Ascent abort capability for the HL-20
NASA Technical Reports Server (NTRS)
Naftel, J. C.; Talay, T. A.
1993-01-01
The HL-20 has been designed with the capability for rescue of the crew during all phases of powered ascent from on the launch pad until orbital injection. A launch-escape system, consisting of solid rocket motors located on the adapter between the HL-20 and the launch vehicle, provides the thrust that propels the HL-20 to a safe distance from a malfunctioning launch vehicle. After these launch-escape motors have burned out, the adapter is jettisoned and the HL-20 executes one of four abort modes. In three abort modes - return-to-launch-site, transatlantic-abort-landing, and abort-to-orbit - not only is the crew rescued, but the HL-20 is recovered intact. In the ocean-landing-by-parachute abort mode, which occurs in between the return-to-launch-site and the transatlantic-abort-landing modes, the crew is rescued, but the HL-20 would likely sustain damage from the ocean landing. This paper describes the launch-escape system and the four abort modes for an ascent on a Titan III launch vehicle.
Managing Cassini Safe Mode Attitude at Saturn
NASA Technical Reports Server (NTRS)
Burk, Thomas A.
2010-01-01
The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. In the event safe mode interrupts normal orbital operations, Cassini has flight software fault protection algorithms to detect, isolate, and recover to a thermally safe and commandable attitude and then wait for further instructions from the ground. But the Saturn environment is complex, and safety hazards change depending on where Cassini is in its orbital trajectory around Saturn. Selecting an appropriate safe mode attitude that insures safe operation in the Saturn environment, including keeping the star tracker field of view clear of bright bodies, while maintaining a quiescent, commandable attitude, is a significant challenge. This paper discusses the Cassini safe table management strategy and the key criteria that must be considered, especially during low altitude flybys of Titan, in deciding what spacecraft attitude should be used in the event of safe mode.
Orion Crew Exploration Vehicle Launch Abort System Guidance and Control Analysis Overview
NASA Technical Reports Server (NTRS)
Davidson, John B.; Kim, Sungwan; Raney, David L.; Aubuchon, Vanessa V.; Sparks, Dean W.; Busan, Ronald C.; Proud, Ryan W.; Merritt, Deborah S.
2008-01-01
Aborts during the critical ascent flight phase require the design and operation of Orion Crew Exploration Vehicle (CEV) systems to escape from the Crew Launch Vehicle (CLV) and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. Aborts from the launch pad to early in the flight of the CLV second stage are performed using the Launch Abort System (LAS). During this type of abort, the LAS Abort Motor is used to pull the Crew Module (CM) safely away from the CLV and Service Module (SM). LAS abort guidance and control studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the Orion CEV, an overview of the LAS ascent abort mode, and a summary of key LAS abort analysis methods and results.
Evolution of the Hubble Space Telescope Safing Systems
NASA Technical Reports Server (NTRS)
Pepe, Joyce; Myslinski, Michael
2006-01-01
The Hubble Space Telescope (HST) was launched on April 24 1990, with an expected lifespan of 15 years. Central to the spacecraft design was the concept of a series of on-orbit shuttle servicing missions permitting astronauts to replace failed equipment, update the scientific instruments and keep the HST at the forefront of astronomical discoveries. One key to the success of the Hubble mission has been the robust Safing systems designed to monitor the performance of the observatory and to react to keep the spacecraft safe in the event of equipment anomaly. The spacecraft Safing System consists of a range of software tests in the primary flight computer that evaluate the performance of mission critical hardware, safe modes that are activated when the primary control mode is deemed inadequate for protecting the vehicle, and special actions that the computer can take to autonomously reconfigure critical hardware. The HST Safing System was structured to autonomously detect electrical power system, data management system, and pointing control system malfunctions and to configure the vehicle to ensure safe operation without ground intervention for up to 72 hours. There is also a dedicated safe mode computer that constantly monitors a keep-alive signal from the primary computer. If this signal stops, the safe mode computer shuts down the primary computer and takes over control of the vehicle, putting it into a safe, low-power configuration. The HST Safing system has continued to evolve as equipment has aged, as new hardware has been installed on the vehicle, and as the operation modes have matured during the mission. Along with the continual refinement of the limits used in the safing tests, several new tests have been added to the monitoring system, and new safe modes have been added to the flight software. This paper will focus on the evolution of the HST Safing System and Safing tests, and the importance of this evolution to prolonging the science operations of the telescope.
Algorithm for Determination of Orion Ascent Abort Mode Achievability
NASA Technical Reports Server (NTRS)
Tedesco, Mark B.
2011-01-01
For human spaceflight missions, a launch vehicle failure poses the challenge of returning the crew safely to earth through environments that are often much more stressful than the nominal mission. Manned spaceflight vehicles require continuous abort capability throughout the ascent trajectory to protect the crew in the event of a failure of the launch vehicle. To provide continuous abort coverage during the ascent trajectory, different types of Orion abort modes have been developed. If a launch vehicle failure occurs, the crew must be able to quickly and accurately determine the appropriate abort mode to execute. Early in the ascent, while the Launch Abort System (LAS) is attached, abort mode selection is trivial, and any failures will result in a LAS abort. For failures after LAS jettison, the Service Module (SM) effectors are employed to perform abort maneuvers. Several different SM abort mode options are available depending on the current vehicle location and energy state. During this region of flight the selection of the abort mode that maximizes the survivability of the crew becomes non-trivial. To provide the most accurate and timely information to the crew and the onboard abort decision logic, on-board algorithms have been developed to propagate the abort trajectories based on the current launch vehicle performance and to predict the current abort capability of the Orion vehicle. This paper will provide an overview of the algorithm architecture for determining abort achievability as well as the scalar integration scheme that makes the onboard computation possible. Extension of the algorithm to assessing abort coverage impacts from Orion design modifications and launch vehicle trajectory modifications is also presented.
Lockheed Martin Response to the OSP Challenge
NASA Technical Reports Server (NTRS)
Sullivan, Robert T.; Munkres, Randy; Megna, Thomas D.; Beckham, Joanne
2003-01-01
The Lockheed Martin Orbital Space Plane System provides crew transfer and rescue for the International Space Station more safely and affordably than current human space transportation systems. Through planned upgrades and spiral development, it is also capable of satisfying the Nation's evolving space transportation requirements and enabling the national vision for human space flight. The OSP System, formulated through rigorous requirements definition and decomposition, consists of spacecraft and launch vehicle flight elements, ground processing facilities and existing transportation, launch complex, range, mission control, weather, navigation, communication and tracking infrastructure. The concept of operations, including procurement, mission planning, launch preparation, launch and mission operations and vehicle maintenance, repair and turnaround, is structured to maximize flexibility and mission availability and minimize program life cycle cost. The approach to human rating and crew safety utilizes simplicity, performance margin, redundancy, abort modes and escape modes to mitigate credible hazards that cannot be designed out of the system.
Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Chenevert, Donald J.
2009-01-01
NASA has conducted dynamic tests on each major launch vehicle during the past 45 years. Each test provided invaluable data to correlate and correct analytical models. GVTs result in hardware changes to Saturn and Space Shuttle, ensuring crew and vehicle safety. Ares I IVGT will provide test data such as natural frequencies, mode shapes, and damping to support successful Ares I flights. Testing will support controls analysis by providing data to reduce model uncertainty. Value of testing proven by past launch vehicle successes and failures. Performing dynamic testing on Ares vehicles will provide confidence that the launch vehicles will be safe and successful in their missions.
Lunar Reconnaissance Orbiter (LRO) Guidance, Navigation and Control (GN&C) Overview
NASA Technical Reports Server (NTRS)
Garrick, Joseph; Simpson, James; Shah, Neerav
2010-01-01
The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle and into a direct insertion trajectory to the oon. LRO, which was designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. The mission has a nominal life of 1 year as its seven instruments find safe landing sites, locate potential resources, characterize the radiation environment, and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera of the Apollo landing sites appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Guidance, Navigation and Control (GN&C) subsystem is made up of an onboard attitude control system (ACS) and a hardware suite of sensors and actuators. The LRO onboard ACS is a collection of algorithms based on high level and derived requirements, and reflect the science and operational events throughout the mission lifetime. The primary control mode is the Observing mode, which maintains the lunar pointing orientation and any offset pointing from this baseline. It is within this mode that all science instrument calibrations, slews and science data is collected. Because of a high accuracy requirement for knowledge and pointing, the Observing mode makes use of star tracker (ST) measurement data to determine an instantaneous attitude pointing. But even the star trackers alone do not meet the tight requirements, so a six-state Kalman Filter is employed to improve the noisy measurement data. The Observing mode obtains its rate information from an inertial reference unit (IRU) and in the event of an IRU failure, the rate data is be derived from the star tracker, but with degraded pointing performance. The Delta-V control mode responsibility is to maintain attitude pointing during the cruise trajectory, insertion burns and lunar orbit maintenance by adjustments made to the spacecraft s velocity magnitude and vector direction. The ACS also provides for a thruster based system momentum management algorithm (known as Delta-H) to maintain the system and wheel momentum to within acceptable levels. In the event an anomaly causes the LRO spacecraft to lose the ability to maintain its current attitude pointing, a Sun Safe mode is included in the ACS for the purpose of providing a known power and thermally safe coarse inertial sun attitude for an indefinite period of time, within the manageable limits of the reaction wheels. The Sun Safe mode is also the initial spacecraft control mode off of the launch vehicle and provides for a means to null tip-off rates immediately after separation. The nominal configuration is to use the IRU for rate information in the controller. In the event of a gyro failure a gyroless control mode was developed that computes rate information from the CSS data.
Range Safety for an Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Lanzi, Raymond J.; Simpson, James C.
2010-01-01
The Range Safety Algorithm software encapsulates the various constructs and algorithms required to accomplish Time Space Position Information (TSPI) data management from multiple tracking sources, autonomous mission mode detection and management, and flight-termination mission rule evaluation. The software evaluates various user-configurable rule sets that govern the qualification of TSPI data sources, provides a prelaunch autonomous hold-launch function, performs the flight-monitoring-and-termination functions, and performs end-of-mission safing
1999-11-24
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, the STS-103 payload awaits closing of Discovery's payload bay doors. The payload, which will enable the crew of seven to service the Hubble Space Telescope, consists of gyroscopes that allow the telescope to point at stars, galaxies and planets; a Fine Guidance Sensor, a new enhanced computer to replace an older model, a solid-state digital recorder, a new spare transmitter, and new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of Space Shuttle Discovery on mission STS-103 is targeted for Dec. 9 at 1:10 a.m. EST
A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Hanson, John M.; Fogle, Frank (Technical Monitor)
2002-01-01
Advanced guidance and control (AG&C) technologies are critical for meeting safety/reliability and cost requirements for the next generation of reusable launch vehicle (RLV). This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies would have saved a RLV with the same failure mode, the additional vehicle problems where this technology applies, and the costs associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is at the point where we can took to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AG&C, current technology efforts, and the additional work needed for making this goal a reality.
Crew Exploration Vehicle Ascent Abort Overview
NASA Technical Reports Server (NTRS)
Davidson, John B., Jr.; Madsen, Jennifer M.; Proud, Ryan W.; Merritt, Deborah S.; Sparks, Dean W., Jr.; Kenyon, Paul R.; Burt, Richard; McFarland, Mike
2007-01-01
One of the primary design drivers for NASA's Crew Exploration Vehicle (CEV) is to ensure crew safety. Aborts during the critical ascent flight phase require the design and operation of CEV systems to escape from the Crew Launch Vehicle and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. The analysis involves an evaluation of the feasibility and survivability of each abort mode and an assessment of the abort mode coverage. These studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the CEV, driving requirements for abort scenarios, and an overview of current ascent abort modes. Example analysis results are then discussed. Finally, future areas for abort analysis are addressed.
NASA Technical Reports Server (NTRS)
Robertson, Brent; Sabelhaus, Phil; Mendenhall, Todd; Fesq, Lorraine
1998-01-01
On December 13th 1998, the Total Ozone Mapping Spectrometer - Earth Probe (TOMS-EP) spacecraft experienced a Single Event Upset which caused the system to reconfigure and enter a Safe Mode. This incident occurred two and a half years after the launch of the spacecraft which was designed for a two year life. A combination of factors, including changes in component behavior due to age and extended use, very unfortunate initial conditions and the safe mode processing logic prevented the spacecraft from entering its nominal long term storage mode. The spacecraft remained in a high fuel consumption mode designed for temporary use. By the time the onboard fuel was exhausted, the spacecraft was Sun pointing in a high rate flat spin. Although the uncontrolled spacecraft was initially in a power and thermal safe orientation, it would not stay in this state indefinitely due to a slow precession of its momentum vector. A recovery team was immediately assembled to determine if there was time to develop a method of despinning the vehicle and return it to normal science data collection. A three stage plan was developed that used the onboard magnetic torque rods as actuators. The first stage was designed to reduce the high spin rate to within the linear range of the gyros. The second stage transitioned the spacecraft from sun pointing to orbit reference pointing. The final stage returned the spacecraft to normal science operation. The entire recovery scenario was simulated with a wide range of initial conditions to establish the expected behavior. The recovery sequence was started on December 28th 1998 and completed by December 31st. TOMS-EP was successfully returned to science operations by the beginning of 1999. This paper describes the TOMS-EP Safe Mode design and the factors which led to the spacecraft anomaly and loss of fuel. The recovery and simulation efforts are described. Flight data are presented which show the performance of the spacecraft during its return to science. Finally, lessons learned are presented.
1999-11-24
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, Discovery's payload bay doors close on the STS-103 payload. STS-103 is a Hubble Space Telescope servicing mission. The payload, which will enable the crew of seven to service the Hubble Space Telescope, consists of gyroscopes that allow the telescope to point at stars, galaxies and planets; a Fine Guidance Sensor; a new enhanced computer to replace an older model; a solid-state digital recorder; a new spare transmitter; and new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of Space Shuttle Discovery on mission STS-103 is targeted for Dec. 9 at 1:10 a.m. EST
1999-11-24
KENNEDY SPACE CENTER, FLA. -- A worker at Launch Pad 39B watches as Discovery's payload bay doors close on the STS-103 payload. STS-103 is a Hubble Space Telescope servicing mission. The payload, which will enable the crew of seven to service the Hubble Space Telescope, consists of gyroscopes that allow the telescope to point at stars, galaxies and planets; a Fine Guidance Sensor; a new enhanced computer to replace an older model; a solid-state digital recorder; a new spare transmitter; and new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of Space Shuttle Discovery on mission STS-103 is targeted for Dec. 9 at 1:10 a.m. EST
NASA Technical Reports Server (NTRS)
Cruddace, R. G.; Brandenstein, D. C.; Creighton, J. O.; Gutschewski, G.; Lucid, S. W.; Nagel, S. R.; Fabian, J. M.; Fenimore, E. E.; Shrewsberry, D. J.; Zimmermann, D.
1990-01-01
The first Spartan mission is documented. The Spartan program, an outgrowth of a joint Naval Research Laboratory (NRL)/National Aeronautics and Space Administration (NASA)-Goddard Space Flight Center (GSFC) development effort, was instituted by NASA for launching autonomous, recoverable payloads from the Space Shuttle. These payloads have a precise pointing system and are intended to support a wide range of space-science observations and experiments. The first Spartan, carrying an NRL X-ray astronomy instrument, was launched by the orbiter Discovery (STS51G) on June 20, 1985 and recovered successfully 45 h later, on June 22. During this period, Spartan 1 conducted a preprogrammed series of observations of two X-ray sources: the Perseus cluster of galaxies and the center of our galaxy. The mission was successful from both on engineering and a scientific viewpoint. Only one problem was encountered, the attitude control system (ACS) shut down earlier than planned because of high attitude control system gas consumption. A preplanned emergency mode then placed Spartan 1 into a stable, safe condition and allowed a safe recovery. The events are described of the mission and presents X-ray maps of the two observed sources, which were produced from the flight data.
Sliding Mode Control of the X-33 Vehicle in Launch Mode
NASA Technical Reports Server (NTRS)
Shtessel, Yuri; Jackson, Mark; Hall, Charles; Krupp, Don; Hendrix, N. Douglas
1998-01-01
The "nested" structure of the control system for the X33 vehicle in launch mode is developed. Employing backstopping concepts, the outer loop (guidance) and the Inner loop (rates) continuous sliding mode controllers are designed. Simulations of the 3-DOF model of the X33 launch vehicle showed an accurate, robust, de-coupled tracking performance.
Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing
NASA Technical Reports Server (NTRS)
Tuma, M. L.; Chenevert, D. J.
2009-01-01
Ground vibration testing has been an integral tool for developing new launch vehicles throughout the space age. Several launch vehicles have been lost due to problems that would have been detected by early vibration testing, including Ariane 5, Delta III, and Falcon 1. NASA will leverage experience and testing hardware developed during the Saturn and Shuttle programs to perform ground vibration testing (GVT) on the Ares I crew launch vehicle and Ares V cargo launch vehicle stacks. NASA performed dynamic vehicle testing (DVT) for Saturn and mated vehicle ground vibration testing (MVGVT) for Shuttle at the Dynamic Test Stand (Test Stand 4550) at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, and is now modifying that facility to support Ares I integrated vehicle ground vibration testing (IVGVT) beginning in 2012. The Ares IVGVT schedule shows most of its work being completed between 2010 and 2014. Integrated 2nd Stage Ares IVGVT will begin in 2012 and IVGVT of the entire Ares launch stack will begin in 2013. The IVGVT data is needed for the human-rated Orion launch vehicle's Design Certification Review (DCR) in early 2015. During the Apollo program, GVT detected several serious design concerns, which NASA was able to address before Saturn V flew, eliminating costly failures and potential losses of mission or crew. During the late 1970s, Test Stand 4550 was modified to support the four-body structure of the Space Shuttle. Vibration testing confirmed that the vehicle's mode shapes and frequencies were better than analytical models suggested, however, the testing also identified challenges with the rate gyro assemblies, which could have created flight instability and possibly resulted in loss of the vehicle. Today, NASA has begun modifying Test Stand 4550 to accommodate Ares I, including removing platforms needed for Shuttle testing and upgrading the dynamic test facilities to characterize the mode shapes and resonant frequencies of the vehicle. The IVGVT team expects to collect important information about the new launch vehicles, greatly increasing astronaut safety as NASA prepares to explore the Moon and beyond.
The Perfect Mate for Safe Fueling
NASA Technical Reports Server (NTRS)
2004-01-01
Referred to as the "lifeline for any space launch vehicle" by NASA Space Launch Initiative Program Manager Warren Wiley, an umbilical is a large device that transports power, communications, instrument readings, and fluids such as propellants, pressurization gases, and coolants from one source to another. Numerous launch vehicles, planetary systems, and rovers require umbilical "mating". This process is a driving factor for dependable and affordable space access. With future-generation space vehicles in mind, NASA recently designed a smart, automated method for quickly and reliably mating and demating electrical and fluid umbilical connectors. The new umbilical concept is expected to replace NASA s traditional umbilical systems that release at vehicle lift-off (T-0). The idea is to increase safety by automatically performing hazardous tasks, thus reducing potential failure modes and the time and labor hours necessary to prepare for launch. The new system will also be used as a test bed for quick disconnect development and for advance control and leak detection. It incorporates concepts such as a secondary mate plate, robotic machine vision, and compliant motor motion control, and is destined to advance usage of automated umbilicals in a variety of aerospace and commercial applications.
Polarization Measurements During Electron Cyclotron Heating Experiments in the DIII-D Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petty, C.C.; Luce, T.C.; Austin, M.E.
The polarization of the launched electron cyclotron wave has been optimized for coupling to the X-mode by adjusting the inclination of grooved mirrors located in two consecutive mitre bends of the waveguide. The unwanted O-mode component of the launched beam can be positively identified by the difference in the power deposition profiles between X-mode and O-mode. The optimal polarization for X-mode launch is in good agreement with theoretical expectations.
Safehold Attitude Determination Approach for GPM
NASA Technical Reports Server (NTRS)
Fitzpatrick, Henry; DeWeese, Keith
2012-01-01
Spacecraft sating designs generally have minimal goals with loose pointing requirements. Safe pointing orientations for three-axis stabilized spacecraft are usually chosen to put the spacecraft into a thermally safe and power-positive orientation. In addition, safe mode designs are required to be simple and reliable. This simplicity lends itself to the usage of analog sun sensors, because digital sun sensors will add unwanted complexity to the safe hold mode. The Global Precipitation Measurement (GPM) Mission Core Observatory will launch into lower earth orbit (LEO) at an inclination of 65 degrees. The GPM instrument suite consists of an active radar system and a passive microwave imager to provide the next-generation global observations of rain and snow. The complexity and precision of these instruments along with the operational constraints of the mission result in tight pointing requirements during all phases of the mission. To ensure the instruments are not damaged during spacecraft safing, thermal constraints dictate that the solar pointing orientation must be maintained to better than 6.5 degrees. This requirement is outside the capabilities of a typical analog sun sensor suite, primarily due to the effects of Earth's albedo. To ensure mission success, a new analog sensor, along with the appropriate algorithms, is needed. This paper discusses the design issues involving albedo effects on spacecraft pointing and the development of a simple, low-cost analog sensor and algorithm that will address the needs of the GPM mission. In addition, the algorithms are designed to be easily integrated into the existing attitude determination software by using common interfaces. The sensor design is based on a heritage, commercial off-the-shelf analog sun sensors with a limited field-of-view to reduce the effects of Earth's albedo. High fidelity simulation results are presented that demonstrate the efficacy of the design.
Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes
NASA Technical Reports Server (NTRS)
Shtessel, Yuri
1999-01-01
A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. 6DOF simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. It creates possibility to operate the X-33 vehicle in an aircraft-like mode with reduced pre-launch adjustment of the control system.
Vented Launch Vehicle Adaptor for a Manned Spacecraft with "Pusher" Launch Abort System
NASA Technical Reports Server (NTRS)
Vandervort, Robert E. (Inventor)
2017-01-01
A system, method, and apparatus for a vented launch vehicle adaptor (LVA) for a manned spacecraft with a "pusher" launch abort system are disclosed. The disclosed LVA provides a structural interface between a commercial crew vehicle (CCV) crew module/service module (CM/SM) spacecraft and an expendable launch vehicle. The LVA provides structural attachment of the module to the launch vehicle. It also provides a means to control the exhaust plume from a pusher-type launch abort system that is integrated into the module. In case of an on-pad or ascent abort, which requires the module to jettison away from the launch vehicle, the launch abort system exhaust plume must be safely directed away from critical and dangerous portions of the launch vehicle in order to achieve a safe and successful jettison.
Flexible Modes Control Using Sliding Mode Observers: Application to Ares I
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.; Hall, Charles E.; Baev, Simon; Orr, Jeb S.
2010-01-01
The launch vehicle dynamics affected by bending and sloshing modes are considered. Attitude measurement data that are corrupted by flexible modes could yield instability of the vehicle dynamics. Flexible body and sloshing modes are reconstructed by sliding mode observers. The resultant estimates are used to remove the undesirable dynamics from the measurements, and the direct effects of sloshing and bending modes on the launch vehicle are compensated by means of a controller that is designed without taking the bending and sloshing modes into account. A linearized mathematical model of Ares I launch vehicle was derived based on FRACTAL, a linear model developed by NASA/MSFC. The compensated vehicle dynamics with a simple PID controller were studied for the launch vehicle model that included two bending modes, two slosh modes and actuator dynamics. A simulation study demonstrated stable and accurate performance of the flight control system with the augmented simple PID controller without the use of traditional linear bending filters.
Space Station Crew Returns Safely on This Week @NASA – March 5, 2018
2018-03-05
A safe return from the International Space Station, a new weather satellite launched into orbit, and our next mission to Mars moves closer to launch … a few of the stories to tell you about – This Week at NASA!
STS-103 Discovery rolls over to VAB
NASA Technical Reports Server (NTRS)
1999-01-01
In this aerial view, the tail of the orbiter Discovery can be seen as it begins rolling out of the Orbiter Processing Facility (OPF) bay 1 (center left of photo). Behind it is the tow-way, which leads from the Shuttle Landing Facility past the OPF. In the foreground is the new road under construction as part of the Safe Haven project. And at right is the one of two crawlers used to move the Shuttles to the launch pad. Discovery is moving to the Vehicle Assembly Building for stacking with an external tank and solid rocket boosters before its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, technicians prepare the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort motor has been prepared for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes
NASA Technical Reports Server (NTRS)
Shtessel, Yuri; Hall, Charles; Jackson, Mark
2000-01-01
A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.
ACES: An Enabling Technology for Next Generation Space Transportation
NASA Astrophysics Data System (ADS)
Crocker, Andrew M.; Wuerl, Adam M.; Andrews, Jason E.; Andrews, Dana G.
2004-02-01
Andrews Space has developed the ``Alchemist'' Air Collection and Enrichment System (ACES), a dual-mode propulsion system that enables safe, economical launch systems that take off and land horizontally. Alchemist generates liquid oxygen through separation of atmospheric air using the refrigeration capacity of liquid hydrogen. The key benefit of Alchemist is that it minimizes vehicle takeoff weight. All internal and NASA-funded activities have shown that ACES, previously proposed for hypersonic combined cycle RLVs, is a higher payoff, lower-risk technology if LOX generation is performed while the vehicle cruises subsonically. Andrews Space has developed the Alchemist concept from a small system study to viable Next Generation launch system technology, conducting not only feasibility studies but also related hardware tests, and it has planned a detailed risk reduction program which employs an experienced, proven contractor team. Andrews also has participated in preliminary studies of an evolvable Next Generation vehicle architecture-enabled by Alchemist ACES-which could meet civil, military, and commercial space requirements within two decades.
1999-11-16
KENNEDY SPACE CENTER, FLA. -- STS-103's Hubble servicing cargo is transferred from the payload changeout room at Launch Pad 39B to the payload bay in Space Shuttle Discovery. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST
1999-11-16
KENNEDY SPACE CENTER, FLA. -- Workers oversee the transfer of STS-103's Hubble servicing cargo from the payload changeout room at Launch Pad 39B to the payload bay in Space Shuttle Discovery. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST
Ground Handling of Batteries at Test and Launch-site Facilities
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Hohl, Alan R.
2008-01-01
Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.
Apollo 11 Launched Via the Saturn V Rocket-High Angle View
NASA Technical Reports Server (NTRS)
1969-01-01
The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. This high angle view of the launch was provided by a `fisheye' camera mounted on the launch tower. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
2009-01-31
CAPE CANAVERAL, Fla. – The Ares I-X launch abort system that will form the tip of the Ares rocket arrives in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The launch abort system will provide safe evacuation if a launch vehicle failure occurs. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller
NASA Astrophysics Data System (ADS)
Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu
2016-08-01
This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.
2013-09-27
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, components are horizontally stacked as processing continues for the Orion Exploration Flight Test-1 mission. Components of the LAS are the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
2013-09-27
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, components are horizontally stacked as processing continues for the Orion Exploration Flight Test-1 mission. Components of the LAS are the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
Geometric phase due to orbit-orbit interaction: rotating LP11 modes in a two-mode fiber
NASA Astrophysics Data System (ADS)
Pradeep Chakravarthy, T.; Naik, Dinesh N.; Viswanathan, Nirmal K.
2017-10-01
Accumulation of geometric phase due to non-coplanar propagation of higher-order modes in an optical fiber is experimentally demonstrated. Vertically-polarized LP11 fiber mode, excited in a horizontally-held, torsion-free, step-index, two-mode optical fiber, rotates due to asymmetry in the propagating k-vectors, arising due to off-centered beam location at the fiber input. Perceiving the process as due to rotation of the fiber about the off-axis launch position, the orbital Berry phase accumulation upon scanning the launch position in a closed-loop around the fiber axis manifests as rotational Doppler effect, a consequence of orbit-orbit interaction. The anticipated phase accumulation as a function of the input launch position, observed through interferometry is connected to the mode rotation angle, quantified using the autocorrelation method.
Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber
NASA Astrophysics Data System (ADS)
Burdin, V.; Bourdine, A.
2018-04-01
This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.
X33 Reusable Launch Vehicle Control on Sliding Modes: Concepts for a Control System Development
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.
1998-01-01
Control of the X33 reusable launch vehicle is considered. The launch control problem consists of automatic tracking of the launch trajectory which is assumed to be optimally precalculated. It requires development of a reliable, robust control algorithm that can automatically adjust to some changes in mission specifications (mass of payload, target orbit) and the operating environment (atmospheric perturbations, interconnection perturbations from the other subsystems of the vehicle, thrust deficiencies, failure scenarios). One of the effective control strategies successfully applied in nonlinear systems is the Sliding Mode Control. The main advantage of the Sliding Mode Control is that the system's state response in the sliding surface remains insensitive to certain parameter variations, nonlinearities and disturbances. Employing the time scaling concept, a new two (three)-loop structure of the control system for the X33 launch vehicle was developed. Smoothed sliding mode controllers were designed to robustly enforce the given closed-loop dynamics. Simulations of the 3-DOF model of the X33 launch vehicle with the table-look-up models for Euler angle reference profiles and disturbance torque profiles showed a very accurate, robust tracking performance.
NASA Technical Reports Server (NTRS)
Goldberg, Ben E.; Wiley, Dan R.
1991-01-01
An overview is presented of hybrid rocket propulsion systems whereby combining solids and liquids for launch vehicles could produce a safe, reliable, and low-cost product. The primary subsystems of a hybrid system consist of the oxidizer tank and feed system, an injector system, a solid fuel grain enclosed in a pressure vessel case, a mixing chamber, and a nozzle. The hybrid rocket has an inert grain, which reduces costs of development, transportation, manufacturing, and launch by avoiding many safety measures that must be taken when operating with solids. Other than their use in launch vehicles, hybrids are excellent for simulating the exhaust of solid rocket motors for material development.
NASA Headquarters/Kennedy Space Center: Organization and Small Spacecraft Launch Services
NASA Technical Reports Server (NTRS)
Sierra, Albert; Beddel, Darren
1999-01-01
The objectives of the Kennedy Space Center's (KSC) Expendable Launch Vehicles (ELV) Program are to provide safe, reliable, cost effective ELV launches, maximize customer satisfaction, and perform advanced payload processing capability development. Details are given on the ELV program organization, products and services, foreign launch vehicle policy, how to get a NASA launch service, and some of the recent NASA payloads.
Parametric Structural Model for a Mars Entry Concept
NASA Technical Reports Server (NTRS)
Lane, Brittney M.; Ahmed, Samee W.
2017-01-01
This paper outlines the process of developing a parametric model for a vehicle that can withstand Earth launch and Mars entry conditions. This model allows the user to change a variety of parameters ranging from dimensions and meshing to materials and atmospheric entry angles to perform finite element analysis on the model for the specified load cases. While this work focuses on an aeroshell for Earth launch aboard the Space Launch System (SLS) and Mars entry, the model can be applied to different vehicles and destinations. This specific project derived from the need to deliver large payloads to Mars efficiently, safely, and cheaply. Doing so requires minimizing the structural mass of the body as much as possible. The code developed for this project allows for dozens of cases to be run with the single click of a button. The end result of the parametric model gives the user a sense of how the body reacts under different loading cases so that it can be optimized for its purpose. The data are reported in this paper and can provide engineers with a good understanding of the model and valuable information for improving the design of the vehicle. In addition, conclusions show that the frequency analysis drives the design and suggestions are made to reduce the significance of normal modes in the design.
In-line inspection of unpiggable buried live gas pipes using circumferential EMAT guided waves
NASA Astrophysics Data System (ADS)
Ren, Baiyang; Xin, Junjun
2018-04-01
Unpiggable buried gas pipes need to be inspected to ensure their structural integrity and safe operation. The CIRRIS XITM robot, developed and operated by ULC Robotics, conducts in-line nondestructive inspection of live gas pipes. With the no-blow launching system, the inspection operation has reduced disruption to the public and by eliminating the need to dig trenches, has minimized the site footprint. This provides a highly time and cost effective solution for gas pipe maintenance. However, the current sensor on the robot performs a point-by-point measurement of the pipe wall thickness which cannot cover the whole volume of the pipe in a reasonable timeframe. The study of ultrasonic guided wave technique is discussed to improve the volume coverage as well as the scanning speed. Circumferential guided wave is employed to perform axial scanning. Mode selection is discussed in terms of sensitivity to different defects and defect characterization capability. To assist with the mode selection, finite element analysis is performed to evaluate the wave-defect interaction and to identify potential defect features. Pulse-echo and through-transmission mode are evaluated and compared for their pros and cons in axial scanning. Experiments are also conducted to verify the mode selection and detect and characterize artificial defects introduced into pipe samples.
Davy, Jean-Marc; Hoffmann, Ellen; Frey, Axel; Jocham, Kurt; Rossi, Stefano; Dupuis, Jean-Marc; Frabetti, Lorenzo; Ducloux, Pascale; Prades, Emmanuel; Jauvert, Gaël
2012-04-01
SafeR performance versus DDD/automatic mode conversion (DDD/AMC) and DDD with a 250-ms atrioventricular (AV) delay (DDD/LD) modes was assessed toward ventricular pacing (Vp) reduction. After a 1-month run-in phase, recipients of dual-chamber pacemakers without persistent AV block and persistent atrial fibrillation (AF) were randomly assigned to SafeR, DDD/AMC, or DDD/LD in a 1:1:1 design. The main endpoint was the percentage of Vp (%Vp) at 2 months and 1 year after randomization, ascertained from device memories. Secondary endpoints include %Vp at 1 year according to pacing indication and 1-year AF incidence based on automatic mode switch device stored episodes. Among 422 randomized patients (73.2±10.6 years, 50% men, sinus node dysfunction 47.4%, paroxysmal AV block 30.3%, bradycardia-tachycardia syndrome 21.8%), 141 were assigned to SafeR versus 146 to DDD/AMC and 135 to DDD/LD modes. Mean %Vp at 2 months was 3.4±12.6% in SafeR versus 33.6±34.7% and 14.0±26.0% in DDD/AMC and DDD/LD modes, respectively (P<0.0001 for both). At 1 year, mean %Vp in SafeR was 4.5±15.3% versus 37.9±34.4% and 16.7±28.0% in DDD/AMC and DDD/LD modes, respectively (P<0.0001 for both). The proportion of patients in whom Vp was completely eliminated was significantly higher in SafeR (69%) versus DDD/AMC (15%) and DDD/LD (45%) modes (P<0.0001 for both), regardless of pacing indication. The absolute risk of developing permanent AF or of remaining in AF for >30% of the time was 5.4% lower in SafeR than in the DDD pacing group (ns). In this selected patient population, SafeR markedly suppressed unnecessary Vp compared with DDD modes. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.
Apollo 11 Launched Via Saturn V Rocket - High Angle View
NASA Technical Reports Server (NTRS)
1969-01-01
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon. This high angle view of the launch was provided by a `fisheye' camera mounted on the launch tower. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
2013-10-24
CAPE CANAVERAL, Fla. – At the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1, is being moved by flatbed truck from the high bay. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility high bay at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission is being loaded onto a flatbed truck. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2013-10-24
CAPE CANAVERAL, Fla. – At the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1, is backed by flatbed truck into a low bay at the facility. The low bay has been prepared for additional LAS processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2013-10-24
CAPE CANAVERAL, Fla. – At the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1, is being moved by flatbed truck from the high bay. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility high bay at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission is being loaded onto a flatbed truck. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
1969-07-16
The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man’s first lunar landing. This high angle view of the launch was provided by a ‘fisheye’ camera mounted on the launch tower. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
2013-09-27
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, technicians prepare to work on the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission. Horizontally stacked together are the components of the LAS, the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
2013-09-27
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician works on the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission. Horizontally stacked together are the components of the LAS, the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide
Neilson, Jeffrey M
2015-02-24
A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.
STS-103 Discovery rolls over to VAB
NASA Technical Reports Server (NTRS)
1999-01-01
The orbiter Discovery rolls along the tow-way to the Vehicle Assembly Building where it will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.
STS-103 Discovery rolls over to VAB
NASA Technical Reports Server (NTRS)
1999-01-01
The orbiter Discovery sits inside the Vehicle Assembly Building (VAB) after its rollover from the Orbiter Processing Facility (OPF) bay rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.
1999-11-04
KENNEDY SPACE CENTER, FLA. -- Orbiter Discovery begins rolling into the Vehicle Assembly Building for stacking with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode
1999-11-04
KENNEDY SPACE CENTER, FLA. -- The orbiter Discovery rolls along the tow-way to the Vehicle Assembly Building where it will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode
1999-11-04
KENNEDY SPACE CENTER, FLA. -- The orbiter Discovery rolls along the tow-way to the Vehicle Assembly Building where it will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode
Managing the Mars Science Laboratory Thermal Vacuum Test for Safety and Success
NASA Technical Reports Server (NTRS)
Evans, Jordan P.
2010-01-01
The Mars Science Laboratory is a NASA/JPL mission to send the next generation of rover to Mars. Originally slated for launch in 2009, development problems led to a delay in the project until the next launch opportunity in 2011. Amidst the delay process, the Launch/Cruise Solar Thermal Vacuum Test was undertaken as risk reduction for the project. With varying maturity and capabilities of the flight and ground systems, undertaking the test in a safe manner presented many challenges. This paper describes the technical and management challenges and the actions undertaken that led to the ultimate safe and successful execution of the test.
Apollo 11 Launched Via Saturn V Rocket
NASA Technical Reports Server (NTRS)
1969-01-01
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Developed by the Marshall Space Flight Center (MSFC), the Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
Apollo 11 Launched Via Saturn V Rocket
NASA Technical Reports Server (NTRS)
1969-01-01
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
14 CFR § 1214.203 - Optional reflight guarantee.
Code of Federal Regulations, 2014 CFR
2014-01-01
... payload into a Shuttle compatible mission orbit if, through no fault of the user, the first launch and deployment attempt is unsuccessful and if the payload returns safely to earth or a second payload is provided by the user. (2) The launch of an attached payload into its mission orbit if the first launch attempt...
Cygnus Arrives Safely to ISS on This Week @NASA – October 28, 2016
2016-10-28
On Oct. 23, Orbital ATK’s Cygnus cargo spacecraft safely arrived at the International Space Station – six days after being launched on an Antares rocket from NASA’s Wallops Flight Facility, in Virginia. The successful trip to orbit is the return of rocket launches to the space station from Virginia, following the loss of an Antares and a Cygnus spacecraft during a launch mishap in October 2014. The Cygnus delivered more than 5,100 pounds of science investigations, food and supplies to the crew onboard the station. Also, Next Space Station Crew Trains in Russia, Solar Hazards in Exploration, Preparing for Orion Water Recovery Test and more!
Modal noise investigation in multimode polymer waveguides
NASA Astrophysics Data System (ADS)
Beals, Joseph, IV; Bamiedakis, Nikos; Penty, Richard V.; White, Ian H.; DeGroot, Jon V., Jr.; Clapp, Terry V.
2007-11-01
In this work the recent interest in waveguides for use in short optical links has motivated a study of the modal noise dependence on launch conditions in short-reach step-index multimode polymer waveguides. Short optical links, especially those with several connection interfaces and utilising a restricted launch are likely to be subject to a modal noise power penalty. We therefore experimentally study the modal noise impact of restricted launches for a short-reach optical link employing a 50 x 50 μm polymer multimode waveguide. Lens launches resulting in small diameter input spots are investigated as are restricted launches from an 8 μm core optical fibre. For a launch spot of 10 μm diameter no impairment is observed for up to 9 dBo of mode selective loss, and for a fibre launch with a dynamic input movement of 6 μm no impairment is seen for up to 8 dBo of mode selective loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, Jeffrey M.
A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second modemore » converting reflector is substantially circular.« less
NASA Technical Reports Server (NTRS)
Andrawis, Alfred S.
2000-01-01
Several techniques had been proposed to enhance multimode fiber bandwidth-distance product. Single mode-to-multimode offset launch condition technique had been experimented with at Kennedy Space Center. Significant enhancement in multimode fiber link bandwidth is achieved using this technique. It is found that close to three-fold bandwidth enhancement can be achieved compared to standard zero offset launch technique. Moreover, significant reduction in modal noise has been observed as a function of offset launch displacement. However, significant reduction in the overall signal-to-noise ratio is also observed due to signal attenuation due to mode radiation from fiber core to its cladding.
1969-07-16
Aboard a Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The space vehicle is shown here during the rollout for launch preparation. The 3-man crew aboard the flight consisted of Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The surface exploration was concluded in 2½ hours. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V launch vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun.
Apollo 11 Launched Via Saturn V Rocket
NASA Technical Reports Server (NTRS)
1969-01-01
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
2018 NASA Student Launch event, Bragg Farms, Toney, Al
2018-04-10
After eight months of designing, building and testing, the middle school, high school and college and university teams launched their rockets as part of NASA Student Launch on Sunday, April 8. The rockets and their payloads are designed to fly to 1-mile in altitude before deploying recovery systems that brings them safely to the ground.
2018 NASA Student Launch event, Bragg Farms, Toney, Al
2018-04-09
After eight months of designing, building and testing, the middle school, high school and college and university teams launched their rockets as part of NASA Student Launch on Sunday, April 8. The rockets and their payloads are designed to fly to 1-mile in altitude before deploying recovery systems that brings them safely to the ground.
Polarization-Directed Surface Plasmon Polariton Launching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.
The relative intensities of propagating surface plasmons (PSPs) simultaneously launched from opposing edges of a symmetric trench structure etched into a silver thin film may be controllably varied by tuning the linear polarization of the driving field. This is demonstrated through transient multiphoton photoemission electron microscopy measurements performed using a pair of spatially separated phase-locked femtosecond pulses. Our measurements are rationalized using finite-difference time domain simulations, which reveal that the coupling efficiency into the PSP modes is inversely proportional to the magnitude of the localized surface plasmon fields excited at the trench edges. Additional experiments on single step edges alsomore » show asymmetric PSP launching with respect to polarization, analogous to the trench results. Our combined experimental and computational results allude to the interplay between localized and propagating surface plasmon modes in the trench; strong coupling to the localized modes at the edges correlates to weak coupling to the PSP modes. Simultaneous excitation of the electric fields localized at both edges of the trench results in complex interactions between the right- and left-side PSP modes with Fabry-Perot and cylindrical modes. This results in a trench width-dependent PSP intensity ratio using otherwise identical driving fields. A systematic exploration of polarization directed PSP launching from a series of trench structures reveals an optimal PSP contrast ratio of 4.2 using a 500 nm-wide trench.« less
Optimization studies of the ITER low field side reflectometer.
Diem, S J; Wilgen, J B; Bigelow, T S; Hanson, G R; Harvey, R W; Smirnov, A P
2010-10-01
Microwave reflectometry will be used on ITER to measure the electron density profile, density fluctuations due to MHD/turbulence, edge localized mode (ELM) density transients, and as an L-H transition monitor. The ITER low field side reflectometer system will measure both core and edge quantities using multiple antenna arrays spanning frequency ranges of 15-155 GHz for the O-mode system and 55-220 GHz for the X-mode system. Optimization studies using the GENRAY ray-tracing code have been done for edge and core measurements. The reflectometer launchers will utilize the HE11 mode launched from circular corrugated waveguide. The launched beams are assumed to be Gaussian with a beam waist diameter of 0.643 times the waveguide diameter. Optimum launcher size and placement are investigated by computing the antenna coupling between launchers, assuming the launched and received beams have a Gaussian beam pattern.
NASA Technical Reports Server (NTRS)
1978-01-01
A payload mission model covering 129 launches, was examined and compared against the space transportation system shuttle standard orbit inclinations and a shuttle launch site implementation schedule. Based on this examination and comparison, a set of six reference missions were defined in terms of spacecraft weight and velocity requirements to deliver the payload from a 296 km circular Shuttle standard orbit to the spacecraft's planned orbit. Payload characteristics and requirements representative of the model payloads included in the regime bounded by each of the six reference missions were determined. A set of launch cost envelopes were developed and defined based on the characteristics of existing/planned Shuttle upper stages and expendable launch systems in terms of launch cost and velocity delivered. These six reference missions were used to define the requirements for the candidate propulsion modes which were developed and screened to determine the propulsion approaches for conceptual design.
Kim, Hyuntai; Kim, Jongki; Jung, Yongmin; Vazquez-Zuniga, Luis Alonso; Lee, Seung Jong; Choi, Geunchang; Oh, Kyunghwan; Wang, Pu; Clarkson, W A; Jeong, Yoonchan
2012-11-05
We propose a simple and efficient light launch scheme for a helical-core fiber (HCF) by using an adiabatically tapered splice technique, through which we overcome its inherent difficulty with light launch owing to the large lateral offset and angular tilt of its core. We experimentally demonstrate single-mode excitation in the HCF in this configuration, which yields the coupling efficiency of around -5.9 dB (26%) for a ~1.1-μm light input when the splice joint is tapered down to 30 μm in diameter. To our knowledge, this is the first proof-of-principle report on the fusion-splice coupling between an HCF and a conventional single-mode fiber.
Flame Deflector Complete at Launch Complex 39B
2018-05-16
Construction is complete on the main flame deflector in the flame trench at Launch Complex 39B at NASA's Kennedy Space Center in Florida. The flame deflector will safely deflect the plume exhaust from NASA's Space Launch System rocket during launch. It will divert the rocket's exhaust, pressure and intense heat to the north at liftoff. The Exploration Ground Systems Program at Kennedy is refurbishing the pad to support the launch of the SLS rocket and Orion on Exploration Mission-1, and helping to transform the space center into a multi-user spaceport.
STS-103 Discovery rolls over to VAB
NASA Technical Reports Server (NTRS)
1999-01-01
In this aerial view, the orbiter Discovery is out of the Orbiter Processing Facility (OPF) bay 1 and rolling back before onto the tow-way for its rollover to the Vehicle Assembly Building where it will be mated with an external tank and solid rocket boosters before its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.
1999-11-04
KENNEDY SPACE CENTER, FLA. -- The orbiter Discovery sits inside the Vehicle Assembly Building (VAB) after its rollover from the Orbiter Processing Facility (OPF) bay 1. In the VAB, Discovery will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode
1999-11-04
KENNEDY SPACE CENTER, FLA. -- Orbiter Discovery is rolled over to the Vehicle Assembly Building from the Orbiter Processing Facility bay 1. In the VAB it will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode
1999-11-04
In this aerial view, the orbiter Discovery is out of the Orbiter Processing Facility (OPF) bay 1 and rolling back before onto the tow-way for its rollover to the Vehicle Assembly Building where it will be mated with an external tank and solid rocket boosters before its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode
Overdense microwave plasma heating in the CNT stellarator
NASA Astrophysics Data System (ADS)
Hammond, K. C.; Diaz-Pacheco, R. R.; Köhn, A.; Volpe, F. A.; Wei, Y.
2018-02-01
Overdense plasmas have been attained with 2.45 GHz microwave heating in the low-field, low-aspect-ratio CNT stellarator. Densities higher than four times the ordinary (O) mode cutoff density were measured with 8 kW of power injected in the O-mode and, alternatively, with 6.5 kW in the extraordinary (X) mode. The temperature profiles peak at the plasma edge. This was ascribed to collisional damping of the X-mode at the upper hybrid resonant layer. The X-mode reaches that location by tunneling, mode-conversions or after polarization-scrambling reflections off the wall and in-vessel coils, regardless of the initial launch being in O- or X-mode. This interpretation was confirmed by full-wave numerical simulations. Also, as the CNT plasma is not completely ionized at these low microwave power levels, electron density was shown to increase with power. A dependence on magnetic field strength was also observed, for O-mode launch.
NASA Technical Reports Server (NTRS)
Hidalgo, Homero, Jr.
2000-01-01
An innovative methodology for determining structural target mode selection and mode selection based on a specific criterion is presented. An effective approach to single out modes which interact with specific locations on a structure has been developed for the X-33 Launch Vehicle Finite Element Model (FEM). We presented Root-Sum-Square (RSS) displacement method computes resultant modal displacement for each mode at selected degrees of freedom (DOF) and sorts to locate modes with highest values. This method was used to determine modes, which most influenced specific locations/points on the X-33 flight vehicle such as avionics control components, aero-surface control actuators, propellant valve and engine points for use in flight control stability analysis and for flight POGO stability analysis. Additionally, the modal RSS method allows for primary or global target vehicle modes to also be identified in an accurate and efficient manner.
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower (right) and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are viewed as the launch tower overhead rolls back. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
Ma, Lin; Hanzawa, Nobutomo; Tsujikawa, Kyozo; Azuma, Yuji
2012-10-22
We demonstrated ultra-wideband wavelength division multiplexing (WDM) transmission from 850 to 1550 nm in graded-index multi-mode fiber (GI-MMF) using endlessly single-mode photonic crystal fiber (ESM-PCF) as a launch device. Effective single-mode guidance is obtained in multi-mode fiber at all wavelengths by splicing cm-order length ESM-PCF to the transmission fiber. We achieved 3 × 10 Gbit/s WDM transmission in a 1 km-long 50-μm-core GI-MMF. We also realized penalty free 10 Gbit/s data transmission at a wavelength of 850 nm by optimizing the PCF structure. This method has the potential to achieve greater total transmission capacity for MMF systems by the addition of more wavelength channels.
Station set requirements document. Volume 82: Fire support. Book 2: Preliminary functional fire plan
NASA Technical Reports Server (NTRS)
Gray, N. C.
1974-01-01
The fire prevention/protection requirements for all shuttle facility and ground support equipment are presented for the hazardous operations. These include: preparing the orbiter for launch, launch operations, landing operations, safing operations, and associated off-line activities.
Ballistic mode Mercury orbiter missions.
NASA Technical Reports Server (NTRS)
Hollenbeck, G. R.
1973-01-01
The MVM'73 Mercury flyby mission will initiate exploration of this unique planet. No firm plans for follow-on investigations have materialized due to the difficult performance requirements of the next logical step, an orbiter mission. Previous investigations of ballistic mode flight opportunities have indicated requirements for a Saturn V class launch vehicle. Consequently, most recent effort has been oriented to use of solar electric propulsion. More comprehensive study of the ballistic flight mode utilizing Venus gravity-assist has resulted in identification of timely high-performance mission opportunities compatible with programmed launch vehicles and conventional spacecraft propulsion technologies. A likely candidate for an initial orbiter mission is a 1980 opportunity which offers net orbiter spacecraft mass of about 435 kg with the Titan IIIE/Centaur launch vehicle and single stage solid propulsion for orbit insertion.
NASA Technical Reports Server (NTRS)
Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb
2015-01-01
Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.
APOLLO/SATURN (A/S) 201 - LAUNCH - CAPE
1966-02-26
A/S 201 was launched from the Kennedy Space Center Launch Complex 34 at 11:12 a.m., 02/26/1966. The instrumented Apollo Command and Service Module, and, a spacecraft Lunar Excursion Module Adapter, was successfully launched on the unmanned suborbital mission by the Saturn 1B to check spacecraft launch vehicle mechanical compatibility and to test the spacecraft heat shield in a high-velocity re-entry mode. CAPE KENNEDY, FL
Realization of a compact polarization splitter-rotator on silicon.
Dai, Daoxin; Wu, Hao
2016-05-15
A novel compact polarization splitter-rotator (PSR) is proposed and realized with silicon-on-insulator nanowires. The present PSR consists of an adiabatic taper, an asymmetric directional coupler (ADC), and a multimode interference (MMI) mode filter. The adiabatic taper enables an efficient mode conversion from the launched TM0 mode to the TE1 mode in a wide waveguide, which is then coupled to the TE0 mode of a narrow waveguide through the ADC. Meanwhile, the launched TE0 mode does not have mode conversion and outputs from the through port directly. The MMI mode filter is cascaded at the through port to filter out the residual power of the TE1 mode so that the extinction ratio of the PSR is improved greatly. The total length of the PSR is ∼70 μm and the fabricated PSR has an extinction ratio of ∼20 dB over a broadband ranging from 1547 to 1597 nm.
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Foundation for Heavy Lift: Early Developments in the Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Sumrall, John P.; McArthur, J. Craig
2007-01-01
The Ares V Cargo Launch Vehicle (CaLV) is NASA's primary vessel for safe, reliable delivery of the Lunar Surface Access Module (LSAM) and other resources into Earth orbit, as articulated in the U.S. Vision for Space Exploration.' The Ares V launch concept is shown. The foundation for this heavy-lift companion to the Ares I Crew Launch Vehicle (CLV) is taking shape within NASA and with its government and industry partners. This paper will address accomplishments in the Ares V Launch Vehicle during 2006 and 2007 and offer a preview of future activities.
Foundation for Heavy Lift - Early Developments in the Ares V Launch Vehicle
NASA Technical Reports Server (NTRS)
McArthur, J. Craig; Pannell, Bill; Lacey, Matt
2007-01-01
The Ares V Cargo Launch Vehicle (CaLV) is NASA's primary vessel for safe, reliable delivery of the Lunar Surface Access Module (LSAM) and other resources into Earth orbit, as articulated in the U.S. Vision for Space Exploration. The Ares V launch concept is shown. The foundation for this heavy-lift companion to the Ares I Crew Launch Vehicle (CLV) is taking shape within NASA and with its government and industry partners. This paper will address accomplishments in the Ares V Launch Vehicle during 2006 and 2007 and offer a preview of future activities.
1999-11-16
At Launch Pad 39B, STS-103 Commander Curtis L. Brown Jr. introduces the rest of the crew: (left to right) Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, Jean-François Clervoy of France, who is with the European Space Agency (ESA), John M. Grunsfeld (Ph.D.), C. Michael Foale (Ph.D.), and Claude Nicollier of Switzerland, who is also with ESA. As a preparation for launch, they have been participating in Terminal Countdown Demonstration Test (TCDT) activities at KSC. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and Mars Exploration Rover 2 (MER-A) are ready for the third launch attempt after weather concerns postponed earlier attempts. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
Comparison of Two Recent Launch Abort Platforms
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Harding, Adam
2011-01-01
The development of new and safer manned space vehicles is a top priority at NASA. Recently two different approaches of how to accomplish this mission of keeping astronauts safe was successfully demonstrated. With work already underway on an Apollo-like launch abort system for the Orion Crew Exploration Vehicle (CEV), an alternative design concept named the Max Launch Abort System, or MLAS, was developed as a parallel effort. The Orion system, managed by the Constellation office, is based on the design of a single solid launch abort motor in a tower positioned above the capsule. The MLAS design takes a different approach placing the solid launch abort motor underneath the capsule. This effort was led by the NASA Engineering and Safety Center (NESC). Both escape systems were designed with the Ares I Rocket as the launch vehicle and had the same primary requirement to safely propel a crew module away from any emergency event either on the launch pad or during accent. Beyond these two parameters, there was little else in common between the two projects, except that they both concluded in successful launches that will further promote the development of crew launch abort systems. A comparison of these projects from the standpoint of technical requirements; program management and flight test objectives will be done to highlight the synergistic lessons learned by two engineers who worked on each program. This comparison will demonstrate how the scope of the project architecture and management involvement in innovation should be tailored to meet the specific needs of the system under development.
Aerial photo shows Launch Complex 39 Area
NASA Technical Reports Server (NTRS)
2000-01-01
This aerial photo shows the areas recently opened as part of KSC's Safe Haven project. The curved road in the center is the newly restored crawlerway leading around the Vehicle Assembly Building (VAB) and Orbiter Processing Facility 3 (OPF-3) into the VAB high bay 2 (open on the lower right), where a mobile launcher platform/crawler-transporter currently sits. The Safe Haven project will enable the storage of orbiters during severe weather. OPF1 and OPF-2 are at the lower right. The crawlerway also extends from the east side of the VAB out to the two launch pads. Launch Pad 39A is visible to the left of the crawlerway. In the distance is the Atlantic Ocean. To the right of the VAB is the turn basin, into which ships tow the barge for offloading new external tanks from Louisiana.
Saturn V Arrives at Launch Pad Complex 39
NASA Technical Reports Server (NTRS)
1969-01-01
The Saturn V launch vehicle (AS-506) carrying the Apollo 11 spacecraft, arrived at the launch pad complex 39 at the Kennedy Space Center (KSC) on May 20, 1969. On July 16, 1969, the 363 foot tall, 6,400,000 pound rocket, developed by the Marshall Space Flight Center (MSFC) under the direction of Werner von Braun, hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The crew safely splashed down into the Pacific Ocean on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
2003-06-09
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-09
KENNEDY SPACE CENTER, FLA. - The launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station, clears the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-09
KENNEDY SPACE CENTER, FLA. - The Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload is viewed from under the launch tower as it moves away on Launch Complex 17-A, Cape Canaveral Air Force Station. This will be a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-09
KENNEDY SPACE CENTER, FLA. - The launch tower (right) on Launch Complex 17-A, Cape Canaveral Air Force Station, has been rolled back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload (left) in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-09
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload waits for rollback of the launch tower in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower rolls back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts, June 8 and June 9, were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2014-11-11
At NASA's Kennedy Space Center in Florida, the agency's Orion is transported to Launch Complex 37 at Cape Canaveral Air Force Station. After arrival at the launch pad, United Launch Alliance engineers and technicians will lift Orion and mount it atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Opportunities to Enhance Multimode Fiber Links by Application of Overfilled Launch
NASA Astrophysics Data System (ADS)
Onlagic, Denis
2005-11-01
This paper investigates possibilities for the practical design of high-performance multimode fibers (MMFs) that can provide bandwidths in excess of 10 GHz ...km in an overfilled regime of operation. Analysis of standard MMF in an overfilled launch demonstrates that the theoretical bandwidth limitations arise from the influence of cladding on the propagation of the highest order modes. Practical MMF profile designs that overcome this problem are investigated. The standard 50-and 62.5- μm fiber profiles are redesigned first to allow for the performance in an overfilled launch with the differential mode delays (DMDs) below 0.055 and 0.250 ns/km, respectively. It is shown that such fibers can exhibit the same or better theoretical bandwidth in an overfilled launch when compared to standard fiber under restricted launch. Elimination of the need for the restricted mode launch in high-performance multimode transmission systems can improve reliability issues and can relax the range of tolerance requirements imposed on terminal equipment, optical components, and link installation. Furthermore, MMFs that can be operated in an overfilled launched are compatible with emerging vertical cavity surface emitting laser (VCSEL) wavelength division multiplexing (WDM) array technologies. A successfully controlled higher order mode DMD also allows for the reduction of MMF core size and mit Delta that can be beneficial for low-cost high-performance single-channel links. It is demonstrated that properly designed reduced core fibers can achieve theoretical DMDs in the range of 0.005-0.02 ns/km. The bend loss properties of redesigned fibers are investigated in detail, showing that the proposed modifications do not lead to significant degradation of bend loss performance. Moreover, they can be manufactured at considerably lower cost while utilizing commercially readily available low-cost VCSELs. Even where the theoretical limit is not achieved by practical fiber making, the reduced core size and mit Delta MMF can provide higher production yield, lower cost, and higher average bandwidth.
2013-06-12
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, crawler track panels have been removed from the surface and construction workers are repairing the concrete surface and catacomb roof below. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
2013-06-10
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, workers are removing the flame trench deflector that sits below and between the left and right crawler track panels. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
NASA Technical Reports Server (NTRS)
Coppolino, Robert N.
2018-01-01
Verification and validation (V&V) is a highly challenging undertaking for SLS structural dynamics models due to the magnitude and complexity of SLS subassemblies and subassemblies. Responses to challenges associated with V&V of Space Launch System (SLS) structural dynamics models are presented in Volume I of this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA). (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976). (3) Mode Consolidation (MC). Finally, (4) Experimental Mode Verification (EMV). This document contains the appendices to Volume I.
77 FR 59407 - Fiscal Year (FY) 2012 Funding Opportunity
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-27
... of the Technical Assistance Center for Mental Health Promotion and Youth Violence Prevention Center (TA Center) is to support the federally funded Safe Schools/Healthy Students (SS/HS) and Linking Actions for Unmet Needs in Children's Health (Project LAUNCH) grant programs. The Safe Schools/Healthy...
Orion Launch Abort System Performance During Exploration Flight Test 1
NASA Technical Reports Server (NTRS)
McCauley, Rachel; Davidson, John; Gonzalez, Guillo
2015-01-01
The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.
Objectives and Progress on Ground Vibration Testing for the Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Askins, Bruce R.; Chenevert, Donald J.
2009-01-01
NASA has conducted dynamic tests on each of its major launch vehicles during the past 45 years. Each test has provided invaluable data to correlate and correct analytical models used to predict structural responses to differing dynamics for these vehicles. With both Saturn V and Space Shuttle, hardware changes were also required to the flight vehicles to ensure crew and vehicle safety. The Ares I IVGVT will undoubtedly provide similar valuable test data to support successful flights of the Constellation Program. The IVGVT will provide test determined natural frequencies, mode shapes and damping for the Ares I. This data will be used to support controls analysis by providing this test data to reduce uncertainty in the models. The value of this testing has been proven by past launch vehicle successes and failures. Performing dynamic testing on the Ares vehicles will provide confidence that the launch vehicles will be safe and successful in their missions. In addition, IVGVT will provide the following benefits for the Ares rockets: a) IVGVT data along with Ares development flights like Ares I-X, Ares I-Y, Ares I-X Prime, and Orion-1 or others will reduce the risk to the Orion-2 crew. IVGVT will permit anchoring the various analytical and operational models used in so many different aspects of Ares operations. b) IVGVT data will permit better understanding of the structural and GN&C margins of the spacecraft and may permit mass savings or expanded day-of-launch opportunities or fewer constraints to launch. c) Undoubtedly IVGVT will uncover some of the "unknown unknowns" so often seen in developing, launching, and flying new spacecraft vehicles and data from IVGVT may help prevent a loss of vehicle or crew. d) IVGVT also will be the first time Ares I flight-like hardware is transported, handled, rotated, mated, stacked, and integrated. e) Furthermore, handling and stacking the IVGVT launch vehicle stacks will be an opportunity to understand certain aspects of vehicle operability much better (for example, handling procedures, touch-labor time to accomplish tasks, access at interfaces, access to stage mating bolts, access to avionics boxes, access to the Interstage, GSE functionality, and many other important aspects of Ares I operability). All of these results will provide for better vehicle safety and better stewardship of national resources as NASA begins its next phase of human space exploration.
Orion EFT-1 Wet Dress Rehearsal
2014-11-05
In the Hangar A&E control room, displays are seen during a dress rehearsal for the launch of the United Launch Alliance Delta IV Heavy rocket for the upcoming Orion Flight Test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians prepare to mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians prepare to lift the agency's Orion spacecraft for mounting atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians begin lifting the agency's Orion spacecraft for mounting atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
2001-05-29
KODIAK ISLAND, Alaska -- A special platform connects the barge with a ramp to allow Castor 120, the first stage of the Athena 1 launch vehicle, to safely move onto the dock at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.
NASA Technical Reports Server (NTRS)
Byrd, Thomas D.; Kynard, Michael .
2007-01-01
NASA's Vision for Exploration requires a safe, reliable, affordable upper stage engine to power the Ares I Crew Launch Vehicle (CLV) and the Ares V Cargo Launch Vehicle. The J-2X engine is being developed for that purpose, epitomizing NASA's philosophy of employing legacy knowledge, heritage hardware, and commonality to carry the next generation of explorers into low-Earth orbit and out into the solar system This presentation gives top-level details on accomplishments to date and discusses forward work necessary to bring the J-2X engine to the launch pad.
2001-05-29
KODIAK ISLAND, Alaska -- A boat moves a ramp into place that will allow Castor 120, the first stage of the Athena 1 launch vehicle, to safely move onto the dock at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.
Ares I-X Launch Vehicle Modal Test Overview
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Bartolotta, Paul A.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.
2010-01-01
The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, is scheduled for launch in 2009. Ares IX will use a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle is not practical within project constraints, modal tests for several configurations in the nominal integration flow were defined to calibrate the FEM. A traceability study by Aerospace Corporation was used to identify the critical modes for the tested configurations. Test configurations included two partial stacks and the full Ares I-X launch vehicle on the Mobile Launcher Platform. This paper provides an overview for companion papers in the Ares I-X Modal Test Session. The requirements flow down, pre-test analysis, constraints and overall test planning are described.
ERIC Educational Resources Information Center
Collaborative for Academic, Social, and Emotional Learning (NJ1), 2005
2005-01-01
Based on a three-year study funded by the Office of Safe and Drug-Free Schools (OSDFS) in the U.S. Department of Education, "Safe and Sound" is a comprehensive and inclusive guide for social and emotional learning (SEL) programming. The guide provides a road map for schools and districts that are launching or adding social, emotional,…
77 FR 24556 - Waiver of Acceptable Risk Restriction for Launch and Reentry
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... designed to stimulate efforts by the private sector to demonstrate safe, reliable, and cost-effective space... ensure safe approach and berthing with the International Space Station, utilizing considerable fuel. In... economic growth and entrepreneurial activity through use of the space environment; (2) to encourage the...
Ares Projects Office Progress Update
NASA Technical Reports Server (NTRS)
Vanhooser, Teresa
2007-01-01
NASA's Vision for Exploration requires a safe, reliable, affordable launch infrastructure capable of replacing the Space Shuttle for low Earth orbit transportation, as well as supporting the goal of returning humans to the moon. This presentation provides an overview of NASA's Constellation program and the Ares I and Ares V launch vehicles, including accomplishments and future work.
LDSD Test Vehicle Attached to Launch Tower
2015-06-09
NASA's Low-Density Supersonic Decelerator test vehicle attached to launch tower just prior to take off. LDSD completed its second flight test when the saucer-shaped craft splashed down safely Monday, June 8, 2015, in the Pacific Ocean off the coast of the Hawaiian island of Kauai. http://photojournal.jpl.nasa.gov/catalog/PIA19683
The Role of Probabilistic Design Analysis Methods in Safety and Affordability
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.
2016-01-01
For the last several years, NASA and its contractors have been working together to build space launch systems to commercialize space. Developing commercial affordable and safe launch systems becomes very important and requires a paradigm shift. This paradigm shift enforces the need for an integrated systems engineering environment where cost, safety, reliability, and performance need to be considered to optimize the launch system design. In such an environment, rule based and deterministic engineering design practices alone may not be sufficient to optimize margins and fault tolerance to reduce cost. As a result, introduction of Probabilistic Design Analysis (PDA) methods to support the current deterministic engineering design practices becomes a necessity to reduce cost without compromising reliability and safety. This paper discusses the importance of PDA methods in NASA's new commercial environment, their applications, and the key role they can play in designing reliable, safe, and affordable launch systems. More specifically, this paper discusses: 1) The involvement of NASA in PDA 2) Why PDA is needed 3) A PDA model structure 4) A PDA example application 5) PDA link to safety and affordability.
Hubble (HST) hardware arrives at KSC for servicing mission, STS-103
NASA Technical Reports Server (NTRS)
1999-01-01
A shipping container with payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A) sits on a flatbed trailer for transfer to the Payload Hazardous Servicing Facility where it will undergo final testing and integration of payload elements. Mission STS-103 is a 'call-up' mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review.
STS-103 Discovery rolls over to VAB
NASA Technical Reports Server (NTRS)
1999-01-01
After making a turn in front of the Orbiter Processing Facility (OPF) bay 1, the orbiter Discovery begins moving along the tow-way to the Vehicle Assembly Building as KSC workers watch. At the VAB, Discovery will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.
1999-08-12
A C-5 air cargo plane opens to reveal a shipping container with payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will be taken to the Payload Hazardous Servicing Facility for final testing and integration of payload elements. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review
1999-08-12
A shipping container with payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A) is ready for transfer onto a transporter from the C-5 air cargo plane that brought it to KSC. The hardware will be taken to the Payload Hazardous Servicing Facility for final testing and integration of payload elements. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review
1999-08-12
A shipping container with payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A) sits on a flatbed trailer for transfer to the Payload Hazardous Servicing Facility where it will undergo final testing and integration of payload elements. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review
1999-08-12
A shipping container with payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A) is transferred onto a transporter from the C-5 air cargo plane that brought it to KSC. The hardware will be taken to the Payload Hazardous Servicing Facility for final testing and integration of payload elements. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review
1999-11-04
KENNEDY SPACE CENTER, FLA. -- After making a turn in front of the Orbiter Processing Facility (OPF) bay 1, the orbiter Discovery begins moving along the tow-way to the Vehicle Assembly Building as KSC workers watch. At the VAB, Discovery will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode
1999-08-12
A C-5 air cargo plane lands at Kennedy Space Center carrying the payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will be taken to the Payload Hazardous Servicing Facility for final testing and integration of payload elements. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review
PIV Measurements of the CEV Hot Abort Motor Plume for CFD Validation
NASA Technical Reports Server (NTRS)
Wernet, Mark; Wolter, John D.; Locke, Randy; Wroblewski, Adam; Childs, Robert; Nelson, Andrea
2010-01-01
NASA s next manned launch platform for missions to the moon and Mars are the Orion and Ares systems. Many critical aspects of the launch system performance are being verified using computational fluid dynamics (CFD) predictions. The Orion Launch Abort Vehicle (LAV) consists of a tower mounted tractor rocket tasked with carrying the Crew Module (CM) safely away from the launch vehicle in the event of a catastrophic failure during the vehicle s ascent. Some of the predictions involving the launch abort system flow fields produced conflicting results, which required further investigation through ground test experiments. Ground tests were performed to acquire data from a hot supersonic jet in cross-flow for the purpose of validating CFD turbulence modeling relevant to the Orion Launch Abort Vehicle (LAV). Both 2-component axial plane Particle Image Velocimetry (PIV) and 3-component cross-stream Stereo Particle Image Velocimetry (SPIV) measurements were obtained on a model of an Abort Motor (AM). Actual flight conditions could not be simulated on the ground, so the highest temperature and pressure conditions that could be safely used in the test facility (nozzle pressure ratio 28.5 and a nozzle temperature ratio of 3) were used for the validation tests. These conditions are significantly different from those of the flight vehicle, but were sufficiently high enough to begin addressing turbulence modeling issues that predicated the need for the validation tests.
42GHz ECRH assisted Plasma Breakdown in tokamak SST-1
NASA Astrophysics Data System (ADS)
Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.
2015-03-01
In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.
Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator
NASA Astrophysics Data System (ADS)
Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.
2015-09-01
The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.
Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches
NASA Technical Reports Server (NTRS)
Bigler, Mark; Boyer, Roger L.
2015-01-01
For the last 30 years, the United States's human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After nearly 50 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either of the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return to the home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent as to how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a spacecraft under very dynamic conditions, particularly in the lower atmosphere, and returning the crew home safely. This paper will provide an overview of the PRA model that has been developed of this new launch system, including some of the challenges that are associated with this effort. Key Words: PRA, space launches, human space program, ascent abort, spacecraft, launch vehicles
STS-103 crew learn about use of slideware basket at Pad 39B
NASA Technical Reports Server (NTRS)
1999-01-01
At the slidewire area of Launch Pad 39B, the STS-103 crew listen to use of the emergency egress equipment. From left are the trainer, with crew members Mission Specialists Steven L. Smith, Jean-Frangois Clervoy of France, Claude Nicollier of Switzerland, John M. Grunsfeld (Ph.D.), Pilot Steven J. Kelly, C. Michael Foale (Ph.D.), and (kneeling) Commander Curtis L. Brown Jr. Clervoy and Nicollier are both with the European Space Agency. As a preparation for launch, the crew have been participating in Terminal Countdown Demonstration Test (TCDT) activities at KSC. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
2012-02-17
Satellites: The principal objectives of the Launch Services Program are to provide safe, reliable, cost-effective and on schedule launch services for NASA and NASA-sponsored payloads seeking launch on expendable vehicles. These payloads have a number of purposes. Scientific satellites obtain information about the space environment and transmit it to stations on Earth. Applications satellites designed to perform experiments that have everyday usefulness for people on Earth, such as weather forecasting and communications. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
2013-09-19
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the flame trench deflector located below and between the left and right crawlerway tracks has been removed. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
2004-04-15
It is predicted that by the year 2040, there will be no distinction between a commercial airliner and a commercial launch vehicle. Fourth Generation Reusable Launch Vehicles (RLVs) will be so safe and reliable that no crew escape system will be necessary. Every year there will be in excess of 10,000 flights and the turn-around time between flights will be just hours. The onboard crew will be able to accomplish a launch without any assistance from the ground. Provided is an artist's concept of these fourth generation space vehicles.
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
Ram accelerator direct space launch system - New concepts
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.
1992-01-01
The ram accelerator, a chemically driven ramjet-in-tube device is a new option for direct launch of acceleration-insensitive payloads into earth orbit. The projectile is the centerbody of a ramjet and travels through a tube filled with a premixed fuel-oxidizer mixture. The tube acts as the cowl of the ramjet. A number of new concepts for a ram accelerator space launch system are presented. The velocity and acceleration capabilities of a number of ram accelerator drive modes, including several new modes, are given. Passive (fin) stabilization during atmospheric transit is investigated and found to be promising. Gasdynamic heating in-tube and during atmospheric transit is studied; the former is found to be severe, but may be alleviated by the selection of the most suitable drive modes, transpiration cooling, or a hydrogen gas core in the launch tube. To place the payload in earth orbit, scenarios using one impulse and three impulses (with an aeropass) and a new scenario involving an auxiliary vehicle are studied. The auxiliary vehicle scenario is found to be competitive regarding payload, and requires a much simpler projectile, but has the disadvantage of requiring the auxiliary vehicle.
NASA Technical Reports Server (NTRS)
1977-01-01
Recoverable launch vehicle concepts for the Solar Power Satellite program were identified. These large launch vehicles are powered by proposed engines in the F-1 thrust level class. A description of the candidate launch vehicles and their operating mode was provided. Predictions of the sonic over pressures during ascent and entry for both types of vehicles, and prediction of launch noise levels in the vicinity of the launch site were included. An overall assessment and criteria for sonic overpressure and noise levels was examined.
2003-06-09
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are in the clear after tower rollback in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - The Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - With smoke and steam billowing beneath, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - Blue sky and sun give a dramatic backdrop for the launch of the Delta II rocket with its Mars Exploration Rover (MER-A) payload. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2014-11-11
At NASA's Kennedy Space Center in Florida, the agency's Orion spacecraft passes the spaceport's iconic Vehicle Assembly Building as it is transported to Launch Complex 37 at Cape Canaveral Air Force Station. After arrival at the launch pad, United Launch Alliance engineers and technicians will lift Orion and mount it atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches
NASA Technical Reports Server (NTRS)
Bigler, Mark; Boyer, Roger L.
2015-01-01
For the last 30 years, the United States' human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After over 40 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent and how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a spacecraft under very dynamic conditions, particularly in the lower atmosphere, and returning the crew home safely. This paper will provide an overview of the PRA model that has been developed of this new launch system, including some of the challenges that are associated with this effort.
NASA Technical Reports Server (NTRS)
Edighoffer, H. H.
1979-01-01
A component mode desynthesis procedure is developed for determining the unknown vibration characteristics of a structural component (i.e., a launch vehicle) given the vibration characteristics of a structural system composed of that component combined with a known one (i.e., a payload). At least one component static test has to be performed. These data are used in conjunction with the system measured frequencies and mode shapes to obtain the vibration characteristics of each component. The flight dynamics of an empty launch vehicle can be determined from measurements made on a vehicle/payload combination in conjunction with a static test on the payload.
Mercury orbiter transport study
NASA Technical Reports Server (NTRS)
Friedlander, A. L.; Feingold, H.
1977-01-01
A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.
The Media Tour the BFF, VAB, and the ML
2014-12-02
At NASA's Kennedy Space Center in Florida, members of the news media tour the spaceport's Vehicle Assembly Building. They were shown an ogive panel which, together with others, cover the Orion spacecraft during launch. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
2013-11-19
CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, construction workers continue to remove the bricks from the flame trench walls that are below and between the left and right crawlerway tracks. The space shuttle-era flame trench deflector has been completely removed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett
2013-11-19
CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, construction workers continue to remove the bricks from the flame trench walls that are below and between the left and right crawlerway tracks. The space shuttle-era flame trench deflector has been completely removed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett
2013-11-19
CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, construction workers continue to remove the bricks from the flame trench walls that are below and between the left and right crawlerway tracks. The space shuttle-era flame trench deflector has been completely removed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett
2013-11-19
CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, construction workers continue to remove the bricks from the flame trench walls that are below and between the left and right crawlerway tracks. The space shuttle-era flame trench deflector has been completely removed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett
2013-11-19
CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, all of the old crawler track panels have been removed from the surface and construction workers are repairing the concrete surface and catacomb roof below. New crawler track panels will be installed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett
2013-11-19
CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, all of the old crawler track panels have been removed from the surface and construction workers are repairing the concrete surface and catacomb roof below. New crawler track panels will be installed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett
2013-11-19
CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, all of the old crawler track panels have been removed from the surface and construction workers are repairing the concrete surface and catacomb roof below. At far left is the recently-constructed pad elevator. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Ron Fortson, United Launch Alliance director of Mission Management. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
2005-04-15
Unidentified family members of NASA astronaut John Phillips waves offers up best wishes for a safe mission and a happy birthday prior to launch, Friday, April 15, 2005, aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan for a two-day trip to the International Space Station where he will spend six months living in space. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Repcheck, Randall J.
2010-09-01
The United States Federal Aviation Administration’s Office of Commercial Space Transportation(AST) authorizes the launch and reentry of expendable and reusable launch vehicles and the operation of launch and reentry sites by United States citizens or within the United States. It authorizes these activities consistent with public health and safety, the safety of property, and the national security and foreign policy interests of the United States. In addition to its safety role, AST has the role to encourage, facilitate, and promote commercial space launches and reentries by the private sector. AST’s promotional role includes, among other things, the development of information of interest to industry, the sharing of information of interest through a variety of methods, and serving as an advocate for Commercial Space Transportation within the United States government. This dual safety and promotion role is viewed by some as conflicting. AST views these two roles as complementary, and important for the current state of commercial space transportation. This paper discusses how maintaining a sound safety decision-making process, maintaining a strong safety culture, and taking steps to avoid complacency can together enable safe and successful commercial space transportation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilgore, Roger Martin; Soloboda, Alexander Joseph
Launching a rocket involves a controlled transition of the rocket subsystems from a quiescent state to the launch state (i.e., lift-off). In order to launch safely, with confidence that the rocket will successfully complete its mission, the state-of-health for all rocket subsystems and critical ground support equipment must be closely monitored throughout the launch process. This is accomplished by the ground support engineers using mission-specific ground support equipment. A subset of the GSE, the Remote Electrical Ground Interface System (REGIS), is located nearest the rocket to which it's connected via the Umbilical, a wiring harness providing power, sensor, and controlmore » lines. The REGIS also connects via Ethernet to the Ground Launch Computer (GLC).« less
Sun Safe Mode Controller Design for LADEE
NASA Technical Reports Server (NTRS)
Fusco, Jesse C.; Swei, Sean S. M.; Nakamura, Robert H.
2015-01-01
This paper presents the development of sun safe controllers which are designed to keep the spacecraft power positive and thermally balanced in the event an anomaly is detected. Employed by NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE), the controllers utilize the measured sun vector and the spacecraft body rates for feedback control. To improve the accuracy of sun vector estimation, the least square minimization approach is applied to process the sensor data, which is proven to be effective and accurate. To validate the controllers, the LADEE spacecraft model engaging the sun safe mode was first simulated and then compared with the actual LADEE orbital fight data. The results demonstrated the applicability of the proposed sun safe controllers.
Exploration Launch Projects RS-68B Engine Requirements for NASA's Heavy Lift Ares V
NASA Technical Reports Server (NTRS)
Sumrall, John P.; McArthur, J. Craig; Lacey, Matt
2007-01-01
NASA's Vision for Exploration requires a safe, efficient, reliable, and versatile launch vehicle capable of placing large payloads into Earth orbit for transfer to the Moon and destinations beyond. The Ares V Cargo Launch Vehicle (CaLV) will provide this heavy lift capability. The Ares V launch concept is shown in Fig. 1. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be almost 360 feet tall. As currently envisioned, it will lift 133,000 to 144,000 pounds to trans-lunar injection, depending on the length of loiter time on Earth orbit. This presentation will provide an overview of the Constellation architecture, the Ares launch vehicles, and, specifically, the latest developments in the RS-68B engine for the Ares V.
2013-09-19
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the flame trench deflector that was located below and between the left and right crawlerway tracks has been removed. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
2013-09-19
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the flame trench deflector that was located below and between the left and right crawlerway tracks has been removed. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
2013-09-19
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the flame trench deflector that was located below and between the left and right crawlerway tracks has been removed. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
2013-09-19
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, construction workers inspect the brick walls of the flame trench area that is located below and between the left and right crawlerway tracks. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
Human Factors Analysis to Improve the Processing of Ares-1 Launch Vehicle
NASA Technical Reports Server (NTRS)
Stambolian, Damon B.; Dippolito, Gregory M.; Nyugen, Bao; Dischinger, Charles; Tran, Donald; Henderson, Gena; Barth, Tim
2011-01-01
This slide presentation reviews the use of Human Factors analysis in improving the ground processing procedures for the Ares-1 launch vehicle. The light vehicle engineering designers for Ares-l launch vehicle had to design the flight vehicle for effective, efficient and safe ground operations in the cramped dimensions in a rocket design. The use of a mockup of the area where the technician would be required to work proved to be a very effective method to promote the collaboration between the Ares-1 designers and the ground operations personnel.
NASA Technical Reports Server (NTRS)
Leucht, David K.; Koslosky, Marie J.; Kobe, David L.; Wu, Jya-Chang C.; Vavra, David A.
2011-01-01
The Space Environments Testbed (SET) is a flight controller data system for the Common Carrier Assembly. The SET-1 flight software provides the command, telemetry, and experiment control to ground operators for the SET-1 mission. Modes of operation (see dia gram) include: a) Boot Mode that is initiated at application of power to the processor card, and runs memory diagnostics. It may be entered via ground command or autonomously based upon fault detection. b) Maintenance Mode that allows for limited carrier health monitoring, including power telemetry monitoring on a non-interference basis. c) Safe Mode is a predefined, minimum power safehold configuration with power to experiments removed and carrier functionality minimized. It is used to troubleshoot problems that occur during flight. d) Operations Mode is used for normal experiment carrier operations. It may be entered only via ground command from Safe Mode.
NASA Technical Reports Server (NTRS)
Hanson, Curt; Miller, Chris; Wall, John H.; Vanzwieten, Tannen S.; Gilligan, Eric; Orr, Jeb S.
2015-01-01
An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority. Two NASA research pilots flew a total of twenty five constant pitch-rate trajectories using a prototype manual steering mode with and without adaptive control.
Value of Responsive Launch Safety Toolsets
NASA Astrophysics Data System (ADS)
Devoid, Wayne E.
2013-09-01
This paper will discuss the advantages and disadvantages of all-in-one risk assessment toolsets as they are applied to a wide variety of orbital, suborbital, lander, and unmanned vehicles. Toolsets like APT's SafeLab and Horizon, that are designed from the ground up specifically to address ever- changing vehicle and mission parameters, reduce the need for additional software development costs for launch ranges and vehicle manufacturers.
1999-11-16
In the bunker at Launch Pad 39B, STS-103 Mission Specialist Jean-François Clervoy of France, who is with the European Space Agency (ESA), tries on an oxygen mask during Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. Other crew members taking part are Commander Curtis L. Brown Jr. and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), plus Claude Nicollier of Switzerland, who is also with ESA. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST
Hubble (HST) hardware arrives at KSC for servicing mission, STS-103
NASA Technical Reports Server (NTRS)
1999-01-01
A shipping container with payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A) is transferred onto a transporter from the C-5 air cargo plane that brought it to KSC. The hardware will be taken to the Payload Hazardous Servicing Facility for final testing and integration of payload elements. Mission STS-103 is a 'call-up' mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review.
STS-103 MS Clervoy tries on oxygen mask
NASA Technical Reports Server (NTRS)
1999-01-01
In the bunker at Launch Pad 39B, STS-103 Mission Specialist Jean-Frangois Clervoy of France, who is with the European Space Agency (ESA), tries on an oxygen mask during Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. Other crew members taking part are Commander Curtis L. Brown Jr. and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), plus Claude Nicollier of Switzerland, who is also with ESA. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
Gain Scheduling for the Orion Launch Abort Vehicle Controller
NASA Technical Reports Server (NTRS)
McNamara, Sara J.; Restrepo, Carolina I.; Madsen, Jennifer M.; Medina, Edgar A.; Proud, Ryan W.; Whitley, Ryan J.
2011-01-01
One of NASAs challenges for the Orion vehicle is the control system design for the Launch Abort Vehicle (LAV), which is required to abort safely at any time during the atmospheric ascent portion of ight. The focus of this paper is the gain design and scheduling process for a controller that covers the wide range of vehicle configurations and flight conditions experienced during the full envelope of potential abort trajectories from the pad to exo-atmospheric flight. Several factors are taken into account in the automation process for tuning the gains including the abort effectors, the environmental changes and the autopilot modes. Gain scheduling is accomplished using a linear quadratic regulator (LQR) approach for the decoupled, simplified linear model throughout the operational envelope in time, altitude and Mach number. The derived gains are then implemented into the full linear model for controller requirement validation. Finally, the gains are tested and evaluated in a non-linear simulation using the vehicles ight software to ensure performance requirements are met. An overview of the LAV controller design and a description of the linear plant models are presented. Examples of the most significant challenges with the automation of the gain tuning process are then discussed. In conclusion, the paper will consider the lessons learned through out the process, especially in regards to automation, and examine the usefulness of the gain scheduling tool and process developed as applicable to non-Orion vehicles.
1999-11-16
In the bunker at Launch Pad 39B, STS-103 Pilot Scott J. Kelly (left) and Mission Specialist John M. Grunsfeld (Ph.D.) (right) try on oxygen masks during Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. Other crew members taking part are Commander Curtis L. Brown Jr. and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), and Jean-François Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST
1999-11-17
Taking a break during emergency egress training at Launch Pad 39B are (left to right) STS-103 Mission Specialists Jean-François Clervoy of France, Claude Nicollier of Switzerland, Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists John M. Grunsfeld (Ph.D.), C. Michael Foale (Ph.D.) and Steven L. Smith. Clervoy and Nicollier are with the European Space Agency. The training is part of Terminal Countdown Demonstration Test (TCDT) activities that also include opportunities to inspect the mission payloads in the orbiter's payload bay and simulated countdown exercises. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST
2014-04-10
CAPE CANAVERAL, Fla. - A container carrying the first set of Ogive panels for the Orion Launch Abort System is transferred into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - Containers carrying the first set of Ogive panels for the Orion Launch Abort System are being offloaded for transfer into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - The first set of Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - Containers carrying the first set of Ogive panels for the Orion Launch Abort System aretransferred into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - The first set of Ogive panels for the Orion Launch Abort System arrives by truck at NASA’s Kennedy Space Center in Florida. The Ogive panels will be delivered to the Launch Abort System Facility. During processing, the panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - Containers carrying the first set of Ogive panels for the Orion Launch Abort System have been transferred into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - The first set of Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - A container carrying the first set of Ogive panels for the Orion Launch Abort System is offloaded for transfer into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-04-10
CAPE CANAVERAL, Fla. - The first set of Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
The Media Tour the BFF, VAB, and the ML
2014-12-02
At NASA's Kennedy Space Center in Florida, members of the news media tour the spaceport's Vehicle Assembly Building. They were briefed on progress to upgrade and modify crawler-transporter CT 2 to support the Space Launch System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
2013-11-19
CAPE CANAVERAL, Fla. -- At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, construction workers continue to remove the bricks from the flame trench walls that are below and between the left and right crawlerway tracks. New crawler track panels will be installed. The space shuttle-era flame trench deflector has been completely removed. Launch Pad 39B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program office at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Kim Shiflett
Wallops Ship Surveillance System
NASA Technical Reports Server (NTRS)
Smith, Donna C.
2011-01-01
Approved as a Wallops control center backup system, the Wallops Ship Surveillance Software is a day-of-launch risk analysis tool for spaceport activities. The system calculates impact probabilities and displays ship locations relative to boundary lines. It enables rapid analysis of possible flight paths to preclude the need to cancel launches and allow execution of launches in a timely manner. Its design is based on low-cost, large-customer- base elements including personal computers, the Windows operating system, C/C++ object-oriented software, and network interfaces. In conformance with the NASA software safety standard, the system is designed to ensure that it does not falsely report a safe-for-launch condition. To improve the current ship surveillance method, the system is designed to prevent delay of launch under a safe-for-launch condition. A single workstation is designated the controller of the official ship information and the official risk analysis. Copies of this information are shared with other networked workstations. The program design is divided into five subsystems areas: 1. Communication Link -- threads that control the networking of workstations; 2. Contact List -- a thread that controls a list of protected item (ocean vessel) information; 3. Hazard List -- threads that control a list of hazardous item (debris) information and associated risk calculation information; 4. Display -- threads that control operator inputs and screen display outputs; and 5. Archive -- a thread that controls archive file read and write access. Currently, most of the hazard list thread and parts of other threads are being reused as part of a new ship surveillance system, under the SureTrak project.
STS-103 crew practice emergency egress in the slidewire basket
NASA Technical Reports Server (NTRS)
1999-01-01
In the slidewire basket on Launch Pad 39B, STS-103 Mission Specialists Jean-Frangois Clervoy of France (left) and Steven L. Smith take a break to pose for the photographer. The baskets are part of the emergency egress system for persons in the Shuttle vehicle or on the Rotating Service Structure. Seven slidewires extend from the orbiter access arm, with a netted, flatbottom basket suspended from each wire. The STS-103 crew are taking part in Terminal Countdown Demonstration Test (TCDT) activities in preparation for launch. The other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. The TCDT provides the crew with the emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
STS-103 crew practice emergency egress in the slidewire basket
NASA Technical Reports Server (NTRS)
1999-01-01
In the slidewire basket on Launch Pad 39B, STS-103 Mission Specialist Steven L. Smith reaches for the lever that will release the basket. With Smith is fellow crew member Mission Specialist Jean-Frangois Clervoy of France. The baskets are part of the emergency egress system for persons in the Shuttle vehicle or on the Rotating Service Structure. Seven slidewires extend from the orbiter access arm, with a netted, flatbottom basket suspended from each wire. The STS-103 crew are taking part in Terminal Countdown Demonstration Test (TCDT) activities in preparation for launch. The other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. The TCDT provides the crew with the emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
STS-103 crew practice emergency egress in the slidewire basket
NASA Technical Reports Server (NTRS)
1999-01-01
In the slidewire basket on Launch Pad 39B, STS-103 Commander Curtis L. Brown Jr. (left) and Pilot Scott J. Kelly (right) adjust their equipment. The baskets are part of the emergency egress system for persons in the Shuttle vehicle or on the Rotating Service Structure. Seven slidewires extend from the orbiter access arm, with a netted, flatbottom basket suspended from each wire. The other crew members are Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, with the European Space Agency (ESA), and Jean-Frangois Clervoy of France, also with ESA.. The STS-103 crew are taking part in Terminal Countdown Demonstration Test (TCDT) activities in preparation for launch. The TCDT provides the crew with the emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
2014-08-22
CAPE CANAVERAL, Fla. – NASA astronauts tour the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. From left, are Scott Tingle, Jack Fischer, Mark Vande Hei and Katie Rubins. They are standing near the Ogive panels for the Orion Launch Abort System. During processing, the Ogive panels will enclose and protect the Orion spacecraft for Exploration Flight Test-1 and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
1999-11-05
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, the payload canister for Space Shuttle Discovery, for mission STS-103, is lifted up the Rotating Service Structure. Installation of the payload into Discovery is slated for Friday, Nov. 12. The mission is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode
Aero-Assisted Pre-Stage for Ballistic and Aero-Assisted Launch Vehicles
NASA Technical Reports Server (NTRS)
Ustinov, Eugene A.
2012-01-01
A concept of an aero-assisted pre-stage is proposed, which enables launch of both ballistic and aero-assisted launch vehicles from conventional runways. The pre-stage can be implemented as a delta-wing with a suitable undercarriage, which is mated with the launch vehicle, so that their flight directions are coaligned. The ample wing area of the pre-stage combined with the thrust of the launch vehicle ensure prompt roll-out and take-off of the stack at airspeeds typical for a conventional jet airliner. The launch vehicle is separated from the pre-stage as soon as safe altitude is achieved, and the desired ascent trajectory is reached. Nominally, the pre-stage is non-powered. As an option, to save the propellant of the launch vehicle, the pre-stage may have its own short-burn propulsion system, whereas the propulsion system of the launch vehicle is activated at the separation point. A general non-dimensional analysis of performance of the pre-stage from roll-out to separation is carried out and applications to existing ballistic launch vehicle and hypothetical aero-assisted vehicles (spaceplanes) are considered.
General Dynamic (GD) Launch Waveform On-Orbit Performance Report
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Shalkhauser, Mary Jo
2014-01-01
The purpose of this report is to present the results from the GD SDR on-orbit performance testing using the launch waveform over TDRSS. The tests include the evaluation of well-tested waveform modes, the operation of RF links that are expected to have high margins, the verification of forward return link operation (including full duplex), the verification of non-coherent operational models, and the verification of radio at-launch operational frequencies. This report also outlines the launch waveform tests conducted and comparisons to the results obtained from ground testing.
Investigation of abort procedures for space shuttle-type vehicles
NASA Technical Reports Server (NTRS)
Powell, R. W.; Eide, D. G.
1974-01-01
An investigation has been made of abort procedures for space shuttle-type vehicles using a point mass trajectory optimization program known as POST. This study determined the minimum time gap between immediate and once-around safe return to the launch site from a baseline due-East launch trajectory for an alternate space shuttle concept which experiences an instantaneous loss of 25 percent of the total main engine thrust.
2003-06-10
KENNEDY SPACE CENTER, FLA. - With a glimpse of the Atlantic Ocean over the horizon, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25
2003-06-10
KENNEDY SPACE CENTER, FLA. - With a glimpse of the Atlantic Ocean over the horizon, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
Acoustic vibrations of metal nanoparticles: high order radial mode detection
NASA Astrophysics Data System (ADS)
Nelet, A.; Crut, A.; Arbouet, A.; Del Fatti, N.; Vallée, F.; Portalès, H.; Saviot, L.; Duval, E.
2004-03-01
The vibrational radial modes of silver nanospheres embedded in a glass matrix are investigated using a high sensitivity femtosecond pump-probe technique. The results yield evidence for coherent launching of the fundamental and higher order radial modes in agreement with a sphere dilation mediated excitation model. The results are consistent with low-frequency Raman scattering experiments.
Manipulating surface-plasmon-polariton launching with quasi-cylindrical waves.
Sun, Chengwei; Chen, Jianjun; Yao, Wenjie; Li, Hongyun; Gong, Qihuang
2015-06-10
Launching the free-space light to the surface plasmon polaritons (SPPs) in a broad bandwidth is of importance for the future plasmonic circuits. Based on the interference of the pure SPP component, the bandwidths of the unidirectional SPP launching is difficult to be further broadened. By greatly manipulating the SPP intensities with the quasi-cylindrical waves (Quasi-CWs), an ultra-broadband unidirectional SPP launcher is experimentally realized in a submicron asymmetric slit. In the nano-groove of the asymmetric slit, the excited Quasi-CWs are not totally damped, and they can be scattered into the SPPs along the metal surface. This brings additional interference and thus greatly manipulates the SPP launching. Consequently, a broadband unidirectional SPP launcher is realized in the asymmetric slit. More importantly, it is found that this principle can be extended to the three-dimensional subwavelength plasmonic waveguide, in which the excited Quasi-CWs in the aperture could be effectively converted to the tightly guided SPP mode along the subwavelength plasmonic waveguide. In the large wavelength range from about 600 nm to 1300 nm, the SPP mode mainly propagates to one direction along the plasmonic waveguide, revealing an ultra-broad (about 700 nm) operation bandwidth of the unidirectional SPP launching.
Commerical Crew Astronauts Visit Launch Complex 39A
2018-03-27
Commercial Crew Program astronauts, from the left, Suni Williams, Eric Boe, Bob Behnken and Doug Hurley take in the view from the top of Launch Complex 39A at Kennedy Space Center. The astronauts toured the pad for an up-close look at modifications that are in work for the SpaceX Crew Dragon flight tests. Tower modifications included l removal of the space shuttle era rotating service structure. Future integration of the crew access arm will allow for safe crew entry for launch and exit from the spacecraft in the unlikely event a pad abort is required.
Commerical Crew Astronauts Visit Launch Complex 39A
2018-03-27
Commercial Crew Program astronauts, from the left Doug Hurley, Eric Boe, Bob Behnken and Suni Williams, pose just outside Launch Complex 39A at NASA's Kennedy Space Center in Florida. The astronauts toured the pad for an up-close look at modifications that are in work for the SpaceX Crew Dragon flight tests. The tower modifications included removal of the space shuttle era rotating service structure. Future integration of the crew access arm will allow for safe crew entry for launch and exit from the spacecraft in the unlikely event a pad abort is required.
2012-02-17
Orion / Space Launch System: NASA has selected the design of a new Space Launch System SLS that will take the agency's astronauts farther into space than ever before and provide the cornerstone for America's future human space exploration efforts. The SLS will launch human crews beyond low Earth orbit in the Orion Multi-Purpose Crew Vehicle. Orion is America’s next generation spacecraft. It will serve as the exploration vehicle that will provide emergency abort capability, sustain the crew during space travel, carry the crew to distant planetary bodies, and provide safe return from deep space. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
2013-09-19
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the flame trench deflector that was located below and between the left and right crawlerway tracks has been removed. Work will continue to repair or replace the bricks on the walls. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
2013-09-19
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, a large bulldozer is used to remove the remaining portions of the flame trench deflector that was located below and between the left and right crawlerway tracks. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
Orion rolled out and mated on This Week @NASA - November 14, 2014
2014-11-14
In preparation for its first spaceflight test next month, NASA’s Orion spacecraft was transported from Kennedy Space Center’s Launch Abort System Facility to Space Launch Complex 37 at nearby Cape Canaveral Air Force Station on November 11, arriving at the launch pad early Nov. 12. NASA’s new deep space exploration capsule then was attached to the top of the Delta IV Heavy rocket that will carry it to space for the Dec. 4 test. Also, ISS crew returns safely, Earth Science research to continue with developing nations, Rosetta update, Rocks and Robots and more!
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media listen as NASA and contractor officials plans for the upcoming Orion flight test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Mark Geyer, NASA Orion Program manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Bryan Austin, Lockheed Martin mission manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Magnetic field amplification via protostellar disc dynamos
NASA Astrophysics Data System (ADS)
Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Koldoba, A. V.; Wasserman, I.
2018-06-01
We numerically investigate the generation of a magnetic field in a protostellar disc via an αΩ-dynamo and the resulting magnetohydrodynamic (MHD) driven outflows. We find that for small values of the dimensionless dynamo parameter αd, the poloidal field grows exponentially at a rate σ ∝ Ω _K √{α _d}, before saturating to a value ∝ √{α _d}. The dynamo excites dipole and octupole modes, but quadrupole modes are suppressed, because of the symmetries of the seed field. Initial seed fields too weak to launch MHD outflows are found to grow sufficiently to launch winds with observationally relevant mass fluxes of the order of 10^{-9} M_{⊙} yr^{-1} for T Tauri stars. This suggests that αΩ-dynamos may be responsible for generating magnetic fields strong enough to launch observed outflows.
Slots in dielectric image line as mode launchers and circuit elements
NASA Astrophysics Data System (ADS)
Solbach, K.
1981-01-01
A planar resonator model is used to investigate slots in the ground plane of dielectric image lines. An equivalent circuit representation of the slot discontinuity is obtained, and the launching efficiency of the slot as a mode launcher is analyzed. Slots are also shown to be useful in the realization of dielectric image line array antennas. It is found that the slot discontinuity can be shown as a T-junction of the dielectric image line and a metal waveguide. The launching efficiency is found to increase with the dielectric constant of the dielectric image line, exhibiting a maximum value for guides whose height is slightly less than half a wavelength in the dielectric medium. The measured launching efficiencies of low permittivity dielectric image lines are found to be in good agreement with calculated values
Stockburger, Martin; Defaye, Pascal; Boveda, Serge; Stancak, Branislav; Lazarus, Arnaud; Sipötz, Johann; Nardi, Stefano; Rolando, Mara; Moreno, Javier
2016-01-01
Abstract Aims This ANSWER (EvaluAtioN of the SafeR mode in patients With a dual chambER pacemaker indication) sub-study assesses safety and effectiveness of SafeR™ and the impact of ventricular pacing (VP) prevention on anticipated device longevity and replacement rate. Methods and results Patients implanted for atrioventricular block (AVB, n = 310) or sinus node dysfunction (SND, n = 336) were randomly assigned to SafeR (n = 314) or DDD (n = 318) and followed for 36 months. Safety, median VP, estimated device longevity (mean difference, 95% confidence interval [CI]), and anticipated replacement rates were analysed by pacing mode and implant indication. No difference in mortality, syncope, or mode intolerance was observed between randomization groups regardless of the indication. Ventricular pacing on SafeR vs. DDD was 11.5 vs. 93.6% in the overall population (P < 0.001), 89.2 vs. 83.8% in permanent AVB (P = 0.944), 53.5 vs. 98.2% in intermittent AVB (P < 0.001), and 2.2 vs. 84.7% in SND (P < 0.001). Anticipated median device longevity increased on SafeR by 14 [Q1 10; Q3 17] months [10; 17] (P < 0.001) in the overall population, 9 months [−5; 22] (P = 0.193) in permanent AVB, 14 months [8; 19] (P < 0.001) in intermittent AVB, and 14 months [9; 19] (P < 0.001) in SND. In intermittent AVB and SND, prolonged estimated battery longevity translated into the prevention of one anticipated replacement in at least 23% of patients. Conclusion SafeR was effective in reducing VP in intermittent AVB and in SND. No effect was observed in permanent AVB. No safety issue was observed. Ventricular pacing reduction by SafeR translated into relevant estimated prolongation of device longevity and anticipated reduction of required replacements. PMID:26612882
NASA Technical Reports Server (NTRS)
Lueck, Dale E.; Parrish, Clyde F.; Delgado, H. (Technical Monitor)
2000-01-01
As an alternative to magnetic propulsion for launch assist, the authors propose a pneumatic launch assist system. Using off the shelf components, coupled with familiar steel and concrete construction, a launch assist system can be brought from the initial feasibility stage, through a flight capable 5000 kg. demonstrator to a deployed full size launch assist system in 10 years. The final system would be capable of accelerating a 450,000 kg. vehicle to 270 meters per second. The CELT system uses commercially available compressors and valves to build a fail-safe system in less than half the time of a full Mag-Lev (magnetic levitation) system, and at a small fraction of the development cost. The resulting system could be ready in time to support some Gen 2 (generation 2) vehicles, as well as the proposed Gen 3 vehicle.
2014-04-17
CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The Ogive panels are being uncrated for storage inside the LASF. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-04-17
CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The Ogive panels will be uncrated inside the LASF. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-04-17
CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The Ogive panels will be uncrated inside the LASF. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-04-17
CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived by truck at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The Ogive panels will be uncrated inside the LASF. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
The Software Design for the Wide-Field Infrared Explorer Attitude Control System
NASA Technical Reports Server (NTRS)
Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom
1998-01-01
The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel 80386 processor with 80387 coprocessor running under the VRTX operating system). The mode manager organizes and controls all the software modules used to accomplish these goals, and in particular, the FDH module is tightly coupled with the mode manager.
1969-07-16
Every console was manned in firing room 1 of the Kennedy Space Flight Center (KSC) control center during the launch countdown for Apollo 11. Apollo 11, the first lunar landing mission, launched from KSC in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
Orion is on Pad 37 Prior to Hoist & Mate
2014-11-12
The Orion spacecraft and its transporter stand at the base of the service structure at Space Launch Complex 37. A crane inside the structure will lift Orion off its transporter to hoist it into place atop the Delta IV Heavy rocket that is already assembled at the pad. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014, atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
3-Axis magnetic control: flight results of the TANGO satellite in the PRISMA mission
NASA Astrophysics Data System (ADS)
Chasset, C.; Noteborn, R.; Bodin, P.; Larsson, R.; Jakobsson, B.
2013-09-01
PRISMA implements guidance, navigation and control strategies for advanced formation flying and rendezvous experiments. The project is funded by the Swedish National Space Board and run by OHB-Sweden in close cooperation with DLR, CNES and the Danish Technical University. The PRISMA test bed consists of a fully manoeuvrable MANGO satellite as well as a 3-axis controlled TANGO satellite without any Δ V capability. PRISMA was launched on the 15th of June 2010 on board DNEPR. The TANGO spacecraft is the reference satellite for the experiments performed by MANGO, either with a "cooperative" or "non-cooperative" behaviour. Small, light and low-cost were the keywords for the TANGO design. The attitude determination is based on Sun sensors and magnetometers, and the active attitude control uses magnetic torque rods only. In order to perform the attitude manoeuvres required to fulfil the mission objectives, using any additional gravity gradient boom to passively stabilize the spacecraft was not allowed. After a two-month commissioning phase, TANGO separated from MANGO on the 11th of August 2010. All operational modes have been successfully tested, and the pointing performance in flight is in accordance with expectations. The robust Sun Acquisition mode reduced the initial tip-off rate and placed TANGO into a safe attitude in <30 min. The Manual Pointing mode was commissioned, and the spacecraft demonstrated the capability to follow or maintain different sets of attitudes. In Sun/Zenith Pointing mode, TANGO points its GPS antenna towards zenith with sufficient accuracy to track as many GPS satellites as MANGO. At the same time, it points its solar panel towards the Sun, and all payload equipments can be switched on without any restriction. This paper gives an overview of the TANGO Attitude Control System design. It then presents the flight results in the different operating modes. Finally, it highlights the key elements at the origin of the successful 3-axis magnetic control strategy on the TANGO satellite.
Low Cost Missions Operations on NASA Deep Space Missions
NASA Astrophysics Data System (ADS)
Barnes, R. J.; Kusnierkiewicz, D. J.; Bowman, A.; Harvey, R.; Ossing, D.; Eichstedt, J.
2014-12-01
The ability to lower mission operations costs on any long duration mission depends on a number of factors; the opportunities for science, the flight trajectory, and the cruise phase environment, among others. Many deep space missions employ long cruises to their final destination with minimal science activities along the way; others may perform science observations on a near-continuous basis. This paper discusses approaches employed by two NASA missions implemented by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to minimize mission operations costs without compromising mission success: the New Horizons mission to Pluto, and the Solar Terrestrial Relations Observatories (STEREO). The New Horizons spacecraft launched in January 2006 for an encounter with the Pluto system.The spacecraft trajectory required no deterministic on-board delta-V, and so the mission ops team then settled in for the rest of its 9.5-year cruise. The spacecraft has spent much of its cruise phase in a "hibernation" mode, which has enabled the spacecraft to be maintained with a small operations team, and minimized the contact time required from the NASA Deep Space Network. The STEREO mission is comprised of two three-axis stabilized sun-staring spacecraft in heliocentric orbit at a distance of 1 AU from the sun. The spacecraft were launched in October 2006. The STEREO instruments operate in a "decoupled" mode from the spacecraft, and from each other. Since STEREO operations are largely routine, unattended ground station contact operations were implemented early in the mission. Commands flow from the MOC to be uplinked, and the data recorded on-board is downlinked and relayed back to the MOC. Tools run in the MOC to assess the health and performance of ground system components. Alerts are generated and personnel are notified of any problems. Spacecraft telemetry is similarly monitored and alarmed, thus ensuring safe, reliable, low cost operations.
Heatpipe space power and propulsion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houts, M.G.; Poston, D.I.; Ranken, W.A.
1996-03-01
Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: the Heatpipe Power System (HPS), which provides power only; and the Heatpipe Bimodal System (HBS), which provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, which greatly facilitates system fabrication and handling. Third, full electrically heated system testing of all modes is possible, with minimal operations required to replace the heaters with fuel and to ready the systemmore » for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single-point failures during power mode operation. Eighth, the fuel burnup rate is quite low to help ensure {approx_gt}10-yr system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, full ground nuclear test is not needed, and development costs will be low. One design for a low-power HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of {approximately}500 kg. The unicouple thermoelectric converters have a hot-shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program and has demonstrated an operational lifetime of decades. A core with a larger number of smaller modules (same overall size) can be used to provide up to 500 kWt to a power conversion subsystem, and a slightly larger core using a higher heatpipe to fuel ratio can provide {approx_gt}1 MWt. (Abstract Truncated)« less
Heatpipe space power and propulsion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houts, M.G.; Poston, D.I.; Ranken, W.A.
1995-12-01
Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: The Heatpipe Power System (HPS), which provides power only; and the Heatpipe Bimodal System (HBS), which provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, which greatly facilitates system fabrication and handling. Third, full electrically heated system testing of all modes is possible, with minimal operations required to replace the heaters with fuel and to ready the systemmore » for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single-point failures during power mode operation. Eighth, the fuel burnup rate is quite low to help ensure >10-yr system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, full ground nuclear test is not needed, and development costs will be low. One design for a low-power HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of {approximately}500 kg. The unicouple thermoelectric converters have a hot-shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program and has demonstrated an operational lifetime of decades. A core with a larger number of smaller modules (same overall size) can be used to provide up to 500 kWt to a power conversion subsystem, and a slightly larger core using a higher heatpipe to fuel ratio can provide >1 MWt.« less
14 CFR 437.7 - Scope of an experimental permit.
Code of Federal Regulations, 2014 CFR
2014-01-01
... experimental permit. An experimental permit authorizes launch or reentry of a reusable suborbital rocket. The... return the reusable suborbital rocket to a safe condition after it lands or impacts. ...
14 CFR 437.7 - Scope of an experimental permit.
Code of Federal Regulations, 2013 CFR
2013-01-01
... experimental permit. An experimental permit authorizes launch or reentry of a reusable suborbital rocket. The... return the reusable suborbital rocket to a safe condition after it lands or impacts. ...
Micro-Rockets for the Classroom.
ERIC Educational Resources Information Center
Huebner, Jay S.; Fletcher, Alice S.; Cato, Julia A.; Barrett, Jennifer A.
1999-01-01
Compares micro-rockets to commercial models and water rockets. Finds that micro-rockets are more advantageous because they are constructed with inexpensive and readily available materials and can be safely launched indoors. (CCM)
14 CFR 437.7 - Scope of an experimental permit.
Code of Federal Regulations, 2012 CFR
2012-01-01
... experimental permit. An experimental permit authorizes launch or reentry of a reusable suborbital rocket. The... return the reusable suborbital rocket to a safe condition after it lands or impacts. ...
14 CFR 437.7 - Scope of an experimental permit.
Code of Federal Regulations, 2010 CFR
2010-01-01
... experimental permit. An experimental permit authorizes launch or reentry of a reusable suborbital rocket. The... return the reusable suborbital rocket to a safe condition after it lands or impacts. ...
14 CFR 437.7 - Scope of an experimental permit.
Code of Federal Regulations, 2011 CFR
2011-01-01
... experimental permit. An experimental permit authorizes launch or reentry of a reusable suborbital rocket. The... return the reusable suborbital rocket to a safe condition after it lands or impacts. ...
2003-06-10
KENNEDY SPACE CENTER, FLA. - Leaving smoke and steam behind, the Delta II rocket with its Mars Exploration Rover (MER-A) payload lifts off the pad on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - The Delta II rocket with its Mars Exploration Rover (MER-A) payload breaks forth from the smoke and steam into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25
2003-06-10
KENNEDY SPACE CENTER, FLA. - Amid billows of smoke and steam, the Delta II rocket with its Mars Exploration Rover (MER-A) payload lifts off the pad on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
NASA Astrophysics Data System (ADS)
Svedhem, Hakan; Vago, Jorge L.; ExoMars Team
2016-10-01
The Trace Gas Orbiter (TGO) and the Schiaparelli Entry, descent and landing Demonstrator Model (EDM) will arrive at Mars on 19 October 2016. The TGO and the EDM are part of the first step of the ExoMars Programme. They will be followed by a Rover and a long lived Surface Platform to be launched in 2020.The EDM is attached to the TGO for the full duration of the cruise to Mars and will be separated three days before arrival at Mars. After separation the TGO will perform a deflection manoeuvre and, on 19 October (during the EDM landing), enter into a highly elliptical near equatorial orbit. TGO will remain in this parking orbit until January 2017, when the orbital plane inclination will be changed to 74 degrees and aerobraking to the final 400 km near circular orbit will start. The final operational orbit is expected to be reached at the end of 2017.The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector for search of subsurface hydrogen. The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The main objective of the EDM is to demonstrate the capability of performing a safe entry, descent and landing on the surface, but it does carry a descent camera and a small battery powered meteorological package that may operate for a few days on the surface.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission at the surface of Mars, the TGO will handle the communication between the Earth and the Rover and Surface Platform through its (NASA provided) UHF communication system. The 2016 mission was launched by a Russian Proton rocket from Baikonur on 14 March 2016.
NASA Technical Reports Server (NTRS)
Towner, Robert L.; Band, Jonathan L.
2012-01-01
An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.
Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program
NASA Technical Reports Server (NTRS)
Roudakov, Alexander S.; Semenov, Vyacheslav L.; Hicks, John W.
1998-01-01
Under a contract with NASA, a joint Central Institute of Aviation Motors (CIAM) and NASA team recently conducted the fourth flight test of a dual-mode scramjet aboard the CIAM Hypersonic Flying Laboratory, 'Kholod'. With an aim test Mach 6.5 objective, the successful launch was conducted at the Sary Shagan test range in central Kazakstan on February 12, 1998. Ground-launch, rocket boosted by a modified Russian SA5 missile, the redesigned scramjet was accelerated to a new maximum velocity greater than Mach 6.4. This launch allowed for the measurement of the fully supersonic combustion mode under actual flight conditions. The primary program objective was the flight-to-ground correlation of measured data with preflight analysis and wind-tunnel tests in Russia and potentially in the United States. This paper describes the development and objectives of the program as well as the technical details of the scramjet and SA5 redesign to achieve the Mach 6.5 aim test condition. An overview of the launch operation is also given. Finally, preliminary flight test results are presented and discussed.
Galileo 1989 VEEGA trajectory design. [Venus-Earth-Earth-Gravity-Assist
NASA Technical Reports Server (NTRS)
D'Amario, Louis A.; Byrnes, Dennis V.; Johannesen, Jennie R.; Nolan, Brian G.
1989-01-01
The new baseline for the Galileo Mission is a 1989 Venus-earth-earth gravity-assist (VEEGA) trajectory, which utilizes three gravity-assist planetary flybys in order to reduce launch energy requirements significantly compared to other earth-Jupiter transfer modes. The launch period occurs during October-November 1989. The total flight time is about 6 years, with November 1995 as the most likely choice for arrival at Jupiter. Optimal 1989 VEEGA trajectories have been generated for a wide range of earth launch dates and Jupiter arrival dates. Launch/arrival space contour plots are presented for various trajectory parameters, including propellant margin, which is used to measure mission performance. The accessible region of the launch/arrival space is defined by propellant margin and launch energy constraints; the available launch period is approximately 1.5 months long.
NASA Technical Reports Server (NTRS)
Hindman, E. E., II; Ala, G. G.; Parungo, F. P.; Willis, P. T.; Bendura, R. J.; Woods, D.
1978-01-01
Airborne measurements of cloud volumes, ice nuclei and cloud condensation nuclei, liquid particles, and aerosol particles were obtained from stabilized ground clouds (SGCs) produced by Titan 3 launches at Kennedy Space Center, 20 August and 5 September 1977. The SGCs were bright, white, cumulus clouds early in their life and contained up to 3.5 g/m3 of liquid in micron to millimeter size droplets. The measured cloud volumes were 40 to 60 cu km five hours after launch. The SGCs contained high concentrations of cloud condensation nuclei active at 0.2%, 0.5%, and 1.0% supersaturation for periods of three to five hours. The SGCs also contained high concentrations of submicron particles. Three modes existed in the particle population: a 0.05 to 0.1 micron mode composed of aluminum-containing particles, a 0.2 to 0.8 micron mode, and a 2.0 to 10 micron mode composed of particles that contained primarily aluminum.
2016-03-16
CHIEF ENGINEER OF THE LAUNCH VEHICLE FOR NASA'S COMMERCIAL CREW PROGRAM, DAN DORNEY GUIDES THE TEAM EVALUATING THE VEHICLES CREATED BY INDUSTRY PARTNERS AND ENSURES THE ROCKETS MEET THE REQUIREMENTS TO SAFELY CARRY ASTRONAUTS TO THE INTERNATIONAL SPACE STATION.
Moon Rock Presented to Smithsonian Institute by Apollo 11 Crew
NASA Technical Reports Server (NTRS)
1969-01-01
Apollo 11 astronauts, (left to right) Edwin E. Aldrin Jr., Lunar Module pilot; Michael Collins, Command Module pilot; and Neil A. Armstrong, commander, are showing a two-pound Moon rock to Frank Taylor, director of the Smithsonian Institute in Washington D.C. The rock was picked up from the Moon's surface during the Extra Vehicular Activity (EVA) of Aldrin and Armstrong following man's first Moon landing and was was presented to the Institute for display in the Art and Industries Building. The Apollo 11 mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
1969-09-15
Apollo 11 astronauts, (left to right) Edwin E. Aldrin Jr., Lunar Module pilot; Michael Collins, Command Module pilot; and Neil A. Armstrong, commander, are showing a two-pound Moon rock to Frank Taylor, director of the Smithsonian Institute in Washington D.C. The rock was picked up from the Moon’s surface during the Extra Vehicular Activity (EVA) of Aldrin and Armstrong following man’s first Moon landing and was was presented to the Institute for display in the Art and Industries Building. The Apollo 11 mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
Materials in NASA's Space Launch System: The Stuff Dreams are Made of
NASA Technical Reports Server (NTRS)
May, Todd A.
2012-01-01
Mr. Todd May, Program Manager for NASA's Space Launch System, will showcase plans and progress the nation s new super-heavy-lift launch vehicle, which is on track for a first flight to launch an Orion Multi-Purpose Crew Vehicle around the Moon in 2017. Mr. May s keynote address will share NASA's vision for future human and scientific space exploration and how SLS will advance those plans. Using new, in-development, and existing assets from the Space Shuttle and other programs, SLS will provide safe, affordable, and sustainable space launch capabilities for exploration payloads starting at 70 metric tons (t) and evolving through 130 t for entirely new deep-space missions. Mr. May will also highlight the impact of material selection, development, and manufacturing as they contribute to reducing risk and cost while simultaneously supporting the nation s exploration goals.
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. Both panels were moved by crane and lowered onto a storage stand at the far end of the facility. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels is being lifted by crane for the move to a storage stand at the other end of the facility. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The first panel is secured on a storage stand while the second panel is being lowered by crane onto the storage stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-17
CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the Ogive panels has been uncrated and is being lifted by crane for placement on a work stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels has been lifted by crane and technicians are preparing it for the move to a storage stand at the other end of the facility. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels is being lifted by crane for the move to a storage stand at the other end of the facility. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-17
CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the Ogive panels has been uncrated and is being lifted by crane for placement on a work stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The second panel is being lifted by crane and technicians are monitoring the progress as it is being moved to join the first panel on the storage stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
Orion Move to Pad Press Conference
2014-11-10
In the Kennedy Space Center’s Press Site auditorium, agency leaders spoke to members of the news media as the completed Orion spacecraft was being prepared for its trip from the Launch Abort System Facility to Launch Complex 37 at Cape Canaveral Air Force Station. From left are: Mike Curie of NASA Public Affairs, Kennedy Director Bob Cabana, Johnson Space Center Director Ellen Ochoa, NASA Orion Program manager Mark Geyer, and Lockheed Martin Orion Program manager Mike Hawes. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
An assessment of spacecraft target mode selection methods
NASA Astrophysics Data System (ADS)
Mercer, J. F.; Aglietti, G. S.; Remedia, M.; Kiley, A.
2017-11-01
Coupled Loads Analyses (CLAs), using finite element models (FEMs) of the spacecraft and launch vehicle to simulate critical flight events, are performed in order to determine the dynamic loadings that will be experienced by spacecraft during launch. A validation process is carried out on the spacecraft FEM beforehand to ensure that the dynamics of the analytical model sufficiently represent the behavior of the physical hardware. One aspect of concern is the containment of the FEM correlation and update effort to focus on the vibration modes which are most likely to be excited under test and CLA conditions. This study therefore provides new insight into the prioritization of spacecraft FEM modes for correlation to base-shake vibration test data. The work involved example application to large, unique, scientific spacecraft, with modern FEMs comprising over a million degrees of freedom. This comprehensive investigation explores: the modes inherently important to the spacecraft structures, irrespective of excitation; the particular 'critical modes' which produce peak responses to CLA level excitation; an assessment of several traditional target mode selection methods in terms of ability to predict these 'critical modes'; and an indication of the level of correlation these FEM modes achieve compared to corresponding test data. Findings indicate that, although the traditional methods of target mode selection have merit and are able to identify many of the modes of significance to the spacecraft, there are 'critical modes' which may be missed by conventional application of these methods. The use of different thresholds to select potential target modes from these parameters would enable identification of many of these missed modes. Ultimately, some consideration of the expected excitations is required to predict all modes likely to contribute to the response of the spacecraft in operation.
Space-shuttle interfaces/utilization. Earth Observatory Satellite system definition study (EOS)
NASA Technical Reports Server (NTRS)
1974-01-01
The economic aspects of space shuttle application to a representative Earth Observatory Satellite (EOS) operational mission in the various candidate Shuttle modes of launch, retrieval, and resupply are discussed. System maintenance of the same mission capability using a conventional launch vehicle is also considered. The studies are based on application of sophisticated Monte Carlo mission simulation program developed originally for studies of in-space servicing of a military satellite system. The program has been modified to permit evaluation of space shuttle application to low altitude EOS missions in all three modes. The conclusions generated by the EOS system study are developed.
2009-04-27
CAPE CANAVERAL, Fla. –– The Atlas V first stage arrives at the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett
2009-04-27
CAPE CANAVERAL, Fla. –– On Cape Canaveral Air Force Station's Launch Complex 41, the Atlas V first stage is being moved into the Vertical Integration Facility. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett
2009-04-27
CAPE CANAVERAL, Fla. –– On Cape Canaveral Air Force Station's Launch Complex 41, the Atlas V first stage is being moved into the Vertical Integration Facility. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett
2009-04-27
CAPE CANAVERAL, Fla. –– On Cape Canaveral Air Force Station's Launch Complex 41, the Atlas V first stage is being moved into the Vertical Integration Facility. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett
2009-04-27
CAPE CANAVERAL, Fla. –– The Atlas V first stage arrives at the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett
2013-09-19
CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA’s Kennedy Space Center in Florida, the crawler track panels have been removed and construction workers continue to repair the concrete on the surface of the pad. The flame trench deflector that was located below and between the left and right crawlerway tracks has been removed. Pad B is being refurbished to support NASA’s Space Launch System and other launch vehicles. The Ground Systems Development and Operations, or GSDO, Program at Kennedy is leading the center’s transformation to safely handle a variety of rockets and spacecraft. For more information about GSDO, visit: http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossman
Delta Mariner arrival with EFT-1 Booster
2014-03-03
CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner enters Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Jeremy Graeber, Orion Recovery Director in Ground Systems Development and Operations at Kennedy. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.
2002-01-01
In this report we present a time-varying sliding mode control (TV-SMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC is developed and tuned up for the X-33 sub-orbital technology demonstration vehicle in launch and re-entry modes. A variety of nominal, dispersion and failure scenarios have tested via high fidelity 6DOF simulations using MAVERIC/SLIM simulation software.
NASA Technical Reports Server (NTRS)
Shafer, Jaclyn A.; Brock, Tyler M.
2013-01-01
The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman Ill ballistic missile. The 30 OSSWF requested the Applied Meteorology Unit (AMU) analyze VAFB sounding data to determine the probability of violating (PoV) upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a graphical user interface (GUI) that will calculate the PoV of each constraint on the day of launch. The AMU suggested also including forecast sounding data from the Rapid Refresh (RAP) model. This would provide further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours, and help to improve the overall upper winds forecast on launch day.
2014-11-04
CAPE CANAVERAL, Fla. – The Orion spacecraft sits inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The Ogive panels have been installed around the launch abort system. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The spacecraft is being readied for its move to Space Launch Complex 37 at Cape Canaveral Air Force Station for its flight test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Jim Grossman
2014-11-04
CAPE CANAVERAL, Fla. – The Orion spacecraft sits inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The Ogive panels have been installed around the launch abort system. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The spacecraft is being readied for its move to Space Launch Complex 37 at Cape Canaveral Air Force Station for its flight test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Jim Grossman
2014-11-04
CAPE CANAVERAL, Fla. – The Orion spacecraft sits inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The Ogive panels have been installed around the launch abort system. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The spacecraft is being readied for its move to Space Launch Complex 37 at Cape Canaveral Air Force Station for its flight test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Jim Grossman
2014-11-04
CAPE CANAVERAL, Fla. – The Orion spacecraft sits inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The Ogive panels have been installed around the launch abort system. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The spacecraft is being readied for its move to Space Launch Complex 37 at Cape Canaveral Air Force Station for its flight test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Jim Grossman
2014-11-04
CAPE CANAVERAL, Fla. – The Orion spacecraft sits inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The Ogive panels have been installed around the launch abort system. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The spacecraft is being readied for its move to Space Launch Complex 37 at Cape Canaveral Air Force Station for its flight test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Jim Grossman
2014-04-17
CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the Ogive panels has been uncrated and is being moved by crane for placement on a work stand. The launch abort system is positioned on a work stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-11-04
CAPE CANAVERAL, Fla. – The Orion spacecraft sits inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The Ogive panels have been installed around the launch abort system. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The spacecraft is being readied for its move to Space Launch Complex 37 at Cape Canaveral Air Force Station for its flight test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Jim Grossman
2014-10-12
CAPE CANAVERAL, Fla. – Installation of four Ogive panels on Orion's Launch Abort System continues inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-11-04
CAPE CANAVERAL, Fla. – The Orion spacecraft sits inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The Ogive panels have been installed around the launch abort system. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The spacecraft is being readied for its move to Space Launch Complex 37 at Cape Canaveral Air Force Station for its flight test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Jim Grossman
Manipulating surface-plasmon-polariton launching with quasi-cylindrical waves
Sun, Chengwei; Chen, Jianjun; Yao, Wenjie; Li, Hongyun; Gong, Qihuang
2015-01-01
Launching the free-space light to the surface plasmon polaritons (SPPs) in a broad bandwidth is of importance for the future plasmonic circuits. Based on the interference of the pure SPP component, the bandwidths of the unidirectional SPP launching is difficult to be further broadened. By greatly manipulating the SPP intensities with the quasi-cylindrical waves (Quasi-CWs), an ultra-broadband unidirectional SPP launcher is experimentally realized in a submicron asymmetric slit. In the nano-groove of the asymmetric slit, the excited Quasi-CWs are not totally damped, and they can be scattered into the SPPs along the metal surface. This brings additional interference and thus greatly manipulates the SPP launching. Consequently, a broadband unidirectional SPP launcher is realized in the asymmetric slit. More importantly, it is found that this principle can be extended to the three-dimensional subwavelength plasmonic waveguide, in which the excited Quasi-CWs in the aperture could be effectively converted to the tightly guided SPP mode along the subwavelength plasmonic waveguide. In the large wavelength range from about 600 nm to 1300 nm, the SPP mode mainly propagates to one direction along the plasmonic waveguide, revealing an ultra-broad (about 700 nm) operation bandwidth of the unidirectional SPP launching. PMID:26061592
Human Exploration Missions Study Launch Window from Earth Orbit
NASA Technical Reports Server (NTRS)
Young, Archie
2001-01-01
The determination of orbital launch window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a Delta(V) penalty. Usually, because of the Delta(V) penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: (1) One impulsive maneuver from a Low Earth Orbit (LEO), (2) Two impulsive maneuvers from LEO, (3) Three impulsive maneuvers from LEO, (4) One impulsive maneuvers from a Highly Elliptical Orbit (HEO), (5) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO) The formulation of these five different launch window modes provides a rapid means of generating realistic parametric data for space exploration studies. Also the formulation provides vector and geometrical data sufficient for use as a good starting point in detail trajectory analysis based on calculus of variations, steepest descent, or parameter optimization program techniques.
Orion Journey to Mars, L-2 Briefing
2014-12-02
At NASA's Kennedy Space Center in Florida, Chris Crumbly, manager of Space Launch System Spacecraft/Payload Integration and Evolution, was one of several agency leaders who spoke to member of the news media about how the first flight of the new Orion spacecraft is a first step in the agency's plans to send humans to Mars. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Ares V: Designing the Heavy Lift Capability to Explore the Moon
NASA Technical Reports Server (NTRS)
Sumrall, John P.; McArthur, Craig
2007-01-01
NASA's Vision for Exploration requires a safe, efficient, reliable, and versatile launch vehicle capable ofplacing large payloads into Earth orbit for transfer to the Moon and destinations beyond. The Ares V Cargo Launch Vehicle (CaLV) will provide this heavy lift capability. The Ares V launch concept is shown. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be almost 360 feet fall. As currently envisioned, it will lift 136 metric tons (300,000 pounds) to a 30-by-160 nautical mile orbit at 28.5-degrees inclination, or 55 metric tons (120,000 pounds) to trans-lunar injection. This paper will cover the latest developments in the Ares V project in 2007 and discuss future activities.
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Jeremy Graeber, Orion Recovery Director in Ground Systems Development and Operations at Kennedy. Also participating in the news conference are Bryan Austin, Lockheed Martin mission manager, left, and Ron Fortson, United Launch Alliance director of Mission Management. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
STS-103 crew look over payload inside Discovery
NASA Technical Reports Server (NTRS)
1999-01-01
At Launch Pad 39B, STS-103 Mission Specialist C. Michael Foale (Ph.D.) looks over the Hubble servicing cargo in the payload bay of Space Shuttle Discovery. The activity is part of the Terminal Countdown Demonstration Test (TCDT), which also provides the crew with emergency egress training and a simulated countdown exercise. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, John M. Grunsfeld (Ph.D.), Jean- Fran'''ois Clervoy of France, and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
STS-103 crew wait inside Discovery for simulated countdown exercise
NASA Technical Reports Server (NTRS)
1999-01-01
STS-103 Mission Specialists Jean-Fran'''ois Clervoy of France takes his seat inside the Space Shuttle Discovery during a practice launch countdown, part of Terminal Countdown Demonstration Test (TCDT) activities, while astronaut David 'Doc' Brown checks him out. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
Orion Guidance and Control Ascent Abort Algorithm Design and Performance Results
NASA Technical Reports Server (NTRS)
Proud, Ryan W.; Bendle, John R.; Tedesco, Mark B.; Hart, Jeremy J.
2009-01-01
During the ascent flight phase of NASA s Constellation Program, the Ares launch vehicle propels the Orion crew vehicle to an agreed to insertion target. If a failure occurs at any point in time during ascent then a system must be in place to abort the mission and return the crew to a safe landing with a high probability of success. To achieve continuous abort coverage one of two sets of effectors is used. Either the Launch Abort System (LAS), consisting of the Attitude Control Motor (ACM) and the Abort Motor (AM), or the Service Module (SM), consisting of SM Orion Main Engine (OME), Auxiliary (Aux) Jets, and Reaction Control System (RCS) jets, is used. The LAS effectors are used for aborts from liftoff through the first 30 seconds of second stage flight. The SM effectors are used from that point through Main Engine Cutoff (MECO). There are two distinct sets of Guidance and Control (G&C) algorithms that are designed to maximize the performance of these abort effectors. This paper will outline the necessary inputs to the G&C subsystem, the preliminary design of the G&C algorithms, the ability of the algorithms to predict what abort modes are achievable, and the resulting success of the abort system. Abort success will be measured against the Preliminary Design Review (PDR) abort performance metrics and overall performance will be reported. Finally, potential improvements to the G&C design will be discussed.
STS-103 Pilot Scott Kelly and MS John Grunsfeld try on oxygen masks
NASA Technical Reports Server (NTRS)
1999-01-01
In the bunker at Launch Pad 39B, STS-103 Pilot Scott J. Kelly (left) and Mission Specialist John M. Grunsfeld (Ph.D.) (right) try on oxygen masks during Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. Other crew members taking part are Commander Curtis L. Brown Jr. and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), and Jean-Frangois Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
STS-103 crew pose at 195-foot level of Fixed Service Structure
NASA Technical Reports Server (NTRS)
1999-01-01
At the 195-foot level of the Fixed Service Structure on Launch Pad 39B, the STS-103 crew take a break from Terminal Countdown Demonstration Test (TCDT) activities. Standing from left to right are Mission Specialists Jean-Frangois Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency; Commander Curtis L. Brown Jr.; Pilot Scott J. Kelly; and Mission Specialists John M. Grunsfeld (Ph.D.), C. Michael Foale (Ph.D.) and Steven L. Smith. The TCDT provides the crew with the emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
Operational Experience with Autonomous Star Trackers on ESA Interplanetary Spacecraft
NASA Technical Reports Server (NTRS)
Lauer, Mathias; Jauregui, Libe; Kielbassa, Sabine
2007-01-01
Mars Express (MEX), Rosetta and Venus Express (VEX) are ESA interplanetary spacecrafts (S/C) launched in June 2003, March 2004 and November 2005, respectively. Mars Express was injected into Mars orbit end of 2003 with routine operations starting in spring 2004. Rosetta is since launch on its way to rendezvous comet Churyumov-Gerasimenko in 2014. It has completed several test and commissioning activities and is performing several planetary swingbys (Earth in spring 2005, Mars in spring 2007, Earth in autumn 2007 and again two years later). Venus Express has also started routine operations since the completion of the Venus orbit insertion maneuver sequence beginning of May 2006. All three S/C are three axes stabilized with a similar attitude and orbit control system (AOCS). The attitude is estimated on board using star and rate sensors and controlled using four reaction wheels. A bipropellant reaction control system with 10N thrusters serves for wheel off loadings and attitude control in safe mode. Mars Express and Venus Express have an additional 400N engine for the planetary orbit insertion. Nominal Earth communication is accomplished through a high gain antenna. All three S/C are equipped with a redundant set of autonomous star trackers (STR) which are based on almost the same hardware. The STR software is especially adapted for the respective mission. This paper addresses several topics related to the experience gained with the STR operations on board the three S/C so far.
First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations
NASA Technical Reports Server (NTRS)
Kahle, R.; Kazeminejad, B.; Kirschner, M.; Yoon, Y.; Kiehling, R.; D'Amico, S.
2007-01-01
TerraSAR-X is an advanced synthetic aperture radar satellite system for scientific and commercial applications that is realized in a public-private partnership between the German Aerospace Center (DLR) and the Astrium GmbH. TerraSAR-X was launched at June 15, 2007 on top of a Russian DNEPR-1 rocket into a 514 km sun-synchronous dusk-dawn orbit with an 11-day repeat cycle and will be operated for a period of at least 5 years during which it will provide high resolution SAR-data in the X-band. Due to the objectives of the interferometric campaigns the satellite has to comply to tight orbit control requirements, which are formulated in the form of a 250 m toroidal tube around a pre-flight determined reference trajectory (see [1] for details). The acquisition of the reference orbit was one of the main and key activities during the Launch and Early Orbit Phase (LEOP) and had to compensate for both injection errors and spacecraft safe mode attitude control thruster activities. The paper summarizes the activities of GSOC flight dynamics team during both LEOP and early Commissioning Phase, where the main tasks have been 1) the first-acquisition support via angle-tracking and GPS-based orbit determination, 2) maneuver planning for target orbit acquisition and maintenance, and 3) precise orbit and attitude determination for SAR processing support. Furthermore, a presentation on the achieved results and encountered problems will be addressed.
Recent Enhancements to the National Transonic Facility (Mixed Mode Operations)
NASA Technical Reports Server (NTRS)
Kilgore, W. Allen; Chan, David; Balakrishna, S.; Wahls, Richard A.
2006-01-01
The U.S. National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the development of a Mixed-mode of operations that combine Air-mode operations with Nitrogen-mode operations. This implementation and operational results of this new Mixed-mode expands the ambient temperature transonic region of testing beyond the Air-mode limitations at a significantly reduced cost over Nitrogen Mode operation.
Fundamental-mode MMF transmission enabled by mode conversion
NASA Astrophysics Data System (ADS)
Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Jinglong; Ren, Fang; Mo, Qi; Yu, Jinyi; Li, Zhengbin; Chen, Zhangyuan; He, Yongqi
2018-03-01
Modal dispersion in conventional multi-mode fiber (MMF) will cause serious signal degradation and an effective solution is to restrict the signal transmission in the fundamental mode of MMF. In this paper, unlike previous methods by filtering out higher-order modes, we propose to adopt low-modal-crosstalk mode converters to realize fundamental-mode MMF transmission. We design and fabricate all-fiber mode-selective couplers (MSC), which perform mode conversion between the fundamental mode in single-mode fiber (SMF) and fundamental mode in MMF. The proposed scheme is experimentally compared with center launching method under different MMF links and then its wavelength division multiplexing (WDM) transmission performance is investigated. Experimental results indicate that the proposed mode conversion scheme could achieve better transmission performance and works well for the whole C-band.
NASA Technical Reports Server (NTRS)
Cowan, W.
1974-01-01
Outer planetary probe designs consider mission characteristics, structural configuration, delivery mode, scientific payload, environmental extremes, mass properties, and the launch vehicle and spacecraft interface.
How to Keep Your Sleeping Baby Safe
... mode Turn off more accessible mode Skip Ribbon Commands Skip to main content Turn off Animations Turn ... any of the recommendations listed. What You Can Do: Recommendations for Infant Sleep Safety Until their first ...
STS Derived Exploration Launch Operations
NASA Technical Reports Server (NTRS)
Best, Joel; Sorge, L.; Siders, J.; Sias, Dave
2004-01-01
A key aspect of the new space exploration programs will be the approach to optimize launch operations. A STS Derived Launch Vehicle (SDLV) Program can provide a cost effective, low risk, and logical step to launch all of the elements of the exploration program. Many benefits can be gained by utilizing the synergy of a common launch site as an exploration spaceport as well as evolving the resources of the current Space Shuttle Program (SSP) to meet the challenges of the Vision for Space Exploration. In particular, the launch operation resources of the SSP can be transitioned to the exploration program and combined with the operations efficiencies of unmanned EELVs to obtain the best of both worlds, resulting in lean launch operations for crew and cargo missions of the exploration program. The SDLV Program would then not only capture the extensive human space flight launch operations knowledge, but also provide for the safe fly-out of the SSP through continuity of system critical skills, manufacturing infrastructure, and ability to maintain and attract critical skill personnel. Thus, a SDLV Program can smoothly transition resources from the SSP and meet the transportation needs to continue the voyage of discovery of the space exploration program.
Variable Structure Control of a Hand-Launched Glider
NASA Technical Reports Server (NTRS)
Anderson, Mark R.; Waszak, Martin R.
2005-01-01
Variable structure control system design methods are applied to the problem of aircraft spin recovery. A variable structure control law typically has two phases of operation. The reaching mode phase uses a nonlinear relay control strategy to drive the system trajectory to a pre-defined switching surface within the motion state space. The sliding mode phase involves motion along the surface as the system moves toward an equilibrium or critical point. Analysis results presented in this paper reveal that the conventional method for spin recovery can be interpreted as a variable structure controller with a switching surface defined at zero yaw rate. Application of Lyapunov stability methods show that deflecting the ailerons in the direction of the spin helps to insure that this switching surface is stable. Flight test results, obtained using an instrumented hand-launched glider, are used to verify stability of the reaching mode dynamics.
NASA Technical Reports Server (NTRS)
Wiker, Gordon A. (Inventor); Wells, Jr., George H. (Inventor)
1989-01-01
A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not overshoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.
NASA Technical Reports Server (NTRS)
Wiker, Gordon A. (Inventor); Wells, George H., Jr. (Inventor)
1987-01-01
A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not over shoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.
Stockburger, Martin; Defaye, Pascal; Boveda, Serge; Stancak, Branislav; Lazarus, Arnaud; Sipötz, Johann; Nardi, Stefano; Rolando, Mara; Moreno, Javier
2016-05-01
This ANSWER (EvaluAtioN of the SafeR mode in patients With a dual chambER pacemaker indication) sub-study assesses safety and effectiveness of SafeR™ and the impact of ventricular pacing (VP) prevention on anticipated device longevity and replacement rate. Patients implanted for atrioventricular block (AVB, n = 310) or sinus node dysfunction (SND, n = 336) were randomly assigned to SafeR (n = 314) or DDD (n = 318) and followed for 36 months. Safety, median VP, estimated device longevity (mean difference, 95% confidence interval [CI]), and anticipated replacement rates were analysed by pacing mode and implant indication. No difference in mortality, syncope, or mode intolerance was observed between randomization groups regardless of the indication. Ventricular pacing on SafeR vs. DDD was 11.5 vs. 93.6% in the overall population (P < 0.001), 89.2 vs. 83.8% in permanent AVB (P = 0.944), 53.5 vs. 98.2% in intermittent AVB (P < 0.001), and 2.2 vs. 84.7% in SND (P < 0.001). Anticipated median device longevity increased on SafeR by 14 [Q1 10; Q3 17] months [10; 17] (P < 0.001) in the overall population, 9 months [-5; 22] (P = 0.193) in permanent AVB, 14 months [8; 19] (P < 0.001) in intermittent AVB, and 14 months [9; 19] (P < 0.001) in SND. In intermittent AVB and SND, prolonged estimated battery longevity translated into the prevention of one anticipated replacement in at least 23% of patients. SafeR was effective in reducing VP in intermittent AVB and in SND. No effect was observed in permanent AVB. No safety issue was observed. Ventricular pacing reduction by SafeR translated into relevant estimated prolongation of device longevity and anticipated reduction of required replacements. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
1969-07-15
Seriousness exudes from launch official Miles Ross (left) of Kennedy Space Flight Center (KSC) and Major General E.F. O’Conner, director of program management of the Marshall Space Flight Center (MSFC), as they participate in the Apollo 11 countdown demonstration test. The Apollo 11 mission, the first lunar landing mission, launched from the KSC in Florida via the MSFC developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
1969-07-16
Chief astronaut and director of flight crew operations, Donald K. Slayton (right front) reviews lunar charts with Apollo 11 astronauts Michael Collins (left), Neil Armstrong, and Edwin Aldrin (next to Slayton) during breakfast a short time before the three men launched for the first Moon landing mission. Sharing breakfast with the crew was William Anders (left rear), Lunar Module pilot for the Apollo 8 lunar orbit mission. The Apollo 11 mission launched from the NASA Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
1969-03-05
The third stage (S-IVB) of the Saturn V launch vehicle for the Apollo 11 lunar landing mission is hoisted in the vehicle assembly building at the NASA Kennedy Space Center (KSC) for mating with the second stage (S-II). The vehicle, designated as AS-506, projected the first lunar landing mission, Apollo 11, on a trajectory for the Moon. The Apollo 11 mission launched from KSC in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Astronauts onboard included Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
14 CFR 437.53 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...
14 CFR 437.53 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...
14 CFR 437.53 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...
14 CFR 437.53 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...
14 CFR 437.53 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...
Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models
NASA Technical Reports Server (NTRS)
Coppolino, Robert N.
2018-01-01
Responses to challenges associated with verification and validation (V&V) of Space Launch System (SLS) structural dynamics models are presented in this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA), which has gained acceptance by various principals in the NASA community, defines efficient and accurate FEM modal sensitivity models that are useful in test-analysis correlation and reconciliation and parametric uncertainty studies. (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976), developed to remedy difficulties encountered with the widely used Classical Guyan Reduction (CGR) method, are presented. MGR and HR are particularly relevant for estimation of "body dominant" target modes of shell-type SLS assemblies that have numerous "body", "breathing" and local component constituents. Realities associated with configuration features and "imperfections" cause "body" and "breathing" mode characteristics to mix resulting in a lack of clarity in the understanding and correlation of FEM- and test-derived modal data. (3) Mode Consolidation (MC) is a newly introduced procedure designed to effectively "de-feature" FEM and experimental modes of detailed structural shell assemblies for unambiguous estimation of "body" dominant target modes. Finally, (4) Experimental Mode Verification (EMV) is a procedure that addresses ambiguities associated with experimental modal analysis of complex structural systems. Specifically, EMV directly separates well-defined modal data from spurious and poorly excited modal data employing newly introduced graphical and coherence metrics.
NASA Technical Reports Server (NTRS)
Birur, Gajanana C.; Bhandari, Pradeep; Bame, David; Karlmann, Paul; Mastropietro, A. J.; Liu, Yuanming; Miller, Jennifer; Pauken, Michael; Lyra, Jacqueline
2012-01-01
The Mars Science Laboratory (MSL) rover, Curiosity, which was launched on November 26, 2011, incorporates a novel active thermal control system to keep the sensitive electronics and science instruments at safe operating and survival temperatures. While the diurnal temperature variations on the Mars surface range from -120 C to +30 C, the sensitive equipment are kept within -40 C to +50 C. The active thermal control system is based on a single-phase mechanically pumped fluid loop (MPFL) system which removes or recovers excess waste heat and manages it to maintain the sensitive equipment inside the rover at safe temperatures. This paper will describe the entire process of developing this active thermal control system for the MSL rover from concept to flight implementation. The development of the rover thermal control system during its architecture, design, fabrication, integration, testing, and launch is described.
Are we pharmacovigilant enough in ophthalmic practice?
Dubey, Ashok; Handu, Shailendra S
2013-01-01
No drug is absolutely safe. Pharmacovigilance is the science related to detection, assessment, understanding and prevention of adverse effects or any other possible drug-related problems. The ocular medications and devices can cause localized and systemic adverse effects. Not all adverse effects are known when a drug or device is launched in market because of limitations of clinical trials. Many adverse effects are recognized due to the spontaneous reporting of the vigilant doctors who observe and report such events encountered in their practice. Despite a large ophthalmic patient population base, India does not have robust adverse drug reaction (ADR) database because of lack of reporting culture. Government of India recently launched the Pharmacovigilance Programme of India (PvPI) to monitor ADRs and create awareness among the healthcare professionals about the importance of ADRs. Suspecting and reporting a possible drug reaction is very important in developing a safe and rational ophthalmic practice. PMID:23571233
2000-06-01
KENNEDY SPACE CENTER, FLA. -- A crawler-transporter with mobile launcher platform on top tests the buried portion of the Apollo-era crawlerway leading to the Vehicle Assembly Building (VAB) high bay 2 on the southwest side. The road was restored as part of KSC’s Safe Haven project. High bay 2 provides a third stacking area. The primary goal of the Safe Haven construction project was to strengthen readiness for hurricane season by expanding the VAB’s storage capacity. The new area, in high bay 2, will allow NASA to preassemble stacks and still have room in the VAB to pull a Shuttle back from the pad if severe weather threatens. Potential rollouts of the Space Shuttle to the launch pad from high bay 2 will involve making a turn around the north side of the VAB in contrast to the straight rollouts from high bays 1 and 3, on the east side of the VAB facing the launch pads
2000-06-01
KENNEDY SPACE CENTER, FLA. -- A crawler-transporter with mobile launcher platform on top tests the buried portion of the Apollo-era crawlerway leading to the Vehicle Assembly Building (VAB) high bay 2 on the southwest side. The road was restored as part of KSC’s Safe Haven project. High bay 2 provides a third stacking area. The primary goal of the Safe Haven construction project was to strengthen readiness for hurricane season by expanding the VAB’s storage capacity. The new area, in high bay 2, will allow NASA to preassemble stacks and still have room in the VAB to pull a Shuttle back from the pad if severe weather threatens. Potential rollouts of the Space Shuttle to the launch pad from high bay 2 will involve making a turn around the north side of the VAB in contrast to the straight rollouts from high bays 1 and 3, on the east side of the VAB facing the launch pads
Expedition 50-51 Arrives Safely at the Space Station on This Week @NASA – November 25, 2016
2016-11-25
On Nov. 19 Eastern time, two days after launching aboard a Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan, the Expedition 50-51 crew, including NASA astronaut Peggy Whitson arrived safely at the International Space Station. A few hours after docking, Whitson and Expedition 50-51 crewmates, Oleg Novitskiy of the Russian space agency Roscosmos, and Thomas Pesquet of the European Space Agency, were greeted by space station Commander Shane Kimbrough of NASA and Sergey Ryzhikov and Andrey Borisenko of Roscosmos. The arriving crew members, who are scheduled to remain on the space station until next spring, will contribute to more than 250 research experiments while onboard the orbital laboratory. Also, Cygnus Cargo Spacecraft Leaves the Space Station, Advanced Weather Satellite Launched into Orbit, SLS Hardware Installed in Test Stand, C-Level Platforms Installed in Vehicle Assembly Building, and Giving Thanks from Space!
Low Earth Orbit Raider (LER) winged air launch vehicle concept
NASA Technical Reports Server (NTRS)
Feaux, Karl; Jordan, William; Killough, Graham; Miller, Robert; Plunk, Vonn
1989-01-01
The need to launch small payloads into low earth orbit has increased dramatically during the past several years. The Low Earth orbit Raider (LER) is an answer to this need. The LER is an air-launched, winged vehicle designed to carry a 1500 pound payload into a 250 nautical mile orbit. The LER is launched from the back of a 747-100B at 35,000 feet and a Mach number of 0.8. Three staged solid propellant motors offer safe ground and flight handling, reliable operation, and decreased fabrication cost. The wing provides lift for 747 separation and during the first stage burn. Also, aerodynamic controls are provided to simplify first stage maneuvers. The air-launch concept offers many advantages to the consumer compared to conventional methods. Launching at 35,000 feet lowers atmospheric drag and other loads on the vehicle considerably. Since the 747 is a mobile launch pad, flexibility in orbit selection and launch time is unparalleled. Even polar orbits are accessible with a decreased payload. Most importantly, the LER launch service can come to the customer, satellites and experiments need not be transported to ground based launch facilities. The LER is designed to offer increased consumer freedom at a lower cost over existing launch systems. Simplistic design emphasizing reliability at low cost allows for the light payloads of the LER.
A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks
NASA Astrophysics Data System (ADS)
Urban, Jakub; Decker, Joan; Peysson, Yves; Preinhaelter, Josef; Shevchenko, Vladimir; Taylor, Gary; Vahala, Linda; Vahala, George
2011-08-01
The electron Bernstein wave (EBW) is typically the only wave in the electron cyclotron (EC) range that can be applied in spherical tokamaks for heating and current drive (H&CD). Spherical tokamaks (STs) operate generally in high-β regimes, in which the usual EC O- and X-modes are cut off. In this case, EBWs seem to be the only option that can provide features similar to the EC waves—controllable localized H&CD that can be used for core plasma heating as well as for accurate plasma stabilization. The EBW is a quasi-electrostatic wave that can be excited by mode conversion from a suitably launched O- or X-mode; its propagation further inside the plasma is strongly influenced by the plasma parameters. These rather awkward properties make its application somewhat more difficult. In this paper we perform an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX). Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions, which are the fundamental EBW parameters that can be chosen and controlled. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.
Theoretical analysis of fused tapered side-pumping combiner for all-fiber lasers and amplifiers
NASA Astrophysics Data System (ADS)
Lei, Chengmin; Chen, Zilun; Leng, Jinyong; Gu, Yanran; Hou, Jing
2017-05-01
We report detailed theoretical analysis on the influence of the fused depth, launch mode and taper ratio on the performance of side-pumping combiner. The theoretical analysis indicates that the coupling efficiency and loss mechanism of the combiner is closely related to the fused depth, tapering ratio and the launch mode. Experimentally, we fabricate combiners consisting of two pump fibers (220/242 μm, NA=0.22) and a signal fiber (20/400 μm, NA=0.46). The combined pump coupling efficiency of two pump port is 97.2% with the maximum power handling of 1.8 kW and the insertion signal loss is less than 3%.
Orion moved at Kennedy Space Center on This Week @NASA - October 3, 2014
2014-10-03
On Sept. 28, NASA’s Orion spacecraft was moved from Kennedy Space Center’s Payload Hazardous Servicing Facility to its Launch Abort System Facility, for installation of its launch abort system, one of the many critical safety systems that will be evaluated during Orion’s un-crewed Exploration Flight Test -1, in December. NASA’s new deep space capsule is being developed to safely transport astronauts to and from Mars and other destinations on future missions. Also, Delta IV Heavy moved to the launch pad, U.S. spacewalks previewed, NASA and India to discuss joint exploration, Helicopter safety crash test, Combined Federal Campaign underway and Stop, Think, Connect!
2009-04-27
CAPE CANAVERAL, Fla. –– When the Atlas V first stage is raised to vertical, it will be lifted into the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett
2009-04-27
CAPE CANAVERAL, Fla. –– The Atlas V first stage is being transferred from the hangar at the Atlas Space Operations Facility to the Vertical Integration Facility near Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett
2009-04-27
CAPE CANAVERAL, Fla. –– The Atlas V first stage is moved from the hangar at the Atlas Space Operations Facility. It is going to the Vertical Integration Facility near Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett
2014-11-06
CAPE CANAVERAL, Fla. – In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Bryan Austin, Lockheed Martin mission manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Bill Hill, NASA deputy associate administrator for Exploration Systems Development. Mark Geyer, NASA Orion Program manager, is on the right. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Stiffnesses of a solid-rocket motor from an ambient vibration survey
NASA Technical Reports Server (NTRS)
Rubin, S.; Searle, G. A.; Wagner, R. G.
1988-01-01
Experience with many spacecraft configurations boosted by a variety of launch vehicles indicates that the maximum loads experienced throughout most of the structure are inertial in origin. These loads arise from the dynamic elastic response of the flight vehicle to the transient disturbances of launch and flight, and are highly dependent on the dynamic characteristics of both the spacecraft and the launch vehicle. It has proved to be most advantageous, in the analysis of this critical dependency of loads upon vehicle dynamic properties, to establish a mathematical model in terms of normal mode characteristics. In this way, the vibration behavior of an elastomechanical structure (or substructure) can be described by means of the so-called modal or natural degrees of freedom. The conduct of a mode survey test and the use of a suitably test-verified model in loads analyses is essential to the flight worthiness certification process of space systems. The desirability of such tests is confirmed by the fact that, almost invariably, significant deficiencies in the analytical models are revealed by the results. Therefore, this experimental program was undertaken to determine those properties of a solid-propellant rocket motor (SRM) which are required to characterize a dynamic model. Random ambient-excited accelerations were measured at a series of stations along the motor for the purpose of identifying the motor beam-like stiffnesses in bending, shear, and torsion. From a system identification point of view, it is significant that stiffness properties of a subsystem (the motor) are determined from modes of the full system (motor/stand configuration) using mode shape data of the subsystem only. This contrasts with traditional system identification approaches which rely upon complete system mode shapes.
Solar Dynamics Observatory Launch and Commissioning
NASA Technical Reports Server (NTRS)
O'Donnell, James R., Jr.; Kristin, D.; Bourkland, L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; Morgenstern, Wendy M.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.
2011-01-01
The Solar Dynamics Observatory (SDO) was launched on February 11, 2010. Over the next three months, the spacecraft was raised from its launch orbit into its final geosynchronous orbit and its systems and instruments were tested and calibrated in preparation for its desired ten year science mission studying the Sun. A great deal of activity during this time involved the spacecraft attitude control system (ACS); testing control modes, calibrating sensors and actuators, and using the ACS to help commission the spacecraft instruments and to control the propulsion system as the spacecraft was maneuvered into its final orbit. This paper will discuss the chronology of the SDO launch and commissioning, showing the ACS analysis work performed to diagnose propellant slosh transient and attitude oscillation anomalies that were seen during commissioning, and to determine how to overcome them. The simulations and tests devised to demonstrate correct operation of all onboard ACS modes and the activities in support of instrument calibration will be discussed and the final maneuver plan performed to bring SDO on station will be shown. In addition to detailing these commissioning and anomaly resolution activities, the unique set of tests performed to characterize SDO's on-orbit jitter performance will be discussed.
Space Technology 5 Launch and Operations
NASA Technical Reports Server (NTRS)
O'Donnell, James R.; Concha, Marco A.; Morrissey, James R.; Placanica, Samuel J.; Russo, Angela M.; Tsai, Dean C.
2007-01-01
The three spacecraft that made up the Space Technology 5 (ST5) mission were successfully launched and deployed from their Pegasus launch vehicle on March 22, 2006. Final contact with the spacecraft occurred on June 30, 2006, with all Level 1 requirements met. By the end of the mission, all ST5 technologies had been validated, all on-board attitude control system (ACS) modes had been successfully demonstrated, and the desired constellation configurations had been achieved to demonstrate the ability of small spacecraft to take quality science measurements, However, during those 100 days (ST5 was planned to be a 90-day mission), there were a number of anomalies that made achieving the mission goals very challenging. This paper will discuss: the chronology of the ST5 launch and early operations, work performed to diagnose and work-around a sun sensor anomaly, spacecraft tests devised to demonstrate correct operation of all onboard ACS modes, the maneuver plan performed to achieve the desired constellation, investigations performed by members of the ST5 GN&C and Science teams of an anomalous spin down condition, and the end-of-life orbit and passivating operations performed on the three spacecraft.
Orion Journey to Mars, L-2 Briefing
2014-12-02
At NASA's Kennedy Space Center in Florida, Mike Bolger, program manager of Ground Systems Development and Operations Program, and Chris Crumbly, manager of Space Launch System Spacecraft/Payload Integration and Evolution, were among several agency leaders who spoke to members of the news media about how the first fight of the new Orion spacecraft is a first step in NASA's plans to send humans to Mars. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Aerial photo shows Launch Complex 39 Area
NASA Technical Reports Server (NTRS)
2000-01-01
This aerial photo captures many of the facilities involved in Space Shuttle launches. At center is the Vehicle Assembly Building (VAB), with the Launch Control Center at its right. The curved road on the left in the photo is the newly restored crawlerway leading into the VAB high bay 2, where a mobile launcher platform/crawler-transporter sits. The road restoration and high bay 2 are part of KSC's Safe Haven project, enabling the storage of orbiters during severe weather. The crawlerway also extends from the east side out to the two launch pads, one visible close to the road on the left and one to the left of the VAB. In the distance is the Atlantic Ocean. To the right of the crawlerway is the turn basin, into which ships tow the barge for offloading new external tanks from Louisiana.
The third stage of Lunar Prospector's Athena arrives at LC 46 at CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
The third stage of the Lockheed Martin Athena launch vehicle arrives at Launch Complex 46 at Cape Canaveral Air Station before it is mated to the second stage. The protective covering for safe transportation is removed before the third stage is lifted on the launch pad. Athena is scheduled to carry the Lunar Prospector spacecraft for an 18-month mission that will orbit the Earth's moon to collect data from the lunar surface. Scientific experiments to be conducted by the Prospector include locating water ice that may exist near the lunar poles, gathering data to understand the evolution of the lunar highland crust and the lunar magnetic field, finding radon outgassing events, and describing the lunar gravity field by means of Doppler tracking. The launch is now scheduled for early-January 1998.
2014-11-12
CAPE CANAVERAL, Fla. - The Orion spacecraft and its transporter stand at the base of the service structure at Space Launch Complex 37. A crane inside the structure will lift Orion off its transporter to hoist it into place atop the Delta IV Heavy rocket that is already assembled at the pad. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014, atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: Photo credit: NASA/Frankie Martin
Aircraft measurements of electrified clouds at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Jones, J. J.; Winn, W. P.; Hunyady, S. J.; Moore, C. B.; Bullock, J. W.
1990-01-01
The space-vehicle launch commit criteria for weather and atmospheric electrical conditions in us at Cape Canaveral Air Force Station and Kennedy Space Center (KSC) have been made restrictive because of the past difficulties that have arisen when space vehicles have triggered lightning discharge after their launch during cloudy weather. With the present ground-base instrumentation and our limited knowledge of cloud electrification process over this region of Florida, it has not been possible to provide a quantitative index of safe launching conditions. During the fall of 1988, a Schweizer 845 airplane equipped to measure electric field and other meteorological parameters flew over KSC in a program to study clouds defined in the existing launch restriction criteria. All aspects of this program are addressed including planning, method, and results. A case study on the November 4, 1988 flight is also presented.
Ocean Remote Sensing from Chinese Spaceborne Microwave Sensors
NASA Astrophysics Data System (ADS)
Yang, J.
2017-12-01
GF-3 (GF stands for GaoFen, which means High Resolution in Chinese) is the China's first C band multi-polarization high resolution microwave remote sensing satellite. It was successfully launched on Aug. 10, 2016 in Taiyuan satellite launch center. The synthetic aperture radar (SAR) on board GF-3 works at incidence angles ranging from 20 to 50 degree with several polarization modes including single-polarization, dual-polarization and quad-polarization. GF-3 SAR is also the world's most imaging modes SAR satellite, with 12 imaging modes consisting of some traditional ones like stripmap and scanSAR modes and some new ones like spotlight, wave and global modes. GF-3 SAR is thus a multi-functional satellite for both land and ocean observation by switching the different imaging modes. TG-2 (TG stands for TianGong, which means Heavenly Palace in Chinese) is a Chinese space laboratory which was launched on 15 Sep. 2016 from Jiuquan Satellite Launch Centre aboard a Long March 2F rocket. The onboard Interferometric Imaging Radar Altimeter (InIRA) is a new generation radar altimeter developed by China and also the first on orbit wide swath imaging radar altimeter, which integrates interferometry, synthetic aperture, and height tracking techniques at small incidence angles and a swath of 30 km. The InIRA was switch on to acquire data during this mission on 22 September. This paper gives some preliminary results for the quantitative remote sensing of ocean winds and waves from the GF-3 SAR and the TG-2 InIRA. The quantitative analysis and ocean wave spectra retrieval have been given from the SAR imagery. The image spectra which contain ocean wave information are first estimated from image's modulation using fast Fourier transform. Then, the wave spectra are retrieved from image spectra based on Hasselmann's classical quasi-linear SAR-ocean wave mapping model and the estimation of three modulation transfer functions (MTFs) including tilt, hydrodynamic and velocity bunching modulation. The wind speed is retrieved from InIRA data using a Ku-band low incidence backscatter model (KuLMOD), which relates the backscattering coefficients to the wind speeds and incidence angles. The ocean wave spectra are retrieved linearly from image spectra which extracted first from InIRA data, using a similar procedure for GF-3 SAR data.
Hubble (HST) hardware is inspected in PHSF
NASA Technical Reports Server (NTRS)
1999-01-01
In the Payload Hazardous Servicing Facility, part of the servicing equipment for the third Hubble Space Telescope Servicing Mission (SM-3A), STS-103, is given a black light inspection. The hardware is undergoing final testing and integration of payload elements. Mission STS-103 is a 'call-up' due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.
1999-11-04
KENNEDY SPACE CENTER, FLA. -- Orbiter Discovery begins its rollover to the Vehicle Assembly Building (in the background) after leaving the Orbiter Processing Facility bay 1. Launch date for Discovery on mission STS-103, the third Hubble Space Telescope servicing mission, is under review for early December. The mission is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode
1999-08-25
In the Payload Hazardous Servicing Facility, a worker gives a black light inspection to part of the servicing equipment for the third Hubble Space Telescope Servicing Mission (SM-3A), STS-103. The hardware is undergoing final testing and integration of payload elements. Mission STS-103 is a "call-up" due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review
1999-08-25
In the Payload Hazardous Servicing Facility, part of the servicing equipment for the third Hubble Space Telescope Servicing Mission (SM-3A), STS-103, is given a black light inspection. The hardware is undergoing final testing and integration of payload elements. Mission STS-103 is a "call-up" due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review
1999-11-04
KENNEDY SPACE CENTER, FLA. -- Orbiter Discovery is moved from the Orbiter Processing Facility bay 1 (at left) to the Vehicle Assembly Building for mating with an external tank and solid rocket boosters. Launch date for Discovery on mission STS-103, the third Hubble Space Telescope servicing mission, is under review for early December. The mission is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode
Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences
NASA Technical Reports Server (NTRS)
Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.
2003-01-01
The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.
NASA Technical Reports Server (NTRS)
Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.
2015-01-01
An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.
Refinements in the Design of the Ares V Cargo Launch Vehicle for NASA's, Exploration Strategy
NASA Technical Reports Server (NTRS)
Creech, Steve
2008-01-01
NASA is developing a new launch vehicle fleet to fulfill the national goals of replacing the shuttle fleet, completing the International Space Station (ISS), and exploring the Moon on the way to eventual exploration of Mars and beyond. Programmatic and technical decisions during early architecture studies and subsequent design activities were focused on safe, reliable operationally efficient vehicles that could support a sustainable exploration program. A pair of launch vehicles was selected to support those goals the Ares I crew launch vehicle and the Ares V cargo launch vehicle. They will be the first new human-rated launch vehicles developed by NASA in more than 30 years (Figure 1). Ares I will be the first to fly, beginning space station ferry operations no later than 2015. It will be able to carry up to six astronauts to ISS or support up to four astronauts for expeditions to the moon. Ares V is scheduled to be operational in the 2020 timeframe and will provide the propulsion systems and payload to truly extend human exploration beyond low-Earth orbit. (LEO).
The law applicable to the use of space for commercial activities
NASA Technical Reports Server (NTRS)
Hosenball, S. N.
1983-01-01
The general principles of space law that have an impact on commercial space activities are discussed. The Outer Space Treaty guaranteed the right of private enterprise in space, with jurisdiction over the participating parties residing in the country of origin. The liability for damages caused to a third party is also assigned to the country of origin. Government consent is necessary in the U.S. before a private firm is permitted to launch an object into space, with the relevant statute sections being part of the Arms Export Control Act; launches are legally treated as exports. FAA regulations define the safe area and flight conditions that must be satisfied for a private launch, although NASA, in the 1958 act which formed the agency, potentialy has the power to regulate space launch activities. The DoD must be notified of any launches in order to notify the U.S.S.R., filings must be made with the Bureau of Alcohol, Tobacco, and Firearms, and fees must be paid to the IRS. It is presently U.S. government policy to encourage and facilitate private sector development of commercial launch services.
2014-10-13
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, preparations are underway to remove the window covers on Orion before the fourth and final Ogive panel is installed around the spacecraft and Launch Abort System. The Ogive panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Ben Smegelsky
2014-10-13
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a crane brings the fourth and final Ogive panel closer for installation on Orion's Launch Abort System. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-10-12
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, technicians have installed two of the four Ogive panels on Orion's Launch Abort System. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-10-11
CAPE CANAVERAL, Fla. – The first of four Ogive panels is lifted by crane for installation on Orion's Launch Abort System inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-10-13
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a window cover has been carefully removed from the Orion spacecraft before the fourth and final Ogive panel is installed around the spacecraft and Launch Abort System. The Ogive panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Ben Smegelsky
2014-10-13
CAPE CANAVERAL, Fla. – Technicians on work platforms monitor the progress as a crane brings the third of four Ogive panels closer for installation on Orion's Launch Abort System inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Ben Smegelsky
2014-10-12
CAPE CANAVERAL, Fla. – Technicians on work platforms continue the installation of four Ogive panels on Orion's Launch Abort System inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper
2014-10-11
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a crane moves the first of four Ogive panels closer for installation on Orion's Launch Abort System. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-10-13
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, a crane brings the third of four Ogive panels closer for installation on Orion's Launch Abort System. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Ben Smegelsky
2014-10-13
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, technicians attach the third of four Ogive panels on Orion's Launch Abort System. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Ben Smegelsky
2014-10-13
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, technicians attach the third of four Ogive panels on Orion's Launch Abort System. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Ben Smegelsky
2014-10-13
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, a technician carefully removes the window covers on Orion before the fourth and final Ogive panel is installed around the spacecraft and Launch Abort System. The Ogive panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Ben Smegelsky
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels is secured on a storage stand at the other end of the facility. Technicians monitor the progress as the second panel is being moved to join the first panel on the storage stand. To the right is the Launch Abort system secured on a work stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-10-11
CAPE CANAVERAL, Fla. – The first of four Ogive panels is lifted by crane for installation on Orion's Launch Abort System inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. The panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
NASA Technical Reports Server (NTRS)
Dye, James E.; Krider, E. Phillip; Merceret, Francis J.; Willett, John C.; Bateman, Monte G.; Mach, Douglas M.; Walterscheid, Richard; O'Brien, T. Paul; Christian, Hugh J.
2008-01-01
Ascending space vehicles are vulnerable to both natural and triggered lightning. Launches under the jurisdiction of the United States are generally subject to a set of rules called the Lightning Launch Commit Criteria (LLCC) (Krider etal., 1999; Krider etal., 2006). The LLCC protect both the vehicle and the public by assuring that the launch does not take place in conditions posing a significant risk of a lightning strike to the ascending vehicle. Such a strike could destroy the vehicle and its payload, thus causing failure of the mission while releasing both toxic materials and debris. To assure safety, the LLCC are conservative and sometimes they may seriously limit the ability of the launch operator to fly as scheduled even when conditions are benign. In order to safely reduce the number of launch scrubs and delays attributable to the LLCC, the Airborne Field Mill (ABFM II) program was undertaken in 2000 - 2001. The effort was directed to collecting detailed high-quality data on the electrical, microphysical, radar and meteorological properties of thunderstorm-associated clouds. Details may be found in Dye et al., 2007. The expectation was that this additional knowledge would provide a better physical basis for the LLCC and allow them to be revised to be less restrictive while remaining at least as safe. That expectation was fulfilled, leading to significant revisions to the LLCC in 2003 and 2005. The 2005 revisions included the application of a new radar-derived quantity called the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) in the rules governing flight through anvil clouds. VAHIRR is the product of the volume averaged radar reflectivity times the radardetermined cloud thickness. The reflectivity average extends horizontally 5 km west, east, south and north of a point along the flight track and vertically from the 0 C isotherm to the top of the radar cloud. This region is defined as the "Specified Volume". See Dye et al., 2006 and Merceret et al., 2006 for a more thorough description of VAHIRR. The units are dBZ km (not dBZ per kilometer) and the threshold is 10 dBZ km. It is safe to fly through an anvil cloud for which VAHIRR is below this threshold everywhere along the flight track as long as (1) the entire cloud within 5 nmi. (9.26 km) of the flight track is colder than 0 C, (2) the points at which VAHIRR must be evaluated are at least 20 km from any active convective cores and recent lightning, and (3) the radar return is not being attenuated within the Specified Volume around those points.
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2006-01-01
The U.S. Vision for Space Exploration directs NASA to design and develop a new generation of safe, reliable, and cost-effective transportation systems to hlfill the Nation s strategic goals and objectives. These launch vehicles will provide the capability for astronauts to conduct scientific exploration that yields new knowledge from the unique vantage point of space. American leadership in opening new fi-ontiers will improve the quality of life on Earth for generations to come. The Exploration Launch Projects office is responsible for delivering the Crew Launch Vehicle (CLV) that will loft the Crew Exploration Vehicle (CEV) into low-Earth orbit (LEO) early next decade, and for the heavy lift Cargo Launch Vehicle (CaLV) that will deliver the Lunar Surface Access Module (LSAM) to LEO for astronaut return trips to the Moon by 2020 in preparation for the eventual first human footprint on Mars. Crew travel to the International Space Station will be made available as soon possible after the Space Shuttle retires in 2010.
NASA Technical Reports Server (NTRS)
Santiago-Perez, Julio
1988-01-01
The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.
NASA Astrophysics Data System (ADS)
Santiago-Perez, Julio
1988-10-01
The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels has been secured on a stand at the far end of the facility. Technicians monitor the progress as a crane lifts the second panel to move it to the storage stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels is secured on a storage stand at the other end of the facility. The second panel is being lifted by crane and technicians are monitoring the progress as it is being moved to the storage stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels has been secured on a stand at the far end of the facility. Technicians assist as a crane is attached to the second panel for lifting and moving to the storage stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels has been secured on a stand at the far end of the facility. Technicians assist as a crane is attached to the second panel for lifting and moving to the storage stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-04-17
CAPE CANAVERAL, Fla. - The second set of Ogive panels for the Orion Launch Abort System have arrived at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the Ogive panels has been uncrated and has been lowered by crane onto a work stand for storage. To the left are the first two Ogive panels positioned on a work stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-04-17
CAPE CANAVERAL, Fla. - The second set of Ogive panels for the Orion Launch Abort System have arrived at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the Ogive panels has been uncrated and is being moved by crane for placement on a work stand. In the foreground is the first set of two Ogive panels positioned on a work stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-04-16
CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels has been secured on a stand at the far end of the facility while technicians prepare to lift the second panel to move it to the storage stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper
2014-11-10
CAPE CANAVERAL, Fla. – In the Kennedy Space Center’s Press Site auditorium, agency leaders spoke to members of the news media as the completed Orion spacecraft was being prepared for its trip from the Launch Abort System Facility to Launch Complex 37 at Cape Canaveral Air Force Station. From left are: Mike Curie of NASA Public Affairs, Kennedy Director Bob Cabana, Johnson Space Center Director Ellen Ochoa, NASA Orion Program manager Mark Geyer, and Lockheed Martin Orion Program manager Mike Hawes. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett
2011-09-07
CAPE CANAVERAL, Fla. -- At Space Launch Complex 17B on Cape Canaveral Air Force Station, the United Launch Alliance Delta II rocket that will launch NASA's Gravity Recovery and Interior Laboratory mission is ready for launch. Preparations are under way to roll the mobile service tower away from the rocket. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future lunar vehicles can safely navigate anywhere on the moon’s surface. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
2011-09-08
CAPE CANAVERAL, Fla. -- At Space Launch Complex 17B on Cape Canaveral Air Force Station, the United Launch Alliance Delta II rocket that will launch NASA's Gravity Recovery and Interior Laboratory mission undergoes final preparations for launch. The "rollback" of the mobile service tower began at about 11:20 p.m. EDT Sept. 7. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future lunar vehicles can safely navigate anywhere on the moon’s surface. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber
Li, Wentao; Chen, Danping; Qinling, Zhou; Hu, Lili
2015-01-01
We have demonstrated a 45 μm core diameter Neodymium-doped all-solid silicate glass photonic crystal fiber laser with a single mode laser output. The structure parameters and modes information of the fiber are both demonstrated by theoretical calculations using Finite Difference Time Domain (FDTD) method and experimental measurements. Maximum 0.8 W output power limited by launched pump power has been generated in 1064 nm with laser beam quality factor M2 1.18. PMID:26205850
Airborne Simulation of Launch Vehicle Dynamics
NASA Technical Reports Server (NTRS)
Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.
2014-01-01
In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity-turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is optimized for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using NASA Dryden Flight Research Center's Full-scale Advanced Systems Testbed (FAST), a modified F/A-18 airplane, over a range of scenarios designed to stress the SLS's adaptive augmenting control (AAC) algorithm.
STS-79 crew on flight deck after launch
1996-10-29
STS079-348-004 (16 Sept. 1996) --- Soon after the space shuttle Atlantis completed its rocket mode ascent to Earth-orbit, astronaut Terrence W. Wilcutt, pilot, begins to ready the Orbiter for ten days of orbiting Earth by activating switches on the flight deck's right overhead panel. Though the launch was a nocturnal one, the crew experienced its first sunrise just after Atlantis achieved its orbital posture.
Optical Phenomena Observed upon Some Launches of Russian Rockets
NASA Astrophysics Data System (ADS)
Kozlov, S. I.; Nilolaishvili, S. Sh.; Platov, Yu. V.
2018-01-01
In this paper, unusual optical phenomena observed in our country and abroad upon launches of Russian rockets are discussed and interpreted: they are regarded as the aftereffects of sunlight scattering by gas-dust clouds created by rocket fuel combustion products in different modes of engine operation. The results of instrumental observations of the clouds can be used to study physical processes in the upper atmosphere.
Raman Shifted Nd:YAG Class I Eye-Safe Laser Development 21 January 1986
NASA Astrophysics Data System (ADS)
Nichols, R. W.; Ng, W. K.
1986-07-01
Hughes Aircraft has been developing a hand-held eye-safe laser rangefinder fo1r the Army utilizing Stimulated Raman Scattering technology. The device uses the 2915 cm-1 vibrational mode of methane (CH4) to wavelength shift the Nd:YAG pump laser's 1.064 micron to an eye-safe 1.543 micron. The result is a lightweight BRH Class I eye-safe tactical device. A brief description of Raman wavelength shifting basics is followed by description of the Hughes system.
STS-103 crew pose in front of Pad 39B
NASA Technical Reports Server (NTRS)
1999-01-01
During Terminal Countdown Demonstration Test (TDCT) activities at Launch Pad 39B, the STS-103 crew pose in front of the flame trench, which is situated underneath the Mobile Launcher Platform holding Space Shuttle Discovery. Standing left to right are Mission Specialists Claude Nicollier of Switzerland, who is with the European Space Agency (ESA), C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Pilot Scott J. Kelly, Commander Curtis L. Brown Jr., and Mission Specialists Jean-Frangois Clervoy of France, also with ESA, and Steven L. Smith. One of the solid rocket boosters and the external tank that are attached to Discovery can be seen in the photo. The flame trench is made of concrete and refractory brick, and contains an orbiter flame deflector on one side and solid rocket booster flame deflector on the other. The deflectors protect the flame trench floor and pad surface from the intense heat of launch. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
STS-103 crew practice emergency egress in the slidewire basket
NASA Technical Reports Server (NTRS)
1999-01-01
In the slidewire basket on Launch Pad 39B, STS-103 Mission Specialist C. Michael Foale (Ph.D.) gets ready to pull the lever, which will release the basket. With Foale are fellow crew members Mission Specialists Claude Nicollier of Switzerland and John M. Grunsfeld (Ph.D.). The baskets are part of the emergency egress system for persons in the Shuttle vehicle or on the Rotating Service Structure. Seven slidewires extend from the orbiter access arm, with a netted, flatbottom basket suspended from each wire. The STS-103 crew are taking part in Terminal Countdown Demonstration Test (TCDT) activities in preparation for launch. The other crew members taking part are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, and Jean-Frangois Clervoy of France. Clervoy and Nicollier are with the European Space Agency. The TCDT provides the crew with the emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
1999-11-16
During Terminal Countdown Demonstration Test (TDCT) activities at Launch Pad 39B, the STS-103 crew pose in front of the flame trench, which is situated underneath the Mobile Launcher Platform holding Space Shuttle Discovery. Standing left to right are Mission Specialists Claude Nicollier of Switzerland, who is with the European Space Agency (ESA), C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Pilot Scott J. Kelly, Commander Curtis L. Brown Jr., and Mission Specialists Jean-François Clervoy of France, also with ESA, and Steven L. Smith. One of the solid rocket boosters and the external tank that are attached to Discovery can be seen in the photo. The flame trench is made of concrete and refractory brick, and contains an orbiter flame deflector on one side and solid rocket booster flame deflector on the other. The deflectors protect the flame trench floor and pad surface from the intense heat of launch. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST
Human Mars Mission: Launch Window from Earth Orbit. Pt. 1
NASA Technical Reports Server (NTRS)
Young, Archie
1999-01-01
The determination of orbital window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to the earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a delta V penalty. Usually, because of the delta V penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: 1) One impulsive maneuver from a Highly Elliptical Orbit (HEO); 2) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO); 3) One impulsive maneuver from a Low Earth Orbit (LEO); 4) Two impulsive maneuvers form LEO; and 5) Three impulsive maneuvers form LEO. The formulation of these five different launch window modes provides a rapid means of generating realistic parametric data for space exploration studies. Also the formulation provides vector and geometrical data sufficient for use as a good starting point in detail trajectory analysis based on calculus of variations, steepest descent, or parameter optimization program techniques.
CALIPSO Instrument Operational
Atmospheric Science Data Center
2014-03-05
... being briefly in data acquisition mode, the CALIPSO payload computer (PLC) was commanded OFF due to another solar event earlier this ... remain above the 10MeV threshold for laser operations. Science data is not acquired while the payload is in SAFE mode. ...
Mass Analyzers Facilitate Research on Addiction
NASA Technical Reports Server (NTRS)
2012-01-01
The famous go/no go command for Space Shuttle launches comes from a place called the Firing Room. Located at Kennedy Space Center in the Launch Control Center (LCC), there are actually four Firing Rooms that take up most of the third floor of the LCC. These rooms comprise the nerve center for Space Shuttle launch and processing. Test engineers in the Firing Rooms operate the Launch Processing System (LPS), which is a highly automated, computer-controlled system for assembly, checkout, and launch of the Space Shuttle. LPS monitors thousands of measurements on the Space Shuttle and its ground support equipment, compares them to predefined tolerance levels, and then displays values that are out of tolerance. Firing Room operators view the data and send commands about everything from propellant levels inside the external tank to temperatures inside the crew compartment. In many cases, LPS will automatically react to abnormal conditions and perform related functions without test engineer intervention; however, firing room engineers continue to look at each and every happening to ensure a safe launch. Some of the systems monitored during launch operations include electrical, cooling, communications, and computers. One of the thousands of measurements derived from these systems is the amount of hydrogen and oxygen inside the shuttle during launch.
2014-12-02
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, Chris Crumbly, manager of Space Launch System Spacecraft/Payload Integration and Evolution, was one of several agency leaders who spoke to member of the news media about how the first flight of the new Orion spacecraft is a first step in the agency's plans to send humans to Mars. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett
2013-05-14
CAPE CANAVERAL, Fla. -- Inside the Launch Equipment Test Facility at NASA’s Kennedy Space in Florida, a second firing of the escape hold down post has occurred during a pyrotechnic bolt test on the Orion ground test vehicle. Lockheed Martin performed tests over a series of days on the explosive bolts that separate Orion from the launch abort system. Data was collected on the effect of shock waves on Orion during the explosive bolt separation. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
A buoyant tornado-probe concept incorporating an inverted lifting device. [and balloon combination
NASA Technical Reports Server (NTRS)
Grant, F. C.
1973-01-01
Addition of an inverted lifting device to a simple balloon probe is shown to make possible low-altitude entry to tornado cores with easier launch conditions than for the simple balloon probe. Balloon-lifter combinations are particularly suitable for penetration of tornadoes with average to strong circulation, but tornadoes of less than average circulation which are inaccessible to simple balloon probes become accessible. The increased launch radius which is needed for access to tornadoes over a wide range of circulation results in entry times of about 3 minutes. For a simple balloon probe the uninflated balloon must be first dropped on, or near, the track of the tornado from a safe distance. The increase in typical launch radius from about 0.75 kilometer to slightly over 1.0 kilometer with a balloon-lifter combination suggests that a direct air launch may be feasible.
2014-11-06
CAPE CANAVERAL, Fla. – In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Jeremy Graeber, Orion Recovery Director in Ground Systems Development and Operations at Kennedy. Also participating in the news conference are Bryan Austin, Lockheed Martin mission manager, left, and Ron Fortson, United Launch Alliance director of Mission Management. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett
NASA's Space Launch System (SLS): A New National Capability
NASA Technical Reports Server (NTRS)
May, Todd A.
2012-01-01
The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new national capability for human space flight and scientific missions to low- Earth orbit (LEO) and beyond. Exploration beyond Earth orbit will be an enduring legacy to future generations, confirming America s desire to explore, learn, and progress. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and science experiments for missions beyond Earth s orbit. This paper gives an overview of the SLS design and management approach against a backdrop of the missions it will empower. It will detail the plan to move from the computerized drawing board to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range national capability.
Orion Pad Abort 1 GN and C Design and Development
NASA Technical Reports Server (NTRS)
Medina, Edgar A.; Stachowiak, Susan J.
2010-01-01
The first flight test of the Orion Abort Flight Test project is scheduled to launch in Spring 2010. This flight test is known as Pad Abort 1 (PA-1) and it is intended to accomplish a series of flight test objectives, including demonstrating the capability of the Launch Abort System (LAS) to propel the Crew Module (CM) to a safe distance from a launch vehicle during a pad abort. The PA-1 Flight Test Article (FTA) is actively controlled by a guidance, navigation, and control (GN&C) system for much of its flight. The purpose of this paper is to describe the design, development, and analysis of the PA-1 GN&C system. A description of the technical solutions that were developed to meet the challenge of satisfying many competing requirements is presented. A historical perspective of how the Orion LAV compares to the Apollo Launch Escape Vehicle (LEV) design will also be included.
2011-09-08
CAPE CANAVERAL, Fla. -- Launch preparations are under way as dawn breaks at Space Launch Complex 17B on Cape Canaveral Air Force Station for NASA's Gravity Recovery and Interior Laboratory mission aboard a United Launch Alliance Delta II Heavy rocket. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future lunar vehicles can safely navigate anywhere on the moon’s surface. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA
2009-04-27
CAPE CANAVERAL, Fla. –– At the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41, the Atlas V first stage is being raised to a vertical position. The Atlas will be lifted into the VIF. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett
2009-04-27
CAPE CANAVERAL, Fla. –– At the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41, cranes are attached to the Atlas V first stage to raise it to vertical. The Atlas will be lifted into the VIF. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett
2009-04-27
CAPE CANAVERAL, Fla. –– At the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41, the Atlas V first stage is being raised to a vertical position. The Atlas will be lifted into the VIF. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett
Boomerang families and failure-to-launch: Commentary on adult children living at home.
Burn, Katherine; Szoeke, Cassandra
2016-01-01
With a shifting economic climate and changes in social norms, young adults are increasingly reported to be living with their parents, either through delayed launch or by launch and return. For young adults grappling with financial and domestic independence, the family home can represent a safe haven; however, living with parents can also pose a threat to autonomy and self-image as they strive for adult status. Parents, on the other hand, are often beleaguered by the economic and emotional demands of their dependent adult children and struggle to maintain their own independence. The roles and expectations of both parties need to be redefined in order to achieve optimal household functioning. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Delta Mariner arrival with EFT-1 Booster
2014-03-03
CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner enters Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
Delta Mariner arrival with EFT-1 Booster
2014-03-03
CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner is secured to the dock in Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
Delta Mariner arrival with EFT-1 Booster
2014-03-03
CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner prepares to dock in Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
Delta Mariner arrival with EFT-1 Booster
2014-03-03
CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner approaches the mouth of Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
Delta Mariner arrival with EFT-1 Booster
2014-03-03
CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner nears the dock in Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
Delta Mariner arrival with EFT-1 Booster
2014-03-03
CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner glides past the jetties as it enters Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
Delta Mariner arrival with EFT-1 Booster
2014-03-03
CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner travels through Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
Delta Mariner arrival with EFT-1 Booster
2014-03-03
CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner docks in Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Mark Geyer, NASA Orion Program manager. Also participating in the news conference are Bill Hill, NASA deputy associate administrator for Exploration Systems Development, left, and Bryan Austin, Lockheed Martin mission manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Conceptual designs study for a Personnel Launch System (PLS)
NASA Technical Reports Server (NTRS)
Wetzel, E. D.
1990-01-01
A series of conceptual designs for a manned, Earth to Low Earth Orbit transportation system was developed. Non-winged, low L/D vehicle shapes are discussed. System and subsystem trades emphasized safety, operability, and affordability using near-term technology. The resultant conceptual design includes lessons learned from commercial aviation that result in a safe, routine, operationally efficient system. The primary mission for this Personnel Launch System (PLS) would be crew rotation to the SSF; other missions, including satellite servicing, orbital sortie, and space rescue were also explored.
Airframe Technology Development for Next Generation Launch Vehicles
NASA Technical Reports Server (NTRS)
Glass, David E.
2004-01-01
The Airframe subproject within NASA's Next Generation Launch Technology (NGLT) program has the responsibility to develop airframe technology for both rocket and airbreathing vehicles for access to space. The Airframe sub-project pushes the state-of-the-art in airframe technology for low-cost, reliable, and safe space transportation. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas being addressed include design and integration, hot and integrated structures, cryogenic tanks, and thermal protection systems. Each of the technologies in these areas are discussed in this paper.
2009-06-30
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, Marshall Smith, the Ares I-X Systems Engineering and Integration chief, reviews consensus for stacking and mating of the I-X upper stage segments with the management team. Launch of the Ares I-X flight test is targeted no earlier than Aug. 30 from Launch Pad 39B. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Photo credit: NASA/Dimitri Gerondidakis
Spaceflight Ground Support Equipment Reliability & System Safety Data
NASA Technical Reports Server (NTRS)
Fernandez, Rene; Riddlebaugh, Jeffrey; Brinkman, John; Wilkinson, Myron
2012-01-01
Presented were Reliability Analysis, consisting primarily of Failure Modes and Effects Analysis (FMEA), and System Safety Analysis, consisting of Preliminary Hazards Analysis (PHA), performed to ensure that the CoNNeCT (Communications, Navigation, and Networking re- Configurable Testbed) Flight System was safely and reliably operated during its Assembly, Integration and Test (AI&T) phase. A tailored approach to the NASA Ground Support Equipment (GSE) standard, NASA-STD-5005C, involving the application of the appropriate Requirements, S&MA discipline expertise, and a Configuration Management system (to retain a record of the analysis and documentation) were presented. Presented were System Block Diagrams of selected GSE and the corresponding FMEA, as well as the PHAs. Also discussed are the specific examples of the FMEAs and PHAs being used during the AI&T phase to drive modifications to the GSE (via "redlining" of test procedures, and the placement of warning stickers to protect the flight hardware) before being interfaced to the Flight System. These modifications were necessary because failure modes and hazards were identified during the analysis that had not been properly mitigated. Strict Configuration Management was applied to changes (whether due to upgrades or expired calibrations) in the GSE by revisiting the FMEAs and PHAs to reflect the latest System Block Diagrams and Bill Of Material. The CoNNeCT flight system has been successfully assembled, integrated, tested, and shipped to the launch site without incident. This demonstrates that the steps taken to safeguard the flight system when it was interfaced to the various GSE were successful.
Unit Testing and Remote Display Development
NASA Technical Reports Server (NTRS)
Costa, Nicholas
2014-01-01
The Kennedy Space Center is currently undergoing an extremely interesting transitional phase. The final Space Shuttle mission, STS-135, was completed in July of 2011. NASA is now approaching a new era of space exploration. The development of the Orion Multi- Purpose Crew Vehicle (MPCV) and the Space Launch System (SLS) launch vehicle that will launch the Orion are currently in progress. An important part of this transition involves replacing the Launch Processing System (LPS) which was previously used to process and launch Space Shuttles and their associated hardware. NASA is creating the Spaceport Command and Control System (SCCS) to replace the LPS. The SCCS will be much simpler to maintain and improve during the lifetime of the spaceflight program that it will support. The Launch Control System (LCS) is a portion of the SCCS that will be responsible for launching the rockets and spacecraft. The Integrated Launch Operations Applications (ILOA) group of SCCS is responsible for creating displays and scripts, both remote and local, that will be used to monitor and control hardware and systems needed to launch a spacecraft. It is crucial that the software contained within be thoroughly tested to ensure that it functions as intended. Unit tests must be written in Application Control Language (ACL), the scripting language used by LCS. These unit tests must ensure complete code coverage to safely guarantee there are no bugs or any kind of issue with the software.
On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide
Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang
2015-01-01
We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236
14 CFR 417.7 - Public safety responsibility.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Public safety responsibility. 417.7 Section 417.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... safety responsibility. A launch operator is responsible for ensuring the safe conduct of a licensed...
14 CFR 417.7 - Public safety responsibility.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Public safety responsibility. 417.7 Section 417.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... safety responsibility. A launch operator is responsible for ensuring the safe conduct of a licensed...
... an NIH-supported clinical trial was launched to test a modified HIV vaccine. This current vaccine trial, called HVTN 702, is testing whether an experimental vaccine regimen safely prevents HIV infection among South African adults. Learn more in this blog post and in the video below. /* // ** // */ Why Do We ...
Curiosity's Autonomous Surface Safing Behavior Design
NASA Technical Reports Server (NTRS)
Neilson, Tracy A.; Manning, Robert M.
2013-01-01
The safing routines on all robotic deep-space vehicles are designed to put the vehicle in a power and thermally safe configuration, enabling communication with the mission operators on Earth. Achieving this goal is made a little more difficult on Curiosity because the power requirements for the core avionics and the telecommunication equipment exceed the capability of the single power source, the Multi-Mission Radioisotope Thermoelectric Generator. This drove the system design to create an operational mode, called "sleep mode", where the vehicle turns off most of the loads in order to charge the two Li-ion batteries. The system must keep the vehicle safe from over-heat and under-heat conditions, battery cell failures, under-voltage conditions, and clock failures, both while the computer is running and while the system is sleeping. The other goal of a safing routine is to communicate. On most spacecraft, this simply involves turning on the receiver and transmitter continuously. For Curiosity, Earth is above the horizon only a part of the day for direct communication to the Earth, and the orbiter overpass opportunities only occur a few times a day. The design must robustly place the Rover in a communicable condition at the correct time. This paper discusses Curiosity's autonomous safing behavior and describes how the vehicle remains power and thermally safe while sleeping, as well as a description of how the Rover communicates with the orbiters and Earth at specific times.
Launch and Early Orbit Operations for CryoSat-2
NASA Astrophysics Data System (ADS)
Mardel, Nic; Marchese, Franco
2010-12-01
CryoSat-2 was launched from Baikonur on 8th of April 2010 aboard a modified Dnepr ICBM, the so-called SS18 Satan. Following the ascent and separation from the launch vehicle the Flight Operations Segment (FOS) in ESOC, Darmstadt started the operations to configure the satellite into the correct mode to acquire science; switching on units, configuring software and ensuring that the satellite health and performance was as expected. This paper will describe the operations performed by the FOS during the first weeks in orbit, including the unexpected problems encountered, their implications and solutions.
NASA Technical Reports Server (NTRS)
Hanson, Curt
2014-01-01
An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.
Analysis and Design of Launch Vehicle Flight Control Systems
NASA Technical Reports Server (NTRS)
Wie, Bong; Du, Wei; Whorton, Mark
2008-01-01
This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.
Stockburger, Martin; Boveda, Serge; Moreno, Javier; Da Costa, Antoine; Hatala, Robert; Brachmann, Johannes; Butter, Christian; Garcia Seara, Javier; Rolando, Mara; Defaye, Pascal
2015-01-01
Aim Right ventricular pacing (VP) has been hypothesized to increase the risk in heart failure (HF) and atrial fibrillation (AF). The ANSWER study evaluated, whether an AAI-DDD changeover mode to minimize VP (SafeR) improves outcome compared with DDD in a general dual-chamber pacemaker population. Methods and results ANSWER was a randomized controlled multicentre trial assessing SafeR vs. standard DDD in sinus node disease (SND) or AV block (AVB) patients. After a 1-month run-in period, they were randomized (1 : 1) and followed for 3 years. Pre-specified co-primary end-points were VP and the composite of hospitalization for HF, AF, or cardioversion. Pre-specified secondary end-points were cardiac death or HF hospitalizations and cardiovascular hospitalizations. ANSWER enrolled 650 patients (52.0% SND, 48% AVB) at 43 European centres and randomized in SafeR (n = 314) or DDD (n = 318). The SafeR mode showed a significant decrease in VP compared with DDD (11.5 vs. 93.6%, P < 0.0001 at 3 years). Deaths and syncope did not differ between randomization arms. No significant difference between groups [HR = 0.78; 95% CI (0.48–1.25); P = 0.30] was found in the time to event of the co-primary composite of hospitalization for HF, AF, or cardioversion, nor in the individual components. SafeR showed a 51% risk reduction (RR) in experiencing cardiac death or HF hospitalization [HR = 0.49; 95% CI (0.27–0.90); P = 0.02] and 30% RR in experiencing cardiovascular hospitalizations [HR = 0.70; 95% CI (0.49–1.00); P = 0.05]. Conclusion SafeR safely and significantly reduced VP in a general pacemaker population though had no effect on hospitalization for HF, AF, or cardioversion, when compared with DDD. PMID:25179761
Advanced Guidance and Control for Hypersonics and Space Access
NASA Technical Reports Server (NTRS)
Hanson, John M.; Hall, Charles E.; Mulqueen, John A.; Jones, Robert E.
2003-01-01
Advanced guidance and control (AG&C) technologies are critical for meeting safety, reliability, and cost requirements for the next generation of reusable launch vehicle (RLV), whether it is fully rocket-powered or has air- breathing components. This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies could have saved a RLV with the same failure mode, the additional vehicle problems where t h i s technology applies, and the costs and time associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is the point where we can look to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AWC, current technology efforts, and the additional work needed for making this goal a reality. There are a number of approaches to AG&C that have the potential for achieving the desired goals. For some of these methods, we compare the results of tests designed to demonstrate the achievement of the goals. Tests up to now have been focused on rocket-powered vehicles; application to hypersonic air-breathers is planned. We list the test cases used to demonstrate that the desired results are achieved, briefly describe an automated test scoring method, and display results of the tests. Some of the technology components have reached the maturity level where they are ready for application to a new vehicle concept, while others are not far along in development.
STS-103 crew look over payload inside Discovery
NASA Technical Reports Server (NTRS)
1999-01-01
Members of the STS-103 crew, with representatives from Goddard Space Flight Center, look over the Hubble servicing cargo in the payload bay of Space Shuttle Discovery at Launch Pad 39B. From left are Mission Specialist Steven L. Smith and Claude Nicollier of Switzerland; Steve Pataki and Dave Southwick, with Goddard; and Mission Commander Curtis L. Brown Jr. Inspecting the payload is part of the Terminal Countdown Demonstration Test (TCDT), which also provides the crew with emergency egress training and a simulated countdown exercise. Other crew members taking part in the TCDT are Pilot Scott J. Kelly, and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Jean- Fran'''ois Clervoy of France. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
1999-11-13
KENNEDY SPACE CENTER, FLA. -- Towering atop the mobile launcher platform and crawler transporter, Space Shuttle Discovery negotiates a turn in the crawlerway on its trek from the Vehicle Assembly Building to Launch Pad 39B. While at the pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the STS-103 launch targeted for Dec. 6, 1999, at 2:37 a.m. EST. The mission is a "call-up" due to the need to replace portions of the pointing system the gyros which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be installing a Fine Guidance Sensor, a new enhanced computer, a solid-state digital recorder, and a new spare transmitter to replace older equipment, and replacing degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The STS-103 crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, Mission Specialist Steven L. Smith, Mission Specialist C. Michael Foale (Ph.D.), Mission Specialist John M. Grunsfeld (Ph.D.), and Mission Specialist Claude Nicollier of Switzerland, and Mission Specialist Jean-François Clervoy of France, both with the European Space Agency
1999-11-13
KENNEDY SPACE CENTER, FLA. -- Under low clouds and fog, Space Shuttle Discovery makes its trek along the stretch of crawlerway between the Vehicle Assembly Building and Launch Pad 39B atop the mobile launcher platform and crawler transporter. Once at the pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the STS-103 launch targeted for Dec. 6, 1999, at 2:37 a.m. EST. The mission is a "call-up" due to the need to replace portions of the pointing system the gyros which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be installing a Fine Guidance Sensor, a new enhanced computer, a solid-state digital recorder, and a new spare transmitter to replace older equipment, and replacing degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The STS-103 crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, Mission Specialist Steven L. Smith, Mission Specialist C. Michael Foale (Ph.D.), Mission Specialist John M. Grunsfeld (Ph.D.), and Mission Specialist Claude Nicollier of Switzerland, and Mission Specialist Jean-François Clervoy of France, both with the European Space Agency
1999-11-13
KENNEDY SPACE CENTER, FLA. -- Under low clouds and fog, Space Shuttle Discovery makes its trek along the stretch of crawlerway between the Vehicle Assembly Building and Launch Pad 39B atop the mobile launcher platform and crawler transporter. Once at the pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the STS-103 launch targeted for Dec. 6, 1999, at 2:37 a.m. EST. The mission is a "call-up" due to the need to replace portions of the pointing system the gyros which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be installing a Fine Guidance Sensor, a new enhanced computer, a solid-state digital recorder, and a new spare transmitter to replace older equipment, and replacing degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The STS-103 crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, Mission Specialist Steven L. Smith, Mission Specialist C. Michael Foale (Ph.D.), Mission Specialist John M. Grunsfeld (Ph.D.), and Mission Specialist Claude Nicollier of Switzerland, and Mission Specialist Jean-François Clervoy of France, both with the European Space Agency.
Tethered Satellite System (TSS-1R)-Post Flight (STS-75) Engineering Performance Report
NASA Technical Reports Server (NTRS)
Lavoie, Anthony R.
1996-01-01
The first mission of the Tethered Satellite deployer was flown onboard Atlantis in 1992 during the Space Transportation System (STS) flight STS-46. Due to a mechanical interference with the level wind mechanism the satellite was only Deployed to 256 m rather than the planned 20,000 m. Other problems were also experienced during the STS-46 flight and several modifications were made to the Deployer and Satellite. STS-75 was a reflight of the Tethered Satellite System 1 (TSS-1) designated as Tethered Satellite System 1 Reflight (TSS-1 R) onboard Columbia. As on STS-46, the TSS payload consisted of the Deployer, the Satellite, 3 cargo bay mounted experiments: Shuttle Electrodynamic Tether System (SETS), Shuttle Potential and Return Electron Experiment (SPREE), Deployer Core Equipment (DCORE) 4 Satellite mounted experiments: Research on Electrodynamics Tether Effects (RETE), Research on Orbital Plasma Electrodynamics (ROPE), Satellite Core Instruments (SCORE), Tether Magnetic Field Experiment (TEMAG) and an aft flight deck camera: Tether Optical Phenomena Experiment (TOP). Following successful pre-launch, launch and pre-deployment orbital operations, the Deployer deployed the Tethered Satellite to 19,695 m at which point the tether broke within the Satellite Deployment Boom (SDB). The planned length for On-Station I (OST1) was 20,700 m The Satellite flew away from the Orbiter with the tether attached. The satellite was "safed" and placed in a limited power mode via the RF link. The Satellite was contacted periodically during overflights of ground stations. Cargo bay science activities continued for the period of time allocated to TSS-1 R operations.
Approaches to Improve the Performances of the Sea Launch System Performances
NASA Astrophysics Data System (ADS)
Tatarevs'kyy, K.
2002-01-01
The paper dwells on the outlines of the techniques of on-line pre-launch analysis on possibility of safe and reliable LV launch off floating launch system, when actual launch conditions (weather, launcher motion parameters) are beyond design limitations. The technique guarantees to follow the take-off LV trajectory limitations (the shock-free launch) and allows the improvement of the operat- ing characteristics of the floating launch systems at the expense of possibility to authorize the launch even if a number of weather and launcher motion parameters restrictions are exceeded. This paper ideas are applied for LV of Zenit-type launches off tilting launch platform, operative within Sea Launch. The importance, novelty and urgency of the approach under consideration is explained by the fact that the application during floating launch systems operation allows the bringing down of the num- ber of weather-conditioned launch abort cases. And this, in its part, increases the trustworthiness of the mission fulfillment on specific spacecraft injection, since, in the long run, the launch abort may cause the crossing of allowable wait threshold and accordingly the mission abort. All previous launch kinds for these LV did not require the development of the special technique of pre-launch analysis on launch possibility, since weather limitations for stationary launcher condi- tions are basically reduced to the wind velocity limitations. This parameter is reliably monitored and is sure to influence the launch dynamics. So the measured wind velocity allows the thorough picture on the possibility of the launch off the ground-based launcher. Since the floating launch systems commit complex and continuous movements under the exposure of the wind and the waves, the number of parameters is increased and, combined differently, they do not always make the issue on shockless launch critical. The proposed technique of the pre-launch analysis of the forthcoming launch dynamics with the consideration of the launch conditions (weather, launcher motion parameters, actual LV and carried SC performance) allow the evaluation of the actual combination of launch environment influence on the possibility of shockless launch. On the basis of the analysis the launch permissibility deci- sion is taken, even if some separate parameters are beyond the design range.
Generation of noninductive current by electron-Bernstein waves on the COMPASS-D Tokamak.
Shevchenko, V; Baranov, Y; O'Brien, M; Saveliev, A
2002-12-23
Electron-Bernstein waves (EBW) were excited in the plasma by mode converted extraordinary (X) waves launched from the high field side of the COMPASS-D tokamak at different toroidal angles. It has been found experimentally that X-mode injection perpendicular to the magnetic field provides maximum heating efficiency. Noninductive currents of up to 100 kA were found to be driven by the EBW mode with countercurrent drive. These results are consistent with ray tracing and quasilinear Fokker-Planck simulations.
The Laser Guide Star System for Adaptive Optics at Subaru Telescope
NASA Astrophysics Data System (ADS)
Hayano, Y.; Saito, Y.; Ito, M.; Saito, N.; Akagawa, K.; Takazawa, A.; Ito, M.; Wada, S.; Takami, H.; Iye, M.
We report on the current status of developing the new laser guide star (LGS) system for the Subaru adaptive optics (AO) system. We have three major subsystems: the laser unit, the relay optical fiber and the laser launching telescope. A 4W-class all-solid-state 589nm laser has been developed as a light source for sodium laser guide star. We use two mode-locked Nd:YAG lasers operated at the wavelength of 1064nm and 1319nm to generate sum-frequency conversion into 589nm. The side-LD pumped configuration is used for the mode-locked Nd:YAG lasers. We have carefully considered the thermal lens effect in the cavity to achieve a high beam quality with TEM00; M2 = 1.06. The mode-locked frequency is selected at 143 MHz. We obtained the output powers of 16.5 W and 5.0 W at 1064nm and 1319 nm. Sum frequency generated by mixing two synchronized Nd:YAG mode-locked pulsed beams is precisely tuned to the sodium D2 line by thermal control of the etalon in the 1064nm Nd:YAG laser by observing the maximum fluorescence intensity of heated sodium vapor cell. The maximum output power at 589.159 nm reaches to 4.6 W using a PPMgOSLT crystal as a nonlinear optical crystal. And the output power can be maintained within a stability of +/- 1.2% for more than 3 days without optical damage. We developed a single-mode photonic crystal fiber (PCF) to relay the laser beam from laser clean room, in which the laser unit is located on the Nasmyth platform, to the laser launching telescope mounted behind the secondary mirror of Subaru Telescope. The photonic crystal fiber has solid pure silica core with the mode field diameter of 14 micron, which is relatively larger than that of the conventional step-index type single mode fiber. The length of the PCF is 35m and transmission loss due to the pure silica is 10dB/km at 589nm, which means PCF transmits 92% of the laser beam. We have preliminary achieved 75% throughput in total. Small mode-locked pulse width in time allows us to transmit the high-power laser beam with no suffer from the non-linear scatter effect, i.e. stimulated Brillouin scatter, in the PCF. The laser launching telescope (LLT) has an output clear aperture as 50 cm. It is classical Cassegrain type optical configuration with tertiary mirror to insert the laser beam from the side. The wavefront error is designed to be 60 to 70nm. The LLT is a copy product what European Southern Observatory has been designed for the laser guide star system at Very Large Telescope. We succeeded to launch the laser beam to the sky on October 12, 2006. After several tests on the sky, we succeeded to get an image of the laser guide star with the size of more than 10 arc second. The larger size of the laser guide star is caused by the large optical aberration on the primary mirror of LLT due to the heat stress generated at the trigonal support points. We are making a plan to repair this problem during June and the second laser launching test will start around this summer.
A Dual Launch Robotic and Human Lunar Mission Architecture
NASA Technical Reports Server (NTRS)
Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David
2010-01-01
This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.
ATE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions
NASA Astrophysics Data System (ADS)
Wei, Pei-Kuen; Wang, Way-Seen
1994-02-01
A new TE-TM mode splitter with an asymmetric Y-junction structure fabricated by diffusing different materials into y-cut lithium niobate is presented. Randomly polarized light launched into a titanium indiffused waveguide is split into TE and TM modes by two different single-polarization waveguides. The ordinary-polarized waveguide is made by nickel indiffusion and the extraordinary-polarized waveguide by magnesium-oxide induced lithium outdiffusion. The measured extinction ratios are greater than 20 dB for both TE and TM modes. The devices operate over a wide wavelength range and have a large fabrication tolerance.
Simulation Assisted Risk Assessment: Blast Overpressure Modeling
NASA Technical Reports Server (NTRS)
Lawrence, Scott L.; Gee, Ken; Mathias, Donovan; Olsen, Michael
2006-01-01
A probabilistic risk assessment (PRA) approach has been developed and applied to the risk analysis of capsule abort during ascent. The PRA is used to assist in the identification of modeling and simulation applications that can significantly impact the understanding of crew risk during this potentially dangerous maneuver. The PRA approach is also being used to identify the appropriate level of fidelity for the modeling of those critical failure modes. The Apollo launch escape system (LES) was chosen as a test problem for application of this approach. Failure modes that have been modeled and/or simulated to date include explosive overpressure-based failure, explosive fragment-based failure, land landing failures (range limits exceeded either near launch or Mode III trajectories ending on the African continent), capsule-booster re-contact during separation, and failure due to plume-induced instability. These failure modes have been investigated using analysis tools in a variety of technical disciplines at various levels of fidelity. The current paper focuses on the development and application of a blast overpressure model for the prediction of structural failure due to overpressure, including the application of high-fidelity analysis to predict near-field and headwinds effects.
Hybrid propulsion for launch vehicle boosters: A program status update
NASA Technical Reports Server (NTRS)
Carpenter, R. L.; Boardman, T. A.; Claflin, S. E.; Harwell, R. J.
1995-01-01
Results obtained in studying the origin and suppression of large-amplitude pressure oscillations in a 24 in. diameter hybrid motor using a liquid oxygen/hydroxylterminated polybutadiene/polycyclopentadiene propellant system are discussed. Tests conducted with liquid oxygen flow rates varying from 10 to 40 lbm/sec were designed to gauge the effectiveness of various vaporization chamber flow fields, injector designs, and levels of heat addition in suppressing high-frequency longitudinal mode oscillations. Longitudinal acoustic modes did not arise in any tests. However, initial testing revealed the presence of high-amplitude, sinusoidal, nonacoustic oscillations persisting throughout the burn durations. Analysis showed this to be analogous to chug mode instability in liquid rocket engines brought about by a coupling of motor combustion processes and the liquid oxygen feed system. Analytical models were developed and verified by test data to predict the amplitude and frequency of feed-system-coupled combustion pressure oscillations. Subsequent testing showed that increasing the feed system impedance eliminated the bulk mode instability. This paper documents the work completed to date in performance of the Hybrid Propulsion Technology for Launch Vehicle Boosters Program (NAS8-39942) sponsored by NASA's George C. Marshall Space Flight Center.
Apollo 14 Crew Receive Greetings Inside the Mobile Quarantine Facility
NASA Technical Reports Server (NTRS)
1971-01-01
Apollo 14 astronauts listen to official greetings from the Mobile Quarantine Facility aboard the USS New Orleans following their safe return from the third manned lunar landing mission. Pictured (from left to right) are Stuart A. Roosa, Command Module pilot ; Alan B. Shepard, Jr., Mission commander; and Edgar D. Mitchell, Lunar Module pilot. The Apollo 14 crew launched from launch complex 39A at the Kennedy Space Center on January 31, 1971 and safely returned to Earth on February 9, 1971. It was the first manned landing in exploration of the lunar highlands, and it demonstrated pinpoint landing capability. The major goal of Apollo 14 was the scientific exploration of the Moon in the foothills of the rugged Fra Mauro region. The extravehicular activity (EVA) of astronauts Shepard and Mitchell included setting up an automated scientific laboratory called Apollo Lunar Scientific Experiments Package (ALSEP), and collecting a total of about 95 pounds (43 kilograms) of Moon rock and soil for a geological investigation back on the Earth.
Inherently Safe Fission Power System for Lunar Outposts
NASA Astrophysics Data System (ADS)
Schriener, Timothy M.; El-Genk, Mohamed S.
2013-09-01
This paper presents the Solid Core-Sectored Compact Reactor (SC-SCoRe) and power system for future lunar outposts. The power system nominally provides 38 kWe continuously for 21 years, employs static components and has no single point failures in reactor cooling or power generation. The reactor core has six sectors, each has a separate pair of primary and secondary loops with liquid NaK-56 working fluid, thermoelectric (TE) power conversion and heat-pipes radiator panels. The electromagnetic (EM) pumps in the primary and secondary loops, powered with separate TE power units, ensure operation reliability and passive decay heat removal from the reactor after shutdown. The reactor poses no radiological concerns during launch, and remains sufficiently subcritical, with the radial reflector dissembled, when submerged in wet sand and the core flooded with seawater, following a launch abort accident. After 300 years of storage below grade on the Moon, the total radioactivity in the post-operation reactor drops below 164 Ci, a low enough radioactivity for a recovery and safe handling of the reactor.
The Effects of Propellant Slosh Dynamics on the Solar Dynamics Observatory
NASA Technical Reports Server (NTRS)
Mason, Paul; Starin, Scott R.
2011-01-01
The Solar Dynamics Observatory (SDO) mission, which is part of the Living With a Star program, was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. SDO is an Explorer-class mission now operating in a geosynchronous orbit (GEO). The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station located in White Sands, New Mexico. A significant portion of SDO's launch mass was propellant, contained in two large tanks. To ensure performance with this level of propellant, a slosh analysis was performed. This paper provides an overview of the SDO slosh analysis, the on-orbit experience, and the lessons learned. SDO is a three-axis controlled, single fault tolerant spacecraft. The attitude sensor complement includes sixteen coarse Sun sensors, a digital Sun sensor, three two-axis inertial reference units, two star trackers, and four guide telescopes. Attitude actuation is performed either using four reaction wheels or eight thrusters, depending on the control mode, along with single main engine which nominally provides velocity-change thrust. The attitude control software has five nominal control modes: three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the Attitude Control Electronics (ACE) box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. To achieve and maintain a geosynchronous orbit for a 2974-kilogram spacecraft in a cost effective manner, the SDO team designed a high-efficiency propulsive system. This bi-propellant design includes a 100-pound-force main engine and eight 5-pound-force attitude control thrusters. The main engine provides high specific impulse for the maneuvers to attain GEO, while the smaller Attitude Control System (ACS) thrusters manage the disturbance torques of the larger main engine and provide the capability for much smaller orbit adjustment burns. SDO's large solar profile produces a large solar torque disturbance and momentum buildup. This buildup drives the frequency of momentum unloads via ACS thrusters. SDO requires 1409 kilograms (which is approximately half the launch mass) of propellant to achieve and maintain the GEO orbit while performing the momentum unloads for 10 years.
2012-10-19
VAN HORN, Texas – Blue Origin’s pusher escape system rockets its New Shepard crew capsule away from a simulated propulsion module launch pad at the company's West Texas launch site, demonstrating a key safety system for both suborbital and orbital flights. The pad escape test took the company's suborbital crew capsule to an altitude of 2,307 feet during the flight test before descending safely by parachute to a soft landing 1,630 feet away. The pusher escape system was designed and developed by Blue Origin to allow crew escape in the event of an emergency during any phase of ascent for its suborbital New Shepard system. As part of an incremental development program, the results of this test will shape the design of the escape system for the company's orbital biconic-shaped Space Vehicle. The system is expected to enable full reusability of the launch vehicle, which is different from NASA's previous launch escape systems that would pull a spacecraft away from its rocket before reaching orbit. The test was part of Blue Origin's work supporting its funded Space Act Agreement with NASA during Commercial Crew Development Round 2 CCDev2). Through initiatives like CCDev2, NASA is fostering the development of a U.S. commercial crew space transportation capability with the goal of achieving safe, reliable and cost-effective access to and from the International Space Station and low-Earth orbit. After the capability is matured and available to the government and other customers, NASA could contract to purchase commercial services to meet its station crew transportation needs. For more information, visit www.nasa.gov/commercialcrew. Image credit: Blue Origin
Airborne Simulation of Launch Vehicle Dynamics
NASA Technical Reports Server (NTRS)
Miller, Christopher J.; Orr, Jeb S.; Hanson, Curtis E.; Gilligan, Eric T.
2015-01-01
In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is configured for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight-test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Fullscale Advanced Systems Testbed (FAST), a modified F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois), over a range of scenarios designed to stress the SLS's Adaptive Augmenting Control (AAC) algorithm.
2014-10-03
CAPE CANAVERAL, Fla. – The launch abort system is lowered by crane for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-10-03
CAPE CANAVERAL, Fla. – The launch abort system is lowered by crane for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-10-13
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, a technician on a work platform carefully removes the window covers on Orion before the fourth and final Ogive panel is installed around the spacecraft and Launch Abort System. The Ogive panels will smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future. The work marked the final major assembly steps for the spacecraft before it is transported to Space Launch Complex 37 at Cape Canaveral Air Force Station in November. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Ben Smegelsky
2014-10-03
CAPE CANAVERAL, Fla. – A crane is used to lift and move the launch abort system for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-10-03
CAPE CANAVERAL, Fla. – A crane is used to move the launch abort system closer for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-10-03
CAPE CANAVERAL, Fla. – A crane is used to lower the launch abort system closer for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
The First Year in Review: NASA's Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.; Reuter, James L.
2007-01-01
The U.S. Vision for Space Exploration guides NASA's challenging missions of scientific discovery.' Developing safe, reliable, and affordable space transportation systems for the human and robotic exploration of space is a key component of fulfilling the strategic goals outlined in the Vision, as well as in the U.S. Space Policy. In October 2005, the Exploration Systems Mission Directorate and its Constellation Program chartered the Exploration Launch Projects Office, located at the Marshall Space Flight Center, to design, develop, test, and field a new generation of launch vehicles that would fulfill customer and stakeholder requirements for trips to the Moon, Mars, and beyond. The Ares I crew launch vehicle is slated to loft the Orion crew exploration vehicle to orbit by 2014, while the heavy-lift Ares V cargo launch vehicle will deliver the lunar lander to orbit by 2020 (Fig. 1). These systems are being designed to empower America's return to the Moon to prepare for the first astronaut on Mars. The new launch vehicle designs now under study reflect almost 50 years of hard-won experience gained from the Saturn's missions to the Moon in the late 1960s and early 1970s, and from the venerable Space Shuttle, which is due to be retired by 2010.
Chernozub, A; Radchenko, Y
2015-01-01
The paper presents the results of research, allowing to establish the need for and feasibility of an integrated method to determine the most effective but at the same time safe modes of load to the body troops. We found that despite the rather promising application of our proposed mode of load of high intensity (Ra = 0.71) to increase the level of physical military training as soon as possible in time of peace (with a minimum set of combat equipment), problematic issue is that in most cases there is a complete-mismatch achieved in the degree of physical development of the body of military requirements and the challenges posed in terms of direct hostilities. Using the integral method developed by us we determine the safest modes of exercise for the military servants to optimize the most appropriate parameters of volume and intensity of the load, and speed up the adaptive changes in their body to enhance maximum performance at this stage of preparation.
2011-03-01
VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit arrives to the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB
2011-03-01
VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit arrives to the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB
2008-05-14
CAPE CANAVERAL, Fla. -- In a U.S. Coast Guard rescue boat off Florida's central east coast, participants in a rescue training exercise, known as Mode VIII, put on astronauts' launch-and-entry suits. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- Participants in a rescue training exercise, known as Mode VIII, are successfully launched from a U.S. Coast Guard rescue boat off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- Participants in a rescue training exercise, known as Mode VIII, are successfully launched from a U.S. Coast Guard rescue boat off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- Participants in a rescue training exercise, known as Mode VIII, are successfully launched from a U.S. Coast Guard rescue boat off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
Antibiotics in the clinical pipeline in 2013.
Butler, Mark S; Blaskovich, Mark A; Cooper, Matthew A
2013-10-01
The continued emergence of multi-drug-resistant bacteria is a major public health concern. The identification and development of new antibiotics, especially those with new modes of action, is imperative to help treat these infections. This review lists the 22 new antibiotics launched since 2000 and details the two first-in-class antibiotics, fidaxomicin (1) and bedaquiline (2), launched in 2011 and 2012, respectively. The development status, mode of action, spectra of activity, historical discovery and origin of the drug pharmacophore (natural product, natural product derived, synthetic or protein/mammalian peptide) of the 49 compounds and 6 β-lactamase/β-lactam combinations in active clinical development are discussed, as well as compounds that have been discontinued from clinical development since 2011. New antibacterial pharmacophore templates are also reviewed and analyzed.
2008-05-14
CAPE CANAVERAL, Fla. -- In a U.S. Coast Guard rescue boat off Florida's central east coast, participants in a rescue training exercise, known as Mode VIII, are ready to be launched into the Atlantic Ocean. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
2008-05-14
CAPE CANAVERAL, Fla. -- In a U.S. Coast Guard rescue boat off Florida's central east coast, participants in a rescue training exercise, known as Mode VIII, put on astronauts' launch-and-entry suits. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
Space-borne polarimetric SAR sensors or the golden age of radar polarimetry
NASA Astrophysics Data System (ADS)
Pottier, E.
2010-06-01
SAR Polarimetry represents an active area of research in Active Earth Remote Sensing. This interest is clearly supported by the fact that nowadays there exists, or there will exist in a very next future, a non negligible quantity of launched Polarimetric SAR Spaceborne sensors. The ENVISAT satellite, developed by ESA, was launched on March 2002, and was the first Spaceborne sensor offering an innovative dualpolarization Advanced Synthetic Aperture Radar (ASAR) system operating at C-band. The second Polarimetric Spaceborne sensor is ALOS, a Japanese Earth-Observation satellite, developed by JAXA and was launched in January 2006. This mission includes an active L-band polarimetric radar sensor (PALSAR) whose highresolution data may be used for environmental and hazard monitoring. The third Polarimetric Spaceborne sensor is TerraSAR-X, a new German radar satellite, developed by DLR, EADS-Astrium and Infoterra GmbH, was launched on June 2007. This sensor carries a dual-polarimetric and high frequency X-Band SAR sensor that can be operated in different modes and offers features that were not available from space before. At least, the Polarimetric Spaceborne sensor, developed by CSA and MDA, and named RADARSAT-2 was launched in December 2007 The Radarsat program was born out the need for effective monitoring of Canada’s icy waters, and some Radarsat-2 capabilities that benefit sea- and river ice applications are the multi-polarization options that will improve ice-edge detection, ice-type discrimination and structure information. The many advances in these different Polarimetric Spaceborne platforms were developed to respond to specific needs for radar data in environmental monitoring applications around the world, like : sea- and river-ice monitoring, marine surveillance, disaster management, oil spill detection, snow monitoring, hydrology, mapping, geology, agriculture, soil characterisation, forestry applications (biomass, allometry, height…), urban mapping etc…. In order to promote the exploitation of Polarimetric Spaceborne data, as it is starting today to proliferate with the launch of these Polarimetric SAR sensors, the PolSARpro Software, developed under contract to ESA and that is a toolbox for the scientific exploitation of Polarimetric SAR and Polarimetric-Interferometric data and a tool for high-level education in radar polarimetry, has been expanded and refined to include all elements necessary for the demonstration of a number of key applications. The PolSARpro Software, that already was supporting an important range of airborne and spaceborne polarimetric data sources, supports now the following additional data sources: ALOS-PALSAR (Dual-Pol fine mode and Quad-Pol mode), TerraSAR-X (Dual-pol mode) and Radarsat-2 (Dual-Pol fine mode and Quad-Pol fine and standard modes), by offering a platform dedicated interface for E.O Scientific Investigator. A number of illustrations of key applications has been developed for the demonstration and the promotion of the Polarimetric Spaceborne missions, that are consistent with the activities incorporated in the GMES Services Element (GSE). The aim of this communication is to present the current state of the art in SAR Polarimetry ranging from theory to applications, with special emphasis in the analysis of data provided by the new Polarimetric Spaceborne SAR sensors, and samples of real polarimetric data will be presented for use in real-life examples of key applications.
Khan, Saba N; Chatterjee, Sudip K; Chaudhuri, Partha Roy
2015-02-20
We report here the controlled generation of a linearly polarized first-order azimuthally asymmetric beam (F-AAB) in a dual-mode fiber (DMF) by appropriate superposition of selectively excited zeroth-order vector modes that are doughnut-shaped azimuthally symmetric beams (D-ASBs). We first demonstrate continually switching polarization mode structures having an identical two-lobe intensity profile (i.e., intra-F-AAB conversion). Then, under a distinct launching state, we generate mode structures progressively toggling between the doughnut-shaped profile and two-lobe pattern having dissimilar polarization orientations (i.e., F-AAB to D-ASB conversion). Interestingly, a decentralized elliptical Gaussian beam possessing homogenous spatial polarization is obtained by enhancing the contribution of the fundamental mode (HE11/LP01) in selectively excited F-AAB. A smoothly varying azimuth of the input beam in this situation resulted in redistribution of transverse energy procuring a unique and exciting unconventional two-grain T-polarized beam having mutually orthogonal state of polarization (SOP). All of the above three were achieved under a given set of launching conditions (tilt/offset) of a Gaussian mode (TEM00) devised with changing SOP of the input beam. A strong modulation in the output beam characteristics was also observed with the variation in propagation distance (for a fixed input SOP) owing to the large difference in propagation constants of the participating modes (LP01 and one of the F-AABs). Finally, this particular study led to a design for a low-cost highly sensitive strain measuring device based on tracking the centroid movement of the output intensity pattern. Each of our experimentally observed intensity/polarization distributions is theoretically mapped on a one-to-one basis considering a linear superposition of appropriately excited LP basis modes of the waveguide toward a complete understanding of the polarization and mode propagation in the dual-mode structure.
Life Cycle Cost Assessments for Military Transatmospheric Vehicles,
1997-01-01
earth orbit (GEO) that fall within the Titan-IV heavy launch vehicle (HLV) class are outside the practical design limits for a marketable RLV SSTO ...information is from the RAND-hosted TAV Workshop. Three SSTO concepts for X-33 were proposed during Phase I, all with either different takeoff or landing...1996 indicated some observed general differences in vehicles depending on the launch and landing modes:4 • Single stage to orbit ( SSTO ) TAVs for
2011-09-08
CAPE CANAVERAL, Fla. -- At Space Launch Complex 17B on Cape Canaveral Air Force Station, the United Launch Alliance Delta II rocket that will launch NASA's Gravity Recovery and Interior Laboratory mission towers over the U.S. flag painted on the pad's structure. The mobile service tower has been rolled away from the vehicle for launch. The "rollback" began at about 11:20 p.m. EDT Sept. 7. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future lunar vehicles can safely navigate anywhere on the moon’s surface. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
2011-09-08
CAPE CANAVERAL, Fla. – At Space Launch Complex 17B on Cape Canaveral Air Force Station, the United Launch Alliance Delta II heavy rocket that will launch NASA's Gravity Recovery and Interior Laboratory spacecraft is rolled back around to the mobile service tower after the first launch attempt was scrubbed due to upper-level winds. GRAIL is scheduled for another launch attempt Sept.10 at 8:29:45 a.m. EDT. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Ken Thornsley
2011-09-08
CAPE CANAVERAL, Fla. – At Space Launch Complex 17B on Cape Canaveral Air Force Station, the United Launch Alliance Delta II heavy rocket that will launch NASA's Gravity Recovery and Interior Laboratory spacecraft is rolled back around to the mobile service tower after the first launch attempt was scrubbed due to upper-level winds. GRAIL is scheduled for another launch attempt Sept.10 at 8:29:45 a.m. EDT. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Ken Thornsley
2011-09-08
CAPE CANAVERAL, Fla. – At Space Launch Complex 17B on Cape Canaveral Air Force Station, the United Launch Alliance Delta II heavy rocket that will launch NASA's Gravity Recovery and Interior Laboratory spacecraft is rolled back around to the mobile service tower after the first launch attempt was scrubbed due to upper-level winds. GRAIL is scheduled for another launch attempt Sept.10 at 8:29:45 a.m. EDT. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Ken Thornsley
2011-09-08
CAPE CANAVERAL, Fla. – At Space Launch Complex 17B on Cape Canaveral Air Force Station, the United Launch Alliance Delta II heavy rocket that will launch NASA's Gravity Recovery and Interior Laboratory spacecraft is rolled back around to the mobile service tower after the first launch attempt was scrubbed due to upper-level winds. GRAIL is scheduled for another launch attempt Sept.10 at 8:29:45 a.m. EDT. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Ken Thornsley
2011 Mars Science Laboratory Mission Design Overview
NASA Technical Reports Server (NTRS)
Abilleira, Fernando
2010-01-01
Scheduled to launch in the fall of 2011 with arrival at Mars occurring in the summer of 2012, NASA's Mars Science Laboratory will explore and assess whether Mars ever had conditions capable of supporting microbial life. In order to achieve its science objectives, the Mars Science Laboratory will be equipped with the most advanced suite of instruments ever sent to the surface of the Red Planet. Delivering the next mobile science laboratory safely to the surface of Mars has various key challenges derived from a strict set of requirements which include launch vehicle performance, spacecraft mass, communications coverage during Entry, Descent, and Landing, atmosphere-relative entry speeds, latitude accessibility, and dust storm season avoidance among others. The Mars Science Laboratory launch/arrival strategy selected after careful review satisfies all these mission requirements.
2013-05-13
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, Lockheed Martin crews begin uncovering the Orion ground test vehicle in the Launch Equipment Test Facility, or LETF. The GTA was moved from the Operations and Checkout Facility to the LETF for a series of pyrotechnic bolt tests. The GTA is being used for path finding operations in the O&C, including simulated manufacturing and assembly procedures. Launching atop NASA's heavy-lift Space Launch System SLS, which also is under development, the Orion Multi-Purpose Crew Vehicle MPCV will serve as the exploration vehicle that will carry astronaut crews beyond low Earth orbit. It also will provide emergency abort capabilities, sustain the crew during space travel and provide safe re-entry from deep space return velocities. For more information, visit www.nasa.gov/orion. Photo credit: Jim Grossman
2013-05-13
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, Lockheed Martin crews uncover the Orion ground test vehicle in the Launch Equipment Test Facility, or LETF. The GTA was moved from the Operations and Checkout Facility to the LETF for a series of pyrotechnic bolt tests. The GTA is being used for path finding operations in the O&C, including simulated manufacturing and assembly procedures. Launching atop NASA's heavy-lift Space Launch System SLS, which also is under development, the Orion Multi-Purpose Crew Vehicle MPCV will serve as the exploration vehicle that will carry astronaut crews beyond low Earth orbit. It also will provide emergency abort capabilities, sustain the crew during space travel and provide safe re-entry from deep space return velocities. For more information, visit www.nasa.gov/orion. Photo credit: Jim Grossman
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test by Mark Geyer, NASA Orion Program manager. Also participating in the news conference are Bryan Austin, Lockheed Martin mission manager, center, and Jeremy Graeber, Orion Recovery Director in Ground Systems Development and Operations at Kennedy. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration
NASA Technical Reports Server (NTRS)
Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki
2015-01-01
NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.
Kennedy Space Center Medical Operations and Medical Kit
NASA Technical Reports Server (NTRS)
Scarpa, Philip
2011-01-01
This slide presentation reviews the emergency medical operations at Kennedy Space center, the KSC launch and landing contingency modes, the triage site, the medical kit, and the medications available.
NASA Astrophysics Data System (ADS)
Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya
2015-02-01
Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.
Mice Drawer System (MDS): procedures performed on-orbit during experiment phase
NASA Astrophysics Data System (ADS)
Ciparelli, Paolo; Falcetti, Giancarlo; Tenconi, Chiara; Pignataro, Salvatore; Cotronei, Vittorio
Mice Drawer System is a payload that can be integrated inside the Space Shuttle middeck during transportation to/from the ISS, and inside the Express Rack in the ISS during experi-ment execution. It is designed to perform experiment as much automatically as possible; only maintenance activities require procedures involving crew. The first MDS experiment has been performed with Shuttle STS-128, launched in August, 28 2009 at EDT time 23:58 (06:58 Italian time). During the permanence in the Shuttle, MDS was switched on in SURVIVAL mode, cooled by air from rear part of the middeck: this mode allows to supply water and night-and-day cycles to mice in automatic mode, but not food that was supplied ad libitum before launch by a dedicated food bar inserted inside the cage. In this phase, a visual check has been performed every day by crew to verify the well-being of the mice. During the permanence in ISS, MDS was switched on in EXPERIMENT mode, cooled by water from EXPRESS RACK. In this case, MDS experiment was completely automatic: water, food, night-and-day cycles were commanded every day by the payload. Only Maintenance activities to replace consumable items and to fill the potable water reservoir were foreseen and executed by the crew. Food Envelope replacement was foreseen every 19 days, the Waste Filter replacement has been performed every 30 days. Potable Water Reservoir refilling has been performed every 9 days. Nominal activities performed on ISS were also the transfer from Shuttle to ISS and reconfiguration from ascent to on-orbit operation after launch. The reconfiguration from on-orbit to descent and transfer from ISS to Shuttle has been performed before Shuttle undock and landing.
NASA Astrophysics Data System (ADS)
Schultz, Eric D.; Wilde, Paul D.
2013-09-01
For the International Space Station (ISS), it can take 6 to 24 hours to reliably catalog a newly disposed upper stage and up to 33 hours to plan and execute an avoidance maneuver. This creates a gap in the existing collision risk protection for newly launched vehicles, which covers the period when these launched objects are still under propulsive control; specifically, upper stage separation plus 100 minutes for most missions. This gap results in a vulnerability of the ISS from the end of current "Launch Collision Avoidance (COLA)" protection until approximately launch plus 56 hours.In order to help mitigate this gap, conjunction analyses are being developed that identify launch times when the disposed upper stage could violate safe separation distances from the ISS. Launch window cut-out times can be determined from the analysis and implemented to protect the ISS.The COLA Gap is considered to be a risk to ISS operations and vehicle safety. Methods can be used to mitigate the risk, but the criteria and process need to be established and developed in order to reduce operational disruptions and potential risk to ISS vehicle. New requirements and analytical methods can close the current COLA gap with minimal impact to typical launch windows for Geo-Transfer Orbit (GTO) and direct injection missions. Also, strategies can be established to produce common standards in the U.S. and the world to close the current Launch COLA gap.
Walsh, James; Böcking, Till; Gaus, Katharina
2017-01-01
Modern fluorescence microscopy requires software-controlled illumination sources with high power across a wide range of wavelengths. Diode lasers meet the power requirements and combining multiple units into a single fiber launch expands their capability across the required spectral range. We present the NicoLase, an open-source diode laser combiner, fiber launch, and software sequence controller for fluorescence microscopy and super-resolution microscopy applications. Two configurations are described, giving four or six output wavelengths and one or two single-mode fiber outputs, with all CAD files, machinist drawings, and controller source code openly available. PMID:28301563
Large Diameter Shuttle Launched-AEM (LDSL-AEM) study
NASA Technical Reports Server (NTRS)
1976-01-01
A technical description of a Large Diameter Shuttle Launched-AEM (LDSL-AEM), an AEM base module adapted to carry 5 ft diameter payloads in the shuttle with propulsion for carrying payloads to higher altitude orbits from a 150 NM shuttle orbit, is described. The AEM is designed for launch on the scout launch vehicle. Onboard equipment provides capability to despin, acquire the earth, and control the vehicle in an earth pointing mode using reaction wheels for torque with magnets for all attitude acquisition, wheel desaturation, and nutation damping. Earth sensors in the wheels provide pitch and roll attitude. This system provides autonomous control capability to 1 degree in pitch and roll and 2 degrees in yaw. The attitude can be determined to .5 degrees in pitch and roll and 2 degrees in yaw.
Sewry, Nicola; Verhagen, Evert; Lambert, Mike; van Mechelen, Willem; Brown, James
2017-11-03
Rugby has a high injury incidence and therefore BokSmart introduced the Safe Six injury prevention programme in 2014 in an attempt to decrease this incidence. In 2015, BokSmart used a 'targeted marketing approach' to increase the awareness and knowledge of the Safe Six . Therefore, the aim of this study was to determine the change in the knowledge of coaches and players of the Safe Six programme, compared with the launch year, following a 'targeted marketing approach'. Ecological cross-sectional questionnaire study SETTING: The 2014-2016 South African rugby union youth week tournaments. Questionnaires were completed by 4502 players and coaches who attended any of the four youth week tournaments during 2014-2016. Logistic regression (adjusted OR, 95% CI) was performed in comparison to year prior to targeted marketing, separately for coaches and players, for changes in awareness and knowledge. The awareness of the Safe Six increased significantly for players in 2015 (1.74 times (95% CI 1.49 to 2.04)) and in 2016 (1.54 times (95% CI 1.29 to 1.84)). Similarly for coaches, there was a 3.55 times (95% CI 1.23 to 9.99) increase in 2015 and a 10.11 times (95% CI 2.43 to 42.08) increase in 2016 compared with 2014. Furthermore, a player was significantly more likely to be aware of the Safe Six if his coach was aware of the programme (p<0.05). The knowledge and awareness of the BokSmart Safe Six of both players and coaches increased in 2015 and 2016 (compared with 2014) since the launch of the programme. Coaches, the Unions/the South African Rugby Union and social media were the largest contributors to knowledge in coaches and players. While the 'targeted marketing approach' was associated with an increase in awareness, future studies should determine if this translates into behavioural change. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Davis, Susan R.; Askins, Bruce R.; Salyer, Blaine H.
2008-01-01
The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was lost during launch. Subsequent analyses indicated that had a GVT been conducted on the vehicle, problems with vehicle modes and control may have been discovered and corrected, avoiding loss of the vehicle/mission. This paper will address GVT planning, set-up, conduction and analyses, for the Saturn and Shuttle programs, and also focus on the current and on-going planning for the Ares I and V IVGVT.
A Preliminary Assessment of Orbiting Carbon Observatory-2 (OCO-2) Measurements Using TCCON Data
NASA Astrophysics Data System (ADS)
Wennberg, P. O.; Fisher, B.; Roehl, C. M.; Wunch, D.; Osterman, G. B.; Eldering, A.; Naylor, B. J.; Nguyen, H.; Mandrake, L.; O'Dell, C.; Frankenberg, C.; Natraj, V.; Taylor, T.; Smyth, M.; Crisp, D.; Pollock, H. R.; Payne, V.; Gunson, M. R.; Salawitch, R. J.
2014-12-01
The NASA Orbiting Carbon Observatory-2 (OCO-2) successfully launched from Vandenberg Air Force Base in California on July 2, 2014. The mission provides remotely-sensed measurements of the column-averaged dry air mole fraction of carbon dioxide from space. In order to insure the quality of the space-based observations, a detailed validation program was developed for the original OCO mission. During the time period between the original OCO launch failure and the successful launch of OCO-2, that validation methodology was tested and refined using data from the Japanese Greenhouse gases Observing SATellite (GOSAT) as part of the NASA Atmospheric CO2 Observations from Space (ACOS) project. At the core of the OCO-2 validation plan are comparisons of the satellite data to observations from Total Carbon Column Observation Network (TCCON), a network of ground based Fourier Transform Spectrometers. The TCCON instruments provide "ground truth", allowing for determination of bias in the space-based observations. The TCCON observations are, in turn, traceable to the World Meteorological Organization (WMO) standards through aircraft and balloon-borne profile observations at the TCCON locations. OCO-2 is capable of making measurements in three observation modes: nadir; glint; and target. The initial operational mode for OCO-2 alternates between nadir and glint mode every 16 days with target mode observations initiated by commanding the spacecraft to point to specific surface location. Of the 19 locations that can be observed by OCO-2 in target mode, 18 are TCCON sites. The decision to target a specific TCCON site is based on a variety of criteria, including the local weather forecast, the operational status of the station, and the time since previous observation of that site. In addition, the coincidence criteria to utilize in comparison between the satellite and TCCON measurements have been refined during the ACOS project and will be utilized to compare OCO-2 nadir and glint observations with TCCON data. In this presentation, we will show preliminary comparisons between OCO-2 and TCCON, using data from all satellite observing modes.
Hou, Huidan; Xu, Qingkai; Pang, Yaokun; Li, Lei; Wang, Jiulin; Zhang, Chi; Sun, Chunwen
2017-08-01
Storing energy harvested by triboelectric nanogenerators (TENGs) from ambient mechanical motion is still a great challenge for achieving low-cost and environmental benign power sources. Here, an all-solid-state Na-ion battery with safe and durable performance used for efficient storing pulsed energy harvested by the TENG is demonstrated. The solid-state sodium-ion batteries are charged by galvanostatic mode and pulse mode with the TENG, respectively. The all-solid-state sodium-ion battery displays excellent cyclic performance up to 1000 cycles with a capacity retention of about 85% even at a high charge and discharge current density of 48 mA g -1 . When charged by the TENG, an energy conversion efficiency of 62.3% is demonstrated. The integration of TENGs with the safe and durable all-solid-state sodium-ion batteries is potential for providing more stable power output for self-powered systems.
Using Module-Based Learning Methods to Introduce Sustainable Manufacturing in Engineering Curriculum
ERIC Educational Resources Information Center
Sengupta, Debalina; Huang, Yinlun; Davidson, Cliff I.; Edgar, Thomas F.; Eden, Mario R.; El-Halwagi, Mahmoud M.
2017-01-01
Purpose: Sustainable manufacturing may be defined as the creation of manufactured products that use processes that are non-polluting, conserve energy and natural resources, and are economically sound and safe for employees, communities and consumers. Recently, there have been several industrial and governmental endeavors to launch sustainable…
School Climate Measurement and Analysis
ERIC Educational Resources Information Center
Faster, Darlene; Lopez, Daisy
2013-01-01
Today, school climate assessment has become an increasingly important and valued aspect of district, state, and federal policy. Recognizing that effective school climate improvement efforts are grounded in valid and reliable data, the Federal Department of Education launched the Safe and Supportive Schools grant in 2010 to provide 11 states with…
ERIC Educational Resources Information Center
Jones, Rebecca
1998-01-01
In response to growing threat of food-borne illness, the federal government launched the Food Safety Initiative. A key element is the Hazard Analysis Critical Control Points system (HACCP), designed to make everyone in the food-delivery chain responsible for ensuring a safe food supply. The Food and Drug Administration also announced a beef…
Independent Review of the Failure Modes of F-1 Engine and Propellants System
NASA Technical Reports Server (NTRS)
Ray, Paul
2003-01-01
The F-1 is the powerful engine, that hurdled the Saturn V launch vehicle from the Earth to the moon on July 16,1969. The force that lifted the rocket overcoming the gravitational force during the first stage of the flight was provided by a cluster of five F-1 rocket engines, each of them developing over 1.5 million pounds of thrust (MSFC-MAN-507). The F-1 Rocket engine used RP-1 (Rocket Propellant-1, commercially known as Kerosene), as fuel with lox (liquid Oxygen) as oxidizer. NASA terminated Saturn V activity and has focused on Space Shuttle since 1972. The interest in rocket system has been revived to meet the National Launch System (NLS) program and a directive from the President to return to the Moon and exploration of the space including Mars. The new program Space Launch Initiative (SLI) is directed to drastically reduce the cost of flight for payloads, and adopt a reusable launch vehicle (RLV). To achieve this goal it is essential to have the ability of lifting huge payloads into low earth orbit. Probably requiring powerful boosters as strap-ons to a core vehicle, as was done for the Saturn launch vehicle. The logic in favor of adopting Saturn system, a proven technology, to meet the SLI challenge is very strong. The F-1 engine was the largest and most powerful liquid rocket engine ever built, and had exceptional performance. This study reviews the failure modes of the F-1 engine and propellant system.
NASA's Space Launch System Takes Shape: Progress Toward Safe, Affordable Exploration
NASA Technical Reports Server (NTRS)
Askins, Bruce
2014-01-01
Development of NASA's Space Launch System exploration-class heavy lift rocket has moved from the formulation phase to implementation in 3 years and will make significant progress this year toward its first launch, slated for December 2017. In recognition of the current fiscal realities, SLS represents a safe, affordable, and evolutionary path to development of an unprecedented capability for future human and robotic exploration and use of space. Current development is focused on a configuration with a 70 metric ton (t) payload to low Earth orbit (LEO), more than double any operational vehicle. It is this version that will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back, as well as the first crewed Orion flight. This configuration is also designed to evolve to 130 t lift capability that offers several benefits, such as reduced mission costs, simplified payload design, faster trip times, and lower overall risk for missions of national significance. The SLS Program formally transitioned from the formulation phase to implementation during the past year, passing its Preliminary Design Review in 2013 and completion of Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015. Among the Program's many accomplishments are manufacture of core stage test hardware, as well as preparations for testing the world's most powerful solid rocket boosters and the main engines that flew 135 successful Space Shuttle missions. The Program's success to date is due to prudent use of existing technology, infrastructure, and workforce; streamlined management approach; and judicious use of new technologies. The result is a launch vehicle that will carry human and robotic exploration on the history-making missions in the coming decades. This paper will discuss the program and technical successes over the past year and provide a look at the milestones and challenges ahead.
Efficient multi-mode to single-mode coupling in a photonic lantern.
Noordegraaf, Danny; Skovgaard, Peter M W; Nielsen, Martin D; Bland-Hawthorn, Joss
2009-02-02
We demonstrate the fabrication of a high performance multi-mode (MM) to single-mode (SM) splitter or "photonic lantern", first described by Leon-Saval et al. (2005). Our photonic lantern is a solid all-glass version, and we show experimentally that this device can be used to achieve efficient and reversible coupling between a MM fiber and a number of SM fibers, when perfectly matched launch conditions into the MM fiber are ensured. The fabricated photonic lantern has a coupling loss for a MM to SM tapered transition of only 0.32 dB which proves the feasibility of the technology.
2014-11-12
CAPE CANAVERAL, Fla. - Engineers and technicians at Space Launch Complex 37 move Orion into place in the service structure so the spacecraft can be lifted and joined to the top of the Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014, atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion The Multimedia Gallery is undergoing transition to an alternate Web portal. Please go to http://www.flickr.com/NASAKennedy for the latest photos and imagery of activity at NASA's Kennedy Space Center in Florida. The Multimedia Gallery will remain an archive for previous photos and events at Kennedy. Photo credit: Photo credit: NASA/Ben Smegelsky
Flight and Integrated Testing: Blazing the Trail for the Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Taylor, James L.; Cockrell, Charlie; Robinson, Kimberly; Tuma, Margaret L.; Flynn, Kevin C.; Briscoe, Jeri M.
2007-01-01
It has been 30 years since the United States last designed and built a human-rated launch vehicle. The National Aeronautics and Space Administration (NASA) has marshaled unique resources from the government and private sectors that will carry the next generation of astronauts into space safer and more efficiently than ever and send them to the Moon to develop a permanent outpost. NASA's Flight and Integrated Test Office (FITO) located at Marshall Space Flight Center and the Ares I-X Mission Management Office have primary responsibility for developing and conducting critical ground and flight tests for the Ares I and Ares V launch vehicles. These tests will draw upon Saturn and the Space Shuttle experiences, which taught the value of using sound systems engineering practices, while also applying aerospace best practices such as "test as you fly" and other lessons learned. FITO will use a variety of methods to reduce the technical, schedule, and cost risks of flying humans safely aboard a launch vehicle.
NASA Technical Reports Server (NTRS)
Fisher, Bruce D.; Phillips, Michael R.; Maier, Launa M.
1992-01-01
A NASA Langley Research Center Learjet 28 research airplane was flown in various adverse weather conditions in the vicinity of the NASA Kennedy Space Center from 1990-1992 to measure airborne electric fields during the Joint NASA/USAF Airborne Field Mill Program. The objective of this program was to characterize the electrical activity in various weather phenomena common to the NASA-Kennedy area in order to refine Launch Commit Criteria for natural and triggered lightning. The purpose of the program was to safely relax the existing launch commit criteria, thereby increasing launch availability and reducing the chance for weather holds and delays. This paper discusses the operational conduct of the flight test, including environmental/safety considerations, aircraft instrumentation and modification, test limitations, flight procedures, and the procedures and responsibilities of the personnel in the ground station. Airborne field mill data were collected for all the Launch Commit Criteria during two summer and two winter deployments. These data are now being analyzed.
2014-08-19
CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians prepare to do a fit check of the forward bay cover for the Orion crew module. The cover is a shell that fits over Orion's crew module to protect the spacecraft during launch, orbital flight and re-entry into Earth's atmosphere. When Orion returns from space, the cover must be jettisoned high above the ground so that the parachutes can deploy and unfurl. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-08-19
CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians prepare to do a fit check of the forward bay cover for the Orion crew module. The cover is a shell that fits over Orion's crew module to protect the spacecraft during launch, orbital flight and re-entry into Earth's atmosphere. When Orion returns from space, the cover must be jettisoned high above the ground so that the parachutes can deploy and unfurl. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-08-19
CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians prepare to do a fit check of the forward bay cover for the Orion crew module. The cover is a shell that fits over Orion's crew module to protect the spacecraft during launch, orbital flight and re-entry into Earth's atmosphere. When Orion returns from space, the cover must be jettisoned high above the ground so that the parachutes can deploy and unfurl. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
Orion Flight Test Preview Briefing
2014-11-06
In the Kennedy Space Center’s Press Site auditorium, members of the news media are briefed on the upcoming Orion flight test. From left are: Rachel Kraft, NASA Public Affairs, Bill Hill, NASA deputy associate administrator for Exploration Systems Development, Mark Geyer, NASA Orion Program manager, Bryan Austin, Lockheed Martin mission manager, Jeremy Graeber, Operations Integration Branch of Ground Systems Development and Operations at Kennedy, and Ron Fortson, United Launch Alliance director of Mission Management. Mike Sarafin, NASA's lead flight director, participated by video from the Johnson Space Center. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2010-10-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller
2011-09-06
CAPE CANAVERAL, Fla. – Tim Dunn, NASA launch director for the agency’s Launch Services Program, participates in the Gravity Recovery and Interior Laboratory (GRAIL) prelaunch news conference in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett
2011-09-07
CAPE CANAVERAL, Fla. -- At Space Launch Complex 17B on Cape Canaveral Air Force Station, view of the United Launch Alliance Delta II rocket that will launch NASA's Gravity Recovery and Interior Laboratory mission is unobstructed as the mobile service tower rolls away. The "rollback" began at about 11:20 p.m. EDT. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future lunar vehicles can safely navigate anywhere on the moon’s surface. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett