill occurred at night between 1800 and 0600 hours, and no spill occurred between 0600 and 1800 hours for the majority of our study period. During the spring study period, we radio-tagged and released 1,896 yearling Chinook salmon and 1,888 juvenile steelhead. During the summer study period, we radio-tagged and released 1,919 subyearling Chinook salmon. All fish were tagged using gastric techniques to implant transmitters weighing 1.58 g for yearling Chinook salmon, 1.93 g for juvenile steelhead, and 0.96 g for subyearling Chinook salmon. Minimum fish sizes were based on a 6.5% tag:fish weight ratio, and the size of tagged fish represented about 91%, 100%, and 17% of the population, respectively for yearling Chinook salmon, juvenile steelhead, and subyearling Chinook salmon. About 60% of radio-tagged fish were released 10 km upstream of McNary Dam at Hat Rock State Park, Oregon, with the remainder released as control groups 400 m downstream of the dam.

  10. Effects of multiple acute stressors on the predator avoidance ability and physiology of juvenile Chinook salmon

    USGS Publications Warehouse

    Mesa, Matthew G.

    1994-01-01

    Northern squaw fish Ptychocheilus oregonensis are the predominant predators of juvenile Pacific salmonids Oncorhynchus spp. in the Columbia River, and their predation rates are greatest just below dams. Because juvenile salmonids are commonly subjected to multiple stressors at dams in the course of their seaward migration, high predation rates below dams may be due in part to an increase in the vulnerability of stressed fish. I conducted laboratory experiments to examine the predator avoidance ability and physiological stress responses of juvenile chinook salmon O. tshawytscha subjected to treatments (stressors) designed to simulate routine hatchery practices (multiple handlings) or dam passage (multiple agitations). Both stressors resulted in lethargic behavior in the fish, and agitation also caused disorieniation and occasional injury. When equal numbers of stressed and unstressed fish were exposed to northern squawfish for up to 1 h, significantly more stressed fish were eaten, but this effect was not evident during longer exposures. The lack of differential predation in trials lasting up to 24 h can be explained by the rapid development of schooling behavior in the prey, but other possibilities exist, such as changing ratios of stressed and unstressed prey over time. Concentrations of plasma cortisol, glucose, and lactate in fish subjected to multiple stressors were similar and sometimes cumulative, returned to prestress levels within 6-24 h, and correlated poorly with predator avoidance ability. My results suggest that juvenile salmonids are capable of avoiding predators within 1 h after being subjected to multiple acute stressors even though physiological homeostasis may be altered for up to 24 h. Therefore, because juvenile salmonids typically reside in lailrace areas for only a short time after dam passage, measures aimed at reducing physical stress or protecting them as they migrate through dam tailraces may help alleviate the relatively intense predation

  11. Fish everywhere, all the time: modeling fish in the riverscape

    EPA Science Inventory

    From 2002-2006, EPA’s Western Ecology Division conducted innovative research on the population dynamics of fish within an entire stream network. Employing individual tagging and tracking technology, we examined spatial patterns of juvenile coho salmon (Oncorhynchus kisutch...

  12. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish.

    PubMed

    Cumming, H; Herbert, N A

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O 2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O 2 uptake rates of a juvenile sparid species ( Pagrus auratus ) was addressed following exposure to five different turbidity treatments (<10, 20, 40, 60 or 80 nephelometric turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O 2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O 2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation.

  13. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish

    PubMed Central

    Cumming, H.; Herbert, N. A.

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O2 uptake rates of a juvenile sparid species (Pagrus auratus) was addressed following exposure to five different turbidity treatments (<10, 20, 40, 60 or 80 nephelometric turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation. PMID:27766155

  14. Effect of electric barrier on passage and physical condition of juvenile and adult rainbow trout

    USGS Publications Warehouse

    Layhee, Megan J.; Sepulveda, Adam; Shaw, Amy; Smuckall, Matthew; Kapperman, Kevin; Reyes, Alejandro

    2016-01-01

    Electric barriers can inhibit passage and injure fish. Few data exist on electric barrier parameters that minimize these impacts and on how body size affects susceptibility, especially to nontarget fish species. The goal of this study was to determine electric barrier voltage and pulse-width settings that inhibit passage of larger bodied rainbow trout Oncorhynchus mykiss (215–410 mm fork length) while allowing passage of smaller bodied juvenile rainbow trout (52–126 mm) in a static laboratory setting. We exposed rainbow trout to 30-Hz pulsed-direct current voltage gradients (0.00–0.45 V cm−1) and pulse widths (0.0–0.7 ms) and recorded their movement, injury incidence, and mortality. No settings tested allowed all juveniles to pass while impeding all adult passage. Juvenile and adult rainbow trout avoided the barrier at higher pulse widths, and fewer rainbow trout passed the barrier at 0.7-ms pulse width compared to 0.1 ms and when the barrier was turned off. We found no effect of voltage gradient on fish passage. No mortality occurred, and we observed external bruising in 5 (7%) juvenile rainbow trout and 15 (21%) adult rainbow trout. This study may aid managers in selecting barrier settings that allow for increased juvenile passage.

  15. Requirement for tryptophan by milkfish (Chanos chanos Forsskal) juveniles.

    PubMed

    Coloso, R M; Tiro, L B; Benitez, L V

    1992-05-01

    Groups of milkfish juveniles (mean initial weight 7.7 g) were fed semipurified diets containing 0.9, 1.4, 2.1, 3.1, 4.1 and 6.1 g tryptophan/kg dry diet for 12 weeks. The mean crude protein content of the diets (containing white fishmeal, gelatin and free amino acid mixture to simulate the pattern of hydrolysed milkfish protein) was 49%. On the basis of the growth response, the tryptophan requirement of milkfish juveniles was estimated to be 3.1 g/kg diet. Fish fed low levels of tryptophan exhibited low weight gains and poor feed conversion ratios. Survival (92-100%) was consistently high in all treatments. Fish fed diets containing tryptophan levels greater than 3.1 g/kg had slightly lower survival rates. The activity of hepatic tryptophan pyrrolase showed no significant differences with increasing dietary tryptophan levels. No nutritional deficiency signs were observed other than the depression in growth rates in fish given the tryptophan deficient diets.

  16. Ocean acidification erodes crucial auditory behaviour in a marine fish

    PubMed Central

    Simpson, Stephen D.; Munday, Philip L.; Wittenrich, Matthew L.; Manassa, Rachel; Dixson, Danielle L.; Gagliano, Monica; Yan, Hong Y.

    2011-01-01

    Ocean acidification is predicted to affect marine ecosystems in many ways, including modification of fish behaviour. Previous studies have identified effects of CO2-enriched conditions on the sensory behaviour of fishes, including the loss of natural responses to odours resulting in ecologically deleterious decisions. Many fishes also rely on hearing for orientation, habitat selection, predator avoidance and communication. We used an auditory choice chamber to study the influence of CO2-enriched conditions on directional responses of juvenile clownfish (Amphiprion percula) to daytime reef noise. Rearing and test conditions were based on Intergovernmental Panel on Climate Change predictions for the twenty-first century: current-day ambient, 600, 700 and 900 µatm pCO2. Juveniles from ambient CO2-conditions significantly avoided the reef noise, as expected, but this behaviour was absent in juveniles from CO2-enriched conditions. This study provides, to our knowledge, the first evidence that ocean acidification affects the auditory response of fishes, with potentially detrimental impacts on early survival. PMID:21632617

  17. Ocean acidification erodes crucial auditory behaviour in a marine fish.

    PubMed

    Simpson, Stephen D; Munday, Philip L; Wittenrich, Matthew L; Manassa, Rachel; Dixson, Danielle L; Gagliano, Monica; Yan, Hong Y

    2011-12-23

    Ocean acidification is predicted to affect marine ecosystems in many ways, including modification of fish behaviour. Previous studies have identified effects of CO(2)-enriched conditions on the sensory behaviour of fishes, including the loss of natural responses to odours resulting in ecologically deleterious decisions. Many fishes also rely on hearing for orientation, habitat selection, predator avoidance and communication. We used an auditory choice chamber to study the influence of CO(2)-enriched conditions on directional responses of juvenile clownfish (Amphiprion percula) to daytime reef noise. Rearing and test conditions were based on Intergovernmental Panel on Climate Change predictions for the twenty-first century: current-day ambient, 600, 700 and 900 µatm pCO(2). Juveniles from ambient CO(2)-conditions significantly avoided the reef noise, as expected, but this behaviour was absent in juveniles from CO(2)-enriched conditions. This study provides, to our knowledge, the first evidence that ocean acidification affects the auditory response of fishes, with potentially detrimental impacts on early survival.

  18. Stable carbon and oxygen isotope ratios of winter flounder otoliths assess connectivity between juvenile and adult habitats

    NASA Astrophysics Data System (ADS)

    Pruell, Richard; Taplin, Bryan

    2017-04-01

    Winter flounder populations (Pseudopleuronectes americanus) have significantly declined in recent years along the Rhode Island, USA coastline. The reasons for this decline are not completely clear; however, habitat loss may be a factor. Therefore, knowledge of connectivity between juvenile nearshore habitats and the adult offshore populations may be important for improved management of this fishery. This study was undertaken to determine if stable carbon (δ13C) and oxygen (δ18O) isotope ratios in otoliths could be used to differentiate the locations that serve as important juvenile habitats for winter flounder. It is generally believed that winter flounder spawn during late winter in nearshore areas, and juvenile fish reside in shallow-water habitats along the coastline during their first summer. Once young-of-the-year flounder undergo metamorphosis and settle, they remain in close proximity to that site until fall. Adult fish move offshore during the late winter and spring, and then return to their natal estuaries during the fall and winter to spawn. Juvenile flounder were collected yearly over a three-year period from 18 juvenile habitats with a wide range of salinities. Several years later adult flounder of the same cohorts were obtained from similar inshore locations and also from the offshore fishery. Sagital otoliths were removed from the adult flounder and the core of the otolith representing the juvenile period was obtained using a Micromill drilling system. These juvenile otolith cores from adult fish and whole sagittal otoliths from juvenile flounder were analyzed for δ13C and δ18O using continuous-flow isotope ratio mass spectrometry. Results from these analyses show significant differences in δ13C and δ18O signatures among water bodies (bay, coastal ponds and an estuarine river). Preliminary analysis indicates that the isotope ratios of the juvenile cores from adult flounder and whole otoliths from juvenile fish collected at the same locations

  19. Intraspecific variation in the growth and survival of juvenile fish exposed to Eucalyptus leachate

    PubMed Central

    Morrongiello, John R; Bond, Nicholas R; Crook, David A; Wong, Bob B M

    2013-01-01

    Whilst changes in freshwater assemblages along gradients of environmental stress have been relatively well studied, we know far less about intraspecific variation to these same stressors. A stressor common in fresh waters worldwide is leachates from terrestrial plants. Leachates alter the physiochemical environment of fresh waters by lowering pH and dissolved oxygen and also releasing toxic compounds such as polyphenols and tannins, all of which can be detrimental to aquatic organisms. We investigated how chronic exposure to Eucalyptus leaf leachate affected the growth and survival of juvenile southern pygmy perch (Nannoperca australis) collected from three populations with different litter inputs, hydrology and observed leachate concentrations. Chronic exposure to elevated leachate levels negatively impacted growth and survival, but the magnitude of these lethal and sublethal responses was conditional on body size and source population. Bigger fish had increased survival at high leachate levels but overall slower growth rates. Body size also varied among populations and fish from the population exposed to the lowest natural leachate concentrations had the highest average stress tolerance. Significant intraspecific variation in both growth and survival caused by Eucalyptus leachate exposure indicates that the magnitude (but not direction) of these stress responses varies across the landscape. This raises the potential for leachate-induced selection to operate at an among-population scale. The importance of body size demonstrates that the timing of leachate exposure during ontogeny is central in determining the magnitude of biological response, with early life stages being most vulnerable. Overall, we demonstrate that Eucalyptus leachates are prevalent and potent selective agents that can trigger important sublethal impacts, beyond those associated with more familiar fish kills, and reiterate that dissolved organic carbon is more than just an energy source in

  20. Requirements of juvenile milkfish (Chanos chanos Forsskal) for essential amino acids.

    PubMed

    Borlongan, I G; Coloso, R M

    1993-01-01

    The dietary requirements of juvenile milkfish (Chanos chanos Forsskal) for essential amino acids were determined in a series of experiments. The fish (< or = 8.0 g) were reared in fiber glass tanks provided with flow-through seawater at 28 degrees C and salinity of 32 g/L for 12 wk. In each experiment, a series of amino acid test diets was formulated containing a combination of intact protein sources (casein-gelatin, fish meal-gelatin, fish meal-soybean meal or fish meal-zein) and crystalline amino acids to simulate the levels found in milkfish tissue proteins except for the test amino acid. Each set of isonitrogenous diets contained 40-45% protein and graded levels of the amino acid to be tested. At the end of the feeding experiment, growth, survival and feed efficiency were determined. The requirement level for each essential amino acid was estimated from breakpoint analysis of the growth curve. The dietary essential amino acid requirements (as the percentage of dietary protein) of milkfish juveniles were as follows: arginine, 5.25; histidine, 2.00; isoleucine, 4.00; leucine, 5.11; lysine, 4.00; methionine, 2.50 (cystine, 0.75); phenylalanine, 4.22 (tyrosine, 1.00) or 2.80 (tyrosine, 2.67); threonine, 4.50; tryptophan, 0.60; valine, 3.55. This information is valuable in developing cost-effective practical or commercial feeds and research diets for milkfish juveniles.

  1. Histopathologic Effects of Estrogens on Marine Fishes

    EPA Science Inventory

    Endocrine-disrupting chemicals (EDCs), such as estrogens estradiol (E2) and ethinylestradiol (EE2) have been reported to affect fish reproduction. This study histologically compared and evaluated effects of EDCs in two species of treated fish. Juvenile male summer flounder (Paral...

  2. FISH OIL IMPROVES MOTOR FUNCTION, LIMITS BLOOD-BRAIN BARRIER DISRUPTION, AND REDUCES MMP9 GENE EXPRESSION IN A RAT MODEL OF JUVENILE TRAUMATIC BRAIN INJURY

    PubMed Central

    Russell, K. L.; Berman, N. E. J.; Gregg, P. R. A.; Levant, B.

    2014-01-01

    SUMMARY The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15 mL/kg fish oil (2.01 g/kg EPA, 1.34 g/kg DHA) or soybean oil dose via oral gavage 30 minutes prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9h gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. PMID:24342130

  3. Fish oil improves motor function, limits blood-brain barrier disruption, and reduces Mmp9 gene expression in a rat model of juvenile traumatic brain injury.

    PubMed

    Russell, K L; Berman, N E J; Gregg, P R A; Levant, B

    2014-01-01

    The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15mL/kg fish oil (2.01g/kg EPA, 1.34g/kg DHA) or soybean oil dose via oral gavage 30min prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9 gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. © 2013 Elsevier Ltd. All rights reserved.

  4. Assessment of Barotrauma from Rapid Decompression of Depth-Acclimated Juvenile Chinook Salmon Bearing Radiotelemetry Transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.

    2009-11-01

    This study investigated the mortality of and injury to juvenile Chinook salmon Oncorhynchus tshawytscha exposed to simulated pressure changes associated with passage through a large Kaplan hydropower turbine. Mortality and injury varied depending on whether a fish was carrying a transmitter, the method of transmitter implantation, the depth of acclimation, and the size of the fish. Juvenile Chinook salmon implanted with radio transmitters were more likely than those without to die or sustain injuries during simulated turbine passage. Gastric transmitter implantation resulted in higher rates of injury and mortality than surgical implantation. Mortality and injury increased with increasing pressure ofmore » acclimation. Injuries were more common in subyearling fish than in yearling fish. Gas emboli in the gills and internal hemorrhaging were the major causes of mortality. Rupture of the swim bladder and emphysema in the fins were also common. This research makes clear that the exposure of juvenile Chinook salmon bearing radiotelemetry transmitters to simulated turbine pressures with a nadir of 8-19 kPa can result in barotrauma, leading to immediate or delayed mortality. The study also identified sublethal barotrauma injuries that may increase susceptibility to predation. These findings have significant implications for many studies that use telemetry devices to estimate the survival and behavior of juvenile salmon as they pass through large Kaplan turbines typical of those within the Columbia River hydropower system. Our results indicate that estimates of turbine passage survival for juvenile Chinook salmon obtained with radiotelemetry devices may be negatively biased.« less

  5. Survival, movement, and health of hatchery-raised juvenile Lost River suckers within a mesocosm in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Hereford, Danielle M.; Burdick, Summer M.; Elliott, Diane G.; Dolan-Caret, Amari; Conway, Carla M.; Harris, Alta C.

    2016-01-28

    The recovery of endangered Lost River suckers (Deltistes luxatus) in Upper Klamath Lake is limited by poor juvenile survival and failure to recruit into the adult population. Poor water quality, degradation of rearing habitat, and toxic levels of microcystin are hypothesized to contribute to low juvenile survival. Studies of wild juvenile suckers are limited in that capture rates are low and compromised individuals are rarely captured in passive nets. The goal of this study was to assess the use of a mesocosm for learning about juvenile survival, movement, and health. Hatchery-raised juvenile Lost River suckers were PIT (passive integrated transponder) tagged and monitored by three vertically stratified antennas. Fish locations within the mesocosm were recorded at least every 30 minutes and were assessed in relation to vertically stratified water-quality conditions. Vertical movement patterns were analyzed to identify the timing of mortality for each fish. Most mortality occurred from July 28 to August 16, 2014. Juvenile suckers spent daylight hours near the benthos and moved throughout the entire water column during dark hours. Diel movements were not in response to dissolved-oxygen concentrations, temperature, or pH. Furthermore, low dissolved-oxygen concentrations, high temperatures, high pH, high un-ionized ammonia, or high microcystin levels did not directly cause mortality, although indirect effects may have occurred. However, water-quality conditions known to be lethal to juvenile Lost River suckers did not occur during the study period. Histological assessment revealed severe gill hyperplasia and Ichthyobodo sp. infestations in most moribund fish. For these fish, Ichthyobodo sp. was likely the cause of mortality, although it is unclear if this parasite originated in the rearing facility because fish were not screened for this parasite prior to introduction. This study has demonstrated that we can effectively use a mesocosm equipped with antennas to learn

  6. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.

    This report presents survival, behavioral, and fish passage results for tagged yearling Chinook salmon and juvenile steelhead as part of a survival study conducted at John Day Dam during spring 2011. This study was designed to evaluate the passage and survival of yearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a paired-release survival model.

  7. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.

    This report presents the results of an evaluation of juvenile Chinook salmon (Oncorhynchus tshawytscha) behavior at Cougar Dam on the south fork of the McKenzie River in Oregon in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE). The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the Water Temperature Control (WTC) tower of the dam for USACE and fisheries resource managers use in making decisions about bioengineering designs for long-term structures and/or operations to facilitate safe downstream passagemore » for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from March 1, 2010, through January 31, 2011. Juvenile salmonids (hereafter, called 'fish') were present in the immediate forebay of the WTC tower throughout the study. Fish abundance index was low in early spring (<200 fish per sample-day), increased in late April, and peaked on May 19 (6,039 fish). A second peak was observed on June 6 (2904 fish). Fish abundance index decreased in early June and remained low in the summer months (<100 fish per sample-day). During the fall and winter, fish numbers varied with a peak on November 10 (1881 fish) and a minimum on December 7 (12 fish). A second, smaller, peak occurred on December 22 (607 fish). A univariate statistical analysis indicated fish abundance index (log10-transformed) was significantly (P<0.05) positively correlated with forebay elevation, velocity over the WTC tower intake gate weirs, and river flows into the reservoir. A subsequent multiple regression analysis resulted in a model (R2=0.70) predicting fish abundance (log-transformed index values) using two independent variables of mean forebay elevation and the log10 of the forebay elevation range. From the approximate fish length measurements made using the DIDSON imaging software, the average fish

  8. Sensor Fish Communicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Sensor Fish collects information that can be used to evaluate conditions encountered by juvenile salmonids and other fish as they pass through hydroelectric dams on their way to the ocean. Sensor Fish are deployed in turbines, spillways, and sluiceways and measure changes in pressure, angular rate of change, and linear acceleration during passage. The software is need to make Sensor Fish fully functional and easy to use. Sensor Fish Communicator (SFC) links to Sensor Fish, allowing users to control data collection settings and download data. It may also be used to convert native raw data (.raw2) files into Commamore » Separated Variable (.csv) files and plot the results. The multiple capabilities of the SFC allow hardware communication, data conversion, and data plotting with one application.« less

  9. The effects of coral bleaching on settlement preferences and growth of juvenile butterflyfishes.

    PubMed

    Cole, A J; Lawton, R J; Pisapia, C; Pratchett, M S

    2014-07-01

    Coral bleaching and associated mortality is an increasingly prominent threat to coral reef ecosystems. Although the effects of bleaching-induced coral mortality on reef fishes have been well demonstrated, corals can remain bleached for several weeks prior to recovery or death and little is known about how bleaching affects resident fishes during this time period. This study compared growth rates of two species of juvenile butterflyfishes (Chaetodon aureofasciatus and Chaetodon lunulatus) that were restricted to feeding upon either bleached or healthy coral tissue of Acropora spathulata or Pocillopora damicornis. Coral condition (bleached vs. unbleached) had no significant effects on changes in total length or weight over a 23-day period. Likewise, in a habitat choice experiment, juvenile butterflyfishes did not discriminate between healthy and bleached corals, but actively avoided using recently dead colonies. These results indicate that juvenile coral-feeding fishes are relatively robust to short term effects of bleaching events, provided that the corals do recover. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  10. [Preliminary assessment of habitat of juvenile Collichthys lucidus in the Yangtze estuary].

    PubMed

    Yang, Gang; Zhang, Tao; Zhuang, Ping; Hou, Jun-Li; Wang, Yu; Song, Chao; Zhang, Long-Zhen

    2014-08-01

    To evaluate the choice preference of fish habitat in the Yangtze estuary, juvenile Collichthys lucidus which is the dominant species in spring was selected. The 4 indicator factors, including abundance of Pseudograpsus albus, salinity, substrate type and water depth, were selected from 19 environmental factors. Then, the indices of the habitat suitability curves of the 4 indicator factors were established, and the HSI of juvenile C. lucidus at each site was calculated. The results indicated that HSI was almost more than 0.5 in North Branch, and less than 0.2 in South Branch. It showed that the North Branch of Yangtze estuary was the main nursery area of C. lucidus. The most suitable growth sector was the area with salinity more than 14, mean grain size of substrate less than 29 μm and water depth 2 to 5 m, which was consistent with the distribution of HSI. The study demonstrated that biological factors could be characterized by the response of juvenile C. lucidus to the environment. Chemical oxygen demand, ammonium nitrogen, total phosphorus and volatile phenol did not have significant correlation with the fish abundance, with which nitrite nitrogen, nitrate nitrogen and total nitrogen had significant positive correlation. It suggested that the eutrophication of the survey area had not damaged the habitat of C. lucidus. However, copper ion and cadmium ion had significant negative correlation with the fish abundance, which indicated that the heavy metal pollution had harmed the growth and distribution of juvenile C. lucidus. It was inferred that the heavy metal pollution was the restrictive factor influencing the fish habitat in Yangtze estuary.

  11. Yolo Bypass Juvenile Salmon Utilization Study 2016—Summary of acoustically tagged juvenile salmon and study fish release, Sacramento River, California

    USGS Publications Warehouse

    Liedtke, Theresa L.; Hurst, William R.

    2017-09-12

    The Yolo Bypass is a flood control bypass in Sacramento Valley, California. Flood plain habitats may be used for juvenile salmon rearing, however, the potential value of such habitats can be difficult to evaluate because of the intermittent nature of inundation events. The Yolo Bypass Juvenile Salmon Utilization Study (YBUS) used acoustic telemetry to evaluate the movements and survival of juvenile salmon adjacent to and within the Yolo Bypass during the winter of 2016. This report presents numbers, size data, and release data (times, dates, and locations) for the 1,197 acoustically tagged juvenile salmon released for the YBUS from February 21 to March 18, 2016. Detailed descriptions of the surgical implantation of transmitters are also presented. These data are presented to support the collaborative, interagency analysis and reporting of the study findings.

  12. Use of electronarcosis to immobilize juvenile lake and shortnose sturgeons for handling and the effects on their behavior

    USGS Publications Warehouse

    Henyey, E.; Kynard, B.; Zhuang, P.

    2002-01-01

    Low voltage constant direct current was used to immobilize juvenile lake (Acipenser fulvescens) and shortnose sturgeons (A. brevirostrum). There was no significant difference in time/ the lake or shortnose sturgeons required to exhibit positive rheotaxis between fish immobilized with electricity and control fish (two-way ANOVA, P = 0.11). Fish immobilized with 80 mg L-1 tricaine took a significantly longer time to orient than control fish or fish immobilized with electricity for 5 or 30 min (one-way ANOVA, P = 0.003). Electronarcosis, which produces effects like a chemical anesthetic, is a useful technique for immobilizing juvenile sturgeons for handling. Fish can swim upright as soon as the electricity is turned off, recovery time is shorter than with chemical anesthetics, and the cost of equipment is < 400 USD.

  13. Mortality, Transmitter Retention, Growth, and Wound Healing in Juvenile Salmon Injected with Micro Acoustic Transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liss, Stephanie A.; Brown, Richard S.; Deters, Katherine A.

    A cylindrical acoustic transmitter (AT; 0.2 g) has been developed for injection into the peritoneum of fish. Laboratory studies can provide tagging guidelines to minimize the effect of implantation techniques and transmitter burden (relative weight of the transmitter to the weight of the fish) in fish before a transmitter is used in field studies. The goal of this study was to examine response variables (mortality, transmitter expulsion, growth, wound area) of juvenile Chinook Salmon (Oncorhynchus tschawytscha; 65–104 mm fork length [FL]) injected with an AT along a wide range of sizes that could lead to a guideline for minimizing taggingmore » effects. The overarching goal was to determine a minimum size threshold for fish that can be injected, while minimizing adverse transmitter effects. Juveniles (n = 700) were separated into four treatments: (1) acoustic transmitter injection (AT), (2) AT and a passive integrated transponder tag injection (AT+PIT), (3) visual implant elastomer injection (Marked control), and (4) unmarked (Unmarked control). Fish were evaluated weekly for four weeks, and again at the end of the study (60 d post-tagging). Fish injected with an AT or an AT+PIT experienced greater mortality than Marked controls. By 60 d post-tagging, transmitter expulsion was 44% for AT fish and 20% for AT+PIT fish. Fish injected with an AT or an AT+PIT grew (FL and weight gain) significantly less than Marked controls, and no minimum size thresholds were detected. Finally, initial size (FL) significantly affected wound area in AT and AT+PIT fish. A size threshold was only identified on Day 7 (85.1 mm) for AT+PIT fish, indicating that wound areas in fish < 85.1 mm were larger than wound areas of fish > 85.1 mm. This research suggests that injecting juveniles with an AT or an AT+PIT had a greater effect on smaller fish than larger fish.« less

  14. The nature of exocytosis in the yolk trophoblastic layer of silver arowana (Osteoglossum bicirrhosum) juvenile, the representative of ancient teleost fishes.

    PubMed

    Jaroszewska, Marta; Dabrowski, Konrad

    2009-11-01

    We have chosen the silver arowana (Osteoglossum bicirrhosum), a representative of the most ancient teleost family Osteoglossidae, to address the question of yolk nutrients utilization. Silver arowana have particularly large eggs (1-1.5 cm of diameter) and a unique morphology of the yolk. We present evidence that the yolk cytoplasmic zone (ycz) in the "yolksac juveniles" is a very complex structure involved in sequential processes of yolk hydrolysis, lipoprotein particles synthesis, their transport, and exocytosis. Vacuoles filled with yolk granules in different stages of digestion move from the vitellolysis zone through the ycz to be emptied into the microvillar interspace in the process of exocytosis. The area of the ycz with the abundance of the mitochondria must play an important role in providing energy for both the transport of vacuoles and the release of their contents. Therefore, we postulate that the function of yolk syncytial layer (ysl) as the "early embryonic patterning center" transforms in fish larvae or yolksac juveniles into a predominantly specialized role as the yolk trophoblastic layer (ytl) involved in yolk nutrients utilization. In addition to discovering the mechanism of transformation of the ysl function into ytl function, we suggest that the machinery involved in nutrient mobilization and exocytosis in yolk of arowana yolksac juveniles can be very attractive system for studies of regulatory processes in almost all secretory pathways in animal cells.

  15. Umatilla River Fish Passage Operations Program, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.; Duke, Bill B.

    2005-08-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from August 19, 2003 to July 8, 2004. A total of 3,388 summer steelhead (Oncorhynchus mykiss); 1,482 adult, 638 jack, and 2,150 subjack fall chinook (O. tshawytscha); 8,319 adult and 667 jack coho (O. kisutch); and 2,965 adult and 270 jack spring chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 34 summer steelhead and 31more » adult and 9 jack spring chinook were hauled upstream from Threemile Dam. There were 3,166 summer steelhead; 1,076 adult, 554 jack and 2,026 subjack fall chinook; 8,213 adult and 647 jack coho; and 2,152 adult and 174 jack spring chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 121 summer steelhead; 388 adult and 19 jack fall chinook; and 561 adult and 29 jack spring chinook were collected for brood. In addition, 239 spring chinook were collected for the outplanting efforts in the Walla Walla Basin. There were also 25 pair hatchery steelhead adults collected for the progeny maker study. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The canal was open for 184 days between January 12 and July 6, 2004. During that period, fish were bypassed back to the river 173 days and were trapped 10 days. An estimated 44 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5). Approximately 84% of the juveniles transported were salmonids. No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was opened on February 10, 2004 for outmigration sampling and continued until July 7, 2004 when sampling was

  16. Colour preferences of juvenile turbot (Scophthalmus maximus).

    PubMed

    Li, Xian; Chi, Liang; Tian, Huiqin; Meng, Lingjie; Zheng, Jimeng; Gao, Xiaolong; Liu, Ying

    2016-03-15

    The background colour of aquaculture tanks is normally chosen based on practical experience and/or observations of fish behaviour and the growth rates achieved. However, some farmed species, including turbot, are sentient and can show a preference for a particular environment. In the current study, a self-referent colour preference device was developed and the self-referent colour preference of farmed fish investigated. In experiment 1, the background colour preference of juvenile turbot cultured under a grey background for >3months post-incubation was evaluated. Based on these results, in experiment 2, juvenile turbot were adapted to blue, pink, white, or black backgrounds for 50days and their preferences established. Meanwhile, the growth rates, feed intake, and metabolic rates (including oxygen consumption rate, and ammonia excretion rate) of the turbot were evaluated. The results showed that turbot farmed under a grey background, or after long-term white, blue, pink and black colour adaptation, always displayed a preference for a white background and a dislike for black, red, or brown backgrounds, although their body colour was greyish. Long-term adaptation influenced the frequency of juveniles selecting white, black, pink or blue backgrounds. They showed the highest growth rate, feed intake, and metabolic rates under blue and white backgrounds, and the lowest under a black background in accordance with their preferences shown in experiment 1. Although it is unclear how turbot determine their self-referent colour preferences over such a short period of time, these results indicate that dark colours are unsuitable for the aquaculture of turbot culture in terms of the welfare of the fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Two alternative juvenile life history types for fall Chinook salmon in the Snake River basin

    USGS Publications Warehouse

    Connor, W.P.; Sneva, J.G.; Tiffan, K.F.; Steinhorst, R.K.; Ross, D.

    2005-01-01

    Fall Chinook salmon Oncorhynchus tshawytscha in the Snake River basin were listed under the Endangered Species Act in 1992. At the time of listing, it was assumed that fall Chinook salmon juveniles in the Snake River basin adhered strictly to an ocean-type life history characterized by saltwater entry at age 0 and first-year wintering in the ocean. Research showed, however, that some fall Chinook salmon juveniles in the Snake River basin spent their first winter in a reservoir and resumed seaward movement the following spring at age 1 (hereafter, reservoir-type juveniles). We collected wild and hatchery ocean-type fall Chinook salmon juveniles in 1997 and wild and hatchery reservoir-type juveniles in 1998 to assess the condition of the reservoir-type juveniles at the onset of seaward movement. The ocean-type juveniles averaged 112-139 mm fork length, and the reservoir-type juveniles averaged 222-224 mm fork length. The large size of the reservoir-type juveniles suggested a high potential for survival to salt water and subsequent return to freshwater. Scale pattern analyses of the fall Chinook salmon spawners we collected during 1998-2003 supported this point. Of the spawners sampled, an overall average of 41% of the wild fish and 51% of the hatchery fish had been reservoir-type juveniles. Males that had been reservoir-type juveniles often returned as small "minijacks" (wild, 16% of total; hatchery, 40% of total), but 84% of the wild males, 60% of the hatchery males, and 100% of the wild and hatchery females that had been reservoir-type juveniles returned at ages and fork lengths commonly observed in populations of Chinook salmon. We conclude that fall Chinook salmon in the Snake River basin exhibit two alternative juvenile life histories, namely ocean-type and reservoir-type. ?? Copyright by the American Fisheries Society 2005.

  18. Can we reduce the number of fish in the OECD acute toxicity test?

    PubMed

    Rufli, Hans; Springer, Timothy A

    2011-04-01

    OECD (Organisation for Economic Co-operation and Development) Guideline 203, Fish Acute Toxicity Test, states that the test should be performed using at least five concentrations in a geometric series with a separation factor not exceeding 2.2, with at least seven fish per concentration. However, the efficiency of this design can be questioned, because it often results in only one concentration that causes partial mortality (mortality >0% and <100%). We performed Monte Carlo computer simulations to assess whether more efficient designs could allow reductions in fish use. Simulations indicated that testing with six fish per concentration could yield 50% lethal concentration (LC50) estimates of quality similar to those obtained using seven fish. Experts attending a workshop organized to consider this finding and to identify the best methods for reducing fish use concluded that significant reductions could best be achieved by modifying the test paradigm. They suggested initiating testing using a 96-h fish embryo test instead of juvenile fish to cover the range from the upper threshold concentration (the lowest 50% effective concentration [EC50] in existing algae and daphnia studies) to the highest concentration with no mortality. This would be followed by a confirmatory limit test with juvenile fish at the highest concentration with no mortality or by a full test with juvenile fish, if a point estimate of the LC50 is required. Copyright © 2011 SETAC.

  19. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrallymore » buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.« less

  20. Evaluation of strobe lights to reduce turbine entrainment of juvenile steelhead (Oncorhynchus mykiss) at Cowlitz Falls Dam, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Evans, Scott D.; Liedtke, Theresa L.; Rondorf, Dennis W.; Kohn, Mike

    2009-01-01

    We conducted a radiotelemetry evaluation to determine if strobe lights could be used to decrease turbine entrainment of juvenile steelhead (Oncorhynchus mykiss) at Cowlitz Falls Dam, Washington. We found that radio-tagged juvenile steelhead approached and entered two spillbays (one lighted, one unlighted) in equal proportions. However, the presence of strobe lights was associated with decreased spillbay residence time of juvenile steelhead and increased passage through induction slots (secondary turbine intakes located upstream of the ogee on the spillway). Mean residence time of tagged fish inside the lighted spillbay was 14 min compared to 62 min inside the unlighted spillbay. Radio-tagged steelhead passed through induction slots at a higher proportion in the lighted spillbay (55%) than in the unlighted spillbay (26%). Recent studies have suggested that strobe lights can induce torpor in juvenile salmonids. We believe that strobe light exposure affected fish in our study at a location where they were susceptible to high flows thereby reducing mean residence time and increasing the proportion of tagged fish entering induction slots in the lighted spillbay. Our results suggest that factors such as deployment location, exposure, and flow are important variables that should be considered when evaluating strobe lights as a potential fish-deterring management tool.

  1. Does coastal lagoon habitat quality affect fish growth rate and their recruitment? Insights from fishing and acoustic surveys

    NASA Astrophysics Data System (ADS)

    Brehmer, P.; Laugier, T.; Kantoussan, J.; Galgani, F.; Mouillot, D.

    2013-07-01

    Ensuring the sustainability of fish resources necessitates understanding their interaction with coastal habitats, which is becoming ever more challenging in the context of ever increasing anthropogenic pressures. The ability of coastal lagoons, exposed to major sources of disturbance, to provide resources and suitable habitats for growth and survival of juvenile fish is especially important. We analysed three lagoons with different ecological statuses and habitat quality on the basis of their eutrophication and ecotoxicity (Trix test) levels. Fish abundances were sampled using fishing and horizontal beaming acoustic surveys with the same protocols in the same year. The relative abundance of Anguilla anguilla, Dicentrarchus labrax or the Mugilidae group was not an indicator of habitat quality, whereas Atherina boyeri and Sparus aurata appeared to be more sensitive to habitat quality. Fish abundance was higher in the two lagoons with high eutrophication and ecotoxicity levels than in the less impacted lagoon, while fish sizes were significantly higher in the two most severely impacted lagoons. This leads us to suggest low habitat quality may increase fish growth rate (by the mean of a cascading effect), but may reduce lagoon juvenile abundance by increasing larval mortality. Such a hypothesis needs to be further validated using greater investigations which take into account more influences on fish growth and recruitment in such variable environments under complex multi-stressor conditions.

  2. Reducing fungal infections and testing tag loss in juvenile Pacific lampreys implanted with passive integrated transponders.

    USGS Publications Warehouse

    Christiansen, H.E.; Gee, L.P.; Mesa, M.G.

    2012-01-01

    Pacific lamprey Entosphenus tridentatus are facing severe population declines, yet little is known about juvenile lamprey passage, life history, or adult return rates because until now, these small fish could not be tagged for unique identification of live individuals. Previously, we developed a simple and effective method for tagging juvenile lampreys with passive integrated transponder (PIT) tags and showed that tagging per se did not affect survival. Mortality in tagged and untagged control fish, however, was frequently associated with fungal infection. In this study, we addressed two outstanding issues related to handling and tagging juvenile lampreys. First, we tried to mitigate freshwater fungal infections by reducing irritation and stress from anesthesia and by treating tagged fish briefly with a prophylactic immediately after tagging. We tested four anesthetics at three concentrations each and determined that 100 mg/L MS-222 and 60 mg/L BENZOAK® (benzocaine) were the most effective for anesthetizing juvenile lampreys to handleable while minimizing irritation. We also showed that fish anesthetized with BENZOAK® may have lower rates of fungal infection than those anesthetized with MS-222 or AQUI-S® 20E (eugenol). When fish anesthetized with MS-222 or BENZOAK® were given a 30 min prophylactic treatment with Stress Coat®, hydrogen peroxide, or salt immediately after tagging, few fish presented with fungal infections. However, untreated, tagged control fish also showed few fungal infections, making it difficult to determine if the prophylactic treatments were successful. The second question we addressed was whether activity would increase tag loss in PIT-tagged lampreys. We found that active swimming did not cause tag loss if fish were first held for 20–24 h after tagging. Therefore, we recommend anesthesia with MS-222 or BENZOAK® and then tagging with a 20–24 h recovery period followed by immediate release. If field studies show that lampreys are not

  3. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.

    This report presents survival, behavioral, and fish passage results for yearling and subyearling Chinook salmon smolts and juvenile steelhead tagged with JSATS acoustic micro-transmitters as part of a survival study conducted at John Day Dam during 2010. This study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a single-release survival estimate model.

  4. Recycle food wastes into high quality fish feeds for safe and quality fish production.

    PubMed

    Wong, Ming-Hung; Mo, Wing-Yin; Choi, Wai-Ming; Cheng, Zhang; Man, Yu-Bon

    2016-12-01

    The amount of food waste generated from modern societies is increasing, which has imposed a tremendous pressure on its treatment and disposal. Food waste should be treated as a valuable resource rather than waste, and turning it into fish feeds would be a viable alternative. This paper attempts to review the feasibility of using food waste to formulate feed pellets to culture a few freshwater fish species, such as grass carp, grey mullet, and tilapia, under polyculture mode (growing different species in the same pond). These species occupy different ecological niches, with different feeding modes (i.e., herbivorous, filter feeding, etc.), and therefore all the nutrients derived from the food waste could be efficiently recycled within the ecosystem. The problems facing environmental pollution and fish contamination; the past and present situation of inland fish culture (focusing on South China); upgrade of food waste based feed pellets by adding enzymes, vitamin-mineral premix, probiotics (yeast), prebiotics, and Chinese medicinal herbs into feeds; and potential health risks of fish cultivated by food waste based pellets are discussed, citing some local examples. It can be concluded that appropriate portions of different types of food waste could satisfy basic nutritional requirements of lower trophic level fish species such as grass carp and tilapia. Upgrading the fish pellets by adding different supplements mentioned above could further elevated the quality of feeds, leading to higher growth rates, and enhanced immunity of fish. Health risk assessments based on the major environmental contaminants (mercury, PAHs and DDTs) in fish flesh showed that fish fed food waste based pellets are safer for consumption, when compared with those fed commercial feed pellets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Assessment of diclofenac LC50 reference values in juvenile and embryonic stages of the zebrafish (Danio rerio).

    PubMed

    Praskova, E; Voslarova, E; Siroka, Z; Plhalova, L; Macova, S; Marsalek, P; Pistekova, V; Svobodova, Z

    2011-01-01

    The aim of the study was to compare the acute toxicity of diclofenac to juvenile and embryonic stages of the zebrafish (Danio rerio). Acute toxicity tests were performed on the aquarium fish Danio rerio, which is one of the model organisms most commonly used in toxicity testing. The tests were performed using a semi-static method according to OECD guideline No. 203 (Fish, acute toxicity test). Embryo toxicity tests were performed in zebrafish embryos (Danio rerio) in compliance with OECD No. 212 methodology (Fish, short-term toxicity test on embryo and sac-fry stages). The results were subjected to a probit analysis using the EKO-TOX 5.2 programme to determine 96hLC50 and 144hLC50 (median lethal concentration, 50% mortality after a 96 h or 144 h interval, respectively) values of diclofenac. The statistical significance of the difference between LC50 values in juvenile and embryonic stages of Danio rerio was tested using the Mann-Whitney non-parametric test implemented in the Unistat 5.1 programme. The LC50 mean value of diclofenac was 166.6 +/- 9.8 mg/L in juvenile Danio rerio, and 6.11 +/- 2.48 mg/L in embryonic stages of Danio rerio. The study demonstrated a statistically higher sensitivity to diclofenac (P < 0.05) in embryonic stages compared to the juvenile fish.

  6. Arsenic Toxicity to Juvenile Fish: Effects of Exposure Route, Arsenic Speciation, and Fish Species

    EPA Science Inventory

    Arsenic toxicity to juvenile rainbow trout and fathead minnows was evaluated in 28-day tests using both dietborne and waterborne exposures, both inorganic and organic arsenic species, and both a live diet and an arsenic-spiked pellet diet. Effects of inorganic arsenic on rainbow...

  7. Demographic and phenotypic responses of juvenile steelhead trout to spatial predictability of food resources

    Treesearch

    Matthew R. Sloat; Gordon H. Reeves

    2014-01-01

    We manipulated food inputs among patches within experimental streams to determine how variation in foraging behavior influenced demographic and phenotypic responses of juvenile steelhead trout (Oncorhynchus mykiss) to the spatial predictability of food resources. Demographic responses included compensatory adjustments in fish abundance, mean fish...

  8. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation

    NASA Astrophysics Data System (ADS)

    Welch, Megan J.; Watson, Sue-Ann; Welsh, Justin Q.; McCormick, Mark I.; Munday, Philip L.

    2014-12-01

    Behaviour and sensory performance of marine fishes are impaired at CO2 levels projected to occur in the ocean in the next 50-100 years, and there is limited potential for within-generation acclimation to elevated CO2 (refs , ). However, whether fish behaviour can acclimate or adapt to elevated CO2 over multiple generations remains unanswered. We tested for transgenerational acclimation of reef fish olfactory preferences and behavioural lateralization at moderate (656 μatm) and high (912 μatm) end-of-century CO2 projections. Juvenile spiny damselfish, Acanthochromis polyacanthus, from control parents (446 μatm) exhibited an innate avoidance to chemical alarm cue (CAC) when reared in control conditions. In contrast, juveniles lost their innate avoidance of CAC and even became strongly attracted to CAC when reared at elevated CO2 levels. Juveniles from parents maintained at mid-CO2 and high-CO2 levels also lost their innate avoidance of CAC when reared in elevated CO2, demonstrating no capacity for transgenerational acclimation of olfactory responses. Behavioural lateralization was also disrupted for juveniles reared under elevated CO2, regardless of parental conditioning. Our results show minimal potential for transgenerational acclimation in this fish, suggesting that genetic adaptation will be necessary to overcome the effects of ocean acidification on behaviour.

  9. The Mangrove Nursery Paradigm Revisited: Otolith Stable Isotopes Support Nursery-to-Reef Movements by Indo-Pacific Fishes

    PubMed Central

    Kimirei, Ismael A.; Nagelkerken, Ivan; Mgaya, Yunus D.; Huijbers, Chantal M.

    2013-01-01

    Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ13C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65–72%) as opposed to inshore vegetated habitats (28–35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations. PMID:23776658

  10. The mangrove nursery paradigm revisited: otolith stable isotopes support nursery-to-reef movements by Indo-Pacific fishes.

    PubMed

    Kimirei, Ismael A; Nagelkerken, Ivan; Mgaya, Yunus D; Huijbers, Chantal M

    2013-01-01

    Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ(13)C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65-72%) as opposed to inshore vegetated habitats (28-35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.

  11. Effects of surgically and gastrically implanted radio transmitters on growth and feeding behavior of juvenile chinook salmon

    USGS Publications Warehouse

    Adams, N.S.; Rondorf, D.W.; Evans, S.D.; Kelly, J.E.

    1997-01-01

    We examined the effects of surgically and gastrically implanted radio transmitters (representing 2.3-5.5% of body weight) on the growth and feeding behavior of 192 juvenile chinook salmon Oncorhynchus tshawytscha (114-159 mm in fork length). Throughout the 54-d study, the 48 fish with transmitters in their stomachs (gastric fish) consistently grew more slowly than fish with surgically implanted transmitters (surgery fish), fish with surgery but no implanted transmitter (sham-surgery fish), or fish exposed only to handling (control fish). Growth rates of surgery fish were also slightly impaired at day 21, but by day 54 they were growing at rates comparable with those of control fish. Despite differences in growth, overall health was similar among all test fish. However, movement of the transmitter antenna caused abrasions at the corner of the mouth in all gastric fish, whereas only 22% of the surgery fish had inflammation around the antenna exit wound. Feeding activity was similar among groups, but gastric fish exhibited a coughing behavior and appeared to have difficulty retaining swallowed food. Because growth and feeding behavior were less affected by the presence of surgically implanted transmitters than by gastric implants, we recommend surgically implanting transmitters for biotelemetry studies of juvenile chinook salmon between 114 and 159 mm fork length.

  12. Influence of externally attached trasmitters on the swimming performance of juvenile white sturgeon

    USGS Publications Warehouse

    Counihan, T.D.; Frost, C.N.

    1999-01-01

    We measured the critical swimming speed of juvenile white sturgeons Acipenser transmontanus equipped with externally attached dummy ultrasonic transmitters and of untagged control fish in the laboratory. White sturgeons ranging from 31.9 to 37.0 cm fork length were subjected to one of three treatments: Control (handled but not tagged), tag attached below the dorsal fin, and tag attached with the anterior insertion point between the fourth and fifth dorsal scutes. Although transmitters were of recommended weight, we found that the swimming performance of tagged white sturgeons was significantly less than that of untagged control fish. Swimming performance of tagged fish was not differentially affected by tag location. Our results suggest that data from ultrasonic telemetry studies of externally tagged juvenile white sturgeons should be interpreted with caution due to the reduced swimming performance caused by external transmitters.

  13. Seasonal variability of rocky reef fish assemblages: Detecting functional and structural changes due to fishing effects

    NASA Astrophysics Data System (ADS)

    Henriques, Sofia; Pais, Miguel Pessanha; Costa, Maria José; Cabral, Henrique Nogueira

    2013-05-01

    The present study analyzed the effects of seasonal variation on the stability of fish-based metrics and their capability to detect changes in fish assemblages, which is yet poorly understood despite the general idea that guilds are more resilient to natural variability than species abundances. Three zones subject to different levels of fishing pressure inside the Arrábida Marine Protected Area (MPA) were sampled seasonally. The results showed differences between warm (summer and autumn) and cold (winter and spring) seasons, with the autumn clearly standing out. In general, the values of the metrics density of juveniles, density of invertebrate feeders and density of omnivores increased in warm seasons, which can be attributed to differences in recruitment patterns, spawning migrations and feeding activity among seasons. The density of generalist/opportunistic individuals was sensitive to the effect of fishing, with higher values at zones with the lowest level of protection, while the density of individuals with high commercial value only responded to fishing in the autumn, due to a cumulative result of both juveniles and adults abundances during this season. Overall, this study showed that seasonal variability affects structural and functional features of the fish assemblage and that might influence the detection of changes as a result of anthropogenic pressures. The choice of a specific season, during warm sea conditions after the spawning period (July-October), seems to be more adequate to assess changes on rocky-reef fish assemblages.

  14. Modern management of juvenile recurrent parotitis.

    PubMed

    Capaccio, P; Sigismund, P E; Luca, N; Marchisio, P; Pignataro, L

    2012-12-01

    To evaluate modern diagnostic and therapeutic management of juvenile recurrent parotitis, and to show the benefits of operative sialoendoscopy on the basis of our experience in 14 patients and the results of others. Ultrasonography is sensitive in detecting the pathological features of juvenile recurrent parotitis. Interventional sialoendoscopy is a safe and effective method of treating the disease. In our case series, after a mean follow-up time of 30 months only 5 patients experienced recurrence of symptoms, with a mean symptom-free period of 20 months. The use of modern, minimally invasive diagnostic tools such as colour Doppler ultrasonography, magnetic resonance sialography and sialoendoscopy represents a new frontier in the management of juvenile recurrent parotitis. Operative sialoendoscopy also has the important therapeutic benefit of reducing the number of recurrences of acute episodes of parotitis, thus giving patients a better quality of life until puberty.

  15. Impact of multiple stressors on juvenile fish in estuaries of the northeast Pacific.

    PubMed

    Toft, Jason D; Munsch, Stuart H; Cordell, Jeffery R; Siitari, Kiira; Hare, Van C; Holycross, Brett M; DeBruyckere, Lisa A; Greene, Correigh M; Hughes, Brent B

    2018-05-01

    A key step in identifying global change impacts on species and ecosystems is to quantify effects of multiple stressors. To date, the science of global change has been dominated by regional field studies, experimental manipulation, meta-analyses, conceptual models, reviews, and studies focusing on a single stressor or species over broad spatial and temporal scales. Here, we provide one of the first studies for coastal systems examining multiple stressor effects across broad scales, focused on the nursery function of 20 estuaries spanning 1,600 km of coastline, 25 years of monitoring, and seven fish and invertebrate species along the northeast Pacific coast. We hypothesized those species most estuarine dependent and negatively impacted by human activities would have lower presence and abundances in estuaries with greater anthropogenic land cover, pollution, and water flow stress. We found significant negative relationships between juveniles of two of seven species (Chinook salmon and English sole) and estuarine stressors. Chinook salmon were less likely to occur and were less abundant in estuaries with greater pollution stress. They were also less abundant in estuaries with greater flow stress, although this relationship was marginally insignificant. English sole were less abundant in estuaries with greater land cover stress. Together, we provide new empirical evidence that effects of stressors on two fish species culminate in detectable trends along the northeast Pacific coast, elevating the need for protection from pollution, land cover, and flow stressors to their habitats. Lack of response among the other five species could be related to differing resistance to specific stressors, type and precision of the stressor metrics, and limitations in catch data across estuaries and habitats. Acquiring improved measurements of impacts to species will guide future management actions, and help predict how estuarine nursery functions can be optimized given anthropogenic

  16. Use of glacier river-fed estuary channels by juvenile coho salmon: transitional or rearing habitats?

    USGS Publications Warehouse

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2014-01-01

    Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmonOncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.

  17. Efficacy of Single-Suture Incision Closures in Tagged Juvenile Chinook Salmon Exposed to Simulated Turbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, James W.; Deters, Katherine A.; Brown, Richard S.

    2011-09-01

    Reductions in the size of acoustic transmitters implanted in migrating juvenile salmonids have resulted in the use of a shorter incision-one that may warrant only a single suture for closure. However, it is not known whether a single suture will sufficiently hold the incision closed when fish are decompressed and when outward pressure is placed on the surgical site during turbine passage through hydroelectric dams. The objective of this study was to evaluate the effectiveness of single-suture incision closures on five response variables in juvenile Chinook salmon Oncorhynchus tshawytscha that were subjected to simulated turbine passage. An acoustic transmitter (0.43more » g in air) and a passive integrated transponder tag (0.10 g in air) were implanted in each fish; the 6-mm incisions were closed with either one suture or two sutures. After exposure to simulated turbine passage, none of the fish exhibited expulsion of transmitters. In addition, the percentage of fish with suture tearing, incision tearing, or mortal injury did not differ between treatments. Expulsion of viscera through the incision was higher among fish that received one suture (12%) than among fish that received two sutures (1%). The higher incidence of visceral expulsion through single-suture incisions warrants concern. Consequently, for cases in which tagged juvenile salmonidsmay be exposed to turbine passage, we do not recommend the use of one suture to close 6-mm incisions associated with acoustic transmitter implantation.« less

  18. The Relationship Between Environment and Nutritional Condition of Arctic Forage Fish

    NASA Astrophysics Data System (ADS)

    Vollenweider, J.; Heintz, R.; Callahan, M.; Barton, M. B.; Sousa, L.; Danielson, S. L.; Meuter, F.; Moran, J.; Boswell, K. M.

    2016-02-01

    We describe how marine environmental conditions influence the body condition of forage fish in the Alaskan Arctic. Body condition of fish is a sensitive predictor of fish productivity, with consequences particularly for juvenile survival as well as adult reproduction. For example, body condition of juvenile walleye pollock (Theragra chalcogramma) in the Bering Sea is a significant predictor of survival to recruitment, and a better index than sheer abundance of juveniles. Body condition of fish generally varies with interannual fluctuations in oceanographic conditions such as temperature and wind mixing, which may have cascading effects on food quality and availability, and ultimately fish survival. We use these underlying principles to examine how interannual and spatial variation in environmental conditions affect fish condition of various Arctic species. Specifically, we measured the energy content of some of the most abundant Arctic forage species including Arctic cod (Boreogadus saida), capelin (Mallotus villosus), fourhorn sculpin (Myoxocephalus quadricornis), and saffron cod (Eleginus gracilis) over multiple years and habitats. Fish were sampled from multiple projects (ACES, SHELFZ, Arctic Eis) from three physically distinct waterbodies: the Chukchi and Beaufort Seas, and Elson Lagoon, an extensive, shallow estuary characteristic of the Arctic coastline. Fish condition of the various species responded differently to interannual changes and amongst water bodies. For example, Arctic Cod had energy density in 2014 compared with other years while fourhorn sculpin were unperturbed. These findings will help identify favorable habitats for Arctic species, identify locations and condition contributing the most to fish productivity, and will help predict how Arctic fish and their predators may fare in the face of climate change.

  19. Sea-louse parasites on juvenile wild salmon in the Broughton Archipelago, British Columbia, Canada.

    PubMed

    Peacock, Stephanie J; Bateman, Andrew W; Krkošek, Martin; Connors, Brendan; Rogers, Scott; Portner, Lauren; Polk, Zephyr; Webb, Coady; Morton, Alexandra

    2016-07-01

    The global expansion of aquaculture has changed the structure of fish populations in coastal environments, with implications for disease dynamics. In Pacific Canada, farmed salmon act as reservoir hosts for parasites and pathogens, including sea lice (Lepeophtheirus salmonis and Caligus clemensi) that can transmit to migrating wild salmon. Assessing the impact of salmon farms on wild salmon requires regular monitoring of sea-louse infections on both farmed and wild fish. Since 2001, we have collected juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon annually at three sites in the Broughton Archipelago in British Columbia, Canada, during the annual juvenile salmon migration from fresh water to the open ocean. From sampled fish, we recorded counts of parasitic copepodid-, chalimus-, and motile-stage sea lice. We report louse abundances as well as supplementary observations of fish size, development, and health. © 2016 by the Ecological Society of America.

  20. Copper, cadmium, and zinc concentrations in juvenile Chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; Thompson, Larry D.; Walsh, Daniel

    2001-01-01

    This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from river sites were examinedfor gut contents to document their consumption of variousinvertebrate taxa, whereas salmon from river sites and thehatchery were used for metal determinations. Midge(Chironomidae) and caddisfly (Trichoptera) larvae and mayfly(Ephemeroptera) nymphs were collected for metal determinationsduring April–June from river sites and from Battle and Buttecreeks. The fish hatchery and Battle and Butte creeks served asreference sites because they had no history of receiving minedrainage. Salmon consumed mostly midge larvae and pupae (44.0%,damp-dry biomass), caddisfly larvae (18.9%), Cladocera (5.8%),and mayfly nymphs (5.7%). These results demonstrated thatinsects selected for metal determinations were important as fishforage. Dry-weight concentrations of Cu, Cd, and Zn weregenerally far higher in salmon and insects from the river thanfrom reference sites. Within the river, high metalconcentrations persisted as far downstream as South Meridian (thelowermost sampling site). Maximum concentrations of Cd (30.7 μg g-1) and Zn (1230 μg g-1),but not Cu (87.4 μg g-1), in insects exceeded amounts that other investigators reported as toxic when fed for prolonged periods to juvenile salmonids.

  1. Efficacy of electrofishing to assess plasma cortisol concentration in juvenile chinook salmon passing hydroelectric dams on the Columbia River

    USGS Publications Warehouse

    Mauls, Alec G.; Mesa, Matthew G.

    1994-01-01

    We tested the efficacy of using electrofishing to collect juvenile fall chinook salmon Oncorhynchus tshawytscha to assess their plasma cortisol concentrations. In laboratory experiments, plasma cortisol titers of fish sampled immediately (<4 s) after a 1.5-s, 500-V DC electroshock were not different from controls (mean ± SE, 28.8 ± 5.2 ng/mL), but within 15 min they were significantly higher (148.2 ± 19.0 ng/mL) than controls. Plasma cortisol levels of fish released through turbines and of those released through the juvenile-bypass system at Bonneville Dam, Oregon-Washington, and collected by electrofishing did not differ from each other or from prerelease samples (about 70 ± 7 ng/mL). Our results indicate that electrofishing can be used to collect fish for stress assessment in the wild, provided fish are sacrificed immediately after capture. We are concerned, however, that the small number of fish we captured by electrofishing may not be representative of the majority of fish that pass through turbines or bypass systems. The fish used in this study were not migrating smolts and so were not typical of juvenile chinook salmon passing through hydroelectric dams on the Columbia River. Developmental as well as species- and stock-related factors should be addressed in future studies.

  2. Assessing Juvenile Salmonid Passage Through Culverts: Field Research in Support of Protocol Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Greg D.; Evans, Nathan R.; Pearson, Walter H.

    2001-10-30

    The primary goal of our research this spring/ summer was to refine techniques and examine scenarios under which a standardized protocol could be applied to assess juvenile coho salmon (O. kisutch) passage through road culverts. Field evaluations focused on capture-mark- recapture methods that allowed analysis of fish movement patterns, estimates of culvert passability, and potential identification of cues inducing these movements. At this stage, 0+ age coho salmon fry 30 mm to 65 mm long (fork length) were the species and age class of interest. Ultimately, the protocol will provide rapid, statistically rigorous methods for trained personnel to perform standardizedmore » biological assessments of culvert passability to a number of juvenile salmon species. Questions to be addressed by the research include the following: ? Do hydraulic structures such as culverts restrict habitat for juvenile salmonids? ? How do existing culverts and retrofits perform relative to juvenile salmonid passage? ? Do some culvert characteristics and hydraulic conditions provide better passage than others? ? Does the culvert represent a barrier to certain size classes of fish? Recommendations addressed issues of study site selection, initial capture, marking, recapture/observations, and estimating movement.« less

  3. Host Fish of Four Species of Unionid Mussels and the Dispersal of their Larvae with the Fish Movement

    NASA Astrophysics Data System (ADS)

    Kondo, Mio; Ito, Kengo; Senge, Masateru

    Host fish of each mussel was examined in a biotope pond, a drainage canal and fishway between them in Gifu Prefecture from May to October 2008. The main host fish was Zacco platypus in Unio douglasiae and Lanceolaria grayana, Nipponocypris sieboldii in Anodonta sp. and Pronodularia japonensis. In the fish caught at fishway, intensity and total number of glochidium were more the descending fish from the biotope pond than the ascending one from the drainage canal, which suggests that the biotope pond is now the base of supply of juveniles to the neighboring areas.

  4. 77 FR 23463 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... is for issuance of an Endangered Species Act section 10(a)(1)(A) permit to US Fish and Wildlife Service to collect Central Valley spring-run Chinook salmon eggs and juveniles from the Feather River Fish...

  5. Hiding and feeding in floating seaweed: Floating seaweed clumps as possible refuges or feeding grounds for fishes

    NASA Astrophysics Data System (ADS)

    Vandendriessche, Sofie; Messiaen, Marlies; O'Flynn, Sarah; Vincx, Magda; Degraer, Steven

    2007-02-01

    Floating seaweed is considered to be an important habitat for juvenile fishes due to the provision of food, shelter, a visual orientation point and passive transport. The importance of the presence of the highly dynamical seaweed clumps from the North Sea to juvenile neustonic fishes was investigated by analysing both neuston samples (without seaweed) and seaweed samples concerning fish community structure, and length-frequency distributions and feeding habits of five associated fish species. While the neustonic fish community was mainly seasonally structured, the seaweed-associated fish community was more complex: the response of the associated fish species to environmental variables was species specific and probably influenced by species interactions, resulting in a large multivariate distance between the samples dominated by Chelon labrosus and the samples dominated by Cyclopterus lumpus, Trachurus trachurus and Ciliata mustela. The results of the stomach analysis confirmed that C. lumpus is a weedpatch specialist that has a close spatial affinity with the seaweed and feeds intensively on the seaweed-associated invertebrate fauna. Similarly, C. mustela juveniles also fed on the seaweed fauna, but in a more opportunistic way. The shape of the size-frequency distribution suggested enhanced growth when associated with floating seaweed. Chelon labrosus and T. trachurus juveniles were generally large in seaweed samples, but large individuals were also encountered in the neuston. The proportion of associated invertebrate fauna in their diet was of minor importance, compared to the proportions in C. lumpus. Individuals of Syngnathus rostellatus mainly fed on planktonic invertebrates but had a discontinuous size-frequency distribution, suggesting that some of the syngnathids were carried with the seaweed upon detachment and stayed associated. Floating seaweeds can therefore be regarded as ephemeral habitats shared between several fish species (mainly juveniles) that use

  6. Comparative study of trophic organization of juvenile fish assemblages of three tidal creeks in a tropical semi-arid estuary.

    PubMed

    Figueiredo, G G A A; Pessanha, A L M

    2016-07-01

    A comparison of three tidal creeks assessed the effects of the hydrological regime on trophic organization in juvenile fish assemblages of 21 species in a tropical estuary in north-eastern Brazil. There were seven trophic guilds represented spatially. Zooplanktivore and zoobenthivore guilds dominated the lower estuary, whereas omnivores and detritivores dominated the upper estuary. In the rainy season, the zooplanktivore and omnivore guilds were more common throughout the estuary, but in the dry season, zoobenthivores and piscivores occurred throughout. The trophic organization results show that (1) there was a higher complexity in tidal creeks in the upper estuary compared with the first tidal creek in the lower region and (2) trophic linkages increased in the upper estuary, principally the number of omnivore and detritivore species. Spatial variation in trophic structure was primarily associated with differences in the location of the tidal creeks along the estuary, and this variability was partly attributed to fish species richness; the number of species increased towards the upper estuary, and additional species occupied different trophic levels or used additional resources. © 2015 The Fisheries Society of the British Isles.

  7. Juvenile Salmonid survival, passage, and egress at McNary Dam during tests of temporary spillway weirs, 2009

    USGS Publications Warehouse

    Adams, N.S.; Liedtke, T.L.

    2010-01-01

    The TSWs proved to be a relatively effective way to pass juvenile salmonids at McNary Dam (Summary Tables 1.1, 1.2, and 1.3), as was the case in 2007 and 2008. The TSWs passed about 14% of yearling Chinook salmon and 34% of juvenile steelhead with only 5-10% of total project discharge flowing through the TSWs. The TSWs and adjacent spill bays 16-18 passed 27% of subyearling Chinook salmon in the summer with 6-16% of total project discharge flowing through the TSWs. Based on the number of fish passing per the proportion of water flowing through the spillway (i.e., passage effectiveness), the TSWs were the most effective passage route. Passage effectiveness for fish passing through both TSW structures was 2.0 for yearling Chinook salmon, 5.2 for juvenile steelhead, and 2.7 subyearling Chinook salmon for TSW 20 alone. Higher passage of juvenile steelhead through the TSWs could have resulted from juvenile steelhead being more surface-oriented during migration (Plumb et al. 2004; Beeman et al. 2007; Beeman and Maule 2006). Based on passage performance and effectiveness metrics, TSW 4, located on the north end of the spillway, did not perform as well as TSW 20, located on the south end of the spillway. Passage proportions for TSW 4 were at least half that of the levels observed for TSW 20 for both yearling Chinook salmon and juvenile steelhead. This difference may be attributed to TSW location or other variables such as dam operations. Regardless of which TSW was used by fish passing the dam, survival through both TSWs was high (> 0.98 for paired-release dam survival) for yearling Chinook salmon and juvenile steelhead.

  8. Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam

    USGS Publications Warehouse

    Perry, Russell W.; Kock, Tobias J.; Couter, Ian I; Garrison, Thomas M; Hubble, Joel D; Child, David B

    2016-01-01

    Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main-stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18-km reach downstream of the dam affected route-specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub-surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route-specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low-survival or high-survival passage routes.

  9. Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish.

    PubMed

    Grol, Monique G G; Nagelkerken, Ivan; Rypel, Andrew L; Layman, Craig A

    2011-01-01

    Ecosystems are intricately linked by the flow of organisms across their boundaries, and such connectivity can be essential to the structure and function of the linked ecosystems. For example, many coral reef fish populations are maintained by the movement of individuals from spatially segregated juvenile habitats (i.e., nurseries, such as mangroves and seagrass beds) to areas preferred by adults. It is presumed that nursery habitats provide for faster growth (higher food availability) and/or low predation risk for juveniles, but empirical data supporting this hypothesis is surprisingly lacking for coral reef fishes. Here, we investigate potential mechanisms (growth, predation risk, and reproductive investment) that give rise to the distribution patterns of a common Caribbean reef fish species, Haemulon flavolineatum (French grunt). Adults were primarily found on coral reefs, whereas juvenile fish only occurred in non-reef habitats. Contrary to our initial expectations, analysis of length-at-age revealed that growth rates were highest on coral reefs and not within nursery habitats. Survival rates in tethering trials were 0% for small juvenile fish transplanted to coral reefs and 24-47% in the nurseries. As fish grew, survival rates on coral reefs approached those in non-reef habitats (56 vs. 77-100%, respectively). As such, predation seems to be the primary factor driving across-ecosystem distributions of this fish, and thus the primary reason why mangrove and seagrass habitats function as nursery habitat. Identifying the mechanisms that lead to such distributions is critical to develop appropriate conservation initiatives, identify essential fish habitat, and predict impacts associated with environmental change.

  10. Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish

    PubMed Central

    Grol, Monique G. G.; Rypel, Andrew L.; Layman, Craig A.

    2010-01-01

    Ecosystems are intricately linked by the flow of organisms across their boundaries, and such connectivity can be essential to the structure and function of the linked ecosystems. For example, many coral reef fish populations are maintained by the movement of individuals from spatially segregated juvenile habitats (i.e., nurseries, such as mangroves and seagrass beds) to areas preferred by adults. It is presumed that nursery habitats provide for faster growth (higher food availability) and/or low predation risk for juveniles, but empirical data supporting this hypothesis is surprisingly lacking for coral reef fishes. Here, we investigate potential mechanisms (growth, predation risk, and reproductive investment) that give rise to the distribution patterns of a common Caribbean reef fish species, Haemulon flavolineatum (French grunt). Adults were primarily found on coral reefs, whereas juvenile fish only occurred in non-reef habitats. Contrary to our initial expectations, analysis of length-at-age revealed that growth rates were highest on coral reefs and not within nursery habitats. Survival rates in tethering trials were 0% for small juvenile fish transplanted to coral reefs and 24–47% in the nurseries. As fish grew, survival rates on coral reefs approached those in non-reef habitats (56 vs. 77–100%, respectively). As such, predation seems to be the primary factor driving across-ecosystem distributions of this fish, and thus the primary reason why mangrove and seagrass habitats function as nursery habitat. Identifying the mechanisms that lead to such distributions is critical to develop appropriate conservation initiatives, identify essential fish habitat, and predict impacts associated with environmental change. PMID:21072542

  11. Effect of replacing fish meal with extruded soybean meal on growth, feed utilization and apparent nutrient digestibility of juvenile white shrimp ( Litopenaeus vannamei)

    NASA Astrophysics Data System (ADS)

    Yang, Qihui; Tan, Beiping; Dong, Xiaohui; Chi, Shuyan; Liu, Hongyu

    2015-10-01

    Extruded soybean meal (ESBM) was evaluated as a protein source for partial replacement of fish meal (FM) in diets of juvenile Litopenaeus vannamei. In the control diet (Diet 1), FM protein was replaced with increasing dietary levels of ESBM (4.28%, 8.40%, 12.62%, 16.82%, and 25.26%) at 10%, 20%, 30%, 40%, and 60% levels (Diets 2 to 6, respectively). An eight-week feeding trial was conducted on 720 juvenile shrimp (0.67 g ± 0.01 g mean initial weight), and nutrient digestibility of the six diets was determined. ESBM could replace 20% of FM without causing a significant reduction in growth of shrimp, but other dietary treatments strongly affected whole body composition. Crude protein content of the whole body fed Diet 6 was significantly lower than that fed Diet 2 ( P < 0.05), while crude lipid content of the whole body fed Diet 5 or 6 was significantly higher than that fed Diet 2 ( P < 0.05). Protein digestibilities of Diets 5 and 6 were significantly lower than that of Diet 1 ( P < 0.05). Digestibility of lipids ranged from 96.97% in Diet 6 to 98.34% in Diet 3, whereas dry matter digestibility decreased with increasing replacement level. This study indicates that 20% FM replacement with ESBM in the basic diet containing 40% protein and 30% FM is optimal for juvenile L. vannamei.

  12. Evaluation of Fish Passage Conditions for Juvenile Salmonids Using Sensor Fish at Detroit Dam, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Joanne P.

    2010-01-29

    Fish passage conditions through two spillways at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions through Spillbay 3 and Spillbay 6 at 1.5- and 3.5-ft gate openings, identifying potential fish injury regions of the routes. The study was performed in July 2009, concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish and live fish were deployed at elevations approximately 3 ft above structuremore » at depths determined using a computational fluid dynamics model. Data collected were analyzed to estimate 1) exposure conditions, particularly exposure to severe collision and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates.« less

  13. Current status of non-native fish species in the St. Louis River estuary

    EPA Science Inventory

    The fish community of the St. Louis River estuary is well characterized, thanks to fishery assessment and invasive species early detection monitoring by federal, state, and tribal agencies. This sampling includes long-standing adult/juvenile fish surveys, larval fish surveys beg...

  14. JUVENILE COHO SALMON GROWTH AND SURVIVAL ACROSS STREAM NETWORK SEASONAL HABITATS

    EPA Science Inventory

    Understanding watershed-scale variation in juvenile salmonid survival and growth can provide insights into factors influencing demographics and can help target restoration and mitigation efforts for imperiled fish populations. We assessed growth, movement, and apparent overwinte...

  15. 76 FR 39856 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... accordance with and are subject to the ESA and NMFS regulations (50 CFR parts 222-226) governing listed fish... unintentional lethal take of: juvenile CCC steelhead not to exceed 3 percent of the total number of fish...

  16. Flowing water affects fish fast-starts: escape performance of the Hawaiian stream goby, Sicyopterus stimpsoni.

    PubMed

    Diamond, Kelly M; Schoenfuss, Heiko L; Walker, Jeffrey A; Blob, Richard W

    2016-10-01

    Experimental measurements of escape performance in fishes have typically been conducted in still water; however, many fishes inhabit environments with flow that could impact escape behavior. We examined the influences of flow and predator attack direction on the escape behavior of fish, using juveniles of the amphidromous Hawaiian goby Sicyopterus stimpsoni In nature, these fish must escape ambush predation while moving through streams with high-velocity flow. We measured the escape performance of juvenile gobies while exposing them to a range of water velocities encountered in natural streams and stimulating fish from three different directions. Frequency of response across treatments indicated strong effects of flow conditions and attack direction. Juvenile S. stimpsoni had uniformly high response rates for attacks from a caudal direction (opposite flow); however, response rates for attacks from a cranial direction (matching flow) decreased dramatically as flow speed increased. Mechanical stimuli produced by predators attacking in the same direction as flow might be masked by the flow environment, impairing the ability of prey to detect attacks. Thus, the likelihood of successful escape performance in fishes can depend critically on environmental context. © 2016. Published by The Company of Biologists Ltd.

  17. Use of electronarcosis to immobilize juvenile and adult northern pike

    USGS Publications Warehouse

    Walker, M.K.; Yanke, E.A.; Gingerich, W.H.

    1994-01-01

    Electronarcosis, the immobilization of a fish after an electric current has been applied and discontinued, is a potential alternative to chemical anesthetics. Successful narcosis was defined as the immobilization of a fish for 1-15 min without causing physical damage. In the laboratory, AC successfully narcotized juvenile (13-19-cm standard length, SL) northern pike (Esox lucius) at selected voltages; however, AC voltages that produced narcosis or resulted in physical damage were variable and unpredictable. In contrast, 60-90-V pulsed DC (PDC) for 10-60 s successfully narcotized juvenile pike without inducing physical damage. Duration of narcosis was directly related to voltage and inversely related to fish length. In the hatchery, sexually mature northern pike (45-97 cm SL), collected from the Mississippi River, were successfully narcotized by 60-V PDC for 10 s. Duration of narcosis was unrelated to fish length or sex, and averaged 58 plus or minus 7 s (mean plus or minus SE). This allowed sufficient time to collect eggs or milt. All fish were swimming upright within 3 min after treatment, and no mortalities were observed over the next 24 h. Survival of eggs from fertilization to eye- up did not significantly differ between eggs collected from electronarcotized adults and adults anesthetized with MS-222 (tricaine methanesulfonate). Electronarcosis represents a possible alternative to chemical anesthetics for immobilizing northern pike broodstock without an apparent impact on egg survival.

  18. Passage survival of juvenile steelhead, coho salmon, and Chinook salmon in Lake Scanewa and at Cowlitz Falls Dam, Cowlitz River, Washington, 2010–16

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Hurst, William

    2018-04-03

    A multi-year evaluation was conducted during 2010–16 to evaluate passage survival of juvenile steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) in Lake Scanewa, and at Cowlitz Falls Dam in the upper Cowlitz River Basin, Washington. Reservoir passage survival was evaluated in 2010, 2011, and 2016, and included the tagging and release of 1,127 juvenile salmonids. Tagged fish were released directly into the Cowlitz and Cispus Rivers, 22.3 and 8.9 km, respectively, upstream of the reservoir, and were monitored as they moved downstream into, and through the reservoir. A single release-recapture survival model was used to analyze detection records and estimate reservoir passage survival, which was defined as successful passage from reservoir entry to arrival at Cowlitz Falls Dam. Tagged fish generally moved quickly downstream of the release sites and, on average, arrived in the dam forebay within 2 d of release. Median travel time from release to first detection at the dam ranged from 0.23 to 0.96 d for juvenile steelhead, from 0.15 to 1.11 d for juvenile coho salmon, and from 0.18 to 1.89 d for juvenile Chinook salmon. Minimum reservoir passage survival probabilities were 0.960 for steelhead, 0.855 for coho salmon and 0.900 for Chinook salmon.Dam passage survival was evaluated at the pilot-study level during 2013–16 and included the tagging and release of 2,512 juvenile salmonids. Juvenile Chinook salmon were evaluated during 2013–14, and juvenile steelhead and coho salmon were evaluated during 2015–16. A paired-release study design was used that included release sites located upstream and downstream of Cowlitz Falls Dam. The downstream release site was positioned at the downstream margin of the dam’s tailrace, which allowed dam passage survival to be measured in a manner that included mortality that occurred in the passage route and in the dam tailrace. More than one-half of the tagged Chinook salmon (52 percent

  19. Implications of stunting on morphology of freshwater fishes

    USGS Publications Warehouse

    Chizinski, C.J.; Pope, K.L.; Wilde, G.R.; Strauss, R.E.

    2010-01-01

    The purpose of this study was to assess morphological differences between stunted and non-stunted white perch Morone americana and green sunfish Lepomis cyanellus. Few female M. americana were captured; thus, morphological differences between adult males and juveniles were assessed for M. americana. Similarly, few immature (juvenile) L. cyanellus were captured for the stunted morphotype; thus, male and female morphological differences were assessed for L. cyanellus. Features of the head tended to be relatively larger in stunted fish of both species, whereas the mid-body tended to be relatively larger in non-stunted M. americana, but not in non-stunted L. cyanellus. Adult and juvenile morphology overlapped considerably in non-stunted M. americana, but there was a clear distinction between adult and juvenile morphology of stunted M. americana. There was little sexual dimorphism in shape in stunted L. cyanellus, whereas sexual dimorphism was evident in non-stunted L. cyanellus. It appears that selective forces imposed by predation and food limitation may contribute to morphological diversification between stunted and non-stunted fishes. ?? 2010 The Authors. Journal compilation ?? 2010 The Fisheries Society of the British Isles.

  20. RELATIONSHIPS BETWEEN HABITAT QUALITY AND DENSITY OF JUVENILE WINTER FLOUNDER

    EPA Science Inventory

    We used a digital video camera mounted to a 1-m beam trawl together with an attached continuous recording YSI sonde and GPS unit to quantify juvenile winter flounder (Pseudopleuronectes americanus) densities and fish habitat. The YSI sonde measured temperature, salinity, dissolve...

  1. Differential expression of myogenic regulatory factor MyoD in pacu skeletal muscle (Piaractus mesopotamicus Holmberg 1887: Serrasalminae, Characidae, Teleostei) during juvenile and adult growth phases.

    PubMed

    de Almeida, Fernanda Losi Alves; Carvalho, Robson Francisco; Pinhal, Danillo; Padovani, Carlos Roberto; Martins, Cesar; Dal Pai-Silva, Maeli

    2008-12-01

    Skeletal muscle is the edible part of the fish. It grows by hypertrophy and hyperplasia, events regulated by differential expression of myogenic regulatory factors (MRFs). The study of muscle growth mechanisms in fish is very important in fish farming development. Pacu (Piaractus mesopotamicus) is one of the most important food species farmed in Brazil and has been extensively used in Brazilian aquaculture programs. The aim of this study was to analyze hyperplasia and hypertrophy and the MRF MyoD expression pattern in skeletal muscle of pacu (P. mesopotamicus) during juvenile and adult growth stages. Juvenile (n=5) and adult (n=5) fish were anaesthetized, sacrificed, and weight (g) and total length (cm) determined. White dorsal region muscle samples were collected and immersed in liquid nitrogen. Transverse sections (10 microm thick) were stained with Haematoxilin-Eosin (HE) for morphological and morphometric analysis. Smallest fiber diameter from 100 muscle fibers per animal was calculated in each growth phase. These fibers were grouped into three classes (<20, 20-50, and >50 microm) to evaluate hypertrophy and hyperplasia in white skeletal muscle. MyoD gene expression was determined by semi-quantitative RT-PCR. PCR products were cloned and sequenced. Juvenile and adult pacu skeletal muscle had similar morphology. The large number of <20 microm diameter muscle fibers observed in juvenile fish confirms active hyperplasia. In adult fish, most fibers were over 50 microm diameter and denote more intense muscle fiber hypertrophy. The MyoD mRNA level in juveniles was higher than in adults. A consensus partial sequence for MyoD gene (338 base pairs) was obtained. The Pacu MyoD nucleotide sequence displayed high similarity among several vertebrates, including teleosts. The differential MyoD gene expression observed in pacu white muscle is possibly related to differences in growth patterns during the phases analyzed, with hyperplasia predominant in juveniles and

  2. Assessing survival of Mid-Columbia River released juvenile salmonids at McNary Dam, Washington, 2008-09

    USGS Publications Warehouse

    Evans, Scott D.; Walker, Christopher E.; Brewer, Scott J.; Adams, Noah S.

    2010-01-01

    Few studies have evaluated survival of juvenile salmon over long river reaches in the Columbia River and information regarding the survival of sockeye salmon at lower Columbia River dams is lacking. To address these information gaps, the U.S. Geological Survey was contracted by the U.S. Army Corps of Engineers to evaluate the possibility of using tagged fish released in the Mid-Columbia River to assess passage and survival at and downstream of McNary Dam. Using the acoustic telemetry systems already in place for a passage and survival study at McNary Dam, fish released from the tailraces of Wells, Rocky Reach, Rock Island, Wanapum, and Priest Rapids Dams were detected at McNary Dam and at the subsequent downstream arrays. These data were used to generate route-specific survival probabilities using single-release models from fish released in the Mid-Columbia River. We document trends in passage and survival probabilities at McNary Dam for yearling Chinook and sockeye salmon and juvenile steelhead released during studies in the Mid-Columbia River. Trends in the survival and passage of these juvenile salmonid species are presented and discussed. However, comparisons made across years and between study groups are not possible because of differences in the source of the test fish, the type of acoustic tags used, the absence of the use of passive integrated transponder tags in some of the release groups, differences in tagging and release protocols, annual differences in dam operations and configurations, differences in how the survival models were constructed (that is, number of routes that could be estimated given the number of fish detected), and the number and length of reaches included in the analysis (downstream reach length and arrays). Despite these differences, the data we present offer a unique opportunity to examine the migration behavior and survival of a group of fish that otherwise would not be studied. This is particularly true for sockeye salmon because

  3. A cabled acoustic telemetry system for detecting and tracking juvenile salmon: Part 1. Engineering design and instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Deng, Zhiqun; Seim, Thomas A.

    2011-05-26

    The U.S. Army Corps of Engineers-Portland District started development of the Juvenile Salmon Acoustic Telemetry System (JSATS), a nonproprietary technology, in 2001 to meet the needs for monitoring the survival of juvenile salmonids through the 31 federal dams in the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters, and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006 the Pacific Northwest National Laboratory (PNNL) was tasked with development of an acoustic receiver system formore » deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in 2 or 3-dimensions as the fish passed at the facility for determining route of passage. The additional route of passage information, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities and through the FCRPS.« less

  4. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 1. Engineering Design and Instrumentation

    PubMed Central

    Weiland, Mark A.; Deng, Z. Daniel; Seim, Tom A.; LaMarche, Brian L.; Choi, Eric Y.; Fu, Tao; Carlson, Thomas J.; Thronas, Aaron I.; Eppard, M. Brad

    2011-01-01

    In 2001 the U.S. Army Corps of Engineers, Portland District (OR, USA), started developing the Juvenile Salmon Acoustic Telemetry System, a nonproprietary sensing technology, to meet the needs for monitoring the survival of juvenile salmonids through eight large hydroelectric facilities within the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006, the Pacific Northwest National Laboratory began the development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in two or three dimensions for determining route of passage and behavior as the fish passed at the facility. The additional information on route of passage, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities through the FCRPS. PMID:22163918

  5. Posthodiplostomum cuticola (Digenea: Diplostomatidae) in intermediate fish hosts: factors contributing to the parasite infection and prey selection by the definitive bird host.

    PubMed

    Ondracková, M; Simková, A; Gelnar, M; Jurajda, P

    2004-12-01

    Infection parameters of Posthodiplostomum cuticola, a digenean parasite with a complex life-cycle, were investigated in fish (the second intermediate host) from 6 floodplain water bodies over 2 years. A broad range of factors related to abiotic characteristics of localities, density of the first intermediate (planorbid snails) and definitive (wading birds) hosts and fish community structure were tested for their effects on P. cuticola infection in juvenile and adult fish. Characters of the littoral zone and flood duration were found to be important factors for the presence of the first intermediate and definitive hosts. Visitation time of definitive bird hosts was also related to adult fish host density. Localities with P. cuticola infected fish were visited by a higher number of bird species. Infection of P. cuticola in fish and similarities in infection among fish host assemblages were correlated with fish host density and fish species composition. Parasite infection in both adult and juvenile fishes was associated with the slope of the bank and the bottom type, in particular in juvenile fish assemblages with snail host density. We conclude that habitat characteristics, snail host density and fish community structure contribute significantly to P. cuticola infection in fish hosts.

  6. Muscle fiber type distribution in climbing Hawaiian gobioid fishes: ontogeny and correlations with locomotor performance.

    PubMed

    Cediel, Roberto A; Blob, Richard W; Schrank, Gordon D; Plourde, Robert C; Schoenfuss, Heiko L

    2008-01-01

    Three species of Hawaiian amphidromous gobioid fishes are remarkable in their ability to climb waterfalls up to several hundred meters tall. Juvenile Lentipes concolor and Awaous guamensis climb using rapid bursts of axial undulation, whereas juvenile Sicyopterus stimpsoni climb using much slower movements, alternately attaching oral and pelvic sucking disks to the substrate during prolonged bouts of several cycles. Based on these differing climbing styles, we hypothesized that propulsive musculature in juvenile L. concolor and A. guamensis would be dominated by white muscle fibers, whereas S. stimpsoni would exhibit a greater proportion of red muscle fibers than other climbing species. We further predicted that, because adults of these species shift from climbing to burst swimming as their main locomotor behavior, muscle from adult fish of all three species would be dominated by white fibers. To test these hypotheses, we used ATPase assays to evaluate muscle fiber type distribution in Hawaiian climbing gobies for three anatomical regions (midbody, anal, and tail). Axial musculature was dominated by white muscle fibers in juveniles of all three species, but juvenile S. stimpsoni had a significantly greater proportion of red fibers than the other two species. Fiber type proportions of adult fishes did not differ significantly from those of juveniles. Thus, muscle fiber type proportions in juveniles appear to help accommodate differences in locomotor demands among these species, indicating that they overcome the common challenge of waterfall climbing through both diverse behaviors and physiological specializations.

  7. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.

    2011-07-01

    This report presents the results of an evaluation of juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of the study was to provide fish passage and distribution data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE’s Willamette Valley Project in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) asmore » threatened under the Endangered Species Act. During the year-long study period - February 1, 2010 to January 31, 2011the objectives of the hydroacoustic evaluation of fish passage and distribution at LOP were to: 1. Estimate passage rates, run timing, horizontal distribution, and diel distribution at turbine penstock intakes for smolt-size fish. 2. Estimate passage rates, run timing and diel distribution at turbine penstock intakes for small-size fish. 3. Estimate passage rates and run timing at the regulating outlets for smolt-size fish. 4. Estimate vertical distribution of smolt-size fish in the forebay near the upstream face of the dam. The fixed-location hydroacoustic technique was used to accomplish the objectives of this study. Transducers (420 kHz) were deployed in each penstock intake, above each RO entrance, and on the dam face; a total of nine transducers (2 single-beam and 7 split-beam) were used. We summarize the findings from the hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011 as follows. • Fish passage rates for smolt-size fish (> ~90 mm) were highest during December-January and lowest in mid-summer through early fall. • During the entire study period, an estimated total of 142,463 fish ± 4,444 (95% confidence interval) smolt

  8. Separating the effects of intra- and interspecific age-structured interactions in an experimental fish assemblage

    USGS Publications Warehouse

    Taylor, R.C.; Trexler, J.C.; Loftus, W.F.

    2001-01-01

    We documented patterns of age-structured biotic interactions in four mesocosm experiments with an assemblage of three species of co-occurring fishes from the Florida Everglades, the eastern mosquitofish (Gambusia holbrooki), sailfin molly (Poecilia latipinna), and bluefin killifish (Lucania goodei). These species were chosen based on their high abundance and overlapping diets. Juvenile mosquitofish and sailfin mollies, at a range of densities matching field estimates, were maintained in the presence of adult mosquitofish, sailfin mollies, and bluefin killifish to test for effects of competition and predation on juvenile survival and growth. The mesocosms held 1,200 1 of water and all conditions were set to simulate those in Shark River Slough, Everglades National Park (ENP), USA. We placed floating mats of periphyton and bladderwort in each tank in standard volumes that matched field values to provide cover and to introduce invertebrate prey. Of 15 possible intra- and interspecific age-structured interactions, we found 7 to be present at the densities of these fish found in Shark River Slough marshes. Predation by adult mosquitofish on juvenile fish, including conspecifics, was the strongest effect observed. We also observed growth limitation in mosquitofish and sailfin molly juveniles from intra- and interspecific competition. When maintained at high densities, juvenile mosquitofish changed their diets to include more cladocerans and fewer chironomid larvae relative to low densities. We estimated size-specific gape limitation by adult mosquitofish when consuming juvenile mosquitofish and sailfin mollies. At high field densities, intraspecific competition might prolong the time period when juveniles are vulnerable to predation by adult mosquitofish. These results suggest that path analysis, or other techniques used to document food-web interactions, must include age-specific roles of these fishes.

  9. Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia

    NASA Astrophysics Data System (ADS)

    Blandon, Abigayil; zu Ermgassen, Philine S. E.

    2014-03-01

    Seagrass provides many ecosystem services that are of considerable value to humans, including the provision of nursery habitat for commercial fish stock. Yet few studies have sought to quantify these benefits. As seagrass habitat continues to suffer a high rate of loss globally and with the growing emphasis on compensatory restoration, valuation of the ecosystem services associated with seagrass habitat is increasingly important. We undertook a meta-analysis of juvenile fish abundance at seagrass and control sites to derive a quantitative estimate of the enhancement of juvenile fish by seagrass habitats in southern Australia. Thirteen fish of commercial importance were identified as being recruitment enhanced in seagrass habitat, twelve of which were associated with sufficient life history data to allow for estimation of total biomass enhancement. We applied von Bertalanffy growth models and species-specific mortality rates to the determined values of juvenile enhancement to estimate the contribution of seagrass to commercial fish biomass. The identified species were enhanced in seagrass by 0.98 kg m-2 y-1, equivalent to ˜$A230,000 ha-1 y-1. These values represent the stock enhancement where all fish species are present, as opposed to realized catches. Having accounted for the time lag between fish recruiting to a seagrass site and entering the fishery and for a 3% annual discount rate, we find that seagrass restoration efforts costing $A10,000 ha-1 have a potential payback time of less than five years, and that restoration costing $A629,000 ha-1 can be justified on the basis of enhanced commercial fish recruitment where these twelve fish species are present.

  10. Choose Fish and Shellfish Wisely

    EPA Pesticide Factsheets

    Information about ways to protect oneself and one's children from eating contaminated fish and shellfish, understanding EPA's advice for safe fish consumption, and learning whether their are fish advisories in one's area.

  11. Mangroves enhance the biomass of coral reef fish communities in the Caribbean.

    PubMed

    Mumby, Peter J; Edwards, Alasdair J; Arias-González, J Ernesto; Lindeman, Kenyon C; Blackwell, Paul G; Gall, Angela; Gorczynska, Malgosia I; Harborne, Alastair R; Pescod, Claire L; Renken, Henk; Wabnitz, Colette C C; Llewellyn, Ghislane

    2004-02-05

    Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs.

  12. Mangroves enhance the biomass of coral reef fish communities in the Caribbean

    NASA Astrophysics Data System (ADS)

    Mumby, Peter J.; Edwards, Alasdair J.; Ernesto Arias-González, J.; Lindeman, Kenyon C.; Blackwell, Paul G.; Gall, Angela; Gorczynska, Malgosia I.; Harborne, Alastair R.; Pescod, Claire L.; Renken, Henk; C. C. Wabnitz, Colette; Llewellyn, Ghislane

    2004-02-01

    Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs.

  13. Flying fish accelerate at 5 G to leap from the water surface

    NASA Astrophysics Data System (ADS)

    Yang, Patricia; Phonekeo, Sulisay; Xu, Ke; Chang, Shui-Kai; Hu, David

    2013-11-01

    Flying fish can both swim underwater and glide in air. Transitioning from swimming to gliding requires penetration of the air-water interface, or breaking the ``surface tension barrier,'' a formidable task for juvenile flying fish measuring 1 to 5 cm in length. In this experimental investigation, we use high-speed videography to characterize the kinematics of juvenile flying fish as they leap from the water surface. During this process, which lasts 0.05 seconds, flying fish achieve body accelerations of 5 times earth's gravity and gliding speeds of 1.3 m/s, an order of magnitude higher than their steady swimming speed. We rationalize this anomalously high speed on the basis of the hydrodynamic and surface tension forces and torques experienced by the fish. Specifically, leaping fish experience skin friction forces only on the submerged part of their body, permitting them to achieve much higher speeds than in steady underwater swimming. We also perform experiments using a towed flying fish mimc to determine optimality of various parameters in this process, including body angle and start position with respect to the water surface.

  14. Impacts of ferry terminals on juvenile salmon movement along Puget Sound shorelines

    DOT National Transportation Integrated Search

    2006-06-01

    This study used both standardized surveys and innovative fish tagging and tracking technologies to address whether Washington State Ferries (WSF) terminals alter the behavior of migrating juvenile salmon, and if so, which attributes mediate abundance...

  15. Resilience potential of an Indian Ocean reef: an assessment through coral recruitment pattern and survivability of juvenile corals to recurrent stress events.

    PubMed

    Manikandan, Balakrishnan; Ravindran, Jeyaraman; Vidya, Pottekkatt Jayabalan; Shrinivasu, Selvaraju; Manimurali, Rajagopal; Paramasivam, Kaliyaperumal

    2017-05-01

    Coral reefs are degraded by the synergistic action of climate and anthropogenic stressors. Coral cover in the Palk Bay reef at the northern Indian Ocean largely declined in the past decade due to frequent bleaching events, tsunami and increased fishing activities. In this study, we carried out a comparative assessment to assess the differences in the recovery and resilience of three spatially distant reefs viz. Vedhalai, Mandapam and Pamban along Palk Bay affected by moderate, severe and low fishing pressure respectively. The assessment was based on the juvenile coral recruitment pattern and its survivability combined with availability of hard substratum, live coral cover and herbivore reef fish stock. The Vedhalai reef has the highest coral cover (14.6 ± 6.3%), and ≥90% of the live corals in Vedhalai and Mandapam were affected by turf algal overgrowth. The density of herbivore reef fish was low in Vedhalai and Mandapam reefs compared to the Pamban reef with relatively few grazing species. The juvenile coral diversity and density were high in the Pamban reef and low in Vedhalai and Mandapam reefs despite high hard substratum cover. In total, 22 species of juvenile corals of 10 genera were recorded in Palk Bay. Comparison of the species diversity of juvenile corals with adult ones suggested that the Pamban reef is connected with other distant reefs whereas Vedhalai and Mandapam reefs were self-seeded. There was no statistically significant difference in the survivability of juvenile corals between the study sites, and in total, ≥90% of the juvenile corals survived the high sedimentation stress triggered by the northeast monsoon and bleaching stress that occurred recurrently. Our results indicated that the human activities indirectly affected the juvenile coral recruitment by degrading the live coral cover and contributed to the spatial variation in the recovery and resilience of the Palk Bay reef. Low species diversity of the juvenile corals will increase the

  16. Growth and social behavior in a cichlid fish are affected by social rearing environment and kinship

    NASA Astrophysics Data System (ADS)

    Hesse, Saskia; Thünken, Timo

    2014-04-01

    Living in groups is a widespread phenomenon in many animal taxa. The reduction of predation risk is thought to be an important cause for the formation of groups. Consequently, grouping behavior is particularly pronounced during vulnerable life stages, i.e., as juveniles. However, group living does not only provide benefits but also imposes costs on group members, e.g., increased competition for food. Thus, benefits of grouping behavior might not be evident when predation risk is absent. The adaptive significance of living and also developing in a group independent from predation risk has received relatively little attention although this might have important implications on the evolution and maintenance of group living. The first aim of the present study was to examine whether the social environment affects juvenile performance in the cichlid fish Pelvicachromis taeniatus and, secondly, whether kinship affects social behavior. Kin selection theory predicts benefits from grouping with kin. Here, we demonstrate that juveniles reared in a group grow on average faster compared to juveniles reared in isolation under standardized laboratory conditions without predation risk. Furthermore, we found significant differences in social behavior between juveniles reared in a group and reared in isolation. Fish reared in isolation were significantly more aggressive and less willing to shoal than group-reared fish. As expected, genetic relatedness influenced social behavior in group-reared fish as well: dyads of juveniles consisting of kin showed increased group cohesiveness compared to non-kin dyads. We discuss the potential benefits of group living in general and living with kin in particular.

  17. Buoyancy compensation of juvenile chinook salmon implanted with two different size dummy transmitters

    USGS Publications Warehouse

    Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2001-01-01

    We investigated the effect of two different sizes of surgically implanted transmitters on the buoyancy compensation of juvenile chinook salmon Oncorhynchus tshawytscha. We determined buoyancy by measuring the density of fish with a filled air bladder in graded salinity baths. In addition, we examined the effect of pressure changes on buoyancy by measuring the pressure reduction (PR) at which fish became neutrally buoyant. We found no significant difference between the density of control and tagged groups, indicating that fish were able to compensate for the transmitter by filling their air bladders. However, both groups of tagged fish had significantly lower PR than control fish. Regression analysis of fish density on PR indicated that density of the tagged groups changed at a higher rate than that of the controls. As a result, tagged fish attained neutral buoyancy with less pressure reduction even though the tagged and control groups exhibited similar densities. This relation was confirmed by using Boyle's law to simulate buoyancy changes with change in depth. Although fish compensated for the transmitter, changes in depth affected the buoyancy of tagged fish more than that of untagged fish. Reduced buoyancy at depth may affect the behavior and physiology of tagged juvenile salmonids, and researchers should be aware of this potential bias in telemetry data. In addition, there was little difference in PR or the slope of the density - PR regression lines between tagged groups. This was caused by the small difference in excess mass (i.e., weight in water) of the two transmitters. Thus, although two transmitters may not weigh the same, their effects on buoyancy may be similar depending on the excess mass.

  18. Kin assortment in juvenile shoals in wild guppy populations.

    PubMed

    Piyapong, C; Butlin, R K; Faria, J J; Scruton, K J; Wang, J; Krause, J

    2011-05-01

    Grouping provides many potential benefits to individuals in terms of foraging and anti-predator protection. However, it has been suggested that individuals could gain additional benefits in terms of indirect fitness by grouping with kin. Surprisingly, the genetic composition of wild fish shoals and the importance of kin-associated shoaling remain poorly understood. The Trinidadian guppy (Poecilia reticulata) has life history traits that might promote kin structure of shoals such as internal fertilisation and small brood size in contrast to many other fish species. Even though previous studies did not find any indication of kin structure in shoals of adult guppies, it is possible that related juveniles remain together in shoals, partly because of lower mobility and because the advantages of kin association may change with age. Using 10 microsatellite markers, we conducted a genetic analysis on 40 shoals from four populations. Pair-wise relatedness was inferred using a modified version of the software package COLONY and permutation tests were conducted to test the hypothesis that kin occur together in juvenile shoals more often than expected by chance. The frequency of sib dyads among juveniles within shoals was significantly larger than that between shoals in two high predation populations but not in two low predation populations. This finding contributes to the understanding of factors underlying shoal composition and highlights the potential of recent methodological advances for detecting such relationships.

  19. Effect of outflow on spring and summertime distribution and abundance of larval and juvenile fishes in the upper San Francisco Estuary

    USGS Publications Warehouse

    Dege, M.; Brown, L.R.

    2004-01-01

    We analyzed data on spring and summertime larval and juvenile fish distribution and abundance in the upper San Francisco Estuary (SFE), California between 1995 and 2001. The upper SFE includes the tidal freshwater areas of the Sacramento-San Joaquin Delta downstream to the euryhaline environment of San Pablo Bay. The sampling period included years with a variety of outflow conditions. Fifty taxa were collected using a larval tow net. Two common native species, delta smelt Hypomesus transpacifucus and longfin smelt Spirinchus thaleichthys, and four common alien taxa, striped bass Morone saxatilis, threadfin shad Dorosoma petenense, gobies of the genus Tridentiger, and yellowfin goby Acanthogobins flavimanus, were selected for detailed analysis. Outflow conditions had a strong influence on the geographic distribution of most of the species, but distribution with respect to the 2 psu isohaline (X2) was not affected. The distribution patterns of delta smelt, longfin smelt, and striped bass were consistent with larvae moving from upstream freshwater spawning areas to down-stream estuarine rearing areas. There were no obvious relationships of outflow with annual abundance indices. Our results support the idea of using X2 as an organizing principle in understanding the ecology of larval fishes in the upper SFE. Additional years of sampling will likely lead to additional insights into the early life history of upper SFE fishes. ?? Copyright by the American Fisheries Society 2004.

  20. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha in the Willamette River, Oregon, USA

    USGS Publications Warehouse

    Billman, E.J.; Whitman, L.D.; Schroeder, R.K.; Sharpe, C.S.; Noakes, David L. G.; Schreck, Carl B.

    2014-01-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  1. Taurine supplemented plant protein based diets with alternative lipid sources for juvenile sea bream, sparus aurata

    USDA-ARS?s Scientific Manuscript database

    Two lipid sources were evaluated as fish oil replacements in fishmeal free, plant protein based diets for juvenile gilthead sea bream, Sparus aurata. A twelve week feeding study was undertaken to examine the performance of fish fed the diets with different sources of essential fatty acids (canola o...

  2. Migration depths of juvenile Chinook salmon and steelhead relative to total dissolved gas supersaturation in a Columbia River reservoir

    USGS Publications Warehouse

    Beeman, J.W.; Maule, A.G.

    2006-01-01

    The in situ depths of juvenile salmonids Oncorhynchus spp. were studied to determine whether hydrostatic compensation was sufficient to protect them from gas bubble disease (GBD) during exposure to total dissolved gas (TDG) supersaturation from a regional program of spill at dams meant to improve salmonid passage survival. Yearling Chinook salmon O. tshawytscha and juvenile steelhead O. mykiss implanted with pressure-sensing radio transmitters were monitored from boats while they were migrating between the tailrace of Ice Harbor Dam on the Snake River and the forebay of McNary Dam on the Columbia River during 1997-1999. The TDG generally decreased with distance from the tailrace of the dam and was within levels known to cause GBD signs and mortality in laboratory bioassays. Results of repeated-measures analysis of variance indicated that the mean depths of juvenile steelhead were similar throughout the study area, ranging from 2.0 m in the Snake River to 2.3 m near the McNary Dam forebay. The mean depths of yearling Chinook salmon generally increased with distance from Ice Harbor Dam, ranging from 1.5 m in the Snake River to 3.2 m near the forebay. Juvenile steelhead were deeper at night than during the day, and yearling Chinook salmon were deeper during the day than at night. The TDG level was a significant covariate in models of the migration depth and rates of each species, but no effect of fish size was detected. Hydrostatic compensation, along with short exposure times in the area of greatest TDG, reduced the effects of TDG exposure below those generally shown to elicit GBD signs or mortality. Based on these factors, our results indicate that the TDG limits of the regional spill program were safe for these juvenile salmonids.

  3. Evaluation of a prototype surface flow bypass for juvenile salmon and steelhead at the powerhouse of Lower Granite Dam, Snake River, Washington, 1996-2000

    USGS Publications Warehouse

    Johnson, G.E.; Anglea, S.M.; Adams, N.S.; Wik, T.O.

    2005-01-01

    A surface flow bypass takes advantage of the natural surface orientation of most juvenile salmon Oncorhynchus spp. and steelhead O. mykiss by providing a route in the upper water column that downstream migrant fishes can use to pass a hydroelectric dam safely. A prototype structure, called the surface bypass and collector (SBC), was retrofitted on the powerhouse of Lower Granite Dam and was evaluated annually with biotelemetry and hydroacoustic techniques during the 5-year life span of the structure (1996-2000) to determine the entrance configuration that maximized passage efficiency and minimized forebay residence time. The best tested entrance configuration had maximum inflow (99 m 3/s) concentrated in a single surface entrance (5 m wide, 8.5 m deep). We identified five important considerations for future surface flow bypass development in the lower Snake River and elsewhere: (1) an extensive flow net should be formed in the forebay by use of relatively high surface flow bypass discharge (>7% of total project discharge); (2) a gradual increase in water velocity with increasing proximity to the surface flow bypass (ideally, acceleration 3 m/s) to entrain the subject juvenile fishes; (4) the shape and orientation of the surface entrance(s) should be adapted to fit site-specific features; and (5) construction of a forebay wall to increase fish availability to the surface flow bypass should be considered. The efficiency of the SBC was not high enough (maximum of 62% relative to passage at turbine units 4-5) for the SBC to operate as a stand-alone bypass. Anywhere that surface-oriented anadromous fish must negotiate hydroelectric dams, surface flow bypass systems can provide cost-effective use of typically limited water supplies to increase the nonturbine passage, and presumably survival, of downstream migrants. ??Copyright by the American Fisheries Society 2005.

  4. Characteristics of Young Children Exposed to Violence: The Safe Start Demonstration Project

    ERIC Educational Resources Information Center

    Kaufman, Joy S.; Ortega, Sandra; Schewe, Paul A.; Kracke, Kristen

    2011-01-01

    The Safe Start demonstration projects, funded by the Office of Juvenile Justice and Delinquency Prevention (OJJDP) under the first phase of the Safe Start initiative, are primarily designed to influence change at the systems or macrolevels to reduce the incidence of and impact of exposure to violence for children aged birth to 6 years; direct…

  5. Effects of calanoid copepod Schmackeria poplesia as a live food on the growth, survival and fatty acid composition of larvae and juveniles of Japanese flounder, Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Liu, Guangxing; Xu, Donghui

    2009-12-01

    Zooplankton constitutes a major part of the diet for fish larvae in the marine food web, and it is generally believed that copepods can meet the nutritional requirements of fish larvae. In this study, calanoid copepod Schmackeria poplesia, rotifer Brachionus plicatilis and anostraca crustacean Artemia sp. were analyzed for fatty acid contents, and were used as live food for culturing larval Japanese flounder, Paralichthys olivaceus. The total content of three types of HUFAs (DHA, EPA and ARA) in S. poplesia was significantly higher than that in the other two live foods ( P<0.01). Three live organisms were used for raising larvae and juveniles of Paralichthys olivaceus respectively for 15 and 10 d. Then the growth, survival and fatty acid composition of the larvae and juveniles were investigated. The results showed that the larvae and juveniles fed with copepods ( S. poplesia) had significantly higher growth rate than those fed with the other two organisms ( P<0.01). The survival of the flounder larvae fed with copepods was significantly higher than that of the others ( P<0.01), and the survival of the juvenile fish fed with copepods was higher than that fed with Artemia ( P<0.05). The contents of three types of HUFAs (DHA, EPA and ARA) and the ratio of DHA/EPA in larval and juvenile flounder P. olivaceus were analyzed. The results showed that the contents of DHA, EPA and ARA in the larvae and juveniles fed with S. poplesia were higher than those fed with a mixed diet or Artemia only, and the ratio of EPA/ARA in larvae and juveniles of P. olivaceus fed with S. poplesia was lower than that in the case of feeding with a mixed diet or Artemia only. The present data showed that copepod is the best choice for feeding the larvae and juveniles of fish considering its effects on the survival, growth and nutrition composition of the fish.

  6. Gonad development in Midas cichlids and the evolution of sex change in fishes.

    PubMed

    Oldfield, Ronald G

    2011-01-01

    Some fishes mature and function as one sex and later transform to the other sex in response to social interactions. Previous evidence suggested that a change in developmental timing may be involved in the evolution of adult sex change in fishes. The most recent support for this idea came from reports that sex in the Midas cichlid, Amphilophus citrinellus, was determined by social conditions experienced at the juvenile stage. Differentiation as a male was reported to be dependent on large body size relative to group-mates, and thought to be mediated through aggressive interactions. Here I demonstrate that socially controlled sex determination does not occur as was originally reported. Previously, I found that sex was not associated with body size in juveniles either in nature or in captivity. Similarly, I found no association between aggressive behavior and sex in juveniles. I later demonstrated that socially controlled sex determination does not typically occur in the Midas cichlid and closely related species and supported an alternative mechanism to explain large body size in adult males. Finally, in the current study I analyze gonad histology of fish from the same population used by the original authors and lay to rest the idea of socially controlled sex determination in this species. Recent observations of socially controlled sex determination in juveniles of species that typically change sex at the adult stage are examples of phenotypic plasticity, not genetic variation. Therefore, juvenile socially controlled sex determination does not support a theory that a change in developmental timing is involved in the evolution of adult sex change in fishes. © 2011 Wiley Periodicals, Inc.

  7. Determine the Influence of Time Held in “Knockdown” Anesthesia on Survival and Stress of Surgically Implanted Juvenile Salmonids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodley, Christa M.; Wagner, Katie A.; Knox, Kasey M.

    2012-01-31

    The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed for the U.S. Army Corp of Engineers Portland District (USACE) to address questions related to survival and performance measures of juvenile salmonids as they pass through the Federal Columbia River Power System (FCRPS). Researchers using JSATS acoustic transmitters (ATs) were tasked with standardizing the surgical implantation procedure to ensure that the stressors of handling and surgery on salmonids were consistent and less likely to cause effects of tagging in survival studies. Researchers questioned whether the exposure time in 'knockdown' anesthesia (or induction) to prepare fish for surgery could influence the survivalmore » of study fish (CBSPSC 2011). Currently, fish are held in knockdown anesthesia after they reach Stage 4 anesthesia until the completion of the surgical implantation of a transmitter, varies from 5 to 15 minutes for studies conducted in the Columbia Basin. The Columbia Basin Surgical Protocol Steering Committee (CBSPSC ) expressed concern that its currently recommended 10-minute maximum time limit during which fish are held in anesthetic - tricaine methanesulfonate (MS-222, 80 mg L-1 water) - could increase behavioral and physiological costs, and/or decrease survival of outmigrating juvenile salmonids. In addition, the variability in the time fish are held at Stage 4 could affect the data intended for direct comparison of fish within or among survival studies. Under the current recommended protocol, if fish exceed the 10-minute time limit, they are to be released without surgical implantation, thereby increasing the number of fish handled and endangered species 'take' at the bypass systems for FCRPS survival studies.« less

  8. Bioaccumulation of lipophilic substances in fish early life stages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, G.I.; Kristensen, P.

    1998-07-01

    Accumulation of {sup 14}C-labeled polycyclic aromatic hydrocarbons, naphthalene, phenanthrene, pyrene, and benzo(a)pyrene and polychlorinated biphenyl (PCB) congeners PCB 31 and PCB 105 with a log octanol/water partition coefficient (K{sub ow}) range from 3.37 to 6.5 was investigated in eggs and larvae of zebra fish (Brachydanio rerio), and in larvae of cod (Gadus morhua), herring (Clupea harengus), and turbot (Scophthalmus maximus). Significant differences in the uptake and elimination rate constants between eggs and larvae of zebra fish were seen. The low rate of uptake and the lower elimination rate of eggs did, however, lead to bioconcentration factors (BCFs) comparable to thosemore » for larvae. As biotransformation of xenobiotics in embryonic and larval stages was indicated to be insignificant compared to juvenile/adult stages, body burdens of readily biotransformed chemicals may be higher in fish early life stages. Because weight and lipid content did not differ much between the investigated species, the main reason for the variability in BCFs between marine species and freshwater species was considered to be caused by differences in exposure temperatures that affect the degree of biotransformation. Due to the smaller size of larvae and thus an increased total surface of the membranes per unit fish weight, steady-state conditions were reached at a faster r/ate in early life stages than in juvenile/adult life stages. The lipid-normalized bioconcentration factors (BCF{sub L}) were linearly related to K{sub ow} but BCF{sub L} was, in general, higher than K{sub ow}, indicating that octanol is not a suitable surrogate for fish lipids. Differences in bioconcentration kinetics between larvae and juvenile/adult life stages are considered to be the main reason for the higher sensitivity, with respect to external effect concentrations, generally obtained for early life stages of fish.« less

  9. Survival and migration behavior of juvenile salmonids at Lower Granite Dam, 2006

    USGS Publications Warehouse

    Beeman, John W.; Fielding, Scott D.; Braatz, Amy C.; Wilkerson, Tamara S.; Pope, Adam C.; Walker, Christopher E.; Hardiman, Jill M.; Perry, Russell W.; Counihan, Timothy D.

    2008-01-01

    We described behavior and estimated passage and survival parameters of juvenile salmonids during spring and summer migration periods at Lower Granite Dam in 2006. During the spring, the study was designed to examine the effects of the Behavioral Guidance Structure (BGS) by using a randomized-block BGS Stored / BGS Deployed treatment design. The summer study was designed to compare passage and survival through Lower Granite Dam using a randomized-block design during two spill treatments while the BGS was in the stored position. We used the Route Specific Survival Model to estimate survival and passage probabilities of hatchery yearling Chinook salmon, hatchery juvenile steelhead, and hatchery and wild subyearling Chinook salmon. We also estimated fish guidance efficiency (FGE), fish passage efficiency (FPE), Removable Spillway Weir passage effectiveness (RPE), spill passage effectiveness (SPY), and combined spill and RSW passage effectiveness.

  10. Differential effects of habitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes.

    PubMed

    Almany, Glenn R

    2004-09-01

    Greater structural complexity is often associated with greater abundance and diversity, perhaps because high complexity habitats reduce predation and competition. Using 16 spatially isolated live-coral reefs in the Bahamas, I examined how abundance of juvenile (recruit) and adult (non-recruit) fishes was affected by two factors: (1) structural habitat complexity and (2) the presence of predators and interference competitors. Manipulating the abundance of low and high complexity corals created two levels of habitat complexity, which was cross-factored with the presence or absence of resident predators (sea basses and moray eels) plus interference competitors (territorial damselfishes). Over 60 days, predators and competitors greatly reduced recruit abundance regardless of habitat complexity, but did not affect adult abundance. In contrast, increased habitat complexity had a strong positive effect on adult abundance and a weak positive effect on recruit abundance. Differential responses of recruits and adults may be related to the differential effects of habitat complexity on their primary predators. Sedentary recruits are likely most preyed upon by small resident predators that ambush prey, while larger adult fishes that forage widely and use reefs primarily for shelter are likely most preyed upon by large transient predators that chase prey. Increased habitat complexity may have inhibited foraging by transient predators but not resident predators. Results demonstrate the importance of habitat complexity to community dynamics, which is of concern given the accelerated degradation of habitats worldwide.

  11. Effects of oxidised dietary fish oil and high-dose vitamin E supplementation on growth performance, feed utilisation and antioxidant defence enzyme activities of juvenile large yellow croaker (Larmichthys crocea).

    PubMed

    Wang, Jun; Xu, Houguo; Zuo, Rantao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2016-05-01

    This study was conducted to elucidate the effects of oxidised dietary lipids and high-dose vitamin E (VE) on growth performance and immune responses of large yellow croaker. Juvenile fish (initial average body weight of 7·82 (sem 0·68) g) were fed diets containing either fresh fish oil (fresh diet, peroxide value (POV)=1·72 mEq/kg) or fish oil oxidised to varying degrees (oxidised diets, POV=28·29-104·21 mEq/kg), with or without supplementary 600 mg VE/kg diet, for 10 weeks in floating cages. Growth was significantly lower and feed intake (g/100 g body weight per d) was higher in fish fed the oxidised diet. Supplementation with VE increased the growth of fish fed the oxidised diets, but significantly decreased the growth of fish fed the fresh diet. Hepatosomatic index increased with increasing dietary POV and decreased with VE supplementation. Hepatic catalase activity, superoxide dismutase (SOD) activity and malondialdehyde content were significantly higher in fish fed the oxidised diets, and these values decreased significantly following VE supplementation. However, hepatic SOD activity was enhanced by VE supplementation in fish fed the fresh diet. Air-exposure mortality was significantly increased by dietary POV, and this effect was inhibited by VE supplementation. These results suggest that dietary oxidised fish oil could stimulate the activities of antioxidant defence enzymes in stressed large yellow croaker. High-dose VE supplementation can alleviate oxidative stress of large yellow croaker fed oxidised fish oil, but can exert deleterious effects on fish in the absence of oxidative stress.

  12. Summary of juvenile salmonid passage and survival at McNary Dam-Acoustic survival studies, 2006-09

    USGS Publications Warehouse

    Adams, Noah S.; Evans, Scott D.

    2011-01-01

    Passage and survival data were collected at McNary Dam between 2006 and 2009. These data have provided critical information for resource managers to implement structural and operational changes designed to improve the survival of juvenile salmonids as they migrate past the dam. Given the importance of these annual studies, the primary objectives of this report were to summarize the findings of these annual studies to ensure that passage and survival metrics are consistently calculated and reported across all years and to consolidate this information in a single document, thereby making it easier to reference. It is worth noting that this report does not contain all the information from all the annual reports. The intent of this report was to summarize the key findings from multiple years of research. The reader is encouraged to reference the annual reports if more detailed information is needed. Chapter 1 summarizes existing behavior, passage, and survival results for fish released 10 rkm upstream of McNary Dam and from the McNary Dam tailrace during 2006-09. Chapter 2 summarizes existing behavior, passage, and survival results for fish released in the mid-Columbia River and detected at McNary Dam during 2006-09. Results from 2006 indicated that higher spill discharge generally resulted in higher fish passage through spill, and in turn, higher fish survival through the entire dam. Within the spillway, passage effectiveness was highest for the south spill bays, adjacent to the powerhouse. Increased passage in this area, combined with detailed 3-dimensional approach paths, aided in the design and location of the temporary spillway weirs (TSWs) at McNary Dam prior to the 2007 migration of juvenile salmonids. During the 2007 study, the TSWs were tested under two spill treatments during the spring and summer: a "2006 Modified spill," and a "2007 test spill." In the spring, slightly higher discharge through spill bays 14-17 was the primary difference between the spill

  13. Physiological responses of juvenile rainbow trout to fasting and swimming activity: Effects on body composition and condition indices

    USGS Publications Warehouse

    Simpkins, D.G.; Hubert, W.A.; Del Rio, C.M.; Rule, D.C.

    2003-01-01

    The physiological traits that allow fish to survive periods of limited food resources are poorly understood. We assessed changes in proximate body composition, relative organ mass, blood metabolites, and relative weight (Wr) of sedentary and actively swimming (15 cm/s) juvenile rainbow trout (154-182 mm total length) over 147 d of fasting. Fasting caused measurable responses that were augmented when fish were swimming. Lipids and plasma triacylglycerides declined over time. Proteins were catabolized simultaneously with lipid reserves, but ammonia concentrations in plasma did not increase. The liver somatic index (LSI) did not change substantially over 105 d, suggesting that gluconeogenesis maintained blood glucose concentrations and hepatic glycogen reserves for a substantial period of fasting. The gut somatic index (GSI) and Wr declined linearly during fasting, but the LSI did not decline until after 105 d of fasting. Consequently, the use of different body condition indices could lead to different conclusions about the condition of juvenile rainbow trout. Swimming activity caused fish to have lower lipid and protein reserves than those of sedentary fish. No mortalities were observed among sedentary fish, but mortalities occurred among actively swimming fish after 97 d of fasting when 3.2% or less lipid remained in their bodies. Body condition indices did not account for differences in proximate body composition between sedentary and actively swimming fish and were relatively poor predictors of lipid content and risk of mortality. The probability of mortality was most accurately predicted by percent lipid content. Therefore, we suggest that fisheries scientists consider using percent lipid content when evaluating the physiological status and risk of mortality due to starvation among juvenile rainbow trout.

  14. Effects of acute thermal stress on the survival, predator avoidance, and physiology of juvenile fall Chinook salmon

    USGS Publications Warehouse

    Mesa, M.G.; Weiland, L.K.; Wagner, P.

    2002-01-01

    We subjected juvenile fall chinook salmon from the Hanford Reach of the Columbia River to acute thermal stressors in the laboratory that were derived from field data. We assessed the effects of thermal stress on: (1) the extent of direct mortality; (2) the vulnerability of fish to predation by smallmouth bass; and (3) some general physiological stress responses and synthesis of heat shock protein 70 (hsp70). Thermally-stressed fish showed little direct mortality and no increases in vulnerability to predation. However, these fish showed transient increases in plasma concentrations of cortisol, glucose, and lactate, and a dramatic (25-fold higher than controls) and persistent (lasting 2 wk) increase in levels of liver hsp70. Our results indicate that exposure of Hanford Reach juvenile fall chinook salmon to such stressors did not lead to significant increases in direct mortality or vulnerability to predation, but did alter physiological homeostasis, which should be of concern to those managing this resource. Because our fish received only a single exposure to one of the stressors we examined, we are also concerned about the consequences of exposing fish to multiple, cumulative stressors - a likely scenario for fish in the wild.

  15. USE OF VIDEO TO ACCESS JUVENILE WINTER FLOUNDER DENSITIES AND HABITATS

    EPA Science Inventory

    We used a digital video camera mounted to a 1-m beam trawl together with an attached continuous recording YSI sonde and a GPS unit to quantify juvenile winter flounder (Pseudopleuronectes americanus) densities and fish habitat in Narragansett Bay, RI. The YSI sonde measured te...

  16. The community structure of over-wintering larval and small juvenile fish in a large estuary

    NASA Astrophysics Data System (ADS)

    Munk, Peter; Cardinale, Massimiliano; Casini, Michele; Rudolphi, Ann-Christin

    2014-02-01

    The Skagerrak and Kattegat are estuarine straits of high hydrographical and ecological diversity, situated between the saline waters of the North Sea and the brackish waters of the Baltic Sea. These sustain important nursery grounds of many fish species, of which several overwinter during the larval and early juvenile stages. In order to give more insight into the communities of the overwintering ichthyoplankton in estuarine areas, we examine an annual series of observations from a standard survey carried out 1992-2010. Species differences and annual variability in distributions and abundances are described, and linkages between ichthyoplankton abundances and corresponding hydrographical information are analysed by GAM methods. Communities were dominated by herring, gobies, butterfish, sprat, pipefishes, lemon sole and European eel (i.e. glass eel), and all the sampled species showed large annual fluctuations in abundances. The species showed quite specific patterns of distribution although species assemblages with common distributional characteristics were identified. Within these assemblages, the ichthyoplankton abundances showed linkage to environmental characteristics described by bottom-depth and surface temperature and salinity. Hence the study points to a significant structuring of overwintering ichthyoplankton communities in large estuaries, based on the species habitat choice and its response to physical gradients.

  17. Fish-allergic patients may be able to eat fish.

    PubMed

    Mourad, Ahmad A; Bahna, Sami L

    2015-03-01

    Reported fish allergy prevalence varies widely, with an estimated prevalence of 0.2% in the general population. Sensitization to fish can occur by ingestion, skin contact or inhalation. The manifestations can be IgE or non-IgE mediated. Several fish allergens have been identified, with parvalbumins being the major allergen in various species. Allergenicity varies among fish species and is affected by processing or preparation methods. Adverse reactions after eating fish are often claimed to be 'allergy' but could be a reaction to hidden food allergen, fish parasite, fish toxins or histamine in spoiled fish. Identifying such causes would allow free consumption of fish. Correct diagnosis of fish allergy, including the specific species, might provide the patient with safe alternatives. Patients have been generally advised for strict universal avoidance of fish. However, testing with various fish species or preparations might identify one or more forms that can be tolerated.

  18. Altered behaviour and reduced survival of juvenile olive flounder, Paralichthys olivaceus, infected by an invasive monogenean, Neoheterobothrium hirame.

    PubMed

    Shirakashi, Sho; Teruya, Kazuhisa; Ogawa, Kazuo

    2008-11-01

    Neoheterobothriumhirame is a blood feeding monogenean of olive flounder Paralichthys olivaceus. The parasite was first reported in the mid-1990s from the Sea of Japan and became epidemic within cultured and wild flounder populations after several years. Infected fish often suffer from severe anaemia and thus the parasite is thought to have played an important role in the recent depletion of flounder populations in some areas of Japan. However, the causal mechanism underlying the parasite epidemic and decreases in host populations is unclear because apparently N. hirame infection is not fatal to the host. Here, we tested the hypothesis that N. hirame indirectly reduces the survival of wild juvenile flounder by altering their behaviour and making them more susceptible to predation. We conducted a series of experiments to compare behaviours and predation susceptibility between experimentally infected juvenile P. olivaceus and uninfected fish. Results showed that N. hirame infection increases the activity level, alters diel activity and has negative effects on burrowing performance and swimming endurance. When juvenile flounder cohabitated with predators, the survival rate of infected juveniles was approximately 25% less than that of uninfected fish. We believe this is the first empirical evidence linking N. hirame infection to death of the host through predation. Consequences of N. hirame-induced behavioural change for the survival of juvenile flounder in the wild are discussed. We conclude that recent outbreaks of N. hirame are likely to have been a key factor in the decline of flounder populations in Japan.

  19. Influence of habitat degradation on fish replenishment

    NASA Astrophysics Data System (ADS)

    McCormick, M. I.; Moore, J. A. Y.; Munday, P. L.

    2010-09-01

    Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.

  20. Dietary choline requirement of juvenile hybrid striped bass.

    PubMed

    Griffin, M E; Wilson, K A; White, M R; Brown, P B

    1994-09-01

    Two experiments were conducted to estimate the dietary choline requirement and to determine the effects of dietary choline on liver lipid deposition in juvenile hybrid striped bass (Monrone saxatilis x M. chrysops). Experimental diets contained 0.73 g total sulfur amino acids/100 g diet (0.47 g methionine + 0.26 g cyst(e)ine/100 g diet), thus meeting, but not exceeding, the requirement. Graded levels of choline bitartrate in Experiment 1 and choline chloride in Experiment 2 were added to the basal diet, resulting in eight dietary treatments in each experiment. Dietary treatments were 0, 250, 500, 1000, 2000, 4000, 6000 and 8000 mg choline/kg dry diet. Diets were fed for 12 and 10 wk in Experiments 1 and 2, respectively. Dietary choline concentrations significantly affected weight gain, feed efficiency, survival and total liver lipid concentrations in each experiment. Weight gain and feed efficiency were greatest in fish fed 500 mg choline/kg dry diet as choline bitartrate. Total liver lipid concentrations were variable but tended to be lowest in fish fed diets containing at least 2000 mg choline/kg diet. Survival was significantly lower in the group of fish fed 8000 mg choline/kg diet supplied by choline bitartrate. Weight gain and feed efficiency were greatest and total liver lipid concentration was lowest in groups of fish fed at least 500 mg choline/kg diet as choline chloride; survival was unaffected by dietary treatment. Therefore, choline chloride seems to be a better source of dietary choline than choline bitartrate and 500 mg choline/kg diet is adequate for maximum weight gain and prevention of increased liver lipid concentration in juvenile hybrid striped bass.

  1. Importance of Mangroves, Seagrass Beds and the Shallow Coral Reef as a Nursery for Important Coral Reef Fishes, Using a Visual Census Technique

    NASA Astrophysics Data System (ADS)

    Nagelkerken, I.; van der Velde, G.; Gorissen, M. W.; Meijer, G. J.; Van't Hof, T.; den Hartog, C.

    2000-07-01

    The nursery function of various biotopes for coral reef fishes was investigated on Bonaire, Netherlands Antilles. Length and abundance of 16 commercially important reef fish species were determined by means of visual censuses during the day in six different biotopes: mangrove prop-roots ( Rhizophora mangle) and seagrass beds ( Thalassia testudinum) in Lac Bay, and four depth zones on the coral reef (0 to 3 m, 3 to 5 m, 10 to 15 m and 15 to 20 m). The mangroves, seagrass beds and shallow coral reef (0 to 3 m) appeared to be the main nursery biotopes for the juveniles of the selected species. Mutual comparison between biotopes showed that the seagrass beds were the most important nursery biotope for juvenile Haemulon flavolineatum, H. sciurus, Ocyurus chrysurus, Acanthurus chirurgus and Sparisoma viride, the mangroves for juvenile Lutjanus apodus, L. griseus, Sphyraena barracuda and Chaetodon capistratus, and the shallow coral reef for juvenile H. chrysargyreum, L. mahogoni , A. bahianus and Abudefduf saxatilis. Juvenile Acanthurus coeruleus utilized all six biotopes, while juvenile H. carbonarium and Anisotremus surinamensis were not observed in any of the six biotopes. Although fishes showed a clear preference for a specific nursery biotope, most fish species utilized multiple nursery biotopes simultaneously. The almost complete absence of juveniles on the deeper reef zones indicates the high dependence of juveniles on the shallow water biotopes as a nursery. For most fish species an (partial) ontogenetic shift was observed at a particular life stage from their (shallow) nursery biotopes to the (deeper) coral reef. Cluster analyses showed that closely related species within the families Haemulidae, Lutjanidae and Acanthuridae, and the different size classes within species in most cases had a spatial separation in biotope utilization.

  2. Evaluation of commercial marine fish feeds for production of juvenile cobia in recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    The effect of feeding three commercially available diets manufactured by three U.S. feed companies on production characteristics and body composition of juvenile cobia Rachycentron canadum reared in recirculating aquaculture systems (RAS) was evaluated in a 57 d growth trial. Juvenile cobia (26.7 +...

  3. Microhabitat influence on larval fish assemblages within vegetated beds: Implications for restoration

    EPA Science Inventory

    We examined larval and juvenile fish assemblage structure in relation to microhabitat variables within the St. Louis River estuary, a drowned river mouth of Lake Superior. Fish were sampled in vegetated beds throughout the estuary, across a gradient of vegetation types and densit...

  4. Ontogeny of salinity tolerance and evidence for seawater-entry preparation in juvenile green sturgeon, Acipenser medirostris.

    PubMed

    Allen, Peter J; McEnroe, Maryann; Forostyan, Tetyana; Cole, Stephanie; Nicholl, Mary M; Hodge, Brian; Cech, Joseph J

    2011-12-01

    We measured the ontogeny of salinity tolerance and the preparatory hypo-osmoregulatory physiological changes for seawater entry in green sturgeon (Acipenser medirostris), an anadromous species occurring along the Pacific Coast of North America. Salinity tolerance was measured every 2 weeks starting in 40-day post-hatch (dph) juveniles and was repeated until 100% survival at 34‰ was achieved. Fish were subjected to step increases in salinity (5‰ 12 h(-1)) that culminated in a 72-h exposure to a target salinity, and treatment groups (0, 15, 20, 25, 30, 34‰; and abrupt exposure to 34‰) were adjusted as fish developed. After 100% survival was achieved (134 dph), a second experiment tested two sizes of fish for 28-day seawater (33‰) tolerance, and gill and gastrointestinal tract tissues were sampled. Their salinity tolerance increased and plasma osmolality decreased with increasing size and age, and electron microscopy revealed three types of mitochondria-rich cells: one in fresh water and two in seawater. In addition, fish held on a natural photoperiod in fresh water at 19°C showed peaks in cortisol, thyroid hormones and gill and pyloric ceca Na(+), K(+)-ATPase activities at body sizes associated with seawater tolerance. Therefore, salinity tolerance in green sturgeon increases during ontogeny (e.g., as these juveniles may move down estuaries to the ocean) with increases in body size. Also, physiological and morphological changes associated with seawater readiness increased in freshwater-reared juveniles and peaked at their seawater-tolerant ages and body sizes. Their seawater-ready body size also matched that described for swimming performance decreases, presumably associated with downstream movements. Therefore, juvenile green sturgeon develop structures and physiological changes appropriate for seawater entry while growing in fresh water, indicating that hypo-osmoregulatory changes may proceed by multiple routes in sturgeons.

  5. Host fish suitability for glochidia of Ligumia recta

    USGS Publications Warehouse

    Khym, J.R.; Layzer, J.B.

    2000-01-01

    In the early 1900s several hosts were identified for the black sandshell Ligumia recta. Recent attempts to propagate juvenile L. recta with two of the reported hosts (bluegill Lepomis macrochirus and largemouth bass Micropterus salmoides) have produced inconsistent results and few juveniles. We conducted this study to determine which of the reported hosts or other fish hosts were the most suitable for glochidial metamorphosis. The duration of glochidial metamorphosis varied among seasons. Despite similar water temperatures, juveniles metamorphosed sooner and over a shorter period of time in the spring than early fall; the modal day of metamorphosis differed by 78 d. Relatively few juveniles were recovered from bluegill and largemouth bass in three trials. White crappie Pomoxis annularis and black crappie P. nigromaculatus were marginally suitable hosts. Although glochidia encysted on all hosts, >10x more juveniles metamorphosed on sauger Stizostedion canadense compared to other hosts tested.

  6. Unusual aerobic performance at high temperatures in juvenile Chinook salmon, Oncorhynchus tshawytscha

    PubMed Central

    Poletto, Jamilynn B.; Cocherell, Dennis E.; Baird, Sarah E.; Nguyen, Trinh X.; Cabrera-Stagno, Valentina; Farrell, Anthony P.; Fangue, Nann A.

    2017-01-01

    Understanding how the current warming trends affect fish populations is crucial for effective conservation and management. To help define suitable thermal habitat for juvenile Chinook salmon, the thermal performance of juvenile Chinook salmon acclimated to either 15 or 19°C was tested across a range of environmentally relevant acute temperature changes (from 12 to 26°C). Swim tunnel respirometers were used to measure routine oxygen uptake as a measure of routine metabolic rate (RMR) and oxygen uptake when swimming maximally as a measure of maximal metabolic rate (MMR) at each test temperature. We estimated absolute aerobic scope (AAS = MMR − RMR), the capacity to supply oxygen beyond routine needs, as well as factorial aerobic scope (FAS = MMR/RMR). All fish swam at a test temperature of 23°C regardless of acclimation temperature, but some mortality occurred at 25°C during MMR measurements. Overall, RMR and MMR increased with acute warming, but aerobic capacity was unaffected by test temperatures up to 23°C in both acclimation groups. The mean AAS for fish acclimated and tested at 15°C (7.06 ± 1.76 mg O2 kg−1 h−1) was similar to that measured for fish acclimated and tested at 19°C (8.80 ± 1.42 mg O2 kg−1 h−1). Over the entire acute test temperature range, while MMR and AAS were similar for the two acclimation groups, RMR was significantly lower and FAS consequently higher at the lower test temperatures for the fish acclimated at 19°C. Thus, this stock of juvenile Chinook salmon shows an impressive aerobic capacity when acutely warmed to temperatures close to their upper thermal tolerance limit, regardless of the acclimation temperature. These results are compared with those for other salmonids, and the implications of our findings for informing management actions are discussed. PMID:28078086

  7. Morphometric assessment of hip dysplasia in a cat treated by juvenile pubic symphysiodesis.

    PubMed

    Lai, Alen; Culvenor, John; Bailey, Craig

    2016-09-20

    To quantitatively evaluate the change of the coxofemoral joints using computed tomography and distraction index in a cat with hip dysplasia treated by juvenile pubic symphysiodesis. Case report. Eighteen-week-old female entire Maine Coon cat. Juvenile pubic symphysiodesis resulted in changes in the distraction index, acetabular angle, dorsal acetabular rim angle, dorsal acetabular sector angle, and clinical improvement at the six month follow-up. No intra-operative or postoperative complications were recorded. Juvenile pubic symphysiodesis performed at 18 weeks of age resulted in improvement in hip joint conformation and hip laxity in a dysplastic cat. Juvenile pubic symphysiodesis may be a promising treatment for feline hip dysplasia and is a safe and technically simple procedure to perform. Further investigations are warranted.

  8. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  9. ACUTE SENSITIVITY OF JUVENILE SHORTNOSE STURGEON TO LOW DISSOLVED OXYGEN CONCENTRATIONS

    EPA Science Inventory

    Campbell, Jed G. and Larry R. Goodman. 2004. Acute Sensitivity of Juvenile Shortnose Sturgeon to Low Dissolved Oxygen Concentrations. EPA/600/J-04/175. Trans. Am. Fish. Soc. 133(3):772-776. (ERL,GB 1155).

    There is considerable concern that factors such as eutrophication, ...

  10. Estimating the impacts of fishing on dependent predators: a case study in the California Current.

    PubMed

    Field, J C; MacCall, A D; Bradley, R W; Sydeman, W J

    2010-12-01

    Juvenile rockfish (Sebastes spp.) are important prey to seabirds in the California Current System, particularly during the breeding season. Both seabird breeding success and the abundance of pelagic juvenile rockfish show high interannual variability. This covariation is largely a response to variable ocean conditions; however, fishing on adult rockfish may have had consequences for seabird productivity (e.g., the number of chicks fledged per breeding pair) by reducing the availability of juvenile rockfish to provisioning seabird parents. We tested the hypothesis that fishing has decreased juvenile rockfish availability and thereby limited seabird productivity over the past 30 years. We quantified relationships between observed juvenile rockfish relative abundance and seabird productivity, used fisheries stock assessment approaches to estimate the relative abundance of juvenile rockfish in the absence of fishing, and compared the differences in seabird productivity that would have resulted without rockfish fisheries. We examined the abundance of juvenile rockfish and the corresponding productivity of three seabird species breeding on Southeast Farallon Island (near San Francisco, California, USA) from the early 1980s to the present. Results show that while the relative abundance of juvenile rockfish has declined to approximately 50% of the estimated unfished biomass, seabirds achieved 75-95% of the estimated un-impacted levels of productivity, depending upon the species of bird and various model assumptions. These results primarily reflect seabirds with "conservative" life histories (one egg laid per year) and may be different for species with more flexible life history strategies (greater reproductive effort). Our results are consistent with the premise that the impacts of local rockfish fisheries on seabird productivity are less than impacts that have occurred to the prey resources themselves due to ocean climate and the ability of seabirds to buffer against

  11. Elevated streamflows increase dam passage by juvenile coho salmon during winter: Implications of climate change in the Pacific Northwest

    USGS Publications Warehouse

    Kock, Tobias J.; Liedtke, Theresa L.; Rondorf, Dennis W.; Serl, John D.; Kohn, Mike; Bumbaco, Karin A.

    2012-01-01

    A 4-year evaluation was conducted to determine the proportion of juvenile coho salmon Oncorhynchus kisutch passing Cowlitz Falls Dam, on the Cowlitz River, Washington, during winter. River and reservoir populations of coho salmon parr were monitored using radiotelemetry to determine if streamflow increases resulted in increased downstream movement and dam passage. This was of interest because fish that pass downstream of Cowlitz Falls Dam become landlocked in Riffe Lake and are lost to the anadromous population. Higher proportions of reservoir-released fish (0.391-0.480) passed Cowlitz Falls Dam than did river-released fish (0.037-0.119). Event-time analyses demonstrated that streamflow increases were important predictors of dam passage rates during the study. The estimated effect of increasing streamflows on the risk of dam passage varied annually and ranged from 9% to 75% for every 28.3 m3/s increase in streamflow. These results have current management implications because they demonstrate the significance of dam passage by juvenile coho salmon during winter months when juvenile fish collection facilities are typically not operating. The results also have future management implications because climate change predictions suggest that peak streamflow timing for many watersheds in the Pacific Northwest will shift from late spring and early summer to winter. Increased occurrence of intense winter flood events is also expected. Our results demonstrate that juvenile coho salmon respond readily to streamflow increases and initiate downstream movements during winter months, which could result in increased passage at dams during these periods if climate change predictions are realized in the coming decades.

  12. FDA Approved Registration of Erythromycin for Treatment of Bacterial Kidney Disease (BKD) in Juvenile and Adult Chinook Salmon : Annual Report, Reporting Period March 10, 1989 to March 9, 1990.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffitt, Christine A.

    1991-04-01

    Erythromycin is a therapeutic substance useful against bacterial kidney disease in salmon. In 1989 we began a multi year project to learn more about erythromycin applied to juvenile and adult salmon, with the goal of achieving registration of erythromycin with the US Food and Drug Administration. To begin the study, we studied the pharmacokinetics of erythromycin administered to both adult and juvenile chinook salmon. We monitored blood plasmas time curves from individual adult fish injected with two forms of injectable erythromycin using one of three routes of administration. In addition, we began experiments to evaluate hatchery applications of erythromycin tomore » individually marked adult salmon, and we recovered blood tissues from these fish at the time of spawning. To determine how to use erythromycin in juvenile salmon, we evaluated the adsorption and elimination of erythromycin applied arterially and orally to individual juvenile fish. In feeding trials we determined the palatability to juvenile chinook salmon of feed made with one of two different carriers for erythromycin thiocyanate. 35 refs., 4 figs. , 3 tabs.« less

  13. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (North Atlantic)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, J.

    1989-08-01

    Species profiles are literature summaries of the taxonomy, life history, and environmental requirements of coastal fishes and aquatic invertebrates. They are designed to assist with environmental impact assessments. The rainbow smelt is an abundant forage fish for commercially and recreationally valuable fishes such as striped bass and bluefish on the East Coast and several species of salmon and trout in the Great Lakes. The rainbow smelt also supports an important sportfishery throughout most of its range. In 1976, the total smelt harvest in the coastal waters of New England was 105,000 lb. Coastal rainbow smelt are anadromous, spawning in freshwatermore » and maturing in saline water. Spawning peaks in spring. Salinities above 12 ppt were fatal to eggs. Reported fecundities are 7,000 to 44,000 eggs per female. Smelt are always found in shallow water (<6 m deep) and within 2 km of the shore. Larval and juvenile smelt along the coast feed on planktonic crustaceans. Larger juveniles and adults feed on euphausiids, amphipods, on planktonic crustaceans. Larger juveniles and adults feed on euphausiids, amphipods, polychaetes, and fish. Smelt move locally to search for optimum water temperatures. 46 refs., 2 figs., 1 tab.« less

  14. The selective cleaning behaviour of juvenile blue-headed wrasse (Thalassoma bifasciatum) in the Caribbean.

    PubMed

    Dunkley, Katie; Cable, Jo; Perkins, Sarah E

    2018-02-01

    Through the removal of parasites, dead skin and mucus from the bodies of visiting reef fish (clients), cleaner fish have a significant ecosystem function in the ecology of coral reefs. Cleaners gain nutrition from these interactions and through offering a 'service' are afforded protection from predators. Given these benefits, it is unclear why more fish do not engage in cleaning, and why part-time cleaning strategies exist. On coral reefs, dedicated species clean throughout their life, whereas some species are facultative, employing opportunistic and/or temporary cleaning strategies. Here, we investigate the cleaning behaviour of a facultative species to assess the relative importance of this interaction to the cleaner. Using a combination of focal and event sampling from a coral reef in Tobago, we show that cleaning is not an essential food source for facultative juvenile blue-headed wrasse (Thalassoma bifasciatum), as cleaning rate was unrelated to their foraging rate on the substrate. These wrasse displayed two cleaning strategies: stationary versus wandering cleaning, with cleaning frequency being highest for stationary cleaners. A specific cleaning location facilitated increased cleaning frequency, and wrasse cleaning rate decreased as cleaner or client abundance increased. We also compared juvenile blue-headed wrasse cleaning behaviour to a resident dedicated cleaner, the sharknose goby (Elacatinus evelynae), and showed that, in comparison, juvenile wrasse clean a narrower client range, predominately cleaning three species of gregarious free-ranging surgeonfish (Acanthurus spp.). The wrasse, however, frequently approached these clients without cleaning, which suggests that their selective cleaning strategy may be driven by the acquisition of a particular parasitic food source. Juvenile blue-headed wrasse are generalist foragers, and may thus be limited in their cleaning behaviour by their nutritional requirements, the availability of a suitable cleaning site

  15. Growth and condition of juvenile chum and pink salmon in the northeastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Wechter, Melissa E.; Beckman, Brian R.; Andrews, Alexander G., III; Beaudreau, Anne H.; McPhee, Megan V.

    2017-01-01

    As the Arctic continues to warm, abundances of juvenile Pacific salmon (Oncorhynchus spp.) in the northern Bering Sea are expected to increase. However, information regarding the growth and condition of juvenile salmon in these waters is limited. The first objective of this study was to describe relationships between size, growth, and condition of juvenile chum (O. keta) and pink (O. gorbuscha) salmon and environmental conditions using data collected in the northeastern Bering Sea (NEBS) from 2003-2007 and 2009-2012. Salmon collected at stations with greater bottom depths and cooler sea-surface temperature (SST) were longer, reflecting their movement further offshore out of the warmer Alaska Coastal Water mass, as the season progressed. Energy density, after accounting for fish length, followed similar relationships with SST and bottom depth while greater condition (weight-length residuals) was associated with warm SST and shallower stations. We used insulin-like growth factor-1 (IGF-1) concentrations as an indicator of relative growth rate for fishes sampled in 2009-2012 and that found fish exhibited higher IGF-1 concentrations in 2010-2012 than in 2009, although these differences were not clearly attributable to environmental conditions. Our second objective was to compare size and condition of juvenile chum and pink salmon in the NEBS between warm and cool spring thermal regimes of the southeastern Bering Sea (SEBS). This comparison was based on a hypothesis informed by the strong role of sea-ice retreat in the spring for production dynamics in the SEBS and prevailing northward currents, suggesting that feeding conditions in the NEBS may be influenced by production in the SEBS. We found greater length (both species) and condition (pink salmon) in years with warm thermal regimes; however, both of these responses changed more rapidly with day of year in years with cool springs. Finally, we compared indicators of energy allocation between even and odd brood

  16. Assimilation and retention of selenium and other trace elements from crustacean food by juvenile striped bass (Morone saxatilis)

    USGS Publications Warehouse

    Baines, Stephen B.; Fisher, Nicholas S.; Stewart, Robin

    2002-01-01

     Estimates of the assimilation and retention of trace elements from food by fish are useful for linking toxicity with the biogeochemical cycling of these elements through aquatic food webs. Here we use pulse-chase radiotracer techniques to estimate the assimilation and retention of Se and four trace metals, Ag, Am, Zn, and Cd, by 43- and 88-d-old juvenile striped bass, Morone saxatilis, from crustacean food. Brine shrimp nauplii, Artemia franciscana, or adult copepods,Acartia tonsa, were fed radiolabeled diatoms and then fed to juvenile striped bass. Assimilation efficiencies (AEs ± SD) for 43-d-old fish were 18 ± 2%, 6 ± 1%, 23 ± 4%, 33 ± 3%, and 23 ± 2% for Ag, Am, Cd, Se, and Zn, respectively. For 88-d-old fish, the AEs were 28 ± 1%, 42 ± 5%, and 40 ± 5% for Cd, Se, and Zn, respectively. The higher AEs in the older fish may result from longer gut passage times for larger fish. The 44-d-old fish excreted 5 ± 0.8%, 4 ± 2.0%, 7 ± 0.3%, 9 ± 0.4%, and 1.3 ± 0.9% of the Ag, Am, Cd, Se, and Zn, respectively, they ingested from food per day, whereas the 88-d-old fish excreted 3 ± 1.0%, 8 ± 0.5%, and 3 ± 0.5% of the assimilated Cd, Se, and Zn per day, respectively. Predictions of steady state Se concentrations in juvenile striped bass tissues made using a biokinetic model and the measured AE and efflux rates ranged from 1.8 to 3.0 mg Se g-1dry wt for muscle tissue and 6.8 to 11.6 mg Se g-1 dry wt for gut tissue. These predictions agreed well with average values of 2.1 and 13 mg Se g-1 dry wt measured independently in North San Francisco Bay, where elevated Se concentrations are of concern. The model results imply that the planktonic food web, including juvenile striped bass, does not transfer Se as efficiently to top consumers as does the benthic food web.

  17. Summary of Survival Data from Juvenile Coho Salmon in the Klamath River, Northern California, 2006

    USGS Publications Warehouse

    Beeman, John W.

    2007-01-01

    Little is known about the survival of ESA-listed juvenile coho salmon during their seaward migration in the lower Klamath River. In 2006, the Bureau of Reclamation funded a study to estimate the survival of radio-tagged juvenile coho salmon in the Klamath River downstream of Iron Gate Dam. A series of models were evaluated to determine if survival varied between hatchery and wild fish and among several river reaches between the dam river kilometer 33, a total distance of 276 kilometers. The results from 2006, the first year of study, indicated little support for differences in survival between hatchery and wild fish and lower survival in the most upstream reach than in those farther downstream. This document is a brief summary of survival results to date.

  18. Safe Schools: What the Southeast Is Doing.

    ERIC Educational Resources Information Center

    SERVE Policy Brief, 1996

    1996-01-01

    Virtually no school is safe from violence. FBI statistics, which show that juvenile crimes actually peaked during the mid-1970s, are at odds with the public perception that crime rates among young people are at an all-time high. The FBI acknowledges, however, that the crimes committed by young people tend to be more serious than in the past, and…

  19. The effects of electroshock on immune function and disease progression in juvenile spring chinook salmon

    USGS Publications Warehouse

    VanderKooi, S.P.; Maule, A.G.; Schreck, C.B.

    2001-01-01

    Although much is known about the effects of electroshock on fish physiology, consequences to the immune system and disease progression have not received attention. Our objectives were to determine the effects of electroshock on selected immune function in juvenile spring chinook salmon Oncorhynchus tshawytscha, the mechanism of any observed alteration, and the effects of electroshock on disease progression. We found that the ability of anterior kidney leukocytes to generate antibody-producing cells (APC) was suppressed 3 h after a pulsed-DC electroshock (300 V, 50 Hz, 8 ms pulse width) but recovered within 24 h. This response was similar in timing and magnitude to that of fish subjected to an acute handling stress. The mechanism of suppression is hypothesized to be via an elevation of plasma cortisol concentrations in response to stress. Other monitored immune functions, skin mucous lysozyme levels, and respiratory burst activity were not affected by exposure to electroshock. The progression of a Renibacterium salmoninarum (RS) infection may have been altered after exposure to an electroshock. The electroshock did not affect infection severity or the number of mortalities, but may have accelerated the time to death. The limited duration of APC suppression and lack of effects on lysozyme and respiratory burst, as well as infection severity and mortality levels in RS-infected fish, led us to conclude that electrofishing under the conditions we tested is a safe procedure in regards to immunity and disease.

  20. Effects of partial replacement of fish meal by yeast hydrolysate on complement system and stress resistance in juvenile Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Yuan, Xiang-Yang; Liu, Wen-Bin; Liang, Chao; Sun, Cun-Xin; Xue, Yun-Fei; Wan, Zu-De; Jiang, Guang-Zhen

    2017-08-01

    A 10-week feeding trial was carried out to investigate the effects of dietary fish meal replacement by yeast hydrolysate (YH) on growth performance, complement system and stress resistance of juvenile Jian carp (Cyprinus carpio var. Jian) (initial average weight 19.44 ± 0.06 g). In the study, there were five groups: one control group was fed with a basal diet (YH0), and four treatment groups were fed with dietary fish meal replaced by 1% YH (YH1), 3% (YH3), 5% (YH5) and 7% (YH7), respectively. Each group had four replicates. At the end of feeding trial, twelve fish from each group (three fish per replicate) were randomly selected for assessing the growth and immunity. Meanwhile, 20 fish per replicate were injected by Aeromonas hydrophila. The results showed that (1) Replacement levels of YH significantly affected the growth of the fish with the highest values of weight gain (WG) occurred in fish fed YH3 diet. However, no significant difference in feed conversion ratios (FCR) was observed among all groups. (2) Pre-stressed plasma lysozyme activity, total protein and albumin contents and complement component 3 (C3) and complement component 4 (C4) levels of fish fed YH3 diet were significantly higher than those of fish fed YH0 diet. However, post-stressed immune parameters of fish in all groups were significantly lower. (3) There was a trend that the expression levels of the complement-related genes (c1r/s-A, c4-1, c3-H1, c5-1, fb/c2-A, mbl-2 and masp) initially increased and then decreased except mbl-2 and masp, with the maximum values observed in fish fed YH3 diet. Before stress, the expression levels of the inflammation-related genes (alp, il-1β and tnf-α) in the hepatopancreas and spleen of fish fed YH1 diet and YH7 diet were significant higher than that of fish fed YH0 diet. After stress, no significant difference in the expression levels of those genes was observed among all groups. These results indicated that FM replacement by YH could improve growth

  1. Growth, food consumption, and energy status of juvenile pallid sturgeon fed natural or artificial diets

    USGS Publications Warehouse

    Meyer, Hilary A.; Chipps, Steven R.; Graeb, Brian D. S.; Klumb, Robert A.

    2016-01-01

    Stocking of hatchery-raised fish is an important part of the pallid sturgeon Scaphirhynchus albus recovery program. In the wild, juvenile pallid sturgeon consume primarily aquatic insects, although little is known about specific dietary needs. In hatchery settings, pallid sturgeon are fed commercial diets that are formulated for salmonids. To compare food consumption, growth, and energy status of pallid sturgeon fed artificial or natural diets, we conducted a laboratory study using 24 juvenile pallid sturgeon (initial fork length 153–236 mm). Pallid sturgeon were fed a daily ration of either commercial pellets (1 mm, slow sinking; 45% protein, 19% fat) or chironomid larvae for 5 wk. Natural-fed pallid sturgeon exhibited a greater specific growth rate (2.12% d−1) than pellet-fed fish (0.06% d−1). Similarly, relative condition was greater for natural-fed sturgeon (Kn = 1.11) than that observed for pellet-fed fish (Kn = 0.87). In contrast, the hepatosomatic index was significantly higher in pellet-fed fish (2.5%), indicating a high lipid diet compared with natural-fed sturgeon (1.4%). Given the importance of natural diets to fish digestion and growth, it is suggested that a more holistic approach be applied in the development of a practical diet for pallid sturgeon that incorporates attributes of natural prey.

  2. Accumulation of current-use pesticides, cholinesterase inhibition and reduced body condition in juvenile one-sided livebearer fish (Jenynsia multidentata) from the agricultural Pampa region of Argentina.

    PubMed

    Brodeur, Julie Céline; Sanchez, Marisol; Castro, Luciana; Rojas, Dante Emanuel; Cristos, Diego; Damonte, María Jimena; Poliserpi, María Belén; D'Andrea, María Florencia; Andriulo, Adrián Enrique

    2017-10-01

    The aim of this study was to characterize the level and nature of the pesticide contamination received by one-sided livebearer fish (Jenynsia multidentata) from a watercourse situated within the main agricultural region of Argentina, and to assess the effects of this contamination on fish health. Juvenile one-sided livebearer fish (Jenynsia multidentata) were collected in December 2011 and March 2012 from three sites along the Pergamino River. Pesticide contamination was characterized by extracting whole fish and analytically determining thirty different pesticide molecules. The biomarkers catalase, glutathione-S-transferase, and cholinesterases were assessed. Body condition was calculated as an estimate of the amount of energy reserves possessed by the fish. Seventeen different pesticides were detected in fish tissues with 81% of captured animals containing at least one pesticide molecule. The pyrethroid insecticides fenvalerate and bifenthrin were most frequently detected, being respectively found in 41.8 and 36.4% of samples tested. Highly toxic dichlorvos and pirimiphos-methyl were detected. Differential levels of contamination could not be established amongst sites but were observed within sites amongst the two sampling dates. The months when pesticide residues were most abundant from in Site A and B corresponded to the months when body condition was at its lowest in the two sites. The inhibition of Che activity in March when body condition was reduced also points to a role of insecticide contamination in the reduction of body condition. These findings provide strong new evidence that current-used agricultural pesticides can accumulate in wild fish and impact their health and energetics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Background level of risk and the survival of predator-naive prey: can neophobia compensate for predator naivety in juvenile coral reef fishes?

    PubMed

    Ferrari, Maud C O; McCormick, Mark I; Meekan, Mark G; Chivers, Douglas P

    2015-01-22

    Neophobia--the generalized fear response to novel stimuli--provides the first potential strategy that predator-naive prey may use to survive initial predator encounters. This phenotype appears to be highly plastic and present in individuals experiencing high-risk environments, but rarer in those experiencing low-risk environments. Despite the appeal of this strategy as a 'solution' for prey naivety, we lack evidence that this strategy provides any fitness benefit to prey. Here, we compare the relative effect of environmental risk (high versus low) and predator-recognition training (predator-naive versus predator-experienced individuals) on the survival of juvenile fish in the wild. We found that juveniles raised in high-risk conditions survived better than those raised in low-risk conditions, providing the first empirical evidence that environmental risk, in the absence of any predator-specific information, affects the way naive prey survive in a novel environment. Both risk level and experience affected survival; however, the two factors did not interact, indicating that the information provided by both factors did not interfere or enhance each other. From a mechanistic viewpoint, this indicates that the combination of the two factors may increase the intensity, and hence efficacy, of prey evasion strategies, or that both factors provide qualitatively separate benefits that would result in an additive survival success.

  4. Guidelines for Eating Fish that Contain Mercury

    EPA Pesticide Factsheets

    Learn about how to minimize exposure to methylmercury while eating fish. Read about fish advisories, how to use them to consume fish safely, and use the national fish advisories locator to find them in an area near you.

  5. Abundance, Timing of Migration, and Egg-to-Smolt Survival of Juvenile Chum Salmon, Kwethluk River, Alaska, 2007 and 2008

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; ,; Gillikin, Daniel; ,

    2010-01-01

    To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.

  6. Juvenile hake predation on Myctophidae and Sternoptychidae: Quantifying an energy transfer between mesopelagic and neritic communities

    NASA Astrophysics Data System (ADS)

    Modica, Larissa; Cartes, Joan E.; Velasco, Francisco; Bozzano, Anna

    2015-01-01

    Seasonal study of the diet and food consumption of juvenile hake has been carried out in the Central Mediterranean Sea (Southern Tyrrhenian Sea). Fish were the most important food resource in terms of weight (ca. 70%). Among the fish, Myctophidae and Sternoptychidae, which are usually distributed deeper than juvenile hake, are most important. During summer, Ceratoscopelus maderensis constituted up to 21% of weight of all prey, and Maurolicus muelleri represented almost 10%. During autumn M. muelleri became the most important food resource. The way in which these more deeply distributed prey enter shallower food webs relates to the daily vertical migrations of lanternfish. In upper water column strata at night or near dawn they become prey of the juvenile hake. Considering that trophic energy flows primarily downward, in the direction of the productivity gradient, the observed flow of energy from deep strata into epipelagic layers could be considered an inverse energy transfer. Daily food consumption of juvenile hake ranged between 4.11 and 4.72% of the body wet-weight (BWW). The application of a square-root model allowed calculation of the fraction of this consumption derived by ingestion of the more deeply distributed mesopelagic fish. Between 11.6% and 17.8% of food consumption was sustained by this energy flow. Such information is useful for understanding the interaction between communities distributed in different depth ranges and to reinforce the idea that marine communities are open systems in which migratory movements can dramatically change the assumptions and results of mass-balance models.

  7. Sea lice and salmon population dynamics: effects of exposure time for migratory fish.

    PubMed

    Krkosek, Martin; Morton, Alexandra; Volpe, John P; Lewis, Mark A

    2009-08-07

    The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2-3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon-louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon-louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.

  8. Parasites of juvenile golden grey mullet Liza aurata Risso, 1810 in Sarıkum Lagoon Lake at Sinop, Turkey.

    PubMed

    Öztürk, Türkay

    2013-12-01

    Juvenile golden grey mullet, Liza aurata were collected from Sarıkum Lagoon Lake which connected to the Black Sea at Sinop, Turkey and examined for parasitic fauna. A total of 219 fish were investigated throughout a 1-year period. Parasite species recovered were Trichodina lepsii, T. puytoraci, Gyrodactylus sp., Ligophorus cephali, Ligophorus mediterraneus, Solostamenides mugilis, Ascocotyle sp. (metacercaria) and Ergasilus lizae. Overall infection prevalence (%) and mean intensity values were 95.9% and 412.65 ± 85.31 parasites per infected fish, respectively. Infection prevalence and mean intensity values for each parasite species in relation to season and fish size were also determined and discussed. While Ligophorus cephali and L. mediterraneus are new records for Turkish parasite fauna, the juvenile Liza aurata is a new host record for Ligophorus cephali and L. mediterraneus.

  9. Chemically mediated behavior of recruiting corals and fishes: A tipping point that may limit reef recovery

    PubMed Central

    Dixson, Danielle L; Abrego, David; Hay, Mark E

    2015-01-01

    Coral reefs are in global decline, converting from dominance by coral to dominance by seaweed. Once seaweeds become abundant, coral recovery is suppressed unless herbivores return to remove seaweeds, and corals then recruit. Variance in the recovery of fishes and corals is not well understood. We show that juveniles of both corals and fishes are repelled by chemical cues from fished, seaweed-dominated reefs but attracted to cues from coral-dominated areas where fishing is prohibited. Chemical cues of specific seaweeds from degraded reefs repulsed recruits, and cues from specific corals that are typical of healthy reefs attracted recruits. Juveniles were present at but behaviorally avoided recruiting to degraded reefs dominated by seaweeds. For recovery, degraded reefs may need to be managed to produce cues that attract, rather than repel, recruiting corals and fishes. PMID:25146281

  10. Nearshore temperature findings for the Colorado River in Grand Canyon, Arizona: possible implications for native fish

    USGS Publications Warehouse

    Ross, Robert P.; Vernieu, William S.

    2013-01-01

    Since the completion of Glen Canyon Dam, Arizona, in 1963, downstream water temperatures in the main channel of the Colorado River in Glen, Marble, and Grand Canyons are much colder in summer. This has negatively affected humpback chub (Gila cypha) and other native fish adapted to seasonally warm water, reducing main-channel spawning activity and impeding the growth and development of larval and juvenile fish. Recently published studies by U.S. Geological Survey scientists found that under certain conditions some isolated nearshore environments in Grand Canyon allow water to become separated from the main-channel current and to warm, providing refuge areas for the development of larval and juvenile fish.

  11. Advances in understanding the response of fish to linear alcohols in the environment.

    PubMed

    Belanger, Scott E; Rawlings, Jane M; Stackhouse, Ricky

    2018-09-01

    Short to long chain alcohols have a range of ecotoxicity to aquatic life driven by hydrophobic interactions with biological membranes. Carbon chain length and octanol:water partitioning coefficients are surrogates for hydrophobicity and strongly relate to aquatic toxicity. In these investigations, the toxicity of ethanol to 1-n-dodecanol to juvenile fish in standard acute toxicity tests is reviewed. Toxicity tests employing fish embryos (zebrafish Danio rerio and fathead minnow Pimephales promelas) in the Fish Embryo Test (OECD 236) format were conducted from C2 to C10 to compare against standard juvenile fish toxicity. Quantitative structure activity relationships for FET and fish individually and combined demonstrate that embryos are not different in sensitivity to juvenile fish. A combined QSAR was developed of the form Log 96 h LC50 (mM/L) = -0.925*log Kow + 2.060 (R2 10 = 0.954). Alcohols of 11-12 carbons show a deflection in the QSAR as toxicity approaches the solubility limit. Alcohols with longer chain lengths may only be tested at lower exposures relevant for chronic toxicity. Decanol was evaluated in a 33-d fish early life stage test (OECD 210) and survival was the most sensitive endpoint (EC10 = 0.43 mg/L, 0.0027 mM/L). This study suggests a reasonable acute to chronic ratio of 6.5 in line with historical literature for non-polar narcotic compounds. Fish are not uniquely more sensitive than Daphnia magna which suggests estimations of environmental hazard can be confidently made with either taxon. The overall environmental risk assessments for the longer chain alcohols included in this research remain largely unchanged primarily due to previous research demonstrating a very minimal environmental exposure even for highly toxic members of the category. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Toward a mechanistic understanding of vulnerability to hook-and-line fishing: Boldness as the basic target of angling-induced selection.

    PubMed

    Klefoth, Thomas; Skov, Christian; Kuparinen, Anna; Arlinghaus, Robert

    2017-12-01

    In passively operated fishing gear, boldness-related behaviors should fundamentally affect the vulnerability of individual fish and thus be under fisheries selection. To test this hypothesis, we used juvenile common-garden reared carp ( Cyprinus carpio ) within a narrow size range to investigate the mechanistic basis of behavioral selection caused by angling. We focused on one key personality trait (i.e., boldness), measured in groups within ponds, two morphological traits (body shape and head shape), and one life-history trait (juvenile growth capacity) and studied mean standardized selection gradients caused by angling. Carp behavior was highly repeatable within ponds. In the short term, over seven days of fishing, total length, not boldness, was the main predictor of angling vulnerability. However, after 20 days of fishing, boldness turned out to be the main trait under selection, followed by juvenile growth rate, while morphological traits were only weakly related to angling vulnerability. In addition, we found juvenile growth rate to be moderately correlated with boldness. Hence, direct selection on boldness will also induce indirect selection on juvenile growth and vice versa, but given that the two traits are not perfectly correlated, independent evolution of both traits is also possible. Our study is among the first to mechanistically reveal that energy-acquisition-related behaviors, and not growth rate per se, are key factors determining the probability of capture, and hence, behavioral traits appear to be the prime targets of angling selection. We predict an evolutionary response toward increased shyness in intensively angling-exploited fish stocks, possibly causing the emergence of a timidity syndrome.

  13. Verification of a ‘freshwater-type’ life history variant of juvenile American shad in the Columbia River

    USGS Publications Warehouse

    Wetzel, Lisa A.; Larsen, Kimberly A.; Parsley, Michael J.; Zimmerman, Christian E.

    2011-01-01

    American shad are native to the Atlantic coast of North America and were successfully introduced to the Pacific coast in the 1870s. They are now more abundant in the Columbia River than are its native salmon. As in their native range, Columbia River American shad are anadromous and have been assumed to solely exhibit an ‘ocean-type’ life history, characterized by a short period of juvenile rearing in freshwater, followed by seaward migration and saltwater entry before age-1, with sexually mature individuals returning to freshwater to spawn beginning at age-3. During October 2007, emigrating juvenile American shad were captured in the juvenile fish monitoring facility at Bonneville Dam (river kilometer 235) on the Columbia River. Their length frequencies revealed the presence of two modes; the lower mode averaged 77 mm fork length (FL) and the upper mode averaged 184 mm FL. A subsample of fish from each mode was aged using otoliths. Otoliths from the lower mode (n=10) had no annuli, indicating that they were all age-0, while otoliths from the upper mode (n=25) had one or two annuli, indicating that they were either age-1 or age-2, respectively. Spawning adults collected in June 2007 averaged 393 mm FL (range 305-460 mm; n=21) and were estimated to range in age from 3-6. Elemental analyses of juvenile and adult otoliths provide evidence for deviations from the typical migration pattern expected for this species, including extensive freshwater rearing of up to two years. This evidence shows that a ‘freshwater-type’ of juvenile American shad exists as year-round or transient residents in the Columbia River basin. The ecological role of this life history variant within the fish community is unknown.

  14. Diverse juvenile life-history behaviours contribute to the spawning stock of an anadromous fish population

    USGS Publications Warehouse

    Walsworth, Timothy E.; Schindler, Daniel E.; Griffiths, Jennifer R.; Zimmerman, Christian E.

    2015-01-01

    Habitat quality often varies substantially across space and time, producing a shifting mosaic of growth and mortality trade-offs across watersheds. Traditional studies of juvenile habitat use have emphasised the evolution of single optimal strategies that maximise recruitment to adulthood and eventual fitness. However, linking the distribution of individual behaviours that contribute to recruitment at the population level has been elusive, particularly for highly fecund aquatic organisms. We examined juvenile habitat use within a population of sockeye salmon (Oncorhynchus nerka) that spawn in a watershed consisting of two interconnected lakes and a marine lagoon. Otolith microchemical analysis revealed that the productive headwater lake accounted for about half of juvenile growth for those individuals surviving to spawn in a single river in the upper watershed. However, 47% of adults had achieved more than half of their juvenile growth in the downstream less productive lake, and 3% of individuals migrated to the estuarine environment during their first summer and returned to freshwater to overwinter before migrating back to sea. These results describe a diversity of viable habitat-use strategies by juvenile sockeye salmon that may buffer the population against poor conditions in any single rearing environment, reduce density-dependent mortality and have implications for the designation of critical habitat for conservation purposes. A network of accessible alternative habitats providing trade-offs in growth and survival may be important for long-term viability of populations.

  15. A Comparison of Pathology Found in Three Marine Fish Treated with Endocrine Disrupting Compounds

    EPA Science Inventory

    Endocrine-disrupting chemicals (EDCs), such as the estrogen estradiol (E2) have been reported to affect fish reproduction. This study histopathologically compared and evaluated the effect of EDCs in three species of treated fish. Juvenile male summer flounder (Paralichthys dentat...

  16. Hydroacoustic Evaluation of Juvenile Salmonid Passage at The Dalles Dam Sluiceway, 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Khan, Fenton; Hedgepeth, J

    2006-06-01

    The U.S. Army Corps of Engineers Portland District engaged the Pacific Northwest National Laboratory to evaluate fish passage at The Dalles Dam powerhouse in 2005. The goal of the study was to provide information on smolt passage that will inform decisions on long-term measures and operations to enhance sluiceway passage and reduce turbine passage to improve smolt survival at the dam. The study addressed one of the main programs dedicated to improving juvenile salmonid survival at The Dalles Dam: Surface Flow Bypass. The study objectives (see below) were met using a combination of hydroacoustic and hydraulic data. The study incorporatedmore » fixed-location hydroacoustic methods across the entire powerhouse, with especially intense sampling using multiple split-beam transducers at all sluiceway portals. We did not sample fish passage at the spillway in 2005. In the sluiceway nearfield, we used an acoustic camera to track fish movements. The fish data were interpreted with hydraulic data from a computational fluid dynamics (CFD) model. Fish passage data were collected in the framework of an “experiment” using a randomized block design (3-day treatments; two treatments) to compare two sluiceway operational configurations: Sluice 2+5 and Sluice 2+19 (six gates open for each configuration). Total project outflow was 76% of the 10-year average for spring and 71% of the 10-year average for summer. Based on these findings, we make the following recommendations: 1) The sluice should be operated 24 h/d from April until November. 2) Open six rather than three sluice gates to take advantage of the maximum hydraulic capacity of the sluiceway. 3) Open the three gates above the western-most operating main turbine unit and the three gates at MU 8 where turbine passage rates are relatively high. 4) Operate the turbine units below open sluice gates as a standard fish operations procedure. 5) Develop hydraulic and entrance enhancements to the sluiceway to tap the potential of

  17. Performance of juvenile steelhead trout (Oncorhynchus mykiss) produced from untreated and cryopreserved milt

    USGS Publications Warehouse

    Hayes, Michael C.; Rubin, Stephen P.; Hensleigh, Jay E.; Reisenbichler, Reginald R.; Wetzel, Lisa A.

    2005-01-01

    Despite the expanding use of milt cryopreservation in aquaculture, the performance of fish produced from this technique has not been fully explored beyond initial rearing stages. We compared the performance of juvenile steelhead Oncorhynchus mykiss produced from untreated (UM) and cryopreserved milt (CM) and reared for 4–9 months. For the 1996 brood, CM alevins were heavier (∼ 1.7%, P < 0.01) than UM alevins and length was influenced by a significant milt-by-family interaction (P < 0.03) suggesting a greater treatment effect for some families. No significant differences were found in length or weight (P > 0.05) for 1997 brood alevins and percent yolk was similar for both broods (P > 0.34). In growth and survival experiment I (GSE-I, 1996), UM and CM juveniles reared in separate tanks and fed to satiation (130 days) showed no significant differences in survival, length or weight (P > 0.05) between milt groups. In contrast, for UM and CM siblings reared in the same tank for 210 days on a low food ration (GSE-II), survival was similar (P > 0.05), but length (UM 4% > CM, P < 0.05) and possibly weight (UM 15% > CM, P = 0.08), were influenced by cryopreservation. Fish from the 1997 brood (GSE-III) were reared for 313 days in a repeat of GSE-II and no differences were found in survival (P = 0.47), length (P = 0.75) or weight (P = 0.76) suggesting considerable heterogeneity between broods. Performance of the 1996 brood was also tested for response to stress and a disease challenge. Cortisol responses of juveniles exposed to acute stress were not significantly different (P = 0.19), but mean cortisol was consistently and significantly greater (P < 0.01) for CM than UM fish exposed to a 48-h stress (increased density). After exposure to three dosages of the bacteria, Listonella anguillarum, we found similar mortality proportions (P = 0.72) for UM and CM fish. Variable juvenile performance for the parameters tested indicated significant

  18. Reduced growth in wild juvenile sockeye salmon Oncorhynchus nerka infected with sea lice.

    PubMed

    Godwin, S C; Dill, L M; Krkošek, M; Price, M H H; Reynolds, J D

    2017-07-01

    Daily growth rings were examined in the otoliths of wild juvenile sockeye salmon Oncorhynchus nerka to determine whether infection by ectoparasitic sea lice Caligus clemensi and Lepeophtheirus salmonis was associated with reduced host body growth, an important determinant of survival. Over 98% of the sea lice proved to be C. clemensi and the fish that were highly infected grew more slowly than uninfected individuals. Larger fish also grew faster than smaller fish. Finally, there was evidence of an interaction between body size and infection status, indicating the potential for parasite-mediated growth divergence. © 2017 The Fisheries Society of the British Isles.

  19. Investigating fish hydraulic habitat preferences using a passive integrated transponder antenna network: Scope on spatial scales and individual mobility

    NASA Astrophysics Data System (ADS)

    Roy, M. L.; Roy, A. G.

    2009-12-01

    Flow velocity is a major feature of fluvial fish habitat. It affects swimming energy expenditures, resource distribution and efficiency of prey capture, thus exerting a major influence on fish distribution. Preferences of juvenile salmonids for ranges of flow velocity are well documented. Preference curves are usually generated by comparing velocities measured at the precise location of captured fish (nose velocity) with velocities measured at random locations where fish are absent. However, these preferences tend to be specific to sites and rivers and show important variability with time. Recent biotelemetry studies have revealed that juvenile salmonids are more mobile than previously assumed and use larger home ranges and multiple micro-habitats. Therefore, fish might select habitats based on the characteristics of a microhabitat, but also based on the properties of the surrounding area. Furthermore, mobile fish could present temporal variability in their habitat preferences. Recent advances in biotelemetry provide new ways to monitor fish locations and to obtain habitat preferences both at the individual and the population levels at high temporal and spatial resolutions for extended periods. In this study, we seek to identify the most relevant spatial scales defining habitat preferences of juvenile Atlantic salmon. We emphasize both the group and individual temporal variability in hydraulic habitat preferences. During a three month period, we monitored the location and movements of 61 juveniles marked with 23-mm passive integrated transponders (PIT) using a network of 186 antennas buried into the bed of a natural river reach in Saguenay, Canada. Each antenna was scanned every 33 seconds to detect and record the presence or absence of tagged fish. The reach was 70 m long and 9 m wide on average and presented a very clear morphological sequence consisting of two pools separated by a riffle. Mean flow velocity and turbulent flow properties were measured at 3500

  20. Quantifying the environmental impacts of artisanal fishing gear on Kenya's coral reef ecosystems.

    PubMed

    Mangi, S C; Roberts, C M

    2006-12-01

    The environmental impacts of artisanal fishing gear on coral reef ecosystems were studied in the multi-gear fishery of southern Kenya to evaluate which types of gear have the greatest impact on coral reef biodiversity. The gear types studied were large and small traps, gill nets, beach seines, hand lines and spear guns. Levels of coral damage, proportion of juvenile fish and discards, size and maturity stage at first capture were quantified and compared amongst the gear types. Results indicate that fishers using beach seines, spears and gill nets cause the most direct physical damage to corals. Spear fishers showed the highest number of contacts to live corals per unit catch followed by fishers using gill nets (12.6+/-1.8 and 5.9+/-2.0 coral contacts per kg fish caught per trip respectively). Apart from discarding 6.5% of their daily catch in the sea, as it was too small, beach seine fishers also landed the highest percentage of juvenile fish (68.4+/-15.7%), a proportion significantly higher (p<0.001) than in any other gear. The size and maturity stage at first capture for 150 of 195 species caught by all gear types was well below the lengths at which they mature. For example, 100% of Lethrinus xanthochilus, 99% of Lethrinus nebulosus and 94% of Lethrinus harak caught were juveniles. Across all gear types, 50.1+/-22.7% of the catch consisted of juvenile fish, indicating serious growth overfishing. Field assessment of levels of coral density showed that fishing grounds where beach seines were still in use had a significantly lower density than where beach seining was not used. This correlation is likely to arise in part because seines cannot be used in the most coral rich areas, and in part because coral loss is a consequence of seine use. On a per gear basis therefore, beach seines had the most impact on coral reef biodiversity. This study emphasizes the need to enforce restrictions on destructive gear and mesh sizes.

  1. Comparative Allometric Growth of the Mimetic Ephippid Reef Fishes Chaetodipterus faber and Platax orbicularis.

    PubMed

    Barros, Breno; Sakai, Yoichi; Pereira, Pedro H C; Gasset, Eric; Buchet, Vincent; Maamaatuaiahutapu, Moana; Ready, Jonathan S; Oliveira, Yrlan; Giarrizzo, Tommaso; Vallinoto, Marcelo

    2015-01-01

    Mimesis is a relatively widespread phenomenon among reef fish, but the ontogenetic processes relevant for mimetic associations in fish are still poorly understood. In the present study, the allometric growth of two allopatric leaf-mimetic species of ephippid fishes, Chaetodipterus faber from the Atlantic and Platax orbicularis from the Indo-Pacific, was analyzed using ten morphological variables. The development of fins was considered owing to the importance of these structures for mimetic behaviors during early life stages. Despite the anatomical and behavioral similarities in both juvenile and adult stages, C. faber and P. orbicularis showed distinct patterns of growth. The overall shape of C. faber transforms from a rounded-shape in mimetic juveniles to a lengthened profile in adults, while in P. orbicularis, juveniles present an oblong profile including dorsal and anal fins, with relative fin size diminishing while the overall profile grows rounder in adults. Although the two species are closely-related, the present results suggest that growth patterns in C. faber and P. orbicularis are different, and are probably independent events in ephippids that have resulted from similar selective processes.

  2. Ammonia and urea handling by early life stages of fishes.

    PubMed

    Zimmer, Alex M; Wright, Patricia A; Wood, Chris M

    2017-11-01

    Nitrogen metabolism in fishes has been a focus of comparative physiologists for nearly a century. In this Review, we focus specifically on early life stages of fishes, which have received considerable attention in more recent work. Nitrogen metabolism and excretion in early life differs fundamentally from that of juvenile and adult fishes because of (1) the presence of a chorion capsule in embryos that imposes a limitation on effective ammonia excretion, (2) an amino acid-based metabolism that generates a substantial ammonia load, and (3) the lack of a functional gill, which is the primary site of nitrogen excretion in juvenile and adult fishes. Recent findings have shed considerable light on the mechanisms by which these constraints are overcome in early life. Perhaps most importantly, the discovery of Rhesus (Rh) glycoproteins as ammonia transporters and their expression in ion-transporting cells on the skin of larval fishes has transformed our understanding of ammonia excretion by fishes in general. The emergence of larval zebrafish as a model species, together with genetic knockdown techniques, has similarly advanced our understanding of ammonia and urea metabolism and excretion by larval fishes. It has also now been demonstrated that ammonia excretion is one of the primary functions of the developing gill in rainbow trout larvae, leading to new hypotheses regarding the physiological demands driving gill development in larval fishes. Here, we highlight and discuss the dramatic changes in nitrogen handling that occur over early life development in fishes. © 2017. Published by The Company of Biologists Ltd.

  3. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.

    Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River for the U.S. Army Corps of Engineers, Portland District (USACE), to provide data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE's Willamette Valley Project. This study was conducted in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. We conducted a hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP duringmore » February 2010 through January 2011. Findings from this 1 year of study should be applied carefully because annual variation can be expected due to variability in adult salmon escapement, egg-to-fry and fry-to-smolt survival rates, reservoir rearing and predation, dam operations, and weather. Fish passage rates for smolt-size fish (> {approx}90 mm and < 300 mm) were highest during December-January and lowest in mid-summer through early fall. Passage peaks were also evident in early spring, early summer, and late fall. During the entire study period, an estimated total of 142,463 fish {+-} 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. Of this total, 84% passed during December-January. Run timing for small-size fish ({approx}65-90 mm) peaked (702 fish) on December 18. Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. Relatively few fish passed into the Regulating Outlets (ROs) when they were open in summer (2 fish/d) and winter (8 fish/d). Overall, when the ROs were open, RO efficiency (RO passage divided by total project passage) was 0.004. In linear regression analyses, daily fish passage (turbines and ROs combined) for smolt-size fish was significantly related to

  4. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  5. Benefits of Turbid River Plume Habitat for Lake Erie Yellow Perch (Perca flavescens) Recruitment Determined by Juvenile to Larval Genotype Assignment

    PubMed Central

    Carreon-Martinez, Lucia B.; Walter, Ryan P.; Johnson, Timothy B.; Ludsin, Stuart A.; Heath, Daniel D.

    2015-01-01

    Nutrient-rich, turbid river plumes that are common to large lakes and coastal marine ecosystems have been hypothesized to benefit survival of fish during early life stages by increasing food availability and (or) reducing vulnerability to visual predators. However, evidence that river plumes truly benefit the recruitment process remains meager for both freshwater and marine fishes. Here, we use genotype assignment between juvenile and larval yellow perch (Perca flavescens) from western Lake Erie to estimate and compare recruitment to the age-0 juvenile stage for larvae residing inside the highly turbid, south-shore Maumee River plume versus those occupying the less turbid, more northerly Detroit River plume. Bayesian genotype assignment of a mixed assemblage of juvenile (age-0) yellow perch to putative larval source populations established that recruitment of larvae was higher from the turbid Maumee River plume than for the less turbid Detroit River plume during 2006 and 2007, but not in 2008. Our findings add to the growing evidence that turbid river plumes can indeed enhance survival of fish larvae to recruited life stages, and also demonstrate how novel population genetic analyses of early life stages can contribute to determining critical early life stage processes in the fish recruitment process. PMID:25954968

  6. Juvenile coho salmon growth and health in streams across an urbanization gradient

    USGS Publications Warehouse

    Spanjer, Andrew R.; Moran, Patrick W.; Larsen, Kimberly; Wetzel, Lisa; Hansen, Adam G.; Beauchamp, David A.

    2018-01-01

    Expanding human population and urbanization alters freshwater systems through structural changes to habitat, temperature effects from increased runoff and reduced canopy cover, altered flows, and increased toxicants. Current stream assessments stop short of measuring health or condition of species utilizing these freshwater habitats and fail to link specific stressors mechanistically to the health of organisms in the stream. Juvenile fish growth integrates both external and internal conditions providing a useful indicator of habitat quality and ecosystem health. Thus, there is a need to account for ecological and environmental influences on fish growth accurately. Bioenergetics models can simulate changes in growth and consumption in response to environmental conditions and food availability to account for interactions between an organism's environmental experience and utilization of available resources. The bioenergetics approach accounts for how thermal regime, food supply, and food quality affect fish growth. This study used a bioenergetics modeling approach to evaluate the environmental factors influencing juvenile coho salmon growth among ten Pacific Northwest streams spanning an urban gradient. Urban streams tended to be warmer, have earlier emergence dates and stronger early season growth. However, fish in urban streams experienced increased stress through lower growth efficiencies, especially later in the summer as temperatures warmed, with as much as a 16.6% reduction when compared to fish from other streams. Bioenergetics modeling successfully characterized salmonid growth in small perennial streams as part of a more extensive monitoring program and provides a powerful assessment tool for characterizing mixed life-stage specific responses in urban streams.

  7. Survival of Juvenile Chinook Salmon during Barge Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Skalski, J. R.; Deters, Katherine A.

    2011-12-01

    To mitigate for fish losses related to passage through the Federal Columbia River Power System, an extensive fish transportation program using barges and trucks to move fish around and downstream of dams and reservoirs was implemented in 1981. Population modeling and other analyses to support Pacific salmon recovery efforts have assumed that the survival of juvenile salmonids during the transportation experience was 98%. To estimate survival during barge transport from Lower Granite Dam on the Snake River to a release area downstream of Bonneville Dam, a distance of 470 km, we used a novel adaptation of a release-recapture model withmore » acoustic-tagged yearling Chinook salmon (Oncorhynchus tshawytscha) smolts. A total of 1,494 yearling Chinook salmon were surgically implanted with Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic transmitters and passive integrated transponders (PIT) and divided into three groups. The three tagged groups consisted of; (1) a group which was released into the raceway with the population of fish which were later loaded into transportation barges (R{sub B}), (2) a group which was held in a net-pen suspended within the general barge population until 5-6 h prior to barge evacuation, at which time they were confirmed to be alive and then released into the general barge population (R{sub A}), and (3) to validate a model assumption, a group which was euthanized and released into the barge population 2-8 h prior to barge evacuation (R{sub D}). Six replicates of these groups were loaded onto fish transport barges that departed Lower Granite Dam on the Snake River between 29 April and 13 May, 2010. Acoustic receiver arrays between 70 and 220 km downstream of the barge evacuation site were used to detect tagged fish and served as the basis for estimation of survival within the barge. Tag-life-corrected estimates of reach survival were calculated for barged and control fish in each of the six replicate trials. The ratio of survival

  8. Growth, enzymatic glutathione peroxidase activity and biochemical status of juvenile barramundi (Lates calcarifer) fed dietary fermented soybean meal and organic selenium.

    PubMed

    Ilham, I; Fotedar, Ravi

    2017-06-01

    Solvent-extracted soybean meal (SBM) was fermented using baker's yeast Saccharomyces cerevisae at 30 °C for 5 days. Four isonitrogenous and isocaloric diets containing 75% SBM protein, either fermented or non-fermented (SBM and FSBM), and supplemented or not with organic Se (OS) (SBM OS and FSBM OS ), were fed to triplicate groups of juvenile barramundi (Lates calcarifer) (initial weight of 5 g) for 75 days. A fishmeal (FM)-based diet formulated for juvenile barramundi was used as a reference diet. The growth of fish was significantly affected by either the interaction of SBM type or by the OS level. In fish fed diets supplemented with OS (SBM OS and FSBM OS ), final weight (FW), specific growth rate (SGR) and weight gain (WG) were higher in fish fed the fermented SBM (FSBM OS ) than in those fed the non-fermented SBM (SBM OS ). The apparent digestibility coefficient (ADC) of protein was higher in the fish fed the fermented SBM, either supplemented or unsupplemented with OS. However, there were no significant differences in the ADC of dry matter (DM) and lipids among the tested diets and in comparison to the reference diet. The haematocrit and leucocrit of fish fed the FSBM OS diet were lower than those of fish fed the FM diet. Furthermore, glutathione peroxidase (GPx) activity was significantly influenced by OS supplementation in the experimental diets; GPx activity was greater in the fish fed diets supplemented with OS. Creatinine kinase (CK) of all groups of fish was higher than the CK of those fed the reference diet. These results suggest that with a proper nutritional level, OS supplementation may act as an important factor in enzymatic GPx activity and in the haematology and blood biochemistry status of juvenile barramundi fed fermented SBM-based diets, encouraging improvement of the overall growth performance.

  9. Habitat use by juvenile salmonids in Lake Ontario tributaries-species, age, diel and seasonal effects

    USGS Publications Warehouse

    Johnson, James H.; McKenna, James E.

    2017-01-01

    Understanding the habitat needs of fish and how these requirements may change seasonally over a 24-h period is important, especially for highly managed sport species. Consequently, we examined the diel and seasonal habitat use of four juvenile salmonid species in streams in the Lake Ontario watershed. For juvenile Atlantic salmon Salmo salarand juvenile rainbow trout Oncorhynchus mykiss, differences in day versus night habitat use were more profound than seasonal differences. Observed differences in day versus night habitat for all species and age classes were mainly due to the use of less object oriented cover at night and to a lesser extent to the use of slower velocities and smaller substrate at night. Seasonal differences in habitat use were also observed, likely due to increased fish size, and included movement to deeper and faster water and the use of larger substrate and more cover from summer to winter. Different habitat variables were important to individual species. Juvenile Atlantic salmon were associated with higher water velocities, juvenile rainbow trout with larger substrate and more cover, and subyearling Chinook salmon O. tshawytscha and subyearling coho salmon O. kisutch with small substrate and less cover. Our observations demonstrate that habitat partitioning occurs and likely reduces intraspecific and interspecific competition which may increase the potential production of all four species in sympatry. Consequently, these findings provide important information for resource managers charged with managing, protecting, and enhancing Great Lakes tributaries where all or some of these species occur.

  10. Population ecology and habitat preferences of juvenile flounder Platichthys flesus (Actinopterygii: Pleuronectidae) in a temperate estuary

    NASA Astrophysics Data System (ADS)

    Souza, Allan T.; Dias, Ester; Nogueira, Ana; Campos, Joana; Marques, João C.; Martins, Irene

    2013-05-01

    The European flounder Platichthys flesus is a widely distributed epibenthic species and an important component of demersal fish assemblages in the European Atlantic coastal waters. In Portuguese estuaries, this species reaches high densities, especially in Minho estuary (NW Iberian Peninsula, Europe), potentially playing an important role in the system's ecology. In this context, the population structure, production and the habitat use of juvenile P. flesus were investigated. Sampling took place monthly, from February 2009 until July 2010 along the entire estuarine gradient (5 sampling stations distributed in the first 29 km from the river mouth, with S1 located near the river mouth, S2 inside a salt marsh, S3 in a salinity transition zone, while S4 and S5 were located in the upper estuary). Flounder's density varied significantly among sampling stations and seasons (two-way PERMANOVA: p < 0.001), with the majority of the individuals being found during the spring (30.1%) and in S3 and S4 (72.6%). Males and females presented an even distribution, with a higher proportion of males observed during summer. Fish length also differed among sampling stations and seasons (two-way PERMANOVA: p < 0.001), with larger fishes being found in S1 during the autumn (168.50 ± 59.50 mm) and the smallest in S4 during the spring (33.80 ± 3.12 mm). Size classes associated differently with environmental variables, with larger juveniles being more abundant in the downstream areas of the estuary, whereas smaller juveniles were related to higher water temperatures, suggesting a habitat segregation of P. flesus of different sizes. The fish condition of P. flesus in Minho estuary was higher than in other systems, probably due to the dominance of juveniles on the population. Also, the densities found in this estuary were up to 32 times higher than in other locations, suggesting that Minho estuary is an important nursery area for the species. The estimated secondary production of P. flesus

  11. Walla Walla River Fish Passage Operations Program, 2000-2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Brian C.; Duke, Bill B.

    2004-02-01

    In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow measures, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adultmore » and juvenile salmonids in the basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2000-2001 project year, there were 624 summer steelhead (Oncorhynchus mykiss), 24 bull trout (Salvelinus confluentus), and 47 spring chinook (O. tshawytscha) counted at the Nursery Bridge Dam adult trap between December 27, 2000 and June 7, 2001. The Little Walla Walla River juvenile trap was not operated this year. The project transported 1600 adult spring chinook from Ringold Springs Hatchery to the South Fork Walla Walla Brood Holding Facility and outplanted 1156 for natural spawning in the basin. The project also provided equipment for transportation of juveniles captured during the construction fish salvage at Nursery Bridge Dam.« less

  12. Otolith development in larval and juvenile Schizothorax davidi: ontogeny and growth increment characteristics

    NASA Astrophysics Data System (ADS)

    Yan, Taiming; Hu, Jiaxiang; Cai, Yueping; Xiong, Sen; Yang, Shiyong; Wang, Xiongyan; He, Zhi

    2017-09-01

    Laboratory-reared Schizothorax davidi larvae and juveniles were examined to assess the formation and characteristics of David's schizothoracin otoliths. Otolith development was observed and their formation period was verified by monitoring larvae and juveniles of known age. The results revealed that lapilli and sagittae developed before hatching, and the first otolith increment was identified at 2 days post hatching in both. The shape of lapilli was relatively stable during development compared with that of sagittae; however, growth of four sagittae and lapilli areas was consistent, but the posterior area grew faster than the anterior area and the ventral surface grew faster than the dorsal surface. Similarly, the sum length of the radius of the anterior and posterior areas on sagittae and lapilli were linearly and binomially related to total fish length, respectively. Moreover, daily deposition rates were validated by monitoring knownage larvae and juveniles. The increase in lapilli width was 1.88±0.080 0 μm at the ninth increment, which reached a maximum and the decreased gradually toward the otolith edge, whereas that of sagittae increased more slowly. These results illustrate the developmental biology of S. davidi, which will aid in population conservation and fish stock management.

  13. Glucose metabolism and gene expression in juvenile zebrafish (Danio rerio) challenged with a high carbohydrate diet: effects of an acute glucose stimulus during late embryonic life.

    PubMed

    Rocha, Filipa; Dias, Jorge; Engrola, Sofia; Gavaia, Paulo; Geurden, Inge; Dinis, Maria Teresa; Panserat, Stephane

    2015-02-14

    Knowledge on the role of early nutritional stimuli as triggers of metabolic pathways in fish is extremely scarce. The objective of the present study was to assess the long-term effects of glucose injection in the yolk (early stimulus) on carbohydrate metabolism and gene regulation in zebrafish juveniles challenged with a high-carbohydrate low-protein (HC) diet. Eggs were microinjected at 1 d post-fertilisation (dpf) with either glucose (2 M) or saline solutions. Up to 25 dpf, fish were fed a low-carbohydrate high-protein (LC) control diet, which was followed by a challenge with the HC diet. Survival and growth of 35 dpf juveniles were not affected by injection or the HC diet. Glucose stimulus induced some long-term metabolic changes in the juveniles, as shown by the altered expression of genes involved in glucose metabolism. On glycolysis, the expression levels of hexokinase 1 (HK1) and phosphofructokinase-6 (6PFK) were up-regulated in the visceral and muscle tissues, respectively, of juveniles exposed to the glucose stimulus, indicating a possible improvement in glucose oxidation. On gluconeogenesis, the inhibition of the expression levels of PEPCK in fish injected with glucose suggested lower production of hepatic glucose. Unexpectedly, fructose-1,6-bisphosphatase (FBP) expression was induced and 6PFK expression reduced by glucose stimulus, leaving the possibility of a specific regulation of the FBP-6PFK metabolic cycle. Glucose metabolism in juveniles was estimated using a [¹⁴C]glucose tracer; fish previously exposed to the stimulus showed lower retention of [¹⁴C]glucose in visceral tissue (but not in muscle tissue) and, accordingly, higher glucose catabolism, in comparison with the saline group. Globally, our data suggest that glucose stimulus at embryo stage has the potential to alter particular steps of glucose metabolism in zebrafish juveniles.

  14. The effects of river impoundment and hatchery rearing on the migration behavior of juvenile steelhead in the Lower Snake River, Washington

    USGS Publications Warehouse

    Plumb, J.M.; Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2006-01-01

    We used radiotelemetry to monitor the migration behavior of juvenile hatchery and wild steelhead Oncorhynchus mykiss as they migrated through Lower Granite Reservoir and Dam on the lower Snake River, Washington. From 1996 to 2001, we surgically implanted radio transmitters in 1,540 hatchery steelhead and 1,346 wild steelhead. For analysis, we used the inverse Gaussian distribution to describe travel time distributions for cohorts (>50 fish) of juvenile steelhead as they migrated downriver. Mean travel rates were significantly related to reach- and discharge-specific water velocities. Also, mean travel rates near the dam were slower for a given range of water velocities than were mean travel rates through the reservoir, indicating that the presence of the dam caused delay to juvenile steelhead over and above the effect of water velocity. Hatchery steelhead took about twice as long as wild steelhead to pass the dam as a result of the higher proportions of hatchery steelhead traveling upriver from the dam. Because upriver travel and the resulting migration delay might decrease survival, it is possible that hatchery steelhead survive at lower rates than wild steelhead. Our analysis identified a discharge threshold (???2,400 m3/s) below which travel time and the percentage of fish traveling upriver from the dam increased rapidly, providing support for the use of minimum flow targets to mitigate for fish delay and possibly enhance juvenile steelhead survival.

  15. Climatic forcing and larval dispersal capabilities shape the replenishment of fishes and their habitat-forming biota on a tropical coral reef.

    PubMed

    Wilson, Shaun K; Depcyznski, Martial; Fisher, Rebecca; Holmes, Thomas H; Noble, Mae M; Radford, Ben T; Rule, Michael; Shedrawi, George; Tinkler, Paul; Fulton, Christopher J

    2018-02-01

    Fluctuations in marine populations often relate to the supply of recruits by oceanic currents. Variation in these currents is typically driven by large-scale changes in climate, in particular ENSO (El Nino Southern Oscillation). The dependence on large-scale climatic changes may, however, be modified by early life history traits of marine taxa. Based on eight years of annual surveys, along 150 km of coastline, we examined how ENSO influenced abundance of juvenile fish, coral spat, and canopy-forming macroalgae. We then investigated what traits make populations of some fish families more reliant on the ENSO relationship than others. Abundance of juvenile fish and coral recruits was generally positively correlated with the Southern Oscillation Index (SOI), higher densities recorded during La Niña years, when the ENSO-influenced Leeuwin Current is stronger and sea surface temperature higher. The relationship is typically positive and stronger among fish families with shorter pelagic larval durations and stronger swimming abilities. The relationship is also stronger at sites on the coral back reef, although the strongest of all relationships were among the lethrinids ( r  = .9), siganids ( r  = .9), and mullids ( r  = .8), which recruit to macroalgal meadows in the lagoon. ENSO effects on habitat seem to moderate SOI-juvenile abundance relationship. Macroalgal canopies are higher during La Niña years, providing more favorable habitat for juvenile fish and strengthening the SOI effect on juvenile abundance. Conversely, loss of coral following a La Niña-related heat wave may have compromised postsettlement survival of coral dependent species, weakening the influence of SOI on their abundance. This assessment of ENSO effects on tropical fish and habitat-forming biota and how it is mediated by functional ecology improves our ability to predict and manage changes in the replenishment of marine populations.

  16. Larval and juvenile Pacific herring Clupea pallasii are not susceptible to infectious hematopoietic necrosis under laboratory conditions

    USGS Publications Warehouse

    Hart, L.M.; Traxler, G.S.; Garver, K.A.; Richard, J.; Gregg, J.L.; Grady, C.A.; Kurath, G.; Hershberger, P.K.

    2011-01-01

    Infectious hematopoietic necrosis (IHN) leads to periodic epidemics among certain wild and farmed fish species of the Northeast (NE) Pacific. The source of the IHN virus (IHNV) that initiates these outbreaks remains unknown; however, a leading hypothesis involves viral persistence in marine host species such as Pacific herring Clupea pallasii. Under laboratory conditions we exposed specific pathogen-free (SPF) larval and juvenile Pacific herring to 103 to 104 plaque-forming units (pfu) of IHNV ml–1 by waterborne immersion. Cumulative mortalities among exposed groups were not significantly different from those of negative control groups. After waterborne exposure, IHNV was transiently recovered from the tissues of larvae but absent in tissues of juveniles. Additionally, no evidence of viral shedding was detected in the tank water containing exposed juveniles. After intraperitoneal (IP) injection of IHNV in juvenile herring with 103 pfu, IHNV was recovered from the tissues of sub-sampled individuals for only the first 5 d post-exposure. The lack of susceptibility to overt disease and transient levels of IHNV in the tissues of exposed fish indicate that Pacific herring do not likely serve a major epizootiological role in perpetuation of IHNV among free-ranging sockeye salmon Oncorhynchus nerka and farmed Atlantic salmon Salmo salar in the NE Pacific.

  17. Colonization and nursery habitat use patterns of larval and juvenile flatfish species in a small temperate estuary

    NASA Astrophysics Data System (ADS)

    Primo, Ana Lígia; Azeiteiro, Ulisses M.; Marques, Sónia C.; Martinho, Filipe; Baptista, Joana; Pardal, Miguel A.

    2013-02-01

    Migrations between coastal and estuarine nursery areas are essential for successful completion of the life cycle of several marine fish. The present study evaluates the use of a small temperate estuary, the Mondego, Portugal, as a nursery habitat for several flatfishes during their early life stages. Data from seasonal and diel larval sampling at the mouth of the estuary and both larvae and juvenile monthly spatial distribution in the estuary (2005-2009) were gathered in order to investigate the life cycle of Platichthys flesus, Solea solea and Solea senegalensis. Larvae entrance in the estuary occurred mainly during summer and autumn with no evidence for diel or tidal vertical stratification. S. senegalensis larvae were present in all seasons at downstream areas presenting low successful settlement and juveniles' densities inside the estuary. Conversely, P. flesus and S. solea were mainly present as juveniles with upstream areas being preferred by flounder. Both species larvae seemed to settle in nearby coastal areas. The importance of the Mondego estuary for flatfishes differed according to the species, playing an important role mainly during the first year for all species. The present study highlights the importance of integrating larval and juvenile stages of fish to assess the very important role of estuaries as nursery areas.

  18. Marine protected areas increase temporal stability of community structure, but not density or diversity, of tropical seagrass fish communities

    PubMed Central

    Jiddawi, Narriman S.; Eklöf, Johan S.

    2017-01-01

    Marine protected areas (MPAs) have been shown to increase long-term temporal stability of fish communities and enhance ecosystem resilience to anthropogenic disturbance. Yet, the potential ability of MPAs to buffer effects of environmental variability at shorter time scales remains widely unknown. In the tropics, the yearly monsoon cycle is a major natural force affecting marine organisms in tropical regions, and its timing and severity are predicted to change over the coming century, with potentially severe effects on marine organisms, ecosystems and ecosystem services. Here, we assessed the ability of MPAs to buffer effects of monsoon seasonality on seagrass-associated fish communities, using a field survey in two MPAs (no-take zones) and two unprotected (open-access) sites around Zanzibar (Tanzania). We assessed the temporal stability of fish density and community structure within and outside MPAs during three monsoon seasons in 2014–2015, and investigated several possible mechanisms that could regulate temporal stability. Our results show that MPAs did not affect fish density and diversity, but that juvenile fish densities were temporally more stable within MPAs. Second, fish community structure was more stable within MPAs for juvenile and adult fish, but not for subadult fish or the total fish community. Third, the observed effects may be due to a combination of direct and indirect (seagrass-mediated) effects of seasonality and, potentially, fluctuating fishing pressure outside MPAs. In summary, these MPAs may not have the ability to enhance fish density and diversity and to buffer effects of monsoon seasonality on the whole fish community. However, they may increase the temporal stability of certain groups, such as juvenile fish. Consequently, our results question whether MPAs play a general role in the maintenance of biodiversity and ecosystem functioning under changing environmental conditions in tropical seagrass fish communities. PMID:28854231

  19. Influence of riparian canopy on macroinvertebrate composition and food habits of juvenile salmonids in several Oregon streams.

    Treesearch

    William R. Meehan

    1996-01-01

    The community composition of macroinvertebrates and the feeding habits of juvenile salmonids were studied in eight Oregon streams. Benthic, drift, sticky trap, and water trap samples were taken over a 3-year period, along with stomach samples of the fish. Samples were taken in stream reaches with and without riparian canopy. Both main effects—fish diet versus...

  20. Effects of a Novel Acoustic Transmitter on Swimming Performance and Predator Avoidance of Juvenile Chinook Salmon: Determination of a Size Threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Ricardo W.; Ashton, Neil K.; Brown, Richard S.

    Abstract Telemetry studies are used worldwide to investigate the behavior and migration of fishes. The miniaturization of acoustic transmitters enables researchers to tag smaller fish, such as the juvenile life stages of salmon, thus representing a greater proportion of the population of interest. The development of an injectable acoustic transmitter has led to research determining the least invasive and quickest method of tag implantation. Swimming performance and predator avoidance were examined. To quantify critical swimming speed (Ucrit; an index of prolonged swimming performance) and predator avoidance for juvenile Chinook salmon (Oncorhynchus tshawytscha), fish were split into three groups: (1) fishmore » implanted with a dummy injectable acoustic transmitter (IAT treatment), (2) fish implanted with a dummy injectable acoustic transmitter and passive integrated transponder (PIT) tag (IAT+PIT treatment), and (3) an untagged control group. The Ucrits and predator avoidance capability of tagged fish were compared with untagged fish to determine if carrying an IAT adversely affected swimming performance or predator avoidance. Fish implanted with only an IAT had lower Ucrit values than untagged fish and a size threshold at 79 mm fork length was found. Conversely, Ucrit values for fish implanted with an IAT+PIT were not significantly different from untagged controls and no size threshold was found. Predator avoidance testing showed no significant difference for fish implanted with an IAT compared to untagged individuals, nor was there a significant difference for IAT+PIT fish compared to untagged fish.« less

  1. Evaluation of a Prototype Surface Flow Bypass for Juvenile Salmon and Steelhead at the Powerhouse of Lower Granite Dam, Snake River, Washington, 1996-2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Anglea, Steven M.; Adams, Noah S.

    2005-02-28

    A surface flow bypass provides a route in the upper water column for naturally, surface-oriented juvenile salmonids to safely migrate through a hydroelectric dam. Surface flow bypasses were recommended in several regional salmon recovery plans as a means to increase passage survival of juvenile salmonids at Columbia and Snake River dams. A prototype surface flow bypass, called the SBC, was retrofit on Lower Granite Dam and evaluated from 1996 to 2000 using biotelemetry and hydroacoustic techniques. In terms of passage efficiency, the best SBC configurations were a surface skimmer (99 m3/s [3,500 cfs], three entrances 5 m wide, 5 mmore » deep and one entrance 5 m wide, 15 m deep) and a single chute (99 m3/s, one entrance 5 m wide, 8.5 m deep). They each passed 62 ? 3% (95% confidence interval) of the total juvenile fish population that entered the section of the dam with the SBC entrances (Turbine Units 4-5). Smooth entrance shape and concentrated surface flow characteristics of these configurations are worth pursuing in designs for future surface flow bypasses. In addition, a guidance wall in the Lower Granite Dam forebay diverted the following percentages of juvenile salmonids away from Turbine Units 1-3 toward other passage routes, including the SBC: run-at-large 79 ? 18%; hatchery steelhead 86%; wild steelhead 65%; and yearling chinook salmon 66%. When used in combination with spill or turbine intake screens, a surface flow bypass with a guidance wall can produce a high level (> 90% of total project passage) of non-turbine passage and provide operational flexibility to fisheries managers and dam operators responsible for enhancing juvenile salmonid survival.« less

  2. The effects of temperature on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish (Carassius auratus, Cyprinus carpio and Spinibarbus sinensis).

    PubMed

    Pang, Xu; Cao, Zhen-Dong; Fu, Shi-Jian

    2011-07-01

    To test whether the effects of temperature on the metabolic mode changed among different fish species, we investigated the specific dynamic action (SDA) and swimming performance of fasting and fed fish at 15 and 25°C in three juvenile Cyprinidae fish species: goldfish (Carassius auratus), common carp (Cyprinus carpio) and qingbo (Spinibarbus sinensis). Both taxon and temperature had significant effects on the resting oxygen consumption rate (M˙O(rest)), SDA and swimming performance (p<0.05). In addition, the effect of temperature differed significantly among the different species (interaction effect, p<0.05). Under the low temperature condition, digestion had no effect on either critical swimming speed (U(crit)) or the active MO(2) (MO(active)) for all fish species (additive metabolic mode). When the temperature was increased from 15 to 25°C, the metabolic scope (MS) for digestion increased approximately 182, 49 and 17%, and the MS for locomotion increased approximately 129, 58 and 138% in goldfish, common carp and qingbo, respectively. The total metabolic demands for both digestion and locomotion (i.e., the sum of digestive MS and locomotive MS) increased approximately 143, 56 and 112% in goldfish, common carp and qingbo, respectively. The total MS for both digestion and locomotion (the difference between MO(active) in fed fish and MO(rest) in fasting fish) increased approximately 106, 58 and 78% in goldfish, common carp and qingbo, respectively. Thus, the MS for locomotion in fed goldfish decreased due to the large increase in digestive function at the high temperature, and the U(crit) of fed goldfish decreased by 11% compared to that of fasting fish (p<0.05) (digestion-priory metabolic mode). The metabolic mode of qingbo changed to locomotion-priority mode, as illustrated by the large increase in locomotive MS in response to the increase in temperature. In the common carp, temperature had no effect on metabolic mode as illustrated by the parallel increases in

  3. Safety of fish therapeutants to glochidia of the plain pocketbook mussel during encystment on largemouth bass

    USGS Publications Warehouse

    Rach, J.J.; Brady, T.; Schreier, Theresa M.; Aloisi, D.

    2006-01-01

    Mussel biologists and fisheries managers have developed propagation techniques to duplicate the natural glochidia infestation on host fish. However, in intensive culture situations, fish diseases may threaten the survival of both fish and their attached glochidia and chemical treatments may be required to control a disease epizootic. Five therapeutants were evaluated for their safety to largemouth bass Micropterus salmoides encysted with mussel glochidia by comparing the number of sloughed glochidia in the chemical treatment groups with that of an untreated control group. Largemouth bass were infested with glochidia from the plain pocketbook mussel Lampsilis cardium and treated with 20 mg chloramine-T/L, 2 mg Cutrine/L, or 200 mg formalin/L (trial 1) and 200 mg formalin/L, 100 mg hydrogen peroxide/L, or 20,000 mg sodium chloride/L (trial 2). Chemicals were applied for 60 min (15 min in the case of sodium chloride in trial 2) once every other day, for a total of three treatments (six in the case of formalin in trial 2). After the first treatment, aquaria were siphoned each weekday to determine the number of sloughed glochidia or transformed juveniles. In trial 1, the initial mean number of glochidia per fish ranged from 257 to 294, and approximately 94% of the glochidia transformed to juveniles. In trial 2, the initial mean number of glochidia per fish ranged from 97 to 115, and approximately 91% of the glochidia transformed to juveniles. The mean percent of sloughed glochidia varied by less than 2% among all test groups in each trial. There were no significant differences (P < 0.05) in the number of sloughed glochidia or transformed juveniles among control or treatment groups in either trial. Therapeutic treatment of diseased fish with chloramine-T, Cutrine, formalin, hydrogen peroxide, or sodium chloride at the treatment regimens evaluated are viable options for enhancing the survival of fish encysted with glochidia.

  4. Habitat used by juvenile lake sturgeon (Acipenser fulvescens) in the North Channel of the St. Clair River (Michigan, USA)

    USGS Publications Warehouse

    Boase, James C.; Manny, Bruce A.; Donald, Katherine A.L.; Kennedy, Gregory W.; Diana, James S.; Thomas, Michael V.; Chiotti, Justin A.

    2014-01-01

    Lake sturgeon (Acipenser fulvescens) occupy the St. Clair River, part of a channel connecting lakes Huron and Erie in the Laurentian Great Lakes. In the North Channel of the St. Clair River, juvenile lake sturgeon (3–7 years old and 582–793 mm in length) were studied to determine movement patterns and habitat usage. Fourteen juveniles were implanted with ultrasonic transmitters and tracked June–August of 2004, 2005 and 2006. Telemetry data, Geographic Information System software, side-scan sonar, video images of the river bottom, scuba diving, and benthic substrate samples were used to determine the extent and composition of habitats they occupied. Juvenile lake sturgeon habitat selection was strongly related to water depth. No fish were found in 700 mm in length selected sand and gravel areas mixed with zebra mussels and areas dominated by zebra mussels, while fish < 700 mm used these habitat types in proportion to their availability.

  5. Constraints of body size and swimming velocity on the ability of juvenile rainbow trout to endure periods without food

    USGS Publications Warehouse

    Simpkins, D.G.; Hubert, W.A.; Martinez Del Rio, C.; Rule, D.C.

    2004-01-01

    The hypothesis that body size and swimming velocity affect proximate body composition, wet mass and size-selective mortality of fasted fish was evaluated using small (107 mm mean total length, LT) and medium (168 mm mean LT) juvenile rainbow trout Oncorhynchus mykiss that were sedentary or swimming (c. 1 or 2 body lengths-1) and fasted for 147 days. The initial amount of energy reserves in the bodies of fish varied with L T. Initially having less lipid mass and relatively higher mass-specific metabolic rates caused small rainbow trout that were sedentary to die of starvation sooner and more frequently than medium-length fish that were sedentary. Swimming at 2 body length s-1 slightly increased the rate of lipid catabolism relative to 1 body length s-1, but did not increase the occurrence of mortality among medium fish. Death from starvation occurred when fish had <3.2% lipid remaining in their bodies. Juvenile rainbow trout endured long periods without food, but their ability to resist death from starvation was limited by their length and initial lipid reserves. ?? 2004 The Fisheries Society of the British Isles.

  6. Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: An in vivo approach using (14)C-starch.

    PubMed

    Rocha, Filipa; Dias, Jorge; Geurden, Inge; Dinis, Maria Teresa; Panserat, Stephane; Engrola, Sofia

    2016-11-01

    The concept of nutritional programming was investigated in order to enhance the use of dietary carbohydrates in gilthead seabream juveniles. We assessed the long-term effects of high-glucose stimuli, exerted at the larval stage, on the growth performance, nutrient digestibility and metabolic utilization and gene expression of seabream juveniles, challenged with a high-carbohydrate intake. During early development, a group of larvae (control, CTRL) were kept under a rich-protein-lipid feeding regime whereas another group (GLU) was subjected to high-glucose stimuli, delivered intermittently over time. At juvenile stage, triplicate groups (IBW: 2.5g) from each fish nutritional background were fed a high-protein (59.4%) low-carbohydrate (2.0%) diet before being subjected to a low-protein (43.0%) high-carbohydrate (33.0%) dietary challenge for 36-days. Fish from both treatments increased by 8-fold their initial body weight, but neither growth rate, feed intake, feed and protein efficiency, nutrient retention (except lipids) nor whole-body composition were affected (P˃0.05) by fish early nutritional history. Nutrient digestibility was also similar among both groups. The metabolic fate of (14)C-starch and (14)C-amino acids tracers was estimated; GLU juveniles showed higher absorption of starch-derived glucose in the gut, suggesting an enhanced digestion of carbohydrates, while amino acid use was not affected. Moreover, glucose was less used for de novo synthesis of hepatic proteins and muscle glycogen from GLU fish (P<0.05). Our metabolic data suggests that the early glucose stimuli may alter carbohydrate utilization in seabream juveniles. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A standard operating procedure for the surgical implantation of transmitters in juvenile salmonids

    USGS Publications Warehouse

    Liedtke, T.L.; Beeman, J.W.; Gee, L.P.

    2012-01-01

    Biotelemetry is a useful tool to monitor the movements of animals and is widely applied in fisheries research. Radio or acoustic technology can be used, depending on the study design and the environmental conditions in the study area. A broad definition of telemetry also includes the use of Passive Integrated Transponder (PIT) tags, either separately or with a radio or acoustic transmitter. To use telemetry, fish must be equipped with a transmitter. Although there are several attachment procedures available, surgical implantation of transmitters in the abdominal cavity is recognized as the best technique for long-term telemetry studies in general (Stasko and Pincock, 1977; Winter, 1996; Jepsen, 2003), and specifically for juvenile salmonids, Oncorhynchus spp. (Adams and others, 1998a, 1998b; Martinelli and others, 1998; Hall and others, 2009). Studies that use telemetry assume that the processes by which the animals are captured, handled, and tagged, as well as the act of carrying the transmitter, will have minimal effect on their behavior and performance. This assumption, commonly stated as a lack of transmitter effects, must be valid if telemetry studies are to describe accurately the movements and behavior of an entire population of interest, rather than the subset of that population that carries transmitters. This document describes a standard operating procedure (SOP) for surgical implantation of radio or acoustic transmitters in juvenile salmonids. The procedures were developed from a broad base of published information, laboratory experiments, and practical experience in tagging thousands of fish for numerous studies of juvenile salmon movements near Columbia River and Snake River hydroelectric dams. Staff from the Western Fisheries Research Center's Columbia River Research Laboratory (CRRL) frequently have used telemetry studies to evaluate new structures or operations at hydroelectric dams in the Columbia River Basin, and these evaluations typically

  8. Host fishes and host-attracting behavior of Lampsilis altilis and Villosa vibex (Bivalvia: Unionidae)

    Treesearch

    Wendell R. Haag; Melvin L. Warren; Mahala Shillingsford

    1999-01-01

    Suitable host fishes were identified for two species of freshwater mussels (Unionidae) from the Coosa River drainage, Mobile Basin: Lampsilis altilis, the fine-lines pocketbook and Villosa vibex, the southern rainbow. Suitable hosts are defined as fishes that produce juvenile mussels from glochidial infestations in the laboratory....

  9. Energetic cost of ichthyophonus infection in Juvenile Pacific Herring (Clupea pallasii)

    USGS Publications Warehouse

    Vollenweider, Johanna J.; Gregg, J.L.; Heintz, R.A.; Hershberger, P.K.

    2011-01-01

    The energetic costs of fasting and Ichthyophonus infection were measured in juvenile Pacific herring (Clupea pallasii) in a lab setting at three temperatures. Infected herring incurred significant energetic costs, the magnitude of which depended on fish condition at the time of infection (fat versus lean). Herring that were fed continually and were in relatively good condition at the time of infection (fat) never stored lipid despite ad libitum feeding. In feeding herring, the energetic cost of infection was a 30 reduction in total energy content relative to controls 52 days post infection. Following food deprivation (lean condition), infection caused an initial delay in the compensatory response of herring. Thirty-one days after re-feeding, the energetic cost of infection in previously-fasted fish was a 32 reduction in total energy content relative to controls. Body composition of infected herring subsequently recovered to some degree, though infected herring never attained the same energy content as their continuously fed counterparts. Fifty-two days after re-feeding, the energetic cost of infection in previously-fasted fish was a 6 reduction in total energy content relative to controls. The greatest impacts of infection occurred in colder temperatures, suggesting Ichthyophonus-induced reductions in body condition may have greater consequences in the northern extent of herring's range, where juveniles use most of their energy reserves to survive their first winter. Copyright ?? 2011 Johanna J. Vollenweider et al.

  10. Models to predict suitable habitat for juvenile bull trout in Washington state

    Treesearch

    Jason B. Dunham; G. L. Chandler

    2001-01-01

    This report describes results of research conducted in 2000 to develop models of suitable habitat for juvenile bull trout (Salvelinus confluentus) in Washington State. The research is associated with a cooperative agreement (Agreement #134100H001) between U.S. Fish and Wildlife Service (USFWS) and the U.S. Forest Service, Rocky Mountain Research...

  11. Holding of juvenile salmonids for surgical implantation of electronic tags: a review and recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Eric W.; Colotelo, Alison HA; Brown, Richard S.

    Many telemetry based studies require that fish be sampled from the wild and then held for some amount of time both prior to and after the implantation of a transmitter. However, the effects of such holding (or the lack thereof) are often overlooked. Pre-surgical holding often occurs to facilitate logistical needs of research projects and as an attempt to minimize negative physiological effects due to capture and handling stress. Further, post-surgical holding time and conditions greatly influence the physiological state of fish prior to being returned to the wild. This paper reviews pertinent studies pertaining to the effects of surgicalmore » holding on the behavior, physiology, and survival of fishes, with particular emphasis on juvenile salmonids. The effects of individual aspects of surgical holding such as stressors, time, holding conditions and water quality are also examined. Recommendations regarding certain aspects of surgical holding (e.g., holding duration) are offered with a goal of reducing bias related to the surgical process. Pre- and post-surgical holding times of 18–36 h are suggested as a general guideline for juvenile salmonids.« less

  12. Movement and habitat use of stocked juvenile paddlefish in the Ohio River system, Pennsylvania

    USGS Publications Warehouse

    Barry, P.M.; Carline, R.F.; Argent, D.G.; Kimmel, William G.

    2007-01-01

    In 2002 and 2003 we released a total of 66 hatchery-reared, juvenile paddlefish Polyodon spathula (249-318 mm eye-to-fork length) in Pennsylvania's upper Ohio River system and tracked them with radiotelemetry in two different pools of the Ohio and Allegheny rivers to determine (1) poststocking survival, (2) whether release site influences survival, (3) dispersal distance and direction of movement, and (4) habitat selection. Survival was fair (mean = 78% in 2002 and 67% in 2003) for 0.23-0.43-kg paddlefish after 9 weeks. In 2003, fish stocked in the upstream half of the pool had a greater survival (100%) after 63 d than those stocked in the downstream half (44%). Within 4 d of stocking, 77% of juvenile paddlefish were located in tailwaters, and fish found these habitats regardless of stocking location. Habitat measurements at all postdispersal locations had median depths of 5.2 and 6.1 m in 2002 and 2003, respectively, and median near-surface velocities of 0.17 and 0.12 m/s. Fish selected tailwater habitats and avoided habitats with disturbance from commercial barge traffic in both years. ?? Copyright by the American Fisheries Society 2007.

  13. Incorporating movement patterns to improve survival estimates for juvenile bull trout

    USGS Publications Warehouse

    Bowerman, Tracy; Budy, Phaedra

    2012-01-01

    Populations of many fish species are sensitive to changes in vital rates during early life stages, but our understanding of the factors affecting growth, survival, and movement patterns is often extremely limited for juvenile fish. These critical information gaps are particularly evident for bull trout Salvelinus confluentus, a threatened Pacific Northwest char. We combined several active and passive mark–recapture and resight techniques to assess migration rates and estimate survival for juvenile bull trout (70–170 mm total length). We evaluated the relative performance of multiple survival estimation techniques by comparing results from a common Cormack–Jolly–Seber (CJS) model, the less widely used Barker model, and a simple return rate (an index of survival). Juvenile bull trout of all sizes emigrated from their natal habitat throughout the year, and thereafter migrated up to 50 km downstream. With the CJS model, high emigration rates led to an extreme underestimate of apparent survival, a combined estimate of site fidelity and survival. In contrast, the Barker model, which allows survival and emigration to be modeled as separate parameters, produced estimates of survival that were much less biased than the return rate. Estimates of age-class-specific annual survival from the Barker model based on all available data were 0.218±0.028 (estimate±SE) for age-1 bull trout and 0.231±0.065 for age-2 bull trout. This research demonstrates the importance of incorporating movement patterns into survival analyses, and we provide one of the first field-based estimates of juvenile bull trout annual survival in relatively pristine rearing conditions. These estimates can provide a baseline for comparison with future studies in more impacted systems and will help managers develop reliable stage-structured population models to evaluate future recovery strategies.

  14. Habitat Suitability Index Models: Juvenile English sole

    USGS Publications Warehouse

    Toole, Christopher L.; Barnhart, Roger A.; Onuf, Christopher P.

    1987-01-01

    English sole (Parophrys vetulus) is one of the major commercial groundfish species caught along the Pacific coast. Landings in the United States and Canada averaged 4,947 t/yr between 1975 and 1984, placing it third in importance among flatfish caught by Pacific coast trawlers (Pacific Marine Fisheries Commission 1985). Juvenile English sole are also among the most abundant fishes in many bays and estuaries along the Pacific (Westrheim 1955; Sopher 1974; Ambrose 1976; Rogers 1985). The English sole is not an important recreational species.

  15. Comparative Allometric Growth of the Mimetic Ephippid Reef Fishes Chaetodipterus faber and Platax orbicularis

    PubMed Central

    Barros, Breno; Sakai, Yoichi; Pereira, Pedro H. C.; Gasset, Eric; Buchet, Vincent; Maamaatuaiahutapu, Moana; Ready, Jonathan S.; Oliveira, Yrlan; Giarrizzo, Tommaso; Vallinoto, Marcelo

    2015-01-01

    Mimesis is a relatively widespread phenomenon among reef fish, but the ontogenetic processes relevant for mimetic associations in fish are still poorly understood. In the present study, the allometric growth of two allopatric leaf-mimetic species of ephippid fishes, Chaetodipterus faber from the Atlantic and Platax orbicularis from the Indo-Pacific, was analyzed using ten morphological variables. The development of fins was considered owing to the importance of these structures for mimetic behaviors during early life stages. Despite the anatomical and behavioral similarities in both juvenile and adult stages, C. faber and P. orbicularis showed distinct patterns of growth. The overall shape of C. faber transforms from a rounded-shape in mimetic juveniles to a lengthened profile in adults, while in P. orbicularis, juveniles present an oblong profile including dorsal and anal fins, with relative fin size diminishing while the overall profile grows rounder in adults. Although the two species are closely-related, the present results suggest that growth patterns in C. faber and P. orbicularis are different, and are probably independent events in ephippids that have resulted from similar selective processes. PMID:26630347

  16. Protein-sparing effect of carbohydrate in diets for juvenile turbot Scophthalmus maximus reared at different salinities

    NASA Astrophysics Data System (ADS)

    Zeng, Lin; Lei, Jilin; Ai, Chunxiang; Hong, Wanshu; Liu, Bin

    2015-01-01

    The aim of the present study was to investigate the protein-sparing effect of carbohydrate in diets for juvenile turbot ( Scophthalmus maximus) reared at five salinities (12, 18, 24, 30, and 36). The fish were fed three isocaloric and isolipidic diets for 60 days. The results show that specific growth rate (SGR) and feed conversion efficiency (FCE) were higher in fish reared at salinities of 18 and 36, but lower at 12. Fish fed with diet C25P40 (25% carbohydrate and 40% protein) had lower SGR and FCE values compared with those fed with the C5P52 (5% carbohydrate and 52% protein) and C15P46 (15% carbohydrate and 46% protein) diets; however, there was no statistical difference between diet C5P52 and C15P46. SGR and FCE values were unaffected by diet composition in fish reared at salinity 36. Hepatic lipogenic enzyme activities were higher in fish reared at 18 and 36, but lower at 12, while glucokinase (GK) activity was higher in fish reared at 12, and lower at 18 and 36. Dietary starch enhanced GK activity while depressing lipogenic enzyme activity. However, lipogenic enzyme activity increased with increasing dietary starch in fish reared at 36. It is recommended that salinity should be maintained >12 in the farming of juvenile turbot. In addition, an increase in gelatinized starch from 5% to 15% could spare 6% dietary protein in fish reared at salinities of 18-30, while higher salinity (36) could improve dietary carbohydrate use and enhance the protein-sparing effect, which is linked with the induction of lipogenic capacities.

  17. Exposure to teflubenzuron negatively impacts exploratory behavior, learning and activity of juvenile European lobster (Homarus gammarus).

    PubMed

    Cresci, Alessandro; Samuelsen, Ole B; Durif, Caroline M F; Bjelland, Reidun M; Skiftesvik, Anne Berit; Browman, Howard I; Agnalt, Ann-Lisbeth

    2018-09-30

    Infestations with salmon lice, a parasitic copepod, is a major problem in the salmon farming industry. Teflubenzuron is an in-feed pharmaceutical applied to control lice outbreaks; the standard medication is 10 mg per kg fish per day for seven days. Surveys reveal that teflubenzuron accumulates and persists in the sediment around fish farms and causes deformities and mortality in juvenile European lobster (Homarus gammarus), a species commonly found in the vicinity of salmon farms in Norway. To date, there is no information on sub-lethal effects of teflubenzuron on, for example, behavior. We conducted an experiment to assess possible difference in the shelter seeking behavior of teflubenzuron-exposed (N = 19) vs. not exposed (N = 19) H. gammarus juveniles. The teflubenzuron-exposed juveniles had been given very low concentrations, 1.7 µg per pellet twice per week for 113 days prior to this experiment. The concentration of teflubenzuron was estimated to be less than 1 ng/g lobster when they were tested in the behavior experiment. Animals were placed in a lane with a shelter at one end. Once a lobster had found and entered the shelter, they were repeatedly displaced back to the opposite end of the lane, for a total of 3 repeated runs per animal. Three of the exposed juveniles failed to settle in the shelter, and the remaining teflubenzuron-exposed animals took significantly more time to explore the environment and to find and recognize shelter. Furthermore, exposed lobsters also exhibited slower walking speed compared to the controls. These results demonstrate that teflubenzuron significantly reduces exploratory behavior, learning and activity of juvenile H. gammarus. Thus, exposure to teflubenzuron could increase predation mortality of juvenile lobsters in the wild. Copyright © 2018. Published by Elsevier Inc.

  18. Food habits of Juvenile American Shad and dynamics of zooplankton in the lower Columbia River

    USGS Publications Warehouse

    Haskell, C.A.; Tiffan, K.F.; Rondorf, D.W.

    2006-01-01

    As many as 2.4 million adult American shad annually pass John Day Dam, Columbia River to spawn upriver, yet food web interactions of juvenile shad rearing in John Day Reservoir are unexplored. We collected zooplankton and conducted mid-water trawls in McNary (June-July) and John Day reservoirs (August-November) from 1994 through 1996 during the outmigration of subyearling American shad and Chinook salmon. Juvenile American shad were abundant and represented over 98% of the trawl catch in late summer. The five major taxa collected in zooplankton tows were Bosmina longirostris, Daphnia, cyclopoid cope-pods, rotifers, and calanoid copepods. We evaluated total crustacean zooplankton abundance and Daphnia biomass in relation to water temperature, flow, depth, diel period, and cross-sectional location using multiple regression. Differences in zooplankton abundance were largely due to differences in water temperature and flow. Spatial variation in total zooplankton abundance was observed in McNary Reservoir, but not in John Day Reservoir. Juvenile American shad generally fed on numerically abundant prey, despite being less preferred than larger bodied zooplankton. A decrease in cladoceran abundance and size in August coupled with large percentages of Daphnia in juvenile American shad stomachs indicated heavy planktivory. Smaller juvenile American shad primarily fed on Daphnia in August, but switched to more evasive copepods as the mean size of fish increased and Daphnia abundance declined. Because Daphnia are particularly important prey items for subyearling Chinook salmon in mainstem reservoirs in mid to late summer, alterations in the cladoceran food base is of concern for the management of outmigrating salmonids and other Columbia River fishes. ?? 2006 by the Northwest Scientific Association. All rights reserved.

  19. Reef ecology. Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery.

    PubMed

    Dixson, Danielle L; Abrego, David; Hay, Mark E

    2014-08-22

    Coral reefs are in global decline, converting from dominance by coral to dominance by seaweed. Once seaweeds become abundant, coral recovery is suppressed unless herbivores return to remove seaweeds, and corals then recruit. Variance in the recovery of fishes and corals is not well understood. We show that juveniles of both corals and fishes are repelled by chemical cues from fished, seaweed-dominated reefs but attracted to cues from coral-dominated areas where fishing is prohibited. Chemical cues of specific seaweeds from degraded reefs repulsed recruits, and cues from specific corals that are typical of healthy reefs attracted recruits. Juveniles were present at but behaviorally avoided recruiting to degraded reefs dominated by seaweeds. For recovery, degraded reefs may need to be managed to produce cues that attract, rather than repel, recruiting corals and fishes. Copyright © 2014, American Association for the Advancement of Science.

  20. Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHart, Michele; Berggren, Thomas J.; Filardo, Margaret

    2003-09-01

    The runoff volumes in 2002 were near average for the January to July period above Lower Granite Dam (80%) and The Dalles Dam (97%). The year 2002 hydrosystem operations and runoff conditions resulted in flows that were less than the seasonal Biological Opinion (Opinion) flow objectives at Lower Granite Dam for both the spring and summer period. The seasonal flow objectives for Priest Rapids and McNary dams were exceeded for the spring period, but at McNary Dam summer flow objectives were not met. While seasonal flow objectives were exceeded for the spring at McNary Dam, the 2002 season illustrated thatmore » Biological Opinion management to seasonal flow targets can result in conditions where a major portion of the juvenile fish migration migrates in conditions that are less than the flow objectives. The delay in runoff due to cool weather conditions and the inability of reservoirs to augment flows by drafting lower than the flood control elevations, resulted in flows less than the Opinion objectives until May 22, 2002. By this time approximately 73% of the yearling chinook and 56% of steelhead had already passed the project. For the most part, spill in 2002 was managed below the gas waiver limits for total dissolved gas levels and the NMFS action criteria for dissolved gas signs were not exceeded. The exception was at Lower Monumental Dam where no Biological Opinion spill occurred due to the need to conduct repairs in the stilling basin. Survival estimates obtained for PIT tagged juveniles were similar in range to those observed prior to 2001. A multi-year analysis of juvenile survival and the factors that affect it was conducted in 2002. A water transit time and flow relation was demonstrated for spring migrating chinook and steelhead of Snake River and Mid Columbia River origin. Returning numbers of adults observed at Bonneville Dam declined for spring chinook, steelhead and coho, while summer and fall chinook numbers increased. However, all numbers were far

  1. The Effects of Neutrally Buoyant, Externally Attached Transmitters on Swimming Performance and Predator Avoidance of Juvenile Chinook Salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janak, Jill M.; Brown, Richard S.; Colotelo, Alison HA

    2012-08-01

    The presence of an externally attached telemetry tag is often associated with the potential for impaired swimming performance (i.e., snags and drag) as well as increased susceptibility to predation, specifically for smaller fish. The effects on swimming performance due to the presence of a neutrally buoyant externally attached acoustic transmitter were examined by comparing critical swimming speeds (Ucrit) for juvenile Chinook salmon tagged with two different neutrally buoyant external transmitters (Type A and B), nontagged individuals, and those surgically implanted with the current JSATS acoustic transmitter. Fish tagged with the Type A and B designs had lower Ucrit when comparedmore » to nontagged individuals. However, there was no difference in Ucrit among fish tagged with Type A or B designs compared to those with surgically implanted tags. Further testing was then conducted to determine if predator avoidance ability was affected due to the presence of Type A tags when compared to nontagged fish. No difference was detected in the number of tagged and nontagged fish consumed by rainbow trout throughout the predation trials. The results of this study support the further testing on the efficacy of a neutrally buoyant externally attached telemetry tag for survival studies involving juvenile salmonids passing through hydro turbines.« less

  2. Characterization of stress coping style in Senegalese sole (Solea senegalensis) juveniles and breeders for aquaculture.

    PubMed

    Ibarra-Zatarain, Z; Fatsini, E; Rey, S; Chereguini, O; Martin, I; Rasines, I; Alcaraz, C; Duncan, N

    2016-11-01

    The aim of this work was to characterize stress coping styles of Senegalese sole ( Solea senegalensis ) juveniles and breeders and to select an operational behavioural screening test (OBST) that can be used by the aquaculture industry to classify and select between behavioural phenotypes in order to improve production indicators. A total of 61 juveniles and 59 breeders were subjected to five individual behavioural tests and two grouping tests. At the end of the individual tests, all animals were blood sampled in order to measure cortisol, glucose and lactate. Three tests (restraining, new environment and confinement) characterized the stress coping style behaviour of Senegalese sole juveniles and breeders and demonstrated inter-individual consistency. Further, the tests when incorporated into a principal components analysis (PCA) (i) identified two principal axes of personality traits: 'fearfulness-reactivity' and 'activity-exploration', (ii) were representative of the physiological axis of stress coping style, and (iii) were validated by established group tests. This study proposed for the first time three individual coping style tests that reliably represented proactive and reactive personalities of Senegalese sole juveniles and breeders. In addition, the three proposed tests met some basic operational criteria (rapid testing, no special equipment and easy to apply and interpret) that could prove attractive for fish farmers to identify fish with a specific behaviour that gives advantages in the culture system and that could be used to establish selection-based breeding programmes to improve domestication and production.

  3. Characterization of stress coping style in Senegalese sole (Solea senegalensis) juveniles and breeders for aquaculture

    PubMed Central

    Fatsini, E.; Rey, S.; Chereguini, O.; Martin, I.; Rasines, I.; Duncan, N.

    2016-01-01

    The aim of this work was to characterize stress coping styles of Senegalese sole (Solea senegalensis) juveniles and breeders and to select an operational behavioural screening test (OBST) that can be used by the aquaculture industry to classify and select between behavioural phenotypes in order to improve production indicators. A total of 61 juveniles and 59 breeders were subjected to five individual behavioural tests and two grouping tests. At the end of the individual tests, all animals were blood sampled in order to measure cortisol, glucose and lactate. Three tests (restraining, new environment and confinement) characterized the stress coping style behaviour of Senegalese sole juveniles and breeders and demonstrated inter-individual consistency. Further, the tests when incorporated into a principal components analysis (PCA) (i) identified two principal axes of personality traits: ‘fearfulness-reactivity’ and ‘activity-exploration’, (ii) were representative of the physiological axis of stress coping style, and (iii) were validated by established group tests. This study proposed for the first time three individual coping style tests that reliably represented proactive and reactive personalities of Senegalese sole juveniles and breeders. In addition, the three proposed tests met some basic operational criteria (rapid testing, no special equipment and easy to apply and interpret) that could prove attractive for fish farmers to identify fish with a specific behaviour that gives advantages in the culture system and that could be used to establish selection-based breeding programmes to improve domestication and production. PMID:28018634

  4. Behavioural response of juvenile Chinook salmon Oncorhynchus tshawytscha during a sudden temperature increase and implications for survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellgraph, Brian J.; McMichael, Geoffrey A.; Mueller, Robert P.

    2010-01-01

    The behaviours of juvenile Chinook salmon Oncorhynchus tshawytscha were evaluated during a temperature increase from 8.8 to 23.2°C, which was designed to simulate unique thermal conditions present in a hydroelectric reservoir. The percent of fish with an active swimming behaviour increased from 26 to 93 % and mean opercular beat rates increased from 76 to 159 beats per minute between basal and maximum temperatures. Fish equilibrium did not change significantly throughout the experiment and relatively little mortality (12 %) occurred. Thermal stress is likely incurred by juvenile salmon experiencing a temperature change of this magnitude; however, stress induced in thismore » study was primarily sublethal. Behavioural changes accompanying thermal stress (e.g., erratic swimming) may increase predation potential in the wild despite being sublethal during laboratory experiments.« less

  5. Microhabitat Influence on Larval Fish Assemblages Within Vegetated Beds: Implications for Tubenose Goby Detection and Invasion

    EPA Science Inventory

    We examined larval and juvenile fish assemblage structure in relation to microhabitat variables within the St. Louis River estuary, a drowned river mouth of Lake Superior. Fish were sampled in vegetated beds throughout the estuary, across a gradient of vegetation types and densit...

  6. Lake Ontario benthic prey fish assessment, 2015

    USGS Publications Warehouse

    Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.

    2016-01-01

    Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Since the late 1970’s, Lake Ontario benthic prey fish status was primarily assessed using bottom trawl observations confined to the lake’s south shore, in waters from 8 – 150 m (26 – 492 ft). In 2015, the Benthic Prey Fish Survey was cooperatively adjusted and expanded to address resource management information needs including lake-wide benthic prey fish population dynamics. Effort increased from 55 bottom trawl sites to 135 trawl sites collected in depths from 8 - 225m (26 – 738 ft). The spatial coverage of sampling was also expanded and occurred in all major lake basins. The resulting distribution of tow depths more closely matched the available lake depth distribution. The additional effort illustrated how previous surveys were underestimating lake-wide Deepwater Sculpin, Myoxocephalus thompsonii, abundance by not sampling in areas of highest density. We also found species richness was greater in the new sampling sites relative to the historic sites with 11 new fish species caught in the new sites including juvenile Round Whitefish, Prosopium cylindraceum, and Mottled sculpin, Cottus bairdii. Species-specific assessments found Slimy Sculpin, Cottus cognatus abundance increased slightly in 2015 relative to 2014, while Deepwater Sculpin and Round Goby, Neogobius melanostomus, dramatically increased in 2015, relative to 2014. The cooperative, lake-wide Benthic Prey Fish Survey expanded our understanding of benthic fish population dynamics and habitat use in Lake Ontario. This survey’s data and interpretations influence international resource management decision making, such as informing the Deepwater Sculpin conservation status and assessing the balance between sport fish consumption and prey fish populations. Additionally a significant Lake Ontario event occurred in May 2015 when a single

  7. 50 CFR 216.91 - Dolphin-safe labeling standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MAMMALS Dolphin Safe Tuna Labeling § 216.91 Dolphin-safe labeling standards. (a) It is a violation of..., distributor, or seller of any tuna products that are exported from or offered for sale in the United States to... suggests that the tuna contained in the products were harvested using a method of fishing that is not...

  8. 50 CFR 216.91 - Dolphin-safe labeling standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MAMMALS Dolphin Safe Tuna Labeling § 216.91 Dolphin-safe labeling standards. (a) It is a violation of..., distributor, or seller of any tuna products that are exported from or offered for sale in the United States to... suggests that the tuna contained in the products were harvested using a method of fishing that is not...

  9. 50 CFR 216.91 - Dolphin-safe labeling standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MAMMALS Dolphin Safe Tuna Labeling § 216.91 Dolphin-safe labeling standards. (a) It is a violation of..., distributor, or seller of any tuna products that are exported from or offered for sale in the United States to... suggests that the tuna contained in the products were harvested using a method of fishing that is not...

  10. 50 CFR 216.91 - Dolphin-safe labeling standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MAMMALS Dolphin Safe Tuna Labeling § 216.91 Dolphin-safe labeling standards. (a) It is a violation of..., distributor, or seller of any tuna products that are exported from or offered for sale in the United States to... suggests that the tuna contained in the products were harvested using a method of fishing that is not...

  11. 50 CFR 216.91 - Dolphin-safe labeling standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MAMMALS Dolphin Safe Tuna Labeling § 216.91 Dolphin-safe labeling standards. (a) It is a violation of..., distributor, or seller of any tuna products that are exported from or offered for sale in the United States to... suggests that the tuna contained in the products were harvested using a method of fishing that is not...

  12. Physiological tolerances of juvenile robust redhorse, Moxostoma robustum: Conservation implications for an imperiled species

    USGS Publications Warehouse

    Walsh, S.J.; Haney, D.C.; Timmerman, C.M.; Dorazio, R.M.

    1998-01-01

    The robust redhorse, Moxostoma robustum (Teleostei: Catostomidae), is an imperiled sucker native to large rivers of the Atlantic slope of the southeastern United States. Juvenile M. robustum were tested for tolerances to temperature, salinity, pH, and hypoxia in order to evaluate basic early life-history requirements. Static (acute) tests resulted in estimates of mean lower temperature tolerances (5.3-19.4 ??C) that varied with prior thermal acclimation and indicated no apparent difference in tolerance among fish 30, 60, and 90 days old. Fish acclimated to 20 ??C and 30 ??C had significantly different mean critical thermal maxima (34.9 ??C and 37.2 ??C, respectively) and exhibited pronounced increased opercular ventilation rates with elevated temperatures. Fish exposed to acute and chronic increases in salinity showed unusual patterns of mortality above the isosmotic point (9 ppt) that reflected possible differences in body mass and prior acclimation conditions (i.e., water ionic composition); small fish and those held in soft water were the least tolerant of increased salinity. Abrupt exposure to extreme pH values resulted in greater than 50% mortality at pH values below 4.3 and above 9.5 within a 96-hour period. Fish exposed to progressive hypoxia utilized aquatic surface respiration at a mean oxygen concentration of 0.72-0.80 mg O2 l-1 (20 ??C and 30 ??C acclimated fish, respectively), and lost equilibrium at 0.54-.57 mg O2 l-1. Juvenile M. robustum are moderately tolerant of a wide range of ambient physicochemical parameters, but further research is needed to determine how both abiotic and biotic factors have contributed to population decline and extirpation of this species.

  13. Habitat associations of juvenile Burbot in a tributary of the Kootenai River

    USGS Publications Warehouse

    Beard, Zachary S.; Quist, Michael C.; Hardy, Ryan S.; Ross, Tyler J.

    2017-01-01

    Burbot Lota lota in the lower Kootenai River, Idaho, have been the focus of extensive conservation efforts, particularly conservation aquaculture. One of the primary management strategies has been the release of Burbot into small tributaries in the Kootenai River basin, such as Deep Creek. Since 2012, approximately 12,000 juvenile Burbot have been stocked into Deep Creek; however, little is known about the habitat use of stocked Burbot. The objective of this study was to evaluate habitat associations of juvenile Burbot in Deep Creek. Fish and habitat were sampled from 58 reaches of the creek. Regression models suggested that Burbot moved little after stocking and were associated with areas of high mean depth and coarse substrate. This study provides additional knowledge on habitat associations of juvenile Burbot and suggests that managers should consider selecting deep habitats with coarse substrate for stocking locations.

  14. Critical role of seasonal tributaries for native fish and aquatic biota in the Sacramento River

    NASA Astrophysics Data System (ADS)

    Marchetti, M.

    2016-12-01

    We examined the ecology of seasonal tributaries in California in terms of native fishes and aquatic macroinvertebrates. This talk summarizes data from five individual studies. Studying juvenile Chinook growth using otolith microstructure we find that fish grow faster and larger in seasonal tributaries. In a four-year study on the abundance of native fish larvae in tributaries of the Sacramento River we find certain tributaries produce an order of magnitude more native fish larvae than nearby permanent streams. In a study comparing the distribution and abundance of aquatic macroinvertebrates in a seasonal tributary with a permanent stream we find the seasonal tributary contains unique taxa, higher drift densities and ecologically distinct communities. In a cross-watershed comparison of larval fish drift we find that a seasonal tributary produces more larvae than all other streams/rivers we examined. In a comparison of juvenile Chinook growth morphology between seasonal and permanent streams using geometric morphometrics we find that salmon show phenotypic plasticity and their growth is characteristically different in seasonal tributaries. Taken together, this body of work highlights the critical ecological importance of this habitat.

  15. Habitat degradation disrupts neophobia in juvenile coral reef fish.

    PubMed

    McCormick, Mark I; Chivers, Douglas P; Allan, Bridie J M; Ferrari, Maud C O

    2017-02-01

    Habitat degradation not only disrupts habitat-forming species, but alters the sensory landscape within which most species must balance behavioural activities against predation risk. Rapidly developing a cautious behavioural phenotype, a condition known as neophobia, is advantageous when entering a novel risky habitat. Many aquatic organisms rely on damage-released conspecific cues (i.e. alarm cues) as an indicator of impending danger and use them to assess general risk and develop neophobia. This study tested whether settlement-stage damselfish associated with degraded coral reef habitats were able to use alarm cues as an indicator of risk and, in turn, develop a neophobic response at the end of their larval phase. Our results indicate that fish in live coral habitats that were exposed to alarm cues developed neophobia, and, in situ, were found to be more cautious, more closely associated with their coral shelters and survived four-times better than non-neophobic control fish. In contrast, fish that settled onto degraded coral habitats did not exhibit neophobia and consequently suffered much greater mortality on the reef, regardless of their history of exposure to alarm cues. Our results show that habitat degradation alters the efficacy of alarm cues with phenotypic and survival consequences for newly settled recruits. © 2016 John Wiley & Sons Ltd.

  16. Host fishes and infection strategies of freshwater mussels in large Mobile Basin streams, USA

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    2003-01-01

    We investigated host fishes, timing and modes of glochidial release, and host-attraction strategies for 7 species of freshwater mussels from the Buttahatchee and Sipsey rivers (Mobile Basin), Alabama and Mississippi, USA. We determined hosts as fish species that produced juvenile mussels from laboratory-induced glochidial infections. We established the following...

  17. Coral decline threatens fish biodiversity in marine reserves.

    PubMed

    Jones, Geoffrey P; McCormick, Mark I; Srinivasan, Maya; Eagle, Janelle V

    2004-05-25

    The worldwide decline in coral cover has serious implications for the health of coral reefs. But what is the future of reef fish assemblages? Marine reserves can protect fish from exploitation, but do they protect fish biodiversity in degrading environments? The answer appears to be no, as indicated by our 8-year study in Papua New Guinea. A devastating decline in coral cover caused a parallel decline in fish biodiversity, both in marine reserves and in areas open to fishing. Over 75% of reef fish species declined in abundance, and 50% declined to less than half of their original numbers. The greater the dependence species have on living coral as juvenile recruitment sites, the greater the observed decline in abundance. Several rare coral-specialists became locally extinct. We suggest that fish biodiversity is threatened wherever permanent reef degradation occurs and warn that marine reserves will not always be sufficient to ensure their survival.

  18. Laryngeal juvenile xanthogranuloma: Imaging finding.

    PubMed

    Wang, L M; Chen, Q H; Zhang, Y X; Fang, Y Q

    2010-08-01

    Laryngeal juvenile xanthogranuloma is rare and there were only four cases have been reported previously in English literature. We report a case of isolated JXG of larynx in the superglottic region. The mass was well-defined and homogeneous hypoechoic in ultrasonography while presented indistinct boundary and soft tissue density in Computed Tomography images. Radiological findings are nonspecific but could help to understand the extent of the lesion. We suggest that JXG should be considered as differential diagnosis for laryngeal stridor. Laryngeal ultrasound is safe and reliable, which could be considered a useful diagnostic tool for supplementing laryngoscopy.

  19. Juvenile angiofibroma

    MedlinePlus

    Nasal tumor; Angiofibroma - juvenile; Benign nasal tumor; Juvenile nasal angiofibroma; JNA ... Juvenile angiofibroma is not very common. It is most often found in adolescent boys. The tumor contains many blood ...

  20. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions.

    PubMed

    Carlos de Sá, Luís; Luís, Luís G; Guilhermino, Lúcia

    2015-01-01

    Microplastics (MP) are ubiquitous contaminants able to cause adverse effects on organisms. Three hypotheses were tested here: early Pomatoschistus microps juveniles can ingest MP; the presence of MP may reduce fish predatory performance and efficiency; developmental conditions may influence the preyselection capability of fish. Predatory bioassays were carried out with juveniles from two estuaries with differences in environmental conditions: Minho (M-est) and Lima (L-est) Rivers (NW Iberian coast). Polyethylene MP spheres (3 types) alone and in combination with Artemia nauplii were offered as prey.All the MP types were ingested, suggesting confusion with food. Under simultaneous exposure to MP and Artemia, L-est fish showed a significant reduction of the predatory performance (65%) and efficiency (upto 50%), while M-est fish did not, suggesting that developmental conditions may influence the preyselection capability of fish. The MP-induced reduction of food intake may decrease individual and population fitness.

  1. Feeding response by northern squawfish to a hatchery release of juvenile salmonids in the Clearwater River, Idaho

    USGS Publications Warehouse

    Shively, R.S.; Poe, T.P.; Sauter, S.T.

    1996-01-01

    We collected gut contents from northern squawfish Ptychocheilus oregonensis captured in the Clearwater River, Idaho, 0–6 km from its confluence with the Snake River, following the release of 1.1 million yearling chinook salmon Oncorhynchus tshawytscha from the Dworshak National Fish Hatchery. Before the hatchery release, northern squawfish gut contents (by weight) in the study area were 38% crayfish Pacifastacus spp., 26% insects, 19% nonsalmonid fish, and 16% wheat kernels Triticum spp. Juvenile salmonids constituted 54% of gut contents about 24 h after the hatchery release, 78% after 5 d, and 86% after 7 d. The mean number of salmonids per gut (1.2) after release was higher than typically seen in guts from northern squawfish collected in mid-reservoir areas away from hydroelectric dams on the Snake and Columbia rivers. Length-frequency distributions of juvenile salmonids eaten and those captured in a scoop trap 4 km upstream of the study area indicated that northern squawfish were selectively feeding on the smaller individuals. We attribute the high rates of predation in the study area to the artificially high density of juvenile salmonids resulting from the hatchery release and to the physical characteristics of the study area in which the river changed from free flowing to impounded. Our results suggest that northern squawfish can quickly exploit hatchery releases of juvenile salmonids away from release sites in the Columbia River basin.

  2. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps

    NASA Astrophysics Data System (ADS)

    Munday, Philip L.; Cheal, Alistair J.; Dixson, Danielle L.; Rummer, Jodie L.; Fabricius, Katharina E.

    2014-06-01

    Experiments have shown that the behaviour of reef fishes can be seriously affected by projected future carbon dioxide (CO2) concentrations in the ocean. However, whether fish can acclimate to elevated CO2 over the longer term, and the consequences of altered behaviour on the structure of fish communities, are unknown. We used marine CO2 seeps in Papua New Guinea as a natural laboratory to test these questions. Here we show that juvenile reef fishes at CO2 seeps exhibit behavioural abnormalities similar to those seen in laboratory experiments. Fish from CO2 seeps were attracted to predator odour, did not distinguish between odours of different habitats, and exhibited bolder behaviour than fish from control reefs. High CO2 did not, however, have any effect on metabolic rate or aerobic performance. Contrary to expectations, fish diversity and community structure differed little between CO2 seeps and nearby control reefs. Differences in abundances of some fishes could be driven by the different coral community at CO2 seeps rather than by the direct effects of high CO2. Our results suggest that recruitment of juvenile fish from outside the seeps, along with fewer predators within the seeps, is currently sufficient to offset any negative effects of high CO2 within the seeps. However, continuous exposure does not reduce the effect of high CO2 on behaviour in natural reef habitat, and this could be a serious problem for fish communities in the future when ocean acidification becomes widespread as a result of continued uptake of anthropogenic CO2 emissions.

  3. 21 CFR 172.385 - Whole fish protein concentrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION Special Dietary and Nutritional Additives § 172.385 Whole fish protein concentrate. The food additive whole fish protein concentrate may be safely used as a food supplement in accordance with the... fish that are used in other forms for human food. (b) The additive consists essentially of a dried fish...

  4. [Functional development of chemosensory systems in the ontogeny of fish].

    PubMed

    Kasumian, A O

    2011-01-01

    Regularities of the functional development of chemosensory systems in the ontogeny of fish has been studied, i.e., the olfactory system, the taste system, and the common chemical sense. The olfactory system begins to function and provides response of juveniles to chemical signals before the taste system. Embryos that have hatched from coating but that do not yet feed exhibit nonspecialized motor responses to olfactory stimuli already. Immediately after the transition to exogenous nutrition, olfactory sensitivity to signals which elicit defensive and feeding behavioral responses begins to form and the ability to differentiate between similar odors develops. The reception of a limited number of taste stimuli occurs in the larvae during the transition to exogenous nutrition. With age, the spectrum of effective taste substances expands and the time spent on the definition of palatability by juvenile fishes reduces. Functional development of individual components of the taste system arises heterochronously, i.e., the outer (extraoral) form of taste reception arises earlier and more rapidly, and the buccal (intraoral) form of taste reception arises slower. No information is available about the functional development of the common chemical sense in the ontogeny of fish. It is assumed that the function of the chemosensory system arises in fish in early larval instar.

  5. Juveniles in court.

    PubMed

    Soulier, Matthew F; Scott, Charles L

    2010-01-01

    Nineteenth-century American reformers were concerned about the influence of immaturity and development in juvenile offenses. They responded to their delinquent youths through the creation of juvenile courts. This early American juvenile justice system sought to treat children as different from adults and to rehabilitate wayward youths through the state's assumption of a parental role. Although these rehabilitative goals were never fully realized, the field of American child psychiatry was spawned from these efforts on behalf of delinquent youths. Early child psychiatrists began by caring for juvenile offenders. The function of a child psychiatrist with juvenile delinquents expanded beyond strictly rehabilitation, however, as juvenile courts evolved to resemble criminal adult courts-due to landmark Supreme Court decisions and also juvenile legislation between 1966 and 1975. In response to dramatically increased juvenile violence and delinquency rates in the 1980s, juvenile justice became more retributional, and society was forced to confront issues such as capital punishment for juveniles, their transfer to adult courts, and their competency to stand trial. In the modern juvenile court, child psychiatrists are often asked to participate in the consideration of such issues because of their expertise in development. In that context we review the role of psychiatrists in assisting juvenile courts.

  6. Food and growth parameters of juvenile chinook in the central Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, C.D.

    1994-10-01

    Juvenile chinook, salmon (Oncorhynchus tshawytscha) in the Hanford area of the free-flowing central Columbia River, Washington consume almost entirely adult and larval stages of aquatic insects. The diet is dominated by midges (Diptera: Chironomidae). By numbers, adult midges provided 64 and 58% of the diet and larval midges 17 and 18% of the diet, in 1968 and 1969, respectively. The families Hydropsychidae (Trichoptera), Notonectidae (Hemiptera) and Hypogastruridae (Collembola) are of minor numerical importance with a combined utilization of 7% in 1968 and 15% in 1969. Distinctive features of food and feeding activity of juvenile chinook at Hanford are fourfold: (1)more » the fish utilize relatively few insect groups, predominantly Chironomidae; (2) they depend largely upon autochthonous river organisms; (3) they visually select living prey drifting, floating or swimming in the water; and (4) they are apparently habitat opportunists to a large extent. Analyses were made of variations in diet and numbers of insects consumed between six sampling stations distributed along a 38 km section of the river. Data are provided on feeding intensity, fish lengths, length-weight relationships, and coefficients of condition. Seasonal changes in river temperature and discharge, as well as variations in regulated flow levels are environmental features influencing feeding, growth, and emigration of fish in the Hanford environs.« less

  7. Metapopulation Tracking Juvenile Penguins Reveals an Ecosystem-wide Ecological Trap.

    PubMed

    Sherley, Richard B; Ludynia, Katrin; Dyer, Bruce M; Lamont, Tarron; Makhado, Azwianewi B; Roux, Jean-Paul; Scales, Kylie L; Underhill, Les G; Votier, Stephen C

    2017-02-20

    Climate change and fisheries are transforming the oceans, but we lack a complete understanding of their ecological impact [1-3]. Environmental degradation can cause maladaptive habitat selection, inducing ecological traps with profound consequences for biodiversity [4-6]. However, whether ecological traps operate in marine systems is unclear [7]. Large marine vertebrates may be vulnerable to ecological traps [6], but their broad-scale movements and complex life histories obscure the population-level consequences of habitat selection [8, 9]. We satellite tracked postnatal dispersal in African penguins (Spheniscus demersus) from eight sites across their breeding range to test whether they have become ecologically trapped in the degraded Benguela ecosystem. Bayesian state-space and habitat models show that penguins traversed thousands of square kilometers to areas of low sea surface temperatures (14.5°C-17.5°C) and high chlorophyll-a (∼11 mg m -3 ). These were once reliable cues for prey-rich waters, but climate change and industrial fishing have depleted forage fish stocks in this system [10, 11]. Juvenile penguin survival is low in populations selecting degraded areas, and Bayesian projection models suggest that breeding numbers are ∼50% lower than if non-impacted habitats were used, revealing the extent and effect of a marine ecological trap for the first time. These cascading impacts of localized forage fish depletion-unobserved in studies on adults-were only elucidated via broad-scale movement and demographic data on juveniles. Our results support suspending fishing when prey biomass drops below critical thresholds [12, 13] and suggest that mitigation of marine ecological traps will require matching conservation action to the scale of ecological processes [14]. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Performance of a surface bypass structure to enhance juvenile steelhead passage and survival at Lower Granite Dam, Washington

    USGS Publications Warehouse

    Adams, Noah S.; Plumb, John M.; Perry, Russell W.; Rondorf, Dennis W.

    2014-01-01

    An integral part of efforts to recover stocks of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss in Pacific Northwest rivers is to increase passage efficacy and survival of juveniles past hydroelectric dams. As part of this effort, we evaluated the efficacy of a prototype surface bypass structure, the removable spillway weir (RSW), installed in a spillbay at Lower Granite Dam, Washington, on the Snake River during 2002, 2003, 2005, and 2006. Radio-tagged juvenile steelhead were released upstream from the dam and their route of passage through the turbines, juvenile bypass, spillway, or RSW was recorded. The RSW was operated in an on-or-off condition and passed 3–13% of the total discharge at the dam when it was on. Poisson rate models were fit to the passage counts of hatchery- and natural-origin juvenile steelhead to predict the probability of fish passing the dam. Main-effect predictor variables were RSW operation, diel period, day of the year, proportion of flow passed by the spillway, and total discharge at the dam. The combined fish passage through the RSW and spillway was 55–85% during the day and 37–61% during the night. The proportion of steelhead passing through nonturbine routes was <88% when the RSW was off during the day and increased to >95% when the RSW was on during the day. The ratio of the proportion of steelhead passed to the proportion of water passing the RSW was from 6.3:1 to 10.0:1 during the day and from 2.7:1 to 5.2:1 during the night. Steelhead passing through the RSW exited the tailrace about 15 min faster than fish passing through the spillway. Mark–recapture single-release survival estimates for steelhead passing the RSW ranged from 0.95 to 1.00. The RSW appeared to be an effective bypass structure compared with other routes of fish passage at the dam.

  9. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (< 6 m deep) in the lower Snake River reservoirs to help inform the long-term plan. Natural fry and parr were present within all four shallow water habitat complexes that we studied from early spring through early summer, and parr ( = 40,345 ± 18,800 [error bound]) were more abundant than fry ( = 24,615 ± 5,701). Water < 2 m deep was highly used for rearing by natural fall Chinook salmon subyearlings (fry and parr combined; hereafter natural subyearlings) based on duration of use and relative group abundances during spring and summer, whereas the 2–6 m depth interval was more highly used by migratory hatchery fall Chinook salmon subyearlings and spring, summer, and fall Chinook salmon yearlings. Overall mean spring-summer apparent density of natural subyearlings was 15.5 times higher within the < 2 m depth interval than within the 2–6 m depth interval. Density of natural subyearlings also decreased as the distance a given shallow water habitat complex was located from the riverine spawning areas increased. Reservoir-type juveniles (or fish likely destined to become reservoir-type juveniles) were present in the lower Snake River reservoirs from fall 2010 through winter 2011; however, use of shallow water habitat by reservoir-type juveniles was limited during our study. We only collected 38 reservoir-type juveniles in shallow water habitat sites in beach and lampara seines during the fall. Radiotelemetry data revealed that though many tagged fish passed shallow water

  10. The role of emergent wetlands as potential rearing habitats for juvenile salmonids

    USGS Publications Warehouse

    Henning, Julie A.; Gresswell, Robert E.; Flemming, Ian A.

    2006-01-01

    A recent trend of enhancing freshwater emergent wetlands for waterfowl and other wildlife has raised concern about the effects of such measures on juvenile salmonids. We undertook this study to quantify the degree and extent of juvenile Pacific salmon Oncorhynchus spp. utilization of enhanced and unenhanced emergent wetlands within the floodplain of the lower Chehalis River, Washington, and to determine the fate of the salmon using them. Enhanced emergent wetlands contained water control structures that provided an outlet for fish emigration and a longer hydroperiod for rearing than unenhanced wetlands. Age-0 and age-1 coho salmon O. kisutch were the most common salmonid at all sites, enhanced wetlands having significantly higher age-1 abundance than unenhanced wetlands that were a similar distance from the main-stem river. Yearling coho salmon benefited from rearing in two enhanced wetland habitats, where their specific growth rate and minimum estimates of survival (1.43%/d by weight and 30%; 1.37%/d and 57%) were comparable to those in other side-channel rearing studies. Dissolved oxygen concentrations decreased in emergent wetlands throughout the season and approached the limits lethal to juvenile salmon by May or June each year. Emigration patterns suggested that age-0 and age-1 coho salmon emigrated as habitat conditions declined. This observation was further supported by the results of an experimental release of coho salmon. Survival of fish utilizing emergent wetlands was dependent on movement to the river before water quality decreased or stranding occurred from wetland desiccation. Thus, our results suggest that enhancing freshwater wetlands via water control structures can benefit juvenile salmonids, at least in the short term, by providing conditions for greater growth, survival, and emigration.

  11. Criteria for reducing predation by northern squawfish near juvenile salmonid bypass outfalls at Columbia River dams

    USGS Publications Warehouse

    Shively, Rip S.; Poe, Thomas P.; Sheer, Mindi B.; Peters, Rock

    1996-01-01

    Predation by northern squawfish (Ptychocheilus oregonensis) has been documented to be significant on emigrating juvenile salmonids near juvenile bypass outfalls at hydroelectric dams on the Columbia River. Criteria for siting juvenile fish bypass outfalls to reduce predation were developed using locational data from radio-tagged northern squawfish in The Dalles Dam trailrace, Columbia River. Radio transmitters were surgically implanted in 164 northern squawfish in 1993 and 1994, and their movements and distribution were monitored. Position estimates of northern squawfish were compared with data from a physical hydraulic model of the dam to estimate water velocities where northern squawfish were located. Eighty-two percent of northern squawfish position estimates were in water velocities ≤110 cm/s in 1993 and ≤90 cm/s in 1994. Fish locations were usually associated with water depths ≤10 m (84% in 1993 and 82% in 1994); 90% were within 110 m of the shore or dam structure in 1993, and 86% were within 80 m in 1994. In a related study at John Day Dam, Columbia River, where the juvenile bypass outfall is located 40 m from shore, water depth is 10 m and water velocities typically exceed 75 cm/s, only 13 of 1443 (0.9%) contacts on radio-tagged northern squawfish were located within 200 m of the bypass outfall. We recommend that new or modified juvenile bypass outfalls on the Columbia River be located in water velocities of ≥100 cm/s, ≥75 m from the shore or dam structure, and in water ≥10 m deep.

  12. The post-larval and juvenile fish assemblage in the Sukhothai floodplain, Thailand

    NASA Astrophysics Data System (ADS)

    Siriwan, Suksri; Boonsatien, Boonsoong

    2017-06-01

    This study investigated abundance, species composition and spatial and temporal distributions of fish larvae and their relationship with some environmental variables in the Sukhothai floodplain in northern Thailand. Fish larvae were collected from 33 sampling stations on 8 occasions between August 2010 and October 2013. The study collected and identified 149 296 individuals, representing 32 families and 165 taxa. The species composition of larval fish was dominated by the Cyprinidae (47.27%), Cobitidae (7.88%), Siluridae (6.67%), Bagridae (6.06%) and Mastacembelidae (3.33%) families. The most-abundant larval species were the Striped flying barb Esomus metallicus (16.90%), the Siamese mud carp Henicorhynchus siamensis (8.48%) and the Sumatran river sprat Clupeichthys goniognathus (8.31%). The greatest abundance and species diversity of larvae were found when the river flow runs onto the floodplain. PCA and nMDS analysis revealed that the samples plot is associated with temporal distribution among years. The discharge was a major factor determining fish larvae assemblage and environmental variables in the Sukhothai floodplain. Four fish larval species were positively correlated with the samples for 2013. The result of the CCA ordination plot showed that only the discharge variable was strongly correlated with fish larvae abundance, especially two cyprinid Rasbora species.

  13. Habitat degradation and fishing effects on the size structure of coral reef fish communities.

    PubMed

    Wilson, S K; Fisher, R; Pratchett, M S; Graham, N A J; Dulvy, N K; Turner, R A; Cakacaka, A; Polunin, N V C

    2010-03-01

    Overfishing and habitat degradation through climate change pose the greatest threats to sustainability of marine resources on coral reefs. We examined how changes in fishing pressure and benthic habitat composition influenced the size spectra of island-scale reef fish communities in Lau, Fiji. Between 2000 and 2006 fishing pressure declined in the Lau Islands due to declining human populations and reduced demand for fresh fish. At the same time, coral cover declined and fine-scale architectural complexity eroded due to coral bleaching and outbreaks of crown-of-thorns starfish, Acanthaster planci. We examined the size distribution of reef fish communities using size spectra analysis, the linearized relationship between abundance and body size class. Spatial variation in fishing pressure accounted for 31% of the variation in the slope of the size spectra in 2000, higher fishing pressure being associated with a steeper slope, which is indicative of fewer large-bodied fish and/or more small-bodied fish. Conversely, in 2006 spatial variation in habitat explained 53% of the variation in the size spectra slopes, and the relationship with fishing pressure was much weaker (approximately 12% of variation) than in 2000. Reduced cover of corals and lower structural complexity was associated with less steep size spectra slopes, primarily due to reduced abundance of fish < 20 cm. Habitat degradation will compound effects of fishing on coral reefs as increased fishing reduces large-bodied target species, while habitat loss results in fewer small-bodied juveniles and prey that replenish stocks and provide dietary resources for predatory target species. Effective management of reef resources therefore depends on both reducing fishing pressure and maintaining processes that encourage rapid recovery of coral habitat.

  14. Effects of supplemental coated or crystalline methionine in low-fishmeal diet on the growth performance and body composition of juvenile cobia Rachycentron canadum (Linnaeus)

    NASA Astrophysics Data System (ADS)

    Chi, Shuyan; Tan, Beiping; Dong, Xiaohui; Yang, Qihui; Liu, Hongyu

    2014-11-01

    We evaluated the effects of supplemental coated and crystalline methionine (Met) on the growth performance and feed utilization of juvenile cobia ( Rachycentron canadum Linnaeus) in a 60-d feeding trial. Fish groups were fed one of six isonitrogenous and isolipidic diets: 1) fishmeal control; 2) un-supplemented experimental (low-fish-meal diet deficient in Met); or 3) one of four Met diets supplemented with crystalline L-Met, cellulose-acetate-phthalate coated L-Met, acrylic-resin coated L-Met, or tripalmitin-polyvinyl alcohol coated L-Met. The test diets were fed to triplicate groups of cobia (initial body weight 5.40±0.07 g) twice a day. The weight gain and specific growth rate of the fish fed the RES diet were highest among the Met-supplemented groups and were 23.64% and 7.99%, respectively, higher than those of the fish fed with the un-supplemented experimental diet ( P<0.05). The protein efficiency ratio of the fish fed the MET diet was significantly higher than that of the fish fed the un-supplemented experimental diet and the fish in the other methionine supplementation groups ( P<0.05). Our results suggest that supplementation of crystalline Met in low-fish-meal diets promotes the growth performance of juvenile cobia.

  15. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 2. Three-Dimensional Tracking and Passage Outcomes

    PubMed Central

    Deng, Z. Daniel; Weiland, Mark A.; Fu, Tao; Seim, Tom A.; LaMarche, Brian L.; Choi, Eric Y.; Carlson, Thomas J.; Eppard, M. Brad

    2011-01-01

    In Part 1 of this paper, we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary sensing technology developed by the U.S. Army Corps of Engineers, Portland District (Oregon, USA) to meet the needs for monitoring the survival of juvenile salmonids through the hydroelectric facilities within the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m upstream from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.02 to 0.22 m, and root mean square errors ranged from 0.07 to 0.56 m at distances up to 100 m. For the 2008 case study at John Day Dam, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more “fish-friendly” hydroelectric facilities. PMID:22163919

  16. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 2. Three-Dimensional Tracking and Passage Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Weiland, Mark A.; Fu, Tao

    2011-05-26

    In Part 1 of this paper [1], we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary technology developed by the U.S. Army Corps of Engineers, Portland District, to meet the needs for monitoring the survival of juvenile salmonids through the 31 dams in the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) positionmore » of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.06 to 0.22 m, and root mean square errors ranged from 0.05 to 0.56 m at distances up to 100 m. For the case study at John Day Dam during 2008, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more “fish-friendly” hydroelectric facilities.« less

  17. Small-Boat Noise Impacts Natural Settlement Behavior of Coral Reef Fish Larvae.

    PubMed

    Simpson, Stephen D; Radford, Andrew N; Holles, Sophie; Ferarri, Maud C O; Chivers, Douglas P; McCormick, Mark I; Meekan, Mark G

    2016-01-01

    After a pelagic larval phase, settlement-stage coral reef fish must locate a suitable reef habitat for juvenile life. Reef noise, produced by resident fish and invertebrates, provides an important cue for orientation and habitat selection during this process, which must often occur in environments impacted by anthropogenic noise. We adapted an established field-based protocol to test whether recorded boat noise influenced the settlement behavior of reef fish. Fewer fish settled to patch reefs broadcasting boat + reef noise compared with reef noise alone. This study suggests that boat noise, now a common feature of many reefs, can compromise critical settlement behavior of reef fishes.

  18. A National Evaluation of Safe Schools/Healthy Students: Outcomes and Influences

    ERIC Educational Resources Information Center

    Derzon, James H.; Yu, Ping; Ellis, Bruce; Xiong, Sharon; Arroyo, Carmen; Mannix, Danyelle; Wells, Michael E.; Hill, Gary; Rollison, Julia

    2012-01-01

    The Safe Schools/Healthy Students (SS/HS) Initiative has awarded over $2 billion in grants to more than 350 school districts in partnership with local mental health, law enforcement, and juvenile justice agencies. To estimate the impact of grantee characteristics, grant operations, and near-term outcomes in reducing violence and substance use,…

  19. Evaluation of chemical control for nonnative crayfish at a warm-water fish production hatchery

    USGS Publications Warehouse

    Allert, Ann L.; McKee, M.J.; DiStefano, R.J.; Fairchild, J.F.

    2016-01-01

    Invasive crayfish are known to displace native crayfish species, alter aquatic habitat and community structure and function, and are serious pests for fish hatcheries. White River Crawfish (WRC; Procambarus acutus) were inadvertently introduced to a warm-water fish hatchery in Missouri, USA, possibly in an incoming fish shipment. We evaluated the use of chemical control for crayfish to ensure incoming and outgoing fish shipments from hatcheries do not contain live crayfish. We conducted acute (≤24 hr) static toxicity tests to determine potency, dose-response, and selectivity of pesticides to WRC, Virile Crayfish (VC; Orconectes virilis), and Fathead Minnow (FHM; Pimephales promelas). Testing identified a formulation of cypermethrin (Cynoff®) as the most potent of five pesticides evaluated for toxicity to crayfish. A 4-hr exposure to a cypermethrin concentration of 100 μg · L-1 was found to kill 100% of juvenile and adult WRC; however, adult VC were not consistently killed. Concentrations of cypermethrin ≤100 μg · L-1 did not cause significant (>10%) mortality in juvenile FHM. Additional testing is needed to examine selectivity between crayfish and hatchery fish species. Biosecurity protocols at hatcheries that use chemical control have the potential to reliably prevent inadvertent transfers of live crayfish in fish shipments.

  20. Long-Term Effects of the Cleaner Fish Labroides dimidiatus on Coral Reef Fish Communities

    PubMed Central

    Waldie, Peter A.; Blomberg, Simon P.; Cheney, Karen L.; Goldizen, Anne W.; Grutter, Alexandra S.

    2011-01-01

    Cleaning behaviour is deemed a mutualism, however the benefit of cleaning interactions to client individuals is unknown. Furthermore, mechanisms that may shift fish community structure in the presence of cleaning organisms are unclear. Here we show that on patch reefs (61–285 m2) which had all cleaner wrasse Labroides dimidiatus (Labridae) experimentally removed (1–5 adults reef−1) and which were then maintained cleaner-fish free over 8.5 years, individuals of two site-attached (resident) client damselfishes (Pomacentridae) were smaller compared to those on control reefs. Furthermore, resident fishes were 37% less abundant and 23% less species rich per reef, compared to control reefs. Such changes in site-attached fish may reflect lower fish growth rates and/or survivorship. Additionally, juveniles of visitors (fish likely to move between reefs) were 65% less abundant on removal reefs suggesting cleaners may also affect recruitment. This may, in part, explain the 23% lower abundance and 33% lower species richness of visitor fishes, and 66% lower abundance of visitor herbivores (Acanthuridae) on removal reefs that we also observed. This is the first study to demonstrate a benefit of cleaning behaviour to client individuals, in the form of increased size, and to elucidate potential mechanisms leading to community-wide effects on the fish population. Many of the fish groups affected may also indirectly affect other reef organisms, thus further impacting the reef community. The large-scale effect of the presence of the relatively small and uncommon fish, Labroides dimidiadus, on other fishes is unparalleled on coral reefs. PMID:21731670

  1. Quantifying Barotrauma Risk to Juvenile Fish during Hydro-turbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Serkowski, John A.; Ebner, Laurie L.

    2014-03-15

    We introduce a method for hydro turbine biological performance assessment (BioPA) to bridge the gap between field and laboratory studies on fish injury and turbine engineering design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed hydro turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism (stressor) and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood ofmore » fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, engineers and biologists can identify the more-promising designs and operating conditions to minimize hydraulic conditions hazardous to passing fish. In this paper, the BioPA method is applied to estimate barotrauma induced mortal injury rates for Chinook salmon exposed to rapid pressure changes in Kaplan-type hydro turbines. Following the description of the general method, application of the BioPA to estimate the probability of mortal injury from exposure to rapid decompression is illustrated using a Kaplan hydro turbine at the John Day Dam on the Columbia River in the Pacific Northwest region of the USA. The estimated rates of mortal injury increased from 0.3% to 1.7% as discharge through the turbine increased from 334 to 564 m3/s for fish assumed to be acclimated to a depth of 5 m. The majority of pressure nadirs occurred immediately below the runner blades, with the lowest values in the gap at the blade tips and just below the leading edge of the blades. Such information can help engineers focus on problem areas when designing new turbine runners to be more fish-friendly than existing units.« less

  2. Summary of Migration and Survival Data from Radio-Tagged Juvenile Coho Salmon in the Trinity River, Northern California, 2008

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal; Juhnke, Steve; Stutzer, Greg

    2009-01-01

    The survival of hatchery-origin juvenile coho salmon from the Trinity River Hatchery was estimated as they migrated seaward through the Trinity and Klamath Rivers. The purpose of the study was to collect data for comparison to a similar study in the Klamath River and provide data to the Trinity River Restoration Program. A total of 200 fish fitted with radio transmitters were released into the Trinity River near the hatchery (river kilometer 252 from the mouth of the Klamath River) biweekly from March 19 to May 28, 2008. Fish from the earliest release groups took longer to pass the first detection site 10 kilometers downstream of the hatchery than fish from the later release groups, but travel times between subsequent sites were often similar among the release groups. The travel times of individuals through the 239 kilometer study area ranged from 15.5 to 84.6 days with a median of 43.3 days. The data and models did not support differences in survival among release groups, but did support differences among river reaches. The probability of survival in the first 53 kilometers was lower than in the reaches farther downstream, which is similar to trends in juvenile coho salmon in the Klamath River. The lowest estimated survival in this study was in the first 10 kilometers from release in the Trinity River (0.676 SE 0.036) and the highest estimated survival was in the final 20 kilometer reach in the Klamath River (0.987 SE 0.013). Estimated survivals of radio-tagged juvenile coho salmon from release to Klamath River kilometer 33 were 0.639 per 100 kilometers for Trinity River fish and 0.721 per 100 kilometers for Klamath River fish.

  3. Juvenile Idiopathic Arthritis

    MedlinePlus

    ... Is Juvenile Idiopathic Arthritis the same as Juvenile Rheumatoid Arthritis? Yes, Juvenile Idiopathic Arthritis (JIA) is a new ... of chronic inflammatory diseases that affect children. Juvenile Rheumatoid Arthritis (JRA) is the older term that was used ...

  4. Oxidative stress responses of juvenile tambaqui Colossoma macropomum after short-term anesthesia with benzocaine and MS-222.

    PubMed

    Stringhetta, Giovanna R; Barbas, Luis A L; Maltez, Lucas C; Sampaio, Luís A; Monserrat, José M; Garcia, Luciano O

    2017-01-01

    The present study aimed to evaluate the effects of benzocaine and tricaine methanesulfonate on oxidative stress parameters of juvenile tambaqui tissues. Fish (n=80) were anesthetized with benzocaine (100 mg L-1) or tricaine (240 mg L-1) and two control groups were used (non-anesthetized fish and fish exposed to ethanol-only). After anesthetic induction 10 fish/anesthetic were euthanized after 3, 12 and 24 hours post-anesthesia and tissue samplings (gills, liver and brain) were performed. Samples were submitted to analyses of enzyme activity glutathione-S-transferase (GST), cellular lipid peroxidation (TBARS) and total antioxidant capacity (ACAP). ACAP increased in gills of benzocaine treatment after 12 hours. The liver showed a reduction in ACAP of tricaine treatment after 12 hours. Both anesthetic treatments showed an increase of ACAP at 24 hours compared to control group. The activity of the GST enzyme increased in the gills for treatments benzocaine and tricaine after 3 and 12 hours. Liver showed increased GST activity (benzocaine after 24 hours and tricaine after 3 and 24 hours). Lipid damage decreased in gills (both anesthetics) and brain (tricaine) after 24 hours. The results demonstrate that benzocaine and tricaine did not cause oxidative damage in juvenile tambaqui under the experimental conditions herein established.

  5. An evaluation of fish behavior upstream of the water temperature control tower at Cougar Dam, Oregon, using acoustic cameras, 2013

    USGS Publications Warehouse

    Adams, Noah S.; Smith, Collin; Plumb, John M.; Hansen, Gabriel S.; Beeman, John W.

    2015-07-06

    This report describes the initial year of a 2-year study to determine the feasibility of using acoustic cameras to monitor fish movements to help inform decisions about fish passage at Cougar Dam near Springfield, Oregon. Specifically, we used acoustic cameras to measure fish presence, travel speed, and direction adjacent to the water temperature control tower in the forebay of Cougar Dam during the spring (May, June, and July) and fall (September, October, and November) of 2013. Cougar Dam is a high-head flood-control dam, and the water temperature control tower enables depth-specific water withdrawals to facilitate adjustment of water temperatures released downstream of the dam. The acoustic cameras were positioned at the upstream entrance of the tower to monitor free-ranging subyearling and yearling-size juvenile Chinook salmon (Oncorhynchus tshawytscha). Because of the large size discrepancy, we could distinguish juvenile Chinook salmon from their predators, which enabled us to measure predators and prey in areas adjacent to the entrance of the tower. We used linear models to quantify and assess operational and environmental factors—such as time of day, discharge, and water temperature—that may influence juvenile Chinook salmon movements within the beam of the acoustic cameras. Although extensive milling behavior of fish near the structure may have masked directed movement of fish and added unpredictability to fish movement models, the acoustic-camera technology enabled us to ascertain the general behavior of discrete size classes of fish. Fish travel speed, direction of travel, and counts of fish moving toward the water temperature control tower primarily were influenced by the amount of water being discharged through the dam.

  6. Estimating Common Growth Patterns in Juvenile Chinook Salmon (Oncorhynchus tshawytscha) from Diverse Genetic Stocks and a Large Spatial Extent

    PubMed Central

    Scheuerell, Mark D.; Simenstad, Charles A.; Bottom, Daniel L.

    2016-01-01

    Life history variation in Pacific salmon (Oncorhynchus spp.) supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha) from the Columbia River estuary over a two-year period (2010–2012). We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity. PMID:27695094

  7. Estimating Common Growth Patterns in Juvenile Chinook Salmon (Oncorhynchus tshawytscha) from Diverse Genetic Stocks and a Large Spatial Extent.

    PubMed

    Goertler, Pascale A L; Scheuerell, Mark D; Simenstad, Charles A; Bottom, Daniel L

    2016-01-01

    Life history variation in Pacific salmon (Oncorhynchus spp.) supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha) from the Columbia River estuary over a two-year period (2010-2012). We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity.

  8. Seasonal changes in community composition and trophic structure of fish populations of five salt marshes along the Essex coastline, United Kingdom

    NASA Astrophysics Data System (ADS)

    Green, Benjamin C.; Smith, David J.; Earley, Sarah E.; Hepburn, Leanne J.; Underwood, Graham J. C.

    2009-11-01

    European intertidal salt marshes are important nursery sites for juvenile fish and crustaceans. Due to the increasing threat of habitat loss, the seasonal changes of salt marsh fish communities need to be understood in order to appreciate the ecological and economic importance of the saltmarsh habitat. This study was the first in Great Britain to investigate the seasonal changes of salt marsh fish communities and the variation in community structure between closely located marsh habitats. Between February 2007 and March 2008, five marshes on three estuaries of the Essex coastline were sampled using flume nets to block off intertidal creeks at high tide. Fourteen fish species were caught. The community overall was dominated by three species that made up 91.6% of the total catch: the common goby Pomatoschistus microps (46.2% of the total catch), juvenile herring Clupea harengus (24.3%), and juvenile and larval sea bass Dicentrarchus labrax (21.2%). Cluster analysis demonstrated clear seasonal patterns, with some community structures unique to specific marshes or estuaries. The marsh fish community shifts from a highly diverse community during spring, to a community dominated by D. labrax and P. microps in autumn, and low diversity during winter months. Gravimetric stomach content analysis of fish community identified three main trophic guilds; macroinvertivores, planktivores and omnivores. The macroinvertivore feeding guild contained D. labrax and P. microps, the two most frequently occurring species. This investigation demonstrates the importance of British salt marshes as nursery habitats for commercial fish species.

  9. Migratory Behavior and Survival of Juvenile Salmonids in the Lower Columbia River, Estuary, and Plume in 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Harnish, Ryan A.; Skalski, John R.

    Uncertainty regarding the migratory behavior and survival of juvenile salmonids passing through the lower Columbia River and estuary after negotiating dams on the Federal Columbia River Power System (FCRPS) prompted the development and application of the Juvenile Salmon Acoustic Telemetry System (JSATS). The JSATS has been used to investigate the survival of juvenile salmonid smolts between Bonneville Dam (river kilometer (rkm) 236) and the mouth of the Columbia River annually since 2004. In 2010, a total of 12,214 juvenile salmonids were implanted with both a passive integrated transponder (PIT) and a JSATS acoustic transmitter. Using detection information from JSATS receivermore » arrays deployed on dams and in the river, estuary, and plume, the survival probability of yearling Chinook salmon and steelhead smolts tagged at John Day Dam was estimated form multiple reaches between rkm 153 and 8.3 during the spring. During summer, the survival probability of subyearling Chinook salmon was estimated for the same reaches. In addition, the influence of routes of passage (e.g., surface spill, deep spill, turbine, juvenile bypass system) through the lower three dams on the Columbia River (John Day, The Dalles, and Bonneville) on juvenile salmonid smolt survival probability from the dams to rkm 153 and then between rkm 153 and 8.3 was examined to increase understanding of the immediate and latent effects of dam passage on juvenile salmon survival. Similar to previous findings, survival probability was relatively high (>0.95) for most groups of juvenile salmonids from the Bonneville Dam tailrace to about rkm 50. Downstream of rkm 50 the survival probability of all species and run types we examined decreased markedly. Steelhead smolts suffered the highest mortality in this lower portion of the Columbia River estuary, with only an estimated 60% of the tagged fish surviving to the mouth of the river. In contrast, yearling and subyearling Chinook salmon smolts survived to

  10. Microplastic does not magnify the acute effect of PAH pyrene on predatory performance of a tropical fish (Lates calcarifer).

    PubMed

    Guven, Olgac; Bach, Lis; Munk, Peter; Dinh, Khuong V; Mariani, Patrizio; Nielsen, Torkel Gissel

    2018-05-01

    Microplastic (MP) leads to widespread pollution in the marine ecosystem. In addition to the physical hazard posed by ingestion of microplastic particles, concern is also on their potential as vector for transport of hydrophobic contaminants. We experimentally studied the single and interactive effects of microplastic and pyrene, a polycyclic aromatic hydrocarbon, on the swimming behaviour and predatory performance of juvenile barramundi (Lates calcarifer). Juveniles (18+ days post hatch) were exposed to MPs, or pyrene (100 nM), or combination of both, and feeding rate and foraging activity (swimming) were analysed. Exposure to MPs alone did not significantly influence feeding performance of the juveniles, while a dose-effect series of pyrene showed strong effect on fish behaviour when concentrations were above 100 nM. In the test of combined MP and pyrene exposure, we observed no effect on feeding while swimming speed decreased significantly. Thus, our results confirm that short-time exposure to pyrene impacts the performance of fish juveniles, while additional exposure to microplastic at the given conditions influenced their activity only and not their feeding rate. Further studies of the combined effects of microplastics and pollutants on tropical fish behaviour are encouraged. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Amending reduced fish-meal feeds with marine lecithin, but not soy lecithin, improves the growth of juvenile cobia and may attenuate heightened responses to stress challenge.

    PubMed

    Trushenski, J; Schwarz, M; Pessoa, W V N; Mulligan, B; Crouse, C; Gause, B; Yamamoto, F; Delbos, B

    2013-02-01

    Sparing of marine resources in aquafeeds can be environmentally and economically advantageous; however, fish meal (FM) replacement can affect the production performance and physiological competence. Phospholipids are increasingly understood to be involved in maintaining growth and vigour in fish and may be deficient in reduced FM formulations. Accordingly, we evaluated the growth and stress tolerance of juvenile cobia fed typical (50% FM) or reduced FM feeds (12% FM) with or without phospholipid amendment [1% marine lecithin (12% FM + Marine PL) or soy lecithin (12% FM + Soy PL)] for 6 weeks in triplicate tanks (N = 3) in a recirculation aquaculture system. The 50% FM feed yielded significantly superior growth and growth efficiency in comparison with the 12% FM and 12% FM+ Soy PL feeds, but the 12% FM+ Marine PL feed yielded comparable results to 50% FM feed. A low-water stress challenge induced elevated plasma glucose, cortisol and lactate levels in all treatments. However, a significant interaction (diet × stress) effect suggested a lesser cortisol response among fish fed the 12% FM+ Marine PL and 50% FM diets. These findings demonstrate that growth performance and, perhaps, resilience of cobia raised on reduced FM feeds may be improved by the addition of marine-origin phospholipid to the diet. © 2011 Blackwell Verlag GmbH.

  12. Factors affecting stranding of juvenile salmonids by wakes from ship passage in the Lower Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, Walter H.; Skalski, John R.

    2011-09-01

    The effects of deep-draft vessel traffic in confined riverine channels on shorelines and fish are of widespread concern. In the Pacific Northwest of the United States, wakes and subsequent beach run-up from ships transiting the Lower Columbia River have been observed to strand juvenile salmon and other fish. As part of a before-and-after study to assess stranding effects that may be associated with channel deepening, we measured 19 co-variables from observations of 126 vessel passages at three low-slope beaches and used multiple logistic regression to discern the significant factors influencing the frequency of stranding. Subyearling Chinook salmon were 82% ofmore » the fish stranded over all sites and seasons. Given a low-slope beach, stranding frequencies for juvenile salmon were significantly related to river location, salmon density in the shallows, a proxy for ship kinetic energy, tidal height, and two interactions. The beach types selected for our study do not include all the beach types along the Lower Columbia River so that the stranding probabilities described here cannot be extrapolated river-wide. A more sophisticated modeling effort, informed by additional field data, is needed to assess salmon losses by stranding for the entire lower river. Such modeling needs to include river-scale factors such as beach type, berms, proximity to navigation channel, and perhaps, proximity to tributaries that act as sources of out-migrating juvenile salmon. At both river and beach scales, no one factor produces stranding; rather interactions among several conditions produce a stranding event and give stranding its episodic nature.« less

  13. Interacting effects of water temperature and swimming activity on body composition and mortality of fasted juvenile rainbow trout

    USGS Publications Warehouse

    Simpkins, D.G.; Hubert, W.A.; Martinez Del Rio, C.; Rule, D.C.

    2003-01-01

    Abstract: We assessed changes in proximate body composition, wet mass, and the occurrence of mortality among sedentary and actively swimming (15 cm/s) juvenile rainbow trout (Oncorhynchus mykiss) (120-142 mm total length) that were held at 4.0, 7.5, or 15.0 ??C and fasted for 140 days. Warmer water temperatures and swimming activity accentuated declines in lipid mass, but they did not similarly affect lean mass and wet mass. Swimming fish conserved lean mass independent of water temperature. Because lean mass exceeded lipid mass, wet mass was not affected substantially by decreases in lipid mass. Consequently, wet mass did not accurately reflect the effects that water temperature and swimming activity had on mortality of fasted rainbow trout. Rather, lipid mass was more accurate in predicting death from starvation. Juvenile rainbow trout survived long periods without food, and fish that died of starvation appeared to have similar body composition. It appears that the ability of fish to endure periods without food depends on the degree to which lipid mass and lean mass can be utilized as energy sources.

  14. Pathways of Barotrauma in Juvenile Salmonids Exposed to Simulated Hydroturbine Passage: Boyle’s Law vs. Henry’s Law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Pflugrath, Brett D.; Colotelo, Alison HA

    2012-06-01

    On their seaward migration, juvenile salmonids commonly pass hydroelectric dams. Fish passing by the turbine blade may experience rapid decompression, the severity of which can be highly variable and may result in a number of barotraumas. The mechanisms of these injuries can be due to expansion of existing bubbles or gases coming out of solution; governed by Boyle’s Law and Henry’s Law, respectively. This paper combines re-analysis of published data with new experiments to gain a better understanding of the mechanisms of injury and mortality for fish experiencing rapid decompression associated with hydroturbine passage. From these data it appears thatmore » the majority of decompression related injuries are due to the expansion of existing bubbles in the fish, particularly the expansion and rupture of the swim bladder. This information is particularly useful for fisheries managers and turbine manufacturers, demonstrating that reducing the rate of swim bladder ruptures by reducing the frequency of occurrence and severity of rapid decompression during hydroturbine passage could reduce the rates of injury and mortality for hydroturbine passed juvenile salmonids.« less

  15. Patterns of resource-use and competition for mutualistic partners between two species of obligate cleaner fish

    NASA Astrophysics Data System (ADS)

    Adam, T. C.; Horii, S. S.

    2012-12-01

    Cleaner mutualisms on coral reefs, where specialized fish remove parasites from many species of client fishes, have greatly increased our understanding of mutualism, yet we know little about important interspecific interactions between cleaners. Here, we explore the potential for competition between the cleaners Labroides dimidiatus and Labroides bicolor during two distinct life stages. Previous work has demonstrated that in contrast to L. dimidiatus, which establish cleaning stations, adult L. bicolor rove over large areas, searching for clients. We show that site-attached juvenile L. bicolor associate with different microhabitat than juvenile L. dimidiatus and that L. bicolor specialize on a narrower range of species than L. dimidiatus as both juveniles and adults. Further, we present evidence suggesting that differences in resource-use are influenced by competitive interactions between the two species. Finally, we discuss the implications of these results for understanding the ecology and evolution of the mutualism.

  16. Feeding chronology of juvenile piranhas, Pygocentrus notatus, in the Venezuelan llanos

    USGS Publications Warehouse

    Nico, L.G.

    1990-01-01

    During the 1988 rainy season, I studied the 24 h feeding chronology of juvenile (40–68 mm standard length) piranhas, Pygocentrus notatus (Characidae: Serrasalminae) from a natural population inhabiting a small savanna stream in Apure State, Venezuela. Stomach contents analyses, supported by laboratory determinations of digestion rate, showed that these fish are primarily diurnal carnivores. Predatory activity on 4–5 August 1988 increased markedly after sunrise, peaked around 1100 h, and essentially stopped after sunset. Means of stomach content weight-to-fish weight ratios among the periods sampled were significantly different. Small fish were the major prey at all hours (81% of total prey volume). Underlying factors responsible for the observed 24 h feeding patterns were not investigated, but avoidance of predation by adult piranhas, which were very active near sunset, may have been important.

  17. Trends in nitrogen isotope ratios of juvenile winter flounder ...

    EPA Pesticide Factsheets

    Nitrogen isotope ratios (d 15N) in juvenile winter flounder, Pseudopleuronectes americanus, were used to examine changes in nitrogen inputs to several Rhode Island, USA estuarine systems. Fish were collected over two three-year periods with a ten-year interval between sampling periods (2002-2004 and 2012-2014). During that interval numerous changes to nutrient management practices were initiated in the watersheds of these estuarine systems including the upgrade of several major wastewater treatment facilities that discharge to Narragansett Bay, which significantly reduced nitrogen inputs. Following these reductions, the d 15N values of flounder in several of the systems decreased as expected; however, isotope ratios in fish from upper Narragansett Bay significantly increased. We believe that low d 15N values measured in 2002-2004 were related to concentration-dependant fractionation at this location. Increased d 15N values measured between 2012 and 2014 may indicate reduced fractionation or that changes in wastewater treatment processes altered the nitrogen isotopic ratios of the effluents. This manuscript advances the development of methodology to assess the influence of anthropogenic nitrogen in estuarine systems. Juvenile winter flounder were collected from several estuarine systems along the coast of Rhode Island over two three-year periods and nitrogen isotopes were measured in the muscle tissues of the flounder. The results showed that there was a good cor

  18. Rapid effects of essential fatty acid deficiency on growth and development parameters and transcription of key fatty acid metabolism genes in juvenile barramundi (Lates calcarifer).

    PubMed

    Salini, Michael J; Turchini, Giovanni M; Wade, Nicholas M; Glencross, Brett D

    2015-12-14

    Barramundi (Lates calcarifer), a catadromous teleost of significant and growing commercial importance, are reported to have limited fatty acid bioconversion capability and therefore require preformed long-chain PUFA (LC-PUFA) as dietary essential fatty acid (EFA). In this study, the response of juvenile barramundi (47·0 g/fish initial weight) fed isolipidic and isoenergetic diets with 8·2% added oil was tested. The experimental test diets were either devoid of fish oil (FO), and thus with no n-3 LC-PUFA (FO FREE diet), or with a low inclusion of FO (FO LOW diet). These were compared against a control diet containing only FO (FO CTRL diet) as the added lipid source, over an 8-week period. Interim samples and measurements were taken fortnightly during the trial in order to define the aetiology of the onset and progression of EFA deficiency. After 2 weeks, the fish fed the FO FREE and FO LOW diets had significantly lower live-weights, and after 8 weeks significant differences were detected for all performance parameters. The fish fed the FO FREE diet also had a significantly higher incidence of external abnormalities. The transcription of several genes involved in fatty acid metabolism was affected after 2 weeks of feeding, showing a rapid nutritional regulation. This experiment documents the aetiology of the onset and the progression of EFA deficiency in juvenile barramundi and demonstrates that such deficiencies can be detected within 2 weeks in juvenile fish.

  19. Demonstration of toxicity to fish and to mammalian cells by Pfiesteria species: Comparison of assay methods and strains

    PubMed Central

    Burkholder, JoAnn M.; Gordon, Andrew S.; Moeller, Peter D.; Law, J. Mac; Coyne, Kathryn J.; Lewitus, Alan J.; Ramsdell, John S.; Marshall, Harold G.; Deamer, Nora J.; Cary, S. Craig; Kempton, Jason W.; Morton, Steven L.; Rublee, Parke A.

    2005-01-01

    Toxicity and its detection in the dinoflagellate fish predators Pfiesteria piscicida and Pfiesteria shumwayae depend on the strain and the use of reliable assays. Two assays, standardized fish bioassays (SFBs) with juvenile fish and fish microassays (FMAs) with larval fish, were compared for their utility to detect toxic Pfiesteria. The comparison included strains with confirmed toxicity, negative controls (noninducible Pfiesteria strains and a related nontoxic cryptoperidiniopsoid dinoflagellate), and P. shumwayae strain CCMP2089, which previously had been reported as nontoxic. SFBs, standardized by using toxic Pfiesteria (coupled with tests confirming Pfiesteria toxin) and conditions conducive to toxicity expression, reliably detected actively toxic Pfiesteria, but FMAs did not. Pfiesteria toxin was found in fish- and algae-fed clonal Pfiesteria cultures, including CCMP2089, but not in controls. In contrast, noninducible Pfiesteria and cryptoperidiniopsoids caused no juvenile fish mortality in SFBs even at high densities, and low larval fish mortality by physical attack in FMAs. Filtrate from toxic strains of Pfiesteria spp. in bacteria-free media was cytotoxic. Toxicity was enhanced by bacteria and other prey, especially live fish. Purified Pfiesteria toxin extract adversely affected mammalian cells as well as fish, and it caused fish death at environmentally relevant cell densities. These data show the importance of testing multiple strains when assessing the potential for toxicity at the genus or species level, using appropriate culturing techniques and assays. PMID:15728353

  20. Skin reflectance as a non-lethal measure of smoltification for juvenile salmonids

    USGS Publications Warehouse

    Haner, Philip V.; Faler, Joyce C.; Schrock, Robin M.; Rondorf, Dennis W.; Maule, Alec G.

    1995-01-01

    Our efforts to find nonlethal methods of assessing the parr-smoll transformation of juvenile steelhead Oncorhynchus mykiss and spring and fall chinook salmon O. tshawytscha led to the development of a video system for quantitatively measuring skin silvering using skin reflectance. Gill Na'.K'-ATPase activity, skin guanine concentration, and skin reflectance were recorded from groups of fish marked with freeze brands at hatcheries and downstream sample sites in the Columbia River basin. Skin reflectance of migrants was significantly higher than that of fish before release; nonmigrants (released fish that did not migrate) had significantly lower skin reflectance than migrants from the same groups. Skin reflectance was significantly correlated with gill ATPasc activity and skin guanine concentration. Skin reflectance increased during the parrsmolt transformation and could be used as a nonlethal indicator of smoltification.

  1. Social learning in juvenile lemon sharks, Negaprion brevirostris.

    PubMed

    Guttridge, Tristan L; van Dijk, Sander; Stamhuis, Eize J; Krause, Jens; Gruber, Samuel H; Brown, Culum

    2013-01-01

    Social learning is taxonomically widespread and can provide distinct behavioural advantages, such as in finding food or avoiding predators more efficiently. Although extensively studied in bony fishes, no such empirical evidence exists for cartilaginous fishes. Our aim in this study was to experimentally investigate the social learning capabilities of juvenile lemon sharks, Negaprion brevirostris. We designed a novel food task, where sharks were required to enter a start zone and subsequently make physical contact with a target in order to receive a food reward. Naive sharks were then able to interact with and observe (a) pre-trained sharks, that is, 'demonstrators', or (b) sharks with no previous experience, that is, 'sham demonstrators'. On completion, observer sharks were then isolated and tested individually in a similar task. During the exposure phase observers paired with 'demonstrator' sharks performed a greater number of task-related behaviours and made significantly more transitions from the start zone to the target, than observers paired with 'sham demonstrators'. When tested in isolation, observers previously paired with 'demonstrator' sharks completed a greater number of trials and made contact with the target significantly more often than observers previously paired with 'sham demonstrators'. Such experience also tended to result in faster overall task performance. These results indicate that juvenile lemon sharks, like numerous other animals, are capable of using socially derived information to learn about novel features in their environment. The results likely have important implications for behavioural processes, ecotourism and fisheries.

  2. Distribution and habitat associations of juvenile Common Snook in the lower Rio Grande, Texas

    USGS Publications Warehouse

    Huber, Caleb G.; Grabowski, Timothy B.; Patino, Reynaldo; Pope, Kevin L.

    2014-01-01

    Common Snook Centropomus undecimalis were once abundant off the Texas coast, but these populations are now characterized by low abundance and erratic recruitment. Most research concerning Common Snook in North America has been conducted in Florida and very little is known about the specific biology and habitat needs of Common Snook in Texas. The primary objective of this study was to describe the habitat use patterns of juvenile Common Snook and their role in the fish assemblage in the lower portion of the Rio Grande, Texas. Secondarily, we documented the relationship between age and juvenile reproductive development. Fish were collected during January–March 2006 from the lower 51.5 km of the Rio Grande using a bottom trawl and boat-mounted electrofisher. Measurements of water quality and other habitat traits were recorded at each sampling site. We captured 225 Common Snook exclusively in freshwater habitats above river kilometer 12.9. The distribution of juvenile Common Snook was not random, but influenced primarily by turbidity and dissolved oxygen. Sex differentiation and gonadal development based on histological examination of gonads established that age-1 and age-2 Common Snook were juvenile, prepubertal males. There was no difference between the age groups in their overall distribution in the river. However, age-2 Common Snook were associated with deeper areas with faster currents, higher conductivity, and steeper banks. Overall, Common Snook in the lower Rio Grande show substantial differences in habitat use than their counterparts in other parts of the range of the species, but it is unclear whether this is due to differences in habitat availability, behavioral plasticity, or some combination thereof.

  3. Spatial distribution of limited resources and local density regulation in juvenile Atlantic salmon.

    PubMed

    Finstad, Anders G; Einum, Sigurd; Ugedal, Ola; Forseth, Torbjørn

    2009-01-01

    1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.

  4. Influence of infection with Renibacterium salmoninarum on susceptibility of juvenile spring chinook salmon to gas bubble trauma

    USGS Publications Warehouse

    Weiland, L.K.; Mesa, M.G.; Maule, A.G.

    1999-01-01

    During experiments in our laboratory to assess the progression and severity of gas bubble trauma (GBT) in juvenile spring chinook salmon Oncorhynchus tshawytscha, we had the opportunity to assess the influence of Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease, on the susceptibility of salmon to GBT. We exposed fish with an established infection of Rs to 120% total dissolved gas (TDG) for 96 h and monitored severity of GBT signs in the fins and gills, Rs infection level in kidneys by using an enzyme-linked immunosorbent assay (ELISA), and mortality. Mortality occurred rapidly after exposure to 120% TDG, with a LT20 (time necessary to kill 20% of the population) of about 37 h, which is at a minimum about 16% earlier than other bioassays we have conducted using fish that had no apparent signs of disease. Fish that died early (from 31 to 36 h and from 49 to 52 h) had significantly higher infection levels (mean ?? SE ELISA absorbance = 1.532 ?? 0.108) than fish that survived for 96h (mean ?? SE ELISA absorbance = 0.828 ?? 0.137). Fish that died early also had a significantly greater number of gill filaments occluded with bubbles than those that survived 96 h. Conversely, fish that survived for 96 h had a significantly higher median fin severity ranking than those that died early. Our results indicate that fish with moderate to high levels of Rs infection are more vulnerable to the effects of dissolved gas supersaturation (DGS) and die sooner than fish with lower levels of Rs infection. However, there is a substantial amount of individual variation in susceptibility to the apparent cumulative effects of DGS and Rs infection. Collectively, our findings have important implications to programs designed to monitor the prevalence and severity of GBT in juvenile salmonids in areas like the Columbia River basin and perhaps elsewhere.

  5. Effects of turbidity on predation vulnerability of juvenile humpback chub to rainbow and brown trout

    USGS Publications Warehouse

    Ward, David L.; Morton-Starner, Rylan; Vaage, Benjamin M.

    2016-01-01

    Predation on juvenile native fish by introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta is considered a significant threat to the persistence of endangered humpback chub Gila cypha in the Colorado River in Grand Canyon. Diet studies of rainbow and brown trout in Glen and Grand canyons indicate that these species eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable depending on the physical conditions under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile humpback chub changes in response to changes in turbidity. In overnight laboratory trials, we exposed hatchery-reared juvenile humpback chub and bonytail Gila elegans (a surrogate for humpback chub) to adult rainbow and brown trout at turbidities ranging from 0 to 1,000 formazin nephlometric units. We found that turbidity as low as 25 formazin nephlometric units significantly reduced predation vulnerability of bonytail to rainbow trout and led to a 36% mean increase in survival (24–60%, 95% CI) compared to trials conducted in clear water. Predation vulnerability of bonytail to brown trout at 25 formazin nephlometric units also decreased with increasing turbidity and resulted in a 25% increase in survival on average (17–32%, 95% CI). Understanding the effects of predation by trout on endangered humpback chub is important when evaluating management options aimed at preservation of native fishes in Grand Canyon National Park. This research suggests that relatively small changes in turbidity may be sufficient to alter predation dynamics of trout on humpback chub in the mainstem Colorado River and that turbidity manipulation may warrant further investigation as a fisheries management tool.

  6. Estuarine environments as rearing habitats for juvenile Coho Salmon in contrasting south-central Alaska watersheds

    USGS Publications Warehouse

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2013-01-01

    For Pacific salmon, estuaries are typically considered transitional staging areas between freshwater and marine environments, but their potential as rearing habitat has only recently been recognized. The objectives of this study were two-fold: (1) to determine if Coho Salmon Oncorhynchus kisutch were rearing in estuarine habitats, and (2) to characterize and compare the body length, age, condition, and duration and timing of estuarine occupancy of juvenile Coho Salmon between the two contrasting estuaries. We examined use of estuary habitats with analysis of microchemistry and microstructure of sagittal otoliths in two watersheds of south-central Alaska. Juvenile Coho Salmon were classified as estuary residents or nonresidents (recent estuary immigrants) based on otolith Sr : Ca ratios and counts of daily growth increments on otoliths. The estuaries differed in water source (glacial versus snowmelt hydrographs) and in relative estuarine and watershed area. Juvenile Coho Salmon with evidence of estuary rearing were greater in body length and condition than individuals lacking evidence of estuarine rearing. Coho Salmon captured in the glacial estuary had greater variability in body length and condition, and younger age-classes predominated the catch compared with the nearby snowmelt-fed, smaller estuary. Estuary-rearing fish in the glacial estuary arrived later and remained longer (39 versus 24 d of summer growth) during the summer than did fish using the snowmelt estuary. Finally, we observed definitive patterns of overwintering in estuarine and near shore environments in both estuaries. Evidence of estuary rearing and overwintering with differences in fish traits among contrasting estuary types refute the notion that estuaries function as only staging or transitional habitats in the early life history of Coho Salmon.

  7. Geographic variation in host fish use and larval metamorphosis for the endangered dwarf wedgemussel

    USGS Publications Warehouse

    White, Barbara (St. John); Ferreri, C. Paola; Lellis, William A.; Wicklow, Barry J.; Cole, Jeffrey C.

    2017-01-01

    Host fishes play a crucial role in survival and dispersal of freshwater mussels (Unionoida), particularly rare unionids at conservation risk. Intraspecific variation in host use is not well understood for many mussels, including the endangered dwarf wedgemussel (Alasmidonta heterodon) in the USA.Host suitability of 33 fish species for dwarf wedgemussel glochidia (larvae) from the Delaware and Connecticut river basins was tested in laboratory experiments over 9 years. Relative suitability of three different populations of a single host fish, the tessellated darter (Etheostoma olmstedi), from locations in the Connecticut, Delaware, and Susquehanna river basins, was also tested.Connecticut River basin A. heterodon metamorphosed into juvenile mussels on tessellated darter, slimy sculpin (Cottus cognatus), and Atlantic salmon (Salmo salar) parr. Delaware River basin mussels metamorphosed using these three species, as well as brown trout (Salmo trutta), banded killifish (Fundulus diaphanus), mottled sculpin (Cottus bairdii), striped bass (Morone saxatilis), and shield darter (Percina peltata). Atlantic salmon, striped bass, and sculpins were highly effective hosts, frequently generating 5+ juveniles per fish (JPF) and metamorphosis success (MS; proportion of attaching larvae that successfully metamorphose) ≥ 0.4, and producing juveniles in repeated trials.In experiments on tessellated darters, mean JPF and MS values decreased as isolation between the mussel source (Connecticut River) and each fish source increased; mean JPF = 10.45, 6.85, 4.14, and mean MS = 0.50, 0.41, and 0.34 in Connecticut, Delaware, and Susquehanna river darters, respectively. Host suitability of individual darters was highly variable (JPF = 2–11; MS = 0.20–1.0).The results show that mussel–host fish compatibility in A. heterodon differs among Atlantic coastal rivers, and suggest that hosts including anadromous Atlantic salmon and striped bass may help sustain A. heterodon in parts of

  8. Sluiceway Operations to Pass Juvenile Salmonids at The Dalles Dam, Columbia River, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Khan, Fenton; Skalski, J. R.

    Existing ice and trash sluiceways are commonly used to pass juvenile salmonids downstream at hydropower dams through a benign, non-turbine route. At The Dalles Dam on the Columbia River, managers undertook optimizing operations of sluiceway weirs to maximize survival of juvenile salmonids at the powerhouse. We applied fixed-location hydroacoustic methods to compare fish passage rates and sluiceway efficiencies for two weir configurations during 2004 and 2005: three weirs versus six weirs, located at the mid- versus east powerhouse, respectively. We also analyzed horizontal distributions of passage at the sluiceway and turbines and the effects of operating turbines beneath open sluicewaymore » gates to provide supporting data relevant to operations optimization. Based on the findings, we recommend the following for long-term operations for the sluiceway at The Dalles Dam: open six rather than three sluiceway weirs to take advantage of the maximum hydraulic capacity of the sluiceway; open the three weirs above the western-most operating main turbine unit (MU) and the three weirs at MU 8 where turbine passage rates are relatively high; operate the turbine units below open sluiceway weirs as a standard procedure; operate the sluiceway 24 h/d year-round to maximize its benefits to juvenile salmonids; and use the same operations for spring and summer emigrants. These operational concepts are transferable to dams where sluiceway surface flow outlets are used protect downstream migrating fishes.« less

  9. Selection of diet for culture of juvenile silver pomfret, Pampus argenteus

    NASA Astrophysics Data System (ADS)

    Peng, Shiming; Shi, Zhaohong; Yin, Fei; Sun, Peng; Wang, Jiangang

    2012-03-01

    Juvenile silver pomfret, Pampus argenteus, was grown in culture tanks for 9 weeks on four different diets, and their effects on fish growth, digestive enzyme activity, and body composition were assessed. The feeding regime was as follows: Diet 1: fish meat; Diet 2: fish meat+artificial feed; Diet 3: fish meat+artificial feed+Agamaki clam meat; Diet 4: fish meat+artificial feed+Agamaki clam+copepods. The greatest weight gain was associated with Diet 4, while the lowest weight gain was associated with Diet 1. No significant difference was observed in weight gain between fish receiving Diet 2 and Diet 3. Specific growth rate followed similar trends as weight gain. The feed conversion ratio (FCR) of fish fed Diet 1 was significantly higher than the other fish groups, but no significant differences were observed in FCRs of fish fed Diet 2, Diet 3 or Diet 4. There was also no significant difference in the hepatosomatic index (HSI) between the four diets. For fish that received Diets 2-4, containing artificial feed, higher protease activities were detected. A higher lipid content of the experimental diets also significantly increased lipase activities and body lipid content. No significant differences in amylase activity or body protein content were found between Diets 1-4. In conclusion, a variety of food components, including copepods and artificial feed, in the diet of silver pomfret significantly increased digestive enzyme activity and could improve growth performance.

  10. Micro-topography mediates interactions between corals, algae, and herbivorous fishes on coral reefs

    NASA Astrophysics Data System (ADS)

    Brandl, S. J.; Hoey, A. S.; Bellwood, D. R.

    2014-06-01

    Processes occurring during the early life stages of corals are important for the replenishment of coral assemblages and the resilience of coral reefs. However, the factors influencing early life stages of corals are not well understood, and the role of micro-topographic complexity for habitat associations of juvenile corals is largely unexplored. This study investigated the microhabitat distribution patterns of early life stages of corals and a potential macroalgal competitor ( Turbinaria ornata) across two reef zones (reef crest and outer reef flat) on Lizard Island, Great Barrier Reef. In both reef zones, both corals and T. ornata were significantly more abundant in concealed microhabitats than in semi-concealed or open microhabitats (GLMM: P < 0.001). The prevalence of juvenile corals and T. ornata within concealed environments suggests that they might be effective refuges from grazing by herbivorous fishes. The density of juvenile corals was positively related, and density of T. ornata negatively related to the abundance of two groups of herbivorous fishes, pairing rabbitfishes, and surgeonfishes in the genus Zebrasoma (BEST ENV-BIO: r s = 0.72, P < 0.01), which feed in concealed microhabitats. This correlative evidence suggests that crevices may be important for early life stages of both coral and macroalgae, and that a specific suite of crevice-feeding fishes may influence benthic community dynamics in these microhabitats.

  11. Studies of certain sulfonamide drugs for use in juvenile chinook salmon

    USGS Publications Warehouse

    Amend, D.F.; Fryer, J.L.; Pilcher, K.S.

    1969-01-01

    In the work described in this paper, the efficacies of sulfisoxazole and sulfadimethoxine were compared to the efficacy of sulfamethazine. Experiments were designed to determine the rate of intestinal absorption, the rate of elimination from the blood, the effect on growth, and the toxicity of each drug in juvenile chinook salmon (Oncorhynchus tshawytscha). The comparative bacteriostatic activity against two common fish pathogens was also determined for each drug. 

  12. Juvenile anadromous salmonid production in upper Columbia River side channels with different levels of hydrological connection

    USGS Publications Warehouse

    Martens, Kyle D.; Connolly, Patrick J.

    2014-01-01

    We examined the contribution of three types of side channels based on their hydrologic connectivity (seasonally disconnected, partially connected, and connected) to production of juvenile anadromous salmonids. Juvenile steelhead Oncorhynchus mykiss and Chinook Salmon O. tshawytscha were found in all three of these side channel types and in each year of the study. Upon connection with the main stem at high flows, the seasonally disconnected side channels experienced an emptying out of the previous year's fish while filling with young-of-year fish during the 2- to 4-month period of hydrologic connection. There were no differences between the densities of juvenile steelhead and Chinook Salmon and the rate of smolts produced among the three types of side channels. Recently reintroduced Coho Salmon O. kisutch had sporadic presence and abundance in partially and connected side channels, but the smolt production rate was over two times that of steelhead and Chinook Salmon in seasonally disconnected side channels. Within seasonally disconnected side channels, young-of-year salmonids in deep pools (≥100 cm) had greater survival than those in shallow pools (<100 cm). Densities of juvenile steelhead in all side channel types were similar to those in tributaries and were higher than in main-stem lateral margins. Juvenile Chinook Salmon densities were higher in side channels than in both tributary and main-stem lateral margins. Our results suggest that improving quality of pool habitat within seasonally disconnected side channels can result in improved survival for juvenile anadromous salmonids during the period of disconnection. Habitat improvement in these seasonally disconnected side channels should be recognized as a worthy restoration strategy, especially when full connectivity of side channels may not be a feasible target (e.g., through lack of water availability) or when full connectivity may present too high a risk (e.g., flooding, stream capture, bank

  13. Theoretical life history responses of juvenile Oncorhynchus mykiss to changes in food availability using a dynamic state-dependent approach

    USGS Publications Warehouse

    Romine, Jason G.; Benjamin, Joseph R.; Perry, Russell W.; Casal, Lynne; Connolly, Patrick J.; Sauter, Sally S.

    2013-01-01

    Marine subsidies can play an important role in the growth, survival, and migratory behavior of rearing juvenile salmonids. Availability of high-energy, marine-derived food sources during critical decision windows may influence the timing of emigration or the decision to forego emigration completely and remain in the freshwater environment. Increasing growth and growth rate during these decision windows may result in an altered juvenile population structure, which will ultimately affect the adult population age-structure. We used a state dependent model to understand how the juvenile Oncorhynchus mykiss population structure may respond to increased availability of salmon eggs in their diet during critical decision windows. Our models predicted an increase in smolt production until coho salmon eggs comprised more than 50 percent of juvenile O. mykiss diet at the peak of the spawning run. At higher-than intermediate levels of egg consumption, smolt production decreased owing to increasing numbers of fish adopting a resident life-history strategy. Additionally, greater growth rates decreased the number of age-3 smolts and increased the number of age-2 smolts. Increased growth rates with higher egg consumption also decreased the age at which fish adopted the resident pathway. Our models suggest that the introduction of a high-energy food source during critical periods of the year could be sufficient to increase smolt production.

  14. Bottom trawl assessment of Lake Ontario prey fishes

    USGS Publications Warehouse

    Weidel, Brian C.; Connerton, Michael J.; Holden, Jeremy

    2018-01-01

    Managing Lake Ontario fisheries in an ecosystem-context requires prey fish community and population data. Since 1978, multiple annual bottom trawl surveys have quantified prey fish dynamics to inform management relative to published Fish Community Objectives. In 2017, two whole-lake surveys collected 341 bottom trawls (spring: 204, fall: 137), at depths from 8-225m, and captured 751,350 fish from 29 species. Alewife were 90% of the total fish catch while Deepwater Sculpin, Round Goby, and Rainbow Smelt comprised the majority of the remaining total catch (3.8, 3.1, and 1.1% respectively). The adult Alewife abundance index for US waters increased in 2017 relative to 2016, however the index for Canadian waters declined. Adult Alewife condition, assessed by the predicted weight of a 165 mm fish (6.5 inches), declined in 2017 from record high values observed in spring 2016. Spring 2017 Alewife condition was slightly less than the 10-year average, but the fall value was well below the 10-year average, likely due to increased Age-1 Alewife abundance. The Age-1 Alewife abundance index was the highest observed in 40 years, and 8-times higher than the previous year. The Age-1 index estimates Alewife reproductive success the preceding year. The warm summer and winter of 2016 likely contributed to the large year class. In contrast the relatively cool 2017 spring and cold winter may result in a lower than average 2017 year class. Abundance indices for Rainbow Smelt, Cisco, and Emerald Shiner either declined or remained at low levels in 2017. Pelagic prey fish diversity continues to be low since a single species, Alewife, dominates the catch. Deepwater Sculpin were the most abundant benthic prey fish in 2017 because Round Goby abundance declined sharply from 2016. Slimy Sculpin density continued to decline and the 2017 biomass index for US waters was the lowest ever observed. Prior to Round Goby proliferation, juvenile Slimy Sculpin comprised ~10% of the Slimy Sculpin catch, but

  15. [Dietary composition and food competition of six main fish species in rocky reef habitat off Gouqi Island].

    PubMed

    Wang, Kai; Zhang, Shou-Yu; Wang, Zhen-Hua; Zhao, Jing; Xu, Min; Lin, Jun

    2012-02-01

    Based on the monthly investigation data of fish resources in the rocky reef habitat off Gouqi Island from March 2009 to February 2010, this paper studied the dietary composition of three native fish species (Sebasticus marmoratus, Hexagrammos otakii and Hexagrammos agrammus) and three non-native fish species (Lateolabrax japonica, Nibea albiflora and Larimichthys polyactis). The analysis of gut content indicated that the main prey items of these six dominant fish species were Caprellidae, Gammaridea, juvenile S. marmoratus, Engraulis japonicas and Acetes chinensis and the dietary composition of each of the 6 fish species had obvious seasonal variation. There was an intense food competition between native species H. otakii and H. agrammus in autumn, between non-native species N. albiflora and L. polyactis in summer, between non-native species N. albiflora and native species S. marmoratus in autumn, and between non-native species N. albiflora and native species H. otakii in winter. It was suggested the non-native species N. albiflora was the key species in the food competition among the six dominant fish species in this rocky reef habitat, and thus the feeding behaviors of these six fish species could have definite effects on the resource capacity of juvenile S. marmoratus.

  16. Dietary leucine requirement for juvenile large yellow croaker Pseudosciaena crocea (Richardson, 1846)

    NASA Astrophysics Data System (ADS)

    Li, Yan; Ai, Qinghui; Mai, Kangsen; Xu, Wei; Cheng, Zhenyan; He, Zhigang

    2010-12-01

    Dietary leucine requirement for juvenile large yellow croaker, Pseudosciaena crocea Richardson 1846 (initial body weight 6.0 g ± 0.1 g) was determined using dose-response method. Six isonitogenous (crude protein 43%) and isoenergetic (19 kJ g-1) practical diets containing six levels of leucine (Diets 1-6) ranging from 1.23% to 4.80% (dry matter) were made at about 0.7% increment of leucine. Equal amino acid nitrogen was maintained by replacing leucine with glutamic acid. Triplicate groups of 60 individuals were fed to apparent satiation by hand twice daily (05:00 and 17:30). The water temperature was 26-32°C, salinity 26-30 and dissolved oxygen approximately 7 mg L-1 during the experimental period. Final weight (FW) of large yellow croaker initially increased with increasing level of dietary leucine but then decreased at further higher level of leucine. The highest FW was obtained in fish fed diet with 3.30% Leucine (Diet 4). FW of fish fed the diet with 4.80% Leucine (Diet 6) was significantly lower than those fed Diet 4. However, no significant differences were observed between the other dietary treatments. Feed efficiency (FE) and whole body composition were independent of dietary leucine contents ( P > 0.05). The results indicated that leucine was essential for growth of juvenile large yellow croaker. On the basis of FW, the optimum dietary leucine requirement for juvenile large yellow croaker was estimated to be 2.92% of dry matter (6.79% of dietary protein).

  17. Educational Faculty Perceptions of the Learning Climate in a Juvenile Justice Residential Facility

    ERIC Educational Resources Information Center

    Cox, Carolyn; Visker, Joseph; Hartman, Ashley

    2011-01-01

    The majority of educational faculty from a juvenile justice residential detention facility in rural Northeast Missouri who participated in a learning climate survey of their school seemed to agree that the environment for staff and students was generally physically safe and emotionally supportive; key factors for a positive learning climate. By…

  18. Effects of disturbance on contribution of energy sources to growth of juvenile chinook salmon (Oncorhynchus tshawytscha) in boreal streams

    USGS Publications Warehouse

    Perry, R.W.; Bradford, M.J.; Grout, J.A.

    2003-01-01

    We used stable isotopes of carbon in a growth-dependent tissue-turnover model to quantify the relative contribution of autochthonous and terrestrial energy sources to juvenile chinook salmon (Oncorhynchus tshawytscha) in five small boreal streams tributary to the upper Yukon River. We used a tissue-turnover model because fish did not grow enough to come into isotopic equilibrium with their diet. In two streams, autochthonous energy sources contributed 23 and 41% to the growth of juvenile salmon. In the other three, fish growth was largely due to terrestrial (i.e., allochthonous) energy sources. This low contribution of autochthonous energy appeared to be related to stream-specific disturbances: a recent forest fire impacted two of the streams and the third was affected by a large midsummer spate during the study. These disturbances reduced the relative abundance of herbivorous macroinvertebrates, the contribution of autochthonous material to other invertebrates, and ultimately, the energy flow between stream algae and fish. Our findings suggest that disturbances to streams can be an important mechanism affecting transfer of primary energy sources to higher trophic levels.

  19. Safe Harbor: a tool to help recover topminnow and pupfish in Arizona

    Treesearch

    Douglas K. Duncan; Jeremy Voeltz

    2005-01-01

    The Arizona Game and Fish Department (Department) has developed a Safe Harbor Agreement (SHA) for four native fishes in Arizona. The SHA will allow Gila and Yaqui topminnow (Poeciliopsis occidentalis and P. sonoriensis) and desert and Quitobaquito pupfish (Cyprinodon macularius and C. eremus)...

  20. Identification of marine-derived lipids in juvenile coho salmon and aquatic insects through fatty acid analysis

    USGS Publications Warehouse

    Heintz, Ron A.; Wipfli, Mark S.; Hudson, John P.

    2010-01-01

    The energetic benefits enjoyed by consumers in streams with salmon runs depend on how those benefits are accrued. Adult Pacific salmon Oncorhynchus spp. deliver significant amounts of nutrients (i.e., nitrogen and phosphorus) and carbon to streams when they spawn and die; these nutrient additions can have demonstrable effects on primary production in streams. Consumption of carcass tissues or eggs provides for direct energy subsidies to consumers and may have significant effects on their condition. In this study, comparisons of juvenile coho salmon O. kisutch and aquatic insects exposed to terrestrial and marine energy sources demonstrated that direct consumption of marine-derived lipids had a significant effect on the lipid reserves of consumers. Direct consumption of marine-derived tissues was verified through fatty acid analysis. Selected aquatic insects and juvenile coho salmon were reared for 6 weeks in experimental streams supplied with terrestrial or marine energy sources. Chironomid midges, nemourid stoneflies, and juvenile coho salmon exposed to the marine energy source altered their fatty acid compositions by incorporating the long-chain polyunsaturated fatty acids that are characteristic of marine fish. The fatty acid composition of baetid mayflies was unaffected. The direct movement of specific fatty markers indicated that direct consumption of marine-derived tissues led to increased energy reserves (triacylglycerols) in consumers. Similar results were obtained for juvenile coho salmon sampled from natural streams before and after the arrival of adult salmon runs. These data indicate that marine-derived lipids from anadromous fish runs are an important source of reserve lipids for consumers that overwinter in streams.

  1. Rate of disappearance of gas bubble trauma signs in juvenile salmonids

    USGS Publications Warehouse

    Hans, K.M.; Mesa, M.G.; Maule, A.G.

    1999-01-01

    To assess the rate of disappearance of gas bubble trauma (GBT) signs in juvenile salmonids, we exposed spring chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss to water containing high levels of dissolved gas supersaturation (DGS) for a time period sufficient to induce signs of GBT, reduced the DGS to minimal levels, and then sampled fish through time to document changes in severity of GBT. Because of the tendency of GBT signs to dissipate at different rates, we conducted trials focusing on emboli (bubbles) in the gill filaments and lateral line and separate trials that focused on bubbles in the external surfaces (fins, eyes, and opercula). Bubbles in gill filaments dissipated almost completely within 2 h after transfer of fish to water of nearly normal DGS (104%), whereas bubbles in the lateral line dissipated to negligible levels within 5 h. Bubbles on external surfaces were more persistent through time than they were in gill filaments and the lateral line. Although typically dissipating to low levels within 48 h, external bubbles sometimes remained for 4 d. Assuming a direct relation exists between easily observable signs and direct mortality, our results suggest that fish can recover quickly from the potentially lethal effects of DGS once they move from water with high DGS to water of almost normal gas saturation. These results should be of fundamental importance to fishery managers interpreting the results of monitoring for the severity and prevalence of GBT in juvenile salmonids in the Columbia River system and perhaps elsewhere.

  2. Ultrasound-guided corticosteroid injection therapy for juvenile idiopathic arthritis: 12-year care experience.

    PubMed

    Young, Cody M; Shiels, William E; Coley, Brian D; Hogan, Mark J; Murakami, James W; Jones, Karla; Higgins, Gloria C; Rennebohm, Robert M

    2012-12-01

    Intra-articular corticosteroid injections are a safe and effective treatment for patients with juvenile idiopathic arthritis. The potential scope of care in ultrasound-guided corticosteroid therapy in children and a joint-based corticosteroid dose protocol designed to optimize interdisciplinary care are not found in the current literature. The purpose of this study was to report the spectrum of care, technique and safety of ultrasound-guided corticosteroid injection therapy in patients with juvenile idiopathic arthritis and to propose an age-weight-joint-based corticosteroid dose protocol. A retrospective analysis was performed of 198 patients (ages 21 months to 28 years) referred for treatment of juvenile idiopathic arthritis with corticosteroid therapy. Symptomatic joints and tendon sheaths were treated as prescribed by the referring rheumatologist. An age-weight-joint-based dose protocol was developed and utilized for corticosteroid dose prescription. A total of 1,444 corticosteroid injections (1,340 joints, 104 tendon sheaths) were performed under US guidance. Injection sites included small, medium and large appendicular skeletal joints (upper extremity 497, lower extremity 837) and six temporomandibular joints. For patients with recurrent symptoms, 414 repeat injections were performed, with an average time interval of 17.7 months (range, 0.5-101.5 months) between injections. Complications occurred in 2.6% of injections and included subcutaneous tissue atrophy, skin hypopigmentation, erythema and pruritis. US-guided corticosteroid injection therapy provides dynamic, precise and safe treatment of a broad spectrum of joints and tendon sheaths throughout the entire pediatric musculoskeletal system. An age-weight-joint-based corticosteroid dose protocol is effective and integral to interdisciplinary care of patients with juvenile idiopathic arthritis.

  3. Local v. microhabitat influences on the fish fauna of tidal pools in north-east Brazil.

    PubMed

    Godinho, W O; Lotufo, T M C

    2010-02-01

    This study explored the influence of microhabitat characteristics, such as sandy, rocky and algal bottom, holes, area and depth, on tide-pool fish descriptors (evenness, total number of fish, diversity and species richness). Even when the rockpool microhabitats differed amongst beaches, the tidal fish assemblages were closely grouped by site rather than by characteristics of the tide pools. Fish assemblages were mostly represented by juvenile fishes from 29 species, of which 14 were observed in only one of the three sites. This indicates that sites, rather than microhabitat association, might play a major role for the rockpool ichthyofauna in north-east Brazil.

  4. Development of observational learning during school formation in jack mackerel Trachurus japonicus juveniles.

    PubMed

    Takahashi, Kohji; Masuda, Reiji; Yamashita, Yoh

    2014-03-01

    We assessed whether the development of observational learning in jack mackerel Trachurus japonicus juveniles corresponds with that of their schooling behaviour. Schooling behaviour was quantitatively analyzed by nearest neighbour distance and separation angle in two size classes of fish, 20-mm and 40-mm in body length. Observer and non-observer fish with matching sizes were conditioned to pellets by temporarily stopping aeration. Observer fish were provided with five observation trials of other individuals feeding near an air stone when aeration was stopped. After the observation trial, fish were conditioned to pellets with the stop of aeration, and then the learning process was evaluated by the increase in the association with the feeding area when aeration was stopped. In 20-mm fish, which were at an immature stage of schooling behaviour, there was no difference in the learning process between observer and non-observer fish. In contrast, 40-mm fish were confirmed to have a well-developed schooling behaviour, and the observer learnt the feeding area more efficiently than the non-observer. This study provides evidence that observational learning develops along with the development of the social interaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Physiological characteristics and stress resistance of great sturgeon (Huso huso) juveniles fed with vitamins C, E, and HUFA-enriched Artemia urmiana nauplii.

    PubMed

    Jalali, Mohammad Ali; Hosseini, Seyed Abbas; Imanpour, Mohammad Reza

    2010-09-01

    This study was carried out to examine the effect of Artemia urmiana nauplii enriched with HUFA, and vitamins C and E on stress tolerance, hematocrit, and biochemical parameters of great sturgeon, Huso huso juveniles. Cod liver oil (EPA 18% and DHA 12%), ascorbyl-6-palmitate and alpha-tocopherol acetate were used as lipid, and vitamin C and E sources, respectively. Beluga juveniles at the stage of first feeding (69.7 +/- 5.9 mg body weight) were randomly divided into five treatments and three tanks were assigned to each diet. All fish groups were fed non-enriched Artemia for the initial 5 days and then fed enriched Artemia for 7 days. Juveniles were fed with Artemia enriched with HUFA + 20% vitamin C (C group); HUFA + 20% vitamin E-enriched Artemia nauplii (E group); HUFA + 20% vitamin C + 20% vitamin E (C and E group); HUFA without vitamins (HUFA) and non-enriched Artemia (control). After the period of enrichment, Juveniles were fed with Daphnia sp. from the 13th to the 40th day. At day 40, the fish were transferred directly from fresh water (0.5 ppt) to brackish water (6 ppt for 4 days and 12 ppt for 2 days) and warm water (from 27 to 33 degrees C) to evaluate juvenile resistance to salinity and thermal shocks. Moreover, all treatments were separately exposed to freshwater in tanks with the same capacity as used for osmotic and thermal tests (as fresh water control). The addition of vitamins C, E, and C + E to HUFA significantly increased fish resistance to 12 ppt salinity and temperature stress tests, whereas survival was not significantly different among challenges at 6 ppt. There was no significant difference in the hematocrit index under stress conditions. Enrichment had significant influence on plasma Na(+) level in the C group on the 4th day at 6 ppt. Na(+) and Ca(2+) concentrations in C, E, and C and E groups on the 1st day at 12 ppt, and Ca(2+) level in E group on the 2nd day at 12 ppt were lower than the other groups. The glucose level in the C and C and

  6. Fish Research Project Oregon; Aspects of Life History and Production of Juvenile Oncorhynchus Mykiss in the Grande Ronde River Basin, Northeast Oregon, 1995-1999 Summary Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dyke, Erick S.; Jonnasson, Brian C.; Carmichael, Richard W.

    2001-07-01

    Rotary screw traps, located at four sites in the Grande Ronde River basin, were used to characterize aspects of early life history exhibited by juvenile Onchorhychus mykiss during migration years 1995-99. The Lostine, Catherine Creek and upper Grande Ronde traps captured fish as they migrated out of spawning areas into valley rearing habitats. The Grande Ronde Valley trap captured fish as they left valley habitats downstream of Catherine Creek and upper Grande Ronde River rearing habitats. Dispersal downstream of spawning areas was most evident in fall and spring, but movement occurred during all seasons that the traps were fished. Seawardmore » migration occurred primarily in spring when O. mykiss smolts left overwintering area located in both spawning area and valley habitats. Migration patterns exhibited by O. mykiss suggest that Grande Ronde Valley habitats are used for overwintering and should be considered critical rearing habitat. We were unable to positively differentiate anadromous and resident forms of O. mykiss in the Grande Ronde River basin because both forms occur in our study area. The Grande Ronde Valley trap provided the best information on steelhead production in the basin because it fished below valley habitats where O. mykiss overwinter. Length frequency histograms of O. mykiss captured below upper spawning and rearing habitats showed a bimodal distribution regardless of the season of capture. Scale analyses suggested that each mode represents a different brood year. Length frequency histograms of O. mykiss captured in the Grande Ronde Valley trap were not bimodal, and primarily represented a size range consistent with other researchers' accounts of anadromous smolts.« less

  7. Juvenile hyperthyroidism: an experience.

    PubMed

    Bhadada, S; Bhansali, A; Velayutham, P; Masoodi, S R

    2006-04-01

    To analyze the clinical profile of juvenile hyperthyroidism at presentation, their treatment outcome; predictors of remission and relapse. Retrospective analysis of medical records of 56 patients with juvenile hyperthyroidism seen over a period of 16 years. A cohort of 38 females and 18 males with mean (+/-SD) age of 14.9 +/- 3.4 years (range 3 to 18 years) was analyzed. Majority of patients was in the age group of 12-16 years. Common symptoms observed at presentation were weight loss (82.1%), excessive sweating (78.6%), heat intolerance (76.8%), increased appetite (73.2%) and diarrhea in 48.2%. In addition, accelerated linear growth was observed in 7.1% of patients. Goiter was present in 98.2% of children; 94.5% of which was diffuse and 4.8% was multinodular. The mean ((+/-SD) T3 was 4.8 +/- 3.4 ng/mL (N, 0.6-1.6), T4 was 218 +/- 98 ng/mL (N, 60-155) and TSH was 0.44 +/- 0.36 (N, 0.5-5.5 microIU/mL). TMA positivity seen in 36.9% of patients. All patients were treated with carbimazole; subsequently 4 patients required thyroidectomy and one required radioactive iodine ablation. Mean (+/-SD) duration of follow-up in our patients was 4.9 +/- 3 years, ranging between 1.6 to 16 years and mean (+/-SD) duration of treatment was 34.4 +/- 22.6 months (range 12 to 120 months). Mean (+/-SD) duration to achieve euthyroidism was 5.2 +/- 4.7 months, ranging between 1-33 months. On intention to treat analysis, remission with carbimazole was achieved in 47.6%, remaining patients failed to achieve remission with drug treatment. Graves disease is the commonest cause of juvenile hyperthyroidism. Carbimazole is safe, effective, cheap, and easily available form of therapy. It is occasionally associated with serious side effects but requires prolonged follow up.

  8. Results of surgical treatment for juvenile myasthenia gravis.

    PubMed

    Vázquez-Roque, F J; Hernández-Oliver, M O; Medrano Plana, Y; Castillo Vitlloch, A; Fuentes Herrera, L; Rivero-Valerón, D

    2017-04-01

    Radical or extended thymectomy is an effective treatment for myasthenia gravis in the adult population. There are few reports to demonstrate the effectiveness of this treatment in patients with juvenile myasthenia gravis. The main objective of this study was to show that extended transsternal thymectomy is a valid option for treating this disease in paediatric patients. Twenty-three patients with juvenile myasthenia gravis underwent this surgical treatment in the period between April 2003 and April 2014; mean age was 12.13 years and the sample was predominantly female. The main indication for surgery, in 22 patients, was the generalised form of the disease (Osserman stage II) together with no response to 6 months of medical treatment. The histological diagnosis was thymic hyperplasia in 22 patients and thymoma in one patient. There were no deaths and no major complications in the postoperative period. After a mean follow-up period of 58.87 months, 22 patients are taking no medication or need less medication to manage myasthenic symptoms. Extended (radical) transsternal thymectomy is a safe and effective surgical treatment for juvenile myasthenia gravis. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Effect of dietary vitamin C on the growth performance and innate immunity of juvenile cobia (Rachycentron canadum).

    PubMed

    Zhou, Qicun; Wang, Ligai; Wang, Hualang; Xie, Fengjun; Wang, Tuo

    2012-06-01

    This study was conducted to evaluate the effects of dietary vitamin C on growth performance, hematologic parameters and innate immune responses in juvenile cobia, Rachycentron canadum. Seven practical diets were formulated to contain 0.0 (as the basal diet), 13.6, 27.2, 54.4, 96.6, 193.4 and 386.5 mg ascorbic acid equivalent kg(-1) diet. Each diet was fed to triplicate groups of juvenile cobia with initial body weight of 5.5 g in 500-L cylindrical fiberglass tank. The results of 8 weeks feeding trial showed that typical vitamin C-deficient signs such as spinal deformation and body nigrescence were observed in the fish fed the basal diet. Fish fed the basal diet had significantly lower weight gain, specific growth rate (SGR), protein efficiency ratio (PER) and feed efficiency (FE) than those fed the diets supplemented with vitamin C, but no significant differences were observed among diets supplemented with vitamin C. However, survival rate was significantly affected by the dietary vitamin C levels, fish fed the basal diet had lower survival rate than those fed the diets supplemented with vitamin C. The ascorbic acid concentration in liver was correlated positively with the dietary vitamin C levels, however, the thiobarbituric acid reactive substances (TBARS) concentrations in liver was not significantly affected by the dietary vitamin C levels, although, fish fed the basal diet had the highest TBARS values among all treatments. The activities of serum lysozyme, superoxide dismutase (SOD), alkaline phophatase (AKP) and total immunoglobulin (Ig) were significantly influenced by the dietary vitamin C levels, fish fed the basal diet had lower lysozyme, SOD, AKP and total Ig than those fed diets supplemented with vitamin C. The serum glucose and triglyceride concentrations were significantly affected by the dietary vitamin C levels. Fish fed the basal diet had lower red blood cell and hemoglobin values than those fed the vitamin C supplemented diets. The challenge

  10. Maximum sustainable speeds and cost of swimming in juvenile kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus).

    PubMed

    Sepulveda, C; Dickson, K A

    2000-10-01

    Tunas (Scombridae) have been assumed to be among the fastest and most efficient swimmers because they elevate the temperature of the slow-twitch, aerobic locomotor muscle above the ambient water temperature (endothermy) and because of their streamlined body shape and use of the thunniform locomotor mode. The purpose of this study was to test the hypothesis that juvenile tunas swim both faster and more efficiently than their ectothermic relatives. The maximum sustainable swimming speed (U(max), the maximum speed attained while using a steady, continuous gait powered by the aerobic myotomal muscle) and the net cost of transport (COT(net)) were compared at 24 degrees C in similar-sized (116-255 mm fork length) juvenile scombrids, an endothermic tuna, the kawakawa (Euthynnus affinis) and the ectothermic chub mackerel (Scomber japonicus). U(max) and COT(net) were measured by forcing individual fish to swim in a temperature-controlled, variable-speed swimming tunnel respirometer. There were no significant interspecific differences in the relationship between U(max) and body mass or fork length or in the relationship between COT(net) and body mass or fork length. Muscle temperatures were elevated by 1.0-2.3 degrees C and 0.1-0.6 degrees C above water temperature in the kawakawa and chub mackerel, respectively. The juvenile kawakawa had significantly higher standard metabolic rates than the chub mackerel, because the total rate of oxygen consumption at a given swimming speed was higher in the kawakawa when the effects of fish size were accounted for. Thus, juvenile kawakawa are not capable of higher sustainable swimming speeds and are not more efficient swimmers than juvenile chub mackerel.

  11. Long-term dietary replacement of fishmeal and fish oil in diets for rainbow trout (Oncorhynchus mykiss): Effects on growth, whole body fatty acids and intestinal and hepatic gene expression

    PubMed Central

    Lazzarotto, Viviana; Larroquet, Laurence; Corraze, Geneviève

    2018-01-01

    The effects of replacing fishmeal and fish oil with a plant-based diet were studied in juvenile (10g) and ongrowing (250-350g) rainbow trout from first-feeding. Feed-related differences in the intestinal and hepatic transcriptome were examined in juveniles after 7 months of feeding at 7°C. Based on microarray results obtained for juveniles, the expression of selected genes related to lipid, cholesterol and energy metabolisms, was assessed by RT-qPCR in ongrowing trout after 6 additional months of feeding at 17°C. Plasma glucose and cholesterol, lipid content and fatty acid profile of whole body were analyzed at both stages. After 7 months at 7°C, all juveniles reached the same body weight (10g), while at 13 months ongrowing fish fed the totally plant-based diet exhibited lower body weight (234 vs 330-337g). Body lipid content was higher in juveniles fed the totally plant-based diet (13.2 vs 9.4–9.9%), and plasma cholesterol was about 2-times lower in trout fed the plant-based diets at both stages. Fatty acid profile mirrored that of the respective diet, with low proportions of long-chain n-3 polyunsaturated fatty acids in fish fed plant-based diets. Genes involved in protein catabolism, carbohydrate metabolism and trafficking were down-regulated in the intestines of juveniles fed the plant-based diets. This was not true for ongrowing fish. Genes involved in lipid and cholesterol metabolisms were up-regulated in the livers of fish fed plant-based diets for both stages. In this study, feeding trout a totally plant-based diet from first-feeding affect a relatively low proportion of metabolism-related genes. In the longer term, when fish were reared at a higher temperature, only some of these changes were maintained (i.e. up-regulation of lipid/cholesterol metabolism). Although the plant-based diets tested in this study had no major deficiencies, small adjustments in the feed-formula are needed to further optimize growth performance while sparing marine resources

  12. Antibody-producing cells correlated to body weight in juvenile chinook salmon (Oncorhynchus tshawytscha) acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, C.B.; Maule, A.G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21?? C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures. ?? 2001 Academic Press.

  13. Antibody-producting cells correlated with body weight in juvenile Chinook salmon Oncorhynchus tshawytscha acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, Carl B.; Maule, Alec G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21° C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures.

  14. The alarming decline of Mediterranean fish stocks.

    PubMed

    Vasilakopoulos, Paraskevas; Maravelias, Christos D; Tserpes, George

    2014-07-21

    In recent years, fisheries management has succeeded in stabilizing and even improving the state of many global fisheries resources [1-5]. This is particularly evident in areas where stocks are exploited in compliance with scientific advice and strong institutional structures are in place [1, 5]. In Europe, the well-managed northeast (NE) Atlantic fish stocks have been recovering in response to decreasing fishing pressure over the past decade [3-6], albeit with a long way to go for a universal stock rebuild [3, 7]. Meanwhile, little is known about the temporal development of the European Mediterranean stocks, whose management relies on input controls that are often poorly enforced. Here, we perform a meta-analysis of 42 European Mediterranean stocks of nine species in 1990-2010, showing that exploitation rate has been steadily increasing, selectivity (proportional exploitation of juveniles) has been deteriorating, and stocks have been shrinking. We implement species-specific simulation models to quantify changes in exploitation rate and selectivity that would maximize long-term yields and halt stock depletion. We show that stocks would be more resilient to fishing and produce higher long-term yields if harvested a few years after maturation because current selectivity is far from optimal, especially for demersal stocks. The European Common Fisheries Policy that has assisted in improving the state of NE Atlantic fish stocks in the past 10 years has failed to deliver similar results for Mediterranean stocks managed under the same policy. Limiting juvenile exploitation, advancing management plans, and strengthening compliance, control, and enforcement could promote fisheries sustainability in the Mediterranean. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Juvenile Osprey Navigation during Trans-Oceanic Migration

    PubMed Central

    Horton, Travis W.; Bierregaard, Richard O.; Zawar-Reza, Peyman; Holdaway, Richard N.; Sagar, Paul

    2014-01-01

    To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus) are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old) of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean. PMID:25493430

  16. Using a non-physical behavioural barrier to alter migration routing of juvenile Chinook salmon in the Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Perry, R.W.; Romine, J.G.; Adams, N.S.; Blake, A.R.; Burau, J.R.; Johnston, S.V.; Liedtke, T.L.

    2012-01-01

    Anthropogenic alterations to river systems, such as irrigation and hydroelectric development, can negatively affect fish populations by reducing survival when fish are routed through potentially dangerous locations. Non-physical barriers using behavioural stimuli are one means of guiding fish away from such locations without obstructing water flow. In the Sacramento–San Joaquin River Delta, we evaluated a bio-acoustic fish fence (BAFF) composed of strobe lights, sound and a bubble curtain, which was intended to divert juvenile Chinook salmon (Oncorhynchus tshawytscha) away from Georgiana Slough, a low-survival migration route that branches off the Sacramento River. To quantify fish response to the BAFF, we estimated individual entrainment probabilities from two-dimensional movement paths of juvenile salmon implanted with acoustic transmitters. Overall, 7.7% of the fish were entrained into Georgiana Slough when the BAFF was on, and 22.3% were entrained when the BAFF was off, but a number of other factors influenced the performance of the BAFF. The effectiveness of the BAFF declined with increasing river discharge, likely because increased water velocities reduced the ability of fish to avoid being swept across the BAFF into Georgiana Slough. The BAFF reduced entrainment probability by up to 40 percentage points near the critical streakline, which defined the streamwise division of flow vectors entering each channel. However, the effect of the BAFF declined moving in either direction away from the critical streakline. Our study shows how fish behaviour and the environment interacted to influence the performance of a non-physical behavioural barrier in an applied setting.

  17. The consequences of balanced harvesting of fish communities

    PubMed Central

    Jacobsen, Nis S.; Gislason, Henrik; Andersen, Ken H.

    2014-01-01

    Balanced harvesting, where species or individuals are exploited in accordance with their productivity, has been proposed as a way to minimize the effects of fishing on marine fish communities and ecosystems. This calls for a thorough examination of the consequences balanced harvesting has on fish community structure and yield. We use a size- and trait-based model that resolves individual interactions through competition and predation to compare balanced harvesting with traditional selective harvesting, which protects juvenile fish from fishing. Four different exploitation patterns, generated by combining selective or unselective harvesting with balanced or unbalanced fishing, are compared. We find that unselective balanced fishing, where individuals are exploited in proportion to their productivity, produces a slightly larger total maximum sustainable yield than the other exploitation patterns and, for a given yield, the least change in the relative biomass composition of the fish community. Because fishing reduces competition, predation and cannibalism within the community, the total maximum sustainable yield is achieved at high exploitation rates. The yield from unselective balanced fishing is dominated by small individuals, whereas selective fishing produces a much higher proportion of large individuals in the yield. Although unselective balanced fishing is predicted to produce the highest total maximum sustainable yield and the lowest impact on trophic structure, it is effectively a fishery predominantly targeting small forage fish. PMID:24307676

  18. Ontogeny and Sexual Differences in Swimming Proximity to Conspecifics in Response to Visual Cues in Medaka Fish.

    PubMed

    Isoe, Yasuko; Konagaya, Yumi; Yokoi, Saori; Kubo, Takeo; Takeuchi, Hideaki

    2016-06-01

    Adult medaka fish (Oryzias latipes) exhibit complex social behaviors that depend mainly on visual cues from conspecifics. The ontogeny of visually-mediated social behaviors from larval/juvenile to adult medaka fish, however, is unknown. In the present study, we established a simple behavioral paradigm to evaluate the swimming proximity to conspecifics based on visual cues in an inter-individual interaction of two medaka fish throughout life. When two fish were placed separately in a cylindrical tank with a concentric transparent wall, the two fish maintained close proximity to each other. A normal fish inside the tank maintained proximity to an optic nerve-cut fish outside of the tank, while the converse was not true. This behavioral paradigm enabled us to quantify visually-induced motivation of a single fish inside the tank. The proximity was detected from larval/juvenile to adult fish. Larval fish, however, maintained close proximity not only to conspecifics, but also to heterospecifics. As the growth stage increased, the degree of proximity to heterospecifics decreased, suggesting that shoaling preferences toward conspecifics and/or visual ability to recognize conspecifics is refined and established according to the growth stage. Furthermore, the proximity of adult female fish was affected by their reproductive status and social familiarity. Only before spawning, adult females maintained closer proximity to familiar males rather than to unfamiliar males, suggesting that proximity was affected by familiarity in a female-specific manner. This simple behavioral paradigm will contribute to our understanding of the neural basis of the development of visually-mediated social behavior using medaka fish.

  19. Relationship of external fish condition to pathogen prevalence and out-migration survival in juvenile steelhead

    USGS Publications Warehouse

    Hostetter, N.J.; Evans, A.F.; Roby, D.D.; Collis, K.; Hawbecker, M.; Sandford, B.P.; Thompson, D.E.; Loge, F.J.

    2011-01-01

    Understanding how the external condition of juvenile salmonids is associated with internal measures of health and subsequent out-migration survival can be valuable for population monitoring programs. This study investigated the use of a rapid, nonlethal, external examination to assess the condition of run-of-the-river juvenile steelhead Oncorhynchus mykiss migrating from the Snake River to the Pacific Ocean. We compared the external condition (e.g., body injuries, descaling, external signs of disease, fin damage, and ectoparasite infestations) with (1) the internal condition of a steelhead as measured by the presence of selected pathogens detected by histopathology and polymerase chain reaction analysis and (2) out-migration survival through the Snake and Columbia rivers as determined by passive integrated transponder (PIT) tag technology. The results from steelhead captured and euthanized (n = 222) at Lower Monumental Dam on the lower Snake River in 2008 indicated that external condition was significantly correlated with selected measures of internal condition. The odds of testing positive for a pathogen were 39.2, 24.3, and 5.6 times greater for steelhead with severe or moderate external signs of disease or more than 20% descaling, respectively. Capture-recapture models of 22,451 PIT-tagged steelhead released at Lower Monumental Dam in 2007-2009 indicated that external condition was significantly correlated with juvenile survival. The odds of outmigration survival for steelhead with moderate or severe external signs of disease, more than 20% descaling, or severe fin damage were 5.7, 4.9, 1.6, and 1.3 times lower, respectively, than those for steelhead without these external conditions. This study effectively demonstrated that specific measures of external condition were associated with both the internal condition and out-migration survival of juvenile steelhead. ?? American Fisheries Society 2011.

  20. The evolution of juvenile animal testing for small and large molecules.

    PubMed

    Baldrick, Paul

    2013-11-01

    Recent formalised regulatory requirements for ensuring safe use of new drugs in children has increased the requirement, when considered relevant, to perform juvenile animal testing before commencing paediatric clinical trials. A key goal of this work is to identify or examine for a developmental or toxicity finding not seen in other toxicology testing. With our current knowledge, this paper examines what types of testing are occurring, what novel findings are being seen and their relevance in the safety evaluation process. Furthermore, trends for now and the future in the type of juvenile animal testing will be described including a need for more focused study designs and more published data on modern cross-species postnatal development. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Survival against the odds: ontogenetic changes in selective pressure mediate growth-mortality trade-offs in a marine fish.

    PubMed

    Gagliano, Monica; McCormick, Mark I; Meekan, Mark G

    2007-07-07

    For organisms with complex life cycles, variation among individuals in traits associated with survival in one life-history stage can strongly affect the performance in subsequent stages with important repercussions on population dynamics. To identify which individual attributes are the most influential in determining patterns of survival in a cohort of reef fish, we compared the characteristics of Pomacentrus amboinensis surviving early juvenile stages on the reef with those of the cohort from which they originated. Individuals were collected at hatching, the end of the planktonic phase, and two, three, four, six and eight weeks post-settlement. Information stored in the otoliths of individual fish revealed strong carry-over effects of larval condition at hatching on juvenile survival, weeks after settlement (i.e. smaller-is-better). Among the traits examined, planktonic growth history was, by far, the most influential and long-lasting trait associated with juvenile persistence in reef habitats. However, otolith increments suggested that larval growth rate may not be maintained during early juvenile life, when selective mortality swiftly reverses its direction. These changes in selective pressure may mediate growth-mortality trade-offs between predation and starvation risks during early juvenile life. Ontogenetic changes in the shape of selectivity may be a mechanism maintaining phenotypic variation in growth rate and size within a population.

  2. Experimental hexamitiasis in juvenile coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdner)

    USGS Publications Warehouse

    1965-01-01

    An exogenous strain of cultured Hexamita salmonis (Moore) was employed to induce trophic hexamitiasis in otherwise disease-free juveniles of coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri). Mortality and growth were the parameters used to detect the effects of hexamitiasis on the two species. Two levels of each of the three experimental factors under study, Hexamita infection, species of fish, and density of fish, were arranged in a three-way factorial design. Replicate lots involved a total of 1,440 fish held under controlled laboratory conditions.Comparisons of growth and mortality indicate that infection with H. salmonis over a period of 8 weeks is innocuous to coho salmon. Steelhead trout suffered a low, but statistically significant mortality which subsided after the sixth week; growth rate was not affected.

  3. Effect of salinity on the upper lethal temperature tolerance of early-juvenile red drum.

    PubMed

    McDonald, Dusty; Bumguardner, Britt; Cason, Paul

    2015-10-01

    Previous work investigating the temperature tolerance of juvenile red drum ranging 18-50mm TL found evidence for positive size dependence (smaller fish less tolerant to higher temperatures) suggesting smaller size classes (<18mm TL) potentially may succumb to extreme summer water temperatures. Here, we explored the upper lethal temperature tolerance (ULT) in smaller-sized red drum which ranged from 10 to 20mm TL across multiple salinities to further understand the thermal limitations of this propagated game fish. In order to investigate the combined effect of temperature and salinity on ULT, temperature trials were conducted under three levels of salinity which commonly occur along the coast of Texas (25, 35, and 45ppt). The rate of temperature increase (+0.25°C/h) was designed to mimic a natural temperature increase of a summer day in Texas. We determined that the lethal temperature at 50% (LT50) did not differ between the three salinities examined statistically; median lethal temperature for individuals exposed to 25ppt ranged from 36.4 to 37.7°C, 35ppt ranged from 36.4 to 37.7°C, and 45ppt ranged from 36.1 to 37.4°C. Further, LT50 data obtained here for early-juvenile red drum did not differ from data of a similar experiment examining 25mm TL sized fish. Published by Elsevier Ltd.

  4. Juvenile Arrests, 2000. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Snyder, Howard N.

    This bulletin examines the national and state juvenile arrest rate in 2000 using data reported annually by local law enforcement agencies nationwide to the FBI's Uniform Crime Reporting program. Results indicate that the murder rate in 2000 was the lowest since 1965; juvenile arrests for violence in 2000 were the lowest since 1988; few juveniles…

  5. Stress does not inhibit induced vitellogenesis in juvenile rainbow trout

    USGS Publications Warehouse

    Schwindt, A.R.; Feist, G.W.; Schreck, C.B.

    2007-01-01

    Vitellogenin (Vtg) is a widely used biomarker for xenoestrogen exposure in male fishes. In female fishes Vtg can be negatively affected by stress independent of declines in estrogen. However, few data are available on the effect of stress in male fish abnormally producing Vtg, such as when exposed to xenoestrogens. The objective for these studies was to determine the effects of stress on fish forced to produce Vtg. Three weeks prior to the experiment immature juvenile rainbow trout, Oncorhynchus mykiss, were acclimated to the experimental tanks and fed a maintenance ration. We induced Vtg synthesis by injecting 17??-estradiol (E2) 7 days prior to experimentation. Treatments in duplicate tanks were: (1) no stressor; (2) stressor; (3) E 2; (4) E2 and stressor. Plasma was collected at time = 0 for baseline measurements from eight fish per tank and Vtg was significantly elevated in treated fish compared to uninjected controls. Water was drained from the stressor tanks then refilled to a level that just covered the backs of the fish. Eight fish were sampled again at 4 and 9 h, and 1, 7, and 14 days of continuous stress. Stressor tanks were refilled with water to pre-stress levels and the fish were sampled after another 2 weeks. Cortisol was significantly elevated from the unstressed fish at 4 h; however, plasma Vtg in the E 2-stimulated fish was not affected by the stressor at any timepoint. These results indicate that fish capture procedures employed in the field or caging experiments likely do not lead to false negative results when plasma Vtg is used as a biomarker for xenoestrogen exposure. It also suggests that the energetic load induced by stress is insufficient to cause a reduction in Vtg, during a continuous E2 administration, at least within the timepoints examined in this study. ?? 2006 Springer Science+Business Media, Inc.

  6. Juvenile Justice in Milwaukee

    ERIC Educational Resources Information Center

    Williams, Gary L.; Greer, Lanetta

    2010-01-01

    Historically, there have been several attempts made to address issues surrounding juvenile delinquency. The Wisconsin Legislature outlines the objectives of the juvenile justice system in the Juvenile Justice Code in s. 939.01, ?to promote a juvenile justice system capable of dealing with the problem of juvenile delinquency, a system which will…

  7. Microhabitat influence on larval fish assemblages within ...

    EPA Pesticide Factsheets

    We examined larval and juvenile fish assemblage structure in relation to microhabitat variables within the St. Louis River estuary, a drowned river mouth of Lake Superior. Fish were sampled in vegetated beds throughout the estuary, across a gradient of vegetation types and densities (including disturbed, preserved and post-restoration sites). Canonical correspondence analysis, relating species abundances to environmental variables revealed that plant species richness, turbidity and aquatic plant cover were most influential in structuring assemblages. Results from this microhabitat analysis at this crucial life stage has potential to inform wetland restoration efforts within the St. Louis River and other Great Lake coastal wetlands. not applicable

  8. The effect of rapid and sustained decompression on barotrauma in juvenile brook lamprey and Pacific lamprey: implications for passage at hydroelectric facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colotelo, Alison HA; Pflugrath, Brett D.; Brown, Richard S.

    Fish passing downstream through hydroelectric facilities may pass through hydroturbines where they experience a rapid decrease in barometric pressure as they pass by turbine blades, which can lead to barotraumas including swim bladder rupture, exopthalmia, emboli, and hemorrhaging. In juvenile Chinook salmon, the main mechanism for injury is thought to be expansion of existing gases (particularly those present in the swim bladder) and the rupture of the swim bladder ultimately leading to exopthalmia, emboli and hemorrhaging. In fish that lack a swim bladder, such as lamprey, the rate and severity of barotraumas due to rapid decompression may be reduced however;more » this has yet to be extensively studied. Another mechanism for barotrauma can be gases coming out of solution and the rate of this occurrence may vary among species. In this study, juvenile brook and Pacific lamprey acclimated to 146.2 kPa (equivalent to a depth of 4.6 m) were subjected to rapid (<1 sec; brook lamprey only) or sustained decompression (17 minutes) to a very low pressure (13.8 kPa) using a protocol previously applied to juvenile Chinook salmon. No mortality or evidence of barotraumas, as indicated by the presence of hemorrhages, emboli or exopthalmia, were observed during rapid or sustained decompression, nor following recovery for up to 120 h following sustained decompression. In contrast, mortality or injury would be expected for 97.5% of juvenile Chinook salmon exposed to a similar rapid decompression to these very low pressures. Additionally, juvenile Chinook salmon experiencing sustained decompression died within 7 minutes, accompanied by emboli in the fins and gills and hemorrhaging in the tissues. Thus, juvenile lamprey may not be susceptible to barotraumas associated with hydroturbine passage to the same degree as juvenile salmonids, and management of these species should be tailored to their specific morphological and physiological characteristics.« less

  9. Sea Louse Infection of Juvenile Sockeye Salmon in Relation to Marine Salmon Farms on Canada's West Coast

    PubMed Central

    Price, Michael H. H.; Proboszcz, Stan L.; Routledge, Rick D.; Gottesfeld, Allen S.; Orr, Craig; Reynolds, John D.

    2011-01-01

    Background Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). Methodology/Principal Findings We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. Conclusions/Significance This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of

  10. Sea louse infection of juvenile sockeye salmon in relation to marine salmon farms on Canada's west coast.

    PubMed

    Price, Michael H H; Proboszcz, Stan L; Routledge, Rick D; Gottesfeld, Allen S; Orr, Craig; Reynolds, John D

    2011-02-09

    Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern.

  11. A comparison of biomarker responses in juvenile diploid and triploid African catfish, Clarias gariepinus, exposed to the pesticide butachlor

    EPA Science Inventory

    Influence of waterborne butachlor (BUC), a commonly used pesticide, on morphometric, biochemical, and molecular biomarkers was evaluated in juvenile, full sibling, diploid and triploid African catfish (Clarias gariepinus). Fish were exposed for 21 days to one of three concentrati...

  12. Short periods of fasting followed by refeeding change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus).

    PubMed

    Nebo, Caroline; Portella, Maria Célia; Carani, Fernanda Regina; de Almeida, Fernanda Losi Alves; Padovani, Carlos Roberto; Carvalho, Robson Francisco; Dal-Pai-Silva, Maeli

    2013-04-01

    Muscle growth mechanisms are controlled by molecular pathways that can be affected by fasting and refeeding. In this study, we hypothesized that short period of fasting followed by refeeding would change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus). The aim of this study was to analyze the expression of MyoD, myogenin and myostatin and the muscle growth characteristics in the white muscle of juvenile Nile tilapia during short period of fasting followed by refeeding. Juvenile fish were divided into three groups: (FC) control, feeding continuously for 42 days, (F5) 5 days of fasting and 37 days of refeeding, and (F10) 10 days of fasting and 32 days of refeeding. At days 5 (D5), 10 (D10), 20 (D20) and 42 (D42), fish (n=14 per group) were anesthetized and euthanized for morphological, morphometric and gene expression analyses. During the refeeding, fasted fish gained weight continuously and, at the end of the experiment (D42), F5 showed total compensatory mass gain. After 5 and 10 days of fasting, a significant increase in the muscle fiber frequency (class 20) occurred in F5 and F10 compared to FC that showed a high muscle fiber frequency in class 40. At D42, the muscle fiber frequency in class 20 was higher in F5. After 5 days of fasting, MyoD and myogenin gene expressions were lower and myostatin expression levels were higher in F5 and F10 compared to FC; at D42, MyoD, myogenin and myostatin gene expression was similar among all groups. In conclusion, this study showed that short periods of fasting promoted muscle fiber atrophy in the juvenile Nile tilapia and the refeeding caused compensatory mass gain and changed the expression of muscle growth-related genes that promote muscle growth. These fasting and refeeding protocols have proven useful for understanding the effects of alternative warm fish feeding strategies on muscle growth-related genes. Copyright © 2013. Published by Elsevier Inc.

  13. Effect of commercially available egg cures on the survival of juvenile salmonids

    USGS Publications Warehouse

    Clements, S.; Chitwood, R.; Schreck, C.B.

    2011-01-01

    There is some concern that incidental consumption of eggs cured with commercially available cures for the purpose of sport fishing causes mortality in juvenile salmon. We evaluated this by feeding juvenile spring Chinook (Oncorhynchus tshawytscha) and steelhead (O. mykiss) with eggs cured with one of five commercially available cures. We observed significant levels of mortality in both pre-smolts and smolts. Depending on the experiment, 2, 3, or 4 of the cures were associated with mortality. Mortality tended to be higher in the smolts than in the parr, but there was no clear species effect. The majority of mortality occurred within the first 10 d of feeding. Removal of sodium sulfite from the cure significantly reduced the level of mortality. Soaking the eggs prior to feeding did not reduce mortality. We observed a clear relationship between the amount of cured egg consumed each day and the survival time. We conclude that consumption of eggs cured with sodium sulfite has the potential to cause mortality in juvenile steelhead and Chinook salmon in the wild.

  14. Juvenile Arrests, 1999. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Snyder, Howard N.

    This bulletin presents a summary and analysis of national and state juvenile arrest data for 1999. Data come from the FBI's annual "Crime in the United States" report, which offers the estimated number of crimes reported to law enforcement agencies. The 1999 murder rate was the lowest since 1966. Of the nearly 1,800 juveniles murdered in…

  15. Juvenile Arrests, 2007. Juvenile Justice Bulletin

    ERIC Educational Resources Information Center

    Puzzanchera, Charles

    2009-01-01

    This Bulletin summarizes 2007 juvenile crime and arrest data reported by local law enforcement agencies across the country and cited in the FBI report, "Crime in the United States 2007." The Bulletin describes the extent and nature of juvenile crime that comes to the attention of the justice system. It serves as a baseline for comparison for…

  16. Humoral and mucosal immune responses in meagre (Argyrosomus regius) juveniles fed diets with varying inclusion levels of carob seed germ meal.

    PubMed

    Guardiola, Francisco Antonio; Barroso, Carolina; Enes, Paula; Couto, Ana; Díaz-Rosales, Patricia; Afonso, António; Kanashiro, Erika; Peres, Helena; Matos, Elisabete; Oliva-Teles, Aires; Pousão-Ferreira, Pedro; Costas, Benjamín

    2018-05-18

    Many studies have assessed the effects of incorporation of plant feedstuffs in fish diets on growth performance, whereas few studies have addressed the effects of fish meal replacement by plant protein sources on fish immune parameters. Thus, the aim of this study was to evaluate the effects on immune response of different inclusion levels of carob seed germ meal (CSGM) as partial replacement for fish meal in diets for meagre (Argyrosomus regius) juveniles. Fish were fed four experimental diets with increased CSGM inclusion levels [0% (control), 7.5% (CSGM7.5), 15% (CSGM15) and 22.5% (CSGM22.5)]. After 1, 2, and 8 weeks of feeding fish were sampled to determine haematological profile and several humoral parameters in plasma and intestine. Results showed that dietary inclusion of CSGM did not negatively affect the immune parameters of meagre. In addition, total numbers of red and white blood cells, as well as thrombocytes, lymphocytes, monocytes, and neutrophils counts were not affected by dietary treatments. All parameters evaluated in plasma were unaffected by dietary CSGM inclusion after 1 and 2 weeks of feeding, with only the haemolytic complement activity showing an increase in fish fed diets with CSGM after 1 week and in fish fed CSGM22.5 diet after 2 weeks. Regarding the innate immune parameters analysed in the intestine, it could be highlighted the increase in alkaline phosphatase and antiprotease activities in fish fed the diet with the higher inclusion of CSGM at 8 weeks. Overall, results suggest that high dietary CSGM inclusion do not compromise immune status or induce an inflammatory response in meagre juveniles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A review of tricaine methanesulfonate for anesthesia of fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Kathleen M.; Woodley, Christa M.; Brown, Richard S.

    2011-01-01

    Tricaine methanesulfonate (TMS) is the only FDA approved anesthetic for use in a select number of fish species, including salmonids. It is used widely in hatcheries and research to immobilize fish for marking or transport and to suppress sensory systems during invasive procedures. Improper use can decrease fish viability and possibly distort physiological data. Since animals may be anesthetized by junior staff or students who may have little experience in fish anesthesia, training in the proper use of TMS may decrease variability in results and increase fish survival. This document acts as a primer on the use of TMS formore » anesthetizing juvenile salmonids, with an emphasis on its use in surgical applications. Within, we briefly discuss many aspects TMS. We describe the legal uses for TMS, and what is currently known about the proper storage and preparation of the anesthetic. We outline methods and precautions for administration and changes in fish behavior during progressively deeper anesthesia. We also discuss the physiological effects of TMS and its potential for decreasing fish health.« less

  18. Minorities in the Juvenile Justice System. 1999 National Report Series. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Department of Justice, Washington, DC. Office of Juvenile Justice and Delinquency Prevention.

    This report provides data on minorities in the juvenile justice system. Minority juveniles are significantly over-represented in the juvenile justice system. In 1997, minorities made up about one-third of the juvenile population nationwide but accounted for nearly two-thirds of the detained and committed population in secure juvenile facilities.…

  19. Dietary leucine requirement of juvenile Japanese seabass ( Lateolabrax japonicus)

    NASA Astrophysics Data System (ADS)

    Li, Yan; Cheng, Zhenyan; Mai, Kangsen; Ai, Qinghui

    2015-02-01

    A 56-day feeding trial was conducted to examine the dietary leucine requirement of juvenile Japanese seabass in seawater floating net cages (1.5 m × 1.5 m × 2.0 m). Six isonitrogenous (crude protein 40%) and isoenergetic (gross energy 20 kJ g-1) diets were formulated to contain different concentrations of leucine (0.9%, 1.49%, 2.07%, 2.70%, 3.30% and 3.88% of dry matter). Crystalline L-amino acids were supplemented to simulate the whole body amino acid pattern of Japanese seabass except for leucine. Three groups (30 fish individuals each, 8.0 g ± 0.20 g in initial weight) were fed to apparent satiation at 5:00 and 17:30 every day. During the experimental period, the water temperature ranged from 26 to 32δC and salinity from 26 to 30, and the dissolved oxygen was maintained at 7 mg L-1. The results showed that weight gain ( WG), nitrogen retention ( NR), feed efficiency ( FE) and protein efficiency ratio ( PER) were significantly increased when dietary leucine was increased from 0.90% to 2.70% of dry matter, and then declined. WG was the highest when fish were fed D4 containing 2.70% of leucine. No significant differences were observed in body composition among dietary treatments ( P > 0.05). Considering the change of WG, the optimum dietary leucine requirement of juvenile Japanese seabass was either 2.39% of dry matter or 5.68% of dietary protein.

  20. Near-shore and off-shore habitat use by endangered juvenile Lost River and Shortnose Suckers in Upper Klamath Lake, Oregon: 2006 data summary

    USGS Publications Warehouse

    Burdick, Summer M.; Wilkens, Alexander X.; VanderKooi, Scott P.

    2008-01-01

    We continued sampling juvenile suckers in 2006 as part of an effort to develop bioenergetics models for juvenile Lost River and shortnose suckers. This study required us to collect fish to determine growth rates and energy content of juvenile suckers. We followed the sampling protocols and methods described by Hendrixson et al. (2007b) to maintain continuity and facilitate comparisons with data collected in recent years, but sampled at a reduced level of effort compared to previous years (approximately one-third) due to limited funding. Here we present a summary of catch data collected in 2006. Bioenergetics models will be reported separately

  1. Tissue-specific bioaccumulation and oxidative stress responses in juvenile Japanese flounder ( Paralichthys olivaceus) exposed to mercury

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Cao, Liang; Ye, Zhenjiang; Lin, Longshan; Chen, Quanzhen; Dou, Shuozeng

    2012-07-01

    To understand mercury (Hg) toxicity in marine fish, we measured Hg accumulation in juvenile Japanese flounder ( Paralichthys olivaceus) and assessed the effects on growth and antioxidant responses. After Hg exposure (control, 5, 40, and 160 μg/L Hg) for 28 d, fish growth was significantly reduced. The accumulation of Hg in fish was dose-dependent and tissue-specific, with the maximum accumulation in kidney and liver, followed by gills, bone, and muscle. Different antioxidants responded differently to Hg exposure to cope with the induction of lipid peroxidation (LPO), which was also tissue-specific and dosedependent. As Hg concentration increased, superoxide dismutase (SOD) and catalase (CAT) activities increased significantly, whereas glutathione S -transferase (GST) activity and glutathione (GSH) levels decreased significantly in the gills. SOD and glutathione peroxidase (GPx) activities and the GSH level increased significantly in the liver. SOD activity and GSH levels increased significantly, but CAT activity decreased significantly with an increase in Hg concentration in the kidney. LPO was induced significantly by elevated Hg in the gills and kidney but was least affected in the liver. Therefore, oxidative stress biomarkers in gills were more sensitive than those in the liver and kidney to Hg exposure. Thus, the gills have potential as bioindicators for evaluating Hg toxicity in juvenile flounder.

  2. A protocol using coho salmon to monitor Tongass National Forest Land and Resource Management Plan standards and guidelines for fish habitat.

    Treesearch

    M.D. Bryant; Trent McDonald; R. Aho; B.E. Wright; Michelle Bourassa Stahl

    2008-01-01

    We describe a protocol to monitor the effectiveness of the Tongass Land Management Plan (TLMP) management standards for maintaining fish habitat. The protocol uses juvenile coho salmon (Oncorhynchus kisutch) in small tributary streams in forested watersheds. We used a 3-year pilot study to develop detailed methods to estimate juvenile salmonid...

  3. Emerging role of phenolic compounds as natural food additives in fish and fish products.

    PubMed

    Maqsood, Sajid; Benjakul, Soottawat; Shahidi, Fereidoon

    2013-01-01

    Chemical and microbiological deteriorations are principal causes of quality loss of fish and fish products during handling, processing, and storage. Development of rancid odor and unpleasant flavor, changes of color and texture as well as lowering nutritional value in fish can be prevented by appropriate use of additives. Due to the potential health hazards of synthetic additives, natural products, especially antioxidants and antimicrobial agents, have been intensively examined as safe alternatives to synthetic compounds. Polyphenols (PP) are the natural antioxidants prevalent in fruits, vegetables, beverages (tea, wine, juices), plants, seaweeds, and some herbs and show antioxidative and antimicrobial activities in different fish and fish products. The use of phenolic compounds also appears to be a good alternative for sulphiting agent for retarding melanosis in crustaceans. Phenolic compounds have also been successfully employed as the processing aid for texture modification of fish mince and surimi. Thus, plant polyphenolic compounds can serve as potential additives for preventing quality deterioration or to retain the quality of fish and fish products.

  4. Nonlethal gill biopsy does not affect juvenile chinook salmon implanted with radio transmitters

    USGS Publications Warehouse

    Martinelli-Liedtke, T. L.; Shively, R.S.; Holmberg, G.S.; Sheer, M.B.; Schrock, R.M.

    1999-01-01

    Using gastric and surgical transmitter implantation, we compared radio-tagged juvenile chinook salmon Oncorhynchus tshawytscha (T(O)) with tagged fish also having a gill biopsy (T(B)) to determine biopsy effects on fish implanted with radio transmitters. We found no evidence during the 21-d period to suggest that a gill biopsy reduced survival, growth, or gross condition of the tagged-biopsy group, regardless of transmitter implantation technique. We recorded 100% survival of all treatment groups. Relative growth rates of T(O) and T(B) fish did not differ significantly. Leukocrit and lysozyme levels were not significantly different among groups, suggesting that no signs of infection were present. Our findings suggest that small chinook salmon can tolerate the combination of transmitter implantation and gill biopsy without compromising condition relative to fish receiving only the transmitter. We believe a gill biopsy can be used in field telemetry studies, especially when physiological data are needed in addition to behavioral data.

  5. In situ measurement of coastal ocean movements and survival of juvenile Pacific salmon

    PubMed Central

    Welch, David W.; Melnychuk, Michael C.; Payne, John C.; Rechisky, Erin L.; Porter, Aswea D.; Jackson, George D.; Ward, Bruce R.; Vincent, Stephen P.; Wood, Chris C.; Semmens, Jayson

    2011-01-01

    Many salmon populations in both the Pacific and Atlantic Oceans have experienced sharply decreasing returns and high ocean mortality in the past two decades, with some populations facing extirpation if current marine survival trends continue. Our inability to monitor the movements of marine fish or to directly measure their survival precludes experimental tests of theories concerning the factors regulating fish populations, and thus limits scientific advance in many aspects of fisheries management and conservation. Here we report a large-scale synthesis of survival and movement rates of free-ranging juvenile salmon across four species, 13 river watersheds, and 44 release groups of salmon smolts (>3,500 fish tagged in total) in rivers and coastal ocean waters, including an assessment of where mortality predominantly occurs during the juvenile migration. Of particular importance, our data indicate that, over the size range of smolts tagged, (i) smolt survival was not strongly related to size at release, (ii) tag burden did not appear to strongly reduce the survival of smaller animals, and (iii) for at least some populations, substantial mortality occurred much later in the migration and more distant from the river of origin than generally expected. Our findings thus have implications for determining where effort should be invested to improve the accuracy of salmon forecasting, to understand the mechanisms driving salmon declines, and to predict the impact of climate change on salmon stocks. PMID:21558442

  6. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon.

    PubMed

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed.

  7. Algae in Fish Feed: Performances and Fatty Acid Metabolism in Juvenile Atlantic Salmon

    PubMed Central

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A.; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M.

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed. PMID:25875839

  8. Gender differences in attitudes about fish safety in a coastal population.

    PubMed

    Burger, J

    1998-02-06

    Behavioral approaches to reducing the adverse health effects of consuming fish with high contaminant levels benefit from understanding attitudes and perceptions about the relative safety of fish. Gender differences in attitudes about fish safety were investigated by interviewing 197 men and 94 women who attended a Duck Decoy show at Tuckerton, NJ. There were significant gender differences in perceptions of the safety of fish, ducks, and deer, with women generally believing that it was less safe to eat these foods than did men. Although people correctly perceived that ocean fish were safer than bay-caught fish from a chemical contaminant perspective, perceptions were less clear with respect to consuming predatory or herbivorous, or large versus small fish. Although men significantly perceived small fish as safer than large fish, women did not. However, people correctly believed that bluefish (a predaceous fish) were less safe than flounder (an herbivore). People uniformly believed it was safer to eat fish they caught themselves or bought in a fish store than those from a supermarket. These results suggest that any program to inform the public about the potential dangers from contaminated fish should take into account gender differences in perceptions.

  9. Application of non-lethal stable isotope analysis to assess feeding patterns of juvenile pallid sturgeon Scaphirhynchus albus: a comparison of tissue types and sample preservation methods

    USGS Publications Warehouse

    Andvik, R.T.; VanDeHey, J.A.; Fincel, M.J.; French, William E.; Bertrand, K.N.; Chipps, Steven R.; Klumb, Robert A.; Graeb, B.D.S.

    2010-01-01

    Traditional techniques for stable isotope analysis (SIA) generally require sacrificing animals to collect tissue samples; this can be problematic when studying diets of endangered species such as the pallid sturgeon Scaphirhynchus albus. Our objectives were to (i) determine if pectoral fin tissue (non-lethal) could be a substitute for muscle tissue (lethal) in SIA of juvenile pallid sturgeon, and (ii) evaluate the influence of preservation techniques on stable isotope values. In the laboratory, individual juvenile pallid sturgeon were held for up to 186 day and fed chironomids, fish, or a commercially available pellet diet. Significant, positive relationships (r² ≥ 0.8) were observed between fin and muscle tissues for both δ15N and δ13C; in all samples isotopes were enriched in fins compared to muscle tissue. Chironomid and fish based diets of juvenile pallid sturgeon were distinguishable for fast growing fish (0.3 mm day−1) using stable δ15N and δ13C isotopes. Frozen and preserved fin tissue δ15N isotopes were strongly related (r2 = 0.89) but δ13C isotopes were weakly related (r2 = 0.16). Therefore, freezing is recommended for preservation of fin clips to avoid the confounding effect of enrichment by ethanol. This study demonstrates the utility of a non-lethal technique to assess time integrated food habits of juvenile pallid sturgeon and should be applicable to other threatened or endangered species.

  10. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Mid-Atlantic). Spot

    DTIC Science & Technology

    1989-02-01

    lateral line scales, 72-77; Norfolk spot, golden croaker (during gill rakers short, 8 to 12 on the spawning season ), croaker, goody, upper limb and 20 to... pteropods , larval Sinc lage-cal motaltie of pelecypods, and cyclopoid copepods juveniles are not observed in the elecypodst and cyc)opo copepodsnursry...and R.S. Birdsong. 1985. Beaufort, N.C. Seasonal occurrence of larval and juvenile fishes in a Virginia Engle, D.W., and R.M. Thuotte. 1976

  11. Juvenile Arrests 1996. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Snyder, Howard N.

    In 1996, law enforcement agencies in the United States made an estimated 2.9 million arrests of persons under the age of 18. According to Federal Bureau of Investigation (FBI) figures, juveniles accounted for 19% of all arrests and 19% of all violent crime in 1996. The substantial growth in juvenile crime that began in the late 1980s peaked in…

  12. USE OF WHOLE BODY CHEMICAL RESIDUE ANALYSIS AND LASER SCREENING CONFOCAL MICROSCOPY TO DESCRIBE DISTRIBUTION OF PBTS IN FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages (ELS) are more sensitive than juveniles or adults to many persistent bioaccumulative toxicants (PBTs). To better understand the mechanisms by which these chemicals produce toxicity during fish ELS, dose-response relationships need to be determined in relat...

  13. Multi-element otolith chemistry of juvenile sole ( Solea solea), whiting ( Merlangius merlangus) and European seabass ( Dicentrarchus labrax) in the Thames Estuary and adjacent coastal regions

    NASA Astrophysics Data System (ADS)

    Leakey, Chris D. B.; Attrill, Martin J.; Fitzsimons, Mark F.

    2009-04-01

    Estuaries are regarded as valuable nursery habitats for many commercially important marine fishes, potentially providing a thermal resource, refuge from predators and a source of abundant prey. To assess the extent of estuarine use by juvenile (0+) common sole ( Solea solea), whiting ( Merlangius merlangus) and European seabass ( Dicentrarchus labrax) we: (1) developed techniques to distinguish between estuarine and coastally-caught juveniles using otolith chemistry; and (2) examined the accuracy with which multi-elemental signatures could re-classify juveniles to their region of collection. High-resolution solution-based inductively coupled plasma mass spectrometry (HB-SB-ICPMS) was used to quantify 32 elements within the juvenile otoliths; 14 elements occurred above detection limits for all samples. Some elemental distributions demonstrated clear differences between estuarine and coastally-caught fish. Multivariate analysis of the otolith chemistry data resulted in 95-100% re-classification accuracy to the region of collection. Estuarine and coastal signatures were most clearly defined for sole which, compared to bass and whiting, have low mobility and are less likely to move from estuarine to coastal habitats between larval settlement and later migration to adult stocks. Sole were the only species to reveal an energetic benefit associated with an estuarine juvenile phase. The physiological ability of bass to access upper estuarine regions was consistent with some elemental data, while the high mobility and restricted range of whiting resulted in less distinct otolith chemistries.

  14. Body size, trophic level, and the use of fish as transmission routes by parasites.

    PubMed

    Poulin, R; Leung, T L F

    2011-07-01

    Within food webs, trophically transmitted helminth parasites use predator-prey links for their own transfer from intermediate prey hosts, in which they occur as larval or juvenile stages, to predatory definitive hosts, in which they reach maturity. In large taxa that can be used as intermediate and/or definitive hosts, such as fish, a host species' position within a trophic network should determine whether its parasite fauna consists mostly of adult or larval helminths, since vulnerability to predation determines an animal's role in predator-prey links. Using a large database on the helminth parasites of 303 fish species, we tested whether the proportion of parasite species in a host that occur as larval or juvenile stages is best explained by their trophic level or by their body size. Independent of fish phylogeny or habitat, only fish body length emerged as a significant predictor of the proportion of parasites in a host that occur as larval stages from our multivariate analyses. On average, the proportion of larval helminth taxa in fish shorter than 20 cm was twice as high as that for fish over 100 cm in length. This is consistent with the prediction that small fishes, being more vulnerable to predation, make better hosts for larval parasites. However, trophic level and body length are strongly correlated among fish species, and they may have separate though confounded effects on the parasite fauna exploiting a given species. Helminths show varying levels of host specificity toward their intermediate host when the latter is the downstream host involved in trophic transmission toward an upstream definitive host. Given this broad physiological compatibility of many helminths with fish hosts, our results indicate that fish body length, as a proxy for vulnerability to predators, is a better predictor of their use by helminth larvae than their trophic level based on diet content.

  15. Methylphenidate and the Juvenile Brain: Enhancement of Attention at the Expense of Cortical Plasticity?

    PubMed Central

    Urban, Kimberly R.; Gao, Wen-Jun

    2013-01-01

    Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug for juveniles and adolescents. Used to treat attention-deficit/hyperactivity disorder (ADHD) and for cognitive enhancement in healthy individuals, it has been regarded as a relatively safe medication for the past several decades. However, a thorough review of the literature reveals that the age-dependent activities of the drug, as well as potential developmental effects, are largely ignored. In addition, the diagnosis of ADHD is subjective, leaving open the possibility of misdiagnosis and excessive prescription of the drug. Recent studies have suggested that early life exposure of healthy rodent models to methylphenidate resulted in altered sleep/wake cycle, heightened stress reactivity, and, in fact, a dosage previously thought of as therapeutic depressed neuronal function in juvenile rats. Furthermore, juvenile rats exposed to low-dose methylphenidate displayed alterations in neural markers of plasticity, indicating that the drug might alter the basic properties of prefrontal cortical circuits. In this review of the current literature, we propose that juvenile exposure to methylphenidate may cause abnormal prefrontal function and impaired plasticity in the healthy brain, strengthening the case for developing a more thorough understanding of methylphenidate’s actions on the developing, juvenile brain, as well as better diagnostic measures for ADHD. PMID:24095262

  16. Trends in nitrogen isotope ratios of juvenile winter flounder reflect changing nitrogen inputs to Rhode Island, USA estuarine systems

    EPA Science Inventory

    Nitrogen isotope ratios (d 15N) in juvenile winter flounder, Pseudopleuronectes americanus, were used to examine changes in nitrogen inputs to several Rhode Island, USA estuarine systems. Fish were collected over two three-year periods with a ten-year interval between sampling pe...

  17. Umatilla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.; Loffink, Ken; Duke, Bill

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from June 7, 2007 to August 11, 2008. A total of 3,133 summer steelhead (Oncorhynchus mykiss); 1,487 adult, 1,067 jack, and 999 subjack fall Chinook (O. tshawytscha); 5,140 adult and 150 jack coho (O. kisutch); and 2,009 adult, 517 jack, and 128 subjack spring Chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 1,442 summer steelheadmore » and 88 adult and 84 jack spring Chinook were hauled upstream from Threemile Dam. There were 1,497 summer steelhead; 609 adult, 1,018 jack and 979 subjack fall Chinook; 5,036 adult and 144 jack coho; and 1,117 adult, 386 jack and 125 subjack spring Chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 110 summer steelhead; 878 adult and 43 jack fall Chinook; and 560 adult and 28 jack spring Chinook were collected as broodstock for the Umatilla River hatchery program. In addition, there were 241 adult and 15 jack spring Chinook collected at Threemile Dam for outplanting in the South Fork Walla Walla River and Mill Cr, a tributary of the mainstem Walla Walla River. The Westland Canal juvenile facility (Westland), located near the town of Echo at river mile (RM) 27, is the major collection point for out-migrating juvenile salmonids and steelhead kelts. The canal was open for 158 days between February 11, 2008 and July 18, 2008. During that period, fish were bypassed back to the river 150 days and were trapped 6 days. There were also 2 days when fish were directed into and held in the canal forebay between the time the bypass was closed and the trap opened. An estimated 64 pounds of fish were transported from the Westland trapping facility. Approximately 25.8% of the fish transported were salmonids. In addition

  18. Are antipredator behaviours of hatchery Salmo salar juveniles similar to wild juveniles?

    PubMed

    Salvanes, A G V

    2017-05-01

    This study explores how antipredator behaviour of juvenile Atlantic salmon Salmo salar developed during conventional hatchery rearing of eggs from wild brood stock, compared with the behaviour of wild-caught juveniles from the same population. Juveniles aged 1+ years were tested in two unfamiliar environments; in one S. salar were presented with simulated predator attacks and in the other they were given the opportunity to explore an open-field arena. No difference was found in their spontaneous escape responses or ventilation rate (reflex responses) after simulated predator attacks. Hatchery-reared juveniles were more risk-prone in their behaviours than wild-caught individuals. Hatchery juveniles stayed less time in association with shelter. In the open-field arena, hatchery juveniles were more active than wild juveniles. Hatchery juveniles were also immobile for less time and spent a shorter amount of time than wild juveniles in the fringe of the open-field arena. Salmo salar size had no effect on the observed behaviour. Overall, this study provides empirical evidence that one generation of hatchery rearing does not change reflex responses associated with threats, whereas antipredator behaviour, typically associated with prior experience, was less developed in hatchery-reared than in wild individuals. © 2017 The Fisheries Society of the British Isles.

  19. Proline with or without hydroxyproline influences collagen concentration and regulates prolyl 4-hydroxylase α (I) gene expression in juvenile turbo ( Scophthalmus maximus L.)

    NASA Astrophysics Data System (ADS)

    Zhang, Kaikai; Mai, Kangsen; Xu, Wei; Zhou, Huihui; Liufu, Zhiguo; Zhang, Yanjiao; Peng, Mo; Ai, Qinghui

    2015-06-01

    This study was conducted to investigate the effect of dietary proline (Pro), and Pro and hydroxyproline (Hyp) in combination on the growth performance, total Hyp and collagen concentrations of tissues, and prolyl 4-hydroxylase α(I) (P4H α(I)) gene expression in juvenile turbot feeding high plant protein diets. A diet containing 50% crude protein and 12% crude lipid was formulated as the basal and control, on which other two protein and lipid contents identical experimental diets were formulated by supplementing the basal with either 0.75% Pro (Pro-0.75) or 0.75% Pro and 0.75% Hyp (Pro+Hyp). Four groups of fish in indoor seawater recirculating systems, 35 individuals each, were fed twice a day to apparent satiation for 10 weeks. The results showed that dietary Pro and Hyp supplementation had no significant effect on growth performance and feed utilization of juvenile turbot (P > 0.05). Total Hyp and collagen concentrations in muscle were significantly increased when dietary Pro and Hyp increased (P <0.05), and fish fed diet Pro+Hyp showed significantly higher free Hyp content in plasma than those fed other diets (P <0.05). The expression of P4H a(I) gene in liver and muscle was significantly up regulated in fish fed diet Pro-0.75 in comparison with control (P <0.05); however the gene was significantly down regulated in fish fed diet Pro+Hyp in muscle in comparison with fish fed diet Pro-0.75 (P <0.05). It can be concluded that supplement of crystal L-Pro and L-Hyp to high plant protein diets did not show positive effects on growth performance of juvenile turbot, but enhanced total collagen concentrations in muscle.

  20. Morphological selection in an extreme flow environment: body shape and waterfall-climbing success in the Hawaiian stream fish Sicyopterus stimpsoni.

    PubMed

    Blob, Richard W; Bridges, William C; Ptacek, Margaret B; Maie, Takashi; Cediel, Roberto A; Bertolas, Morgan M; Julius, Matthew L; Schoenfuss, Heiko L

    2008-12-01

    Flow characteristics are a prominent factor determining body shapes in aquatic organisms, and correlations between body shape and ambient flow regimes have been established for many fish species. In this study, we investigated the potential for a brief period of extreme flow to exert selection on the body shape of juvenile climbing Hawaiian gobiid fishes. Because of an amphidromous life history, juvenile gobies that complete an oceanic larval phase return to freshwater habitats, where they become adults. Returning juveniles often must scale waterfalls (typically with the use of a ventral sucker) in order to reach the habitats they will use as adults, thereby exposing these animals to brief periods of extreme velocities of flow. Hydrodynamic theory predicts that bodies with larger suckers and with lower heights that reduce drag would have improved climbing success and, thus, be well suited to meet the demands of the flows in waterfalls. To test the potential for the flow environment of waterfalls to impose selection that could contribute to differences in body shape between islands, we subjected juvenile Sicyopterus stimpsoni to climbing trials up artificial waterfalls (∼100 body lengths) and measured differences in body shape between successful and unsuccessful climbers. Waterfalls appear to represent a significant selective barrier to these fishes, as nearly 30% failed our climbing test. However, the effects of selection on morphology were not straightforward, as significant differences in shape between successful and unsuccessful climbers did not always match hydrodynamic predictions. In both selection experiments and in adult fish collected from habitats with different prevailing conditions of flow (the islands of Hawai'i versus Kaua'i), lower head heights were associated with exposure to high-flow regimes, as predicted by hydrodynamic theory. Thus, a premium appears to be placed on the reduction of drag via head morphology throughout the ontogeny of this

  1. 76 FR 21858 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... and policy of section 2 of the ESA. The authority to take listed species is subject to conditions set... extend their 2-year scientific research permit that currently authorizes them to take juvenile and adult...

  2. Effects of body size, condition, and lipid content on the survival of juvenile lake herring during rapid cooling events

    USGS Publications Warehouse

    Pangle, K.L.; Sutton, T.M.; Kinnunen, R.E.; Hoff, M.H.

    2005-01-01

    Juvenile lake herring Coregonus artedi were exposed to rapid cooling events during two laboratory experiments to determine the effects of body size, physiological condition, and lipid content on survival. The first experiment was conducted at the onset of winter, exposing small (50 to 85 mm) and large (85 to 129 mm) fish to a decline in water temperature from 12 to 2??C at a rate of 1??C/hr. During this experiment, both large and small individuals exposed to a rapid cooling event experienced no mortality or abnormal behaviors. Separate fish were then maintained under thermal and photoperiod regimes that mimicked those in Lake Superior from October through May. Fish in each size class were maintained at two feeding treatments: Artemia ad libitum and no food. At the completion of the winter period, these lake herring were subjected to the same rapid cooling event conducted in the first experiment. During the experiment, lake herring exhibited no mortality or abnormal behaviors despite treatment-dependent differences in condition and lipid content. Our results indicate that mortality due to rapid cooling events does not appear to contribute to the recruitment variability observed for juvenile lake herring in Lake Superior.

  3. Sustained exercise-trained juvenile black carp (Mylopharyngodon piceus) at a moderate water velocity exhibit improved aerobic swimming performance and increased postprandial metabolic responses

    PubMed Central

    Li, Xiuming; Zhang, Yaoguang; Li, Xiaojin; Zheng, Hua; Peng, Jianglan

    2018-01-01

    ABSTRACT The objectives of this study were to examine whether sustained exercise training at four water velocities, i.e. nearly still water (control), 1 body length (BL) s−1, 2 BL s−1 and 4 BL s−1, has effects on swimming performance and digestive metabolism in juvenile black carp (Mylopharyngodon piceus). The results demonstrated that fish subjected to sustained training at 2 and 4 BL s−1 showed significantly higher critical swimming speed (Ucrit) and maximum metabolic rate (MMR) over the control group. Fish subjected to sustained training at 1 and 2 BL s−1 showed a significantly (30 and 54%) prolonged duration, 14 and 17% higher postprandial ṀO2 increment (i.e. ṀO2peak), and 62 and 92% more energy expended on specific dynamic action (SDA), respectively, after consuming a similar meal over fish kept in nearly still water. These results suggest that (1) sustained exercise training at a higher speed (2 or 4 BL s−1) had a positive influence on the aerobic swimming performance of juvenile M. piceus, which may be associated with improved aerobic metabolism; and (2) sustained exercise training at a lower speed (1 or 2 BL s−1) resulted in elevated postprandial metabolic responses in juvenile M. piceus. PMID:29463516

  4. High diet overlap between native small-bodied fishes and nonnative fathead minnow in the Colorado River, Grand Canyon, Arizona

    USGS Publications Warehouse

    Seegert, Sarah E. Zahn; Rosi-Marshall, Emma J.; Baxter, Colden V.; Kennedy, Theodore A.; Hall, Robert O.; Cross, Wyatt F.

    2014-01-01

    River regulation may mediate the interactions among native and nonnative species, potentially favoring nonnative species and contributing to the decline of native populations. We examined food resource use and diet overlap among small-bodied fishes in the Grand Canyon section of the Colorado River as a first step in evaluating potential resource competition. We compared the diets of the predominant small-bodied fishes (native Speckled Dace Rhinichthys osculus, juvenile Flannelmouth Sucker Catostomus latipinnis, and juvenile Bluehead Sucker C. discobolus, and nonnative Fathead Minnow Pimephales promelas) across seasons at four sites downstream of Glen Canyon Dam using nonmetric multidimensional scaling and Schoener's similarity index. The diets of these fishes included diatoms, amorphous detritus, aquatic invertebrates (especially simuliid and chironomid larvae), terrestrial invertebrates, and terrestrial vegetation. Diets varied with season and were affected by high turbidity. Fish consumed more amorphous detritus and terrestrial vegetation during the summer monsoon season (July–September), when turbidity was higher. The diets of all species overlapped, but there was large variation in the degree of overlap. The diets of juvenile suckers and Fathead Minnows were most similar, while Speckled Dace had relatively distinct diets. The differences took the form of higher proportions of diatoms and amorphous detritus in the diets of Bluehead Suckers and Fathead Minnows and higher proportions of simuliids and chironomids in those of Speckled Dace. If food resources are or become limiting, diet overlap suggests that competition may occur among native and nonnative species, which could have implications for the population dynamics of these fishes and for the management of the Colorado River ecosystem in Grand Canyon.

  5. Community structure of age-0 fishes in paired mainstem and created shallow-water habitats in the Lower Missouri River

    USGS Publications Warehouse

    Starks, Trevor A.; Long, James M.; Dzialowski, Andrew R.

    2016-01-01

    Anthropogenic alterations to aquatic ecosystems have greatly reduced and homogenized riverine habitat, especially those used by larval and juvenile fishes. Creation of shallow-water habitats is used as a restoration technique in response to altered conditions in several studies globally, but only recently in the USA. In the summer of 2012, the U.S. Army Corps of Engineers sampled larval and juvenile fishes at six paired sites (mainstem and constructed chute shallow-water habitats) along a section of the Missouri River between Rulo, NE and St. Louis, MO, USA. From those samples, we enumerated and identified a total of 7622 fishes representing 12 families. Community responses of fishes to created shallow-water habitats were assessed by comparisons of species richness and diversity measures between paired sites and among sampling events. Shannon entropy measures were transformed, and gamma diversity (total diversity) was partitioned into two components, alpha (within community) and beta (between community) diversity using a multiplicative decomposition method. Mantel test results suggest site location, time of sampling event and habitat type were drivers of larval and juvenile community structure. Paired t-test results indicated little to no differences in beta diversity between habitat types; however, chute habitats had significantly higher alpha and gamma diversity as well as increased abundances of Asian carp larvae when compared with mainstem shallow-water habitat. Our results not only show the importance of created shallow-water habitat in promoting stream fish diversity but also highlight the role space and time may play in future restoration and management efforts. 

  6. Evaluation of formulated feed for juvenile lake sturgeon (Acipenser fulvescens) based on growth performance and nutrient retention

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the potential of giving formulated feed to juvenile lake sturgeon (Acipenser fulvescens) and determined the optimal feeding rate of a soft-moist feed on the growth performance and whole-body composition of this fish. Six feeding rates (% body weight per day: % BW/d) of a soft-mo...

  7. Rice Distillers Dried Grain Is a Promising Ingredient as a Partial Replacement of Plant Origin Sources in the Diet for Juvenile Red Seabream (Pagrus major)

    PubMed Central

    Choi, Jin; Rahman, Md Mostafizur; Lee, Sang-Min

    2014-01-01

    This study was designed to test the effects of dietary distillers dried grain (DDG) level on the growth performance, feed utilization, body composition and antioxidant activity of juvenile red seabream (Pagrus major). Six isonitrogenous and isocaloric diets were formulated to contain 0%, 5%, 10%, 15%, 20%, and 25% DDG from rice (designated as DDG0, DDG5, DDG10, DDG15, DDG20, and DDG25), respectively. Juvenile red seabream averaging 10.1±0.05 g were randomly distributed into 400-L tanks in a flow through systems. Three replicate groups of fish were fed one of the experimental diets to visual satiation two times a day for 10 weeks. Survival, weight gain, feed efficiency, protein efficiency ratio and hepatosomatic index of fish were not affected by dietary DDG levels (p>0.05). Proximate and amino acid composition of whole body in juvenile red seabream were not affected by dietary DDG levels (p>0.05). Plasma content of total protein, glucose, cholesterol, glutamic-pyruvic transaminase, phospholipid and triglyceride were not affected by dietary DDG levels (p>0.05). 1, 1-Diphenyl-2-picryl-hydrazyl radical and alkyl radical scavenging activities in plasma and liver of fish were not affected by dietary DDG levels (p>0.05). The results of this experiment suggest that DDG has the potential to replace plant origin ingredients such as wheat flour and corn gluten meal and could be used up to 25% in diet without incurring negative effects on the growth performance of juvenile red seabream. PMID:25358367

  8. Acute Toxicity, Respiratory Reaction, and Sensitivity of Three Cyprinid Fish Species Caused by Exposure to Four Heavy Metals

    PubMed Central

    Wang, Hongjun; Liang, Youguang; Li, Sixin; Chang, Jianbo

    2013-01-01

    Using 3 cyprinid fish species zebra fish, rare minnow, and juvenile grass carp, we conducted assays of lethal reaction and ventilatory response to analyze sensitivity of the fish to 4 heavy metals. Our results showed that the 96 h LC50 of Hg2+ to zebra fish, juvenile grass carp, and rare minnow were 0.14 mg L−1, 0.23 mg L−1, and 0.10 mg L−1, respectively; of Cu2+0.17 mg L−1, 0.09 mg L−1, and 0.12 mg L−1 respectively; of Cd2+6.5 mg L−1, 18.47 mg L−1, 5.36 mg L−1, respectively; and of Zn2+44.48 mg L−1, 31.37 mg L−1, and 12.74 mg L−1, respectively. Under a 1-h exposure, the ventilatory response to the different heavy metals varied. Ventilatory frequency (Vf) and amplitude (Va) increased in zebra fish, juvenile grass carp, and rare minnows exposed to Hg2+ and Cu2+ (P<0.05), and the Vf and Va of the 3 species rose initially and then declined when exposed to Cd2+. Zn2+ had markedly different toxic effects than the other heavy metals, whose Vf and Va gradually decreased with increasing exposure concentration (P<0.05). The rare minnow was the most highly susceptible of the 3 fish species to the heavy metals, with threshold effect concentrations (TEC) of 0.019 mg L−1, 0.046 mg L−1, 2.142 mg L−1, and 0.633 mg L−1 for Hg2+, Cu2+, Cd2+, and Zn2+, respectively. Therefore, it is feasible to use ventilatory parameters as a biomarker for evaluating the pollution toxicity of metals and to recognize early warning signs by using rare minnows as a sensor. PMID:23755209

  9. Investigations into the Early History of Naturally Produced Spring Chinook Salmon in the Grand Ronde Basin : Fish Research Project Oregon : Annual Progress Report Project Period September 1, 1996 to August 31, 1997.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johasson, Brian C.; Tranquilli, J. Vincent; Keefe, MaryLouise

    1998-10-28

    We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving uppermore » rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in

  10. Fish oil replacement in current aquaculture feed: is cholesterol a hidden treasure for fish nutrition?

    PubMed

    Norambuena, Fernando; Lewis, Michael; Hamid, Noor Khalidah Abdul; Hermon, Karen; Donald, John A; Turchini, Giovanni M

    2013-01-01

    Teleost fish, as with all vertebrates, are capable of synthesizing cholesterol and as such have no dietary requirement for it. Thus, limited research has addressed the potential effects of dietary cholesterol in fish, even if fish meal and fish oil are increasingly replaced by vegetable alternatives in modern aquafeeds, resulting in progressively reduced dietary cholesterol content. The objective of this study was to determine if dietary cholesterol fortification in a vegetable oil-based diet can manifest any effects on growth and feed utilization performance in the salmonid fish, the rainbow trout. In addition, given a series of studies in mammals have shown that dietary cholesterol can directly affect the fatty acid metabolism, the apparent in vivo fatty acid metabolism of fish fed the experimental diets was assessed. Triplicate groups of juvenile fish were fed one of two identical vegetable oil-based diets, with additional cholesterol fortification (high cholesterol; H-Chol) or without (low cholesterol; L-Chol), for 12 weeks. No effects were observed on growth and feed efficiency, however, in fish fed H-Col no biosynthesis of cholesterol, and a remarkably decreased apparent in vivo fatty acid β-oxidation were recorded, whilst in L-Chol fed fish, cholesterol was abundantly biosynthesised and an increased apparent in vivo fatty acid β-oxidation was observed. Only minor effects were observed on the activity of stearyl-CoA desaturase, but a significant increase was observed for both the transcription rate in liver and the apparent in vivo activity of the fatty acid Δ-6 desaturase and elongase, with increasing dietary cholesterol. This study showed that the possible effects of reduced dietary cholesterol in current aquafeeds can be significant and warrant future investigations.

  11. Juvenile salmon usage of the Skeena River estuary.

    PubMed

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  12. Juvenile Animal Testing: Assessing Need and Use in the Drug Product Label.

    PubMed

    Baldrick, Paul

    2018-01-01

    Juvenile animal testing has become an established part of drug development to support safe clinical use in the human pediatric population and for eventual drug product label use. A review of European Paediatric Investigation Plan decisions showed that from 2007 to mid-2017, 229 drugs had juvenile animal work requested, almost exclusively incorporating general toxicology study designs, in rat (57.5%), dog (8%), mouse (4.5%), monkey (4%), pig (2%), sheep (1%), rabbit (1%), hamster (0.5%), and species not specified (21.5%). A range of therapeutic areas were found, but the most common areas were infectious diseases (15%), endocrinology (13.5%), oncology (13%), neurology (11%), and cardiovascular diseases (10%). Examination of major clinical indications within these therapeutic areas showed some level of consistency in the species of choice for testing and the pediatric age that required support. Examination of juvenile animal study findings presented in product labels raises questions around how useful the data are to allow prescribing the drug to a child. It is hopeful that the new ICH S11 guideline "Nonclinical Safety Testing in Support of Development of Pediatric Medicines" currently in preparation will aid drug developers in clarifying the need for juvenile animal studies as well as in promoting a move away from toxicology studies with a conventional design. This would permit more focused testing to examine identified areas of toxicity or safety concerns and clarify the presentation/interpretation of juvenile animal study findings for proper risk assessment by a drug prescriber.

  13. Fishing-induced life-history changes degrade and destabilize harvested ecosystems.

    PubMed

    Kuparinen, Anna; Boit, Alice; Valdovinos, Fernanda S; Lassaux, Hélène; Martinez, Neo D

    2016-02-26

    Fishing is widely known to magnify fluctuations in targeted populations. These fluctuations are correlated with population shifts towards young, small, and more quickly maturing individuals. However, the existence and nature of the mechanistic basis for these correlations and their potential ecosystem impacts remain highly uncertain. Here, we elucidate this basis and associated impacts by showing how fishing can increase fluctuations in fishes and their ecosystem, particularly when coupled with decreasing body sizes and advancing maturation characteristic of the life-history changes induced by fishing. More specifically, using an empirically parameterized network model of a well-studied lake ecosystem, we show how fishing may both increase fluctuations in fish abundances and also, when accompanied by decreasing body size of adults, further decrease fish abundance and increase temporal variability of fishes' food resources and their ecosystem. In contrast, advanced maturation has relatively little effect except to increase variability in juvenile populations. Our findings illustrate how different mechanisms underlying life-history changes that may arise as evolutionary responses to intensive, size-selective fishing can rapidly and continuously destabilize and degrade ecosystems even after fishing has ceased. This research helps better predict how life-history changes may reduce fishes' resilience to fishing and ecosystems' resistance to environmental variations.

  14. Juvenile Arthritis

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  15. Dermatomyositis (Juvenile)

    MedlinePlus

    ... Keep me signed in Passwords are Case Sensitive. Ex. Enter smith as follows: Smith Forgot Username/Password? ... Erythematosus (Juvenile) Takayasu's Arteritis Tendinitis & Bursitis Tumor Necrosis Factor Receptor Associated Periodic Syndrome (Juvenile) Vasculitis Enfermedades y ...

  16. A qualitative study of fish consumption during pregnancy123

    PubMed Central

    Bloomingdale, Arienne; Guthrie, Lauren B; Price, Sarah; Wright, Robert O; Platek, Deborah; Haines, Jess; Oken, Emily

    2010-01-01

    Background: Many pregnant women in the United States do not consume enough docosahexaenoic acid (DHA)—an essential nutrient found in fish. Apparently conflicting findings that fish consumption is beneficial for the developing fetus, yet potentially toxic because of mercury contamination, have created uncertainty about the appropriate fish-consumption advice to provide to pregnant women. Objective: Our objective was to determine knowledge, behaviors, and received advice regarding fish consumption among pregnant women who are infrequent consumers of fish. Design: In 2009–2010 we conducted 5 focus groups with 22 pregnant women from the Boston area who ate <2 fish servings/wk. We analyzed transcripts by using immersion-crystallization. Results: Many women knew that fish might contain mercury, a neurotoxin, and had received advice to limit fish intake. Fewer women knew that fish contains DHA or what the function of DHA is. None of the women had received advice to eat fish, and most had not received information about which fish types contain more DHA or less mercury. Because of advice to limit fish intake, as well as a lack of information about which fish types they should be eating, many of the women said that they would rather avoid fish than possibly harm themselves or their infants. The participants thought that a physician's advice to eat fish and a readily available reference regarding which fish are safe to consume during pregnancy would likely have encouraged them to eat more fish. Conclusion: Pregnant women might be willing to eat more fish if this were advised by their obstetricians or if they had an accessible reference regarding which types are safe. PMID:20844071

  17. Juvenile Justice & Youth Violence.

    ERIC Educational Resources Information Center

    Howell, James C.

    Youth violence and the juvenile justice system in the United States are explored. Part 1 takes stock of the situation. The first chapter discusses the origins and evaluation of the juvenile justice system, and the second considers the contributions of the Federal Juvenile Justice and Delinquency Prevention Act to the existing juvenile justice…

  18. 75 FR 14609 - Commercial Fishing Industry Vessel Safety Advisory Committee; Vacancies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2010-0163] Commercial Fishing... applications. SUMMARY: The Coast Guard seeks applications for membership on the Commercial Fishing Industry... Coast Guard on matters relating to the safe operation of commercial fishing industry vessels. DATES...

  19. Conceptualizing juvenile prostitution as child maltreatment: findings from the National Juvenile Prostitution Study.

    PubMed

    Mitchell, Kimberly J; Finkelhor, David; Wolak, Janis

    2010-02-01

    Two studies were conducted to identify the incidence (Study 1) and characteristics (Study 2) of juvenile prostitution cases known to law enforcement agencies in the United States. Study 1 revealed a national estimate of 1,450 arrests or detentions (95% confidence interval [CI]: 1,287-1,614) in cases involving juvenile prostitution during a 1-year period. In Study 2, exploratory data were collected from a subsample of 138 cases from police records in 2005. The cases are broadly categorized into three main types: (a) third-party exploiters, (b) solo prostitution, and (c) conventional child sexual abuse (CSA) with payment. Cases were classified into three initial categories based on police orientation toward the juvenile: (a) juveniles as victims (53%), (b) juveniles as delinquents (31%), and (c) juvenile as both victims and delinquents (16%). When examining the status of the juveniles by case type, the authors found that all the juveniles in CSA with payment cases were treated as victims, 66% in third-party exploiters cases, and 11% in solo cases. Findings indicate law enforcement responses to juvenile prostitution are influential in determining whether such youth are viewed as victims of commercial sexual exploitation or as delinquents.

  20. Black Juveniles in the Juvenile Justice System: A Cause for Alarm.

    ERIC Educational Resources Information Center

    LeFlore, Larry

    This report examines the representation of black youth in the juvenile justice system, describes changes in juvenile justice philosophy, and discusses policy implications. Black youth are overrepresented at all stages of the juvenile justice system compared to white youth. Positivist theories explain this overrepresentation as the result of…