Sample records for safe nuclear future

  1. 3 CFR - Blue Ribbon Commission on America's Nuclear Future

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... America's Nuclear Future Memorandum for the Secretary of Energy Expanding our Nation's capacity to generate clean nuclear energy is crucial to our ability to combat climate change, enhance energy security... safe, secure, and responsible use of nuclear energy. These efforts are critical to accomplishing many...

  2. The Future of the U.S. Nuclear Weapons Program

    NASA Astrophysics Data System (ADS)

    Brooks, Linton F.

    2007-03-01

    This paper will examine our plans for the future of the U.S. nuclear weapons program including efforts to ``transform'' the stockpile and supporting infrastructure. We proceed from the premise that the United States will need a safe, secure, and reliable nuclear deterrent for the foreseeable future. Moreover, the Stockpile Stewardship Program is working. Today's stockpile---comprised of legacy warheads left over from the Cold War---is safe and reliable. That said, we see increased risk, absent nuclear testing, in assuring the long-term safety and reliability of our current stockpile. Nor is today's nuclear weapons complex sufficiently ``responsive'' to fixing technical problems in the stockpile, or to potential adverse geopolitical change. Our task is to work to ensure that the U.S. nuclear weapons enterprise, including the stockpile and supporting infrastructure, meets long-term national security needs. Our approach is to develop and field replacement warheads for the legacy stockpile---so-called Reliable Replacement Warheads (RRW)---as a means to transform both the nuclear stockpile and supporting infrastructure.

  3. 75 FR 5485 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... Commission on America's Nuclear Future Memorandum for the Secretary of Energy Expanding our Nation's capacity to generate clean nuclear energy is crucial to our ability to combat climate change, enhance energy... the safe, secure, and responsible use of nuclear energy. These efforts are critical to accomplishing...

  4. Fail-safe reactivity compensation method for a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, Erik T.; Angelo, Peter L.; Aase, Scott B.

    The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on themore » constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.« less

  5. SAFE Testing Nuclear Rockets Economically

    NASA Astrophysics Data System (ADS)

    Howe, Steven D.; Travis, Bryan; Zerkle, David K.

    2003-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.

  6. Can shale safely host US nuclear waste?

    USGS Publications Warehouse

    Neuzil, C.E.

    2013-01-01

    "Even as cleanup efforts after Japan’s Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America’s Nuclear Future, 2012].However, abandoning Yucca Mountain could also result in broadening geologic options for hosting America’s nuclear waste. Shales and other argillaceous formations (mudrocks, clays, and similar clay-rich media) have been absent from the U.S. repository program. In contrast, France, Switzerland, and Belgium are now planning repositories in argillaceous formations after extensive research in underground laboratories on the safety and feasibility of such an approach [Blue Ribbon Commission on America’s Nuclear Future, 2012; Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA), 2010; Organisme national des déchets radioactifs et des matières fissiles enrichies, 2011]. Other nations, notably Japan, Canada, and the United Kingdom, are studying argillaceous formations or may consider them in their siting programs [Japan Atomic Energy Agency, 2012; Nuclear Waste Management Organization (NWMO), (2011a); Powell et al., 2010]."

  7. Can Shale Safely Host U.S. Nuclear Waste?

    NASA Astrophysics Data System (ADS)

    Neuzil, C. E.

    2013-07-01

    Even as cleanup efforts after Japan's Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America's Nuclear Future, 2012].

  8. The United States Naval Nuclear Propulsion Program - Over 151 Million Miles Safely Steamed on Nuclear Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise requiredmore » to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.« less

  9. The role of commercial nuclear pharmacy in the future practice of nuclear medicine.

    PubMed

    Callahan, R J

    1996-04-01

    provided by commercial nuclear pharmacies. Involvement in the distribution of positron-emission tomography radiopharmaceuticals will continue to increase regardless of the results of current regulatory debates on this issue. In the future, nuclear medicine practitioners will look to the commercial nuclear pharmacies for an increasing portion of their radiopharmaceutical needs and the industry should be ready and able to meet these demands in a safe, timely, and cost efficient manner.

  10. Safe, Affordable, Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Doughty, G. E.

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  11. Specifics of MS training in the area of nuclear materials safe management for new-comers in nuclear power

    NASA Astrophysics Data System (ADS)

    Geraskin, N. I.; Glebov, V. B.

    2017-01-01

    The issues of specialists training in the field of nuclear materials safe management for the countries, who have taken a way of nuclear power development are analyzed. Arguments in justification of a need of these specialists training for the new-comers are adduced. The general characteristic of the reference MS program “Nuclear materials safe management” is considered. The peculiar features of the program, which is important for graduates from the new-comers have been analyzed. The best practices got as a result of implementation of the program in recent years for the students from Kazakhstan, Belarus, Azerbaijan, Tajikistan, Iran, Turkey and other countries are presented. Finally, the directions of international cooperation in further improvement and development of the program are considered.

  12. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    NASA Astrophysics Data System (ADS)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  13. Nuclear proliferation-resistance and safeguards for future nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Kuno, Y.; Inoue, N.; Senzaki, M.

    2009-03-01

    Corresponding to the world nuclear security concerns, future nuclear fuel cycle (NFC) should have high proliferation-resistance (PR) and physical protection (PP), while promotion of the peaceful use of the nuclear energy must not be inhibited. In order to accomplish nuclear non-proliferation from NFC, a few models of the well-PR systems should be developed so that international community can recognize them as worldwide norms. To find a good balance of 'safeguard-ability (so-called extrinsic measure or institutional barrier)' and 'impede-ability (intrinsic feature or technical barrier)' will come to be essential for NFC designers to optimize civilian nuclear technology with nuclear non-proliferation, although the advanced safeguards with high detectability can still play a dominant role for PR in the states complying with full institutional controls. Accomplishment of such goal in a good economic efficiency is a future key challenge.

  14. 75 FR 81592 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Department of... meeting of the Blue Ribbon Commission on America's Nuclear Future (the Commission). The Commission was...: The President directed that the Blue Ribbon Commission on America's Nuclear Future (the Commission) be...

  15. 76 FR 1607 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Department of... meeting of the Blue Ribbon Commission on America's Nuclear Future (the Commission). The Commission was...: Background: The President directed that the Blue Ribbon Commission on America's Nuclear Future (the...

  16. Integrating nuclear weapons stockpile management and nuclear arms control to enable significant stockpile reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, Lani Miyoshi; DeLand, Sharon M.; Pregenzer, Arian L.

    2010-11-01

    In his 2009 Prague speech and the 2010 Nuclear Posture Review, President Barack Obama committed the United States to take concrete steps toward nuclear disarmament while maintaining a safe, secure, and effective nuclear deterrent. There is an inherent tension between these two goals that is best addressed through improved integration of nuclear weapons objectives with nuclear arms control objectives. This article reviews historical examples of the interaction between the two sets of objectives, develops a framework for analyzing opportunities for future integration, and suggests specific ideas that could benefit the nuclear weapons enterprise as it undergoes transformation and that couldmore » make the future enterprise compatible with a variety of arms control futures.« less

  17. 75 FR 53685 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces an open meeting of the Blue Ribbon Commission on America's Nuclear Future (the Commission). The Commission was...

  18. 76 FR 71334 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-17

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces an open meeting of the Blue Ribbon Commission on America's Nuclear Future (the Commission). The Commission was...

  19. 75 FR 36647 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Office of Nuclear Energy, DOE. ACTION: Notice of open meeting. SUMMARY: This notice announces an open meeting of the Blue... directed that the Blue Ribbon Commission on America's Nuclear Future (the Commission) be established to...

  20. Geopolitical and strategic aspects of present and future use of nuclear energy

    NASA Astrophysics Data System (ADS)

    Blix, Hans

    2012-06-01

    Nuclear power is at a bump in the road - not at the end of the road. We must promote further safe development. Nuclear weapons are obsolescent. The Cold War is over and further détente will lead to disarmament.

  1. 76 FR 23798 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Office of Nuclear... meeting of the Blue Ribbon Commission on America's Nuclear Future (the Commission). The Commission was... high-level wastes--in light of the events in Japan. The second purpose is to allow the Co-chairs of the...

  2. Nuclear Security Futures Scenarios.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Elizabeth James Kistin; Warren, Drake Edward; Hayden, Nancy Kay

    This report provides an overview of the scenarios used in strategic futures workshops conducted at Sandia on September 21 and 29, 2016. The workshops, designed and facilitated by analysts in Center 100, used scenarios to enable thought leaders to think collectively about the changing aspects of global nuclear security and the potential implications for the US Government and Sandia National Laboratories.

  3. The future of nuclear power: The role of the IFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R.

    1995-12-31

    The author is in favor of nuclear energy for three major reasons: (1) a nuclear power station emits no particulates or sulfur; (2) a nuclear power station emits no carbon dioxide and therefore does not contribute (appreciably) to the possibility of global warming which is a major environmental issue of this century; (3) nuclear energy offers the opportunity to have an energy supply sustainable for the next hundred thousands years, and is the only supply presently known to be able to do so at a reasonable cost. He notes that at Rio de Janeiro, the USA joined other countries inmore » calling for an approach to an indefinitely sustainable future. Alas, they were not bold or honest enough to state that using nuclear power, combined with considerable increase in energy efficiency and prudent use of renewables, is the only known way of achieving one other than massive population reduction or poverty. It is unlikely that improved energy efficiency can do the job alone. If the first two were the only issues, ordinary light water reactors would be adequate. One would not need the breeder reactor. But unless huge quantities of high quality uranium are found, or a cheap way of extracting it from seawater, one will need to have a way of using the uranium 238 or thorium. This is the role of this meeting. The author arrives at a set of criteria for a breeder reactor system: (1) it must be safe (secure against major accidents); (2) the system must be proliferation resistant; (3) the cost of the produced electricity must be competitive with other sources of energy--with perhaps a small margin for environmental advantage; (4) it must be capable of rapid expansion if and when needed.« less

  4. Political life and half-life: the future formulation of nuclear waste public policy in the United States.

    PubMed

    Leroy, David

    2006-11-01

    The United States continues to need forward-thinking and revised public policy to assure safe nuclear waste disposal. Both the high- and low-level disposal plans enacted by Congress in the 1980's have been frustrated by practical and political interventions. In the interim, ad hoc solutions and temporary fixes have emerged as de facto policy. Future statutory, regulatory, and administrative guidance will likely be less bold, more narrowly focused, and adopted at lower levels of government, more informally, in contrast to the top-down, statutory policies of the 1980's.

  5. Nuclear Data Uncertainty Quantification: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Smith, D. L.

    2015-01-01

    An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for future investigation of this subject are also suggested.

  6. Major safety provisions in nuclear-powered ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khlopkin, N.S.; Belyaev, V.M.; Dubrovin, A.M.

    1984-12-01

    Considerable experience has been accumulated in the Soviet Union on the design, construction and operation of nuclear-powered civilian ships: the icebreakers Lenin, Leonid Brezhnev and Sibir. The nuclear steam plants (NSP) used on these as the main energy source have been found to be highly reliable and safe, and it is desirable to use them in the future not only in icebreakers but also in transport ships for use in ice fields. The Soviet program for building and developing nuclear-powered ships has involved careful attention to safety in ships containing NSP. The experience with the design and operation of nuclearmore » icebreakers in recent years has led to the revision of safety standards for the nuclear ships and correspondingly ship NSP and international guidelines have been developed. If one meets the requirements as set forth in these documents, one has a safe basis for future Soviet nuclear-powered ships. The primary safety provisions for NSP are presented in this paper.« less

  7. Nuclear Power; Past, present and future

    NASA Astrophysics Data System (ADS)

    Elliott, David

    2017-04-01

    This book looks at the early history of nuclear power, at what happened next, and at its longer-term prospects. The main question is: can nuclear power overcome the problems that have emerged? It was once touted as the ultimate energy source, freeing mankind from reliance on dirty, expensive fossil energy. Sixty years on, nuclear only supplies around 11.5% of global energy and is being challenged by cheaper energy options. While the costs of renewable sources, like wind and solar, are falling rapidly, nuclear costs have remained stubbornly high. Its development has also been slowed by a range of other problems, including a spate of major accidents, security concerns and the as yet unresolved issue of what to do with the wastes that it produces. In response, a new generation of nuclear reactors is being developed, many of them actually revised versions of the ideas first looked at in the earlier phase. Will this new generation of reactors bring nuclear energy to the forefront of energy production in the future?

  8. Nuclear materials safeguards for the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tape, J.W.

    Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating internationalmore » inspection of excess weapons materials and verifying a fissile materials cutoff convention.« less

  9. 75 FR 65465 - Blue Ribbon Commission on America's Nuclear Future, Disposal Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Disposal Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This... subcommittee of the Blue Ribbon Commission on America's Nuclear Future (the Commission). The establishment of...

  10. The regulatory framework for safe decommissioning of nuclear power plants in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangmyeon Ahn; Jungjoon Lee; Chanwoo Jeong

    We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don't have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA's safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning ofmore » Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)« less

  11. End-to-End Demonstrator of the Safe Affordable Fission Engine (SAFE) 30: Power Conversion and Ion Engine Operation

    NASA Technical Reports Server (NTRS)

    Hrbud, Ivana; VanDyke, Melissa; Houts, Mike; Goodfellow, Keith; Schafer, Charles (Technical Monitor)

    2001-01-01

    The Safe Affordable Fission Engine (SAFE) test series addresses Phase 1 Space Fission Systems issues in particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  12. 75 FR 67958 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Office of Nuclear...-4243 or facsimile (202) 586- 0544; e-mail [email protected]nuclear.energy.gov . Additional information... and nuclear waste. The Commission is scheduled to submit a draft report to the Secretary of Energy in...

  13. 76 FR 2891 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Office of Nuclear...; telephone (202) 586-4243 or facsimile (202) 586- 0544; e-mail [email protected]nuclear.energy.gov . Additional.... Department of Energy, 1000 Independence Avenue, SW., Washington, DC 20585, e-mail to [email protected]nuclear...

  14. Underestimated: Our Not So Peaceful Nuclear Future

    DTIC Science & Technology

    2016-01-01

    strategic appraisals; • The nature of land warfare; • Matters affecting the Army’s future; • The concepts, philosophy, and theory of strategy; and...has long complained about Israeli nuclear weapons and previously attempted to get nuclear weapons, just announced its intention to tender bids for...cooperation with India, Russia, and the Chinese. As a part of this review, it also would be helpful to game alternative war and military crisis scenarios

  15. Realistic Testing of the Safe Affordable Fission Engine (SAFE-100) Thermal Simulator Using Fiber Bragg Gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson-Bagby, Kelly L.; Fielder, Robert S.; Van Dyke, Melissa K.

    2004-02-04

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements were made with 20 FBG temperature sensors installed in the SAFE-100 thermal simulator at the NASA Marshal Space Flight Center. Experiments were performed at temperatures approaching 800 deg. C and 1150 deg. C for characterization studies of the SAFE-100 core. Temperature profiles were successfully generated for the core during temperature increases and decreases. Related tests in the SAFE-100 successfully provided strain measurement data.

  16. 76 FR 1608 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces an open...- 0544; e-mail [email protected]nuclear.energy.gov . Additional information may also be available at http...

  17. 75 FR 25850 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces an open...-4243 or facsimile (202) 586- 0544; e-mail [email protected]nuclear.energy.gov . Additional information may...

  18. 75 FR 10791 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces an open...; telephone (202) 586-4243 or facsimile (202) 586- 0544; e-mail [email protected]nuclear.energy.gov...

  19. Facing reality: The future of the US nuclear weapons complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Facing Reality is a collaboration by 15 authors from environmental and grass-roots groups. The authors bluntly conclude that whether the inertia, habit, or material interest, the nuclear weapons establishment has proven itself incapable of genuine reform.' They therefore call for government agencies other than the Department of Energy to manage the tasks of decontamination and decommissioning. Just a partial list of what needs to be done to clean up the DOE's mess is daunting: closing, decommissioning, and decontaminating production facilities, dismantling thousands of nuclear warheads, safely storing dangerous radioactive materials, identifying alternative employment for weapons specialists, conducting meaningful health studiesmore » of workers and citizens exposed to radiation, and providng compensation for the victims of the nuclear buildup.« less

  20. NNSA Administrator Looks to Future of Nuclear Security at STRATCOM Symposium

    ScienceCinema

    Thomas D'Agostino

    2017-12-09

    Administrator Thomas P. DAgostino of the National Nuclear Security Administration (NNSA) discusses the future of the Nuclear Security Enterprise and its strategic deterrence mission in light of President Obamas unprecedented nuclear security agenda.

  1. 75 FR 13757 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting correction. On March 9, 2010, the...., Washington DC 20585, or e-mail [email protected]nuclear.energy.gov . Additionally, every effort is being made to...

  2. Supporting the future nuclear workforce with computer-based procedures

    DOE PAGES

    Oxstrand, Johanna; Le Blanc, Katya

    2016-05-01

    Here we see that computer-based tools have dramatically increased ease and efficiency of everyday tasks. Gone are the days of paging through a paper catalog, transcribing product numbers, and calculating totals. Today, a consumer can find a product online with a simple search engine, and then purchase it in a matter of a few clicks. Paper catalogs have their place, but it is hard to imagine life without on-line shopping sites. All tasks conducted in a nuclear power plant are guided by procedures, which helps ensure safe and reliable operation of the plants. One prominent goal of the nuclear industrymore » is to minimize the risk of human errors. To achieve this goal one has to ensure tasks are correctly and consistently executed. This is partly achieved by training and by a structured approach to task execution, which is provided by procedures and work instructions. Procedures are used in the nuclear industry to direct workers' actions in a proper sequence. The governing idea is to minimize the reliance on memory and choices made in the field. However, the procedure document may not contain sufficient information to successfully complete the task. Therefore, the worker might have to carry additional documents such as turnover sheets, operation experience, drawings, and other procedures to the work site. The nuclear industry is operated with paper procedures like paper catalogs of the past. A field worker may carry a large stack of documents needed to complete a task to the field. Even though the paper process has helped keep the industry safe for decades, there are limitations to using paper. Paper procedures are static (i.e., the content does not change after the document is printed), difficult to search, and rely heavily on the field worker’s situational awareness and ability to consistently meet the high expectation of human performance excellence. With computer-based procedures (CBPs) that stack of papers may be reduced to the size of a small tablet or even

  3. Supporting the future nuclear workforce with computer-based procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxstrand, Johanna; Le Blanc, Katya

    Here we see that computer-based tools have dramatically increased ease and efficiency of everyday tasks. Gone are the days of paging through a paper catalog, transcribing product numbers, and calculating totals. Today, a consumer can find a product online with a simple search engine, and then purchase it in a matter of a few clicks. Paper catalogs have their place, but it is hard to imagine life without on-line shopping sites. All tasks conducted in a nuclear power plant are guided by procedures, which helps ensure safe and reliable operation of the plants. One prominent goal of the nuclear industrymore » is to minimize the risk of human errors. To achieve this goal one has to ensure tasks are correctly and consistently executed. This is partly achieved by training and by a structured approach to task execution, which is provided by procedures and work instructions. Procedures are used in the nuclear industry to direct workers' actions in a proper sequence. The governing idea is to minimize the reliance on memory and choices made in the field. However, the procedure document may not contain sufficient information to successfully complete the task. Therefore, the worker might have to carry additional documents such as turnover sheets, operation experience, drawings, and other procedures to the work site. The nuclear industry is operated with paper procedures like paper catalogs of the past. A field worker may carry a large stack of documents needed to complete a task to the field. Even though the paper process has helped keep the industry safe for decades, there are limitations to using paper. Paper procedures are static (i.e., the content does not change after the document is printed), difficult to search, and rely heavily on the field worker’s situational awareness and ability to consistently meet the high expectation of human performance excellence. With computer-based procedures (CBPs) that stack of papers may be reduced to the size of a small tablet or even

  4. Nuclear powerplants for mobile applications.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. This paper examines the technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  5. Nuclear Power Now and in the Near Future

    NASA Astrophysics Data System (ADS)

    Burchill, William

    2006-04-01

    The presentation will describe the present status of nuclear power in the United States including its operating, economic, and safety record. This status report will be based on publicly-available records of the U.S. Department of Energy, the U.S. Nuclear Regulatory Commission, and the Institute of Nuclear Power Operations. The report will provide a brief description and state the impact of both the Three Mile Island and Chernobyl accidents. It will list the lessons learned and report significant improvements in U.S. nuclear power plants. The major design differences between Chernobyl and U.S. nuclear reactors will be discussed. The presentation will project the near future of nuclear power considering the 2005 Energy Bill, initiatives by the U.S. Department of Energy and industry, and public opinions. Issues to be considered include plant operating safety, disposition of nuclear waste, protection against proliferation of potential weapons materials, economic performance, environmental impact and protection, and advanced nuclear reactor designs and fuel cycle options. The risk of nuclear power plant operations will be compared to risks presented by other industrial activities.

  6. The Future of Energy from Nuclear Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Son H.; Taiwo, Temitope

    fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Association’s data, the realization of China’s deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.« less

  7. Stockpile stewardship past, present, and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Marvin L., E-mail: mladams@tamu.edu

    2014-05-09

    The U.S. National Academies released a report in 2012 on technical issues related to the Comprehensive Test Ban Treaty. One important question addressed therein is whether the U.S. could maintain a safe, secure, and reliable nuclear-weapons stockpile in the absence of nuclear-explosion testing. Here we discuss two main conclusions from the 2012 Academies report, which we paraphrase as follows: 1) Provided that sufficient resources and a national commitment to stockpile stewardship are in place, the U.S. has the technical capabilities to maintain a safe, secure, and reliable stockpile of nuclear weapons into the foreseeable future without nuclear-explosion testing. 2) Doingmore » this would require: a) a strong weapons science and engineering program that addresses gaps in understanding; b) an outstanding workforce that applies deep and broad weapons expertise to deliver solutions to stockpile problems; c) a vigorous, stable surveillance program that delivers the requisite data; d) production facilities that meet stewardship needs. We emphasize that these conclusions are independent of CTBT ratification-they apply provided only that the U.S. continues its nuclear-explosion moratorium.« less

  8. If nuclear energy is the answer, why doesn't everyone agree?

    NASA Astrophysics Data System (ADS)

    Roberts, J. W.

    2018-03-01

    Nuclear energy produces low carbon, safe and reliable electricity so is it now time for the UK to invest in this proven technology or are the misplaced perceptions regarding its safety, cost and the quantities of radioactive waste produced causing us to overlook nuclear as a major component of our electricity mix? This paper discusses these issues and whether the negative opinion of nuclear energy which could hold back it’s wider development in the UK, is justified in the 21st century. For the safe, secure and economic future of electricity can we afford to ignore the positive contributions nuclear energy can make any longer?

  9. 75 FR 64720 - Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of Open...) Subcommittee. The T&S Subcommittee is a subcommittee of the Blue Ribbon Commission on America's Nuclear Future...

  10. 75 FR 53686 - Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open...) Subcommittee. The T&S Subcommittee is a subcommittee of the Blue Ribbon Commission on America's Nuclear Future...

  11. Can active proton interrogation find shielded nuclear threats at human-safe radiation levels?

    NASA Astrophysics Data System (ADS)

    Liew, Seth Van

    2017-05-01

    A new method of low-dose proton radiography is presented. The system is composed of an 800 MeV proton source, bending magnets, and compact detectors, and is designed for drive-through cargo scanning. The system has been simulated using GEANT4. Material identification algorithms and pixel sorting methods are presented that allow the system to perform imaging at doses low enough to scan passenger vehicles and people. Results are presented on imaging efficacy of various materials and cluttered cargoes. The identification of shielded nuclear materials at human-safe doses has been demonstrated.

  12. Nuclear power plants for mobile applications

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  13. Opening Doors of Opportunity to Develop the Future Nuclear Workforce - 13325

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mets, Mindy

    2013-07-01

    The United States' long-term demand for highly skilled nuclear industry workers is well-documented by the Nuclear Energy Institute. In addition, a study commissioned by the SRS Community Reuse Organization concludes that 10,000 new nuclear workers are needed in the two-state region of Georgia and South Carolina alone. Young adults interested in preparing for these nuclear careers must develop specialized skills and knowledge, including a clear understanding of the nuclear workforce culture. Successful students are able to enter well-paying career fields. However, the national focus on nuclear career opportunities and associated training and education programs has been minimal in recent decades.more » Developing the future nuclear workforce is a challenge, particularly in the midst of competition for similar workers from various industries. In response to regional nuclear workforce development needs, the SRS Community Reuse Organization established the Nuclear Workforce Initiative (NWI{sup R}) to promote and expand nuclear workforce development capabilities by facilitating integrated partnerships. NWI{sup R} achievements include a unique program concept called NWI{sup R} Academies developed to link students with nuclear career options through firsthand experiences. The academies are developed and conducted at Aiken Technical College and Augusta Technical College with support from workforce development organizations and nuclear employers. Programs successfully engage citizens in nuclear workforce development and can be adapted to other communities focused on building the future nuclear workforce. (authors)« less

  14. 75 FR 45608 - Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Transportation and...) Subcommittee. The T&S Subcommittee is a subcommittee of the Blue Ribbon Commission on America's Nuclear Future... 45609

  15. Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments

    DTIC Science & Technology

    2009-01-28

    safe. So he has not ruled out testing in the future, but there are no plans to do so.’”5 Critics expressed concern about the implications of these...nuclear weapons testing.”6 Another critic felt that increased funding for test readiness would in effect give prior approval for testing. In July 2002 a...moratorium. We may find at some future time that we cannot diagnose or remedy a problem in a warhead critical the U.S. nuclear deterrent without

  16. Ensuring safe water in post-chemical, biological, radiological and nuclear emergencies

    PubMed Central

    Amar, Praveen Kumar

    2010-01-01

    Disaster scenarios are dismal and often result in mass displacement and migration of people. In eventuality of emergency situations, people need to be rehabilitated and provided with an adequate supply of drinking water, the most essential natural resource needed for survival, which is often not easily available even during non-disaster periods. In the aftermath of a natural or human-made disaster affecting mankind and livestock, the prime aim is to ensure supply of safe water to reduce the occurrence and spread of water borne disease due to interrupted, poor and polluted water supply. Chemical, biological, radiological and nuclear (CBRN) emergencies augment the dilemma as an additional risk of “contamination” is added. The associated risks posed to health and life should be reduced to as low as reasonably achievable. Maintaining a high level of preparedness is the crux of quick relief and efficient response to ensure continuous supply of safe water, enabling survival and sustenance. The underlying objective would be to educate and train the persons concerned to lay down the procedures for the detection, cleaning, and treatment, purification including desalination, disinfection, and decontamination of water. The basic information to influence the organization of preparedness and execution of relief measures at all levels while maintaining minimum standards in water management at the place of disaster, are discussed in this article. PMID:21829321

  17. The contribution of physics to Nuclear Medicine: physicians' perspective on future directions.

    PubMed

    Mankoff, David A; Pryma, Daniel A

    2014-12-01

    Advances in Nuclear Medicine physics enabled the specialty of Nuclear Medicine and directed research in other aspects of radiotracer imaging, ultimately leading to Nuclear Medicine's emergence as an important component of current medical practice. Nuclear Medicine's unique ability to characterize in vivo biology without perturbing it will assure its ongoing role in a practice of medicine increasingly driven by molecular biology. However, in the future, it is likely that advances in molecular biology and radiopharmaceutical chemistry will increasingly direct future developments in Nuclear Medicine physics, rather than relying on physics as the primary driver of advances in Nuclear Medicine. Working hand-in-hand with clinicians, chemists, and biologists, Nuclear Medicine physicists can greatly enhance the specialty by creating more sensitive and robust imaging devices, by enabling more facile and sophisticated image analysis to yield quantitative measures of regional in vivo biology, and by combining the strengths of radiotracer imaging with other imaging modalities in hybrid devices, with the overall goal to enhance Nuclear Medicine's ability to characterize regional in vivo biology.

  18. 75 FR 51247 - Blue Ribbon Commission on America's Nuclear Future, Disposal Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Disposal Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This...; telephone (202) 586-4243 or facsimile (202) 586- 0544; e-mail [email protected]nuclear.energy.gov . Additional...

  19. 75 FR 35000 - Blue Ribbon Commission on America's Nuclear Future, Disposal Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Disposal Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of Open Meeting. SUMMARY: This... Avenue, SW., Washington DC 20585, e-mail to [email protected]nuclear.energy.gov , or post comments on the...

  20. Issues for Future Nuclear Arms Control

    NASA Astrophysics Data System (ADS)

    Davis, Jay

    2011-04-01

    Ratification of the New START treaty may open the door to a path of progressive negotiations that could lead to systematic reduction of the numbers of deployed and reserve nuclear weapons. Those negotiations will require more than merely resolving technical, operational and policy questions. Their success will also demand adding successively larger numbers of partners and the building of trust among parties who have not been involved in such agreements before. At some point, questions of conventional arms limitations and larger confidence building steps will inevitably arise. Jay Davis, who last year chaired an APS/POPA study of technology issues for future nuclear arms control agreements, will outline the path, opportunities, and obstacles that lie ahead. Davis was an UNSCOM inspector in Iraq after the First Gulf War and the first director of the Defense Threat Reduction Agency.

  1. Senior Leader Perspective on the Air Force Nuclear Enterprise: Todays Issues and the Future

    DTIC Science & Technology

    2016-09-15

    SENIOR LEADER PERSPECTIVE ON THE AIR FORCE NUCLEAR ENTERPRISE: TODAY’S ISSUES AND THE FUTURE GRADUATE RESEARCH PAPER Matthew D. Boone...States. AFIT-ENS-MS-16-S-028 SENIOR LEADER PERSPECTIVE ON THE AIR FORCE NUCLEAR ENTERPRISE: TODAY’S ISSUES AND THE FUTURE GRADUATE... ISSUES AND THE FUTURE Matthew D. Boone, BS, MA Major, USAF Committee Membership: Robert E. Overstreet, Lt Col, USAF, PhD

  2. The Satellite Nuclear Power Station - An option for future power generation.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.

    1973-01-01

    A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.

  3. A Perspective of the future of nuclear medicine training and certification

    PubMed Central

    Arevalo-Perez, Julio; Paris, Manuel; Graham, Michael M.; Osborne, Joseph R.

    2016-01-01

    Nuclear Medicine has evolved from a medical subspecialty using quite basic tests to one using elaborate methods to image organ physiology and has truly become “Molecular Imaging”. Concurrently, there has also been a timely debate about who has to be responsible for keeping pace with all of the components of the developmental cycle; imaging, radiopharmaceuticals and instrumentation. Since the foundation of the ABNM, the practice of Nuclear Medicine and the process toward certification have undergone major revisions. At present, the debate is focused on the inevitable future convergence of Radiology and Nuclear Medicine. The potential for further cooperation or fusion of the American Board of Radiology (ABR) and the American Board of Nuclear Medicine (ABNM) is likely to bring about a new path for Nuclear Medicine and Molecular Imaging training. If the merger is done carefully, respecting the strengths of both partners equally, there is an excellent potential to create a hybrid Nuclear Medicine – Radiology specialty that combines Physiology and Molecular Biology with detailed anatomic imaging that will sustain the innovation that has been central to nuclear medicine residency and practice. Herein, we also introduce a few basic trends in imaging utilization in the United States. These trends do not predict future utilization, but highlight the need for an appropriately credentialed practitioner to interpret these examinations and provide value to the healthcare system. PMID:26687859

  4. Teaching about Conflict, Nuclear War and the Future.

    ERIC Educational Resources Information Center

    Zola, John; Sieck, Reny

    Designed for teachers of students in grades 5-12, the guide provides over 25 lesson plans and 45 student handouts for teaching units on conflict, nuclear war, and future studies. In the first unit, students define conflict, learn conflict-related vocabulary, illustrate knowledge of conflict types through the use of cartoons, recognize common…

  5. SAFE (strategy, assessment, flexibility, and efficiency) for future use? Stages in master planning, programming, and architectural design.

    PubMed

    Westlake, P

    1995-10-01

    Health care facility design must incorporate four key elements: Strategy, Assessment, Flexibility, and Efficiency. These SAFE elements will offer the organization the greatest return on investment, because they encompass both present needs and future demand. They respect the integrated nature of functional operations by clustering them in ways that permit growth or consolidation. In the rapidly changing health care environment, flexibility is fundamental to successful design.

  6. 75 FR 36648 - Blue Ribbon Commission on America's Nuclear Future, Disposal Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Disposal Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting correction. On June 21, 2010, the Department of Energy published a notice announcing an open meeting of the Disposal...

  7. International Maritime Organizational Code For Safe Carriage Of Irradiated Nuclear Fuel, Plutonium and High-Level Radioactive Wastes in Flasks On Board Ships -- IMO Resolution A.748(18)

    DOT National Transportation Integrated Search

    1994-05-26

    This Circular calls the attention of Coast Guard field units, marine surveyors, shippers and carriers of nuclear materials to the International Maritime Organization (IMO) Code for the Safe Carriage of Irradiated Nuclear Fuel, Plutonium and High-Leve...

  8. Future electricity production methods. Part 1: Nuclear energy

    NASA Astrophysics Data System (ADS)

    Nifenecker, Hervé

    2011-02-01

    The global warming challenge aims at stabilizing the concentrations of Green House Gas (GHG) in the atmosphere. Carbon dioxide is the most effective of the anthropogenic GHG and is essentially produced by consumption of fossil fuels. Electricity production is the dominant cause of CO2 emissions. It is, therefore, crucial that the share of 'carbon less' electricity production techniques increases at a fast pace. This is the more so, that 'clean' electricity would be useful to displace 'dirty' techniques in other fields such as heat production and transportation. Here we examine the extent to which nuclear energy could be operational in providing 'clean' electricity. A nuclear intensive scenario is shown to give the possibility to divide CO2 emissions by a factor of 2 worldwide, within 50 years. However, the corresponding sharp increase in nuclear power will put a heavy burden on uranium reserves and will necessitate the development of breeding reactors as soon as possible. A review of present and future reactors is given with special attention to the safety issues. The delicate question of nuclear fuel cycle is discussed concerning uranium reserves and management of used fuels. It is shown that dealing with nuclear wastes is more a socio-political problem than a technical one. The third difficult question associated with the development of nuclear energy is the proliferation risk. It is advocated that, while this is, indeed, a very important question, it is only weakly related to nuclear power development. Finally, the possibilities of nuclear fusion are discussed and it is asserted that, under no circumstances, could nuclear fusion give a significant contribution to the solution of the energy problem before 50 years, too late for dealing with the global warming challenge.

  9. A Strategy for Nuclear Energy Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralph G. Bennett

    2008-12-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce themore » transportation sector’s dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy’s share will require a coordinated research effort—combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.« less

  10. 75 FR 43518 - Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open...-4243 or facsimile (202) 586- 0544; e-mail [email protected]nuclear.energy.gov . Additional information may...

  11. Thirty years from now: future physics contributions in nuclear medicine.

    PubMed

    Bailey, Dale L

    2014-12-01

    This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist's perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of 'Molecular Imaging' in the next three decades. The author sees a shift away from 'traditional' roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.

  12. Organizational Culture for Safety, Security, and Safeguards in New Nuclear Power Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacic, Donald N

    2015-01-01

    This chapter will contain the following sections: Existing international norms and standards for developing the infrastructure to support new nuclear power programs The role of organizational culture and how it supports the safe, secure, and peaceful application of nuclear power Identifying effective and efficient strategies for implementing safety, security and safeguards in nuclear operations Challenges identified in the implementation of safety, security and safeguards Potential areas for future collaboration between countries in order to support nonproliferation culture

  13. Results of 30 kWt Safe Affordable Fission Engine (SAFE-30) primary heat transport testing

    NASA Astrophysics Data System (ADS)

    Pedersen, Kevin; van Dyke, Melissa; Houts, Mike; Godfroy, Tom; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvil, Pat; Reid, Bob

    2001-02-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Safe Affordable Fission Engine-30 kilowatt (SAFE30) test article are being performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made. .

  14. Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments

    DTIC Science & Technology

    2008-09-18

    needed to conduct a nuclear test. Critics raised concerns about the implications of these policies for testing and new weapons. At present, Congress...as it is reduced, is reliable and safe. So he has not ruled out testing in the future, but there are no plans to do so.’”4 Critics expressed concern...ten-year-old moratorium on nuclear weapons testing.”5 Another critic felt that increased funding for test readiness would in effect give prior

  15. "A Hedge against the Future": The Post-Cold War Rhetoric of Nuclear Weapons Modernization

    ERIC Educational Resources Information Center

    Taylor, Bryan C.

    2010-01-01

    Rhetoric has traditionally played an important role in constituting the nuclear future, yet that role has changed significantly since the declared end of the Cold War. Viewed from the perspectives of nuclear criticism and postmodern theories of risk and security, current rhetoric of US nuclear modernization demonstrates how contingencies of voice…

  16. Looking to the Future of the Air Force Nuclear Enterprise

    DTIC Science & Technology

    2016-09-01

    DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the...take to move to the future. This thesis seeks to answer the following question: Examining the Air Force Nuclear Enterprise from its inception in

  17. Nuclear security applications of antineutrino detectors : current capabilities and future prospects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, A.; Goodman, M.; Baldwin, G.

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline - Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This paper presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline withmore » other ongoing fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  18. Nuclear Security Applications of Antineutrino Detectors: Current Capabilities and Future Prospects

    DOE PAGES

    Bernstein, Adam; Baldwin, George; Boyer, Brian; ...

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline—Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This work presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline with other ongoingmore » fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  19. Perception of Radiation Risk by Japanese Radiation Specialists Evaluated as a Safe Dose Before the Fukushima Nuclear Accident.

    PubMed

    Miura, Miwa; Ono, Koji; Yamauchi, Motohiro; Matsuda, Naoki

    2016-06-01

    From October to December 2010, just before the radiological accident at the Fukushima Daiichi nuclear power plant, 71 radiation professionals from radiation facilities in Japan were asked what they considered as a "safe dose" of radiation for themselves, their partners, parents, children, siblings, and friends. Although the 'safe dose' they noted varied widely, from less than 1 mSv y to more than 100 mSv y, the average dose was 35.6 mSv y, which is around the middle point between the legal exposure dose limits for the annual average and for any single year. Similar results were obtained from other surveys of members of the Japan Radioisotope Association (36.9 mSv y) and of the Oita Prefectural Hospital (36.8 mSv y). Among family members and friends, the minimum average "safe" dose was 8.5 mSv y for children, for whom 50% of the responders claimed a "safe dose" of less than 1 mSv. Gender, age and specialty of the radiation professional also affected their notion of a "safe dose." These findings suggest that the perception of radiation risk varies widely even for radiation professionals and that the legal exposure dose limits derived from regulatory science may act as an anchor of safety. The different levels of risk perception for different target groups among radiation professionals appear similar to those in the general population. The gap between these characteristics of radiation professionals and the generally accepted picture of radiation professionals might have played a role in the state of confusion after the radiological accident.

  20. Safe Manual Jettison

    NASA Technical Reports Server (NTRS)

    Barton, Jay

    2008-01-01

    In space, the controlled release of certain cargoes is no less useful than the maritime jettisons from which they take their name but is also much more dangerous. Experience has shown that jettisons can be performed safely, but the process is complicated with the path to performing a jettison taking months or even years. In the background, time is also required to write procedures, train the crew, configure the vehicle, and many other activities. This paper outlines the current process used by the National Aeronautics and Space Administration (NASA) for manual jettisons, detailing the methods used to assure that the jettisons and the jettisoned objects are as safe as achievable and that the crew is adequately trained to be able to affect the safe jettison. The goal of this paper is not only to capture what it takes to perform safe jettisons in the near Earth environment but to extrapolate this knowledge to future space exploration scenarios that will likely have Extravehicular Activity (EVA) and International Partner (IP) interfaces.

  1. Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments

    DTIC Science & Technology

    2008-05-28

    testing, and has no plans to test. It has reduced the time needed to conduct a nuclear test. Critics raised concerns about the implications of these...particularly as it is reduced, is reliable and safe. So he has not ruled out testing in the future, but there are no plans to do so.’”4 Critics ...Secretary of State, to Honorable Pete Domenici, United States Senate, June 25, 2007. a ten-year-old moratorium on nuclear weapons testing.”5 Another critic

  2. The Indefinite Extension of the Nuclear Non-Proliferation Treaty: A Hinderence or Help to Future Arms Control

    NASA Astrophysics Data System (ADS)

    Pella, Peter J.

    1996-05-01

    The indefinite and "unconditional" extension of the Nuclear Non-Proliferation Treaty (NPT) was achieved almost one year ago today. This outcome was a major foreign policy goal of the Clinton Administration. Some critics of the NPT's indefinite extension claim that nuclear weapons states parties to the NPT have now legitimized their possession of nuclear weapons for all time and that there is no incentive for future nuclear arms control and disarmament measures. A discussion of how the indefinite extension of the NPT has affected the nuclear arms control landscape and the prospects for future disarmament measures will be discussed.

  3. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  4. Key issues in space nuclear power challenges for the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  5. Chornobyl Nuclear Power Plant - An Overview of the Current Efforts to Stabilize the Chornobyl Shelter and Establish an Environmentally Safe Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, Daniel P.; Gronier, Serge; Heriot, Ian D.

    2005-08-08

    Chornobyl Nuclear Power Plant ? An Overview of the Current Efforts to Stabilize the Chornobyl Shelter and Establish an Environmentally Safe Site Abstract?The 1986 accident at the Chornobyl Nuclear Power Plant in Ukraine resulted in the destruction of the reactor core and most of the reactor building. The Chornobyl accident released an enormous quantity of radionuclides into the environment, significantly contaminating a large region around the plant. Within seven months of the accident, the damaged Unit 4 was encased in a massive concrete and steel enclosure known as the Shelter. Deterioration of the Shelter over time poses increasing risks. Themore » Shelter is subject to structural damage or collapse due to wind, snow loading, or seismic activity. Collapse could lead to the release of radioactive fallout. Leakage of rainwater into the Shelter has caused the accumulation of a large quantity of highly radioactive liquid, corrosion of extremely contaminated nuclear fuel debris, and creation of hazardous radioactive dust. To address these concerns, the government of Ukraine, the G7 nations, and additional donor countries adopted the Shelter Implementation Plan (SIP) in 1997. The SIP's objectives are to reduce the risk and potential consequences of accidental collapse of the Shelter; improve nuclear, industrial and environmental safety; and develop a long-term strategy for conversion to an environmentally safe site. Implementation of the SIP has made significant progress that will lead to the construction of a new confinement facility by 2009. (Full paper available by contacting lead author, Dan Couch)« less

  6. Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2004-01-01

    A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100 kilowatt from the core to an energy conversion system at 700 C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested.

  7. Safe meat-handling knowledge, attitudes and practices of private and government meat processing plants' workers: implications for future policy.

    PubMed

    Adesokan, H K; Raji, A O Q

    2014-03-01

    Food-borne disease outbreaks remain a major global health challenge and cross-contamination from raw meat due to poor handling is a major cause in developing countries. Adequate knowledge of meat handlers is important in limiting these outbreaks. This study evaluated and compared the safe meat-handling knowledge, attitudes and practices (KAP) of private (PMPP) and government meat processing plants' (GMPP) workers in south-western Nigeria. This cross sectional study comprised 190 meat handlers (PMPP = 55; GMPP = 135). Data concerning their safe meat-handling knowledge, attitudes and practices as well as their socio-demographic characteristics, such as age, gender and work experience were collected. A significant association was observed between the type of meat processing plants and their knowledge (p = 0.000), attitudes (p = 0.000) and practices (p = 0.000) of safe meat-handling. Meat handlers in the GMPP were respectively, about 17 times (OR = 0.060, 95% CI: 0.018-0.203), 57 times (OR = 0.019, 95% CI: 0.007-0.054) and 111 times (OR = 0.009, 95% CI: 0.001- 0.067) less likely to obtain good knowledge, attitude and practice level of safe meat-handling than those from PMPP. Further, KAP levels were significantly associated with age group, education and work experience (p < 0.05). Study findings suggest the need for future policy in food industry in developing countries to accommodate increased involvement of private sector for improved food safety and quality delivery. Public health education on safe food handling and hygiene should be on the front burner among food handlers in general.

  8. Ionizing Solutions to Future Processor Demands for Safe Food

    USDA-ARS?s Scientific Manuscript database

    Food Irradiation is a safe and effective U.S. Food and Drug Administration (FDA) approved process that can be used to disinfest or delay the maturation of fruits and vegetables, improve the microbiological safety of shellfish, eggs, raw meat and poultry, spices, and seeds used for sprouting. FDA ap...

  9. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to the NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Nuclear thermal propulsion (NTP) has been recognized as an enabling technology for missions to Mars and beyond. However, one of the key challenges of developing a nuclear thermal rocket is conducting verification and development tests on the ground. A number of ground test options are presented, with the Sub-surface Active Filtration of Exhaust (SAFE) method identified as a preferred path forward for the NTP program. The SAFE concept utilizes the natural soil characteristics present at the Nevada National Security Site to provide a natural filter for nuclear rocket exhaust during ground testing. A validation method of the SAFE concept is presented, utilizing a non-nuclear sub-scale hydrogen/oxygen rocket seeded with detectible radioisotopes. Additionally, some alternative ground test concepts, based upon the SAFE concept, are presented. Finally, an overview of the ongoing discussions of developing a ground test campaign are presented.

  10. 75 FR 35001 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of Open... facsimile (202) 586- 0544; e-mail [email protected]nuclear.energy.gov . Additional information may also be...

  11. 75 FR 61139 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of Open...) 586- 0544; e-mail [email protected]nuclear.energy.gov . Additional information will be available at http...

  12. The future of nuclear power: A world-wide perspective

    NASA Astrophysics Data System (ADS)

    Aktar, Ismail

    This study analyzes the future of commercial nuclear electric generation worldwide using the Environmental Kuznets Curve (EKC) concept. The Tobit panel data estimation technique is applied to analyze the data between 1980 and 1998 for 105 countries. EKC assumes that low-income countries increase their nuclear reliance in total electric production whereas high-income countries decrease their nuclear reliance. Hence, we expect that high-income countries should shut down existing nuclear reactors and/or not build any new ones. We encounter two reasons for shutdowns: economic or political/environmental concerns. To distinguish these two effects, reasons for shut down are also investigated by using the Hazard Model technique. Hence, the load factor of a reactor is used as an approximation for economic reason to shut down the reactor. If a shut downed reactor had high load factor, this could be attributable to political/environmental concern or else economic concern. The only countries with nuclear power are considered in this model. The two data sets are created. In the first data set, the single entry for each reactor is created as of 1998 whereas in the second data set, the multiple entries are created for each reactor beginning from 1980 to 1998. The dependent variable takes 1 if operational or zero if shut downed. The empirical findings provide strong evidence for EKC relationship for commercial nuclear electric generation. Furthermore, higher natural resources suggest alternative electric generation methods rather than nuclear power. Economic index as an institutional variable suggests higher the economic freedom, lower the nuclear electric generation as expected. This model does not support the idea to cut the carbon dioxide emission via increasing nuclear share. The Hazard Model findings suggest that higher the load factor is, less likely the reactor will shut down. However, if it is still permanently closed downed, then this could be attributable to political

  13. The world's nuclear future - built on material success

    NASA Astrophysics Data System (ADS)

    Ion, Sue

    2010-07-01

    In our energy hungry world of the twenty-first century, the future of electricity generation must meet the twin challenges of security of supply and reduced carbon emissions. The expectations for nuclear power programmes to play a part in delivering success on both counts, grows ever higher. The nuclear industry is poised on a renaissance likely to dwarf the heady days of the 1960s and early 1970s. Global supply chain and project management challenges abound, now just as then. The science and engineering of materials will be key to the successful deployment and operation of a new generation of reactor systems and their associated fuel cycles. Understanding and predicting materials performance will be key to achieving life extension of existing assets and underpinning waste disposal options, as well as giving confidence to the designers, their financial backers and governments across the globe, that the next generation of reactors will deliver their full potential.

  14. Power control of SAFE reactor using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Irvine, Claude

    2002-01-01

    Controlling the 100 kW SAFE (Safe Affordable Fission Engine) reactor consists of design and implementation of a fuzzy logic process control system to regulate dynamic variables related to nuclear system power. The first phase of development concentrates primarily on system power startup and regulation, maintaining core temperature equilibrium, and power profile matching. This paper discusses the experimental work performed in those areas. Nuclear core power from the fuel elements is simulated using resistive heating elements while heat rejection is processed by a series of heat pipes. Both axial and radial nuclear power distributions are determined from neuronic modeling codes. The axial temperature profile of the simulated core is matched to the nuclear power profile by varying the resistance of the heating elements. The SAFE model establishes radial temperature profile equivalence by establishing 32 control zones as the nodal coordinates. Control features also allow for slow warm up, since complete shutoff can occur in the heat pipes if heat-source temperatures drop/rise below a certain minimum value, depending on the specific fluid and gas combination in the heat pipe. The entire system is expected to be self-adaptive, i.e., capable of responding to long-range changes in the space environment. Particular attention in the development of the fuzzy logic algorithm shall ensure that the system process remains at set point, virtually eliminating overshoot on start-up and during in-process disturbances. The controller design will withstand harsh environments and applications where it might come in contact with water, corrosive chemicals, radiation fields, etc. .

  15. Nuclear threat on the Korean peninsula: The present and the future. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, S.

    1994-04-01

    Forty years after they were divided by the Cold War, South and North Korea are closer to reunification than ever before. However, North Korea's nuclear weapons program might cause South Koreans to be much less sure about reunification. Today the Cold War is over, but the Korean peninsula is still divided into two Koreas despite the new era of reconciliation. Since December 1991 when a non-aggression pact was signed barring nuclear weapons, North Korea has pursued its nuclear weapon development. In March 1993, North Korea declared its intention to withdraw from the Nuclear Non-Proliferation Treaty, and has been refusing amore » full inspection of its nuclear program. North Korea's nuclear issue is an international issue today. This paper discusses 'what threat we have today' and 'what should be done in the future.'.« less

  16. Chasing nuclear rainbows

    NASA Astrophysics Data System (ADS)

    Allison, Wade

    2010-01-01

    Expeditions in search of a rainbow's end never reach their goal. Efforts to solve the problem of nuclear-waste disposal have not had much success either - perhaps because they have been addressing questions the wrong way round. There are two basic challenges of waste disposal. The first is scientific: the waste must be kept somewhere out of harm's way, where it does not incur major risks to current or future residents of the planet. The second is political: scientists must persuade and reassure the community as a whole that the waste is being handled, stored and disposed of safely.

  17. A Priority-Based View of Future Challenges in International Nuclear Safeguards.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matteucci, Kayla

    The international nuclear safeguards community is faced with a host of challenges in the coming years, many of which have been outlined but have not been described in terms of their urgency. Literature regarding safeguards challenges is either broad and devoid of any reference to prioritization or tailored to a specific problem and removed from the overall goals of the safeguards community. For example, developing new methods of environmental sampling, improving containment and surveillance (C/S) technologies to increase efficiency and decrease inspection time, advancing nuclear material accountancy (NMA) techniques, and planning safeguards approaches for new types of nuclear facilities aremore » all important. They have not, however, been distinctly prioritized at a high level within the safeguards community. Based on a review of existing literature and interviews with experts on these upcoming challenges, this paper offers a high-level summary of present and future priorities in safeguards, with attention both to what is feasible and to what is most imperative. In doing so, the paper addresses the potential repercussions for failing to prioritize, with a focus on the risk of diversion of nuclear material. Within the context of shifts in the American political landscape, and keeping in mind that nonproliferation issues may take a backseat to others in the near future, a prioritized view of safeguards objectives will be vital. In the interest of expanding upon this work, the paper offers several potential conceptual models for prioritization which can be explored in greater depth upon further research.« less

  18. Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments

    DTIC Science & Technology

    2013-01-02

    41 The National Academy of Sciences Study and Its Critics ...reliable and safe. So he has not ruled out testing in the future, but there are no plans to do so.”6 Critics expressed concern about the...nuclear weapons testing.”7 Another critic felt that increased funding for test readiness would in effect give prior approval for testing. In July 2002 a

  19. Childhood leukaemia risks: from unexplained findings near nuclear installations to recommendations for future research.

    PubMed

    Laurier, D; Grosche, B; Auvinen, A; Clavel, J; Cobaleda, C; Dehos, A; Hornhardt, S; Jacob, S; Kaatsch, P; Kosti, O; Kuehni, C; Lightfoot, T; Spycher, B; Van Nieuwenhuyse, A; Wakeford, R; Ziegelberger, G

    2014-09-01

    Recent findings related to childhood leukaemia incidence near nuclear installations have raised questions which can be answered neither by current knowledge on radiation risk nor by other established risk factors. In 2012, a workshop was organised on this topic with two objectives: (a) review of results and discussion of methodological limitations of studies near nuclear installations; (b) identification of directions for future research into the causes and pathogenesis of childhood leukaemia. The workshop gathered 42 participants from different disciplines, extending widely outside of the radiation protection field. Regarding the proximity of nuclear installations, the need for continuous surveillance of childhood leukaemia incidence was highlighted, including a better characterisation of the local population. The creation of collaborative working groups was recommended for consistency in methodologies and the possibility of combining data for future analyses. Regarding the causes of childhood leukaemia, major fields of research were discussed (environmental risk factors, genetics, infections, immunity, stem cells, experimental research). The need for multidisciplinary collaboration in developing research activities was underlined, including the prevalence of potential predisposition markers and investigating further the infectious aetiology hypothesis. Animal studies and genetic/epigenetic approaches appear of great interest. Routes for future research were pointed out.

  20. Tripolar Stability: The Future of Nuclear Relations Among the United States, Russia, and China

    DTIC Science & Technology

    2002-09-01

    I N S T I T U T E F O R D E F E N S E A N A L Y S E S D E F E N S E T H R E A T R E D U C T I O N A G E N C Y Tripolar Stability: The Future of... Tripolar Stability: The Future of Nuclear Relations Among the United States, Russia, and China Brad Roberts PREFACE Since the creation of the...here were first sketched out in a symposium convened at IDA on July 28 on nuclear tripolarity , where thoughtful presentations were made on facets

  1. Nuclear Energy Present and Future

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.

    2006-10-01

    Nuclear power plants currently generate about 20% of US and 17% of world electricity, which makes nuclear the largest non-emitting energy source in current use. Concerns about global climate change have led to a remarkable transformation of attitudes towards nuclear energy. There remain key challenges that must be faced when considering expansion of its contribution. In summary they are: Economics, Safety, Waste Disposal, and Proliferation. Electricity from legacy fission plants is highly competitive with fossil, but perceived financial risks make the large capital cost fraction a key hurdle to new-construction, and costs of 2 per installed Watt electrical are currently considered only just economically attractive. Proliferation of nuclear-weapons-enabling technology is a major concern for global stability, in which fusion may have significant technical advantages over fission. But proliferation control requires a combination of both technical and political initiatives. The feasibility of supplying process heat or hydrogen from nuclear energy inspires additional research into novel reactor concepts and associated technologies. The presentation will lay out this overall context of the nuclear energy renaissance.

  2. Managing drugs safely.

    PubMed

    van den Anker, John N

    2005-02-01

    There is hard data to show that newborn infants are more likely than adults to experience adverse reactions to drugs. Paradoxically, drug-related legislation to ensure safe and effective drug use in humans neglected neonates until 2002, when the Best Pharmaceuticals Act for Children was signed into law in the USA. The situation for neonates should now catch up with that for adults and neonates will be prescribed more licensed drugs in the near future. If we are to be able to analyze the underlying system errors to improve the safe use of drugs in the studied patient population, reporting of adverse drug events and reactions needs to happen in a blame free environment. In addition, computerized physician order entry will certainly further improve the current situation by preventing errors in ordering, transcribing, verifying, and transmitting medication orders.

  3. Panel session on "how to meet the challenges for nuclear power".

    PubMed

    Tenforde, Thomas S

    2011-01-01

    This panel session at the 2009 Annual Meeting involved a discussion of views of government, industry, and national research laboratory members on the primary future goals in developing advanced nuclear reactor and nuclear fuel cycle designs, fuel management, and used fuel disposal options. The session at the 2009 NCRP Annual Meeting on "How to Meet the Challenges for Nuclear Power" was chaired by Mary E. Clark of the U.S. Environmental Protection Agency and focused on efforts in the United States and worldwide to expand nuclear capabilities for electric power production in a safe, secure, and environmentally acceptable manner. This paper briefly summarizes the key topics discussed in five presentations during this session of the NCRP Annual Meeting. Copyright © 2010 Health Physics Society

  4. 75 FR 51025 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle... meeting. SUMMARY: This notice announces an open meeting of the Reactor and Fuel Cycle Technology (RFCT... back end of the nuclear fuel cycle. The Commission will provide advice and make recommendations on...

  5. 75 FR 36648 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee AGENCY: Office of Nuclear Energy, DOE. ACTION: Notice of open meeting correction. On June 21, 2010, the Department of Energy published a notice announcing an open meeting of the Reactor...

  6. Current training initiatives at Nuclear Electric plc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, C.D.

    1993-01-01

    Nuclear Electric, one of the three generating companies to emerge from the demise of the U.K.'s Central Electricity Generating Board (CEGB), owns and operates the commercial nuclear power stations in England and Wales. The U.K. government proscribed further construction beyond Sizewell B, the United Kingdom's first pressurized water reactor (PWR) station, pending the outcome of a review of the future of nuclear power to be held in 1994. The major challenges facing Nuclear Electric at its formation in 1990 were therefore to demonstrate that nuclear power is safe, economical, and environmentally acceptable and to complete the PWR station under constructionmore » on time and within budget. A significant number of activities were started that were designed to increase output, reduce costs, and ensure that the previous excellent safety standards were maintained. A major activity was to reduce the numbers of staff employed, with a recognition from the outset that this reduction could only be achieved with a significant human resource development program. Future company staff would have to be competent in more areas and more productive. This paper summarizes some of the initiatives currently being pursued throughout the company and the progress toward ensuring that staff with the required competences are available to commission and operate the Sizewell B program in 1994.« less

  7. Inherently safe passive gas monitoring system

    DOEpatents

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  8. Transient Approximation of SAFE-100 Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Reid, Robert S.

    2005-01-01

    Engineers at Los Alamos National Laboratory (LANL) have designed several heat pipe cooled reactor concepts, ranging in power from 15 kWt to 800 kWt, for both surface power systems and nuclear electric propulsion systems. The Safe, Affordable Fission Engine (SAFE) is now being developed in a collaborative effort between LANL and NASA Marshall Space Flight Center (NASA/MSFC). NASA is responsible for fabrication and testing of non-nuclear, electrically heated modules in the Early Flight Fission Test Facility (EFF-TF) at MSFC. In-core heat pipes must be properly thawed as the reactor power starts. Computational models have been developed to assess the expected operation of a specific heat pipe design during start-up, steady state operation, and shutdown. While computationally intensive codes provide complete, detailed analyses of heat pipe thaw, a relatively simple. concise routine can also be applied to approximate the response of a heat pipe to changes in the evaporator heat transfer rate during start-up and power transients (e.g., modification of reactor power level) with reasonably accurate results. This paper describes a simplified model of heat pipe start-up that extends previous work and compares the results to experimental measurements for a SAFE-100 type heat pipe design.

  9. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  10. Nuclear Energy: It is Time to Revitalize the Peaceful Atom

    DTIC Science & Technology

    2011-03-16

    difficulties of obtaining NRC licensing approval since the NRC had to evaluate each individual design.26 Nuclear Waste James Lovelock , an...OfNuclearPower (accessed December 26, 2010). 25 Ibid. 26 Ibid. 27 James Lovelock , “Nuclear Energy: The Safe Choice for Now,” Environmentalists for Nuclear...Energy, July 2005, http://www.ecolo.org/ lovelock /nuclear-safe-choice-05.htm (accessed 27 December 2010). 28 Caldicott, Nuclear Power is Not the Answer

  11. America, the Soviets and Nuclear Arms: Looking to the Future. Teacher's Resource Book.

    ERIC Educational Resources Information Center

    Berger, Karl; And Others

    This curriculum project focuses on U.S.-Soviet relations and the choices that U.S. citizens face today in addressing the Soviet Union and the threat of nuclear war. This book is intended as a resource guide to accompany a 22-minute video presentation and student text that are part of the "Four Futures" curriculum. The resource book…

  12. Safe sex

    MedlinePlus

    ... sex; Sexually transmitted - safe sex; GC - safe sex; Gonorrhea - safe sex; Herpes - safe sex; HIV - safe sex; ... contact. STIs include: Chlamydia Genital herpes Genital warts Gonorrhea Hepatitis HIV HPV Syphilis STIs are also called ...

  13. Unique and massive Chernobyl cranes for deconstruction activities in the new safe confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parameswaran, N. A. Vijay; Chornyy, Igor; Owen, Rob

    2013-07-01

    On 26 April 1986, the worst nuclear power plant accident in history occurred at the Chernobyl plant in Ukraine (then part of the Soviet Union). The destruction of Unit 4 sent highly radioactive fallout over Belarus, Russia, Ukraine, and Europe. The object shelter-a containment sarcophagus-was built in November 1986 to limit exposure to radiation. However, it has only a planned 25-year lifespan and would probably not survive even a moderate seismic event in a region that has more than its share of such events. It was time to take action. One of the largest tasks that are in progress ismore » the design and construction of the New Safe Confinement (NSC). The NSC is an engineered enclosure for the entire object shelter that includes a suite of process equipment. The process equipment will be used for the dismantling of the destroyed Chernobyl Nuclear Power Plant Unit. One of the major mechanical handling systems to be installed in the new safe confinement is the Main Cranes System. The planned decontamination and decommissioning or dismantling activities will require the handling of heavily shielded waste disposal casks containing nuclear fuel as well as lifting and transporting extremely large structural elements. These activities, to be performed within the new safe confinement, will require large and sophisticated cranes. The article will focus on the current progress of the new safe confinement and of the main cranes system for the decommissioning or dismantling activities. (authors)« less

  14. Nuclear energy and health: and the benefits of low-dose radiation hormesis.

    PubMed

    Cuttler, Jerry M; Pollycove, Myron

    2009-01-01

    Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity. Such releases would likely deliver a low dose or dose rate of radiation, within the range of naturally occurring radiation, to which life is already accustomed. The key areas of concern are discussed. Studies of actual health effects, especially thyroid cancers, following exposures are assessed. Radiation hormesis is explained, pointing out that beneficial effects are expected following a low dose or dose rate because protective responses against stresses are stimulated. The notions that no amount of radiation is small enough to be harmless and that a nuclear accident could kill hundreds of thousands are challenged in light of experience: more than a century with radiation and six decades with reactors. If nuclear energy is to play a significant role in meeting future needs, regulatory authorities must examine the scientific evidence and communicate the real health effects of nuclear radiation. Negative images and implications of health risks derived by unscientific extrapolations of harmful effects of high doses must be dispelled.

  15. Inherently Safe and Long-Life Fission Power System for Lunar Outposts

    NASA Astrophysics Data System (ADS)

    Schriener, T. M.; El-Genk, Mohamed S.

    Power requirements for future lunar outposts, of 10's to 100's kWe, can be fulfilled using nuclear reactor power systems. In addition to the long life and operation reliability, safety is paramount in all phases, including fabrication and assembly, launch, emplacement below grade on the lunar surface, operation, post-operation decay heat removal and long-term storage and eventual retrieval. This paper introduces the Solid Core-Sectored Compact Reactor (SC-SCoRe) and power system with static components and no single point failures. They ensure reliable continuous operation for ~21 years and fulfill the safety requirements. The SC-SCoRe nominally generates 1.0 MWth at liquid NaK-56 coolant inlet and exit temperatures of 850 K and 900 K and the power system provides 38 kWe at high DC voltage using SiGe thermoelectric (TE) conversion assemblies. In case of a loss of coolant or cooling in a reactor core sector, the power system continues to operate; generating ~4 kWe to the outpost for emergency life support needs. The post-operation storage of the reactor below grade on the lunar surface is a safe and practical choice. The total radioactivity in the reactor drops from ~1 million Ci, immediately at shutdown, to below 164 Ci after 300 years of storage. At such time, the reactor is retrieved safely with no contamination or environmental concerns.

  16. Human cloning: can it be made safe?

    PubMed

    Rhind, Susan M; Taylor, Jane E; De Sousa, Paul A; King, Tim J; McGarry, Michelle; Wilmut, Ian

    2003-11-01

    There are continued claims of attempts to clone humans using nuclear transfer, despite the serious problems that have been encountered in cloning other mammals. It is known that epigenetic and genetic mechanisms are involved in clone failure, but we still do not know exactly how. Human reproductive cloning is unethical, but the production of cells from cloned embryos could offer many potential benefits. So, can human cloning be made safe?

  17. From Confrontation to Cooperation: 8th International Seminar on Nuclear War

    NASA Astrophysics Data System (ADS)

    Zichichi, A.; Dardo, M.

    1992-09-01

    The Table of Contents for the full book PDF is as follows: * OPENING SESSION * A. Zichichi: Opening Statements * R. Nicolosi: Opening Statements * MESSAGES * CONTRIBUTIONS * "The Contribution of the Erice Seminars in East-West-North-South Scientific Relations" * 1. LASER TECHNOLOGY * "Progress in laser technology" * "Progress in laboratory high gain ICF: prospects for the future" * "Applications of laser in metallurgy" * "Laser tissue interactions in medicine and surgery" * "Laser fusion" * "Compact X-ray lasers in the laboratory" * "Alternative method for inertial confinement" * "Laser technology in China" * 2. NUCLEAR AND CHEMICAL SAFETY * "Reactor safety and reactor design" * "Thereotical analysis and numerical modelling of heat transfer and fuel migration in underlying soils and constructive elements of nuclear plants during an accident release from the core" * "How really to attain reactor safely" * "The problem of chemical weapons" * "Long terms genetic effects of nuclear and chemical accidents" * "Features of the brain which are of importance in understanding the mode of operation of toxic substances and of radiation" * "CO2 and ultra safe reactors" * 3. USE OF MISSILES * "How to convert INF technology for peaceful scientific purposes" * "Beating words into plowshares: a proposal for the peaceful uses of retired nuclear warheads" * "Some thoughts on the peaceful use of retired nuclear warheads" * "Status of the HEFEST project" * 4. OZONE * "Status of the ozone layer problem" * 5. CONVENTIONAL AND NUCLEAR FORCE RESTRUCTURING IN EUROPE * 6. CONFLICT AVOIDANCE MODEL * 7. GENERAL DISCUSSION OF THE WORLD LAB PROJECTS * "East-West-North-South Collaboration in Subnuclear Physics" * "Status of the World Lab in the USSR" * CLOSING SESSION

  18. Expert judgments about RD&D and the future of nuclear energy.

    PubMed

    Anadón, Laura D; Bosetti, Valentina; Bunn, Matthew; Catenacci, Michela; Lee, Audrey

    2012-11-06

    Probabilistic estimates of the cost and performance of future nuclear energy systems under different scenarios of government research, development, and demonstration (RD&D) spending were obtained from 30 U.S. and 30 European nuclear technology experts. We used a novel elicitation approach which combined individual and group elicitation. With no change from current RD&D funding levels, experts on average expected current (Gen. III/III+) designs to be somewhat more expensive in 2030 than they were in 2010, and they expected the next generation of designs (Gen. IV) to be more expensive still as of 2030. Projected costs of proposed small modular reactors (SMRs) were similar to those of Gen. IV systems. The experts almost unanimously recommended large increases in government support for nuclear RD&D (generally 2-3 times current spending). The majority expected that such RD&D would have only a modest effect on cost, but would improve performance in other areas, such as safety, waste management, and uranium resource utilization. The U.S. and E.U. experts were in relative agreement regarding how government RD&D funds should be allocated, placing particular focus on very high temperature reactors, sodium-cooled fast reactors, fuels and materials, and fuel cycle technologies.

  19. Inorganic chemistry in nuclear imaging and radiotherapy: current and future directions

    PubMed Central

    Carroll, Valerie; Demoin, Dustin W.; Hoffman, Timothy J; Jurisson, Silvia S

    2013-01-01

    Summary Radiometals play an important role in diagnostic and therapeutic radiopharmaceuticals. This field of radiochemistry is multidisciplinary, involving radiometal production, separation of the radiometal from its target, chelate design for complexing the radiometal in a biologically stable environment, specific targeting of the radiometal to its in vivo site, and nuclear imaging and/or radiotherapy applications of the resultant radiopharmaceutical. The critical importance of inorganic chemistry in the design and application of radiometal-containing imaging and therapy agents is described from a historical perspective to future directions. PMID:25382874

  20. On the future of civilian plutonium: An assessment of technological impediments to nuclear terrorism and proliferation

    NASA Astrophysics Data System (ADS)

    Avedon, Roger Edmond

    This dissertation addresses the value of developing diversion- and theft-resistant nuclear power technology, given uncertain future demand for nuclear power, and uncertain risks of nuclear terrorism and of proliferation from the reprocessing of civilian plutonium. The methodology comprises four elements: Economics. An economic growth model coupled with market penetration effects for plutonium and for the hypothetical new technology provides a range of estimates for future nuclear demand. A flow model accounts for the longevity of capital assets (nuclear plants) over time. Terrorism. The commercial nuclear fuel cycle may provide a source of fissile material for terrorists seeking to construct a crude nuclear device. An option value model is used to estimate the effects of the hypothetical new technology on reducing the probability of theft. A game theoretic model is used to explore the deterrence value of physical security and then to draw conclusions about how learning on the part of terrorists or security forces might affect the theft estimate. The principal uncertainties in the theft model can be updated using Bayesian techniques as new data emerge. Proliferation. Access to fissile material is the principal technical impediment to a state's acquisition of nuclear weapons. A game theoretic model is used to determine the circumstances under which a state may proliferate via diversion. The model shows that the hypothetical new technology will have little value for counter-proliferation if diversion is not a preferred proliferation method. A technology policy analysis of the choice of proliferation method establishes that diversion is unlikely to be used because it has no constituency among the important parties to the decision, namely the political leadership, the scientific establishment, and the military. Value. The decision whether to develop a diversion- and theft-resistant fuel cycle depends on the perceived value of avoiding nuclear terrorism and proliferation

  1. Nuclear Data Uncertainty Quantification: Past, Present and Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D. L.

    2015-01-01

    An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for futuremore » investigation of this subject are also suggested.« less

  2. Nuclear Data Uncertainty Quantification: Past, Present and Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.L., E-mail: Donald.L.Smith@anl.gov

    2015-01-15

    An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for futuremore » investigation of this subject are also suggested.« less

  3. Navigation and vessel inspection circular No. 3-94. International maritime organization code for the safe carriage of irradiated nuclear fuel, plutonium and high-level radioactive wastes in flasks on board ships (IMO resolution a.748(18)). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-05-26

    The Circular calls the attention of Coast Guard field units, marine surveyors, shippers and carriers of nuclear materials to the International Maritime Organization (IMO) Code for the Safe Carriage of Irradiated Nuclear Fuel, Plutonium and High-Level Radioactive Wastes in Flasks on Board Ships (IMO Resolution A.748(18)).

  4. Space nuclear reactors — A post-operational disposal strategy

    NASA Astrophysics Data System (ADS)

    Angelo, Joseph A.; Buden, David

    If 100-kWe and multimegawatt-electric class space nuclear reactors are to play a significant role in humanity's push into cislunar and heliocentric space in the next millennium, the obvious advantages of space nuclear power plants should not be denied to space mission planners due to a failure to develop internationally-acceptable post-operational disposal strategies for spent reactor cores. This is true whether the space reactor has shut down at the end of its normal mission lifetime or in response to an onboard system failure/emergency which causes a premature mission termination. Up until now the great majority of aerospace nuclear safety efforts have concentrated on prelaunch, launch and reactor startup activities. In fact, with the exception of the development of the "nuclear safe orbit" (NSO) concept, little technical attention has yet been given to the post-operational disposal of future space reactors. This paper describes the technical alternatives available for the safe, acceptable disposal of space reactors that could be used in a wide variety of space applications in the 21st Century. Post-operational core radioactivity levels for typical advanced design (hundred kWe-class) space reactors are presented as a function of decay time and contrasted to the spent core radionuclide inventory of the SNAP-10A system, the only nuclear reactor operated in space by the United States. The role of a permanent space station, smart robotic systems, and an operating lunar base in support of spent core disposal strategies is also presented, including use of a selected portion of the lunar surface as an internationally-designated spent reactor core repository.

  5. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, D.R.

    1993-03-23

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  6. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, Donald R.

    1993-01-01

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  7. Nuclear energy and security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLEJWAS,THOMAS E.; SANDERS,THOMAS L.; EAGAN,ROBERT J.

    2000-01-01

    Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadershipmore » or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity.« less

  8. Nuclear Energy and Health: And the Benefits of Low-Dose Radiation Hormesis

    PubMed Central

    Cuttler, Jerry M.; Pollycove, Myron

    2009-01-01

    Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity. Such releases would likely deliver a low dose or dose rate of radiation, within the range of naturally occurring radiation, to which life is already accustomed. The key areas of concern are discussed. Studies of actual health effects, especially thyroid cancers, following exposures are assessed. Radiation hormesis is explained, pointing out that beneficial effects are expected following a low dose or dose rate because protective responses against stresses are stimulated. The notions that no amount of radiation is small enough to be harmless and that a nuclear accident could kill hundreds of thousands are challenged in light of experience: more than a century with radiation and six decades with reactors. If nuclear energy is to play a significant role in meeting future needs, regulatory authorities must examine the scientific evidence and communicate the real health effects of nuclear radiation. Negative images and implications of health risks derived by unscientific extrapolations of harmful effects of high doses must be dispelled. PMID:19343116

  9. Digital computer operation of a nuclear reactor

    DOEpatents

    Colley, R.W.

    1982-06-29

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  10. Digital computer operation of a nuclear reactor

    DOEpatents

    Colley, Robert W.

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  11. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  12. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritterbusch, Stanley; Golay, Michael; Duran, Felicia

    2003-01-29

    OAK B188 Summary of methods proposed for risk informing the design and regulation of future nuclear power plants. All elements of the historical design and regulation process are preserved, but the methods proposed for new plants use probabilistic risk assessment methods as the primary decision making tool.

  13. Social Institutions and Nuclear Energy

    ERIC Educational Resources Information Center

    Weinberg, Alvin M.

    1972-01-01

    Nuclear technologists can offer an all but infinite source of relatively cheap and clean energy" but society must decide whether the price of eternal vigilance needed to ensure proper and safe operation of its nuclear energy system" is worth the benefits. (Author/AL)

  14. Present and Future Applications of Digital Electronics in Nuclear Science - a Commercial Prospective

    NASA Astrophysics Data System (ADS)

    Tan, Hui

    2011-10-01

    Digital readout electronics instrumenting radiation detectors have experienced significant advancements in the last decade or so. This on one hand can be attributed to the steady improvements in commercial digital processing components such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), field-programmable-gate-arrays (FPGAs), and digital-signal-processors (DSPs), and on the other hand can also be attributed to the increasing needs for improved time, position, and energy resolution in nuclear physics experiments, which have spurred the rapid development of commercial off-the-shelf high speed, high resolution digitizers or spectrometers. Absent from conventional analog electronics, the capability to record fast decaying pulses from radiation detectors in digital readout electronics has profoundly benefited nuclear physics researchers since they now can perform detailed pulse processing for applications such as gamma-ray tracking and decay-event selection and reconstruction. In this talk, present state-of-the-art digital readout electronics and its applications in a variety of nuclear science fields will be discussed, and future directions in hardware development for digital electronics will also be outlined, all from the prospective of a commercial manufacturer of digital electronics.

  15. Compliant Task Execution and Learning for Safe Mixed-Initiative Human-Robot Operations

    NASA Technical Reports Server (NTRS)

    Dong, Shuonan; Conrad, Patrick R.; Shah, Julie A.; Williams, Brian C.; Mittman, David S.; Ingham, Michel D.; Verma, Vandana

    2011-01-01

    We introduce a novel task execution capability that enhances the ability of in-situ crew members to function independently from Earth by enabling safe and efficient interaction with automated systems. This task execution capability provides the ability to (1) map goal-directed commands from humans into safe, compliant, automated actions, (2) quickly and safely respond to human commands and actions during task execution, and (3) specify complex motions through teaching by demonstration. Our results are applicable to future surface robotic systems, and we have demonstrated these capabilities on JPL's All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robot.

  16. Resonant scattering experiments with radioactive nuclear beams - Recent results and future plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teranishi, T.; Sakaguchi, S.; Uesaka, T.

    2013-04-19

    Resonant scattering with low-energy radioactive nuclear beams of E < 5 MeV/u have been studied at CRIB of CNS and at RIPS of RIKEN. As an extension to the present experimental technique, we will install an advanced polarized proton target for resonant scattering experiments. A Monte-Carlo simulation was performed to study the feasibility of future experiments with the polarized target. In the Monte-Carlo simulation, excitation functions and analyzing powers were calculated using a newly developed R-matrix calculation code. A project of a small-scale radioactive beam facility at Kyushu University is also briefly described.

  17. Future prospects of nuclear reactions induced by gamma-ray beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Filipescu, D.; Balabanski, D. L.; Camera, F.; Gheorghe, I.; Ghita, D.; Glodariu, T.; Kaur, J.; Ur, C. A.; Utsunomiya, H.; Varlamov, V. V.

    2017-01-01

    The future prospects of photonuclear reactions studies at the new Extreme Light Infrastructure—Nuclear Physics (ELI-NP) facility are discussed in view of the pursuit of investigating the electromagnetic response of nuclei using γ-ray beams of unprecedented energy resolution and intensity characteristics. We present here the features of the γ-ray beam source, the emerging ELI-NP experimental program involving photonuclear reactions cross section measurements and spectroscopy and angular measurements of γ-rays and neutrons along with the detection arrays currently under implementation.

  18. Safe delivery of optical power from space.

    PubMed

    Smith, M; Fork, R L; Cole, S

    2001-05-07

    More than a billion gigawatts of sunlight pass through the area extending from Earth out to geostationary orbit. A small fraction of this clean renewable power appears more than adequate to satisfy the projected needs of Earth, and of human exploration and development of space far into the future. Recent studies suggest safe and efficient access to this power can be achieved within 10 to 40 years. Light, enhanced in spatial and temporal coherence, as compared to natural sunlight, offers a means, and probably the only practical means, of usefully transmitting this power to Earth. We describe safety standards for satellite constellations and Earth based sites designed, respectively, to transmit, and receive this power. The spectral properties, number of satellites, and angle subtended at Earth that are required for safe delivery are identified and discussed.

  19. Cool and Safe: Multiplicity in Safe Innovation at Unilever

    ERIC Educational Resources Information Center

    Penders, Bart

    2011-01-01

    This article presents the making of a safe innovation: the application of ice structuring protein (ISP) in edible ices. It argues that safety is not the absence of risk but is an active accomplishment; innovations are not "made safe afterward" but "safe innovations are made". Furthermore, there are multiple safeties to be accomplished in the…

  20. Modelling the energy future of Switzerland after the phase out of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Diaz, Paula; Van Vliet, Oscar

    2015-04-01

    In September 2013, the Swiss Federal Office of Energy (SFOE) published the final report of the proposed measures in the context of the Energy Strategy 2050 (ES2050). The ES2050 draws an energy scenario where the nuclear must be substituted by alternative sources. This implies a fundamental change in the energy system that has already been questioned by experts, e.g. [Piot, 2014]. Therefore, we must analyse in depth the technical implications of change in the Swiss energy mix from a robust baseload power such as nuclear, to an electricity mix where intermittent sources account for higher rates. Accomplishing the ES2050 imply difficult challenges, since nowadays nuclear power is the second most consumed energy source in Switzerland. According to the SFOE, nuclear accounts for a 23.3% of the gross production, only surpassed by crude oil products (43.3%). Hydropower is the third source more consumed, representing approximately the half of the nuclear (12.2%). Considering that Switzerland has almost reached the maximum of its hydropower capacity, renewables are more likely to be the alternative when the nuclear phase out takes place. Hence, solar and wind power will play an important role in the future Swiss energy mix, even though currently new renewables account for only 1.9% of the gross energy consumption. In this study we look for realistic and efficient combinations of energy resources to substitute nuclear power. Energy modelling is a powerful tool to design an energy system with high energy security that avoids problems of intermittency [Mathiesen & Lund, 2009]. In Switzerland, energy modelling has been used by the government [Abt et. al., 2012] and also has significant relevance in academia [Mathys, 2012]. Nevertheless, we detected a gap in the study of the security in energy scenarios [Busser, 2013]. This study examines the future electricity production of Switzerland using Calliope, a multi-scale energy systems model, developed at Imperial College, London and

  1. Simple Automatic File Exchange (SAFE) to Support Low-Cost Spacecraft Operation via the Internet

    NASA Technical Reports Server (NTRS)

    Baker, Paul; Repaci, Max; Sames, David

    1998-01-01

    Various issues associated with Simple Automatic File Exchange (SAFE) are presented in viewgraph form. Specific topics include: 1) Packet telemetry, Internet IP networks and cost reduction; 2) Basic functions and technical features of SAFE; 3) Project goals, including low-cost satellite transmission to data centers to be distributed via an Internet; 4) Operations with a replicated file protocol; 5) File exchange operation; 6) Ground stations as gateways; 7) Lessons learned from demonstrations and tests with SAFE; and 8) Feedback and future initiatives.

  2. Human Factors Research and Nuclear Safety.

    ERIC Educational Resources Information Center

    Moray, Neville P., Ed.; Huey, Beverly M., Ed.

    The Panel on Human Factors Research Needs in Nuclear Regulatory Research was formed by the National Research Council in response to a request from the Nuclear Regulatory Commission (NRC). The NRC asked the research council to conduct an 18-month study of human factors research needs for the safe operation of nuclear power plants. This report…

  3. An End-To-End Test of A Simulated Nuclear Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Hrbud, Ivana; Goddfellow, Keith; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The Safe Affordable Fission Engine (SAFE) test series addresses Phase I Space Fission Systems issues in it particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  4. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  5. The Story of the Nuclear Rocket: Back to the Future

    NASA Astrophysics Data System (ADS)

    Dewar, James A.

    2002-01-01

    . After its demise, the Small Nuclear Engine appeared for unmanned missions. To fit in the space shuttle's 15 by 60 foot cargo bay, the 10 foot long engine would be 400MW, weigh 5600 pounds and use slush hydrogen. That left 50 feet and almost 60,000 pounds for the tank, propellant and payload that could vary in size, but it was nominally 5 tons. It would cost 500 million (in1972 dollars) and take a decade to develop. It had NERVA's operating characteristics, but subsequent generation systems envisioned longer engine life and recycle capability and specific impulses of 1000+ seconds. Nixon ended this in 1973. By reconsidering it instead of a nuclear electric engine that serves only space science, the nation could gain a fast, powerful system that would radically change most future unmanned space missions. With its recycle capability, a single engine could ferry large scientific payloads swiftly throughout the solar system. Yet it also could propel heavy national security and commercial payloads to geo-synchronous orbit. NASA might even offer a satellite retrieval service. Thus, one lesson is clear: it is 1960s era technology, but the Small Engine is not obsolete. If developed, it would serve not just one, but three users yet have growth potential for decades for an ever more expansive space program.

  6. Public Acceptance of Nuclear Energy in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez-Sanchez, Jose R.; Alonso, Gustavo; Palacios, H. Javier

    2006-07-01

    The nuclear energy is attracting renewed interest of public and policy makers due to his potential role in long term strategies aiming to reduce the risk of global warming and in a more general, to carry out sustainable policies, however, any project of nuclear nature arise concerns about the risks associated with the release of radioactivity during accident conditions, radioactive waste disposal and nuclear weapons proliferation. Then in light of the likeliness for a new nuclear project in Mexico, is necessary to design a strategy to improve the social acceptance of nuclear power. This concern is been boarding since themore » environmental and economic point of view. The information that can change the perception of nuclear energy towards increase public acceptance, should be an honest debate about the benefits of nuclear energy, of course there are questions and they have to be answered, but in a realistic and scientific way: So thinking in Mexico as a first step it is important to communicate to the government entities and political parties that nuclear energy is a proven asset that it is emission free and safe. Of course besides the guarantee of a proven technology, clean and safe relies the economic fact, and in Mexico this could be the most important aspect to communicate to key people in government. Based in the Laguna Verde survey it is clear that we have to find the adequate means to distribute the real information concerning nuclear technology to the public, because the results shows that Mexican people does not have complete information about nuclear energy, but public can support it when they have enough information. From the IAEA study we can say that in Mexico public acceptance of nuclear energy it s not so bad, is the highest percentage of acceptance of nuclear technology for health, considering benefits to the environment Mexican opposition to build new plants is the second less percentage, and generally speaking 60% of the people accept somehow

  7. Economics of nuclear power and climate change mitigation policies.

    PubMed

    Bauer, Nico; Brecha, Robert J; Luderer, Gunnar

    2012-10-16

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.

  8. Economics of nuclear power and climate change mitigation policies

    PubMed Central

    Bauer, Nico; Brecha, Robert J.; Luderer, Gunnar

    2012-01-01

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy. PMID:23027963

  9. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.

    2010-09-29

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) formore » construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and

  10. Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions.

    PubMed

    Choi, Hongyoon

    2018-04-01

    Recent advances in deep learning have impacted various scientific and industrial fields. Due to the rapid application of deep learning in biomedical data, molecular imaging has also started to adopt this technique. In this regard, it is expected that deep learning will potentially affect the roles of molecular imaging experts as well as clinical decision making. This review firstly offers a basic overview of deep learning particularly for image data analysis to give knowledge to nuclear medicine physicians and researchers. Because of the unique characteristics and distinctive aims of various types of molecular imaging, deep learning applications can be different from other fields. In this context, the review deals with current perspectives of deep learning in molecular imaging particularly in terms of development of biomarkers. Finally, future challenges of deep learning application for molecular imaging and future roles of experts in molecular imaging will be discussed.

  11. [Safe school].

    PubMed

    Liberal, Edson Ferreira; Aires, Roberto Tschoepke; Aires, Mariana Tschoepke; Osório, Ana Carla de Albuquerque

    2005-11-01

    To review the strategies to make school a safe environment. The paper first addresses the social context of accidents and violence in the school environment, and makes recommendations, based on the literature data, for the implementation of safe schools. Articles published between 1993 and 2005 in the MEDLINE database. Brazilian epidemiological and literature data have also been searched. There is growing evidence that intervention has multiple components, focusing on health education practices, with the participation of the whole community. The aim of those interventions is to help students and community members to adopt healthy and safe behaviors. Schools are taking on an increasing role in health promotion, disease prevention, and injury prevention. In the context of prevention of external causes of morbidity and mortality, it is important to recognize a risky environment, places, and risk behaviors as favorable to injury and violence, as well as the concept of accident as something one can avoid. Implementation of safe schools represents a promising new direction for school-based preventive work. It is important to note that a safe school should intervene not only in its physical structure, but it should also make it as safe as possible by gathering the school community through health education, and mainly encouraging healthy behavior.

  12. Is There Future Utility in Nuclear Weapons Nuclear Weapons Save Lives

    DTIC Science & Technology

    2014-02-13

    operate with relative impunity short of large-scale conflict. Some point to a nuclear India and Pakistan as an example of instability concern. In...1997, South Asia observer Neil Joeck argued that “ India and Pakistan’s nuclear capabilities have not created strategic stability (and) do not reduce...elimination of illiteracy , provision of sustainable energy, debt relief for developing countries, clearance of landmines and more has been estimated

  13. What becomes of nuclear risk assessment in light of radiation hormesis?

    PubMed

    Cuttler, Jerry M

    2006-08-25

    A nuclear probabilistic risk or safety assessment (PRA or PSA) is a scientific calculation that uses assumptions and models to determine the likelihood of plant or fuel repository failures and the corresponding releases of radioactivity. Estimated radiation doses to the surrounding population are linked inappropriately to risks of cancer death and congenital malformations. Even though PRAs use very pessimistic assumptions, they demonstrate that nuclear power plants and fuel repositories are very safe compared with the health risks of other generating options or other risks that people readily accept. Because of the frightening negative images and the exaggerated safety and health concerns that are communicated, many people judge nuclear risks to be unacceptable and do not favour nuclear plants. Large-scale tests and experience with nuclear accidents demonstrate that even severe accidents expose the public to only low doses of radiation, and a century of research has demonstrated that such exposures are beneficial to health. A scientific basis for this phenomenon now exists. PRAs are valuable tools for improving plant designs, but if nuclear power is to play a significant role in meeting future energy needs, we must communicate its many real benefits and dispel the negative images formed by unscientific extrapolations of harmful effects at high doses.

  14. Doing the impossible: Recycling nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-01-01

    A Science Channel feature explores how Argonne techniques could be used to safely reduce the amount of radioactive waste generated by nuclear power—the most plentiful carbon-neutral energy source. Read more at http://www.anl.gov/Media_Center/ArgonneNow/Fall_2009/nuclear.html

  15. Mission design considerations for nuclear risk mitigation

    NASA Technical Reports Server (NTRS)

    Stancati, Mike; Collins, John

    1993-01-01

    Strategies for the mitigation of the nuclear risk associated with two specific mission operations are discussed. These operations are the safe return of nuclear thermal propulsion reactors to earth orbit and the disposal of lunar/Mars spacecraft reactors.

  16. Investigation of safe-life fail-safe criteria for the space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An investigation was made to determine the effects of a safe-life design approach and a fail-safe design approach on the space shuttle booster vehicle structure, and to recommend any changes to the structural design criteria. Two configurations of the booster vehicle were considered, one incorporating a delta wing (B-9U configuration) and the other a swept wing (B-16B configuration). Several major structural components of the booster were studied to determine the fatigue life, safe-life, and fail-safe capabilities of the baseline design. Each component was investigated to determine the practicability of applying a safe-life or fail-safe design philosophy, the changes such design approaches might require, and the impact of these changes on weight, cost, development plans, and performance.

  17. Advanced research workshop: nuclear materials safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L J; Moshkov, M M

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on themore » storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds

  18. A theological view of nuclear energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollard, W.G.

    The author presents a theological perspective on nuclear power based on Israel's history, as revealed in the Hebrew Bible and the Alexandrian Greek Septuagint. Nuclear energy is described as God's energy choice for the whole of creation, which can be made as safe as traditional sources.

  19. German Support Program for Retrieval and Safe Storage of Disused Radioactive Sealed Sources in Ukraine - 13194

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretzsch, Gunter; Salewski, Peter; Sogalla, Martin

    2013-07-01

    The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) on behalf of the Government of the Federal Republic of Germany supports the State Nuclear Regulatory Inspectorate of Ukraine (SNRIU) in enhancement of nuclear safety and radiation protection and strengthening of the physical protection. One of the main objectives of the agreement concluded by these parties in 2008 was the retrieval and safe interim storage of disused orphan high radioactive sealed sources in Ukraine. At present, the Ukrainian National Registry does not account all high active radiation sources but only for about 70 - 80 %. GRSmore » in charge of BMU to execute the program since 2008 concluded subcontracts with the waste management and interim storage facilities RADON at different regions in Ukraine as well with the waste management and interim storage facility IZOTOP at Kiev. Below selected examples of removal of high active Co-60 and Cs-137 sources from irradiation facilities at research institutes are described. By end of 2012 removal and safe interim storage of 12.000 disused radioactive sealed sources with a total activity of more than 5,7.10{sup 14} Bq was achieved within the frame of this program. The German support program will be continued up to the end of 2013 with the aim to remove and safely store almost all disused radioactive sealed sources in Ukraine. (authors)« less

  20. Nuclear Gauges Used in Road Construction | RadTown USA ...

    EPA Pesticide Factsheets

    2017-08-07

    Nuclear gauges use radioactive sources to measure the thickness, density or make-up of a wide variety of materials and surfaces. When properly used, nuclear gauges will not expose the public to radiation. Nuclear gauges must be used safely and disposed of properly.

  1. Safe Zones: Creating LGBT Safe Space Ally Programs

    ERIC Educational Resources Information Center

    Poynter, Kerry John; Tubbs, Nancy Jean

    2008-01-01

    This article discusses model LGBT Safe Space Ally programs. These programs, often called "Safe Zones," include self selected students, faculty, and employees who publicly show support by displaying stickers, signs, and other identifiable items. Issues covered in the article include history, development, training, membership, assessment, and…

  2. Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lingyu

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. To ensure that nuclear power remains clean energy, monitoring has been identified by DOE as a high priority cross-cutting need, necessary to determine and predict the degradation state of the systems, structures, and components (SSCs) important to safety (ITS). Therefore, nondestructive structural condition monitoring becomes a need to be installed on existing or to be integrated into future storage system to quantify the state of health or to guarantee the safe operation of nuclear power plants (NPPs) during their extendedmore » life span. In this project, the lead university and the collaborating national laboratory teamed to develop a nuclear structural health monitoring (n-SHM) system based on in-situ piezoelectric sensing technologies that can monitor structural degradation and aging for nuclear spent fuel DCSS and similar structures. We also aimed to identify and quantify possible influences of nuclear spent fuel environment (temperature and radiation) to the piezoelectric sensor system and come up with adequate solutions and guidelines therefore. We have therefore developed analytical model for piezoelectric based n-SHM methods, with considerations of temperature and irradiation influence on the model of sensing and algorithms in acoustic emission (AE), guided ultrasonic waves (GUW), and electromechanical impedance spectroscopy (EMIS). On the other side, experimentally the temperature and irradiation influence on the piezoelectric sensors and sensing capabilities were investigated. Both short-term and long-term irradiation investigation with our collaborating national laboratory were performed. Moreover, we developed multi-modal sensing, validated in laboratory setup, and conducted the testing on the We performed multi-modal sensing development, verification and validation tests on very complex

  3. Metallurgical evaluation of a feedwater nozzle to safe-end weld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowerman, B.S.; Czajkowski, C.J.; Roberts, T.C.

    1999-11-01

    Weld cracks in safety class systems are a serious concern, because these systems are part of the primary barrier providing containment of radioactive coolant. Loss of weld integrity yields leaks, or, under catastrophic failure, can be the basis for a severe loss of coolant accident. A circumferential indication was found by ultrasonic examination (UT) in the N4A-2 inlet feedwater nozzle to safe-end weld during the second refueling outage of River Bend Station Unit 1 in March 1989. The indication, approximately 15cm (6in) long with a reported maximum depth of 0.5cm (0.1in), was located in the Alloy 182 weld butter onmore » the safe-end side of the weld. (The safe-end base metal was ASME SA 508 Class 1 carbon steel.) The reported characteristics of the UT indication were indicative of intergranular stress corrosion cracking. This indication was reexamined during the second and third fuel cycles in March 1990 and September 1991, respectively, and during the third refuel outage in November 1990. Crack growth was reported during each examination. The safe-end was replaced during the fourth refueling outage in the summer of 1992. The US Nuclear Regulatory Commission (NRC) subsequently contracted with Brookhaven National laboratory (BNL) to conduct a confirmatory investigation to establish the failure mode and determine the root causes of cracking in the safe-end weld.« less

  4. Doing the impossible: Recycling nuclear waste

    ScienceCinema

    None

    2018-06-07

    A Science Channel feature explores how Argonne techniques could be used to safely reduce the amount of radioactive waste generated by nuclear power—the most plentiful carbon-neutral energy source. Read more at http://www.anl.gov/Media_Center/ArgonneNow/Fall_2009/nuclear.html

  5. Safe Haven Configurations for Deep Space Transit Habitats

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Polsgrove, Tara; Rowe, Justin; Simon, Matthew

    2017-01-01

    Throughout the human space flight program there have been instances where smoke, fire, and pressure loss have occurred onboard space vehicles, putting crews at risk for loss of mission and loss of life. In every instance the mission has been in Low-Earth-Orbit (LEO) with access to multiple volumes that could be used to quickly seal off the damaged module or escape vehicles for a quick return to Earth. For long duration space missions beyond LEO, including Mars transit missions of about 1000 days, the mass penalty for multiple volumes has been a concern as has operating in an environment where a quick return will not be possible. In 2016 a study was done to investigate a variety of dual pressure vessel configurations for habitats that could protect the crew from these hazards. It was found that for a modest increase in total mass it should be possible to provide significant protection for the crew. Several configurations were developed that either had a small safe haven to provide 30-days to recover, or a full duration safe haven using two equal size pressure vessel volumes. The 30-day safe haven was found to be the simplest, yielding the least total mass impact but still with some risk if recovery is not possible during that timeframe. The full duration safe haven was the most massive option but provided the most robust solution. This paper provides information on the various layouts considered in the study and provides a discussion of the findings for implementing a safe haven in future habitat designs.

  6. Nuclear Weapons and the Future: An "Unthinkable" Proposal.

    ERIC Educational Resources Information Center

    Tyler, Robert L.

    1982-01-01

    The author looks ahead 30 or 40 years to see what might come of the nuclear weapons predicament. As a minimal first step in the campaign against nuclear warfare, he suggests a unilateral and complete disarmament by the United States. (AM)

  7. Quality of Care in a Safe-Abortion Hotline in Indonesia: Beyond Harm Reduction.

    PubMed

    Gerdts, Caitlin; Hudaya, Inna

    2016-11-01

    To examine services offered by safe-abortion hotlines in contexts in which abortion is legally restricted and to document the experiences of women contacting a safe-abortion hotline in Indonesia. We analyzed 1829 first-time contacts to a safe-abortion hotline in Indonesia as a part of routine service provision between January 1, 2012 and December 31, 2014. Nearly one third (29.9%) of initial contacts reported their age as between 18 and 24 years, and most (51.2%) reported being unmarried. When asked about their reason for calling the hotline, the majority of initial contacts stated that they were pregnant and not ready to have a child. More than one third reported gestational ages below 12 weeks, and nearly one fifth (18.3%) reported a gestation of 13 weeks or greater. These unique data provide a window of understanding into who contacts safe-abortion hotlines and why, and enable exploration of future directions for research on the role of safe-abortion hotlines in women's access to safe abortion. Public Health Implications. Safe-abortion hotlines should be evaluated not only for reducing harm but also for providing high-quality abortion care.

  8. Safe Schools, Safe Communities.

    ERIC Educational Resources Information Center

    Lewis, Julie E.; Pickett, Dean; Pulliam, Janet L.; Schwartz, Richard A.; St. Germaine, Anne-Marie; Underwood, Julie; Worona, Jay

    Schools must work together with agencies, groups, and individuals to eliminate the forces leading children to violence. Chapter 1, "School Safety: Working Together to Keep Schools Safe," stresses the importance of community collaboration in violence prevention. Effective prevention requires sharing information about students, consistent…

  9. Spent Nuclear Fuel (SNF) Project Execution Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  10. Nuclear Powerplant Safety: Design and Planning.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    The most important concern in the design, construction and operation of nuclear powerplants is safety. Nuclear power is one of the major contributors to the nation's supply of electricity; therefore, it is important to assure its safe use. Each different type of powerplant has special design features and systems to protect health and safety. One…

  11. The Future of U.S. Nuclear Forces: Boom or Bust

    DTIC Science & Technology

    2007-03-30

    materials, and nuclear waste.45 The Defense Nuclear Facilities Safety Board (DNFSB) was established by Congress in 1988 as an independent federal...adequate protection of public health and safety" at DOE’s defense nuclear facilities .46 This 100- person agency looks at four areas of the nuclear weapons...47 A.J. Eggenberger, Sixteenth Annual Report to Congress (Washington DC: Defense Nuclear Facilities Safety Board, February 2006), 13; available

  12. Safe Haven Configurations for Deep Space Transit Habitats

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Polsgrove, Tara; Rowe, Justin; Simon, Matthew

    2017-01-01

    Throughout the human space flight program there have been instances where systems failures resulting in smoke, fire, and pressure loss have occurred onboard space vehicles, putting crews at risk for loss of mission and loss of life. In most instances the missions have been in Low-Earth-Orbit (LEO) or Earth-Moon vicinity, with access to multiple volumes that could be used to quickly seal off the damaged module or access escape vehicles for return to Earth. For long duration missions beyond LEO, including Mars transit missions of about 1100 days, the mass penalty for multiple volumes and operating in an environment where a quick return will not be possible have been concerns. In 2016, a study was done to investigate a variety of dual pressure vessel configurations for habitats that could protect the crew from these hazards. It was found that with a modest increase in total mass it should be possible to provide significant protection for the crew. Several configurations were considered that either had a small safe haven to provide 30-days to recover, or a full duration safe haven using two equal size pressure vessel volumes. The 30-day safe haven was found to be the simplest, yielding the least total mass impact but still with some risk if recovery is not possible during that timeframe. The full duration safe haven was the most massive option but provided the most robust solution. This paper provides information on the various layouts developed during the study and provides a discussion of the findings for implementing a safe haven in future habitat designs.

  13. The safe disposal of radioactive wastes

    PubMed Central

    Kenny, A. W.

    1956-01-01

    A comprehensive review is given of the principles and problems involved in the safe disposal of radioactive wastes. The first part is devoted to a study of the basic facts of radioactivity and of nuclear fission, the characteristics of radioisotopes, the effects of ionizing radiations, and the maximum permissible levels of radioactivity for workers and for the general public. In the second part, the author describes the different types of radioactive waste—reactor wastes and wastes arising from the use of radioisotopes in hospitals and in industry—and discusses the application of the maximum permissible levels of radioactivity to their disposal and treatment, illustrating his discussion with an account of the methods practised at the principal atomic energy establishments. PMID:13374534

  14. Nuclear energy: current situation and prospects to 2020.

    PubMed

    Ion, Sue

    2007-04-15

    For close to half a century nuclear fission has been providing reliable supplies of electricity to the UK, with virtually no emissions of carbon dioxide. Over that period, the UK nuclear industry has avoided the emission of over one and a half billion tonnes of CO2. Yet no nuclear plant has been built in the UK for over two decades even though many of the stations in our current fleet are now within a decade or so of the end of their lifetime. Without new plants being ordered soon, the UK's nuclear capacity will decline dramatically, from 23% today to 3% post-2020--just as considerations of supply security and climate change are becoming increasingly important. Elsewhere in the world, many countries such as China, India, Japan, South Korea, Finland and France are building new stations. Other countries such as the USA, South Africa, and some nations that currently do not have nuclear stations (such as Indonesia and Poland) are making preparations for future nuclear stations. Globally capacity factors for nuclear plants are higher than they have ever been, averaging around 85% and with the best stations achieving well over 90%. Lifetime can be 60 years. That the economics of such stations compete well with other technologies is well founded and easily verifiable--especially in the face of rising fossil fuel prices and the pricing in of costs for CO2 emissions--both of which stand to improve the economics of nuclear energy still further. Waste volumes arising from modern plants are just a fraction of those of some earlier stations, and the technologies are in place to deal with them safely and effectively. Following recent reviews and international developments, there is growing confidence that internationally available competitive designs of nuclear plant will provide part of the solution to the UK's long-term energy needs.

  15. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Astrophysics Data System (ADS)

    Emrich, William J.

    2008-01-01

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  16. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emrich, William J. Jr.

    2008-01-21

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowingmore » hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.« less

  17. Department of Energy: An Organizational Look at Americas Nuclear Deterrent

    DTIC Science & Technology

    2016-09-01

    DEPARTMENT OF ENERGY : AN ORGANIZATIONAL LOOK AT AMERICA’S NUCLEAR DETERRENT GRADUATE RESEARCH PAPER David O. Pabst, Maj, USAF...DEPARTMENT OF ENERGY : AN ORGANIZATIONAL LOOK AT AMERICA’S NUCLEAR DETERRENT GRADUATE RESEARCH PAPER Presented to the Faculty...Panel 2014). Thus, the Department of Energy serves to maintain a credible nuclear deterrent by ensuring a safe, secure, and effective nuclear

  18. Nuclear Emergency and the Atmospheric Dispersion of Nuclear Aerosols: Discussion of the Shared Nuclear Future - 13163

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Mukhtar A.; Ali, Nawab; Akhter, Parveen

    2013-07-01

    This paper has a twofold objective. One is to analyze the current status of high-level nuclear waste disposal along with presentation of practical perspectives about the environmental issues involved. Present disposal designs and concepts are analyzed on a scientific basis and modifications to existing designs are proposed from the perspective of environmental safety. Other is to understand the aerosol formation in the atmosphere for the case of the leakage from the nuclear waste containers or a nuclear accident. Radio-nuclides released from the waste will attach themselves to the existing aerosols in the atmosphere along with formation of new aerosols. Anticipatingmore » the nuclear accident when a variety of radioactive aerosols will form and exist in the atmosphere, as a simple example, measurement of naturally existing radioactive aerosols are made in the atmosphere of Islamabad and Murree. A comparison with similar measurements in 3 cities of France is provided. Measurement of radionuclides in the atmosphere, their attachment to aerosols and follow up transport mechanisms are key issues in the nuclear safety. It is studied here how {sup 7}Be concentration in the atmospheric air varies in the capital city of Islamabad and a Himalaya foothill city of Murree (Pakistan). Present results are compared with recent related published results to produce a {sup 7}Be concentration versus altitude plot up to an altitude of 4000 m (a.s.l.). Origin and variance of {sup 7}Be concentration at different altitudes is discussed in detail. The relevance of results presented here with the evaluation of implications of Chernobyl and Fukushima nuclear disasters has been discussed in a conclusive manner. It is the first international report of a joint collaboration/project. The project is being generalized to investigate and formulate a smooth waste storage and disposal policy. The project will address the fission and fusion waste reduction, its storage, its recycling, air, water

  19. Improved Monte Carlo Glauber predictions at present and future nuclear colliders

    NASA Astrophysics Data System (ADS)

    Loizides, Constantin; Kamin, Jason; d'Enterria, David

    2018-05-01

    We present the results of an improved Monte Carlo Glauber (MCG) model of relevance for collisions involving nuclei at center-of-mass energies of the BNL Relativistic Heavy Ion Collider (√{sNN}=0.2 TeV), CERN Large Hadron Collider (LHC) (√{sNN}=2.76 -8.8 TeV ), and proposed future hadron colliders (√{sNN}≈10 -63 TeV). The inelastic p p cross sections as a function of √{sNN} are obtained from a precise data-driven parametrization that exploits the many available measurements at LHC collision energies. We describe the nuclear density of a lead nucleus with two separated two-parameter Fermi distributions for protons and neutrons to account for their different densities close to the nuclear periphery. Furthermore, we model the nucleon degrees of freedom inside the nucleus through a lattice with a minimum nodal separation, combined with a "recentering and reweighting" procedure, that overcomes some limitations of previous MCG approaches. The nuclear overlap function, number of participant nucleons and binary nucleon-nucleon collisions, participant eccentricity and triangularity, overlap area, and average path length are presented in intervals of percentile centrality for lead-lead (PbPb) and proton-lead (p Pb ) collisions at all collision energies. We demonstrate for collisions at √{sNN}=5.02 TeV that the central values of the Glauber quantities change by up to 7% in a few bins of reaction centrality, due to the improvements implemented, though typically they remain within the previously assigned systematic uncertainties, while their new associated uncertainties are generally smaller (mostly below 5%) at all centralities than for earlier calculations. Tables for all quantities versus centrality at present and foreseen collision energies involving Pb nuclei, as well as for collisions of XeXe at √{sNN}=5.44 TeV , and AuAu and CuCu at √{sNN}=0.2 TeV , are provided. The source code for the improved Monte Carlo Glauber model is made publicly available.

  20. Dangers associated with civil nuclear power programmes: weaponization and nuclear waste.

    PubMed

    Boulton, Frank

    2015-07-24

    The number of nuclear power plants in the world rose exponentially to 420 by 1990 and peaked at 438 in 2002; but by 2014, as closed plants were not replaced, there were just 388. In spite of using more renewable energy, the world still relies on fossil fuels, but some countries plan to develop new nuclear programmes. Spent nuclear fuel, one of the most dangerous and toxic materials known, can be reprocessed into fresh fuel or into weapons-grade materials, and generates large amounts of highly active waste. This article reviews available literature on government and industry websites and from independent analysts on world energy production, the aspirations of the 'new nuclear build' programmes in China and the UK, and the difficulties in keeping the environment safe over an immense timescale while minimizing adverse health impacts and production of greenhouse gases, and preventing weaponization by non-nuclear-weapons states acquiring civil nuclear technology.

  1. Safe sex self-efficacy and safe sex practice in a Southern United States College

    PubMed Central

    Addoh, Ovuokerie; Sng, Eveleen; Loprinzi, Paul D.

    2017-01-01

    Background: The purpose of this study was to assess the association between safe sex self-efficacy and safe-sex practice in a Southern college setting. Methods: Multivariable logistic regression models were used to examine the association between safe sex self-efficacy in four domains (mechanics, partner disapproval, assertiveness, intoxicants) and safe sex practice (outcome variable). Results: For every 1-unit increase in the composite condom use self-efficacy score, there was an 8% increase in the odds of being beyond the median safe-sex practice score (odds ration [OR]: 1.08, 95% CI: 1.02-1.15). Additionally, for every 1-unit increase in intoxicants self-efficacy score, there was a 31% increase in the odds of being beyond the median safe-sex practice score (OR: 1.31, 95% CI: 1.08-1.58). Conclusion: A greater degree of safe-sex self-efficacy is associated with increased odds of safe-sex practice. These findings are informative for the development of targeted approaches to foster safe-sex behavior in Southern US colleges. PMID:28326287

  2. DroidSafe

    DTIC Science & Technology

    2016-12-01

    branches of our work . 3.1 Understanding Sensitive API Call and API Information Usage Android applications are written in a type- safe language (Java...directly invoke resolved targets. Because DroidSafe works with a comprehensive model of the Android environment , it supports precise resolution of...STATEMENT. FOR THE CHIEF ENGINEER: / S / / S / MARK K. WILLIAMS WARREN H. DEBANY, JR. Work Unit Manager

  3. A Safe Ride to School; A Safe Ride Home.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, Springfield.

    Text and illustrations are used to teach safe school bus riding practices. The guide begins with instructions to parents or guardians to set a good example of safe behavior, and to help children learn safety rules and be on time. Instructions to children concern obeying the bus driver, boarding the bus, riding the bus, crossing the road, and using…

  4. Energy Education: Responding to the Nuclear Power Controversy.

    ERIC Educational Resources Information Center

    Fry-Miller, Kathleen M.

    1982-01-01

    Discusses problems associated with the use of nuclear power as a source of energy. Sources of exposure to radiation, the effects of exposure to radiation on children's health, and safe alternatives to nuclear power that can be taught to children are among the topics addressed. (Author/RH)

  5. Anticipating Terrorist Safe Havens from Instability Induced Conflict

    NASA Astrophysics Data System (ADS)

    Shearer, Robert; Marvin, Brett

    This chapter presents recent methods developed at the Center for Army Analysis to classify patterns of nation-state instability that lead to conflict. The ungoverned areas endemic to failed nation-states provide terrorist organizations with safe havens from which to plan and execute terrorist attacks. Identification of those states at risk for instability induced conflict should help to facilitate effective counter terrorism policy planning efforts. Nation-states that experience instability induced conflict are similar in that they share common instability factors that make them susceptible to experiencing conflict. We utilize standard pattern classification algorithms to identify these patterns. First, we identify features (political, military, economic and social) that capture the instability of a nation-state. Second, we forecast the future levels of these features for each nation-state. Third, we classify each future state’s conflict potential based upon the conflict level of those states in the past most similar to the future state.

  6. Exploring varieties of knowledge in safe work practices - an ethnographic study of surgical teams

    PubMed Central

    2011-01-01

    Background Within existing research in health and medicine, the nature of knowledge on how teams conduct safe work practices has yet to be properly explored. Methods We address this concern by exploring the varieties in which knowledge is expressed during interdisciplinary surgical operations. Specifically, the study was conducted in a surgical section of a Norwegian regional general hospital, between January and April of 2010, by means of an ethnographic design combining detailed non-participant observations, conversations and semi-structured interviews. Results Based on an analysis of the gathered data, we identify three particular themes in how knowledge is expressed by operating room personnel: (i) the ability and variety individuals demonstrate in handling multiple sources of information, before reaching a particular decision, (ii) the variety of ways awareness or anticipation of future events is expressed, and (iii) the different ways sudden and unexpected situations are handled by the individual team members. Conclusions We conclude that these facets of knowledge bring different insights into how safe work practices are achieved at an individual and team level in surgical operations, thus adding to the existing understanding of the nature of knowledge in safe work practices in surgical operations. Future research should focus on exploring and documenting the relationships between various elements of knowledge and safe work practices, in different surgical settings and countries. PMID:21914183

  7. Prospect for future South-Korea arms control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.

    1992-04-22

    This study deals with the Hot issues of the first five Prime Ministers (PM) meetings, which encompassed 15 months of negotiations and have resulted in the completion of the Agreement on South-North Reconciliation/Non-aggression and Cooperation after 46 years of division. After the signing of the agreement, detailed worker level progress has culminated in North Korea signing the nuclear safety treaty of the International Atomic Energy Agency (IAEA) and Acceptance of International Inspection of Nuclear Facilities South-North civil economic progress is on the way and at the 6th meeting, a head of state meeting was discussed. Taking all this into consideration,more » it is safe to say that an affirmative direction is being taken towards South-North relations. In this arena, a critical element for better South-North relations is arms control. If meetings on arms control between South-North make good progress, the solution for the Korean peninsula's reunification, as well as detente, will be achieved more quickly. Therefore, arms control on the Korean peninsula should be considered as an important point for improvement of the future South-North Korean relationship. The important fact that we should remember is that arms control is a common issue. Arms control should be solved by South-North Korea because a phased arms control can develop prior to conditions for reunification.« less

  8. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Bedsun; Debra Lee; Margaret Townsend

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was firstmore » proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.« less

  9. An innovative way of thinking nuclear waste management - Neutron physics of a reactor directly operating on SNF.

    PubMed

    Merk, Bruno; Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J

    2017-01-01

    A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60's for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient.

  10. National SAFE KIDS Campaign releases 10-year report.

    PubMed

    Pike-Paris, A

    1999-01-01

    Unintentional injury is the leading cause of death and disability in children 14 years and under. The National SAFE KIDS Campaign, a nationwide organization aimed at education and prevention of unintentional injury, recently released its 10-year report that describes areas of success, areas in need of improvement, and goals for the future. The full 61-page report is worthy of reading and referencing for all those involved with children and their health care. Highlights of the report are summarized below.

  11. Food safety in a nuclear crisis: The role of the veterinarian.

    PubMed

    Waltner-Toews, D

    1990-05-01

    Veterinarians are integrally involved in the maintenance of a safe and sufficient food supply; this involvement may be put to the test when a crisis - particularly a nuclear crisis - occurs. Few people can be said to be experts in how to ensure a safe food supply in a nuclear crisis. However, a working knowledge of radionuclides and how they behave in the food system, and the ability to identify high-risk foods and high-risk consumers in a crisis situation should be a part of the education of all veterinarians. In this paper I review those features of postdisaster radionuclide contamination of the food chain most relevant to veterinary activities in ensuring a safe food supply.

  12. Use Medicines Safely

    MedlinePlus

    ... Medicines Safely Print This Topic En español Use Medicines Safely Browse Sections The Basics Overview Prescription Medicines ... Medicines 1 of 7 sections The Basics: Prescription Medicines There are different types of medicine. The 2 ...

  13. Biological, chemical, and nuclear terrorism readiness: major concerns and preparedness of future nurses.

    PubMed

    Young, Charlotte F; Persell, Deborah J

    2004-01-01

    The nursing profession is developing educational resources to improve their response to victims of nuclear, biological, and chemical terrorism. Future nurses may differ from practicing nurses in their perspective of what is critical information. The purpose of this study was to identify student nurses' major concerns in relation to working with victims of terrorism. A descriptive study was used to identify how future nurses might practice as caregivers for victims of terrorism. The study population consisted of a convenience sample of 95 junior and senior baccalaureate nursing students at a mid-south state university. The students were given an anonymous questionnaire regarding their concerns and how their lives had changed after September 11, 2001. The questionnaire consisted of 19 major items that identified demographics and perceptions and concerns regarding preparedness, willingness to work, expectation of future terrorism events, effect on lifestyle, and other fears related to terrorism or caring for victims of terrorism. A Cronbach alpha coefficient of reliability on standardized items was .745. Students' primary concern was for the safety of themselves and their families. They were primarily concerned about having adequate protection for all types of terrorist agents and indicated they would not be willing to care for victims if there was a lack of protection for both themselves and family. Although the nursing school faculty had provided self-education information about terrorism, students did not demonstrate an accurate understanding of the pathogenic nature of many agents.

  14. Picture Me Safe

    ERIC Educational Resources Information Center

    Irvin, Daniel W.

    1977-01-01

    The validity of well-written articles can be destroyed by poor illustration, especially when the pictures show unsafe practices. The responsibility lies with the author to provide clear printable pictures showing safe working environments and safe practices. (Editor)

  15. 76 FR 4646 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    .... ADDRESSES: Navy Shipyard, 1333 Isaac Hull Avenue, SE., Washington, DC 20376. FOR FURTHER INFORMATION CONTACT... spent nuclear fuel and nuclear waste. The Commission is scheduled to submit a draft report to the..., high-level waste, and materials derived from nuclear activities.'' In support of that effort, the...

  16. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safetymore » requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.« less

  17. Behavioral Determinants of Switching to Arsenic-Safe Water Wells.

    PubMed

    George, Christine Marie; Inauen, Jennifer; Perin, Jamie; Tighe, Jennifer; Hasan, Khaled; Zheng, Yan

    2017-02-01

    More than 100 million people globally are estimated to be exposed to arsenic in drinking water that exceeds the World Health Organization guideline of 10 µg/L. In an effort to develop and test a low-cost sustainable approach for water arsenic testing in Bangladesh, we conducted a randomized controlled trial which found arsenic educational interventions when combined with fee-based water arsenic testing programs led to nearly all households buying an arsenic test for their drinking water sources (93%) compared with only 53% when fee-based arsenic testing alone was offered. The aim of the present study was to build on the findings of this trial by investigating prospectively the psychological factors that were most strongly associated with switching to arsenic-safe wells in response to these interventions. Our theoretical framework was the RANAS (risk, attitude, norm, ability, and self-regulation) model of behavior change. In the multivariate logistic regression model of 285 baseline unsafe well users, switching to an arsenic-safe water source was significantly associated with increased instrumental attitude (odds ratio [OR] = 9.12; 95% confidence interval [CI] = [1.85, 45.00]), descriptive norm (OR = 34.02; 95% CI = [6.11, 189.45]), coping planning (OR = 11.59; 95% CI = [3.82, 35.19]), and commitment (OR = 10.78; 95% CI = [2.33, 49.99]). In addition, each additional minute from the nearest arsenic-safe drinking water source reduced the odds of switching to an arsenic-safe well by more than 10% (OR = 0.89; 95% CI = [0.87, 0.92]). Future arsenic mitigation programs should target these behavioral determinants of switching to arsenic-safe water sources.

  18. The Environmental Protection Agency's Safety Standards for Disposal of Spent Nuclear Fuel: Potential Path Forward in Response to the Report of the Blue Ribbon Commission on America's Nuclear Future - 13388

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forinash, Betsy; Schultheisz, Daniel; Peake, Tom

    2013-07-01

    Following the decision to withdraw the Yucca Mountain license application, the Department of Energy created a Blue Ribbon Commission (BRC) on America's Nuclear Future, tasked with recommending a national strategy to manage the back end of the nuclear fuel cycle. The BRC issued its final report in January 2012, with recommendations covering transportation, storage and disposal of spent nuclear fuel (SNF); potential reprocessing; and supporting institutional measures. The BRC recommendations on disposal of SNF and high-level waste (HLW) are relevant to the U.S. Environmental Protection Agency (EPA), which shares regulatory responsibility with the Nuclear Regulatory Commission (NRC): EPA issues 'generallymore » applicable' performance standards for disposal repositories, which are then implemented in licensing. For disposal, the BRC endorses developing one or more geological repositories, with siting based on an approach that is adaptive, staged and consent-based. The BRC recommends that EPA and NRC work cooperatively to issue generic disposal standards-applying equally to all sites-early in any siting process. EPA previously issued generic disposal standards that apply to all sites other than Yucca Mountain. However, the BRC concluded that the existing regulations should be revisited and revised. The BRC proposes a number of general principles to guide the development of future regulations. EPA continues to review the BRC report and to assess the implications for Agency action, including potential regulatory issues and considerations if EPA develops new or revised generic disposal standards. This review also involves preparatory activities to define potential process and public engagement approaches. (authors)« less

  19. An innovative way of thinking nuclear waste management – Neutron physics of a reactor directly operating on SNF

    PubMed Central

    Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J.

    2017-01-01

    A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60’s for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient. PMID:28749952

  20. Blue Ribbon Commission on America's Nuclear Future: Report to the Secretary of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-01

    Preamble The Blue Ribbon Commission on America’s Nuclear Future (BRC) was formed by the Secretary of Energy at the request of the President to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new strategy. It was co-chaired by Rep. Lee H. Hamilton and Gen. Brent Scowcroft. Other Commissioners are Mr. Mark H. Ayers, the Hon. Vicky A. Bailey, Dr. Albert Carnesale, Sen. Pete Domenici, Ms. Susan Eisenhower, Sen. Chuck Hagel, Mr. Jonathan Lash, Dr. Allison M. Macfarlane, Dr. Richard A. Meserve, Dr. Ernest J. Moniz, Dr. Per Peterson, Mr.more » John Rowe, and Rep. Phil Sharp. The Commission and its subcommittees met more than two dozen times between March 2010 and January 2012 to hear testimony from experts and stakeholders, to visit nuclear waste management facilities in the United States and abroad, and to discuss the issues identified in its Charter. Additionally, in September and October 2011, the Commission held five public meetings, in different regions of the country, to hear feedback on its draft report. A wide variety of organizations, interest groups, and individuals provided input to the Commission at these meetings and through the submission of written materials. Copies of all of these submissions, along with records and transcripts of past meetings, are available at the BRC website (www.brc.gov). This report highlights the Commission’s findings and conclusions and presents recommendations for consideration by the Administration and Congress, as well as interested state, tribal and local governments, other stakeholders, and the public.« less

  1. Safe Schools/Safe Communities: A Directory of Resources for Pennsylvania.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg.

    This document contains a directory of resources available in Pennsylvania to help achieve the goal of safe schools. Following a copy of the Safe Schools Act of 1993, nine sections list agencies that provide services and products under the headings of: conflict resolution/mediation, gangs, suicide, crisis response, family violence, diversity,…

  2. Lessons Learned from Safe Kids/Safe Streets. Juvenile Justice Bulletin

    ERIC Educational Resources Information Center

    Cronin, Roberta; Gragg, Frances; Schultz, Dana; Eisen, Karla

    2006-01-01

    This bulletin reports results from an evaluation of six sites of the Safe Kids/Safe Streets (SK/SS) program, which applies a comprehensive, collaborative approach to the child maltreatment field. The bulletin provides insights into collaboration building, systems reform, service options, and other strategies. Among the findings were that the SK/SS…

  3. Cladding and duct materials for advanced nuclear recycle reactors

    NASA Astrophysics Data System (ADS)

    Allen, T. R.; Busby, J. T.; Klueh, R. L.; Maloy, S. A.; Toloczko, M. B.

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.

  4. Nuclear choices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfson, R.

    This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects andmore » uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.« less

  5. Economic Analysis of National Nuclear Security Administration (NNSA) Modernization Alternatives

    DTIC Science & Technology

    2007-11-01

    without nuclear testing; works to reduce global danger from weapons of mass destruction; provides the U.S. Navy with safe and effective nuclear...SFE) covers the acquisition of glove boxes, long-lead facility, and actinide chemistry/materials characterization (AC/MC) equipment whose uniqueness...Hazard Category II AC/MC and actinide Research and Development operations, special nuclear 5 Babcock

  6. 76 FR 12719 - Safe Schools/Healthy Students Program; Office of Safe and Drug-Free Schools; Safe Schools/Healthy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... official version of this document is the document published in the Federal Register. Free Internet access... DEPARTMENT OF EDUCATION Safe Schools/Healthy Students Program; Office of Safe and Drug- Free... telecommunications device for the deaf (TDD), call the Federal Relay Service (FRS), toll free, at 1-800-877-8339...

  7. The radioactive waste debate in the United States and nuclear technology for peaceful purposes

    NASA Astrophysics Data System (ADS)

    Tehan, Terrence Norbert

    Many ethical, cultural, and economic concerns have accompanied the rapid growth of Western technology. Nuclear technology in particular has experienced considerable opposition because of its perceived dangers, especially disposal of atomic waste. While this field of science remains in its infancy, many legal, political and ecological groups oppose any further application of nuclear technology--including the significant medical, environmental, and economic benefits possible from a safe and responsible application of nuclear energy. Complete and objective knowledge of this technology is needed to balance a healthy respect for the danger of atomic power with its many advantages. This study focuses on one aspect of nuclear technology that has particularly aroused political and social controversy: nuclear waste. Finding ways of disposing safely of nuclear waste has become an extremely volatile issue because of the popular misconception that there is no permanent solution to this problem. This investigation will demonstrate that the supposedly enduring waste problem has been resolved in several industrial countries that now outstrip the United States in safe commercial applications of nuclear science. This dissertation offers a reasoned and objective contribution to the continuing national debate on the peaceful uses of nuclear technology. This debate becomes more crucial as the nation seeks a dependable substitute for the non-renewable sources of energy now rapidly being exhausted.

  8. Safe syringe disposal is related to safe syringe access among HIV-positive injection drug users.

    PubMed

    Coffin, Phillip O; Latka, Mary H; Latkin, Carl; Wu, Yingfeng; Purcell, David W; Metsch, Lisa; Gomez, Cynthia; Gourevitch, Marc N

    2007-09-01

    We evaluated the effect of syringe acquisition on syringe disposal among HIV-positive injection drug users (IDUs) in Baltimore, New York City, and San Francisco (N = 680; mean age 42 years, 62% male, 59% African-American, 21% Hispanic, 12% White). Independent predictors of safe disposal were acquiring syringes through a safe source and ever visiting a syringe exchange program. Weaker predictors included living in San Francisco, living in the area longer, less frequent binge drinking, injecting with an HIV+ partner, peer norms supporting safe injection, and self-empowerment. Independent predictors of safe "handling"-both acquiring and disposing of syringes safely-also included being from New York and being older. HIV-positive IDUs who obtain syringes from a safe source are more likely to safely dispose; peer norms contribute to both acquisition and disposal. Interventions to improve disposal should include expanding sites of safe syringe acquisition while enhancing disposal messages, alternatives, and convenience.

  9. Space Nuclear Thermal Propulsion Test Facilities Subpanel

    NASA Technical Reports Server (NTRS)

    Allen, George C.; Warren, John W.; Martinell, John; Clark, John S.; Perkins, David

    1993-01-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies; this final report

  10. A Framework for Safe Integration of Small UAS Into the NAS

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Bland, Geoffrey; Murray, Jennifer

    2011-01-01

    This paper discusses a proposed framework for the safe integration of small unmanned aerial systems (sUAS) into the National Airspace System (NAS). The paper examines the potential uses of sUAS to build an understanding of the location and frequency of potential future flight operations based on the future applications of the sUAS systems. The paper then examines the types of systems that would be required to meet the application-level demand to determine classes of platforms and operations. Finally, a framework is proposed for both airworthiness and operations that attempts to balance safety with utility for these important systems.

  11. Emerging needs for mobile nuclear powerplants

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Incentives for broadening the present role of civilian nuclear power to include mobile nuclear power plants that are compact, lightweight, and safe are examined. Specifically discussed is the growing importance of: (1) a new international cargo transportation capability, and (2) the capability for development of resources in previously remote regions of the earth including the oceans and the Arctic. This report surveys present and potential systems (vehicles, remote stations, and machines) that would both provide these capabilities and require enough power to justify using mobile nuclear reactor power plants.

  12. Transportation and aging: a research agenda for advancing safe mobility.

    PubMed

    Dickerson, Anne E; Molnar, Lisa J; Eby, David W; Adler, Geri; Bédard, Michel; Berg-Weger, Marla; Classen, Sherrilene; Foley, Daniel; Horowitz, Amy; Kerschner, Helen; Page, Oliver; Silverstein, Nina M; Staplin, Loren; Trujillo, Leonard

    2007-10-01

    We review what we currently know about older driver safety and mobility, and we highlight important research needs in a number of key areas that hold promise for achieving the safety and mobility goals for the aging baby boomers and future generations of older drivers. Through the use of a framework for transportation and safe mobility, we describe key areas of screening and assessment, remediation and rehabilitation, vehicle design and modification, technological advancements, roadway design, transitioning to nondriving, and alternative transportation to meet the goals of crash prevention and mobility maintenance for older adults. Four cross-cutting themes emerged from this review: safe transportation for older adults is important; older adults have a variety of needs, abilities, and resources; research to help meet the transportation needs of older adults may be of benefit to persons with disabilities; and transportation issues concerning older adults are multifaceted. Safe mobility is essential to continued engagement in civic, social, and community life, and to the human interactions necessary for health, well-being, and quality of life. When safe driving is no longer possible for older adults, safe and practicable alternative transportation must be available. Furthermore, older adults are individuals; they have specific needs, abilities, and resources. Not all older adults will have difficulty meeting their transportation needs and no single transportation solution will work for all people. Research and countermeasures intended to help meet the transportation needs of older adults will likely also benefit younger users of the transportation system, particularly those with disabilities. The issues surrounding the maintenance of safe transportation for older adults will require an interdisciplinary research approach if we are to make significant progress in the next decade as the baby boomers begin to reach age 70.

  13. Uranium, its impact on the national and global energy mix; and its history, distribution, production, nuclear fuel-cycle, future, and relation to the environment

    USGS Publications Warehouse

    Finch, Warren Irvin

    1997-01-01

    The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.

  14. Tools for the Future of Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Geesaman, Donald

    2014-03-01

    The challenges of Nuclear Physics, especially in understanding strongly interacting matter in all its forms in the history of the universe, place ever higher demands on the tools of the field, including the workhorse, accelerators. These demands are not just higher energy and higher luminosity. To recreate the matter that fleetingly was formed in the origin of the heavy elements, we need higher power heavy-ion accelerators and creative techniques to harvest the isotopes. We also need high-current low-energy accelerators deep underground to detect the very slow rate reactions in stellar burning. To explore the three dimensional distributions of high-momentum quarks in hadrons and to search for gluonic excitations we need high-current CW electron accelerators. Understanding the gluonic structure of nuclei and the three dimensional distributions of partons at lower x, we need high-luminosity electron-ion colliders that also have the capabilities to prepare, preserve and manipulate the polarization of both beams. A search for the critical point in the QCD phase diagram demands high luminosity beams over a broad range of species and energy. With advances in cavity design and construction, beam manipulation and cooling, and ion sources and targets, the Nuclear Physics community, in the U.S. and internationally has a coordinated vision to deliver this exciting science. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  15. On evaluation of assessments of accruals of future dismantling costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labor, Bea; Lindskog, Staffan

    based on current survey data retrieved from 667 personal interviews in one town in Poland and one town in Slovakia with a near 100 % response rate. The main conclusions from this field study may be summarised as follows: - Sustainable energy sources are prioritised. - Around one quarter of the respondents regards nuclear power as a future semi-sustainable commercial energy production mode subject to that the waste is managed in a sustainable, environmental friendly and safe way - The values are to a significant degree positioned on health, safety and environmental (HSE) attributes. - The polluter pays principle is honoured. - There are doubts regarding the compliance with these principles due to risks for delays in the implementation phase of repositories for disposal of the nuclear residues. - 1/5. of the respondents expressed an openness to reprocessing (which is linked to the concept of 'new nuclear power'). (authors)« less

  16. The future of U.S.-Russia nuclear arms control

    NASA Astrophysics Data System (ADS)

    Pifer, Steven

    2017-11-01

    Nuclear arms control has long made contributions to U.S.-Soviet and U.S.-Russian security, but the current regime is at risk. The 1987 Intermediate-range Nuclear Forces Treaty may be headed for collapse. Both the United States and Russia are modernizing their strategic forces, and the fate of the 2010 New Strategic Arms Reduction Treaty is unclear. In the unlikely case that the sides are prepared to go beyond New START, there are ways to address further reductions and related issues. A collapse of the arms control regime, on the other hand, would mean the end of constraints on U.S. and Russian nuclear forces, a significant loss of transparency, and potential costs to U.S. security.

  17. Nuclear power for the future: Implications of some crisis scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, K.H.

    1996-12-31

    As energy issues have dropped from public awareness, electricity demand growth has remained low, deregulation has destabilized the utility decision process, and least-cost regulation has pointed utilities to gas-fired plants for those additions that are coming on-line, the nuclear power industry has begun to ask the question: What will cause nuclear energy to again compete as an option in new, domestic generating capacity additions? Since virtually all of today`s corporate and societal decisions are driven by short-term factors, the preceding question can be translated into: What crisis might occur that would project nuclear as the solution to an immediately perceivedmore » problem? Thus, an examination of scenarios that would project nuclear power into the country`s immediate consciousness is in order, along with an analysis of the implications for and challenges to the nuclear industry resulting therefrom. This paper undertakes such an analysis.« less

  18. Government: Nuclear Safety in Doubt a Year after Accident.

    ERIC Educational Resources Information Center

    Ember, Lois R.

    1980-01-01

    A year after the accident at Three Mile Island (TMI), the signals transmitted to the public are still confused. Industry says that nuclear power is safe and that the aftermath of TMI ushers in a new era of safety. Antinuclear activists say TMI sounded nuclear power's death knell. (Author/RE)

  19. Safe Grid

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote

  20. Progress and future direction for the interim safe storage and disposal of Hanford high-level waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less

  1. Nuclear Energy Policy

    DTIC Science & Technology

    2010-05-27

    small modular reactors and extend the lives and improve the operation of existing commercial nuclear power plants. 40 Interdisciplinary MIT Study, The Future of Nuclear Power, Massachusetts Institute of Technology, 2003, p. 79. 41 Gronlund, Lisbeth, David Lochbaum, and Edwin Lyman, Nuclear Power in a Warming World, Union of Concerned Scientists, December 2007. 42 Travis Madsen, Tony Dutzik, and Bernadette Del Chiaro, et al., Generating Failure: How Building Nuclear Power Plants

  2. U.S. Nuclear Weapons Enterprise: A Strategic Past and Unknown Future

    DTIC Science & Technology

    2012-04-25

    are left to base their planning assumptions, weapons designs and capabilities on outdated models . The likelihood of a large-scale nuclear war has...conduct any testing on nuclear weapons and must rely on computer modeling . While this may provide sufficient confidence in the current nuclear...unlikely the world will be free of nuclear weapons. 24 APPENDIX A – Acronyms ACC – Air Combat Command ACM – Advanced cruise missle CSAF

  3. The United Arab Emirates Nuclear Program and Proposed U.S. Nuclear Cooperation

    DTIC Science & Technology

    2009-10-28

    global efforts to prevent nuclear proliferation” and, “the establishment of reliable sources of nuclear fuel for future civilian light water reactors ...nuclear reactor or on handling spent reactor fuel. (...continued) May 4, 2008; and, Chris...related to the UAE’s proposed nuclear program has already taken place. In August 2008, Virginia’s Thorium Power Ltd. signed two consulting and

  4. The United Arab Emirates Nuclear Program and Proposed U.S. Nuclear Cooperation

    DTIC Science & Technology

    2009-07-17

    global efforts to prevent nuclear proliferation” and, “the establishment of reliable sources of nuclear fuel for future civilian light water reactors ...planned nuclear reactor or on handling spent reactor fuel. (...continued) May 4, 2008...contracting between U.S. firms and the UAE related to the UAE’s proposed nuclear program has already taken place. In August 2008, Virginia’s Thorium Power

  5. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth Thomas

    2012-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970's vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performancemore » improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE's program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a

  6. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth Thomas; Bruce Hallbert

    2013-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970’s vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performancemore » improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE’s program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a

  7. Safe sleep practices and sudden infant death syndrome risk reduction: NICU and well-baby nursery graduates.

    PubMed

    Fowler, Aja J; Evans, Patricia W; Etchegaray, Jason M; Ottenbacher, Allison; Arnold, Cody

    2013-11-01

    Our primary objective was to compare parents of infants cared for in newborn intensive care units (NICUs) and infants cared for in well-baby ("general") nurseries with regard to knowledge and practice of safe sleep practices/sudden infant death syndrome risk reduction measures and guidelines. Our secondary objective was to obtain qualitative data regarding reasons for noncompliance in both populations. Sixty participants (30 from each population) completed our survey measuring safe sleep knowledge and practice. Parents of NICU infants reported using 2 safe sleep practices-(a) always placing baby in crib to sleep and (b) always placing baby on back to sleep-significantly more frequently than parents of well infants. Additional findings and implications for future studies are discussed.

  8. Safe Maneuvering Envelope Estimation Based on a Physical Approach

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas J. J.; Schuet, Stefan R.; Wheeler, Kevin R.; Acosta, Diana; Kaneshige, John T.

    2013-01-01

    This paper discusses a computationally efficient algorithm for estimating the safe maneuvering envelope of damaged aircraft. The algorithm performs a robust reachability analysis through an optimal control formulation while making use of time scale separation and taking into account uncertainties in the aerodynamic derivatives. This approach differs from others since it is physically inspired. This more transparent approach allows interpreting data in each step, and it is assumed that these physical models based upon flight dynamics theory will therefore facilitate certification for future real life applications.

  9. TH-AB-206-02: Nuclear Medicine Theronostics: Wave of the Future; Pre-Clinical and Clinical Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delpassand, E.

    In the past few decades, the field of nuclear medicine has made long strides with the continued advancement of related sciences and engineering and the availability of diagnostic and therapeutic radionuclides. Leveraging these advancements while combining the advantages of therapeutic and diagnostic radionuclides into one radiopharmaceutical has also created a new subfield “theranostics” in nuclear medicine that has the potential to further propel the field into the future. This session is composed of two talks; one focused on the physics principles of theranostics from properties of beta and alpha emitting radionuclides to dosimetric models and quantification; while the second describesmore » preclinical and clinical applications of theranostics and discusses the challenges and opportunities of bringing them to the clinic. At the end of the session the listener should be able to identify: The different properties of beta and alpha emitting radionuclides Which radionuclides are selected for which nuclear medicine therapies and why How PET can be used to accurately quantify the uptake of tumor targeting molecules How individualized dosimetry can be performed from the management of thyroid cancer to novel radiolabeled antibody therapies Promising pre-clinical radiopharmaceutical pairs in prostate cancer and melanoma. Promising clinical Theranostics in neuroendocrine cancers. Challenges of bringing Theranostics to the clinic. E. Delpassand, RITA Foundation -Houston; SBIR Grant; CEO and share holder of RadioMedix.« less

  10. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  11. A brief history of design studies on innovative nuclear reactors

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2014-09-01

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970's the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980's the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  12. A brief history of design studies on innovative nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekimoto, Hiroshi, E-mail: hsekimot@gmail.com

    2014-09-30

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USAmore » and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.« less

  13. Nuclear physics from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Shanahan, Phiala

    2017-09-01

    I will discuss the current state and future scope of numerical Lattice Quantum Chromodynamics (LQCD) calculations of nuclear matrix elements. The goal of the program is to provide direct QCD calculations of nuclear observables relevant to experimental programs, including double-beta decay matrix elements, nuclear corrections to axial matrix elements relevant to long-baseline neutrino experiments and nuclear sigma terms needed for theory predictions of dark matter cross-sections at underground detectors. I will discuss the progress and challenges on these fronts, and also address recent work constraining a gluonic analogue of the EMC effect, which will be measurable at a future electron-ion collider.

  14. Engineering stem cells for future medicine.

    PubMed

    Ricotti, Leonardo; Menciassi, Arianna

    2013-03-01

    Despite their great potential in regenerative medicine applications, stem cells (especially pluripotent ones) currently show a limited clinical success, partly due to a lack of biological knowledge, but also due to a lack of specific and advanced technological instruments able to overcome the current boundaries of stem cell functional maturation and safe/effective therapeutic delivery. This paper aims at describing recent insights, current limitations, and future horizons related to therapeutic stem cells, by analyzing the potential of different bioengineering disciplines in bringing stem cells toward a safe clinical use. First, we clarify how and why stem cells should be properly engineered and which could be in a near future the challenges and the benefits connected with this process. Second, we identify different routes toward stem cell differentiation and functional maturation, relying on chemical, mechanical, topographical, and direct/indirect physical stimulation. Third, we highlight how multiscale modeling could strongly support and optimize stem cell engineering. Finally, we focus on future robotic tools that could provide an added value to the extent of translating basic biological knowledge into clinical applications, by developing ad hoc enabling technologies for stem cell delivery and control.

  15. Buying & Using Medicine Safely

    MedlinePlus

    ... Generic Drugs - Patient Education Resources Patient and Prescriber materials: Videos, PSAs, factsheets and more. Spotlight Drugs@FDA Index to Drug-Specific Information Protecting Yourself Safe Disposal of Medicines Generic Medicines – safe, effective and ...

  16. Current situation and future plans in radioactive waste management in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, H.; Jimenez, M.

    1992-01-01

    A brief introduction is offered in this document in order to explain the importance which is given in Mexico to the safe management of radioactive wastes. The Secretaria de Energia, Minas e Industria Paraestatal is the organization responsible for this issue. Also, a brief historical background is offered so as to understand the evolution of these activities since they were originated. This background allows us to describe the present situation, which consists in a substantial change in the volume of produced radioactive wastes; in other words, before the present situation only the, nuclear wastes from the application of radioisotopes weremore » generated whereas currently, with the starting of commercial operation of the first unit of Laguna Verde Nuclear Power Plant (LVNPP), large volumes of industrial radioactive wastes are being generated. A mention is given as well of the acquired experience during more than 20 years of waste management and of the technologies which have been applied or practiced in the use and disposal of such wastes. Finally, some general trends in relation to the future planning are indicated, which essentially consist in the siting and characterization of a site so as to, design and construct a permanent disposal facility in order to dispose the operational radioactive wastes from LVNPP.« less

  17. Perspectives of The Interagency Nuclear Safety Review Panel (INSRP) on future nuclear powered space missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, L.B.; Pyatt, D.W.; Sholtis, J.A.

    1993-01-10

    The Interagency Nuclear Safety Review Panel (INSRP) has provided reviews of all nuclear powered spacecraft launched by the United States. The two most recent launches were Ulysses in 1990 and Galileo in 1989. One reactor was launched in 1965 (SNAP-10A). All other U.S. space missions have utilized radioisotopic thermoelectric generators (RTGs). There are several missions in the next few years that are to be nuclear powered, including one that would utilize the Topaz II reactor purchased from Russia. INSRP must realign itself to perform parallel safety assessments of a reactor powered space mission, which has not been done in aboutmore » thirty years, and RTG powered missions.« less

  18. Nuclear winter or nuclear fall?

    NASA Astrophysics Data System (ADS)

    Berger, André

    Climate is universal. If a major modern nuclear war (i.e., with a large number of small-yield weapons) were to happen, it is not even necessary to have a specific part of the world directly involved for there to be cause to worry about the consequences for its inhabitants and their future. Indeed, smoke from fires ignited by the nuclear explosions would be transported by winds all over the world, causing dark and cold. According to the first study, by Turco et al. [1983], air surface temperature over continental areas of the northern mid-latitudes (assumed to be the nuclear war theatre) would fall to winter levels even in summer (hence the term “nuclear winter”) and induce drastic climatic conditions for several months at least. The devastating effects of a nuclear war would thus last much longer than was assumed initially. Discussing to what extent these estimations of long-term impacts on climate are reliable is the purpose of this article.

  19. Unique Chernobyl Cranes for Deconstruction Activities in the New Safe Confinement - 13542

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parameswaran, N.A. Vijay; Chornyy, Igor; Owen, Rob

    2013-07-01

    The devastation left behind from the Chernobyl nuclear power plant (ChNPP) Unit 4 accident which occurred on April 26, 1986 presented unparalleled technical challenges to the world engineering and scientific community. One of the largest tasks that are in progress is the design and construction of the New Safe Confinement (NSC). The NSC is an engineered enclosure for the entire object shelter (OS) that includes a suite of process equipment. The process equipment will be used for the dismantling of the destroyed Chernobyl Nuclear Power Plant (ChNPP) Unit. One of the major mechanical handling systems to be installed in themore » NSC is the Main Cranes System (MCS). The planned decontamination and decommissioning or dismantling (D and D) activities will require the handling of heavily shielded waste disposal casks containing nuclear fuel as well as lifting and transporting extremely large structural elements. These activities, to be performed within the NSC, will require large and sophisticated cranes. The article will focus on the unique design features of the MCS for the D and D activities. (authors)« less

  20. The BMC ACCESS project: the development of a medically enhanced safe haven shelter.

    PubMed

    Lincoln, Alisa; Johnson, Peggy; Espejo, Dennis; Plachta-Elliott, Sara; Lester, Peggy; Shanahan, Christopher; Abbott, Susan; Cabral, Howard; Jamanka, Amber; Delman, Jonathan; Kenny, Patty

    2009-10-01

    This paper describes the development and implementation of the Boston Medical Center (BMC) Advanced Clinical Capacity for Engagement, Safety, and Services Project. In October 2002, the BMC Division of Psychiatry became the first such entity to open a Safe Haven shelter for people who are chronically homeless, struggling with severe mental illness, and actively substance abusing. The low-demand Safe Haven model targets the most difficult to reach population and serves as a "portal of entry" to the mental health and addiction service systems. In this paper, the process by which this blended funded, multi-level collaboration, consisting of a medical center, state, city, local, and community-based consumer organizations, was created and is maintained, as well as the clinical model of care is described. Lessons learned from creating the Safe Haven Shelter and the development and implementation of the consumer-informed evaluation are discussed as well as implications for future work with this population.

  1. Innovative hazard detection and avoidance strategy for autonomous safe planetary landing

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuqiang; Li, Shuang; Tao, Ting

    2016-09-01

    Autonomous hazard detection and avoidance (AHDA) is one of the key technologies for future safe planetary landing missions. In this paper, we address the latest progress on planetary autonomous hazard detection and avoidance technologies. First, the innovative autonomous relay hazard detection and avoidance strategy adopted in Chang'e-3 lunar soft landing mission and its flight results are reported in detail. Second, two new conceptual candidate schemes of hazard detection and avoidance are presented based on the Chang'e-3 AHDA system and the latest developing technologies for the future planetary missions, and some preliminary testing results are also given. Finally, the related supporting technologies for the two candidate schemes above are analyzed.

  2. Cultivating the Art of Safe Space

    ERIC Educational Resources Information Center

    Hunter, Mary Ann

    2008-01-01

    Performance-making and peace-building are processes predicated on the production of safe space. But what is "safe space"? In performance-making, what is it that makes space safe without losing the creative potential of tension? What role is there for risk? And, once achieved, how does safe space become meaningful beyond its immediate…

  3. Safe Affordable Fission Engine-(SAFE-) 100a Heat Exchanger Thermal and Structural Analysis

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.

    2005-01-01

    A potential fission power system for in-space missions is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, a heat exchanger (HX) transfers the heat of the reactor core to the Brayton gas. The Safe Affordable Fission Engine- (SAFE-) 100a is a test program designed to thermally and hydraulically simulate a 95 Btu/s prototypic heat pipe-cooled reactor using electrical resistance heaters on the ground. This Technical Memorandum documents the thermal and structural assessment of the HX used in the SAFE-100a program.

  4. Making Human Spaceflight as Safe as Possible

    NASA Technical Reports Server (NTRS)

    Gregory, Frederick D.

    2005-01-01

    We articulated the safety hierarchy a little over two years ago, as part of our quest to be the nation s leader in safety and occupational health, and in the safety of the products and services we provide. The safety hierarchy stresses that we are all accountable for assuring that our programs, projects, and operations do not impact safety or health for the public, astronauts and pilots, employees on the ground, and high-value equipment and property. When people are thinking about doing things safely, they re also thinking about doing things right. And for the past couple of years, we ve had some pretty good results. In the time since the failures of the Mars 98 missions that occurred in late 1999, every NASA spacecraft launch has met the success objectives, and every Space Shuttle mission has safely and successfully met all mission objectives. Now I can t say that NASA s safety program is solely responsible for these achievements, but, as we like to say, "mission success starts with safety." In the future, looking forward, we will continue to make spaceflight even safer. That is NASA s vision. That is NASA s duty to both those who will travel into space and the American people who will make the journey possible.

  5. Nuclear Power: The Market Test. Worldwatch Paper 57.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    Nuclear power was considered vital to humanity's future until just a short time ago. Since the late seventies, economic viability has joined a list of such issues as waste disposal and radiation hazards which call into question the future of nuclear power. This document discusses (in separate sections): (1) the selling of nuclear power, including…

  6. Endovascular Neurosurgery: Personal Experience and Future Perspectives.

    PubMed

    Raymond, Jean

    2016-09-01

    From Luessenhop's early clinical experience until the present day, experimental methods have been introduced to make progress in endovascular neurosurgery. A personal historical narrative, spanning the 1980s to 2010s, with a review of past opportunities, current problems, and future perspectives. Although the technology has significantly improved, our clinical culture remains a barrier to methodologically sound and safe innovative care and progress. We must learn how to safely practice endovascular neurosurgery in the presence of uncertainty and verify patient outcomes in real time. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Breastfeeding FAQs: Safely Storing Breast Milk

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Breastfeeding FAQs: Safely Storing Breast Milk KidsHealth / For Parents / Breastfeeding FAQs: Safely Storing Breast Milk What's in this ...

  8. Virtually 'in the heat of the moment': insula activation in safe sex negotiation among risky men.

    PubMed

    Smith, Benjamin J; Xue, Feng; Droutman, Vita; Barkley-Levenson, Emily; Melrose, A James; Miller, Lynn C; Monterosso, John R; Bechara, Antoine; Appleby, Paul R; Christensen, John L; Godoy, Carlos G; Read, Stephen J

    2018-01-01

    HIV is most prevalent among men who have sex with men (MSM), and although most MSM use condoms consistently during casual sex, some take risks. To better understand the psychology of those risky decisions, we examined neural correlates of playing a virtual sexual 'hook up' game in an functional magnetic resonance imaging scanner in MSM who had, in the past 90 days, been sexually risky (N = 76) or safe (N = 31). We found that during potentially risky sexual choices, previously risky MSM had more right insula activity than previously safe MSM. Real-life sexual risk was related to trait positive and negative urgency. Insula activity that differentiated risky and safe MSM was related to trait positive and negative urgency. Future work should further examine if, and to what extent, insula activation during safe sex negotiation drives MSM's rash risky sexual decision-making. © The Author (2017). Published by Oxford University Press.

  9. The safe home project.

    PubMed

    Arphorn, Sara; Jiraniratisai, Sopaphan; Rungtakul, Rungsri; Phutta, Nikom

    2011-12-01

    The Thai Health Promotion Foundation supported the Improvement of Quality of Life of Informal Workers project in Ban Luang District, Amphur Photaram, Ratchaburi Province. There were many informal workers in Ban Luang District. Sweet-crispy fish producers in Ban Luang were the largest group among the sweet-crispy fish producers in Thailand. This project was aimed at improving living and working conditions of informal workers, with a focus on the sweet-crispy fish group. Good practices of improved living and working conditions were used to help informal workers build safe, healthy and productive work environments. These informal workers often worked in substandard conditions and were exposed to various hazards in the working area. These hazards included risk of exposure to hot work environment, ergonomics-related injuries, chemical hazards, electrical hazards etc. Ergonomics problems were commonly in the sweet-crispy fish group. Unnatural postures such as prolonged sitting were performed dominantly. One hundred and fifty informal workers participated in this project. Occupational health volunteers were selected to encourage occupational health and safety in four groups of informal workers in 2009. The occupational health volunteers trained in 2008 were farmers, beauty salon workers and doll makers. The occupational health and safety knowledge is extended to a new informal worker group: sweet-crispy fish producer, in 2009. The occupational health and safety training for sweet-crispy fish group is conducted by occupational health volunteers. The occupational health volunteers increased their skills and knowledge assist in to make safe home and safe community through participatory oriented training. The improvement of living and working condition is conducted by using a modified WISH, Work Improvement for Safe Home, checklist. The plans of improvement were recorded. The informal workers showed improvement mostly on material handling and storage. The safe uses and safe

  10. Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percher, Catherine

    2012-06-19

    The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.

  11. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    PubMed

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  12. China’s Future Nuclear Submarine Force. Insights from Chinese Writings

    DTIC Science & Technology

    2007-01-01

    ts056058.pdf. 115. , , [Lu Jiaben, Wang Shen- glong, Liu Wen, et al.], “‘ ’ ” [Evaluation of Health Protective Effects of “Silver Ginseng ...Based on his instructions, in the course of developing nuclear-powered submarines, we formed a seamless and effective nuclear safety mechanism by...the manner in which France strives to maximize the effectiveness of its second-tier nuclear submarine force.32 The September 2005 issue of (Naval

  13. Virtually ‘in the heat of the moment’: insula activation in safe sex negotiation among risky men

    PubMed Central

    Xue, Feng; Droutman, Vita; Barkley-Levenson, Emily; Melrose, A James; Miller, Lynn C; Monterosso, John R; Bechara, Antoine; Appleby, Paul R; Christensen, John L; Godoy, Carlos G; Read, Stephen J

    2018-01-01

    Abstract HIV is most prevalent among men who have sex with men (MSM), and although most MSM use condoms consistently during casual sex, some take risks. To better understand the psychology of those risky decisions, we examined neural correlates of playing a virtual sexual ‘hook up’ game in an functional magnetic resonance imaging scanner in MSM who had, in the past 90 days, been sexually risky (N = 76) or safe (N = 31). We found that during potentially risky sexual choices, previously risky MSM had more right insula activity than previously safe MSM. Real-life sexual risk was related to trait positive and negative urgency. Insula activity that differentiated risky and safe MSM was related to trait positive and negative urgency. Future work should further examine if, and to what extent, insula activation during safe sex negotiation drives MSM’s rash risky sexual decision-making. PMID:29149326

  14. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  15. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  16. New developments in short-pulse eye safe lasers pay the way for future LADARs and 3D mapping performances

    NASA Astrophysics Data System (ADS)

    Pasmanik, Guerman; Latone, Kevin; Shilov, Alex; Shklovsky, Eugeni; Spiro, Alex; Tiour, Larissa

    2005-06-01

    We have demonstrated that direct excitation of 3rd Stokes Raman emission in crystal can produce short (few nanosecond) eye-safe pulses. Produced beam has very high quality and the pulse energy can be as high as tens of millijoules. For pulsed diode pumped solid state lasers the demonstrated repetition rate was 250 Hz but higher repetition rates are certainly achievable. It is important that tested schemes do not have strict requirements on laser pump parameters, namely beam divergence and frequency bandwidth. The obtained results are very relevant to the development of eye-safe lasers, such as the new generation of rangefinders, target designators, and laser tracking and pin-pointing devices, as well as remote 2D and 3D imaging systems.

  17. National Center for Nuclear Security - NCNS

    ScienceCinema

    None

    2018-01-16

    As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.

  18. Development of LIDAR sensor systems for autonomous safe landing on planetary bodies

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Pierrottet, D.; Petway, L.; Vanek, M.

    2017-11-01

    Future NASA exploratory missions to the Moon and Mars will require safe soft-landings at the designated sites with a high degree of precision. These sites may include areas of high scientific value with relatively rough terrain with little or no solar illumination and possibly areas near pre-deployed assets. The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of large robotic and manned vehicles with a high degree of precision. Currently, NASA-LaRC is developing novel lidar sensors aimed at meeting NASA's objectives for future planetary landing missions under the Autonomous Landing and Hazard Avoidance (ALHAT) project. These lidar sensors are 3-Dimensional Imaging Flash Lidar, Doppler Lidar, and Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain identifying hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase between 1000 m to 500 m above the ground can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground velocity and distance data allowing for precision navigation to the selected landing site. Prior to the approach phase at altitudes of over 15 km, the Laser Altimeter can provide sufficient data for updating the vehicle position and attitude data from the Inertial Measurement Unit. At these higher altitudes, either the Laser Altimeter or the Flash Lidar can be used for generating a contour map of the terrain below for identifying known surface features such as craters for further reducing the vehicle relative position error.

  19. Development of lidar sensor systems for autonomous safe landing on planetary bodies

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Pierrottet, D.; Petway, L.; Vanek, M.

    2017-11-01

    Future NASA exploratory missions to the Moon and Mars will require safe soft-landings at the designated sites with a high degree of precision. These sites may include areas of high scientific value with relatively rough terrain with little or no solar illumination and possibly areas near pre-deployed assets. The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of large robotic and manned vehicles with a high degree of precision. Currently, NASA-LaRC is developing novel lidar sensors aimed at meeting NASA's objectives for future planetary landing missions under the Autonomous Landing and Hazard Avoidance (ALHAT) project [1]. These lidar sensors are 3-Dimensional Imaging Flash Lidar, Doppler Lidar, and Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain identifying hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase between 1000 m to 500 m above the ground can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground velocity and distance data allowing for precision navigation to the selected landing site. Prior to the approach phase at altitudes of over 15 km, the Laser Altimeter can provide sufficient data for updating the vehicle position and attitude data from the Inertial Measurement Unit. At these higher altitudes, either the Laser Altimeter or the Flash Lidar can be used for generating a contour map of the terrain below for identifying known surface features such as craters for further reducing the vehicle relative position error.

  20. Nuclear fuels - Present and future

    NASA Astrophysics Data System (ADS)

    Olander, D.

    2009-06-01

    The important developments in nuclear fuels and their problems are reviewed and compared with the status of present light-water reactor fuels. The limitations of LWR fuels are reviewed with respect to important recent concerns, namely provision of outlet coolant temperatures high enough for use in H 2 production, destruction of plutonium to eliminate proliferation concerns, and burning of the minor actinides to reduce the waste repository heat load and long-term radiation hazard. In addition to current oxide-based fuel rod designs, the hydride fuel with liquid-metal thermal bonding of the fuel-cladding gap is covered. Finally, two of the most promising Generation IV reactor concepts, the very high temperature reactor and the sodium fast reactor, and the accompanying reprocessing technologies, aqueous-based UREX+1a and pyrometallurgical, are summarized. In all of the topics covered, the thermodynamics involved in the fuel's behavior under irradiation and in the reprocessing schemes are emphasized.

  1. Intergenerational considerations affecting the future of nuclear power: equity as a framework for assessing fuel cycles.

    PubMed

    Taebi, Behnam; Kadak, Andrew C

    2010-09-01

    Alternative fuel cycles are being considered in an effort to prolong uranium fuel supplies for thousands of years to come and to manage nuclear waste. These strategies bring with them different benefits and burdens for the present generation and for future generations. In this article, we present a method that provides insight into future fuel cycle alternatives and into the conflicts arising between generations within the framework of intergenerational equity. A set of intersubjective values is drawn from the notion of sustainable development. By operationalizing these values and mapping out their impacts, value criteria are introduced for the assessment of fuel cycles, which are based on the distribution of burdens and benefits between generations. The once-through fuel cycle currently deployed in the United States and three future fuel cycles are subsequently assessed according to these criteria. The four alternatives are then compared in an integrated analysis in which we shed light on the implicit tradeoffs made by decisionmakers when they choose a certain fuel cycle. When choosing a fuel cycle, what are the societal costs and burdens accepted for each generation and how can these factors be justified? This article presents an integrated decision-making method, which considers intergenerational aspects of such decisions; this method could also be applied to other technologies. © 2010 Society for Risk Analysis.

  2. LUNA, an underground nuclear astrophysics laboratory: recent results and future perspectives

    NASA Astrophysics Data System (ADS)

    Corvisiero, P.

    2005-05-01

    It is known that the chemical elements and their isotopes were created by nuclear fusion reactions in the hot interiors of remote and long-vanished stars over many billions of years. The present picture is that all elements from carbon to uranium have been produced entirely within stars during their fiery lifetimes and explosive deaths. The detailed understanding of the origin of the chemical elements and their isotopes combines astrophysics and nuclear physics, and forms what is called nuclear astrophysics. In turn, nuclear reactions are at the heart of nuclear astrophysics: they influence sensitively the nucleosynthesis of the elements in the earliest stages of the universe and in all the objects formed thereafter, and control the associated energy generation, neutrino luminosity, and evolution of stars. A good knowledge of the rates of these fusion reactions is essential to understanding this broad picture. Some of the most important experimental techniques to measure the corresponding cross sections, based both on direct and indirect methods, will be described in this paper.

  3. Nuclear materials stewardship: Our enduring mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, T.H.

    1998-12-31

    The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now themore » attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country`s nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from

  4. Safe and Secure Virtualization: Answers for IMA next Generation and Beyond

    NASA Astrophysics Data System (ADS)

    Almeida, Jose; Vatrinet, Francis

    2010-08-01

    This paper presents some of the challenges the aerospace industry is facing for the future and explains why and how a safe and secured virtualization technology can help solving these challenges Efforts around the next generation of IMA have already started, like the European FP7 funded project SCARLETT or the IDEE5 project and many avionics players and working groupware focused on how the new technologies like SMP capabilities introduced in latest CPU architectures, can help increasing system performances in future avionics system. We present PikeOS, a separation micro-kernel, which applies the state-of-the-art techniques and widely recognized standards such as ARINC 653 and MILS in order to guarantee safety and security properties, and still improve overall performance.

  5. Commercial sexual exploitation of children and the emergence of safe harbor legislation: implications for policy and practice.

    PubMed

    Shields, Ryan T; Letourneau, Elizabeth J

    2015-03-01

    Commercial sexual exploitation of children is an enduring social problem that has recently become the focus of numerous legislative initiatives. In particular, recent federal- and state-level legislation have sought to reclassify youth involved in commercial sexual exploitation as victims rather than as offenders. So-called Safe Harbor laws have been developed and centered on decriminalization of "juvenile prostitution." In addition to or instead of decriminalization, Safe Harbor policies also include diversion, law enforcement training, and increased penalties for adults seeking sexual contact with minors. The purpose of this paper is to review the underlying rationale of Safe Harbor laws, examine specific policy responses currently enacted by the states, and consider the effects of policy variations. Directions for future research and policy are addressed.

  6. How Safe Are Kid-Safe Search Engines?

    ERIC Educational Resources Information Center

    Masterson-Krum, Hope

    2001-01-01

    Examines search tools available to elementary and secondary school students, both human-compiled and crawler-based, to help direct them to age-appropriate Web sites; analyzes the procedures of search engines labeled family-friendly or kid safe that use filters; and tests the effectiveness of these services to students in school libraries. (LRW)

  7. Nuclear Chemistry, Science (Experimental): 5316.62.

    ERIC Educational Resources Information Center

    Williams, Russell R.

    This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…

  8. SOME PROBLEMS OF "SAFE DOSE" ESTIMATION

    EPA Science Inventory

    In environmental carcinogenic risk assessment, the usually defined "safe doses" appear subjective in some sense. n this paper a method of standardizing "safe doses" based on some objective parameters is introduced and a procedure of estimating safe doses under the competing risks...

  9. Which non-technical skills do junior doctors require to prescribe safely? A systematic review.

    PubMed

    Dearden, Effie; Mellanby, Edward; Cameron, Helen; Harden, Jeni

    2015-12-01

    Prescribing errors are a major source of avoidable morbidity and mortality. Junior doctors write most in-hospital prescriptions and are the least experienced members of the healthcare team. This puts them at high risk of error and makes them attractive targets for interventions to improve prescription safety. Error analysis has shown a background of complex environments with multiple contributory conditions. Similar conditions in other high risk industries, such as aviation, have led to an increased understanding of so-called human factors and the use of non-technical skills (NTS) training to try to reduce error. To date no research has examined the NTS required for safe prescribing. The aim of this review was to develop a prototype NTS taxonomy for safe prescribing, by junior doctors, in hospital settings. A systematic search identified 14 studies analyzing prescribing behaviours and errors by junior doctors. Framework analysis was used to extract data from the studies and identify behaviours related to categories of NTS that might be relevant to safe and effective prescribing performance by junior doctors. Categories were derived from existing literature and inductively from the data. A prototype taxonomy of relevant categories (situational awareness, decision making, communication and team working, and task management) and elements was constructed. This prototype will form the basis of future work to create a tool that can be used for training and assessment of medical students and junior doctors to reduce prescribing error in the future. © 2015 The British Pharmacological Society.

  10. Nuclear fuels policy. Report of the Atlantic Council's Nuclear Fuels Policy Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-01-01

    This Policy Paper recommends the actions deemed necessary to assure that future U.S. and non-Communist countries' nuclear fuels supply will be adequate, considering the following: estimates of modest growth in overall energy demand, electrical energy demand, and nuclear electrical energy demand in the U.S. and abroad, predicated upon the continuing trends involving conservation of energy, increased use of electricity, and moderate economic growth (Chap. I); possibilities for the development and use of all domestic resources providing energy alternatives to imported oil and gas, consonant with current environmental, health, and safety concerns (Chap. II); assessment of the traditional energy sources whichmore » provide current alternatives to nuclear energy (Chap. II); evaluation of realistic expectations for additional future energy supplies from prospective technologies: enhanced recovery from traditional sources and development and use of oil shales and synthetic fuels from coal, fusion and solar energy (Chap. II); an accounting of established nuclear technology in use today, in particular the light water reactor, used for generating electricity (Chap. III); an estimate of future nuclear technology, in particular the prospective fast breeder (Chap. IV); current and projected nuclear fuel demand and supply in the U.S. and abroad (Chaps. V and VI); the constraints encountered today in meeting nuclear fuels demand (Chap. VII); and the major unresolved issues and options in nuclear fuels supply and use (Chap. VIII). The principal conclusions and recommendations (Chap. IX) are that the U.S. and other industrialized countries should strive for increased flexibility of primary energy fuel sources, and that a balanced energy strategy therefore depends on the secure supply of energy resources and the ability to substitute one form of fuel for another.« less

  11. Security culture for nuclear facilities

    NASA Astrophysics Data System (ADS)

    Gupta, Deeksha; Bajramovic, Edita

    2017-01-01

    Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.

  12. High Pulse Repetition Rate, Eye Safe, Visible Wavelength Lidar Systems: Design, Results and Potential

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Berkoff, Timothy; Welton, Elsworth; Campbell, James; OCStarr, David (Technical Monitor)

    2002-01-01

    In 1993 the first of the eye safe visible wavelength lidar systems known now as Micro Pulse Lidar (MPL) became operational. Since that time there have been several dozen of these systems produced and applied for full time profiling of atmospheric cloud and aerosol structure. There is currently an observational network of MPL sites to support global climate research. In the course of application of these instruments there have been significant improvements in understanding, design and performance of the systems. There are addition potential and applications beyond current practice for the high repetition rate, eye safe designs. The MPL network and the current capability, design and future potential of MPL systems are described.

  13. Radionuclide metrology research for nuclear site decommissioning

    NASA Astrophysics Data System (ADS)

    Judge, S. M.; Regan, P. H.

    2017-11-01

    The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.

  14. Nuclear safeguards in Brazil and Argentina: 25 years of ABACC

    NASA Astrophysics Data System (ADS)

    Kassenova, Togzhan

    2017-11-01

    As possessors of advanced nuclear technology, Brazil and Argentina bear special responsibility for helping the international community and neighbors in their region feel confident that their nuclear programs are peaceful, secure, and safe. Over the past 25 years, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) has played an indispensable role in strengthening such confidence by implementing nuclear safeguards in the two countries. Today, ABACC carries out safeguards inspections at a total of 76 nuclear facilities in Brazil and Argentina. This article describes how Brazil and Argentina view trends in the global nonproliferation regime and international nuclear safeguards, and explains how these trends relate to unique challenges and opportunities facing Brazil, Argentina, and ABACC.

  15. Heat Pipe Reactor Dynamic Response Tests: SAFE-100 Reactor Core Prototype

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.

    2005-01-01

    The SAFE-I00a test article at the NASA Marshall Space Flight Center was used to simulate a variety of potential reactor transients; the SAFEl00a is a resistively heated, stainless-steel heat-pipe (HP)-reactor core segment, coupled to a gas-flow heat exchanger (HX). For these transients the core power was controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. This type of non-nuclear test is expected to provide reasonable approximation of reactor transient behavior because reactivity feedback is very simple in a compact fast reactor (simple, negative, and relatively monotonic temperature feedback, caused mostly by thermal expansion) and calculations show there are no significant reactivity effects associated with fluid in the HP (the worth of the entire inventory of Na in the core is .SAFE-100 tests, the point kinetics model was based on core thermal expansion via deflection measurements. It was found that core deflection was a strung function of how the SAFE-100 modules were fabricated and assembled (in terms of straightness, gaps, and other tolerances). To remove the added variable of how this particular core expands as compared to a different concept, it was decided to use a temperature based feedback model (based on several thermocouples placed throughout the core).

  16. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badwan, Faris M.; Demuth, Scott F

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is amore » fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design

  17. Laser patterning of platinum electrodes for safe neurostimulation

    NASA Astrophysics Data System (ADS)

    Green, R. A.; Matteucci, P. B.; Dodds, C. W. D.; Palmer, J.; Dueck, W. F.; Hassarati, R. T.; Byrnes-Preston, P. J.; Lovell, N. H.; Suaning, G. J.

    2014-10-01

    Objective. Laser surface modification of platinum (Pt) electrodes was investigated for use in neuroprosthetics. Surface modification was applied to increase the surface area of the electrode and improve its ability to transfer charge within safe electrochemical stimulation limits. Approach. Electrode arrays were laser micromachined to produce Pt electrodes with smooth surfaces, which were then modified with four laser patterning techniques to produce surface structures which were nanosecond patterned, square profile, triangular profile and roughened on the micron scale through structured laser interference patterning (SLIP). Improvements in charge transfer were shown through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and biphasic stimulation at clinically relevant levels. A new method was investigated and validated which enabled the assessment of in vivo electrochemically safe charge injection limits. Main results. All of the modified surfaces provided electrical advantage over the smooth Pt. The SLIP surface provided the greatest benefit both in vitro and in vivo, and this surface was the only type which had injection limits above the threshold for neural stimulation, at a level shown to produce a response in the feline visual cortex when using an electrode array implanted in the suprachoroidal space of the eye. This surface was found to be stable when stimulated with more than 150 million clinically relevant pulses in physiological saline. Significance. Critical to the assessment of implant devices is accurate determination of safe usage limits in an in vivo environment. Laser patterning, in particular SLIP, is a superior technique for improving the performance of implant electrodes without altering the interfacial electrode chemistry through coating. Future work will require chronic in vivo assessment of these electrode patterns.

  18. Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program

    NASA Astrophysics Data System (ADS)

    Westfall, R. M.; McKnight, R. D.

    2005-05-01

    The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG). The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations.

  19. Using Opioids Safely After Surgery

    MedlinePlus

    ... Adult , Geriatric Using Opioids Safely After Surgery Using Opioids Safely After Surgery Stick to the lowest dose ... need opioid pain medicine. If your doctor says opioids aren’t necessary. If your doctor thinks you ...

  20. How Safe Is Safe Enough for Self-Driving Vehicles?

    PubMed

    Liu, Peng; Yang, Run; Xu, Zhigang

    2018-05-21

    Self-driving vehicles (SDVs) promise to considerably reduce traffic crashes. One pressing concern facing the public, automakers, and governments is "How safe is safe enough for SDVs?" To answer this question, a new expressed-preference approach was proposed for the first time to determine the socially acceptable risk of SDVs. In our between-subject survey (N = 499), we determined the respondents' risk-acceptance rate of scenarios with varying traffic-risk frequencies to examine the logarithmic relationships between the traffic-risk frequency and risk-acceptance rate. Logarithmic regression models of SDVs were compared to those of human-driven vehicles (HDVs); the results showed that SDVs were required to be safer than HDVs. Given the same traffic-risk-acceptance rates for SDVs and HDVs, their associated acceptable risk frequencies of SDVs and HDVs were predicted and compared. Two risk-acceptance criteria emerged: the tolerable risk criterion, which indicates that SDVs should be four to five times as safe as HDVs, and the broadly acceptable risk criterion, which suggests that half of the respondents hoped that the traffic risk of SDVs would be two orders of magnitude lower than the current estimated traffic risk. The approach and these results could provide insights for government regulatory authorities for establishing clear safety requirements for SDVs. © 2018 Society for Risk Analysis.

  1. Nuclear Power as a Basis for Future Electricity Generation

    NASA Astrophysics Data System (ADS)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  2. Manned space flight nuclear system safety. Voluem 5: Nuclear system safety guidelines. Part 2: Space shuttle/nuclear payloads safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and operations guidelines and requirements developed in the study of space shuttle nuclear system transportation are presented. Guidelines and requirements are presented for the shuttle, nuclear payloads (reactor, isotope-Brayton and small isotope sources), ground support systems and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.

  3. To be on the safe site - Ungroomed spots on the bee's body and their importance for pollination.

    PubMed

    Koch, Laura; Lunau, Klaus; Wester, Petra

    2017-01-01

    Flower-visiting bees collect large quantities of pollen to feed their offspring. Pollen deposited in the bees' transport organs is lost for the flowers' pollination. It has been hypothesised that specific body areas, bees cannot groom, serve as 'safe sites' for pollen transfer between flowers. For the first time, we experimentally demonstrated the position, area and pollen amount of safe sites at the examples of Apis mellifera and Bombus terrestris by combining artificial contamination of the bees' body with pine or sunflower pollen and the subsequent bees' incomplete grooming. We found safe sites on the forehead, the dorsal thorax and waist, and on the dorsal and ventral abdomen of the bees. These areas were less groomed by the bees' legs. The largest amount of pollen was found on the waist, followed by the dorsal areas of thorax and abdomen. At the example of Salvia pratensis, S. officinalis and Borago officinalis, we experimentally demonstrated with fluorescent dye that the flowers' pollen-sacs and stigma contact identical safe sites. These results confirm that pollen deposition on the bees' safe sites improves pollen transfer to stigmas of conspecific flowers sti. Future research will demonstrate the importance of safe sites for plant pollination under field conditions.

  4. Senate examines measures to improve nuclear safety following Japan disaster

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    One year after Japan suffered a devastating magnitude 9.0 earthquake and the resulting tsunami and nuclear disaster, the U.S. Nuclear Regulatory Commission (NRC) has taken a number of measures to try to ensure that nuclear plants in the United States are safe from natural hazards. At a U.S. Senate hearing on 15 March, NRC chair Gregory Jaczko announced that the commission had issued three key orders and several requests for information on 12 March that plant licensees must follow, and that NRC also plans to take additional actions. However, the commission is not moving quickly enough in some areas, such as ensuring that all plants are safe from seismic hazards, including those in areas with low seismic activity, according to Jaczko's testimony before the Senate Committee on Environment and Public Works (EPW) and the Subcommittee on Clean Air and Nuclear Safety. The 12 March orders require licensees to have strategies to maintain or restore core cooling, containment, and spent-fuel pool cooling capabilities "following a beyond-design-basis extreme natural event" and have a reliable indication of the water level in spent-fuel storage pools.

  5. Visions of the Future in Drinking Water Microbiology.

    EPA Science Inventory

    Drinking water microbiology will have a tremendous impact on defining a safe drinking water in the future. There will be breakthroughs in realtime testing of process waters for pathogen surrogates with results made available within 1 hour for application to treatment adjustments ...

  6. Causation's nuclear future: applying proportional liability to the Price-Anderson Act.

    PubMed

    O'Connell, William D

    2014-11-01

    For more than a quarter century, public discourse has pushed the nuclear-power industry in the direction of heavier regulation and greater scrutiny, effectively halting construction of new reactors. By focusing on contemporary fear of significant accidents, such discourse begs the question of what the nation's court system would actually do should a major nuclear incident cause radiation-induced cancers. Congress's attempt to answer that question is the Price-Anderson Act, a broad statute addressing claims by the victims of a major nuclear accident. Lower courts interpreting the Act have repeatedly encountered a major stumbling block: it declares that judges must apply the antediluvian preponderance-of-the-evidence logic of state tort law, even though radiation science insists that the causes of radiation-induced cancers are more complex. After a major nuclear accident, the Act's paradoxically outdated rules for adjudicating "causation" would make post-incident compensation unworkable. This Note urges that nuclear-power-plant liability should not turn on eighteenth-century tort law. Drawing on modern scientific conclusions regarding the invariably "statistical" nature of cancer, this Note suggests a unitary federal standard for the Price-Anderson Act--that a defendant be deemed to have "caused" a plaintiff's injury in direct proportion to the increased risk of harm the defendant has imposed. This "proportional liability" rule would not only fairly evaluate the costs borne by injured plaintiffs and protect a reawakening nuclear industry from the prospect of bank-breaking litigation, but would prove workable with only minor changes to the Price-Anderson Act's standards of "injury" and "fault."

  7. How to Safely Give Acetaminophen

    MedlinePlus

    ... Educators Search English Español How to Safely Give Acetaminophen KidsHealth / For Parents / How to Safely Give Acetaminophen ... without getting a doctor's OK first. What Is Acetaminophen Also Called? Acetaminophen is the generic name of ...

  8. A performance comparison of nuclear electric and nuclear thermal propulsion for Mars cargo missions across the 15-17 year synodic cycle

    NASA Technical Reports Server (NTRS)

    Sponaugle, Steven J.; Davis, Steven F.; Everett, Shonn F.

    1992-01-01

    This paper examines the effects of the Earth-Mars synodic cycle on Mars cargo missions. Cargo vehicles that use nuclear thermal propulsion are compared with those that use nuclear electric propulsion. It will be shown that for low energy class cargo missions, nuclear electric systems exhibit far less variation in peak performance over the synodic cycle than comparable nuclear thermal systems. Performance is measured by the amount of usable mass delivered to Mars, as well as the initial mass requirements in nuclear safe orbit. Nuclear electric propulsion systems also have significantly longer injection window opportunities for a given 26 month synodic period, resulting in much greater mission design flexibility. Injection window opportunities over a 20 year period from 2010 to 2030 are examined. This covers a complete synodic cycle and shows its effects on performance for Mars cargo missions.

  9. American Journal of Physics Resource Letters - The Future of Nuclear Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, Cecil V; Flanagan, George F; Kulynych, George E

    2010-01-01

    This Resource Letter is intended to summarize the status of nuclear power in the world today, prospects of significant expansion of nuclear power over the next several decades, the planning of and forecasts for the addition of new power reactors, and issues surrounding the addition of these new reactors. Owing to the breadth of this subject, the list of references includes journal articles, web pages, and reports to guide the reader on the subject. The subject of nuclear power and its related issues are dynamic, so the most current information is likely to be found on reputable websites.

  10. Nuclear structure functions at a future electron-ion collider

    DOE PAGES

    Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.; ...

    2017-12-07

    The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x { robust experimental constraints below x ~ 10 -2 at low resolution scale Q 2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in deep inelastic scattering (DIS) measurements down to x ~ 10 -5 at perturbative resolution scales. The construction of an Electron-Ion Collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the presentmore » paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear parton distribution functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon PDF, the partonic component most prone to non-linear e ects at low Q 2. In comparison to the current knowledge, we find that the gluon PDF can be measured at an EIC with significantly reduced uncertainties.« less

  11. Nuclear structure functions at a future electron-ion collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.

    The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x { robust experimental constraints below x ~ 10 -2 at low resolution scale Q 2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in deep inelastic scattering (DIS) measurements down to x ~ 10 -5 at perturbative resolution scales. The construction of an Electron-Ion Collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the presentmore » paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear parton distribution functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon PDF, the partonic component most prone to non-linear e ects at low Q 2. In comparison to the current knowledge, we find that the gluon PDF can be measured at an EIC with significantly reduced uncertainties.« less

  12. Manned space flight nuclear system safety. Volume 5: Nuclear System safety guidelines. Part 1: Space base nuclear safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and operations guidelines and requirements developed in the study of space base nuclear system safety are presented. Guidelines and requirements are presented for the space base subsystems, nuclear hardware (reactor, isotope sources, dynamic generator equipment), experiments, interfacing vehicles, ground support systems, range safety and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.

  13. [Rural work and health risks: a review into de "safe use" of pesticides in Brazil].

    PubMed

    de Abreu, Pedro Henrique Barbosa; Alonzo, Herling Gregorio Aguilar

    2014-10-01

    The paradigm of the "safe use" of pesticides is based on measures to control risks in the handling of these products. However, studies carried out in various regions of Brazil reveal a situation of widespread exposure and health damages among rural workers, revealing the ineffectiveness of this paradigm. This work presents a critical review of the "safe use" approach for pesticides in scientific papers published in Brazil in the past 15 years. Results indicate that these studies do not address, simultaneously, all the work activities that involve exposure and risk of intoxication (acquisition, transportation, storage, preparation and application, final disposal of empty containers and sanitization of contaminated clothes/ PPEs), nor do they comprehensively address the "safe use" measures recommended in safety manuals, which are mandatory for each activity. A total of 25 studies were selected and analyzed, revealing a high number of results and analyses regarding activities of preparation and application and final disposal of empty containers. The range of the approaches was seen to be timely in the six work activities. For future studies, a broader approach of the "safe use" of pesticides is recommended, seeking to reveal the complete infeasibility of this safety paradigm.

  14. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the

  15. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  16. 76 FR 79209 - Proposed Safe Harbor Agreement for the Shasta Crayfish in Cassel, Shasta County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... occur in the future during routine maintenance of a water intake pipe on the south side of the pond.... Background Under a safe harbor agreement, participating landowners voluntarily undertake management... flow. The water from the spring is ponded by a levee that was originally built in the early 20th...

  17. Used Nuclear Fuel: From Liability to Benefit

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond L.

    2011-03-01

    Nuclear power has proven safe and reliable, with operating efficiencies in the U.S. exceeding 90%. It provides a carbon-free source of electricity (with about a 10% penalty arising from CO2 released from construction and the fuel cycle). However, used fuel from nuclear reactors is highly toxic and presents a challenge for permanent disposal -- both from technical and policy perspectives. The half-life of the ``bad actors'' is relatively short (of the order of decades) while the very long lived isotopes are relatively benign. At present, spent fuel is stored on-site in cooling ponds. Once the used fuel pools are full, the fuel is moved to dry cask storage on-site. Though the local storage is capable of handling used fuel safely and securely for many decades, the law requires DOE to assume responsibility for the used fuel and remove it from reactor sites. The nuclear industry pays a tithe to support sequestration of used fuel (but not research). However, there is currently no national policy in place to deal with the permanent disposal of nuclear fuel. This administration is opposed to underground storage at Yucca Mountain. There is no national policy for interim storage---removal of spent fuel from reactor sites and storage at a central location. And there is no national policy for liberating the energy contained in used fuel through recycling (separating out the fissionable components for subsequent use as nuclear fuel). A ``Blue Ribbon Commission'' has been formed to consider alternatives, but will not report until 2012. This paper will examine alternatives for used fuel disposition, their drawbacks (e.g. proliferation issues arising from recycling), and their benefits. For recycle options to emerge as a viable technology, research is required to develop cost effective methods for treating used nuclear fuel, with attention to policy as well as technical issues.

  18. InaSAFE applications in disaster preparedness

    NASA Astrophysics Data System (ADS)

    Pranantyo, Ignatius Ryan; Fadmastuti, Mahardika; Chandra, Fredy

    2015-04-01

    Disaster preparedness activities aim to reduce the impact of disasters by being better prepared to respond when a disaster occurs. In order to better anticipate requirements during a disaster, contingency planning activities can be undertaken prior to a disaster based on a realistic disaster scenario. InaSAFE is a tool that can inform this process. InaSAFE is a free and open source software that estimates the impact to people and infrastructure from potential hazard scenarios. By using InaSAFE, disaster managers can develop scenarios of disaster impacts (people and infrastructures affected) to inform their contingency plan and emergency response operation plan. While InaSAFE provides the software framework exposure data and hazard data are needed as inputs to run this software. Then InaSAFE can be used to forecast the impact of the hazard scenario to the exposure data. InaSAFE outputs include estimates of the number of people, buildings and roads are affected, list of minimum needs (rice and clean water), and response checklist. InaSAFE is developed by Indonesia's National Disaster Management Agency (BNPB) and the Australian Government, through the Australia-Indonesia Facility for Disaster Reduction (AIFDR), in partnership with the World Bank - Global Facility for Disaster Reduction and Recovery (GFDRR). This software has been used in many parts of Indonesia, including Padang, Maumere, Jakarta, and Slamet Mountain for emergency response and contingency planning.

  19. Nuclear option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, P.S.

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% frommore » the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed.« less

  20. NASA safety program activities in support of the Space Exploration Initiatives Nuclear Propulsion program

    NASA Technical Reports Server (NTRS)

    Sawyer, J. C., Jr.

    1993-01-01

    The activities of the joint NASA/DOE/DOD Nuclear Propulsion Program Technical Panels have been used as the basis for the current development of safety policies and requirements for the Space Exploration Initiatives (SEI) Nuclear Propulsion Technology development program. The Safety Division of the NASA Office of Safety and Mission Quality has initiated efforts to develop policies for the safe use of nuclear propulsion in space through involvement in the joint agency Nuclear Safety Policy Working Group (NSPWG), encouraged expansion of the initial policy development into proposed programmatic requirements, and suggested further expansion into the overall risk assessment and risk management process for the NASA Exploration Program. Similar efforts are underway within the Department of Energy to ensure the safe development and testing of nuclear propulsion systems on Earth. This paper describes the NASA safety policy related to requirements for the design of systems that may operate where Earth re-entry is a possibility. The expected plan of action is to support and oversee activities related to the technology development of nuclear propulsion in space, and support the overall safety and risk management program being developed for the NASA Exploration Program.

  1. Vitamin D Status, Bone Mineral Density and Mental Health in Young Australian Women: The Safe-D Study.

    PubMed

    Callegari, Emma T; Reavley, Nicola; Garland, Suzanne M; Gorelik, Alexandra; Wark, John D

    2015-11-17

    Vitamin D deficiency has been associated with both poor bone health and mental ill-health. More recently, a number of studies have found individuals with depressive symptoms tend to have reduced bone mineral density. To explore the interrelationships between vitamin D status, bone mineral density and mental-ill health we are assessing a range of clinical, behavioural and lifestyle factors in young women (Part A of the Safe-D study). Part A of the Safe-D study is a cross-sectional study aiming to recruit 468 young females aged 16-25 years living in Victoria, Australia, through Facebook advertising. Participants are required to complete an extensive, online questionnaire, wear an ultra-violet dosimeter for 14 consecutive days and attend a study site visit. Outcome measures include areal bone mineral measures at the lumbar spine, total hip and whole body, as well as soft tissue composition using dual energy x-ray absorptiometry. Trabecular and cortical volumetric bone density at the tibia is measured using peripheral quantitative computed tomography. Other tests include serum 25-hydroxyvitamin D, serum biochemistry and a range of health markers. Details of mood disorder/s and depressive and anxiety symptoms are obtained by self-report. Cutaneous melanin density is measured by spectrophotometry. The findings of this cross-sectional study will have implications for health promotion in young women and for clinical care of those with vitamin D deficiency and/or mental ill-health. Optimising both vitamin D status and mental health may protect against poor bone health and fractures in later life. Significance for public healthVitamin D deficiency, depression and osteoporosis are all major public health issues. Vitamin D deficiency has been associated with both reduced bone mineral density and depressive symptoms. Moreover, cohort studies have found that subjects with depression have lower bone mineral density when compared to healthy controls. Early adulthood is a critical

  2. Buying time: Franchising hazardous and nuclear waste cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, D.R.

    This paper describes a private franchise approach to long-term custodial care, monitoring and eventual cleanup of hazardous and nuclear waste sites. The franchise concept could be applied to Superfund sites, decommissioning commercial reactors and safeguarding their wastes and to Department of Energy sites. Privatization would reduce costs by enforcing efficient operations and capital investments during the containment period, by providing incentives for successful innovation and by sustaining containment until the cleanup`s net benefits exceed its costs. The franchise system would also permit local governments and citizens to demand and pay for more risk reduction than provided by the federal government.more » In principle, they would have the option of taking over site management. The major political drawback of the idea is that it requires society to be explicit about what it is willing to pay for now to protect current and future generations. Hazardous waste sites are enduring legacies of energy development. Abandoned mines, closed refineries, underground storage tanks and nuclear facilities have often become threats to human health and water quality. The policy of the United States government is that such sites should quickly be made nonpolluting and safe for unrestricted use. That is, the policy of the United States is prompt cleanup. Orphaned commercial hazardous waste sites are addressed by the US Environmental Protection Agency`s Superfund program. 17 refs., 2 tabs.« less

  3. In defiance of nuclear deterrence: anti-nuclear New Zealand after two decades.

    PubMed

    Reitzig, Andreas

    2006-01-01

    In 1984, nuclear-armed and nuclear-powered vessels were banned from New Zealand to express the country's rejection of the nuclear deterrence concept. This led to a disagreement with the United States. Today, the ban on nuclear-powered ships is the only element of the nuclear-free legislation that still strains US-New Zealand relations. This article presents the reasons for the ban on nuclear-powered ships, which include scientific safety concerns, a symbolic rejection of the nuclear deterrence posture, and patriotic factors such as a nuclear-free national identity. The military and economic consequences of the ban are also examined. Since the ban on nuclear-powered vessels appears to be neither widely known abroad nor commonly recognised as a supportive disarmament measure outside New Zealand, it is concluded that whatever the future of this ban will be, New Zealand's anti-nuclear image will remain known internationally through the ban on nuclear arms.

  4. The near boiling reactor: Conceptual design of a small inherently safe nuclear reactor to extend the operational capability of the Victoria Class submarine

    NASA Astrophysics Data System (ADS)

    Cole, Christopher J. P.

    Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the Victoria Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew. The reactor employs TRISO fuel particles for increased safety. The light water coolant remains at atmospheric pressure, exiting the core at 96°C. Burn-up control and limiting excess reactivity is achieved through movable reflector plates. Shut down and regulatory control is achieved through the thirteen hafnium control rods. Inherent safety is achieved through the negative prompt and delayed temperature coefficients, as well as the negative void coefficient. During a transient, the boiling of the moderator results in a sudden drop in reactivity, essentially shutting down the reactor. It is this characteristic after which the reactor has been named. The design of the reactor was achieved through modelling using computer codes such as MCNP5, WIMS-AECL, FEMLAB, and MicroShield5, in addition to specially written software for kinetics, heat transfer and fission product poisoning calculations. The work has covered a broad area of research and has highlighted additional areas

  5. Strategies for Countering Terrorist Safe Havens

    DTIC Science & Technology

    2014-02-20

    within safe havens, tactical containment, pseudo operations, and surrogate security forces. The thesis draws from four historical case studies to...leadership targeting within safe havens, tactical containment, pseudo operations, and surrogate security forces. The thesis draws from four historical case ...surrogate forces and pseudo operations—provide viable potential options for USSOF to counter the complex problem of safe havens. Overall, the case

  6. Development of Lidar Sensor Systems for Autonomous Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierottet, Diego F.; Petway, Larry B.; Vanek, Michael D.

    2010-01-01

    Lidar has been identified by NASA as a key technology for enabling autonomous safe landing of future robotic and crewed lunar landing vehicles. NASA LaRC has been developing three laser/lidar sensor systems under the ALHAT project. The capabilities of these Lidar sensor systems were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard helicopters and a fixed wing aircraft. The airborne tests were performed over Moon-like terrain in the California and Nevada deserts. These tests provided the necessary data for the development of signal processing software, and algorithms for hazard detection and navigation. The tests helped identify technology areas needing improvement and will also help guide future technology advancement activities.

  7. A Study of Reasons for Participation in Continuing Professional Education in the U.S. Nuclear Power Industry

    ERIC Educational Resources Information Center

    McCamey, Randy B.

    2003-01-01

    The need for workers in the U.S. nuclear power industry to continually update their knowledge, skills, and abilities is critical to the safe and reliable operation of the country's nuclear power facilities. To improve their skills, knowledge, and abilities, many professionals in the nuclear power industry participate in continuing professional…

  8. If Nuclear Energy Is the Answer, Why Doesn't Everyone Agree?

    ERIC Educational Resources Information Center

    Roberts, J. W.

    2018-01-01

    Nuclear energy produces low carbon, safe and reliable electricity so is it now time for the UK to invest in this proven technology or are the misplaced perceptions regarding its safety, cost and the quantities of radioactive waste produced causing us to overlook nuclear as a major component of our electricity mix? This paper discusses these issues…

  9. Safe Schools, Safe Students. Proceedings of the National Education Goals Panel/National Alliance of Pupil Services Organizations Conference on "Safe Schools, Safe Students: A Collaborative Approach to Achieving Safe, Disciplined, and Drug-free Schools Conducive to Learning" (Washington, D.C., October 28-29, 1994).

    ERIC Educational Resources Information Center

    Talley, Ronda C., Ed.; Walz, Garry R., Ed.

    The "Safe Schools, Safe Students" conference brought together leading researchers and practitioners in order to share knowledge about innovative safety strategies being used in America's schools. The papers here represent the thinking of scientific experts and school-based pupil service providers who are implementing programs to prevent…

  10. Examination of Frameworks for Safe Integration of Intelligent Small UAS into the NAS

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.

    2012-01-01

    This paper discusses a proposed framework for the safe integration of small unmanned aerial systems (sUAS) into the National Airspace System (NAS). The paper briefly examines the potential uses of sUAS to build an understanding of the location and frequency of potential future flight operations based on the future applications of the sUAS systems. The paper then examines the types of systems that would be required to meet the application-level demand to determine "classes" of platforms and operations. A framework for categorization of the "intelligence" level of the UAS is postulated for purposes of NAS integration. Finally, constraints on the intelligent systems are postulated to ensure their ease of integration into the NAS.

  11. Radiation Safety in Nuclear Medicine Procedures.

    PubMed

    Cho, Sang-Geon; Kim, Jahae; Song, Ho-Chun

    2017-03-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  12. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “allmore » of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system

  13. Storage of nuclear materials by encapsulation in fullerenes

    DOEpatents

    Coppa, Nicholas V.

    1994-01-01

    A method of encapsulating radioactive materials inside fullerenes for stable long-term storage. Fullerenes provide a safe and efficient means of disposing of nuclear waste which is extremely stable with respect to the environment. After encapsulation, a radioactive ion is essentially chemically isolated from its external environment.

  14. The operating room of the future: observations and commentary.

    PubMed

    Satava, Richard M

    2003-09-01

    The Operating Room of the Future is a construct upon which to develop the next generation of operating environments for the patient, surgeon, and operating team. Analysis of the suite of visions for the Operating Room of the Future reveals a broad set of goals, with a clear overall solution to create a safe environment for high-quality healthcare. The vision, although planned for the future, is based upon iteratively improving and integrating current systems, both technology and process. This must become the Operating Room of Today, which will require the enormous efforts described. An alternative future of the operating room, based upon emergence of disruptive technologies, is also presented.

  15. Steering teens safe: a randomized trial of a parent-based intervention to improve safe teen driving.

    PubMed

    Peek-Asa, Corinne; Cavanaugh, Joseph E; Yang, Jingzhen; Chande, Vidya; Young, Tracy; Ramirez, Marizen

    2014-07-31

    Crashes are the leading cause of death for teens, and parent-based interventions are a promising approach. We assess the effectiveness of Steering Teens Safe, a parent-focused program to increase safe teen driving. Steering Teens Safe aimed to improve parental communication with teens about safe driving using motivational interviewing techniques in conjunction with 19 safe driving lessons. A randomized controlled trial involved 145 parent-teen dyads (70 intervention and 75 control). Intervention parents received a 45-minute session to learn the program with four follow-up phone sessions, a DVD, and a workbook. Control parents received a standard brochure about safe driving. Scores were developed to measure teen-reported quantity and quality of parental communication about safe driving. The main outcome measure was a previously validated Risky Driving Score reported by teens. Because the Score was highly skewed, a generalized linear model based on a gamma distribution was used for analysis. Intervention teens ranked their parent's success in talking about driving safety higher than control teens (p = 0.035) and reported that their parents talked about more topics (non-significant difference). The Risky Driving Score was 21% lower in intervention compared to control teens (85% CI = 0.60, 1.00). Interaction between communication quantity and the intervention was examined. Intervention teens who reported more successful communication had a 42% lower Risky Driving Score (95% CI = 0.37, 0.94) than control parents with less successful communication. This program had a positive although not strong effect, and it may hold the most promise in partnership with other programs, such as Driver's Education or Graduated Driver's License policies. ClinicalTrials.gov NCT01014923. Registered Nov. 16, 2009.

  16. Hospital organizational response to the nuclear accident at Three Mile Island: implications for future-oriented disaster planning.

    PubMed Central

    Maxwell, C

    1982-01-01

    The 1979 nuclear accident at Three Mile Island (TMI) near Harrisburg, Pennsylvania, caused severe organizational problems for neighboring health care institutions. Dauphin County, just north of TMI, contained four hospitals ranging in distance from 9.5 to 13.5 miles from the stricken plant. Crash plans put into effect within 48 hours of the initial incident successfully reduced hospital census to below 50 per cent of capacity, but retained bedridden and critically ill patients within the risk-zone. No plans existed for area-wide evacuation of hospitalized patients. Future-oriented disaster planning should include resource files of host institution bed capacity and transportation capabilities for the crash evacuation of hospitalized patients during non-traditional disasters. PMID:7058968

  17. Hospital organizational response to the nuclear accident at Three Mile Island: implications for future-oriented disaster planning.

    PubMed

    Maxwell, C

    1982-03-01

    The 1979 nuclear accident at Three Mile Island (TMI) near Harrisburg, Pennsylvania, caused severe organizational problems for neighboring health care institutions. Dauphin County, just north of TMI, contained four hospitals ranging in distance from 9.5 to 13.5 miles from the stricken plant. Crash plans put into effect within 48 hours of the initial incident successfully reduced hospital census to below 50 per cent of capacity, but retained bedridden and critically ill patients within the risk-zone. No plans existed for area-wide evacuation of hospitalized patients. Future-oriented disaster planning should include resource files of host institution bed capacity and transportation capabilities for the crash evacuation of hospitalized patients during non-traditional disasters.

  18. Quantity and quality in nuclear engineering professional skills needed by the nuclear power industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slember, R.J.

    1990-01-01

    This paper examines the challenge of work force requirements in the context of the full range of issues facing the nuclear power industry. The supply of skilled managers and workers may be a more serious problem if nuclear power fades away than if it is reborn in a new generation. An even greater concern, however, is the quality of education that the industry needs in all its future professionals. Both government and industry should be helping universities adapt their curricula to the needs of the future. This means building a closer relationship with schools that educate nuclear professionals, that is,more » providing adequate scholarships and funding for research and development programs, offering in-kind services, and encouraging internships and other opportunities for hands-on experience. The goal should not be just state-of-the-art engineering practices, but the broad range of knowledge, issues, and skills that will be required of the nuclear leadership of the twenty-first century.« less

  19. Safe biodegradable fluorescent particles

    DOEpatents

    Martin, Sue I [Berkeley, CA; Fergenson, David P [Alamo, CA; Srivastava, Abneesh [Santa Clara, CA; Bogan, Michael J [Dublin, CA; Riot, Vincent J [Oakland, CA; Frank, Matthias [Oakland, CA

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  20. Safe Haven.

    ERIC Educational Resources Information Center

    Bush, Gail

    2003-01-01

    Discusses school libraries as safe havens for teenagers and considers elements that foster that atmosphere, including the physical environment, lack of judgments, familiarity, leisure, and a welcoming nature. Focuses on the importance of relationships, and taking the time to listen to teens and encourage them. (LRW)

  1. Nuclear energy acceptance and potential role to meet future energy demand. Which technical/scientific achievements are needed?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenkel, Roland

    25 years after Chernobyl, the Fukushima disaster has changed the perspectives of nuclear power. The disaster has shed a negative light on the independence, reliability and rigor of the national nuclear regulator and plant operator and the usefulness of the international IAEA guidelines on nuclear safety. It has become clear that, in the light of the most severe earthquake in the history of Japan, the plants at Fukushima Daiichi were not adequately protected against tsunamis. Nuclear acceptance has suffered enormously and has changed the perspectives of nuclear energy dramatically in countries that have a very risk-sensitive population, Germany is anmore » example. The paper analyses the reactions in major countries and the expected impact on future deployment of reactors and on R and D activities. On the positive side, the disaster has demonstrated a remarkable robustness of most of the 14 reactors closest to the epicentre of the Tohoku Seaquake although not designed to an event of level 9.0. Public acceptance can only be regained with a rigorous and worldwide approach towards inherent reactor safety and design objectives that limit the impact of severe accidents to the plant itself (like many of the new Gen III reactors). A widespread release of radioactivity and the evacuation (temporary or permanent) of the population up to 30 km around a facility are simply not acceptable. Several countries have announced to request more stringent international standards for reactor safety. The IAEA should take this move forward and intensify and strengthen the different peer review mission schemes. The safety guidelines and peer reviews should in fact become legally binding for IAEA members. The paper gives examples of the new safety features developed over the last 20 years and which yield much safer reactors with lesser burden to the environment under severe accident conditions. The compatibility of these safety systems with the current concepts for fusion-fission hybrids

  2. Nuclear energy acceptance and potential role to meet future energy demand. Which technical/scientific achievements are needed?

    NASA Astrophysics Data System (ADS)

    Schenkel, Roland

    2012-06-01

    25 years after Chernobyl, the Fukushima disaster has changed the perspectives of nuclear power. The disaster has shed a negative light on the independence, reliability and rigor of the national nuclear regulator and plant operator and the usefulness of the international IAEA guidelines on nuclear safety. It has become clear that, in the light of the most severe earthquake in the history of Japan, the plants at Fukushima Daiichi were not adequately protected against tsunamis. Nuclear acceptance has suffered enormously and has changed the perspectives of nuclear energy dramatically in countries that have a very risk-sensitive population, Germany is an example. The paper analyses the reactions in major countries and the expected impact on future deployment of reactors and on R&D activities. On the positive side, the disaster has demonstrated a remarkable robustness of most of the 14 reactors closest to the epicentre of the Tohoku Seaquake although not designed to an event of level 9.0. Public acceptance can only be regained with a rigorous and worldwide approach towards inherent reactor safety and design objectives that limit the impact of severe accidents to the plant itself (like many of the new Gen III reactors). A widespread release of radioactivity and the evacuation (temporary or permanent) of the population up to 30 km around a facility are simply not acceptable. Several countries have announced to request more stringent international standards for reactor safety. The IAEA should take this move forward and intensify and strengthen the different peer review mission schemes. The safety guidelines and peer reviews should in fact become legally binding for IAEA members. The paper gives examples of the new safety features developed over the last 20 years and which yield much safer reactors with lesser burden to the environment under severe accident conditions. The compatibility of these safety systems with the current concepts for fusion-fission hybrids, which have

  3. Future Remains: Industrial Heritage at the Hanford Plutonium Works

    NASA Astrophysics Data System (ADS)

    Freer, Brian

    This dissertation argues that U.S. environmental and historic preservation regulations, industrial heritage projects, history, and art only provide partial frameworks for successfully transmitting an informed story into the long range future about nuclear technology and its related environmental legacy. This argument is important because plutonium from nuclear weapons production is toxic to humans in very small amounts, threatens environmental health, has a half-life of 24, 110 years and because the industrial heritage project at Hanford is the first time an entire U.S. Department of Energy weapons production site has been designated a U.S. Historic District. This research is situated within anthropological interest in industrial heritage studies, environmental anthropology, applied visual anthropology, as well as wider discourses on nuclear studies. However, none of these disciplines is really designed or intended to be a completely satisfactory frame of reference for addressing this perplexing challenge of documenting and conveying an informed story about nuclear technology and its related environmental legacy into the long range future. Others have thought about this question and have made important contributions toward a potential solution. Examples here include: future generations movements concerning intergenerational equity as evidenced in scholarship, law, and amongst Native American groups; Nez Perce and Confederated Tribes of the Umatilla Indian Reservation responses to the Hanford End State Vision and Hanford's Canyon Disposition Initiative; as well as the findings of organizational scholars on the advantages realized by organizations that have a long term future perspective. While these ideas inform the main line inquiry of this dissertation, the principal approach put forth by the researcher of how to convey an informed story about nuclear technology and waste into the long range future is implementation of the proposed Future Remains clause, as

  4. The Future of Low-Carbon Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel

    Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  5. The Future of Low-Carbon Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel

    We review future global demand for electricity and major technologies positioned to supply it with minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal, and biomass), nuclear fission, and fossil power with CO2 capture and sequestration. We discuss two breakthrough technologies (space solar power and nuclear fusion) as exciting but uncertain additional options for low-net GHG emissions (i.e., low-carbon) electricity generation. In addition, we discuss grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes). For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs, and other issues as appropriate. Although no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  6. The Future of Low-Carbon Electricity

    DOE PAGES

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel; ...

    2017-07-10

    Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  7. More than a Safe Space

    ERIC Educational Resources Information Center

    Sadowski, Michael

    2016-01-01

    Over the past three decades, much of the conversation about LGBTQ students in schools has centered on safety--anti-bullying policies, the "safe space" of gay-straight alliances, and "safe zones" marked by rainbow-colored stickers on classroom doors. In this article, Michael Sadowski argues that it's time to move beyond safety…

  8. Concept for Underground Disposal of Nuclear Waste

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  9. Enhancing future resilience in urban drainage system: Green versus grey infrastructure.

    PubMed

    Dong, Xin; Guo, Hao; Zeng, Siyu

    2017-11-01

    In recent years, the concept transition from fail-safe to safe-to-fail makes the application of resilience analysis popular in urban drainage systems (UDSs) with various implications and quantifications. However, most existing definitions of UDSs resilience are confined to the severity of flooding, while uncertainties from climate change and urbanization are not considered. In this research, we take into account the functional variety, topological complexity, and disturbance randomness of UDSs and define a new formula of resilience based on three parts of system severity, i.e. social severity affected by urban flooding, environmental severity caused by sewer overflow, and technological severity considering the safe operation of downstream facilities. A case study in Kunming, China is designed to compare the effect of green and grey infrastructure strategies on the enhancement of system resilience together with their costs. Different system configurations with green roofs, permeable pavement and storage tanks are compared by scenario analysis with full consideration of future uncertainties induced by urbanization and climate change. The research contributes to the development of sustainability assessment of urban drainage system with consideration of the resilience of green and grey infrastructure under future change. Finding the response measures with high adaptation across a variety of future scenarios is crucial to establish sustainable urban drainage system in a long term. Copyright © 2017. Published by Elsevier Ltd.

  10. Nuclear Materials Science

    NASA Astrophysics Data System (ADS)

    Whittle, Karl

    2016-06-01

    Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field.

  11. Evolution of the Hubble Space Telescope Safing Systems

    NASA Technical Reports Server (NTRS)

    Pepe, Joyce; Myslinski, Michael

    2006-01-01

    The Hubble Space Telescope (HST) was launched on April 24 1990, with an expected lifespan of 15 years. Central to the spacecraft design was the concept of a series of on-orbit shuttle servicing missions permitting astronauts to replace failed equipment, update the scientific instruments and keep the HST at the forefront of astronomical discoveries. One key to the success of the Hubble mission has been the robust Safing systems designed to monitor the performance of the observatory and to react to keep the spacecraft safe in the event of equipment anomaly. The spacecraft Safing System consists of a range of software tests in the primary flight computer that evaluate the performance of mission critical hardware, safe modes that are activated when the primary control mode is deemed inadequate for protecting the vehicle, and special actions that the computer can take to autonomously reconfigure critical hardware. The HST Safing System was structured to autonomously detect electrical power system, data management system, and pointing control system malfunctions and to configure the vehicle to ensure safe operation without ground intervention for up to 72 hours. There is also a dedicated safe mode computer that constantly monitors a keep-alive signal from the primary computer. If this signal stops, the safe mode computer shuts down the primary computer and takes over control of the vehicle, putting it into a safe, low-power configuration. The HST Safing system has continued to evolve as equipment has aged, as new hardware has been installed on the vehicle, and as the operation modes have matured during the mission. Along with the continual refinement of the limits used in the safing tests, several new tests have been added to the monitoring system, and new safe modes have been added to the flight software. This paper will focus on the evolution of the HST Safing System and Safing tests, and the importance of this evolution to prolonging the science operations of the

  12. Leveraging success: applying Interagency Lessons learned to the Joint Air Delivered Nuclear Weapons Acquisition Process

    DTIC Science & Technology

    Effective coordination and communication between the Department of Energy (DOE) and the Department of Defense (DoD) is necessary to ensure that the... nuclear weapons stockpile remains safe, secure, and effective without nuclear testing. The science-based Stockpile Sustainment Program (SSP) is the...method used to sustain and maintain the nuclear stockpile throughout the weapons life cycle. A comprehensive review was conducted of the joint

  13. The United Arab Emirates Nuclear Program and Proposed U.S. Nuclear Cooperation

    DTIC Science & Technology

    2009-05-14

    fuel for future civilian light water reactors deployed” in the UAE. The agreement also states that future cooperation may encompass training...planned nuclear reactor . (...continued) May 4, 2008; and, Chris Stanton and Ivan...already taken place. In August 2008, Virginia’s Thorium Power Ltd. signed two consulting and advisory services contracts related to the establishment

  14. Jefferson Lab Science: Present and Future

    DOE PAGES

    McKeown, Robert D.

    2015-02-12

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  15. Managing Cassini Safe Mode Attitude at Saturn

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. In the event safe mode interrupts normal orbital operations, Cassini has flight software fault protection algorithms to detect, isolate, and recover to a thermally safe and commandable attitude and then wait for further instructions from the ground. But the Saturn environment is complex, and safety hazards change depending on where Cassini is in its orbital trajectory around Saturn. Selecting an appropriate safe mode attitude that insures safe operation in the Saturn environment, including keeping the star tracker field of view clear of bright bodies, while maintaining a quiescent, commandable attitude, is a significant challenge. This paper discusses the Cassini safe table management strategy and the key criteria that must be considered, especially during low altitude flybys of Titan, in deciding what spacecraft attitude should be used in the event of safe mode.

  16. The doctrine of the nuclear-weapon states and the future of non-proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panofsky, W.K.H.; Bunn, G.

    Less than a year remains before the critical conference in April 1995 to review and extend the nuclear Non-Proliferation Treaty (NPT), the main international barrier to the proliferation of nuclear weapons. This is a critical moment for the United States. With the end of the Cold War, the likelihood of nuclear war with the states of the former Soviet Union has been radically reduced, but there is greatly increased concern over the potential threats from states or sub-state groups seeking to develop or acquire nuclear weapons and other weapons of mass destruction.

  17. "Safe Schools within Safe Communities: A Regional Summit in the Heartland." Policy Briefs Special Report.

    ERIC Educational Resources Information Center

    Huertas, Aurelio, Jr.; Sullivan, Carol

    This report documents the proceedings of a regional policy seminar hosted by the Iowa Department of Education with support from the North Central Regional Educational Laboratory (NCREL) and the Midwest Regional Center for Drug-Free Schools and Communities (MRC). The seminar, "Safe Schools Within Safe Communities," was held on September 19-20,…

  18. Safe Use Practices for Pesticides

    Science.gov Websites

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Ingredients Low-Risk Pesticides Organic Pesticide Ingredients Pesticide Incidents Human Exposure Pet Exposure Home Page Pesticide Health and Safety Information Safe Use Practices for Pesticides Related Topics

  19. Is Prevent a Safe Space?

    ERIC Educational Resources Information Center

    Ramsay, Peter

    2017-01-01

    In this article, I test the claims of the UK government and universities that the Prevent programme aims to create a safe space for the discussion of "extremist" ideas in universities. I do this by comparing the main elements of the Prevent duty that has been imposed on universities with those of safe spaces as imagined by student…

  20. 75 FR 29391 - National Safe Boating Week, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... Safe Boating Week, 2010 By the President of the United States of America A Proclamation Our Nation's... National Safe Boating Week to practicing safe techniques so boaters of all ages can enjoy this pastime... annually the 7-day period prior to Memorial Day weekend as ``National Safe Boating Week.'' NOW, THEREFORE...

  1. A novel integrated approach for the hazardous radioactive dust source terms estimation in future nuclear fusion power plants.

    PubMed

    Poggi, L A; Malizia, A; Ciparisse, J F; Gaudio, P

    2016-10-01

    An open issue still under investigation by several international entities working on the safety and security field for the foreseen nuclear fusion reactors is the estimation of source terms that are a hazard for the operators and public, and for the machine itself in terms of efficiency and integrity in case of severe accident scenarios. Source term estimation is a crucial key safety issue to be addressed in the future reactors safety assessments, and the estimates available at the time are not sufficiently satisfactory. The lack of neutronic data along with the insufficiently accurate methodologies used until now, calls for an integrated methodology for source term estimation that can provide predictions with an adequate accuracy. This work proposes a complete methodology to estimate dust source terms starting from a broad information gathering. The wide number of parameters that can influence dust source term production is reduced with statistical tools using a combination of screening, sensitivity analysis, and uncertainty analysis. Finally, a preliminary and simplified methodology for dust source term production prediction for future devices is presented.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Venkateswara Rao

    The need for sustainable and secure nuclear energy is summarized. Driven by economics and public-private partnerships, the technology is evolving. Cost control and regulatory simplification are needed for a nuclear renaissance. Small modular reactors--simple, scalable, and inherently safe--may be the future.

  3. Preserving Nuclear Grade Knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, Bob

    2008-02-05

    When people think of the government they think of the President, or Congress, or the Internal Revenue Service (IRS), but there are thousands of people in government-related jobs doing things most don’t really notice everyday. You can find them everywhere, from the space science folks at NASA, to the Federal Bureau of Investigations (FBI) watching out for the bad guys. There are Rangers, and Social Workers, Nurses and Agricultural Managers. They are people working to keep the many facets of the USA rolling. One very diverse bunch is The Department of Energy (DOE) , a group who is expanding themore » ways we make and save energy to power our cars, homes, and businesses. Tucked away under the DOE is the National Nuclear Security Administration, the NNSA is an agency that maintains the safety, security, and reliability of the U.S. nuclear weapons stockpile. It works to reduce global danger from weapons of mass destruction. It provides the U.S. Navy with safe nuclear propulsion, and it responds to nuclear and radiological emergencies in the United States and abroad, and it supports efforts in science and technology*. (* DOE/NNSA/KCP website info)« less

  4. 30 CFR 77.312 - Fail safe monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fail safe monitoring systems. 77.312 Section 77... Thermal Dryers § 77.312 Fail safe monitoring systems. Thermal dryer systems and controls shall be protected by a fail safe monitoring system which will safely shut down the system and any related equipment...

  5. 30 CFR 77.312 - Fail safe monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fail safe monitoring systems. 77.312 Section 77... Thermal Dryers § 77.312 Fail safe monitoring systems. Thermal dryer systems and controls shall be protected by a fail safe monitoring system which will safely shut down the system and any related equipment...

  6. 30 CFR 77.312 - Fail safe monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fail safe monitoring systems. 77.312 Section 77... Thermal Dryers § 77.312 Fail safe monitoring systems. Thermal dryer systems and controls shall be protected by a fail safe monitoring system which will safely shut down the system and any related equipment...

  7. 30 CFR 77.312 - Fail safe monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe monitoring systems. 77.312 Section 77... Thermal Dryers § 77.312 Fail safe monitoring systems. Thermal dryer systems and controls shall be protected by a fail safe monitoring system which will safely shut down the system and any related equipment...

  8. 30 CFR 77.312 - Fail safe monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fail safe monitoring systems. 77.312 Section 77... Thermal Dryers § 77.312 Fail safe monitoring systems. Thermal dryer systems and controls shall be protected by a fail safe monitoring system which will safely shut down the system and any related equipment...

  9. 29 CFR 1915.15 - Maintenance of safe conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Enclosed Spaces and Other Dangerous Atmospheres in Shipyard Employment § 1915.15 Maintenance of safe... into spaces that have been certified “Safe for Workers” or “Safe for Hot Work” shall be disconnected... certificates. A competent person shall visually inspect and test each space certified as “Safe for Workers” or...

  10. 29 CFR 1915.15 - Maintenance of safe conditions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Enclosed Spaces and Other Dangerous Atmospheres in Shipyard Employment § 1915.15 Maintenance of safe... into spaces that have been certified “Safe for Workers” or “Safe for Hot Work” shall be disconnected... certificates. A competent person shall visually inspect and test each space certified as “Safe for Workers” or...

  11. The Storage, Transportation, and Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Younker, J. L.

    2002-12-01

    The U.S. Congress established a comprehensive federal policy to dispose of wastes from nuclear reactors and defense facilities, centered on deep geologic disposal of high-level radioactive waste. Site screening led to selection of three potential sites and in 1987, Congress directed the Secretary of Energy to characterize only one site: Yucca Mountain in Nevada. For more than 20 years, teams of scientists and engineers have been evaluating the potential suitability of the site. On the basis of their work, the U.S. Secretary of Energy, Spencer Abraham, concluded in February 2002 that a safe repository can be sited at Yucca Mountain. On July 23, 2002, President Bush signed Joint Resolution 87 approving the site at Yucca Mountain for development of a repository, which allows the U.S. Department of Energy (DOE) to prepare and submit a license application to the U.S. Nuclear Regulatory Commission (NRC). Concerns have been raised relative to the safe transportation of nuclear materials. The U.S. history of transportation of nuclear materials demonstrates that high-level nuclear materials can be safely transported. Since the 1960s, over 1.6 million miles have been traveled by more than 2,700 spent nuclear fuel shipments, and there has never been an accident severe enough to cause a release of radioactive materials. The DOE will use NRC-certified casks that must be able to withstand very stringent tests. The same design features that allow the casks to survive severe accidents also limit their vulnerability to sabotage. In addition, the NRC will approve all shipping routes and security plans. With regard to long-term safety, the Yucca Mountain disposal system has five key attributes. First, the arid climate and geology of Yucca Mountain combine to ensure that limited water will enter the emplacement tunnels. Second, the DOE has designed a waste package and drip shield that are expected to have very long lifetimes in the repository environment. Third, waste form

  12. Reviews of the Comprehensive Nuclear-Test-Ban Treaty and U.S. security

    NASA Astrophysics Data System (ADS)

    Jeanloz, Raymond

    2017-11-01

    Reviews of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) by the National Academy of Sciences concluded that the United States has the technical expertise and physical means to i) maintain a safe, secure and reliable nuclear-weapons stockpile without nuclear-explosion testing, and ii) effectively monitor global compliance once the Treaty enters into force. Moreover, the CTBT is judged to help constrain proliferation of nuclear-weapons technology, so it is considered favorable to U.S. security. Review of developments since the studies were published, in 2002 and 2012, show that the study conclusions remain valid and that technical capabilities are better than anticipated.

  13. Staying Healthy and Safe at Work

    MedlinePlus

    ... The Prematurity Campaign About us Annual report Our work Community impact Global programs Research Need help? Frequently ... safe at work Staying healthy and safe at work E-mail to a friend Please fill in ...

  14. Defect specific maintenance of SG tubes -- How safe is it?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cizelj, L.; Mavko, B.; Dvorsek, T.

    1997-02-01

    The efficiency of the defect specific plugging criterion for outside diameter stress corrosion cracking at tube support plates is assessed. The efficiency is defined by three parameters: (1) number of plugged tubes, (2) probability of steam generator tube rupture and (3) predicted accidental leak rate through the defects. A probabilistic model is proposed to quantify the probability of tube rupture, while procedures available in literature were used to define the accidental leak rates. The defect specific plugging criterion was then compared to the performance of traditional (45%) plugging criterion using realistic data from Krsko nuclear power plant. Advantages of themore » defect specific approach over the traditional one are clearly shown. Some hints on the optimization of safe life of steam generator are also given.« less

  15. 33 CFR 83.06 - Safe speed (Rule 6).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Safe speed (Rule 6). 83.06... Safe speed (Rule 6). Every vessel shall at all times proceed at a safe speed so that she can take... prevailing circumstances and conditions. In determining a safe speed the following factors shall be among...

  16. 33 CFR 83.06 - Safe speed (Rule 6).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Safe speed (Rule 6). 83.06... Safe speed (Rule 6). Every vessel shall at all times proceed at a safe speed so that she can take... prevailing circumstances and conditions. In determining a safe speed the following factors shall be among...

  17. Who's Got the Bridge? - Towards Safe, Robust Autonomous Operations at NASA Langley's Autonomy Incubator

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette; Cross, Charles D.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc; Trujillo, Anna C.; Crisp, Vicki K.

    2015-01-01

    NASA aeronautics research has made decades of contributions to aviation. Both aircraft and air traffic management (ATM) systems in use today contain NASA-developed and NASA sponsored technologies that improve safety and efficiency. Recent innovations in robotics and autonomy for automobiles and unmanned systems point to a future with increased personal mobility and access to transportation, including aviation. Automation and autonomous operations will transform the way we move people and goods. Achieving this mobility will require safe, robust, reliable operations for both the vehicle and the airspace and challenges to this inevitable future are being addressed now in government labs, universities, and industry. These challenges are the focus of NASA Langley Research Center's Autonomy Incubator whose R&D portfolio includes mission planning, trajectory and path planning, object detection and avoidance, object classification, sensor fusion, controls, machine learning, computer vision, human-machine teaming, geo-containment, open architecture design and development, as well as the test and evaluation environment that will be critical to prove system reliability and support certification. Safe autonomous operations will be enabled via onboard sensing and perception systems in both data-rich and data-deprived environments. Applied autonomy will enable safety, efficiency and unprecedented mobility as people and goods take to the skies tomorrow just as we do on the road today.

  18. Selecting reasonable future land use scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allred, W.E.; Smith, R.W.

    1995-12-31

    This paper examines a process to help select the most reasonable future land use scenarios for hazardous waste and/or low-level radioactive waste disposal sites. The process involves evaluating future land use scenarios by applying selected criteria currently used by commercial mortgage companies to determine the feasibility of obtaining a loan for purchasing such land. The basis for the process is that only land use activities for which a loan can be obtained will be considered. To examine the process, a low-level radioactive waste site, the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory, is used as an example.more » The authors suggest that the process is a very precise, comprehensive, and systematic (common sense) approach for determining reasonable future use of land. Implementing such a process will help enhance the planning, decisionmaking, safe management, and cleanup of present and future disposal facilities.« less

  19. Medical radiation countermeasures for nuclear and radiological emergencies: Current status and future perspectives

    PubMed Central

    Arora, Rajesh; Chawla, Raman; Marwah, Rohit; Kumar, Vinod; Goel, Rajeev; Arora, Preeti; Jaiswal, Sarita; Sharma, Rakesh Kumar

    2010-01-01

    Nuclear and radiological emergencies (NREs) occurred globally and recent incidences in India are indicating toward the need for comprehensive medical preparedness required both at incident site and hospitals. The enhanced threat attributed toward insurgency is another causative factor of worry. The response capabilities and operational readiness of responders (both health and non-health service providers) in contaminated environment need to be supported by advancement in R & D and technological efforts to develop prophylactics and radiation mitigators. It is essential to develop phase 1 alternatives of such drugs for unseen threats as a part of initial preparedness. At the incident site and hospital level, external decontamination procedures need to be standardized and supported by protective clothing and Shudika kits developed by INMAS. The medical management of exposure requires systematic approach to perform triage, resuscitation and curative care. The internal contamination requires decorporation agents to be administered based on procedural diagnostics. Various key issues pertaining to policy decisions, R & D promotion, community awareness, specialized infrastructure for NREs preparedness has been discussed. The present review is an attempt to provide vital information about the current status of various radiation countermeasures and future perspective(s) ahead. PMID:21829316

  20. The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship

    NASA Astrophysics Data System (ADS)

    Graham, Thomas, Jr.

    2014-05-01

    The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a "threat to peace and security", in effect a violation of international law, which in today's world it clearly would be.

  1. 33 CFR 62.27 - Safe water marks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Safe water marks. 62.27 Section 62.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.27 Safe water marks. Safe...

  2. Systems for the Intermodal Routing of Spent Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Steven K; Liu, Cheng

    The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable systemmore » for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the

  3. 75 FR 1734 - Children’s Online Privacy Protection Rule Safe Harbor Proposed Self-Regulatory Guidelines; i-SAFE...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ...The Federal Trade Commission publishes this notice and request for public comment concerning proposed self-regulatory guidelines submitted by i-SAFE, Inc. under the safe harbor provision of the Children's Online Privacy Protection Rule.

  4. A safe place with space for learning: Experiences from an interprofessional training ward.

    PubMed

    Hallin, Karin; Kiessling, Anna

    2016-01-01

    Interprofessional learning in a real ward context effectively increases collaborative and professional competence among students. However, less is known on the processes behind this. The aim of this study was to explore medical, nurse, physiotherapy, and occupational therapy students' perspectives on the process of their own learning at an interprofessional training ward (IPTW). We performed a qualitative content analysis on free-text answers of 333 student questionnaires from the years 2004 to 2011. Two main themes emerged: first, students found that the IPTW provided an enriching learning environment--a safe place with space. It included authentic and relevant patients, well-composed and functioning student teams, competent and supportive supervisors, and adjusted ward structures to support learning. Second, they developed an awareness of their own development with faith in the future--from chaos to clarity. It included personal, professional, and interprofessional development towards a comprehensive view of practice and a faith in their ability to work as professionals in the future. Our findings are discussed with a social constructivist perspective. This study suggests that when an IPTW provides a supportive and permissive learning environment with possibilities to interact with one another--a safe place with space--it enables students to move from insecurity to faith in their abilities--from chaos to clarity. However, if the learning environment is impaired, the students' development could be halted.

  5. Curiosity's Autonomous Surface Safing Behavior Design

    NASA Technical Reports Server (NTRS)

    Neilson, Tracy A.; Manning, Robert M.

    2013-01-01

    The safing routines on all robotic deep-space vehicles are designed to put the vehicle in a power and thermally safe configuration, enabling communication with the mission operators on Earth. Achieving this goal is made a little more difficult on Curiosity because the power requirements for the core avionics and the telecommunication equipment exceed the capability of the single power source, the Multi-Mission Radioisotope Thermoelectric Generator. This drove the system design to create an operational mode, called "sleep mode", where the vehicle turns off most of the loads in order to charge the two Li-ion batteries. The system must keep the vehicle safe from over-heat and under-heat conditions, battery cell failures, under-voltage conditions, and clock failures, both while the computer is running and while the system is sleeping. The other goal of a safing routine is to communicate. On most spacecraft, this simply involves turning on the receiver and transmitter continuously. For Curiosity, Earth is above the horizon only a part of the day for direct communication to the Earth, and the orbiter overpass opportunities only occur a few times a day. The design must robustly place the Rover in a communicable condition at the correct time. This paper discusses Curiosity's autonomous safing behavior and describes how the vehicle remains power and thermally safe while sleeping, as well as a description of how the Rover communicates with the orbiters and Earth at specific times.

  6. 33 CFR 62.27 - Safe water marks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Safe water marks. 62.27 Section... UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.27 Safe water marks. Safe water marks indicate that there is navigable water all around the mark. They are often used to indicate...

  7. 33 CFR 62.27 - Safe water marks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Safe water marks. 62.27 Section... UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.27 Safe water marks. Safe water marks indicate that there is navigable water all around the mark. They are often used to indicate...

  8. 33 CFR 62.27 - Safe water marks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Safe water marks. 62.27 Section... UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.27 Safe water marks. Safe water marks indicate that there is navigable water all around the mark. They are often used to indicate...

  9. Space Nuclear Power Public and Stakeholder Risk Communication

    NASA Technical Reports Server (NTRS)

    Dawson, Sandra M.; Sklar, Maria

    2005-01-01

    The 1986 Challenger accident coupled with the Chernobyl nuclear reactor accident increased public concern about the safety of spacecraft using nuclear technology. While three nuclear powered spacecraft had been launched before 1986 with little public interest, future nuclear powered missions would see significantly more public concern and require NASA to increase its efforts to communicate mission risks to the public. In 1987 a separate risk communication area within the Launch Approval Planning Group of the Jet Propulsion Laboratory was created to address public concern about the health, environmental, and safety risks of NASA missions. The lessons learned from the risk communication strategies developed for the nuclear powered Galileo, Ulysses, and Cassini missions are reviewed in this paper and recommendations are given as to how these lessons can be applied to future NASA missions that may use nuclear power systems and other potentially controversial NASA missions.

  10. International Nuclear Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, James E.

    2012-08-14

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; andmore » (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.« less

  11. Autonomous Control of Space Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Merk, John

    2013-01-01

    Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the

  12. Removing Hair Safely

    MedlinePlus

    ... For Consumers Home For Consumers Consumer Updates Removing Hair Safely Share Tweet Linkedin Pin it More sharing ... related to common methods of hair removal. Laser Hair Removal In this method, a laser destroys hair ...

  13. Geological conditions of safe long-term storage and disposal of depleted uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Velichkin, V. I.; Omel'Yanenko, B. I.; Yudintsev, S. V.; Tagirov, B. R.

    2010-08-01

    The production of enriched uranium used in nuclear weapons and fuel for atomic power plants is accompanied by the formation of depleted uranium (DU), the amount of which annually increases by 35-40 kt. To date, more than 1.6 Mt DU has accumulated in the world. The main DU mass is stored as environ-mentally hazardous uranium hexafluoride (UF6), which is highly volatile and soluble in water with the formation of hydrofluoric acid. To ensure safe UF6 storage, it is necessary to convert this compound in chemically stable phases. The industrial reprocessing of UF6 into U3O8 and HF implemented in France is highly expensive. We substantiate the expediency of long-term storage of depleted uranium hexafluoride in underground repositories localized in limestone. On the basis of geochemical data and thermodynamic calculations, we show that interaction in the steel container-UF6-limestone-groundwater system gives rise to the development of a slightly alkaline reductive medium favorable for chemical reaction with formation of uraninite (UO2) and fluorite (CaF2). The proposed engineering solution not only ensures safe DU storage but also makes it possible to produce uraninite, which can be utilized, if necessary, in fast-neutron reactors. In the course of further investigations aimed at safe maintenance of DU, it is necessary to study the kinetics of conversion of UF6 into stable phases, involving laboratory and field experiments.

  14. A fail-safe CMOS logic gate

    NASA Technical Reports Server (NTRS)

    Bobin, V.; Whitaker, S.

    1990-01-01

    This paper reports a design technique to make Complex CMOS Gates fail-safe for a class of faults. Two classes of faults are defined. The fail-safe design presented has limited fault-tolerance capability. Multiple faults are also covered.

  15. Nuclear Arms Control, Nonproliferation, and Counterterrorism: Impacts on Public Health

    PubMed Central

    Pregenzer, Arian

    2014-01-01

    Reducing the risks of nuclear war, limiting the spread of nuclear weapons, and reducing global nuclear weapons stockpiles are key national and international security goals. They are pursued through a variety of international arms control, nonproliferation, and counterterrorism treaties and agreements. These legally binding and political commitments, together with the institutional infrastructure that supports them, work to establish global norms of behavior and have limited the spread of weapons of mass destruction. Beyond the primary security objectives, reducing the likelihood of the use of nuclear weapons, preventing environmental releases of radioactive material, increasing the availability of safe and secure nuclear technology for peaceful purposes, and providing scientific data relevant to predicting and managing the consequences of natural or human-caused disasters worldwide provide significant benefits to global public health. PMID:24524501

  16. Challenges for future space power systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Forecasts of space power needs are presented. The needs fall into three broad categories: survival, self-sufficiency, and industrialization. The cost of delivering payloads to orbital locations and from Low Earth Orbit (LEO) to Mars are determined. Future launch cost reductions are predicted. From these projections the performances necessary for future solar and nuclear space power options are identified. The availability of plentiful cost effective electric power and of low cost access to space are identified as crucial factors in the future extension of human presence in space.

  17. Safe mobility for older people notebook

    DOT National Transportation Integrated Search

    1999-04-01

    The Safe Mobility for Older People Notebook is a research product of the "Model Driver Screening and Evaluation Program" project sponsored by NHTSA, and is intended as a resource to support program initiatives promoting the safe mobility of older per...

  18. 33 CFR 62.27 - Safe water marks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Safe water marks. 62.27 Section 62.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.27 Safe water marks. Safe water marks indicate that there is...

  19. Developing Safe Schools Partnerships with Law Enforcement

    ERIC Educational Resources Information Center

    Rosiak, John

    2009-01-01

    Safe schools are the concern of communities throughout the world. If a school is safe, and if children feel safe, students "are better able to learn. But what are the steps to make" this happen? First, it is important to understand the problem: What are the threats to school safety? These include crime-related behaviors that find their way to…

  20. Clinical Practice Guideline: Safe Medication Use in the ICU.

    PubMed

    Kane-Gill, Sandra L; Dasta, Joseph F; Buckley, Mitchell S; Devabhakthuni, Sandeep; Liu, Michael; Cohen, Henry; George, Elisabeth L; Pohlman, Anne S; Agarwal, Swati; Henneman, Elizabeth A; Bejian, Sharon M; Berenholtz, Sean M; Pepin, Jodie L; Scanlon, Mathew C; Smith, Brian S

    2017-09-01

    considerations to an active surveillance system that includes reporting, identification, and evaluation are discussed. Also, highlighted is the need for future research for safe medication practices that is specific to critically ill patients.

  1. The Future Nuclear Arms Control Agenda and Its Potential Implications for the Air Force

    DTIC Science & Technology

    2015-08-01

    triad of delivery systems will need to be replaced. Nuclear warhead life-cycle extension also will need to continue, assuming it remains too difficult...U.S. and Russian strategic nuclear forces. Thus, formal U.S.-Russian arms control negotiations for strategic nuclear systems will almost certainly...reductions in numbers of deployed systems to a more far-reaching agreement that would begin a process of verified elimination of nuclear warheads. The

  2. Access to safe water in rural Artibonite, Haiti 16 months after the onset of the cholera epidemic.

    PubMed

    Patrick, Molly; Berendes, David; Murphy, Jennifer; Bertrand, Fabienne; Husain, Farah; Handzel, Thomas

    2013-10-01

    Haiti has the lowest improved water and sanitation coverage in the Western Hemisphere and is suffering from the largest cholera epidemic on record. In May of 2012, an assessment was conducted in rural areas of the Artibonite Department to describe the type and quality of water sources and determine knowledge, access, and use of household water treatment products to inform future programs. It was conducted after emergency response was scaled back but before longer-term water, sanitation, and hygiene activities were initiated. The household survey and source water quality analysis documented low access to safe water, with only 42.3% of households using an improved drinking water source. One-half (50.9%) of the improved water sources tested positive for Escherichia coli. Of households with water to test, 12.7% had positive chlorine residual. The assessment reinforces the identified need for major investments in safe water and sanitation infrastructure and the importance of household water treatment to improve access to safe water in the near term.

  3. The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Thomas Jr.

    The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclearmore » stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.« less

  4. Safe haven laws as crime control theater.

    PubMed

    Hammond, Michelle; Miller, Monica K; Griffin, Timothy

    2010-07-01

    This article examines safe haven laws, which allow parents to legally abandon their infants. The main objective is to determine whether safe haven laws fit the criteria of crime control theater, a term used to describe public policies that produce the appearance, but not the effect, of crime control, and as such are essentially socially constructed "solutions" to socially constructed crime "problems." The analysis will apply the principles of crime control theater to safe haven laws. Specifically, the term crime control theater applies to laws that are reactionary responses to perceived criminal threats and are often widely supported as a way to address the crime in question. Such laws are attractive because they appeal to mythic narratives (i.e., saving an innocent child from a predator); however they are likely ineffective due to the complexity of the crime. These laws can have deleterious effects when policymakers make false claims of success and stunt public discourse (e.g., drawing attention away from more frequent and preventable crimes). This analysis applies these criteria to safe haven laws to determine whether such laws can be classified as crime control theater. Many qualities inherent to crime control theater are present in safe haven laws. For example, the laws are highly publicized, their intentions lack moral ambiguity, rare cases of success legitimize law enforcement and other agencies, and they appeal to the public sense of responsibility in preventing crime. Yet the goal of saving infant lives may be unattainable. These qualities make the effectiveness of the laws questionable and suggest they may be counterproductive. This analysis determined that safe haven laws are socially constructed solutions to the socially constructed problem of child abandonment. Safe haven laws are appropriately classified as crime control theater. It is imperative that further research be conducted to examine the effectiveness and collateral effects of safe haven laws

  5. Safe Sleep Practices of Kansas Birthing Hospitals

    PubMed Central

    Ahlers-Schmidt, Carolyn R.; Schunn, Christy; Sage, Cherie; Engel, Matthew; Benton, Mary

    2018-01-01

    Background Sleep-related death is tied with congenital anomalies as the leading cause of infant mortality in Kansas, and external risk factors are present in 83% of these deaths. Hospitals can impact caregiver intentions to follow risk-reduction strategies. This project assessed the current practices and policies of Kansas hospitals with regard to safe sleep. Methods A cross-sectional survey of existing safe sleep practices and policies in Kansas hospitals was performed. Hospitals were categorized based on reported delivery volume and data were compared across hospital sizes. Results Thirty-one of 73 (42%) contacted hospitals responded. Individual survey respondents represented various hospital departments including newborn/well-baby (68%), neonatal intensive care unit (3%) and other non-nursery departments or administration (29%). Fifty-eight percent of respondents reported staff were trained on infant safe sleep; 44% of these held trainings annually. High volume hospitals tended to have more annual training than low or mid volume birth hospitals. Thirty-nine percent reported a safe sleep policy, though most of these (67%) reported never auditing compliance. The top barrier to safe sleep education, regardless of delivery volume, was conflicting patient and family member beliefs. Conclusions Hospital promotion of infant safe sleep is being conducted in Kansas to varying degrees. High and mid volume birth hospitals may need to work more on formal auditing of safe sleep practices, while low volume hospitals may need more staff training. Low volume hospitals also may benefit from access to additional caregiver education materials. Finally, it is important to note hospitals should not be solely responsible for safe sleep education. PMID:29844848

  6. Fictions of nuclear disaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, D.

    This work is critical study of literary interpretations of the nuclear holocaust. The author examines more than 250 stories and novels dealing with the theme of nuclear power and its devastating potential implications. Addressing such topics as the scientist and Armageddon, the role of religion, future evolution and mutation, and the postnuclear society, the author assesses the response of Bradbury, Lessing, Malamud, Shute, Huxley, Vonnegut, Heinlein, and others to the threat of nuclear apocalypse, with in-depth analyses of Alter Miller's A canticle for Leibowitz and Russell Hoban's Riddley Walker.

  7. Using Medications Safely

    MedlinePlus

    ... health systems play an important role in preventing medication errors. To make sure you use medicines safely and effectively, ASHP recommends that you: Keep a list of all medications that you take (prescribed drugs, nonprescription medicines, herbal ...

  8. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema

    None

    2018-05-23

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  9. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windes, Willaim; Strydom, G.; Kane, J.

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of coremore » environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.« less

  10. INL Director Discusses the Future for Nuclear Energy in the United States

    ScienceCinema

    Grossenbacher, John

    2018-01-15

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  11. Nuclear power: Unexpected health benefits

    NASA Astrophysics Data System (ADS)

    Shellenberger, Michael

    2017-04-01

    Public fears of nuclear power are widespread, especially in the aftermath of accidents, yet their benefits are rarely fully considered. A new study shows how the closure of two nuclear power plants in the 1980s increased air pollution and led to a measurable reduction in birth weights, a key indicator of future health outcomes.

  12. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics

    NASA Astrophysics Data System (ADS)

    Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao

    2014-05-01

    Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm-2 and energy densities of 5.91 and 3.84 μWh cm-2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics.

  13. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics

    PubMed Central

    Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao

    2014-01-01

    Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm−2 and energy densities of 5.91 and 3.84 μWh cm−2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics. PMID:24786366

  14. The Future of Nuclear Archaeology: Reducing Legacy Risks of Weapons Fissile Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Thomas W.; Reid, Bruce D.; Toomey, Christopher M.

    2014-01-01

    This report describes the value proposition for a "nuclear archeological" technical capability and applications program, targeted at resolving uncertainties regarding fissile materials production and use. At its heart, this proposition is that we can never be sure that all fissile material is adequately secure without a clear idea of what "all" means, and that uncertainty in this matter carries risk. We argue that this proposition is as valid today, under emerging state and possible non-state nuclear threats, as it was in an immediate post-Cold-War context, and describe how nuclear archeological methods can be used to verify fissile materials declarations, ormore » estimate and characterize historical fissile materials production independently of declarations.« less

  15. Nuclear Structure Studies in the 132Sn Region: Safe Coulex with Carbon Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allmond, James M; Stuchbery, Andrew E; Galindo-Uribarri, Alfredo

    2015-01-01

    The collective and single-particle structure of nuclei in the 132Sn region was recently studied by Coulomb excitation and heavy-ion induced transfer reactions using carbon, beryllium, and titanium targets. In particular, Coulomb excitation was used determine a complete set of electromagnetic moments for the first 2 + states and one-neutron transfer was used to probe the purity and evolution of single-neutron states. These recent experiments were conducted at the Holifield Radioactive Ion Beam Facility at ORNL using a CsI-HPGe detector array (BareBall- CLARION) to detect scattered particles and emitted gamma rays from the in-beam reactions. A Bragg-curve detector was used tomore » measure the energy loss of the various beams through the targets and to measure the radioactive beam compositions. A sample of the Coulomb excitation results is presented here with an emphasis placed on 116Sn. In particular, the safe Coulex criterion for carbon targets will be analyzed and discussed.« less

  16. Safe structures for future aircraft

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.

    1983-01-01

    The failure mechanisms, design lessons, and test equipment employed by NASA in establishing the airworthiness and crashworthiness of aircraft components for commercial applications are described. The composites test programs have progressed to medium primary structures such as stabilizers and a vertical fin. The failures encountered to date have been due to the nonyielding nature of composites, which do not diffuse loads like metals, and the presence of eccentricities, irregular shapes, stiffness changes, and discontinuities that cause tension and shear. Testing to failure, which always occurred in first tests before the design loads were reached, helped identify design changes and reinforcements that produced successful products. New materials and NDE techniques are identified, together with aircraft structural design changes that offer greater protection to the passengers, fuel antimisting agents, and landing gear systems.

  17. What can nuclear energy do for society?

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1971-01-01

    The utilization of nuclear energy and the predicted impact of future uses of nuclear energy are discussed. Areas of application in electric power production and transportation methods are described. It is concluded that the need for many forms of nuclear energy will become critical as the requirements for power to supply an increasing population are met.

  18. The Nuclear Posture Review (NPR) : are we safer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brune, Nancy E.

    2010-07-01

    Nuclear Posture Review (NPR) is designed to make world safer by reducing the role of U.S. nuclear weapons and reducing the salience of nuclear weapons. U.S. also seeks to maintain a credible nuclear deterrent and reinforce regional security architectures with missile defenses and other conventional military capabilities. But recent studies suggest that nuclear proliferation is a direct response to the perceived threat of U.S. conventional capabilities not U.S. nuclear stockpile. If this is true, then the intent of the NPR to reduce the role and numbers of nuclear weapons and strengthen conventional military capabilities may actually make the world lessmore » safe. First stated objective of NPR is to reduce the role and numbers of U.S. nuclear weapons, reduce the salience of nuclear weapons and move step by step toward eliminating them. Second stated objective is a reaffirmation of U.S. commitment to maintaining a strong deterrent which forms the basis of U.S. assurances to allies and partners. The pathway - made explicit throughout the NPR - for reducing the role and numbers of nuclear weapons while maintaining a credible nuclear deterrent and reinforcing regional security architectures is to give conventional forces and capabilities and missile defenses (e.g. non-nuclear elements) a greater share of the deterrence burden.« less

  19. An Automated Safe-to-Mate (ASTM) Tester

    NASA Technical Reports Server (NTRS)

    Nguyen, Phuc; Scott, Michelle; Leung, Alan; Lin, Michael; Johnson, Thomas

    2013-01-01

    Safe-to-mate testing is a common hardware safety practice where impedance measurements are made on unpowered hardware to verify isolation, continuity, or impedance between pins of an interface connector. A computer-based instrumentation solution has been developed to resolve issues. The ASTM is connected to the circuit under test, and can then quickly, safely, and reliably safe-to-mate the entire connector, or even multiple connectors, at the same time.

  20. Five Lectures on Nuclear Reactors Presented at Cal Tech

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.

    1956-02-10

    The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)

  1. International perceptions of US nuclear policy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Elizabeth A.

    The report presents a summary of international perceptions and beliefs about US nuclear policy, focusing on four countries--China, Iran, Pakistan and Germany--chosen because they span the spectrum of states with which the United States has relationships. A paradox is pointed out: that although the goal of US nuclear policy is to make the United States and its allies safer through a policy of deterrence, international perceptions of US nuclear policy may actually be making the US less safe by eroding its soft power and global leadership position. Broadly held perceptions include a pattern of US hypocrisy and double standards--one setmore » for the US and its allies, and another set for all others. Importantly, the US nuclear posture is not seen in a vacuum, but as one piece of the United States behavior on the world stage. Because of this, the potential direct side effects of any negative international perceptions of US nuclear policy can be somewhat mitigated, dependent on other US policies and actions. The more indirect and long term relation of US nuclear policy to US international reputation and soft power, however, matters immensely to successful multilateral and proactive engagement on other pressing global issues.« less

  2. Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy

    2013-07-01

    Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

  3. Strategies for safe injections.

    PubMed Central

    Battersby, A.; Feilden, R.; Stoeckel, P.; Da Silva, A.; Nelson, C.; Bass, A.

    1999-01-01

    In 1998, faced with growing international concern, WHO set out an approach for achieving injection safety that encompassed all elements from patients' expectations and doctors' prescribing habits to waste disposal. This article follows that lead and describes the implications of the approach for two injection technologies: sterilizable and disposable. It argues that focusing on any single technology diverts attention from the more fundamental need for health services to develop their own comprehensive strategies for safe injections. National health authorities will only be able to ensure that injections are administered safely if they take an approach that encompasses the whole system, and choose injection technologies that fit their circumstances. PMID:10680247

  4. SAFE Medication Management for Patients with Physical Impairments of Stroke, Part One.

    PubMed

    Yetzer, Elizabeth; Blake, Karen; Goetsch, Nancy; Shook, Mary; St Paul, Marilyn

    2015-01-01

    This article focuses on the extensive impairments of stroke and their influence on medication management. The impairments of motor skills due to paralysis-loss of mobility and balance, lack of hand-to-mouth coordination, and difficulty swallowing-are discussed. A future article will discuss sensory impairments of vision, hearing, cognition, comprehension, communication, and emotional disorders and how these impairments influence medication management. Each of the impairments are presented and discussed, and possible interventions are proposed. Every patient is an individual and requires variable care plans. Intervention strategies that include tools for patient assessment, practice tips, and devices available to assist the patient and family in safe medication management are presented. Patient outcomes and successes vary, but the strategies outlined will return the patient to as close to previous capabilities as possible. Teaching SAFE (Systematic, Accurate, Functional, Effective) medication management to the patient, family, and caregivers will increase medication safety and decrease the number of adverse effects. The rehabilitation nurse is charged with evaluating the patients' needs and developing strategies to assist them to manage their medications. © 2014 Association of Rehabilitation Nurses.

  5. Feeling safe during an inpatient hospitalization: a concept analysis.

    PubMed

    Mollon, Deene

    2014-08-01

    This paper aims to explore the critical attributes of the concept feeling safe. The safe delivery of care is a high priority; however; it is not really known what it means to the patient to 'feel safe' during an inpatient hospitalization. This analysis explores the topic of safety from the patient's perspective. Concept analysis. The data bases of CINAHL, Medline, PsychInfo and Google Scholar for the years 1995-2012 were searched using the terms safe and feeling safe. The eight-step concept analysis method of Walker and Avant was used to analyse the concept of feeling safe. Uses and defining attributes, as well as identified antecedents, consequences and empirical referents, are presented. Case examples are provided to assist in the understanding of defining attributes. Feeling safe is defined as an emotional state where perceptions of care contribute to a sense of security and freedom from harm. Four attributes were identified: trust, cared for, presence and knowledge. Relationship, environment and suffering are the antecedents of feeling safe, while control, hope and relaxed or calm are the consequences. Empirical referents and early development of a theory of feeling safe are explored. This analysis begins the work of synthesizing qualitative research already completed around the concept of feeling safe by defining the key attributes of the concept. Support for the importance of developing patient-centred models of care and creating positive environments where patients receive high-quality care and feel safe is provided. © 2014 John Wiley & Sons Ltd.

  6. Tangential gunshot wound with MagSafe ammunition.

    PubMed

    Rapkiewicz, Amy V; Tamburri, Robert; Basoa, Mark E; Catanese, Charles A

    2005-09-01

    MagSafe ammunition is a type of unconventional prefragmented ammunition. A fatal tangential gunshot wound involving MagSafe ammunition is presented. The ammunition and wound characteristics are discussed.

  7. The future of the NPT and measures to reduce nuclear dangers in the age of Trump

    NASA Astrophysics Data System (ADS)

    Kimball, Daryl G.

    2017-11-01

    Through the decades, the international nuclear disarmament and nonproliferation enterprise, though imperfect, has curbed nuclear proliferation and limited the number of nuclear-armed states to nine, forced reductions in major-power nuclear arsenals, ended nuclear testing by all but one state, and created an informal taboo against nuclear weapons use.

  8. Creating Safe Spaces for Music Learning

    ERIC Educational Resources Information Center

    Hendricks, Karin S.; Smith, Tawnya D.; Stanuch, Jennifer

    2014-01-01

    This article offers a practical model for fostering emotionally safe learning environments that instill in music students a positive sense of self-belief, freedom, and purpose. The authors examine the implications for music educators of creating effective learning environments and present recommendations for creating a safe space for learning,…

  9. Investigation into legislative action needed to accommodate the future safe operation of autonomous vehicles in the state of Louisiana [tech summary].

    DOT National Transportation Integrated Search

    2016-10-01

    The objective of this study is to review the status quo in the development of autonomous vehicles and determine : what regulatory action needs to be taken that will permit their safe introduction in : Louisiana while not stifling innovation and devel...

  10. Asymptotically safe standard model extensions?

    NASA Astrophysics Data System (ADS)

    Pelaggi, Giulio Maria; Plascencia, Alexis D.; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro

    2018-05-01

    We consider theories with a large number NF of charged fermions and compute the renormalization group equations for the gauge, Yukawa and quartic couplings resummed at leading order in 1 /NF. We construct extensions of the standard model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.

  11. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPSmore » eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.« less

  12. Design for Assured Safe Jettison Operations

    NASA Astrophysics Data System (ADS)

    Herd, Andrew; Shea, Matt

    2010-09-01

    The International Space Station is coming toward the end of the assembly process and will enter "steady state" operations. During this time and also in the future, there arises the need for removing items from station, and in some instances this is achieved through jettison, either robotic or crew initiated. To control this practice at the ISS Partner level, a policy document has been developed. The policy states: "While there are risks inherent in jettisoning objects, the ISS Program recognizes that there may be significant benefits in terms of operational flexibility, crew safety, etc. A thorough assessment of the risks vs. the benefits will be conducted whenever a proposal to jettison an object is made. It is the intent of the ISS Program to limit the number of objects that are jettisoned from the ISS ...". The policy addresses hardware that: "may fall into one or more of the following categories: 1. Items that pose a safety issue for the ISS or for return onboard a visiting vehicle(contamination, materials degradation, etc.) 2. Items that negatively impact ISS utilization, return or on-orbit stowage manifests 3. Items that represent an Extravehicular Activity(EVA) timeline savings large enough to reduce the sum of the risks of EVA exposure time and the orbital environment’s hazardous debris population, compared to the sum of such risks without a jettison. 4. Items that are designed for jettison ". [1] Through the use of jettison to date, as a disposal means, operational experiences have been gained during and as a result of post-disposal event analysis. The data collected has allowed a generic assessment of issues(and best practices) and the proposal of ways in which process corrective action can be taken to assure future safe jettison operations. The improvements proposed emphasize the ways in which design can offer key interface and hardware response characteristics to the jettison event and the subsequent orbital and re-entry profile. There exist simple

  13. 76 FR 30495 - National Safe Boating Week, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... Safe Boating Week, 2011 By the President of the United States of America A Proclamation As Americans... to watergoers. National Safe Boating Week is an opportunity to highlight the importance of safety... can save lives. Each year for National Safe Boating Week, the United States Coast Guard partners with...

  14. Desalting and Nuclear Energy

    ERIC Educational Resources Information Center

    Burwell, Calvin C.

    1971-01-01

    Future use of nuclear energy to produce electricity and desalted water is outlined. Possible desalting processes are analyzed to show economic feasibility and the place in planning in world's economic growth. (DS)

  15. Russian Nuclear Weapons: Past, Present, and Future

    DTIC Science & Technology

    2011-11-01

    the administration’s plans to de - ploy BMD components in Bulgaria and Romania by 2015, and has fiercely criticized global zero both in terms of the...Military Doctrine, Moscow tried to fight off politically and diplomatically the expanding U.S. BMD program and, in particular, U.S. plans to de - ploy a...has encountered major de - lays and its future remains uncertain. Modernization of the air leg has been postponed—Russia plans to rely on existing

  16. Specifying the Concept of Future Generations for Addressing Issues Related to High-Level Radioactive Waste.

    PubMed

    Kermisch, Celine

    2016-12-01

    The nuclear community frequently refers to the concept of "future generations" when discussing the management of high-level radioactive waste. However, this notion is generally not defined. In this context, we have to assume a wide definition of the concept of future generations, conceived as people who will live after the contemporary people are dead. This definition embraces thus each generation following ours, without any restriction in time. The aim of this paper is to show that, in the debate about nuclear waste, this broad notion should be further specified and to clarify the related implications for nuclear waste management policies. Therefore, we provide an ethical analysis of different management strategies for high-level waste in the light of two principles, protection of future generations-based on safety and security-and respect for their choice. This analysis shows that high-level waste management options have different ethical impacts across future generations, depending on whether the memory of the waste and its location is lost, or not. We suggest taking this distinction into account by introducing the notions of "close future generations" and "remote future generations", which has important implications on nuclear waste management policies insofar as it stresses that a retrievable disposal has fewer benefits than usually assumed.

  17. Safe injection practice among health care workers, Gharbiya, Egypt.

    PubMed

    Ismail, Nanees A; Aboul Ftouh, Aisha M; El Shoubary, Waleed H

    2005-01-01

    A cross-sectional study was conducted in 25 health care facilities in Gharbiya governorate to assess safe injection practices among health care workers (HCWs). Two questionnaires, one to collect information about administrative issues related to safe injection and the other to collect data about giving injections, exposure to needle stick injuries, hepatitis B vaccination status and safe injection training. Practices of injections were observed using a standardized checklist. The study revealed that there was lack of both national and local infection control policies and lack of most of the supplies needed for safe injection practices. Many safe practices were infrequent as proper needle manipulation before disposal (41%), safe needle disposal (47.5%), reuse of used syringe & needle (13.2%) and safe syringe disposal (0%). Exposure to needle stick injuries were common among the interviewed HCWs (66.2%) and hand washing was the common post exposure prophylaxis measure (63.4%). Only 11.3% of HCWs had full course hepatitis B vaccination. Infection control -including safe injections- training programs should be afforded to all HCWs.

  18. Energy Options for the Future

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Obenschain, Stephen; Conover, David; Bajura, Rita; Greene, David; Brown, Marilyn; Boes, Eldon; McCarthy, Kathyrn; Christian, David; Dean, Stephen; Kulcinski, Gerald; Denholm, P. L.

    2004-06-01

    This paper summarizes the presentations and discussion at the Energy Options for the Future meeting held at the Naval Research Laboratory in March of 2004. The presentations covered the present status and future potential for coal, oil, natural gas, nuclear, wind, solar, geothermal, and biomass energy sources and the effect of measures for energy conservation. The longevity of current major energy sources, means for resolving or mitigating environmental issues, and the role to be played by yet to be deployed sources, like fusion, were major topics of presentation and discussion.

  19. Safe handling of antineoplastic drugs.

    PubMed

    Harrison, B R

    1994-07-01

    Managers should be aware of the hazardous properties of antineoplastic drugs and of the procedures and equipment commonly recommended to provide a safe working environment for employees, patients, and visitors. Compliance with the many published guidelines should help ensure passage of the inevitable Occupational Safety and Health Administration (OSHA) or Joint Commission inspection. Acute and chronic toxicities of the antineoplastic drugs, the potential for exposure in the workplace, and the basic guidelines for safe handling of these agents are reviewed.

  20. Daddy, What's a Nuclear Reactor?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenweaver, Dennis W.

    2008-01-15

    No matter what we think of the nuclear industry, it is part of mankind's heritage. The decommissioning process is slowly making facilities associated with this industry disappear and not enough is being done to preserve the information for future generations. This paper provides some food for thought and provides a possible way forward. Industrial archaeology is an ever expanding branch of archaeology that is dedicated to preserving, interpreting and documenting our industrial past and heritage. Normally it begins with analyzing an old building or ruins and trying to determine what was done, how it was done and what changes mightmore » have occurred during its operation. We have a unique opportunity to document all of these issues and provide them before the nuclear facility disappears. Entombment is an acceptable decommissioning strategy; however we would have to change our concept of entombment. It is proposed that a number of nuclear facilities be entombed or preserved for future generations to appreciate. This would include a number of different types of facilities such as different types of nuclear power and research reactors, a reprocessing plant, part of an enrichment plant and a fuel manufacturing plant. One of the main issues that would require resolution would be that of maintaining information of the location of the buried facility and the information about its operation and structure, and passing this information on to future generations. This can be done, but a system would have to be established prior to burial of the facility so that no information would be lost. In general, our current set of requirements and laws may need to be re-examined and modified to take into account these new situations. As an alternative, and to compliment the above proposal, it is recommended that a study and documentation of the nuclear industry be considered as part of twentieth century industrial archaeology. This study should not only include the power and fuel cycle

  1. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.

    PubMed

    Vicentini, Federico; Pedrocchi, Nicola; Malosio, Matteo; Molinari Tosatti, Lorenzo

    2014-09-01

    Robot-assisted neurorehabilitation often involves networked systems of sensors ("sensory rooms") and powerful devices in physical interaction with weak users. Safety is unquestionably a primary concern. Some lightweight robot platforms and devices designed on purpose include safety properties using redundant sensors or intrinsic safety design (e.g. compliance and backdrivability, limited exchange of energy). Nonetheless, the entire "sensory room" shall be required to be fail-safe and safely monitored as a system at large. Yet, sensor capabilities and control algorithms used in functional therapies require, in general, frequent updates or re-configurations, making a safety-grade release of such devices hardly sustainable in cost-effectiveness and development time. As such, promising integrated platforms for human-in-the-loop therapies could not find clinical application and manufacturing support because of lacking in the maintenance of global fail-safe properties. Under the general context of cross-machinery safety standards, the paper presents a methodology called SafeNet for helping in extending the safety rate of Human Robot Interaction (HRI) systems using unsafe components, including sensors and controllers. SafeNet considers, in fact, the robotic system as a device at large and applies the principles of functional safety (as in ISO 13489-1) through a set of architectural procedures and implementation rules. The enabled capability of monitoring a network of unsafe devices through redundant computational nodes, allows the usage of any custom sensors and algorithms, usually planned and assembled at therapy planning-time rather than at platform design-time. A case study is presented with an actual implementation of the proposed methodology. A specific architectural solution is applied to an example of robot-assisted upper-limb rehabilitation with online motion tracking. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Nuclear Weapons: Comprehensive Test Ban Treaty

    DTIC Science & Technology

    2007-07-12

    done. Critics raised concerns about the implications of these policies for testing and new weapons. At present, Congress addresses nuclear weapon...future, but there are no plans to do so.’”7 Critics expressed concern about the implications of these policies for testing and new weapons. A statement by...opportunity to design and build new nuclear weapons, and abandon a ten-year-old moratorium on nuclear weapons testing.”8 Another critic felt that

  3. Fracture mechanics. [review of fatigue crack propagation and technology of constructing safe structures

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.

    1974-01-01

    Fracture mechanics is a rapidly emerging discipline for assessing the residual strength of structures containing flaws due to fatigue, corrosion or accidental damage and for anticipating the rate of which such flaws will propagate if not repaired. The discipline is also applicable in the design of structures with improved resistance to such flaws. The present state of the design art is reviewed using this technology to choose materials, to configure safe and efficient structures, to specify inspection procedures, to predict lives of flawed structures and to develop reliability of current and future airframes.

  4. Nuclear astrophysics and electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenk, A.

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  5. Japan’s Nuclear Future: Policy Debate, Prospects, and U.S. Interests

    DTIC Science & Technology

    2008-05-09

    raised in particular over the construction of an industrial- scale reprocessing facility in Japan,. Additionally, fast breeder reactors also produce more...Nuclear Fuel Cycle Engineering Laboratories. 10 A fast breeder reactor is a fast neutron reactor that produces more plutonium than it consumes, which can...Japan Nuclear Fuel Limited (JNFL) has built and is currently running active testing on a large - scale commercial reprocessing plant at Rokkasho-mura

  6. Closed-system drug-transfer devices plus safe handling of hazardous drugs versus safe handling alone for reducing exposure to infusional hazardous drugs in healthcare staff.

    PubMed

    Gurusamy, Kurinchi Selvan; Best, Lawrence Mj; Tanguay, Cynthia; Lennan, Elaine; Korva, Mika; Bussières, Jean-François

    2018-03-27

    between CSTD and control groups in the pharmacy areas or patient-care areas.None of the studies report on atmospheric contamination, blood tests, or other measures of exposure to infusional hazardous drugs such as urine mutagenicity, chromosomal aberrations, sister chromatid exchanges, or micronuclei induction.None of the studies report short-term health benefits such as reduction in skin rashes, medium-term reproductive health benefits such as fertility and parity, or long-term health benefits related to the development of any type of cancer or adverse events.Five studies (six hospitals) report the potential cost savings through the use of CSTD. The studies used different methods of calculating the costs, and the results were not reported in a format that could be pooled via meta-analysis. There is significant variability between the studies in terms of whether CSTD resulted in cost savings (the point estimates of the average potential cost savings ranged from (2017) USD -642,656 to (2017) USD 221,818). There is currently no evidence to support or refute the routine use of closed-system drug transfer devices in addition to safe handling of infusional hazardous drugs, as there is no evidence of differences in exposure or financial benefits between CSTD plus safe handling versus safe handling alone (very low-quality evidence). None of the studies report health benefits.Well-designed multicentre randomised controlled trials may be feasible depending upon the proportion of people with exposure. The next best study design is interrupted time-series. This design is likely to provide a better estimate than uncontrolled before-after studies or cross-sectional studies. Future studies may involve other alternate ways of reducing exposure in addition to safe handling as one intervention group in a multi-arm parallel design or factorial design trial. Future studies should have designs that decrease the risk of bias and enable measurement of direct health benefits in addition to

  7. 77 FR 31147 - National Safe Boating Week, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... Safe Boating Week, 2012 By the President of the United States of America A Proclamation For generations... friends and family a well- loved tradition. During National Safe Boating Week, we renew our commitment to... mark National Safe Boating Week, let us reflect on that important mission and resolve to do our part to...

  8. Target-fueled nuclear reactor for medical isotope production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coats, Richard L.; Parma, Edward J.

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7more » to 21 days.« less

  9. Petroleum Jelly: Safe for a Dry Nose?

    MedlinePlus

    ... dryness. Is this safe? Answers from Lawrence E. Gibson, M.D. Petroleum jelly is generally safe to ... several hours of lying down. With Lawrence E. Gibson, M.D. Marchiori E, et al. Exogenous lipoid ...

  10. Taking Medicines Safely: At Your Doctor's Office

    MedlinePlus

    ... on. Feature: Taking Medicines Safely At Your Doctor's Office Past Issues / Summer 2013 Table of Contents Download ... Articles Medicines: Use Them Safely / At Your Doctor's Office / Ask Your Pharmacist / Now, It's Your Turn: How ...

  11. Potential low cost, safe, high efficiency propellant for future space program

    NASA Astrophysics Data System (ADS)

    Zhou, D.

    2005-03-01

    Mixtures of nanometer or micrometer sized carbon powder suspended in hydrogen and methane/hydrogen mixtures are proposed as candidates for low cost, high efficiency propellants for future space programs. While liquid hydrogen has low weight and high heat of combustion per unit mass, because of the low mass density the heat of combustion per unit volume is low, and the liquid hydrogen storage container must be large. The proposed propellants can produce higher gross heat combustion with small volume with trade off of some weight increase. Liquid hydrogen can serve as the fluid component of the propellant in the mixtures and thus used by current rocket engine designs. For example, for the same volume a mixture of 5% methane and 95% hydrogen, can lead to an increase in the gross heat of combustion by about 10% and an increase in the Isp (specific impulse) by 21% compared to a pure liquid hydrogen propellant. At liquid hydrogen temperatures of 20.3 K, methane will be in solid state, and must be formed as fine granules (or slush) to satisfy the requirement of liquid propellant engines.

  12. The nuclear dilemma and the just war tradition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, W.V.; Langan, J.

    This book presents papers on the ethical aspects of nuclear weapons. Topics considered include the concept of a ''just'' war, national defense, political aspects, religion and politics, the failure of deterrence, conventional warfare, nuclear deterrence and democratic politics, the future of the nuclear debate, non-proliferation policy, arms control, national security, and government policies.

  13. ANNETTE Project: Contributing to The Nuclearization of Fusion

    NASA Astrophysics Data System (ADS)

    Ambrosini, W.; Cizelj, L.; Dieguez Porras, P.; Jaspers, R.; Noterdaeme, J.; Scheffer, M.; Schoenfelder, C.

    2018-01-01

    The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise) is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new training courses, based on identified nuclear competences needs of the work force of (future) fusion reactors and on the current availability of suitable training courses. From interaction with stakeholders involved in the ITER design and construction or the JET D-T campaign, it became clear that the lack of nuclear safety culture awareness already has an impact on current projects. Through the collaboration between the European education networks in fission (ENEN) and fusion (FuseNet) in the ANNETTE project, this project is well positioned to support the development of nuclear competences for ongoing and future fusion projects. Thereby it will make a clear contribution to the realization of fusion energy.

  14. So What's an RTG and Are They Safe?

    NASA Technical Reports Server (NTRS)

    Barret, Chris; Hughes, R. W. (Technical Monitor)

    2001-01-01

    When one considers space missions to the outer edges of our solar system and far beyond, our sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer solar system, power is knowledge. Solar arrays only operate at 19% efficiency, are very vulnerable to damage from radiation and temperature extremes, and cannot be used for even nearby missions that operate in extended darkness, or under the surface of a planet or moon. Twenty-six U.S. space missions, from the Transit to Cassini, have used radioisotope power systems and heater units to take s/c to the far reaches of our solar system and have demonstrated an outstanding record of safety and reliability. Radioisotope thermoelectric generators (RTG's) have proven to be safe, reliable, maintenance-free, and capable of providing both thermal and electrical power for decades under the harsh environments of deep space. RTG's have no problem operating in the high radiation belts of space, the extreme temperatures, or the severe dust storms of Mars, and they have proven to be the most reliable power source ever flown on U.S. s/c. For example, the two Pioneer s/c operated for more than two decades and the Voyager s/c may last for 40 years. RTG's are not nuclear reactors, they serve only as power generators and are not involved in the propulsion of the s/c. They operate on the principle of thermoelectric generation that converts heat directly into electricity, they have no moving parts, are extremely reliable, and have met or

  15. Ceramic Single Phase High-Level Nuclear Waste Forms: Hollandite, Perovskite, and Pyrochlore

    NASA Astrophysics Data System (ADS)

    Vetter, M.; Wang, J.

    2017-12-01

    The lack of viable options for the safe, reliable, and long-term storage of nuclear waste is one of the primary roadblocks of nuclear energy's sustainable future. The method being researched is the incorporation and immobilization of harmful radionuclides (Cs, Sr, Actinides, and Lanthanides) into the structure of glasses and ceramics. Borosilicate glasses are the main waste form that is accepted and used by today's nuclear industry, but they aren't the most efficient in terms of waste loading, and durability is still not fully understood. Synroc-phase ceramics (i.e. hollandite, perovskite, pyrochlore, zirconolite) have many attractive qualities that glass waste forms do not: high waste loading, moderate thermal expansion and conductivity, high chemical durability, and high radiation stability. The only downside to ceramics is that they are more complex to process than glass. New compositions can be discovered by using an Artificial Neural Network (ANN) to have more options to optimize the composition, loading for performance by analyzing the non-linear relationships between ionic radii, electronegativity, channel size, and a mineral's ability to incorporate radionuclides into its structure. Cesium can be incorporated into hollandite's A-site, while pyrochlore and perovskite can incorporate actinides and lanthanides into their A-site. The ANN is used to predict new compositions based on hollandite's channel size, as well as the A-O bond distances of pyrochlore and perovskite, and determine which ions can be incorporated. These new compositions will provide more options for more experiments to potentially improve chemical and thermodynamic properties, as well as increased waste loading capabilities.

  16. Access to Safe Water in Rural Artibonite, Haiti 16 Months after the Onset of the Cholera Epidemic

    PubMed Central

    Patrick, Molly; Berendes, David; Murphy, Jennifer; Bertrand, Fabienne; Husain, Farah; Handzel, Thomas

    2013-01-01

    Haiti has the lowest improved water and sanitation coverage in the Western Hemisphere and is suffering from the largest cholera epidemic on record. In May of 2012, an assessment was conducted in rural areas of the Artibonite Department to describe the type and quality of water sources and determine knowledge, access, and use of household water treatment products to inform future programs. It was conducted after emergency response was scaled back but before longer-term water, sanitation, and hygiene activities were initiated. The household survey and source water quality analysis documented low access to safe water, with only 42.3% of households using an improved drinking water source. One-half (50.9%) of the improved water sources tested positive for Escherichia coli. Of households with water to test, 12.7% had positive chlorine residual. The assessment reinforces the identified need for major investments in safe water and sanitation infrastructure and the importance of household water treatment to improve access to safe water in the near term. PMID:24106191

  17. Strategies for Countering Terrorist Safe Havens

    DTIC Science & Technology

    2013-12-01

    tactical containment, pseudo operations, and surrogate security forces. The thesis draws from four historical case studies to examine these strategies...safe havens, tactical containment, pseudo operations, and surrogate security forces. The thesis draws from four historical case studies to examine...pseudo operations—provide viable potential options for USSOF to counter the complex problem of safe havens. Overall, the case studies will demonstrate

  18. "Risk, respect, responsibility": educational strategies to promote safe medicine use.

    PubMed

    Rucker, N Lee

    2003-12-01

    Nearly four billion outpatient prescriptions will be dispensed in the United States by 2005. Many people using these medicines will be targeted for educational programs promoting their safe, appropriate use. Such programs have been, or soon will be, developed by virtually all major health care system stakeholders, including: government agencies, the pharmaceutical industry, non-profit organizations and coalitions. After examining changes in 1) health professionals' communication of patient medicine information, and 2) consumers' roles and attitudes, an overview of recent U.S. and international consumer education programs is presented. Despite the proliferation of these programs, most share a weak link in evaluating success and in affecting behavior change. Finally, suggestions for future initiatives are offered, particularly regarding improving evaluation methods.

  19. Implementation of Safe-by-Design for Nanomaterial Development and Safe Innovation: Why We Need a Comprehensive Approach

    PubMed Central

    Kraegeloh, Annette; Suarez-Merino, Blanca; Sluijters, Teun; Micheletti, Christian

    2018-01-01

    Manufactured nanomaterials (MNMs) are regarded as key components of innovations in various fields with high potential impact (e.g., energy generation and storage, electronics, photonics, diagnostics, theranostics, or drug delivery agents). Widespread use of MNMs raises concerns about their safety for humans and the environment, possibly limiting the impact of the nanotechnology-based innovation. The development of safe MNMs and nanoproducts has to result in a safe as well as functional material or product. Its safe use, and disposal at the end of its life cycle must be taken into account too. However, not all MNMs are similarly useful for all applications, some might bear a higher hazard potential than others, and use scenarios could lead to different exposure probabilities. To improve both safety and efficacy of nanotechnology, we think that a new proactive approach is necessary, based on pre-regulatory safety assessment and dialogue between stakeholders. On the basis of the work carried out in different European Union (EU) initiatives, developing and integrating MNMs Safe-by-Design and Trusted Environments (NANoREG, ProSafe, and NanoReg2), we present our point of view here. This concept, when fully developed, will allow for cost effective industrial innovation, and an exchange of key information between regulators and innovators. Regulators are thus informed about incoming innovations in good time, supporting a proactive regulatory action. The final goal is to contribute to the nanotechnology governance, having faster, cheaper, effective, and safer nano-products on the market. PMID:29661997

  20. Implementation of Safe-by-Design for Nanomaterial Development and Safe Innovation: Why We Need a Comprehensive Approach.

    PubMed

    Kraegeloh, Annette; Suarez-Merino, Blanca; Sluijters, Teun; Micheletti, Christian

    2018-04-14

    Manufactured nanomaterials (MNMs) are regarded as key components of innovations in various fields with high potential impact (e.g., energy generation and storage, electronics, photonics, diagnostics, theranostics, or drug delivery agents). Widespread use of MNMs raises concerns about their safety for humans and the environment, possibly limiting the impact of the nanotechnology-based innovation. The development of safe MNMs and nanoproducts has to result in a safe as well as functional material or product. Its safe use, and disposal at the end of its life cycle must be taken into account too. However, not all MNMs are similarly useful for all applications, some might bear a higher hazard potential than others, and use scenarios could lead to different exposure probabilities. To improve both safety and efficacy of nanotechnology, we think that a new proactive approach is necessary, based on pre-regulatory safety assessment and dialogue between stakeholders. On the basis of the work carried out in different European Union (EU) initiatives, developing and integrating MNMs Safe-by-Design and Trusted Environments (NANoREG, ProSafe, and NanoReg2), we present our point of view here. This concept, when fully developed, will allow for cost effective industrial innovation, and an exchange of key information between regulators and innovators. Regulators are thus informed about incoming innovations in good time, supporting a proactive regulatory action. The final goal is to contribute to the nanotechnology governance, having faster, cheaper, effective, and safer nano-products on the market.

  1. Outpatient radioiodine therapy for thyroid cancer: a safe nuclear medicine procedure.

    PubMed

    Willegaignon, José; Sapienza, Marcelo; Ono, Carla; Watanabe, Tomoco; Guimarães, Maria Inês; Gutterres, Ricardo; Marechal, Maria Helena; Buchpiguel, Carlos

    2011-06-01

    To evaluate the dosimetric effect of outpatient radioiodine therapy for thyroid cancer in members of a patient's family and their living environment, when using iodine-131 doses reaching 7.4 GBq. The following parameters were thus defined: (a) whole-body radiation doses to caregivers, (b) the production of contaminated solid waste, and (c) radiation potential and surface contamination within patients' living quarters. In total, 100 patients were treated on an outpatient basis, taking into consideration their acceptable living conditions, interests, and willingness to comply with medical and radiation safety guidelines. Both the caregivers and the radiation dose potentiality inside patients' residences were monitored by using thermoluminescent dosimeters. Surface contamination and contaminated solid wastes were identified and measured with a Geiger-Müller detector. A total of 90 monitored individuals received a mean dose of 0.27 (±0.28) mSv, and the maximum dose registered was 1.6 mSv. The mean value for the potential dose within all living quarters was 0.31 (±0.34) mSv, and the mean value per monitored surface was 5.58 Bq/cm(2) for all the 1659 points measured. The overall production of contaminated solid wastes was at a low level, being about 3 times less than the exemption level indicated by the International Atomic Energy Agency. This study indicates that the treatment of thyroid cancer by applying radioiodine activities up to 7.4 GBq, on an outpatient basis, is a safe procedure, especially when supervised by qualified professionals. This alternative therapy should be a topic for careful discussion considering the high potential for reducing costs in healthcare and improving patient acceptance.

  2. Environmentally safe fluid extractor

    DOEpatents

    Sungaila, Zenon F.

    1993-01-01

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  3. Environmentally safe fluid extractor

    DOEpatents

    Sungaila, Zenon F.

    1993-07-06

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  4. Resolving Past Liabilities for Future Reduction in Greenhouse Gases; Nuclear Energy and the Outstanding Federal Liability of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Donohue, Jay

    This thesis will: (1) examine the current state of nuclear power in the U.S.; (2) provide a comparison of nuclear power to both existing alternative/renewable sources of energy as well as fossil fuels; (3) dissect Standard Contracts created pursuant to the National Waste Policy Act (NWPA), Congress' attempt to find a solution for Spent Nuclear Fuel (SNF), and the designation of Yucca Mountain as a repository; (4) the anticipated failure of Yucca Mountain; (5) explore WIPP as well as attempts to build a facility on Native American land in Utah; (6) examine reprocessing as a solution for SNF used by France and Japan; and, finally, (7) propose a solution to reduce GHG's by developing new nuclear energy plants with financial support from the U.S. government and a solution to build a storage facility for SNF through the sitting of a repository based on a "bottom-up" cooperative federalism approach.

  5. Safe Detection System for Hydrogen Leaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, Robert A.; Beshay, Manal

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, andmore » has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.« less

  6. Reframing nuclear power in the UK energy debate: nuclear power, climate change mitigation and radioactive waste.

    PubMed

    Bickerstaff, K; Lorenzoni, I; Pidgeon, N F; Poortinga, W; Simmons, P

    2008-04-01

    In the past decade, human influence on the climate through increased use of fossil fuels has become widely acknowledged as one of the most pressing issues for the global community. For the United Kingdom, we suggest that these concerns have increasingly become manifest in a new strand of political debate around energy policy, which reframes nuclear power as part of the solution to the need for low-carbon energy options. A mixed-methods analysis of citizen views of climate change and radioactive waste is presented, integrating focus group data and a nationally representative survey. The data allow us to explore how UK citizens might now and in the future interpret and make sense of this new framing of nuclear power--which ultimately centers on a risk-risk trade-off scenario. We use the term "reluctant acceptance" to describe how, in complex ways, many focus group participants discursively re-negotiated their position on nuclear energy when it was positioned alongside climate change. In the concluding section of the paper, we reflect on the societal implications of the emerging discourse of new nuclear build as a means of delivering climate change mitigation and set an agenda for future research regarding the (re)framing of the nuclear energy debate in the UK and beyond.

  7. Keeping Campuses Safe.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    1999-01-01

    Describes how colleges and universities are using technology, as well as traditional methods, to keep campuses safe and reduce crime. Topics include using free pizza in a successful contest to teach students about campus safety, installing security cameras, using access-control cards, providing adequate lighting, and creating a bicycle patrol…

  8. The challenge of improving boiling: lessons learned from a randomized controlled trial of water pasteurization and safe storage in Peru.

    PubMed

    Heitzinger, K; Rocha, C A; Quick, R E; Montano, S M; Tilley, D H; Mock, C N; Carrasco, A J; Cabrera, R M; Hawes, S E

    2016-07-01

    Boiling is the most common method of household water treatment in developing countries; however, it is not always effectively practised. We conducted a randomized controlled trial among 210 households to assess the effectiveness of water pasteurization and safe-storage interventions in reducing Escherichia coli contamination of household drinking water in a water-boiling population in rural Peru. Households were randomized to receive either a safe-storage container or a safe-storage container plus water pasteurization indicator or to a control group. During a 13-week follow-up period, households that received a safe-storage container and water pasteurization indicator did not have a significantly different prevalence of stored drinking-water contamination relative to the control group [prevalence ratio (PR) 1·18, 95% confidence interval (CI) 0·92-1·52]. Similarly, receipt of a safe-storage container alone had no effect on prevalence of contamination (PR 1·02, 95% CI 0·79-1·31). Although use of water pasteurization indicators and locally available storage containers did not increase the safety of household drinking water in this study, future research could illuminate factors that facilitate the effective use of these interventions to improve water quality and reduce the risk of waterborne disease in populations that boil drinking water.

  9. A proliferation of nuclear waste for the Southeast.

    PubMed

    Alvarez, Robert; Smith, Stephen

    2007-12-01

    The U.S. Department of Energy's (DOE) Global Nuclear Energy Partnership (GNEP) is being promoted as a program to bring about the expansion of worldwide nuclear energy. Here in the U.S. much of this proposed nuclear power expansion is slated to happen in the Southeast, including here in South Carolina. Under the GNEP plan, the United States and its nuclear partners would sell nuclear power plants to developing nations that agree not to pursue technologies that would aid nuclear weapons production, notably reprocessing and uranium enrichment. As part of the deal, the United States would take highly radioactive spent ("used") fuel rods to a reprocessing center in this country. Upon analysis of the proposal, it is clear that DOE lacks a credible plan for the safe management and disposal of radioactive wastes stemming from the GNEP program and that the high costs and possible public health and environmental impacts from the program pose significant risks, especially to this region. Given past failures to address waste problems before they were created, DOE's rush to invest major public funds for deployment of reprocessing should be suspended.

  10. Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based onmore » current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF.« less

  11. An Integrated Data-Driven Strategy for Safe-by-Design Nanoparticles: The FP7 MODERN Project.

    PubMed

    Brehm, Martin; Kafka, Alexander; Bamler, Markus; Kühne, Ralph; Schüürmann, Gerrit; Sikk, Lauri; Burk, Jaanus; Burk, Peeter; Tamm, Tarmo; Tämm, Kaido; Pokhrel, Suman; Mädler, Lutz; Kahru, Anne; Aruoja, Villem; Sihtmäe, Mariliis; Scott-Fordsmand, Janeck; Sorensen, Peter B; Escorihuela, Laura; Roca, Carlos P; Fernández, Alberto; Giralt, Francesc; Rallo, Robert

    2017-01-01

    The development and implementation of safe-by-design strategies is key for the safe development of future generations of nanotechnology enabled products. The safety testing of the huge variety of nanomaterials that can be synthetized is unfeasible due to time and cost constraints. Computational modeling facilitates the implementation of alternative testing strategies in a time and cost effective way. The development of predictive nanotoxicology models requires the use of high quality experimental data on the structure, physicochemical properties and bioactivity of nanomaterials. The FP7 Project MODERN has developed and evaluated the main components of a computational framework for the evaluation of the environmental and health impacts of nanoparticles. This chapter describes each of the elements of the framework including aspects related to data generation, management and integration; development of nanodescriptors; establishment of nanostructure-activity relationships; identification of nanoparticle categories; hazard ranking and risk assessment.

  12. Safe Hazmat Storage Tips.

    ERIC Educational Resources Information Center

    Neville, Angela

    1996-01-01

    Provides a list of recommendations for safely managing hazardous waste containers. Encourages training of employees on the hazards of the wastes they handle and the correct procedures for managing containers. (DDR)

  13. Analytical design and performance studies of nuclear furnace tests of small nuclear light bulb models

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Rodgers, R. J.

    1972-01-01

    Analytical studies were continued to identify the design and performance characteristics of a small-scale model of a nuclear light bulb unit cell suitable for testing in a nuclear furnace reactor. Emphasis was placed on calculating performance characteristics based on detailed radiant heat transfer analyses, on designing the test assembly for ease of insertion, connection, and withdrawal at the reactor test cell, and on determining instrumentation and test effluent handling requirements. In addition, a review of candidate test reactors for future nuclear light bulb in-reactor tests was conducted.

  14. What Safe Zone? The Vast Majority of Dislocated THAs Are Within the Lewinnek Safe Zone for Acetabular Component Position.

    PubMed

    Abdel, Matthew P; von Roth, Philipp; Jennings, Matthew T; Hanssen, Arlen D; Pagnano, Mark W

    2016-02-01

    Numerous factors influence total hip arthroplasty (THA) stability including surgical approach and soft tissue tension, patient compliance, and component position. One long-held tenet regarding component position is that cup inclination and anteversion of 40° ± 10° and 15° ± 10°, respectively, represent a "safe zone" as defined by Lewinnek that minimizes dislocation after primary THA; however, it is clear that components positioned in this zone can and do dislocate. We sought to determine if these classic radiographic targets for cup inclination and anteversion accurately predicted a safe zone limiting dislocation in a contemporary THA practice. From a cohort of 9784 primary THAs performed between 2003 and 2012 at one institution, we retrospectively identified 206 THAs (2%) that subsequently dislocated. Radiographic parameters including inclination, anteversion, center of rotation, and limb length discrepancy were analyzed. Mean followup was 27 months (range, 0-133 months). The majority (58% [120 of 206]) of dislocated THAs had a socket within the Lewinnek safe zone. Mean cup inclination was 44° ± 8° with 84% within the safe zone for inclination. Mean anteversion was 15° ± 9° with 69% within the safe zone for anteversion. Sixty-five percent of dislocated THAs that were performed through a posterior approach had an acetabular component within the combined acetabular safe zones, whereas this was true for only 33% performed through an anterolateral approach. An acetabular component performed through a posterior approach was three times as likely to be within the combined acetabular safe zones (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.1-1.6) than after an anterolateral approach (OR, 0.4; 95% CI, 0.2-0.7; p < 0.0001). In contrast, acetabular components performed through a posterior approach (OR, 1.6; 95% CI, 1.2-1.9) had an increased risk of dislocation compared with those performed through an anterolateral approach (OR, 0.8; 95% CI, 0.7-0.9; p

  15. Transmutation of Nuclear Waste and the future MYRRHA Demonstrator

    NASA Astrophysics Data System (ADS)

    Mueller, Alex C.

    2013-03-01

    While a considerable and world-wide growth of the nuclear share in the global energy mix is desirable for many reasons, there are also, in particular in the "old world" major objections. These are both concerns about safety, in particular in the wake of the Fukushima nuclear accident and concerns about the long-term burden that is constituted by the radiotoxic waste from the spent fuel. With regard to the second topic, the present contribution will outline the concept of Partitioning & Transmutation (P&T), as scientific and technological answer. Deployment of P&T may use dedicated "Transmuter" or "Burner" reactors, using a fast neutron spectrum. For the transmutation of waste with a large content (up to 50%) of (very long-lived) Minor Actinides, a sub-critical reactor, using an external neutron source is a most attractive solution. It is constituted by coupling a proton accelerator, a spallation target and a subcritical core. This promising new technology is named ADS, for accelerator-driven system. The present paper aims at a short introduction into the field that has been characterized by a high collaborative activity during the last decade in Europe, in order to focus, in its later part, on the MYRRHA project as the European ADS technology demonstrator.

  16. Nuclear disarmament verification via resonant phenomena.

    PubMed

    Hecla, Jake J; Danagoulian, Areg

    2018-03-28

    Nuclear disarmament treaties are not sufficient in and of themselves to neutralize the existential threat of the nuclear weapons. Technologies are necessary for verifying the authenticity of the nuclear warheads undergoing dismantlement before counting them toward a treaty partner's obligation. Here we present a concept that leverages isotope-specific nuclear resonance phenomena to authenticate a warhead's fissile components by comparing them to a previously authenticated template. All information is encrypted in the physical domain in a manner that amounts to a physical zero-knowledge proof system. Using Monte Carlo simulations, the system is shown to reveal no isotopic or geometric information about the weapon, while readily detecting hoaxing attempts. This nuclear technique can dramatically increase the reach and trustworthiness of future nuclear disarmament treaties.

  17. History of Nuclear Weapons Design and Production

    NASA Astrophysics Data System (ADS)

    Oelrich, Ivan

    2007-04-01

    The nuclear build-up of the United States and the Soviet Union during the Cold War is often portrayed as an arms race. Some part was indeed a bilateral competition, but much was the result of automatic application of technical advances as they became available, without careful consideration of strategic implications. Thus, the history of nuclear weapon design is partly designers responding to stated military needs and partly the world responding to constant innovations in nuclear capability. Today, plans for a new nuclear warhead are motivated primarily by the desire to maintain a nuclear design and production capability for the foreseeable future.

  18. LA SAFE and Isle de Jean Charles: Regional Adaptation and Community Resettlement Planning

    NASA Astrophysics Data System (ADS)

    Sanders, M.

    2017-12-01

    LA SAFE, or Louisiana's Strategic Adaptations for Future Environments, is a strategic framework for community development utilizing future projections of coastal land loss and flood risk as a determining factor in regional growth management and local planning initiatives along a 10, 25, and 50 year timeline. LA SAFE utilizes the input of passionate local citizen leaders and organizations committed to enabling community members to take proactive steps towards mitigating risk and increasing resilience against coastal issues. The project aims to acknowledge that adaptation and restoration must go hand-in-hand with addressing community growth and contraction, as well as realizing Louisiana's most vulnerable coastal communities will need to contemplate resettlement over the next 50 years. The project's outlook is to become a global leader for adaptation and cultural design and restoration. Connecting a global interest with the project and offering extensive ways for people to learn about the issues and get involved will provide an immense amount of support necessary for future coastal environments around the world. This presentation will focus on the output of a year-long planning effort across a six-parish target area encompassing several vulnerable coastal Louisiana locales. The Resettlement of Isle de Jean Charles is a federally-funded and first-of-its kind initiative marking Louisiana's first attempt to relocate a vulnerable coastal community at-scale and as a group. Due to a myriad of environmental factors, the Island has experienced 98 percent land loss since 1955, leading to many of the Island's historical inhabitants to retreat to higher, drier landscapes. In moving the community at-scale, the project seeks to inject new life into the community and its residents in relocating the community to higher, safer ground, while also developing the new community in such a way that it maximizes economic development, job training, and educational opportunities and can be a

  19. Inertial sensing microelectromechanical (MEM) safe-arm device

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Wooden, Susan M [Sandia Park, NM

    2009-05-12

    Microelectromechanical (MEM) safe-arm devices comprise a substrate upon which a sense mass, that can contain an energetic material, is constrained to move along a pathway defined by a track disposed on the surface of the substrate. The pathway has a first end comprising a "safe" position and a second end comprising an "armed" position, whereat the second end the sense mass can be aligned proximal to energetic materials comprising the explosive train, within an explosive component. The sense mass can be confined in the safe position by a first latch, operable to release the sense mass by an acceleration acting in a direction substantially normal to the surface of the substrate. A second acceleration, acting in a direction substantially parallel to the surface of the substrate, can cause the sense mass to traverse the pathway from the safe position to the armed position.

  20. Fighting the Epidemic of Nuclear Plant Leaks.

    ERIC Educational Resources Information Center

    Udell, Richard A.

    1983-01-01

    The current epidemic of steam generator tube leaks alone should put to rest the rosy future once envisioned for nuclear power. It is impossible to regulate quality into a nuclear plant; it must be built and designed that way. The economic impact of the leaks is discussed. (RM)

  1. Nuclear Power Acceptance Among University Staffs and Students

    NASA Astrophysics Data System (ADS)

    Hayder, G.; Rahim, M. S. Ab

    2016-03-01

    The need to consider alternative energy sources becomes very real. Nuclear has been identified as an alternative electricity source. However, media reports seem to indicate that there is a resistance among peoples with regards to harnessing nuclear for energy. This study was conducted to assess the acceptance level of university staff and students towards nuclear energy by asking them to answer a questionnaire. The questionnaire was constructed in a way to gauge their background knowledge on the energy situation of the country, the risks involved with regards to nuclear energy and also what aspects need to be improved in order to have a safe integration of nuclear energy into the national energy mix. The overall result of the questionnaire indicated high level of support for nuclear energy. The main areas of concerns however, were waste management, control and governance and also nuclear accidents. These should be identified as fields that require extra attention. However, the positive result obtained from this survey should not be construed as overall strong support in general. There might be different outcomes if the survey was conducted on to the general population as compared to the university students and staff that were involved in this research.

  2. Space Fission Propulsion Testing and Development Progress. Phase 1

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.

  3. Phase 1 space fission propulsion system testing and development progress

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter

    2001-02-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified, MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired, they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans. .

  4. Karate: Keep It Safe.

    ERIC Educational Resources Information Center

    Jordan, David

    1981-01-01

    Safety guidelines for each phase of a karate practice session are presented to provide an accident-free and safe environment for teaching karate in a physical education or traditional karate training program. (JMF)

  5. Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.

    ERIC Educational Resources Information Center

    Hoffman, Darleane C.; Choppin, Gregory R.

    1986-01-01

    Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)

  6. Short-Term Medical Consequences of the Chernobyl Nuclear Accident: Lessons for the Future

    PubMed Central

    Gale, Robert Peter

    1988-01-01

    The author of this article discusses the world's most serious nuclear accident to date: the Chernobyl nuclear accident of April 1986. His major focus is on the short-term medical consequences of the accident, including reduction of exposure to persons at risk, evaluation of persons potentially affected, dosimetry, and specific medical interventions. PMID:21253129

  7. Materials challenges for nuclear systems

    DOE PAGES

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; ...

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less

  8. Future of antibody purification.

    PubMed

    Low, Duncan; O'Leary, Rhona; Pujar, Narahari S

    2007-03-15

    Antibody purification seems to be safely ensconced in a platform, now well-established by way of multiple commercialized antibody processes. However, natural evolution compels us to peer into the future. This is driven not only by a large, projected increase in the number of antibody therapies, but also by dramatic improvements in upstream productivity, and process economics. Although disruptive technologies have yet escaped downstream processes, evolution of the so-called platform is already evident in antibody processes in late-stage development. Here we perform a wide survey of technologies that are competing to be part of that platform, and provide our [inherently dangerous] assessment of those that have the most promise.

  9. Regenerative endodontics and tissue engineering: what the future holds?

    PubMed

    Goodis, Harold E; Kinaia, Bassam Michael; Kinaia, Atheel M; Chogle, Sami M A

    2012-07-01

    The work performed by researchers in regenerative endodontics and tissue engineering over the last decades has been superb; however, many questions remain to be answered. The basic biologic mechanisms must be elucidated that will allow the development of dental pulp and dentin in situ. Stress must be placed on the many questions that will lead to the design of effective, safe treatment options and therapies. This article discusses those questions, the answers to which may become the future of regenerative endodontics. The future remains bright, but proper support and patience are required. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Prepare to protect: Operating and maintaining a tornado safe room.

    PubMed

    Herseth, Andrew; Goldsmith-Grinspoon, Jennifer; Scott, Pataya

    2017-06-01

    Operating and maintaining a tornado safe room can be critical to the effective continuity of business operations because a firm's most valuable asset is its people. This paper describes aspects of operations and maintenance (O&M) for existing tornado safe rooms as well as a few planning and design aspects that affect the ultimate operation of a safe room for situations where a safe room is planned, but not yet constructed. The information is based on several Federal Emergency Management Agency safe room publications that provide guidance on emergency management and operations, as well as the design and construction of tornado safe rooms.

  11. Nuclear Arms Control, Nonproliferation, and Counterterrorism: Impacts on Public Health

    DOE PAGES

    Dreicer, Mona; Pregenzer, Arian

    2014-04-01

    Reducing the risks of nuclear war, limiting the spread of nuclear weapons and reducing global nuclear weapons stockpiles are key national and international security goals. They are pursued through a variety of international arms control, nonproliferation and counter-terrorism treaties and agreements. These legally binding and political commitments, together with the institutional infrastructure that supports them, work to establish global norms of behavior and have limited the spread of weapons of mass destruction. Beyond the primary security objectives, reducing the likelihood of the use of nuclear weapons, preventing environmental releases of radioactive material, increasing the availability of safe and secure nuclearmore » technology for peaceful purposes, and providing scientific data relevant to predicting and managing the consequences of natural or human-caused disasters world-wide provide significant benefits to global public health.« less

  12. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  13. Review of "Successful, Safe, and Healthy Students"

    ERIC Educational Resources Information Center

    Glass, Gene V.; Barnett, Steven; Welner, Kevin G.

    2010-01-01

    The research summary "Successful, Safe, and Healthy Students" presents the research background for the Obama administration's proposals for comprehensive, community-wide services in high-poverty neighborhoods, extended learning time, family engagement and safe schools. While these policies have broad and common-sense appeal, the research…

  14. From strange bedfellows to natural allies: the shifting allegiance of fire service organisations in the push for federal fire-safe cigarette legislation

    PubMed Central

    Barbeau, E; Kelder, G; Ahmed, S; Mantuefel, V; Balbach, E

    2005-01-01

    Background: Cigarettes are the leading cause of fatal fires in the USA and are associated with one in four fire deaths. Although the technology needed to make fire-safe cigarettes has been available for many years, progress has been slow on legislative and regulatory fronts to require the tobacco industry to manufacture fire-safe cigarettes. Method and results: We conducted a case study, drawing on data from tobacco industry documents, archives, and key informant interviews to investigate tobacco industry strategies for thwarting fire-safe cigarette legislation in the US Congress. We apply a theoretical framework that posits that policymaking is the product of three sets of forces: interests, institutions, and ideas, to examine tobacco industry behaviour, with a special focus on their and others' attempts to court fire service organisations, including firefighters' unions as allies. We discuss the implications of our findings for future policy efforts related to fire-safe cigarettes and other tobacco control issues. Conclusions: Tobacco control advocates ought to: continue efforts to align key interest groups, including the firefighters unions; contest tobacco industry "diversionary" science tactics; and pursue a state based legislative strategy for fire-safe cigarettes, building towards national legislation. PMID:16183985

  15. Taking multiple medicines safely

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000883.htm Taking multiple medicines safely To use the sharing features on this ... directed. Why You May Need More Than One Medicine You may take more than one medicine to ...

  16. Monitoring Moving Queries inside a Safe Region

    PubMed Central

    Al-Khalidi, Haidar; Taniar, David; Alamri, Sultan

    2014-01-01

    With mobile moving range queries, there is a need to recalculate the relevant surrounding objects of interest whenever the query moves. Therefore, monitoring the moving query is very costly. The safe region is one method that has been proposed to minimise the communication and computation cost of continuously monitoring a moving range query. Inside the safe region the set of objects of interest to the query do not change; thus there is no need to update the query while it is inside its safe region. However, when the query leaves its safe region the mobile device has to reevaluate the query, necessitating communication with the server. Knowing when and where the mobile device will leave a safe region is widely known as a difficult problem. To solve this problem, we propose a novel method to monitor the position of the query over time using a linear function based on the direction of the query obtained by periodic monitoring of its position. Periodic monitoring ensures that the query is aware of its location all the time. This method reduces the costs associated with communications in client-server architecture. Computational results show that our method is successful in handling moving query patterns. PMID:24696652

  17. Conceptual Design of the Chornobyl New Safe Confinement - an Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulishenko, Valery N.; Hogg, Charles; Schmieman, Eric A.

    2006-05-01

    The Object Shelter, constructed over the Chornobyl nuclear power plant that was destroyed by a 1986 accident, is at risk of collapse. The Consortium of Bechtel, Electricité De France, and Battelle, in cooperation with subcontractor КСК, recently completed the conceptual design for a New Safe Confinement (NSC) building to reduce Shelter corrosion, to mitigate the consequences of potential collapse, and to enable the safe deconstruction of unstable structures. The arch-shaped NSC will be constructed at a distance from the Shelter to minimize radiation exposure to construction workers, and then slid into place over the Shelter. After sliding, cranes and othermore » tools inside the NSC will be remotely operated for deconstruction of the Shelter. The NSC is designed for a 100-year life. Bechtel designed the arch structure and was responsible for project management functions. Electricité De France designed the foundations and designed deconstruction of the Object Shelter unstable elements. Battelle performed safety analyses and environmental impact assessment. КСК (a consortium of КIЕЛ [KIEP], НДIБК [NIISK], and МНТЦ [ISTC]), as a working partner in all aspects of the design and analysis processes, was the Ukrainian licensed engineer for conceptual design. The design is currently being reviewed by Ukrainian regulatory authorities. An open international tender for detailed design and construction is anticipated to be announced by the European Bank for Reconstruction and Development in December, 2003, with two-stage bid evaluation beginning in April, 2004.« less

  18. RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly Cummins; Igor Bolshinsky; Ken Allen

    2009-07-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required tomore » complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.« less

  19. Support to the Safe Motherhood Programme in Nepal: an integrated approach.

    PubMed

    Barker, Carol E; Bird, Cherry E; Pradhan, Ajit; Shakya, Ganga

    2007-11-01

    Evidence gathered from 1997 to 2006 indicates progress in reducing maternal mortality in Nepal, but public health services are still constrained by resource and staff shortages, especially in rural areas. The five-year Support to the Safe Motherhood Programme builds on the experience of the Nepal Safer Motherhood Project (1997-2004). It is working with the Government of Nepal to build capacity to institute a minimum package of essential maternity services, linking evidence-based policy development with health system strengthening. It has supported long-term planning, working towards skilled attendance at every birth, safe blood supplies, staff training, building management capacity, improving monitoring systems and use of process indicators, promoting dialogue between women and providers on quality of care, and increasing equity and access at district level. An incentives scheme finances transport costs to a health facility for all pregnant women and incentives to health workers attending deliveries, with free services and subsidies to facilities in the poorest 25 districts. Despite bureaucracy, frequent transfer of key government staff and political instability, there has been progress in policy development, and public health sector expenditure has increased. For the future, a human resources strategy with career paths that encourage skilled staff to stay in the government service is key.

  20. Challenges for future space power systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. The key to success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience was made. These needs fall into three broad categories-survival, self sufficiency and industrialization. The cost of delivering payloads to orbital locations from low earth orbit (LEO) to Mars was determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options were made. These goals are largely dependent upon orbital location and energy storage needs.

  1. Safe speed limits for a safe system: The relationship between speed limit and fatal crash rate for different crash types.

    PubMed

    Doecke, Sam D; Kloeden, Craig N; Dutschke, Jeffrey K; Baldock, Matthew R J

    2018-05-19

    The objective of this article is to provide empirical evidence for safe speed limits that will meet the objectives of the Safe System by examining the relationship between speed limit and injury severity for different crash types, using police-reported crash data. Police-reported crashes from 2 Australian jurisdictions were used to calculate a fatal crash rate by speed limit and crash type. Example safe speed limits were defined using threshold risk levels. A positive exponential relationship between speed limit and fatality rate was found. For an example fatality rate threshold of 1 in 100 crashes it was found that safe speed limits are 40 km/h for pedestrian crashes; 50 km/h for head-on crashes; 60 km/h for hit fixed object crashes; 80 km/h for right angle, right turn, and left road/rollover crashes; and 110 km/h or more for rear-end crashes. The positive exponential relationship between speed limit and fatal crash rate is consistent with prior research into speed and crash risk. The results indicate that speed zones of 100 km/h or more only meet the objectives of the Safe System, with regard to fatal crashes, where all crash types except rear-end crashes are exceedingly rare, such as on a high standard restricted access highway with a safe roadside design.

  2. Meeting our need for electric energy: the role of nuclear power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-07-01

    This report focuses on the projected long-term growth of electric demand and the resultant need for new electric generating capacity through the year 2010. It summarizes the results of several technical and economic analyses done over the past two years to present two alternative scenarios for the future growth of nuclear energy in the United States. The first of these scenarios is based on a reference assumption of continued economic recovery and growth, while the second assumes a more vigorous economic recovery. These alternative scenarios reflect both the role that electricity could play in assuring the future economic wellbeing ofmore » the United States and the role that nuclear power could play in meeting future electricity needs. The scenarios do not project an expected future; rather, they describe a future that can be achieved only if US industry is revitalized in several key areas and if current obstacles to construction and operation of nuclear power plants are removed. This report underscores the need for renewed domestic industrialization as well as the need for government and industry to take steps to allow nuclear energy to fulfill its original potential. Further, it suggests some specific actions that must be taken if these goals are to be met.« less

  3. Public Response to a Near-Miss Nuclear Accident Scenario Varying in Causal Attributions and Outcome Uncertainty.

    PubMed

    Cui, Jinshu; Rosoff, Heather; John, Richard S

    2018-05-01

    Many studies have investigated public reactions to nuclear accidents. However, few studies focused on more common events when a serious accident could have happened but did not. This study evaluated public response (emotional, cognitive, and behavioral) over three phases of a near-miss nuclear accident. Simulating a loss-of-coolant accident (LOCA) scenario, we manipulated (1) attribution for the initial cause of the incident (software failure vs. cyber terrorist attack vs. earthquake), (2) attribution for halting the incident (fail-safe system design vs. an intervention by an individual expert vs. a chance coincidence), and (3) level of uncertainty (certain vs. uncertain) about risk of a future radiation leak after the LOCA is halted. A total of 773 respondents were sampled using a 3 × 3 × 2 between-subjects design. Results from both MANCOVA and structural equation modeling (SEM) indicate that respondents experienced more negative affect, perceived more risk, and expressed more avoidance behavioral intention when the near-miss event was initiated by an external attributed source (e.g., earthquake) compared to an internally attributed source (e.g., software failure). Similarly, respondents also indicated greater negative affect, perceived risk, and avoidance behavioral intentions when the future impact of the near-miss incident on people and the environment remained uncertain. Results from SEM analyses also suggested that negative affect predicted risk perception, and both predicted avoidance behavior. Affect, risk perception, and avoidance behavior demonstrated high stability (i.e., reliability) from one phase to the next. © 2017 Society for Risk Analysis.

  4. Beth Reis and the Safe Schools Coalition

    ERIC Educational Resources Information Center

    Vaught, Sabina E.

    2007-01-01

    This article chronicles the formation and organization of the Safe Schools Coalition (SCC) through the experiences of Beth Reis, co-founder and co-Chair. The article suggests ways in which the SCC can serve as a model for both collective and individual work in promoting safe schools.

  5. Overview of nuclear energy: Present and projected use

    NASA Astrophysics Data System (ADS)

    Stanculescu, Alexander

    2012-06-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  6. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the

  7. The advisability of prototypic testing for space nuclear systems

    NASA Astrophysics Data System (ADS)

    Lenard, Roger X.

    2005-07-01

    From October 1987 until 1993, the US Department of Defense conducted the Space Nuclear Thermal Propulsion program. This program's objective was to design and develop a high specific impulse, high thrust-to-weight nuclear thermal rocket engine for upper stage applications. The author was the program manager for this program until 1992. Numerous analytical, programmatic and experimental results were generated during this period of time. This paper reviews the accomplishments of the program and highlights the importance of prototypic testing for all aspects of a space nuclear program so that a reliable and safe system compliant with all regulatory requirements can be effectively engineered. Specifically, the paper will recount how many non-prototypic tests we performed only to have more representative tests consistently generate different results. This was particularly true in area of direct nuclear heat generation. As nuclear tests are generally much more expensive than non-nuclear tests, programs attempt to avoid such tests in favor of less expensive non-nuclear tests. Each time this approach was followed, the SNTP program found these tests to not be verified by nuclear heated testing. Hence the author recommends that wherever possible, a spiral development approach that includes exploratory and confirmatory experimental testing be employed to ensure a viable design.

  8. The Economics of America's Energy Future.

    ERIC Educational Resources Information Center

    Simmons, Henry

    This is an Energy Research and Development Administration (ERDA) pamphlet which reviews economic and technical considerations for the future development of energy sources. Included are sections on petroleum, synthetic fuels, oil shale, nuclear power, geothermal power, and solar energy. Also presented are data pertaining to U.S. energy production…

  9. Large Bilateral Reductions in Superpower Nuclear Weapons.

    DTIC Science & Technology

    1985-07-01

    missile ( ABM ) systems were deployed, e.g., the current Soviet ABM system around Moscow. Although there have been no further wartime uses of nuclear...have placed more emphasis on strategic defense than the U.S.; however, by agreeing to the ABM Treaty, the 6Soviets implicitly accepted the fundamental...required for the reliability testing of existing nuclear weapons and the development of future nuclear weapons. The ABM Treaty of 1972 was a

  10. Nuclear Electric Propulsion for Deep Space Exploration

    NASA Astrophysics Data System (ADS)

    Schmidt, G.

    Nuclear electric propulsion (NEP) holds considerable promise for deep space exploration in the future. Research and development of this technology is a key element of NASA's Nuclear Systems Initiative (NSI), which is a top priority in the President's FY03 NASA budget. The goal is to develop the subsystem technologies that will enable application of NEP for missions to the outer planets and beyond by the beginning of next decade. The high-performance offered by nuclear-powered electric thrusters will benefit future missions by (1) reducing or eliminating the launch window constraints associated with complex planetary swingbys, (2) providing the capability to perform large spacecraft velocity changes in deep space, (3) increasing the fraction of vehicle mass allocated to payload and other spacecraft systems, and, (3) in some cases, reducing trip times over other propulsion alternatives. Furthermore, the nuclear energy source will provide a power-rich environment that can support more sophisticated science experiments and higher- speed broadband data transmission than current deep space missions. This paper addresses NASA's plans for NEP, and discusses the subsystem technologies (i.e., nuclear reactors, power conversion and electric thrusters) and system concepts being considered for the first generation of NEP vehicles.

  11. Wireless online position monitoring of manual valve types for plant configuration management in nuclear power plants

    DOE PAGES

    Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.; ...

    2016-10-05

    In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less

  12. Wireless online position monitoring of manual valve types for plant configuration management in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.

    In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less

  13. Supportability Challenges, Metrics, and Key Decisions for Future Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Owens, Andrew C.; de Weck, Olivier L.; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2017-01-01

    Future crewed missions beyond Low Earth Orbit (LEO) represent a logistical challenge that is unprecedented in human space flight. Astronauts will travel farther and stay in space for longer than any previous mission, far from timely abort or resupply from Earth. Under these conditions, supportability { defined as the set of system characteristics that influence the logistics and support required to enable safe and effective operations of systems { will be a much more significant driver of space system lifecycle properties than it has been in the past. This paper presents an overview of supportability for future human space flight. The particular challenges of future missions are discussed, with the differences between past, present, and future missions highlighted. The relationship between supportability metrics and mission cost, performance, schedule, and risk is also discussed. A set of pro- posed strategies for managing supportability is presented (including reliability growth, uncertainty reduction, level of repair, commonality, redundancy, In-Space Manufacturing (ISM) (including the use of material recycling and In-Situ Resource Utilization (ISRU) for spares and maintenance items), reduced complexity, and spares inventory decisions such as the use of predeployed or cached spares - along with a discussion of the potential impacts of each of those strategies. References are provided to various sources that describe these supportability metrics and strategies, as well as associated modeling and optimization techniques, in greater detail. Overall, supportability is an emergent system characteristic and a holistic challenge for future system development. System designers and mission planners must carefully consider and balance the supportability metrics and decisions described in this paper in order to enable safe and effective beyond-LEO human space flight.

  14. The Comprehensive Nuclear Test Ban Treaty (Counterproliferation Papers, Future Warfare Series, Number 54)

    DTIC Science & Technology

    2010-06-01

    parts to detect a nuclear explosion: seismic, hydroacoustic, infrasound and radionuclide. Figure 3. CTBTO International Monitoring System Sites26...Conference,” (Oct. 14, 2009), www.armscontrol.org.. [17] from earthquakes and mining explosions, but have proved effective in detecting past nuclear...hydroacoustic monitoring stations detect sound waves in the oceans, and the 60 infrasound stations detect above ground, ultra-low frequency sound waves

  15. Virus Alert: Ten Steps to Safe Computing.

    ERIC Educational Resources Information Center

    Gunter, Glenda A.

    1997-01-01

    Discusses computer viruses and explains how to detect them; discusses virus protection and the need to update antivirus software; and offers 10 safe computing tips, including scanning floppy disks and commercial software, how to safely download files from the Internet, avoiding pirated software copies, and backing up files. (LRW)

  16. 16 CFR 312.11 - Safe harbor programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Safe harbor programs. 312.11 Section 312.11 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE PRIVACY PROTECTION RULE § 312.11 Safe harbor programs. (a) In general. Industry groups or other persons...

  17. Nuclear data for medical applications: An overview of present status and future needs

    NASA Astrophysics Data System (ADS)

    Syed, M. Qaim

    2017-09-01

    A brief overview of nuclear data required for medical applications is given. The major emphasis is on radionuclides for internal applications, both for diagnosis and therapy. The status of the presently available data is discussed and some of the emerging needs are outlined. Most of the needs are associated with the development of non-standard positron emitters and novel therapeutic radionuclides. Some new developments in application of radionuclides, e.g. theranostic approach, multimode imaging, radionanoparticles, etc. are described and the related nuclear data needs are discussed. The possible use of newer irradiation technologies for medical radionuclide production, e.g. intermediate energy charged-particle accelerators, high-power electron accelerators for photon production, and spallation neutron sources, will place heavy demands on nuclear data.

  18. Pakistan’s Nuclear Weapons: Proliferation and Security Issues

    DTIC Science & Technology

    2009-12-09

    Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008...gave additional urgency to the program. Pakistan produced fissile material for its nuclear weapons using gas-centrifuge-based uranium enrichment...technology, which it mastered by the mid-1980s. Highly-enriched uranium (HEU) is one of two types of fissile material used in nuclear weapons; the other

  19. Pakistan’s Nuclear Weapons: Proliferation and Security Issues

    DTIC Science & Technology

    2009-10-15

    and technical measures to prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage ...Talks On Nuclear Security,” The Boston Globe, May 5, 2009. 79 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or...a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008. 80 Martellini, 2008. 81 For more information

  20. Intermediate-energy nuclear chemistry workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.